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A Strictly Improving Phase I Algorithm Using
Least-Squares Subproblems

S. A. Leichner G. B. Dantzig J. W. Davis
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Abstract

Although the simplex method’s performance in solving linear program-
ming problems is usually quite good, it does not guarantee strict improve-
ment at each iteration on degenerate problems. Instead of trying to recog-
nize and avoid degenerate steps in the simplex method (as sotne variants
do), we have developed a new Phase | algorithm that is completely imper-
vious to degeneracy, with strict improvement attained at each iteration.
It is also noted that the new Phase I algorithm is closely related to a
number of existing algorithms.

When tested on the 30 smallest NETLIB linear programming test
problems, the computational results for the new Phase I algorithm were
almost 3.5 times faster than the simplex method; on some problems, it
was over 10 times faster.

1 Introduction

On highly degenerate problems, the simplex method often “stalls”, performing
a number of iterations at a degenerate point before producing any improvement
in the objective value. Examples have been constructed by Hoffman [11] and
Beale [1] to show that it is theoretically possible that the iterative steps can
repeat and thus cycle forever, although this phenomenon is quite rare in prac-
tice. Instead of trying to make the simplex method more efficient by trying to
avoid stalls due to degeneracy (or near degeneracy), we develop a new Phase |
algorithm that is completely impervious to degeneracy.

This new method involves the use of least-squares subproblems in column
selection, and is shown to have the property of strict improvement at each iter-
ation, even if every basic solution (in the simplex method sense) is degenerate.
Like the simplex method, we will show that the new Phase I algorithm termi-
nates in a finite number of steps, and that in practice, this number is often quite
low compared to the simplex method.

Our algorithm is quite similar to a number of existing algorithms, including
one to solve the bounded least-squares problem (found in [3]), and another to



solve the non-negative least-squares problem (found in [12]). In addition, our
algorithm is also closely related the algorithm developed by Dantzig [5) and by
Van de Panne & Whinston [14]. R.W. Cottle noted that although this algorithm
was designed to solve quadratic programs and thus has a different goal in mind,
when applied to an alternate formulation of the Phase I feasibility problem, it
is similar to a variant of our least-squares Phase I algorithm.
~ Section 2 develops most of the theory used by the algorithms presented. It
is concerned with finding a feasible solution to a linear program, and after some
preliminary results, begins to look at two-variable least-squares problems. The
two-variable problem and its positive least-squares solution is used to select the
incoming column, and thus build an improved “basic” solution. Conditions are
derived under which the solutions to these least-squares problems are strictly
positive. Although this is analogous in many ways to the simplex method, it
is proved that strict improvement can be guaranteed at each iteration, even
in the presence of degeneracy. Next, the detection of infeasibility is discussed,
followed by a detailed description of the newly developed least-squares Phase
I algorithm, and discussion of a number of variations. Finally, equivalences
between our algorithms and the other related algorithms are discussed.

Section 3 presents computational results for the algorithm developed in Sec-
tion 2. As noted, the least-squares Phase I algorithm has excellent performance,
with run times 3.5 times faster than LSSOL’s implementation of the simplex
method [8]. On some problems, the least-squares Phase I algorithm was over 10
times faster.

Section 4 summarizes the work presented here and attempts to draw some
conclusions. Suggestions for future work appear at the end of this section.

2 Finding a Feasible Solution

2.1 The Problem

The problem to be addressed is that of the Phase I problem solved by the
simplex method. That is, find a vector z such that

Az
z

b’ (2'1)
Oa

v

where z € R", b € R™, and A € R™*". Denoting the jth column of A by A;, we
assume A; # 0 V j, and that b # 0, or else z = 0 is a trivial solution. Without
loss of generality, we also assume that b has been rescaled so that ||b||; = 1,
and similarly the columns of A have been rescaled so that || A ||z = 1V j.

Fact 2.1
Let B be an independent subsetl of the columns of A, and lel zp salisfy




Bzp = b, (2-2)
zg > 0.

Then by setting x; = 0 for A; € B, it is a trivial matler to construct an * from
zp such that * is a solution to (2-1). (See [6] for a more detailed treatment of
the relationship between (2-1) and (2-2).)

The main objective of the least-squares Phase I algorithm to be presented
here is to find such a matrix B (if it exists), and positive weightings zpg, such
that B and zp comprise a solution to (2-2). In the remainder of this discussion,
we will refer to this matrix B as a basis. Note that this notion of a basis
differs from that of the simplex method, as our basis B may contain less than
m columns and that these columns may not be sufficient in themselves to span
the column space of A.

2.2 Preliminaries

We need to consider least-squares problems with positive solutions before we can
present the algorithm. But before we can consider such problems, we need a
few more preliminary facts and results. We will be making use of the Euclidean
norm, which we will denote by || - ||.

Fact 2.2
Letbv,peR™, b#0,p#0,v#0,andv#b. Letu=b—v. If1-v is closer
to b than any other scalar multiple A, then we can conclude that

(a) vTu=10Tv>0;

b) uTv=0;

() uTu=>bTu>0;

(d)  bTb = uTu+ 0Ty,

(e) If pTb <0, then 1-v is closer to b than any scalar multiple pp of p, p > 0;

(f) If p > 0, then 1-v is closer to b than pp for all u > 0 if and only if
loll > pTo/lIpI;

(8) If p#£0 and v # up, then vTv pTp — (v7p)? > 0.
Proof:

(a) The hypotheses imply that A = 1 is the solution to

m}n | &= Av]|l?.



Therefore d
- A)T(b-Av)=0 for =1,

and v7v = bTv follows. We also have bTv > 0 since v # 0.
(b) Since u = b — v by definition, uTv = (b — v)Tv = 0 by (a).
(c) 1t follows that uTu = u(b - v) = u7b. |
(d) We have bTb = b7(u + v) = uTu + vTv by (a) and (c).
(e) The unconstrained minimum of the problem

min |6 — up|

occurs at u* = pTb/pTp, and if pTb < 0, we have u* < 0. Because || b—up||?
is a convex function of 4 with a minimum at u*, we can conclude if p7b < 0,

min |6 - upl
must occur at g = 0. Thus,
min b= sup | = 18]

Now consider
|6=v|l = bTb — v < [16]].
If pb < 0, we have

16 ~vlf < |lb]| = min|[b— pp]|.
H20
(f) From part (e), we know that the minimum of the problem
. b-—- 2
min b~ pp|
occurs at u* = pTb/pTp, and we see that if p7b > 0, we have x* > 0. Thus,
; _ 2 — o _ 2
min [|b — pp[|* = min|6 - up||
If v is closer to b than is up for all g > 0, then we have
No-vli> < minjlb-pp|?
u20

bTb - 2076 + 0Ty < r“n>ig(b7'b —2up”b + u?p"p)

\ 2
’l‘b Tb
20T+ 0Ty < =2 P2 Th + g2 T
pp |7 pp) PP

(pTb)?

-y £ -
p’p

by Fact 2.2, part (a).



Therefore, given pTd > 0, we can say that

pTh
el

Now if instead of assuming pTb > 0, we assume that

[foll >

il

el

we see that the argument reverses exactly. The result follows.

vl >

(g) This is a version of the Cauchy-Schwartz inequality. O

Fact 2.3
Given mairiz A € R™*™ (A #0), then ATA has full rank if and only if A has
Jull column rank.

Fact 2.4
Let {Ay,As,...,Ax} be a setl of linearly independent columns. A unique least-
squares weighling vector z ezists, yielding the unconditional minimum of F =

{|b — Az ||. The unique minimum is found by solving the normal equations
ATAz = ATb.

Fact 2.5

Let {A1, Ay, ..., A} be a set of linearly independent columns. Let z° be the
unique least-squares solution to min||b—Y"; Aizi ||, and let 10 = 3, Ay Let
z! # 20 be any other weighting of the columns A;, and let v! =3, Ajz}. Then
[1b = (1 = A)v! — A®||? is monotonically increasing from A =1 to A = 0.

Proof:
16— (1= Ayl = A® || = [|b— v |2 = 2A(b — v")T(v” — v') + M| 0! = 0°|?

is a strictly convex function, and its minimum occurs at A 1. Thus this

quadratic function of A strictly increases from A=1to A =0. 0
Corollary 2.6

Letv=(1-A)' + A% Ifv0 is closer to b than is v', then uTu < uTu;, where
uy=b—v',andu=b—v forall0< <1

Proof: Let ug = b—v%. We know that up # u; because ulug < uTu;. Therefore

|l u1 — ug ||2 = u’{’ul + ug'uo - 2u',rug > 0,



and 2ulup < uJu; + uJuo. Hence,

T
uTy (Aug +(1- ,\)ul) (Auo +(1- A)ul)
A2ulug + (1 = X)2uluy + 22(1 = NuTy,

< Aulup + (1 = M2uTuy + 2(1 = ) (uTu; + ulug)
= (1 - A)u'{'ul + /\U’(I,‘u()

< (1= NuTu; + 2uly (because udup < ulu; )
= uTul.

Thus any nontrivial convex combination of two vectors v° and v! as shown above
is strictly closer to b than whichever vector v° or v! is farthest away from b. O

Corollary 2.7

Let A € R™*" be made up of linearly independent columns, and let z° be the
unique least-squares solution to min||b— Az ||. Let v° = Az®. Assume v° # 0.
Ifv! >0, where v! is otherwise arbitrary, then a convex combination v of v° and
v! can be found to generate a v > 0 closer to b than v! for some A\, 0 < A< 1.

Proof: From Fact 2.5, we know that ||b — (1 — A)v! — Av®||? is monotonically
increasing from A = 1 to A = 0. Thus any convex combination, v = (1 — A\)v! +
Av®, has the property that

o=v! 2> (b~v|?>[[b-2"|7 (A£0,A#1)

If we want v > 0 with v closer to b than v!, start with A = 1 and decrease A
until all components of v are > 0. This is possible because v > 0. D

Fact 2.8
Givenz > 0, y # 0, the minimum A required to make the veclor Az+(1-A)y > 0
is
X* = max —%—,
yi<0 &y — Yy

This concludes the necessary preliminary results.

2.3 Least Squares with Positive Solutions

In this section, we will consider the conditions under which the solution to the
(unconstrained) two-variable least-squares problem

min F(a, 8) = min b~ av - Bp I (2-3)

is unique, and the implications of a non-positive solution. Then we will derive
conditions under which the solution is strictly positive.




Theorem 2.9
Leip#0, v upandu=>b—v. Let min F = Fy. Then,

(a) the values of (ap,Bo) yielding Fy are unique;
(b) Fo = uTu if and only if (a0, Bo) = (1,0).
Proof:

(a) Noting that the condition v # up implies v and p are linearly independent,
this follows directly from Fact 2.4,

(b) If (g, Bo) = (1,0), then we see that Fo = uTu. By part (a), we know that
the values of (ap, Bo) yielding Fy are unique. Therefore, the converse also
holds; that is, Fip =uTu=||b—1.v—0-p||? implies (ap, Bo) = (1,0). O

Corollary 2.10
Let 1 - v be closer to b than any other Av. If Fy # uTu, then Fy < uTu and
Bo # 0. In addition, if min{ag,Bo} < 0, then Fo < uTu.

Proof: If Fy # uTu, we can conclude that Fy < uTu, as F = uTu is obtainable
at (a, 8) = (1,0).

Now assume that Fy < uTu and Bp = 0. Thus, agv + Bop = agv. Since v
is closer to b than is any Av (A # 1), apv cannot be as close to b as is v for
ag # 1. Therefore if 8o = 0, then ap = 1. From Theorem 2.9, we know that if
(o, Bo) = (1,0), then F = uTu, which is a contradiction.

In Theorem 2.9, we showed that Fy = uTu if and only if (ag, 8y) = (1,0).
‘We just showed that if Fo # uTu, then Fy < uTu. If min{ao, B} < 0, then
(a0, B0) # (1,0). Thus we can conclude that Fy # uTu, which in turn implies
that Fy < uTu. O

Theorem 2.11

Let 1 -v be closer to b than any other Av. Also let v # up and let v be closer to
b than any up, p > 0. Let Fo = min F, and let (ag, Bo) be the unique solution
corresponding to Fy. Let vg = aov + Bop. If min{ao, S0} < 0, then there ezist
no (aq,B1) > 0 such thet vy = a v+ Bip is closer to b than is v.

Proof: Assume 3 (ay, B1) > 0 such that v, is closer to b thanis v, i.e., || b—v || >
16— vi]|.

Case 1: ap < 0, o > 0.
Let ¥ be a convex combination of vg and v;:

v o= /\')3+(1—-/\)v1
= (z\ao+(1—/\)a1)v+(/\ﬁo—f-(l—/\)ﬁl)p
= av+fp,



where & = Aag + (1 = A)ay and 8 = ABy + (1 - A)B;.

Since vg is formed from the unique solution to min F', we know that vy is
closer to b than is v;. Thus by Corollary 2.6, we can say that any convex
combination of vy and v; is at least as close to b as is v;. That is, ||b— || <
|6 —vi||. At some point between v and vy, @ = 0, since &g < 0 and a; > 0.
At such a point, we have # = Bp. However, we know that v is closer to b than
any (p for > 0, so v is closer to b than is #. That is, ||b—v|| < ||b— 7. We
also know that ¥ is at least as close to b as is vy, i.e., ||b—9| < || b—v;||. Thus
we have || — v|| < || b — vy ||, which contradicts the assumption.

Case 2: $y < 0, no conditions on ay.
As in Case 1, let ¥ be a convex combination of vy and v;:

¥ Avg + (1 = A,
= av+fBp,
where & and ff are as defined above in Case 1. Also as in Case 1, we can conclude
that any convex combination of v and v, is at least as close to b as is v1. That
is, [[b—#]| <[|b~wv1]|. At some point between vy and vy, we have = 0. At
such a point, # = &v. However, we know that v is closer to b ihan any av for
a # 1. So v is at least as close to b as is 9, i.e., ||b— v| < ||b— ]].. We also
know that ||b— % || < || b~ vy ||. Thus we have ||b—v|| < {|b—v; ||, which again
contradicts the assumption. O

Now we will derive conditions under which the solution (ag, 5) to

min F = min||b — av - Bp||?
a,f

is strictly positive.

Theorem 2.12

Let v# up, p# 0. Let v be closer to b than any Av, A # 1 and let u = b—v.
Let F and (ag, Bo) be as defined in Theorem 2.11. Then By > 0 if and only if
T

pu>0.

Proof: Solving for G at the minimum of F', we get
fo = bTp vTv — bTv pTv
= o= (o
Consider the sign of Bo. From Fact 2.2, we know that pTp vTv — (pTv)? > 0, so
we need only consider the numerator:
pTovTv —bTvp™s = pTbvTv—pTuvTy  (by Fact 2.2, part (a))
= vTvplu. :

Since v # 0, we know that vTv > 0. Thus the sign of pTu determines the sign
of the numerator and hence the sign of 8;. The result follows. O



Theorem 2.13
Given the same conditions as in Theorem 2.12 with the addition thatl v be closer
to b than is pp for ;0 >0, then ag > 0 if pTu > 0.

Proof: Solving for ag at the minimum of F, we get

vTv pTp — (pTv)? — pTupTv
pr ‘UTU — (pT’U)2

ap =

From Fact 2.2, we know that pTpvTv — (pTv)2 > 0, s0 the sign of oy is the same
as the sign of the numerator v7v pTp — (pTv)? — pTu pTv.

Case 1: pTb > 0:
From Fact 2.2 we know that vTv pTp > (p7b)2. Therefore,
vTupTp — (") - pTupTv > (pTb)? - (pTv)? - pTv p"u
(#"8)’ = (") - pTv p"b + (pTv)?
pTb(p"b — p'v)
= pTbpTu>0,

1l

1l

since pTb > 0 and pTu > 0. Thus in Case 1, ap > 0 if pTu > 0.

Case 2: p’b < 0 :

We know pTu > 0 and thus pTb — pTv > 0. But pTh < 0, so p’v must be
negative. Again we consider the sign of the numerator of ap. By Fact 2.2,
we know v7v pTp — (pTv)? > 0, so consider —pTu pTv. However, we know that
pTu > 0 and pTv < 0. Thus —pTupTv > 0. Thus in Case 2, ag > 0 if pTu > 0. O

Corollary 2.14
Given the conditions of Theorem 2.13, the unconditional minimum of F is at
(a0, B0) > 0 if uTp > 0.

Proof: This follows directly from Theorems 2.12 and 2.13. O

2.4 Column Selection Criteria

We have considered the problem (2-3), and conditions under which (g, By) > 0.
So far, we have held both v and p fixed. We now consider holding only v fixed,
but allowing p to be chosen as one of the columns of the matrix A from (2-1).
In particular, we select that column A, whose nonnegative combination with
v brings us closer to b than any other A;, j # s. This is done by solving the
problem

min G = mjin (Tli,;:”b— av — BA; n?> . (2-4)



Before finding the minimum of G in the general case, we will first consider the ‘
simpler problem of finding A; = A, that yields the minimum of G when v = 0.
The solution § = Fy will be used to set v = fpA, as the initial approximation

to b. ‘

Theorem 2.15
I}'bTA,y> 0 for some j, then the solution to

min (i ll6-p451) (25)
is attained al By = bTA, where
§ = argimax bT4;. (2-6)
J

Otherwise, if bTA; < 0 for all j, then no matier which j is chosen, the inf of (2-
§5) is attained at B = 0. In the latier case, the closest nonnegative approzimaltion
to b is given by z = 0.
Proof: First consider

min F = ngnll b— BA; ||

Because the columns of A are normalized, the minimum of F' occurs at

bTA;
Bo = - = bTA;.
AT4; J
Evaluating F' at §;, we get
F = (b-BoA;)T(b- BoA;)
B=Po

= bTb— (b74;)%.

In choosing a particular 4;, we want to minimize this value subject to Sy > 0.
This corresponds to maximizing (b7A4;)? over all positive 67A;. If TA; < 0 for
all 7, then the inf of problem (2-5) is clearly attained at § = 0, regardless of the
choice of 5. O

We set v = bTA, A, as the initial approximation to b (where s is defined
by (2-6)), and we proceed to seek to improve this approximation by considering
the problem (2-4). For convenience of discussion, we assume that s defined
by (2-6) is unique, although this is not a necessary condition.

'10



Theorem 2.16

Let 1-v be closer to b than any scalar multiple Av for A # 1. Let pA; # v Vj,
where the columns A; are normalized as in (2-1). Let v be closer to b than pA;
for p> 0 and all j, and let u=>b— v. Under these conditions, the solution to

mj inf ||b— av— BA; || 2-7
in ( intl1b- v - 547 (1)
is allained at j = s where
ATy
s = argmax . (2-8)

i (vTv B (A;-rv)2) 1/2?

provided that 3 j : A;ru > 0. If3 no j such that A;ru > 0, then any (a,8) > 0
will produce a value of (2-7) that is greater than or equal to || b — v||.

Proof: First consider

min Fj = miﬁn“b-— av - BA; ||°. - (29)
a,

From the proofs of Theorem 2.12 and Theorem 2.13, we know that the uncon-
ditional minimum of F; cccurs at (a;,3;) where

(a5, 8;) A;rA ;vTv — A;rv Afb vTy A;ru
o, f) = , .
7 ATA;vTv — (ATv)2 ' ATA; vTv - (ATv)?

Since A}'Aj = 1, this can be rewritten as

T
(a5 5) = (vTv—A;-"vA}'b’ vTv ATy .
o\ v - (ATv)2 " WTy — (ATv)?

Evaluating F; at the minimum (aj, §;), we get
Filazas = (b~ ajv—B;A;)7(b~ajv - f; 4))
| = 61— oy — BjA;) — ajvT(b — ajv ~ B 4)) — B AJ(b — ajv — B A;)
= (b - aju — B;A;)
= bTh- aj vTv - B; bTAj (from Fact 2.2, part (a))

= 3Th— (vTv)? — vTv bTA; vTA; 3 vy ATZ- u bTA;
B vTy — (vT4;)?

vTv — (vTA;)?

b Ty vTv — 26745 vTA; + (ATh)?
vTv — (vT4;)?

11



We choose A, so as to minimize F;. This corresponds to maximizing the
following over A;:

(vTv _ 9BTA, VA, + (bTA,)?) INCHOED)

vTv — (vT4;)? T yTy - (A)Tu)2
which is the same as choosing j = s so as to maximize

(Af6-v)* __ (Afw?
vTv — (AJv)2 ~ vTv — (ATv)?

Let us consider th. solution (g, Bo) to (2-9). Let min F = F(ap, fo) = Fo.
Note that by Theorem 2.9, the solution (ao, 8o) is unique, and any other solution
(a1, B1) # (oo, Bo) must have the property that #(ay, 81) > F(ao. fo).

Case 1: uTA; =0

From the proof of Theorem 2.12 and Theorem 2.13, we know that (ag, o) =
(1,0), and F{ao,Bo) = ||b— v|[>. If we were to insist that we minimize over
strictly positive (o, 3), we would get an (o), B1) > (¢1,€2) > 0 for some (¢€;,€3),
and (ay, 1) # (@0, Bo). Thus from Theorem 2.9 and Corollary 2.10, F(a, 81) >
F(ao, fo), or in other words, F(a1, 1) > ||b - v||%.

Case 2: uTA; < 0
From the proof of Theorem 2.12, we see that Sy < 0. From Theorem 2.11,
we know that there is no (ay, 1) > 0 such that F(a), 1) < ||b—v]|?>. Therefore
if we were to insist that we minimize over strictly positive (a, /), we would get
an (o, B1) > (€1,€2) > 0 such that F(ay,B;) > ||b—v]||%
Case 3: uT4; >0
From Corollary 2.14, we know that (ag,8) > 0. We also know that F =
[lb = v||? is attainable with (a, 8) = (1,0). Because the solution is unique, we
can conclude that F(1,0) > F(ag,Bo), or in other words, F(ao,B0) < |[b—1v %
Only in Case 3 are we able to find an (a, ) > 0 such that
. 2 2
(ar,r;lal)go“b av — BA;||* < [|b-v]|°
Therefore, the only columns to consider to improve the approximation v are
those such that uTAj »> 0, provided that any such columns exist. Thus from the
solution we computed for problem (2-9), we see that the solution to to (2-7) is

given by

A;ru
§ = argmax

/2"
.. aT,
JAJu>0 (vTv - (A;-rv)z)

provided that 3 j : A;-ru > 0. We also showed that if A7u < 0, then any solution
with (o, ) > 0 will produce a minimum of (2-7) that is > || b~ v {|* (and hence
(a, B) = (1,0) is as good a solution as any possible). O

12



We will eventually consider more carefully the implications of the situation
when ATu < 0, but we need more results first.

2.5 Basic Weightings

A set of liiearly independent columns of A, {4, Ay, ..., A}, will be denoted
by B, and be called a basts; the set of indices {1,2,...,k} will be referred to as
basic indices. A nonnegative weighting of a basis is any v = Bzp with zg > 0.
It is a positive weighting if zp > 0. A positive weighting such that v is closer
to b than is any other positive weighting will be referred to as a basic weighting.

Given a basis, there may or may not exist a positive weighting that is closest
to b. That is to say, the clcsest nonnegative weighting may have some weights
(zB)i = 0, in which case it is a basic weighting for the subset of columns of B
where (zp); > 0.

Now consider the least-squares problem

min ||b ~ Bzg ||?

Let 2% be the solution and let v® = Bz%. We will refer io such a v° as the
least-squares weighting of B. Notice that this implies that a nositive weighting
of a basis B is a basic weighting if and only if it is the least-squares weighting
of the columns of B.

Fact 2,17
Any basic weighting v of a basis B is unique.

Theorem 2.18
Let v = Bzg be a positive weighling of the columns of B. Let u=b —v. Then
a necessary and sufficient condition that v be a basic weighting is uTB = 0.

Proof: We know that if v is a positive weighting, then v is a basic weighting
if and only if it is a least-squares weighting. Thus it is equivalent to prove
that a necessary and sufficient condition that v be a least-squares weighting is
uTB = 0. The normal equations, which are necessary and sufficient conditions
for v to be the least-squares weighting, are

BT(Bzp —b) =0
Noting Bz — b = v — b = u, the result follows. O

Corollary 2.19
Given v, a basic weighting corresponding to B, and uTA, # 0 where u = b — v,
then {B, A,} is a set of linearly independent columns.

Proof: By Theorem 2.18, uTB = 0 because v is a busic weighting. Since
uTA, # 0, we know that A, is not containec in the space spanned by the
columns of B. (Otherwise A, would be a linear combination of the columns of
B, and we would have u¥A, = 0.) O
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Corollary 2.20

If v is a basic weighting corresponding to B, and u = b— v, then if we select A,
by the criterion (2-8), where ATu > 0, then A, is linearly independent of the
columns in B,

Proof: This follows directly from Corollary 2.19, as A;"u £0.0

Corollary 2.21
If Ay is chosen as in Corollary 2.20, then the leasl-squares problem

min || b — Bzp — A,z, || (2-10)
has a unique solulion.

Proof: B has linearly independent columns. By Corollary 2.20, { B, A,} is also
a set of linearly independent columns. Therefore by Fact 2.4, the least-squares
problein above has a unique solution. O

2.6 Strict Improvement

Theorem 2.22

Let v = Bzp be a basic weighling corresponding lo basts B and let u = b — v.
Let v be closer to b than uA, for p > 0 and let A, be linearly independent of
the columns of B. Let vy = Bzh + A,z! be the unique least-squares weighting
of the problem (2-10), and let uy = b~ vy. If uT A, > 0, then the least-squares
weighting satisfies z! > 0.

Proof: We know v is closer to b than is Av for A # 1 because v is a basic
weighting. We also know A, # uv because uTv = 0 by Fact 2.2, and we know
that uTA, > 0. Let F = ||b — av — z,A, ||>. Let & and £, be the values of a
and z, at the minimum of F. From Corollary 2.14, we can conclude that both
& and I, are positive. Finally, let © = #, A, + dv. Since v' is the least-squares
weighting of {B, A,}, we have ||[b—v! ||> < || b~ ©]|%.

We need to show that ||b— ]| < [|b - v[|*>. We know

No—v|* = bTb—20Tv+4vTv (from Fact 2.2)
bTh — vy,

From the proof of Theorem 2.16, we know that

v ATy d &= vTo — ATy ATh
= vTv — (A’Tv)z an O = ’UTU — (A;rv)z )
and that o
e gm o1 [ (ATw?
Nb—0|I°=b6"b~v v(vTv—(ATv)?-*l)’
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We know that ATu # 0, s0 (ATu)? > 0. We also know that vTv—(vTA4,)? > 0
from Fact 2.2. Thus

(ATu)*
vTy — (vTA,)? >0,
so that (AT "
T sU) T
viy (—-—-————-—v,,.v —(vTA,)2 + 1) > v,
Thus
a2 — T T (ATu)?
o3|l = bb—v v(——-——-———-—-vTv_(vTAa)z +1
< bTb—-oTy
= lIb-vll”
So we have
1=l [P <=5l < [lb~v]l%. (2-11)

Assume on the contrary that z! is nonpositive. From Fact 2.5, we know
that any convex combination of ¥ and v! is at Jeast as close to b as is 9. The
coefficient of A, is 0 at some combination, since £, > 0 and we are assuming
that z! < 0. However, 7 is strictly closer to b than is vg, and if the coefficient of
A, is 0, this convex combination can be no closer to b than vo. Thus, somewhere
between v; and © we have a solution that is further away from b than is vy. This
is a contradiction. (J

Corollary 2.23

Given the same conditions as in Theorem 2.28, v! is strictly closer to b than is
v.

Proof: This follows directly from (2-11). O

Now consider the following situation. As before, assume we have a basis B,
a basic weighting v = Bzpg, and u = b — v. Now let A, be another column
from A, where A, is linearly independent of the columns in B, uT4, > 0, and
v is closer to b than is pA, for p > 0. The linearly independent set of columns
{B, A,}, and the solution {yg,y;} to

min || b — Byp — A, s |I°

has the property that y* > 0 by Theorem 2.22. Note however, that we cannot
say that yj > 0.



Theorem 2.24 5

Given the situation described above, we can find a new basis B where B is
formed from a subset of the columns of (B A, ), and the solution £g > 0 has
the property that

min ||b — B&p ||> < min||b — Bzp ||. |
In addition, A, will be one of the columns in B.
Proof: Let y* =(yp v} )7 be the solution to
min[l6— (B A)yl*

Because uTA, > 0, we can use Theorem 2.22 to assert that y! > 0. From
Corollary 2.23, we also have the fact that

lb—Bag | > (8- (B A)y" |

In order to continue, we need some additional notation. We will be forming
B from (B A,), and we may need to iteratively delete a number of the columns
of B. We will denote the subset of the columns remairing at some iteration by
BY (indicating that BY corresponds to the current yg). Initially, this means
that B = BY.

Case 1: y* >0

Let B=(BY A,) and let g = y*. This assignment is valid, since y* is a
basic weighting of the columns of ( BY A, ), and A, is one of the columns of
B.

Case 2: y* >0

Let g* be the positive elements of y*. Remember that y; > 0, so y; € §".
Let BY be the columns of BY corresponding to the elements of §*. Let B =
(BY A,)and let &p = §j*. Again, this is valid because §* is a basic weighting
of the columns of (BY A, ), and A, is one of the columns of B.

Case 3: We do not have y* > 0.

In this case, we know that at least one element of y} is negative, and we
have a significantly more complicated situation. We need to drop one or more
columns from ( BY A, ) such that there exists a positive least-squares solution
for the remaining columns. In order to do this, we must redefine BY and y*,
and then go back and check the sign of y* against Cases 1-3 again. This means
that we could perform the steps (to be described) in Case 3 more than once.

The first time through Case 3, we define ° = zp, and we have BY = B.
(Note that neither equation will be true in subsequent times through Case 3.)

We now form the convex combination

—[(°B) _ z° _ ) c .
c_(c,)_'\(O)+(l A)(y;,),:c >0, y; >0
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and seek the smalled A < 1 such that ¢ > 0. This A is determined by

L]

It is clear for A € (0,1) that ¢, > 0. We will drop all columns of (BY A,)
corresponding to zero elements of c.

Each pass through Case 3, one convex combination is formed. In the first
pass, we have BY = B, and we have proved that A, is retained the first time a
convex combination is formed during the coluinn-dropping process. We need to
prove that no matter how many convex combinations (and corresponding passes
through Case 3) are necessary, A, is not dropped. In order to prove this, we
must redefine ¢, BY and y* as follows.

Let ¢ be the positive elements of c. Let BY be the columns of BY corre-
sponding to the elements of é. Let §* be the solution to

min[|b—(BY A,)§]
In order to redefine z° to be é, we need
lb—Bzp (> > b~ (B A)elP2Ml6-(BY A)F P (212
In addition, in order to redefine y* to be §* and BY to be BY, we need
g5 > 0. (2-13)
We have |
l6—Bzg|*>[lb-(BY A)el®>>lb-(BY A)y'|
from Fact 2.5. We also know that |
o= (BY As)el®=(lb~ (A A,)el
from the definition of ¢ and AY, and since §* is a least-squares solution, we have
I6—(BY A)el’=ll6-(BY A)g" I
Finally, both §* and y* are least-squares solutions, but BY is a proper subset of

BY, so )
No—(BY A" IIP26—(BY A)y* |

Altogether, this gives us
l6=Bzp |I* > [|b=(BY A,) &l 2 16—(BY A)§ [P 2 16—(BY Ay,
which proves (2-12).
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Now we need to consider (2-13), the sign of 3. We will prove that § > 0
by contradiction, so assume that §; < 0. We will form a convex combination of
y* and §* as follows. Let 2 be defined as

.k if B} € BY,
7710, ifBYgBY.

This gives us

1b-(8 A)arie=|e-ar a0 () e llb- (B Ayl

y

Now form the convex combination

“=(F)=2(z) o ().

Because y; < 0 and y; > 0, we can pick A € (0, 1] such that ¢ = 0. Fact 2.5
says that

6—(BY A)g"IP2(lb— (B AP 2llb—(BY Ay |
However, this would imply that
16~ Bzp|* > ||b— (B A,)e |,
which when ¢Z = 0, can be rewritten as

2

2 ¥4

=“b—(év A,)(CB> ,
0

lb— Bzg |’ > ||b— BYch |I°.

However, BY is a proper subset of the columns of B, and zp is the least-squares
solution to

lIb= Beg | > Hb-(.@v A,)(C:E?)

and thus

min || b — Bzp ||,

so that we know R
|6 — Bep|? <|lb- BYcy |I*.

This is our contradiction. Thus we must have §; > 0, and (2-13) has been
shown to be true. We can therefore set z¢ = ¢, BY = BY, y* = §*, and go back
and check this new y* against Cases 1-3. Note that if Case 3 again applies and
additional columns must be dropped, we will have the following upon entry:

16~ Bzl > 16~ (BY Az |P2 (b~ (BY Ay P,
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and when a new convex combination c is formed, we will find
|6=Bzp ||* > [|b—(BY As)=z®|? > [{b=(BY As)e|? > [[6-(BY A,)y*|?

by Fact 2.5. Thus (2-12) will still hold in subsequent passes through Case 3.
We repeat this process of checking the sign of y* and dropping columns until
Case 1 or Case 2 is satisfied. ‘

We will now show that y* will eventually satisfy Case 1 or Case 2. We
know that y; > 0, no matter how many convex combinations are formed, and
no matter how many times y* and BY are consequently redefined. Therefore
column A, is always retained during this process. Thus we can conclude that in
the worst case, we will find y* > 0 when BY = @ (and A, is the only remaining
column in B), at which time Case 1 is satisfied. O

Note that Theorem 2.24 did not disallow the possibility that all columns be
dropped from AY before we can find a y* > 0. That is, it implies that it could
be possible that {A;} = A, and z! = y!. We will prove that this is actually
not possible.

Corollary 2.25

If the first column ever added to B is A, where r is determined by (2-6) in
Theorem 2.15, then y* will satisfy Case 1 or 2 before all columns other than A,
are dropped from the basis.

Proof: Assume that y* never satisfies Case 1 or Case 2 until only column A,
is remaining (and y* = y} > 0). From Theorem 2.24, we know that

16~ Bzp|I* > ||b - Big |,
which (if all columns other than A, are dropped) can be rewritten as
16— Bzg|l® > l|b— Ay |I*.
Since A, was the first column placed in B, we know from Theorem 2.24 that
16~ Aryr [I* > |16 — Bzp ||?,
where y; > 0 is the solution to
min|| b — Ary, ||

Thus
lb— Aryr I > (16— Bzg ||* > ||b~ Ay} |,
which implies
16— Ary; ”2 > |6 — Ay, “2

However, A, was chosen to be the solution to (2-5) (see Theorem 2.15). Thus
we have a contradiction. [J
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2.7 Infeasibility

Until now, we have not considered the feasibility or infeasibility of (2-1). This
section discusses the issue of infeasibility and how it affects the solution to the
least-squares problems considered in Theorems 2.15 and 2.16, as well as other
related issues.

Fact 2.26 .
If ATb < 0, we can conclude that (2-1) is infeasible.

Proof: Given that b # 0, this follows directly from Farkas’ Lemma. O

Fact 2.26 implies that if in the process of finding the solution to (2-5) (see
Theorem 2.15), we find that A,Tb < 0V j, then we have established that (2-1)
is infeasible. '

Fact 2.27
Let A be as in Fact 2.26. Let v# 0 be closer to b than any A, A # 1, and let
u=b—v. Ifu# 0 and uTA <0, then the original problem (2-1) is infeasible.

Proof: We know from Fact 2.2 that bTu = uTu, and we know that u # 0.
Therefore this follows directly from Farkas’ Lemma. O

Corollary 2.28
Let v be a basic weighting corresponding to basis B and let u = b~ v. If
uTA; <0 V A; ¢ B, then (2-1) is infeasible.

Proof: We know that v is a basic weighting of B, so we can conclude from
Theorem 2.18 that uTA; = 0 V A; € B. Thus we have uTA; <0V A;. We can
see by Fact 2.27 that (2-1) is thus infeasible. O

Theorem 2.29

Letv = Bxp be a basic weighting corresponding to the basis B and let u = b—v.
If infeasibility is detected (i.e., if uTA; <0 V A; & B), then v is af least as
close to b as is any other nonnegative weighting of the columns of A.

Proof: Let BI be the set of indices such that j € BI if and only if A; € B.

We can write v as
V= Z Aj (:!!E)J',
j€BI
where (zp); is the component of zp corresponding to A;.
Since we have discovered infeasibility, we know that u # 0. We also know
that v is closer to b than is any Avg, A # 1 because rp is the least-squares
solution to )

min [ b— Y A;(zp);

jeBI
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We therefore know:

Tp

u uTu by Fact 2.2
uTA; = 0 Vje& BI by Theorem 2.18
uTA; < 0 VY j¢BI because infeasibility has been detected.

Let
n
U= ZA,‘:?:J'
i=1

be any other nonnegative weighting of the columns of A. Therefore we have
Z; >0V j. Let i = b— 9. Consider

n
WTig = uTo—uT)_ Aji;
i=1
= uly-— Z UTAJ':EJ' - Z uTAjirj
jeBI j€BI
= ulu- Z uTA;&; > u'u,
JjgBI
Now consider
wlu=(luflljull; i =|ulll|]cosd,

where 8 is the angle between u and . We have

il llcos® > [fullljull = | &Il @ cos & > [jullll &1,
which can be extended to

Nallll@]l > [1afll@|lcosd = (| ullll@ || > [ ull|l || cos.

Therefore @7i > uTd > uTu. So we can conclude that v is at least as close
to b as is any other nonnegative weighting of the columns of A. O

Corollary 2.30

Given B, v and u as in Theorem 2.29. If v is closer to b than is any other
nonnegative weighting of the columns of A, then infeastbility will be detected
(that is, we will find uTA; <OV j € B).

Proof: Assume that uTA, > 0 for some A, ¢ B. If we add A, to B and drop
columns as described in Section 2.6, then we will find a B and &5 > 0 such
that ¥ = BZp is closer to b than is v. This contradicts the assumption that v
is closer to b than is any other nonnegative weighting of the columns of A. O
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2.8 The Least-Squares Phase I Algorithm

As stated in Section 2.1, the main objective of the Phase I algorithm to be
presented here is to build a basis matrix, made up of selected columns of A,
and to find positive weightings of these columns such that the basis and the
associated positive weightings are a solution to (2-2). Remember that we have
rescaled (2-1) such that {|4; ]| =1V j and ||b]| = 1.

At the start of an iteration, we are given a basis B, compoged of a linearly .
independent subset of the columns of A, with the property that the least-squares
weighting of these columns which yields the closest approximation to the right-
hand side b is a positive weighting. The iterative step tests whether the current
approximation is the closest approximation with a positive weighting, and if not,
selects an incoming column with the property that a positive combination of the
previous approximation and the incoming column is a strictly better approxi-
mation to the right-hand side. There exists, however, a (possibly proper) subset
of the columns of the augmented basis such that the least-squares weighting is
positive, and is also a better approximation to the right-hand side than the
simple positive combination. This subset of the augmented set of basic columns
can be used to start the next iteration.

Algorithm Pseudocode
Notation and Variables:
A: The original m x n matrix of (2-1).
b: The original right-hand side of (2-1).
nbi: The number of currently basic columns (the number of columns in B).

B: The matrix of currently basic columns. m x nbi of B is used, and nbi can
be as large as m.

BI: An m-vector containing indices of the columns of B relating them tc the
columns of A. For example, if BI[i] = j, the ith column of B contains
the jth column of A. BI[i] = 0 means no column corresponds to the ith
component of B/, which implies there must be less than i basic columns,

zp: The current positive weightings of the columns of B. The first nbi com-
ponents of zg (corresponding to the nbi columns in B) are used, and nbi
can be as large as m.

v: The current approximation Bzrg.
u: The current residual b — v,

y: The current least-squares solution of min|{b — By||2. The first nbi compo-
nents of y are used, and nbi can be as large as m.
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X: The vector to hold the solution to {2-1). Note that zp holds the solution
to (2-2).

0. Initialization {no columns initially in basis}
B :=0 {no columns in basis}
zp :=0 {no current basic solution}
BI := @ {nc basic indices}
nbi := 0 {set number of basic columns to 0}
u:=0b {set residual to b}
v:=0 {set current approximation v = Bzg = 0}
X :=0 ({set final solution to 0}

1. Starvup {find the first column to place in B}
If5T4; <0 Vj=1,...,n then
Go to 4.  {the problem is infeasible}
§ 1= argmaxX; 7 ;>0 bTA,-
Place A, in the first column of B.
BI[l]:=s {record first column}
y[1] := bTA, {record basic solution}
nbi:=1 {set number of basic columns}
2. Main Loop {Add columns to B until u = 0 or infeas. is discovered.}
rg ‘=Y
v:= Bzg {set current approximation}
u:=b—v {set current residual]
If u = 0 then
Goto 4. {solution found}
If uTA; <0 V j & BI then
Go to 4. {infeasibility discovered}
nbi := nbi+ 1 {increment number of basic columns}

AJTu
§ = argmax T T 1/2
iu;g}'?-;o (U v- (AJ v)Z)

Place A, in column nbi of B.
Bl[nbi]:=s {record position of incoming column}

Set ¢ = <93OB

3. Least-Squares Loop
Solve || By — b||2 for y
If y > 0 then
Go to 2. {new B and zpg found; repeat Main Loop}
If y > 0 then
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Remove all columns from B and elements from zp that
correspond to zero components of y. Update B/ accordingly.
Go to 2. {new B and zg found; repeat Main Loop}

A i=maxy,<o —4i/(ci — %)

c:=Ac+(1—-A)y {form convex combination of ¢ and y }
Remove all coluinns from B and elements from zp and c that

correspond to zero ccruponents of ¢. Update B/ accordingly.
Goto 3. {repeat Least-Squares loop}

" 4. Done {clean up}

for i := 1 to nbi do ‘{form the answer to the original problem}
Xpip) 1= zg[i]
Report on feasibility and output the solution found.

We now r.iake the following observations:

1
4

2.9

The approximation v = Bzpg is strictly closer to b at each iteration (see
Theorem 2.24). This means that degeneracy does not cause problems;
cycling cannot occur, and the process terminates in a finite number of
steps because given B, zg is uniquely determined, and there are a finite
number of bases B.

. If infeasibility is detected, then the current approximation v = Bzp is

closer to b than is any other nonnegative weighting of the columns of A
(see Theorem 2.29). Simiiarly, if u # 0 and v = Bzpg is closer to b than
is any other nonnegative weighting of the columns of A, thzn infeasibility
will be detected when trying to add a new column (sce Corollary 2.30).

Whenever a new column is chosen from A to enter B, it is linearly in-
dep~ndent of the columns currently in B (see Corollary 2.19). Also due
to the linear independence of entering columns, our least-squares solution
(the solution to min||b — By|)) is always unique, so numerical difficulties
aside, rank deficient least-squares problems are never encountered,

Variations

Free Variables
Consider the system

Az = b
z, > 0 for some set of i (2-14)
z; free  for some set of j

This system cculd always be converted to the form of (2-1) by replacing each free
variable z; with two new nonnegative variables z and z// where the original z;

J
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is now represented by z} —z//. However, let us consider how to solve a feasibility
problem with free variables without actually adding any more variables.

In the pure algorithm described in Section 2.8, the entering columns is A,
where s is determined by (2-8). This assumes that all variables are nonnegative.
If free variables are present, we can write the rule for selecting the incoming
column s as

ATu | ATu|
8§ = argmax max ma.
tix 20 szj free

1/2° 1/2
-:ATu>U ('UTU - (ATU)z) j,|'43'.|>0 ('UT’U —_ (AT’U)Z)

Therefore we see t.hat we can select an incoming column when free variables
are present without actually adding new variables and columns. Infeasxbnllty is
detected when ATu < 0. Vi:z; >0, and ATu=10 V j:azj is free.

The only other change in the algonthm concerns testing the sign of y in
the Least-Squares Loop part of the algorithm. Elements of y corresponding to
free variables may take on any nonzero value. If such an eleraent of y is found
to be zero, it is dropped just as any other zero element of y would be. The
only components of y that must be strictly positive are those corresponding
to variables restricted to be nonnegative. Thus, when ) is formed, the only
components y; < 0 that are considered are those corresponding to nonnegative

. variables.

All the results previously discussed (strict improvement, infeasibility de-
tection, etc.) still hold, as these r*'ifications to the pure algorithm simply
implement the result of splitting free vanables without actually doing the work
of adding variables and columns. 3

No Denominator

Consider the selection of the incoming
columns not currently in the basis, ang
0. As the denominator is never dire
infeasibility, strict improvement, et
with 1, we produce a perfectly v: ¥
computation per candidate column

It would be expected that this modificd : " might not perform as well as the
pure rule, since we may not be selecting the A, that minimizes (2-7). However,
we can still guarantee (o, 8) > 0 because ,'Tu > 0.

As it turns out, the results produced (on test problems to be described
later) show very little difference in iteration count between either of these two
variations (“no denominator” and “free variable”) and the pure algorithm. Ap-
parently, it is the direction of the candidate incoming column that is important,
not the particular scaling fas tor used in the column-selection rule,

A,. We must form A;ru for all
br all columns such that A;.ru >
zhny of the proofs relating to
ce the denominator of (2-8)
iection rule that requires less
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Crash Basis
Until now, we have built up the basis B starting from scratch—that is, initially
B contains no columns. If we could pick out a starting set of linearly independent
columns without much effort, we could start with them already in B.
Consider multiplying by —1 all rows of A (and elements of &) corresponding
to negative elements of b. This gives us a positive right-hand side. Now con-
sider selecting all columns of this modified A that are columns of the identity
matrix, i.e., columns of the form e;, where e is a vector of zeros with a 1 in
the jth position. (Note that most columns »f this form will correspond to slack
variables.) If we place all such columns in B, and eliniiinate duplicate columns,
we will get the problem min || — Bz||, and the solution zg will consist of the
elements of b corresponding to the nonzero elements of the identity columns.
All of the theory for the pure algorithm holds for this method as well, with
the exception of Corollary 2.25. Since we do not know that the column A,
satisfying (2-5) was the first column selected to enter the basis, we can no
longer guarantee that all columns (other than the incoming column) will not
be dropped. In our computational experience, such dropping of all columns has
not been observed, and is thus presumed to be rare in practice.

2.10 Discussion

We have proved in Theorem 2.29 and Corollary 2.30 that if (2-1) is infeasible,
we will detect such infeasibility when our current solution zg > 0 is as close as
possible to the right-hand side b. That is, v = Bzp is at least as close to b as
is any other nonnegative weighting of the columns of A. Thus we see that the
least-squares algorithm actually solves the problem

min %Hb - Az ||? (2-15)
s.t. z2>0.

If the least-squares algorithm finds a feasible solution to (2-1), then the optimal
objective value of (2-15) is 0. Otherwise, the optimal objective of (2-15) is
positive, we have an optimal solution zg, and no feasible solution exists to (2-
1).

Problem (2-15) is often called the “non-negative least-squares” problem
(NNLS), and can also be considered a degenerate case of the “bounded least-
squares” problem (BLS), in which z can have both upper and lower bounds.
Lawson and Hanson [12] present an algorithm for NNLS that is very closely
related to our algorithm. The only differences between the algorithms is that
first, a denon:inator of “1” is used in the column selection rule of NNLS, Sec-
ondly, after an incoming column A, has been successfully introduced into the
basis (and all necessary dropping of other basic columns is complete), our al-
gorithm takes all basic variables with a zero value and makes them nonbasic,
while Lawson and Hanson's NNLS algorithm does not.
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We implemented both the NNLS algorithm and the “denominator-of-1” vari-
ation of the least-squares algorithm, and tested the efficiency of the algorithms
on the smallest 30 linear programming problems available from NETLIB. (See 7]
and Section 3 for more details about these problems.) In practice, these two
algorithms rarely chose different incoming columns. A substantial difference
between the two algorithms was observed only once, on problem SCSD6, which
is highly degenerate in the simplex method sense. It also appears to be the case
(in practice) that the NNLS algorithm will occasionally have the same final
basic index set as does the least-squares algorithm with an additional handful
of basic variables. In our experiments, these additional basic variables were all
at a very low level (on the order of 10!° or less). Thus the least-squares al-
gorithm occasionally found a “cleaner” solution than did the NNLS algorithm,
apparently due to numerical error.

Bjorck [3] presents an algorithm for BLS, that when applied to NNLS, is even
closer to our algorithm that is Lawson and Hanson’s algorithm for NNLS. The
only difference between the BLS algorithm and the least-squares algorithm 1s
that a denominator of “1” is used in the column selection rule of NNLS. There-
fore, the “denominator-of-1” version of the least-squares algorithm is equivalent
to the BLS algorithm. Neither [3] nor [12] give any numerical results for this
algorithm.

We also found the following interesting equivalence between the least-squares
algirithm and the convex quadratic programming algorithm due to Dantzig [5]
and Van de Panne & Whinston [14]. Before we can show this equivalence, we
must first reformulate (2-15) as a quadratic programming problem,

The constrained least-squares (2-15) has the following necessary and suffi-
cient conditions for optimality:

~ATb+ ATAz > 0
zr > 0
eT(—ATb+ ATAz) = 0.

These conditions can be formulated as the Linear Complementarity Problem

(LCP)

g+Mz > 0
r > 0 (2-16)
g+ Mz) = 0,
where ¢ = —ATb and M = ATA. Because this M is .ymmetric and positive
semi-definite, this LCP is equivalent to the quadratic j.rogram
. 1 .
min ¢’ + 517‘/"’.’&' =c (2-17)
s.t. =220
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(This problem could, of course, be derived directly from (2-15).)

Accordingly, any convex quadratic programming algorithm would be appli-
cable to (2-17). Although we are going to demonstrate an equivalence between
the quadratic programming algorithm developed by Dantzig and by Van de
Panne & Whinston, the very same algorithmic ideas are developed by Goldfarb
& Idnani [10] from an active-set point of view. (The following description of
this algorithm is adapted from the book by Cottle, Pang and Stone [4].)

The Quadratic Programming Algorithm
The algorithm is based on principal pivotal transforms of the system y = ¢+ Mz,
which can be written in tableau form as

1 =z
20 [0 ] ¢"
v (e M

where c is as in (2-17). At any point in the algorithm, we will have two index sets
a and S, corresponding to basic and nonbasic z variables, respectively. Thus if
we partition and relabel the original tableau as

1 Tg Yo
2 [ 0] g5 qr
Ys | 98 | Mpp | Mpa
Ty (o | M af Moo

then we can write a general tableau during the algorithm in terms of the original
tableau as

1 zZg Ya
2 —Ja Mgy a 95 = 9o Mag Mop qaMga
Y | 98 = MpaMzada | Mpp — Mpa Mgy Map | MpaMsy
Zq -Mzo4a —MzaMap Mzo

From this tableau, we can see that when the nonbasic variables 5 -nd y, are
set to 0, the basic variables z, and yg can be expressed as

Ta = '—Mt;al‘Ia
Yo 95 — MﬂaMc;gqa'

We will rewrite the general tableau (after k principal pivots) as
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1 mgr yk
2¢ [ 6% [ (g5)" [ (¢5)F

i me
wa qa Maﬁ Maa

in order to ease the notation when examining the algorithm in more detail.
We now describe the quadratic programming algorithm as applied to (2-17) in
pseudocode.

0. Initialization.
(¢° M°) := (¢, M)

k:=0
a:=0
g:={1,...,n}

1. Check stopping conditions.
s := argmin{gf : i €}
If ¢¥ > 0, the solution is z, = ¢, zg = 0.
If ¢¥ < 0, choose z* as the incoming variable.
Note that we do not need to check for infeasibility here,
as (2-17) always has a solution.

2. Determine outgoing (blocking) basic z variables, if any.
Let

_ Lo (e8)i
7= :‘:((Mi'g:)r:),<0 - ((Mig):)

where (Mgp), is the sth column of M,
((Mgﬁ),,),- is the ith component of that column, and
similarly (¢%); is the ith component of g~ .

3. Perform a pivot.
If

Y2 ________(q,’g k ;
- ((Mgﬂ)’).'
then there is no outgoing basic z variable. In this case,
Move index s from index set 8 to a.
Set k =k +1.
Go to Step 1.
Otherwise, let r be the index corresponding to the minimum ratio v
Move index r from index set o to 3.
Set k =k + 1.
Go to Step 2.
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Further discussion of this algorithm can be found in Cottle, Pang & Stone [4].

We now demonstrate the equivalences between this algorithm and the no-
denominator version of the least-squares algorithm. Let us assume that at some
point in both algorithms we have the same index sets a and 3 corresponding
to basic and nonbasic = variables, respectively. We can rewrite the partitioned
original tableau in terms of our least-squares algorithm as

1 Zp Ya

2¢ 0 -b'N | —b'B

yg | —-NT6 | N'N | N'B

. | =BT | B'N | B™B

Note that g5 = —N7b, and so on. Similarly, we rewrite the general tableau as
1 s Ya ‘

2¢ ~b"B(BTB)"'BTb —bTN + bTB(BTB)"TBTN | —b"B(B"B)~!
ys | —NTo+ N"B(B'B)~'BTh | NTN — NTB(BTB)""BTN | NTB(BTB)"!
To (B'B)-"B"b —(B"B)"'BTN (B™B)"T

Thus we see that 4 = ~MJ1qq = (BTB)"'B7b = zp, and the two solutions
are the same. Therefore, given the same index set of basic z variables, both the
quadratic programming algorithm and the least-squares algorithm produce the
same solution z, = zg.

To further compare the two algorithms, assume that again both algorithms
have the same index sets a and 3 corresponding to the basic and nonbasic z
variables. We will consider which nonbasic & variable is chosen to become basic
in both algorithms.

In the quadratic programming algorithm we select incoming variable z,,
where

s = argmin{gf},
iep
= ar_gerr;in {(¢p — MpaMIlqa)i}
1
= argmin {—~NTb+ NTBzp}
i€p

= argmin {~N]u}.
i€p

If we find that ¢¥ = —NTu > 0, then in the quadratic programming algorithm,
we know we have a solution to (2-17). Similarly, if NTu < 0, the least-squares
algorithrn has either found a solution to (2-1) (in which case u = 0), or has
detected infeasibility of (2-1). In either case, the least-squares algorithm has
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found a solution to (2-17). Thus NTu < 0 is the termination condition for
both algorithms. (Note that the quadratic programming algorithm never finds
infeasibility, as (2-17) always has a solution.) On the other hand, if ¢* =
—~NTu < 0, then z, is the incoming variable for both problems. Thus the two
algorithms have the same termination conditions and the same column-selection
rules.

Given that we start an iteration with the same index sets, and that the
same incoming variable z, is selected, we will now consider how the two algo-
rithms proceed. In the least-squares algorithm, z, simply becomes basic, even
though this could cause other basic variables to become negative. However, the
quadratic programming algorithm checks for and pivots out all (if any) variables
which would become negative, only then making z, basic. If there is no outgo-
ing basic variable, then both algorithms add =z, to the set of basic variables, all -
other basic variables remain nonnegative, and the algorithms again share the
same index sets.

Assume now that bringing z, into the set of basic = variables will cause at
least one of the other basic variables to become negative. In the case of the least-
squares algorithm, this situation means that at least one of the previously basic
variables is nonnegative, and at least one of these negative basic variables must .
be dropped from the basis. Similarly, the quadratic programming algorithm
must find and eliminate from the basis at least one outgoing (blocking) variable.
We will now demonstrate that given the same index sets, and the same incoming
variable z;, if a column must be dropped from the basis in order to maintain
nonnegativity of the basic z variables, both algorithms will select the same basic
z variable to be removed from the basis.

The quadratic programming algorithm will select z, to become nonbasic,
where

ky.
r = argmin ___(q_"‘l!____’
(02,.),<0 = (M), ),
. ((B"B)™Y),
= argmin

- ((BTB)-laTN.) <0 ((BTB)*IBTN’)

. (xm)i
= argmin ———-,
(dg)-‘<0 _(dD):'

where dp = —(BTB)"IBTN,. On the other hand, the least-squares algorithm
will select z, to become nonbasic, where

— zr):
r = argmax — 2 = argmin (=p)s
vi<0 (ZB)i — ¥i v.<0  —Yi
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= (R m) (i)

From Theorem 2.24 we know that the last component of y is strictly positive,
and is thus not considered in the minimum-ratio test. After much algebraic
manipulation, we can again rewrite the expression for this minimum-ratio test
as

= : (zB);
r= argmin ————"—
(wb—'ydn).-‘jo _(wB - 7dD)i

where

y = 5; ¢c=NTw;,  d=NTB(BTB)"'BTN, — NTN,.

In order to demonstrate that both minimum-ratio tests must select the same
index r, we will derive conditions that must be met in order for a different index
to be chosen. This will produce a contradiction.

Assume that for some indices j and k, we have

(z8);  (zB)k (zB); (=8)k
—(dp); = —(dp)i and —(xp — vdp); < —(zp — vdp)’

where
(dp)j <0 (dD)k < 0 (zp — 7dD)j < 0 (:L‘B — ~dp )k < 0.
This can only be true if we have both

—(dp); < =(dp)e

—v(dp); < —7(dp )k

(zB); (zB)k (zB); (zB)k
which can only be true if ¥ > 0 and
1
(dp); <0 and (dp); > ;(mg),-
1
(dp)x <0 and (dp)k > ;(mg)k.

We know that thay all of these conditions cannot be satisfied simultaneously if
v > 0, as we know zg > 0. Therefore, both algorithms select the same index r,
thus choosing the same basic z variable to become nonbasic.

At this point, the basic variable z, is dropved from the basis in both al-
gorithms, moving index » from the basic to the nonbasic index set. In the
quadratic programming algorithm, the next outgoing (blocking) basic variable
must be determined, as 2, has not yet been brought into the basis. In the least-
squares algorithm, things are slightly different because the incoming vatiable x,
~ is already basic. However, once z, is dropped from the basis and a new value for
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y is computed by the least-squares algorithm, we are back in the same situation
as described earlier. This time we have a smaller set of basic variables, and
by the same argument given above, both algorithms will again select the same
basic z variable to leave the basis. Thus we may conclude that given the same
initial index sets o and (3, the same incoming column is selected, and the same
series of variables is dropped from the basis. Once all necessary basic columns
have been dropped, the quadratic programming algorithm finally brings z, into
the basis, and both algorithims again share the same sets of basic and nonbasic
indices.

Therefore we see that the only difference between the two algorithms is the
fact that after z, has been successfully introduced into the basis (and all drop--
ping of basic & variables is cotnplete), the least-squares algorithm takes all basic
variables with a zero value and makes them nonbasic, while the quadratic pro-
gramming algorithm does not. In this degenerate situation, the two algorithms
can develop different index sets, and can thus take a different path to find a
different final solution.

Notice that we have also just proved that this quadratic programming algo-
rithm is equivalent to the NNLS algorithm in Lawson & Hanson [12].

3 Computational Results

In this section, we consider the actual performance of the algorithm developed
in Section 2. All computational results have been obtained using the 30 smallest
linear programming test problems available from NETLIB (7). These test prob-
lems were converted to the form of (2-1), with the addition that free variables
were allowed (although nonpositive variables were not). This produced a set
of equivalent problems with modified dimensions; see Table 3-1 for the original
and modified dimensions. For bitmaps of the nonzero patterns of many of the
original problems, see [13]. -
The test environment consisted of the following hardware and software:

Computer: HP 9000/835
32M main memory
© 100M virtual memory
Operating System: HP-UX 7.0
Language: HP FORTRAN, 64-bit real numbers
The run times reported here include only computation time, as the amount of
main memory used virtually eliminated swapping, and I/O time was negligible.

3.1 The Least-Squares Phase I Algorithm

This section considers the computational results of the least-squares Phase 1
algorithm and its variations, as developed in Section 2. See Sections 2.8 and 2.9
for pseudo code of the algorithm, and a discussion of the variations. We do not
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Original Converted
Problem(Name) Rows  Columns | Rows  Columns
1(AFIRO) 78 32 28 51
2(SC50A) 51 48 51 78
3(SC50B) 51 48 51 78
4(ADLITTLE) 57 97 57 138
5(BLEND) 75 83 75 114
6(SHARE2B) 97 79 97 162
7(SC105) 106 103 | 106 163
8(STOCFOR1) 118 111 1ns 165
9(RECIPE) 92 180 212 ' 208
10(SCAGR7) 130 140 | 130 185
11(BOEING2) 67 143 | 244 382
12(ISRAEL) 175 142 175 " 316
13(SHARE1B) 118 225 118 253
14(VTP.BASE) 199 203 346 475
15(5C205) 206 203 206 317
16(GROWT) 141 301 421 581
17(BEACONFD) | 174 262 | 174 295
18(BRANDY) | 221 249 221 303
19(SCSD1) T8 760 78 760
20(E226) 224 282 224 472
21(FORPLAN) 162 a1 | 187 514
22(BORE3D) 234 315 247 346
23(AGG) 489 163 | 489 615
24(CAPRI) 272 353 | 419 613
25(SCORPION) 389 358 389 466
26(BANDM) 306 472 | 306 472
27(SCTAP1) 301 480 301 660
28(SCFXM1) 331 457 331 600
29(STAIR) 357 467 445 620
30(SCSD6) 148 1350 | 148 1350
Table 3-1: Size of Test Problems
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consider the “pure” algorithm at all, as the variation allowing free variables 1s
always more efficient when they are present. Thus we will consider the following
four least-squares algorithms:

P1F: The least-squares Phase I algorithm, in which free variables have not
been explicitly converted to pairs of nonnegative variables.

P1D1F: The same as PIF, with the exception that the denominator of the
column selection rule is replaced by “1”,

CBP1F: The same as P1F, using a crash basis as described in Section 2.9.

CBPI1D1F: The same as PIDIF, using a crash basis as described in Sec-




All of these least-squares Phase 1 algorithms were implemented using dense
matrix methods. QR factorization was used to solve the embedded least-squares
subproblems, and this factorization was updated using Givens rotations as
columns were added and dropped from the basis. See for example [9] for details
on using the QR factorization to solve least-squares problems, and for details
on Givens rotations (also known as plane rotations).

The least-squares algorithms are compared with LSSOL, an established pack-
age. LSSOL is written in Fortran 77 using dense matrix techniques, and solves
a class of linearly constrained quadratic programming problems. See [8] for a
more detailed description of LSSOL. In order to compare our Phase I algorithm
to LSSOL, we use the “FS” option. This causes LSSOL to find a feasible so-
lution to the problem submitted, using its implementation of Phase 1 of the
simplex method. LSSOL (FS option) will be denoted by FS in the following
result tables, and by LSSOL:FS in the text. ‘

When looking at the least-squares Phase I algorithms, we see that there
is no clear-cut definition for an iteration, because the loop in which columns
are dropped from the basis could be executed a large number of times between
column selections. We decided to define an iteration to occur whenever a least-
squares problem is solved. This means that adding a single column to the
basis is considered to be an iteration, as is dropping a column by forming a
convex combination (see Step 3 of the algorithm). In addition, consider the
situation in which some elements of the solution are 0, and are consequently
dropped. Although no least-squares problem is solved in this case, enough
work is performed in matrix updates, etc., that this is also considered to be an
iteration,

Table 3-2 displays the iteration counts of the four least-squares Phase | algo-
rithms and LSSOL:FS. Note that the iteration counts for some of the problems
are the same for both the non-crash-basis and crash-basis versions of the least-
squares Phase I algorithm (e.g. STOCFORI). This is due to the fact that not
all problems contain columns of the form we look for when building the crash
basis. Also notice that some of the iteration counts are 0. This indicates the sit-
uation when the initial crash basis provides a feasible solution, and no iterations
are necessary.

We see from Table 3-2 that LSSOL:FS takes a number of iterations com-
parable to that taken by the least-squares Phase 1 algorithms, with the total
lying between PIDIF and CBP1F. As stated earlier, the notion of an iteration
in the least-squares Phase I algorithms is somewhat nonstandard. For this rea-
son, actual run times are probably a more accurate measure of the least-squares
algorithms’ performance than their iteration counts.

Table 3-3 displays the run times of the four least-squares Phase | algorithms
and LSSOL:FS, reported in CPU-seconds. Note that a number of runtimes
are reported as “0”., This indicates that the CPU-times recorded for these
problems round down to less than one CPU-second. We see from Table 3-3 that
the least-squares algorithms run in substantially less time than does LSSOL:FS;
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Problem(Name) PIF_ PIDIF  CBP1F  CBPIDIF FS
1(AFIRO) 7 7 0 0 8
2(SC50A) 20 20 0 ] 3
3(SC50B) 5 5 0 0 0
, 4(ADLITTLE) 56 ' 56 27 27| 70
5(BLEND) 8 8 .o 0 49
6(SHARE2B) 248 248 229 217 74
7(SC105) 3 34 0 0 2
8(STOCFOR1) 98 98 98 . 98 44
9(RECIPE) 106 106 At 37| 46
10(SCAGR7) 169 16¢ 148 145 22
11(BOEING?) 206 204 163 161 | 181
12(ISRAEL) mo om0 8 8 | 338
| 13(SHARE1B) 189 1 189 . u76 176 | 150
14(VTFBASE) 770. ' 561 . 488 507 | 1059
15(SC205) | 61N 61 0 0 2
16(GROW?) "280 - 280 ) 0| 203
17(BEACONFD) | 122 122 89 ‘ 89 |« 52
18(BRANDY) 365 365 340 1340 | 300
19(SCSD1) 10 8 10 8 16
20(E226) 203 203 154 154 | 209
21{FORPLAN) 378 378 347 347 | 438
22(BORE3D) 175 175 164 164 | 126
23(AGQG) 543 539 134 136 | 149
24(CAPRI) 586 590 440 444 | 451
25(SCORPION) 321 321 293 293 27
26(BANDM) 484 485 419 419 | 369
27(SCTAP1) 440 411 322 349 | 430
28(SCFXMT1) 350 343 300 293 | 2m
29(STAIR) 452 452 464 464 | 173
30(SCSDs) 207 68 207 68 61
TOTAL 7064 6677 5054 4944 | 5323

Table 3-2: Least-Squares Phase | Algorithm Iteration Counts

the LSSOL:FS total time is almost 3.5 times longer than the total of the best
least-squares Phase I algorithm (CBP1DIF). In fact, LSSOL:FS solved only one
problem (SCAGRT) faster than did CBPIDIF,

Looking at the least-squares algorithms more closely, the “denominator-of-1”
versions (PIDIF and CBPIDIF) are quite similar to their “full denominator”
counterparts (P1F and CBPIF). However, the crash basis versions (CBPIF
and CBPIDIF) are noticeably faster than the “from scratch” versions (P1F
and P1DIF).

So far, we have discussed iteration count and run times. We will now con-
sider in some sense the path taken by the least-squares Phase I algorithms. In
particular, we will consider the norm of the residual (error vector) as a function
of iteration count. For the least-squares Phase I algorithms, this is || u ||, where
u is as defined in the pseudocode algorithm found in Section 2.8
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Problem(Name) P1IF P1DIF CBP1F CBP1DIF FS
1(AFIRO) 0 0 0 0 1
2(SC50A) 0 0 0 0 1
3(SC50B) 0 0 0 0 1
4(ADLITTLE) 2 2 1 1 5
5(BLEND) 0 1 0 0 6
6(SHARE2B) 12 12 11 11 15
7(SC105) 2 2 1 1 5
8(STOCFOR1) 7 7 7 7 16
9(RECIPE) 21 21 10 10 61
10(SCAGRY) 15 15 15 15 14
11(BOEING2) 61 59 48 47 | 209
12(ISRAEL) 32 30 5 4 | 227
13(SHAREI1B) 18 17 17 18 51
14(VTP.BASE) 416 311 271 277 | 2026
15(SC205) 11 11 2 2 34
16(GROW?Y) 207 209 11 11 | 801
17(BEACONFD) 20 21 18 17 42
18(BRANDY) 79 78 80 75 | 208
19(SCSD1) 3 3 4 3 7
20(E226) 63 61 51 51 | 196
21(FORPLAN) 98 95 90 - 90 | 398
22(BORE3D) 48 47 47 43 | 153
23(AGG) | 676 686 182 181 | 889
24(CAPRI) 545 549 472 478 | 1438
25(SCORPION) 182 182 172 173 | 277
26(BANDM) 244 242 224 223 | 571
27(SCTAP1) 274 263 221 229 | 695
28(SCFXM1) 223 222 202 199 | 530
29(STAIR) 545 544 586 589 | 816
30(SCSD6) 130 11 128 41 45
TOTAL 3934 3731 2876 2799 | 9738

Table 3-3: Least-Squares Phase 1 Algorithm Run Times

Figure 3-1 illustrates the typical behavior of || u|| in P1F. We chose to display
the behavior of only one of the four least-squares Phase | algorithms because
in this aspect, they were virtually identical. Notice that P1F finds a solution
“close” to feasibility very quickly, spending the vast majority of its iterations
reducing || u|| from 0.1 to 0. ‘

The last comparison we will make between the least-squares Phase 1 algo-
rithms and LSSOL:FS will be based on the accuracy of the final solution found.
When each algorithm found an z that it claimed to be a feasible solution {or as
close as possible to such a solution), the error quantity ||b — Az || was formed
and reported. These errors in the final solution are displayed in Table 3-4.

In most problems, there is very little difference in accuracy between the least-
squares Phase I algorithms and LSSOL:FS. However, in the case of FORPLAN,
the error of the least-squares algorithms is quite large relative to the error of
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Figure 3-1: Residual Behavior.of P1F on CAPRI

LSSOL:FS. This is not surprising, as the error in the computed solution Z in
the least-squares algorithms depends on the square of the condition number
of the matrix of currently basic columns (except when B is square). (See,
for example [3].) This inaccuracy can occasionally cause least-squares Phase I
algorithms to report infeasibility incorrectly.

It may be possible to handle this lack of accuracy by adding iterative refine-
ment to the end of the least-squares Phase I algorithms. That is, we tuke the
(previously final) solution # and let z° = &. Let B be the matrix of currently
basic columns. We then perform some (small) number of iterations

v = b-B:
Béz' = o
o = x‘ + §z'.

In practice, we have the QR factorization of B as opposed to B, and B is gen-
erally rectangular, so we would actually perform iterative refinement as follows:

u = b--Q(?)x"
({)2)62:'. = QTu‘
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Problem(Name) P1F PID1IF  CBPtF CBPI1DIF FS
1(AFIRO) 0 0 0 0 | Ge-11
2(SC50A) ‘ Te-14 7Te-14 0 0 | 5e-13
3(SC50B) 0 (] 0 0 | 4e-14
4(ADLITTLE) 3e-13  3e-13 2e-13 2e-13 | Te-12
5(BLEND) 0 0 0 0 | 9e-12
6(SHARE2B) 2e-12 le-12 Te-12 2e-12 | 6e-11
7(SC105) 4e-13 4e-13 0 0 | 2e-12
8(STOCFOR1) 4e-14 4e-14 4e-14 4e-14 | 2e-10
9(RECIPE) le-14 ' le-14 le-14 le-14 | 3e-13
10(SCAGRY) 5e-12 8e-12 6e-12 7e-12 | 2e-10
'j1(BOEING?2) le-11 3e-11 4e-11 9e-12 | le-10
12(ISRAEL) 3e-10 5e-10 le-10 le-10 | 5e-09
13(SHARE1B) 3e-10 3e-10 2e-10 2e-10 | 9e-09
14(VTP.BASE) 7e-10 8e-10 1e-09 2e-09 | 9e-09
15(SC205) le-12 le-12 0 0 | 3e-11
16(GROWT) 0 ] 0 0 | 1e-08
17(BEACONFD) | 6e-11 6e-11 6e-11 6e-11 | 6e-10
18(BRANDY) 3e-12 3e-12 1e-10 le-10 | 5e-11
19(SCSD1) 3e-16 2e-16 3e-16 2e-16 | 2e-15
20(E226) 5e-13 2e-13 - 7e-14 7e-14 | 2e-11
21(FORFLAN) 8e-01 8e-01 8e-01 8e-01 [ 9e-10
22(BORE3D) Te-12 Te-12 Te-12 7e-12 | 3e-09
23(AGG) 1e-07 1e-07 le-09 1e-09 | 1e-08
24(CAPRI) 6e-11 Ge-11 le-10 1e-10 | 3e-09
25(SCORPION) | 2e-15 2e-15 2e-15 2e-15 | 2e-14
26(BANDM) le-11 6Ge-11 2e-11 le-11 | 4e-11
27(SCTAP1) 6e-12 3e-12 de-12 7e-12 | 5e-12
28(SCFXM1) 3e-12 2e-11 2e-11 2e-11 | 9e-10
29(STAIR) 7e-13 6e-13 2e-12 2e-12 | 3e-09
30(SCSD6) le-15 2e-15 le-15 2e-15 | 2e-14

Table 3-4: Least-Squares Phase | Algorithm Accuracy

£t = 2 46zt

As long as @ is stored, this would not be too much work, especially if only
a few iterations were necessary. Note that this scheme for iterative refinement
depends on Bz = b being nearly feasible. This may not be the case if we have
accumulated a significant amount of error. See [2] for more details, as well as
for the description of a method of iterative refinement that is not dependent on
the feasibility of Bz = b.

To surnmarize, the four least-squares Phase | algorithms have very favorable
run times relative to the simplex method as implemented by LSSOL, with the
“crash basis” versions performing the best. They also find a solution “close”
to feasibility very quickly. However, due to the least-squares subproblems em-
bedded in the four Phase | algorithms, accuracy can be a problem on larger,
more ill-conditioned problems. It is possible that iterative refinement of the final
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Problem(Name) PF PI1DIF CBP1F CBPIDIF LS
1(AFIRO) 7 7 0 0 22
2(SC50A) 20 20 0 0 38
3(SC50B) 5 5 0 0 26
4(ADLITTLE) 56 56 27 27 148
5(BLEND) 8 8 0 0 17
6(SHARE2B) 248 248 229 217 243
7(SC105) 34 34 0 0 88
8(STOCFOR1) 98 98 98 98 149
9(RECIPE) 106 106 37 37 204
10(SCAGR?7) 169 169 145 145 251
T1(BOEING2Z) 206 204 163 161 925
12(ISR % "L) 171 171 8 8 836
13(SHAKE1B) 189 189 176 176 409
14(VTP.BASE) 770 561 488 507 | 2499
15(SC205) 61 61 0 0 218
16(GROW7) 280 280 0 0 620
17(BEACONFD) | 122 122 89 89 214
18(BRANDY) 365 365 340 340 598
19(SCSD1) 10 8 10 8 35
20(E226) 203 203 154 154 399
21(FORPLAN) 378 378 347 347 136
22(BORE3D) 175 175 164 164 385
23(AGG) 543 539 134 136 608
24(CAPRI) 586 590 440 444 | 778
25(SCORPION) | 321 321 293 293 320
26(BANDM) 184 485 419 419 874
27{SCTAP1) 440 411 322 349 | 1210
28(SCFXM1) 350 343 300 293 520
29(STAIR) 452 452 464 464 679
30(SC'SD6) 207 68 207 68 178
TOTAL 7064 6677 5054 4944 | 13927

Table 3-5: Phase | Algorithm and LSSOL:LS Iteration Counts

solution could alleviate such difficulties, but this variation was not implemented.

3.2 A Constrained Least Squares Problem

So far we have considered computation results on problem (2-1). However, as
we noted in Section 2.10, our least-squares Phase I algorithm actually solves (2-
15), a constrained least-squares problem. Thus we decided to compare our
Phase I algorithm with that of LSSOL when applied to (2-15) (by using the
“LS™ option). LSSOL (LS option) will be denoted by LS in the following result
tables, and by LSSOL:LS in the text.

Table 3-5 displays the iteration counts of the least-squares Phase I algorithms
considered in Section 3.1 and LSSOL:LS, and Table 3-6 displays the run times.
Again, the least-squares Phase | algorithins do well, with the best, CBPIDIF,
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Problem(Name) P1F  P1DIF__ CBP1F CBPIDIF LS
1(AFIRO) 0 0 o 0 i
2(SC50A) 0 0 0 0 1
3(SC50B) 0 0 0 0 1
4(ADLITTLE) 2 2 1 1 5
5(BLEND) 0 1 0 0 2
6(SHARE2B) 12 12 11 11 11
7(SC105) 2 2 1 1 7
8(STOCFOR1) 7 7 7 7 10
9(RECIPE) 21 21 10 10 49
10(SCAGRY) 15 15 15 15 19
11(BOEING?) 61 59 48 a7 | 214
12(ISRAEL) 32 30 5 4| 109
13(SHARE1B) 18 17 17 18 31
14(VTP.BASE} 416 311 27 277 | 812
15(SC205) 11 1 2 2| 51
16(GROWT) 207 209 1n 1 409
17(BEACONFD) | 20 21 18 17| ss
18(BRANDY) 79 78 80 75 | 109
19(SCSD1) 3 3 4 3| 47
20(E226) 63 61 51 51 | 151
31(FORPLAN) 98 95 % 90 | 174
22(BORE3D) 48 47 47 46 120
23(AGQG) 676 686 182 121 608
24(CAPRI) 545 549 472 175 | 529
25(SCORPION) 182 182 172 173 217
26(BANDM) 244 242 224 223 | 409
27(SCTAP1) 274 263 221 229 | 711
28(SCFXM1) 223 222 202 199 400
29(STAIR) 545 544 586 589 | 573
30(SCSDse) 130 41 128 41 342
TOTAL 3934 3731 2876 2799 | 6177

Table 3-6: Phase | Algorithm and LSSOL:LS Run Times
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4 Summary and Conclusions

running in 45% of the total time taken by LSSOL:LS. Apparently, our least-
squares Phase I algorithms are also efficient in solving this particular kind of
constrained least-squares problem.

Section 2 developed a Phase I algorithm using least-squares subproblems. Sub-
problems are solved to provide both an approximation to the right-hand side
that is as close as possible in the 2-norm (given the current basic columns),
and to select the next incoming column. The incoming column-selection rule is
myopic, selecting that column whose nonnegative combination with the current
approximaiion brings us closest to the right-hand side. This Phase I algorithm




has the property of strict improvement at each iteration, even in the presence
of degeneracy (in the simplex method sense). Finally, equivalences between the
least-squares Phase | algorithm and other algorithms were discussed.

Four variations of this least-squares Phase | algorithm were developed, and
the computational results were excellent. The best least-squares Phase | algo-
rithm ran almost 3.5 times faster than LSSOL’s implementation of Phase | of
the simplex method. In addition, the same algorithm ran 2.2 times faster than
LSSOL’s constrained LS solver, when applied to problems of the form (2-15).

Future Work

We have demonstrated the initial proof-of-concept of the Phase I algorithm
developed in Section 2. In order for this algorithm to be commercially com-
petitive, it must be fine-tuned, just as the simplex method has been since its
discovery. In particular, the problem of inaccuracy on unstable problems must
be addressed, perhaps with the inclusion of iterative refinement of the solu-
tions to the embedded least-squares subproblems. In addition, these algorithms
should be implemented using sparse matrix methods to see how they compare
to sparse matrix implementations of the simplex method,
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