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Abstract

Although the simplex method's performance in solving linear program-
ming problems is usually quite good, it does not guarantee strict improve-
ment at each iteration on degenerate problems: Instead of trying to recog-
nize and avoid degenerate steps in the simplex method (as some variants
do), we have developed a new Phase I algorithm that is completely imper-
vious to degeneracy, with strict improvement attained at each iteration.
lt is also noted that the new Phase I algorithm is closely related to a
number of existing algorithms.

When tested on the 30 smallest NETLIB linear programming test
problems, the computational results for the new Phase I algorithm were
almost 3.5 times faster than the simplex method; on some problems, it,
was over 10 times faster.

1 Introduction

On highly degenerate problems, the simplex method often "stalls", performing
a number of iterations at a degenerate point before producing any improvement
in the objective value. Examples have been constructed by Hoffman [11] and
Beale [1] to show that it is theoretically possible that the iterative steps can
repeat and thus cycle forever, although this phenomenon is quite rare in prac-
tice. Instead of trying to make the simplex method more efficient by trying to
avoid stalls due to degeneracy (or near degeneracy), we develop a new Pha,se l
algorithm that is completely impervious to degeneracy.

This new method involves the use of least-squares subproblems in column
selection, and is shown to have the property of strict improvement at each iter-
ation, even if every basic solution (in the simplex method sense) is degenerate.
Like the simplex method, we will show that the new Phase I algorithm termi-
nates in a finite number of steps, and that in practice, this number is often quite
low compared to the simplex method.

Our algorithm is quite similar to a number of existing algorithms, including

one to solve the bounded least-squares problem (found in [3]), and another to



solve _he non-negative least-squares problem (found in [12]). In addition, our
algorithm is also closely related the algorithm developed by Dantzig [5] and by
Van de Panne & Whinston [14]. R.W. Cottle noted that although this algorithm
was designed to solve quadratic programs and thus has a different goal in mind,
when applied to an alternate formulation of the Phase I feasibility problem, it
is similar to a variant of our least-squares Phase I algorithm.
i

Section 2 develops most of the theory used by the algorithms presented, lt
is concerned with finding a feasible solution to a linear program, and after some
preliminary results, begins to look at two-variable least-squares problems. The
two-vaxiable problem and its positive least-squares solution is used to select the
incoming column, and thus build an improved "basic" solution. Conditions are
derived under which the solutions to these least-squares problems are strictly
positive. Although this is analogous in many ways to the simplex method, it
is proved that strict improvement can be guaranteed at each iteration, even
in the presence of degeneracy. Next, the detection of infeasibility is discussed,
followed by a detailed description of the newly developed least-squares Phase
I algorithm, and discussion of a number of variations. Finally, equivalences
between our algorithms and the other related algorithms are discussed.

Section 3 presents computational results for the algorithm developed in Sec-
tion 2. As noted, the least-squares Phase I algorithm has excellent performance,
with run times 3.5 times faster than LSSOL's implementation of the simplex
method [8]. On some problems, the least-squares Phase I algorithm was over 10
times faster.

Section 4 summarizes the work presented here and attempts to draw some
conclusions. Suggestions for future work appear at the end of this section.

2 Finding a Feasible Solution

2.1 The Problem

The problem to be addressed is that of the Phase I problem solved by the
simplex method. That is, find a vector z such that

Az = b, (2-1)

x >_ 0,

where z E _n, b E _m, and A E _mxn Denoting thejth column of A by Ai, we
assume Aj _ 0 V j, and that b _ 0, or else x = 0 is a trivial solution. Without

loss of generality, we also assume that b has been rescaled so that IIbl12 = 1,
and similarly the columns of A have been rescaled so that IIAj 112= 1 V j.

Fact 2.1

Let B be an independent subset of the columns of A, and let x_ satisfy



BrB = b, (2-2)

xB > O.

Then by setting xj = 0 for Aj _ B, it is a trivial matter to construct an x° from
xB such that x ° is a solution to (e-l). (See [6] for a more detailed treatment of
the relationship between (2-I) and (2-2).)

The main objective of the least-squares Phase I algorithm to be presented
here is to find such a matrix B (if it exists), and positive weightings xn, such
that B and xo comprise a solution to (2-2). In the remainder of this discussion,
we will refer to this matrix B as a basis. Note that this notion of a basis

differs from that of the simplex method, as our basis B may contain less than
m columns and that these columns may not be sufficient in themselves to span
the column space of A.

2.2 Preliminaries

We need to consider least-squares problems with positive solutions before we can
present the algorithm. But before we can consider such problems, we need a
few more preliminary facts and results. We will be making use of the Euclidean
norm, which we will denote by I1' II.

Fact 2.2

Let b, v, p E _m, b # O, p _ O, v # O, and v # b. Let u = b - v. If l . v is closer
to b than any other scalar multiple )_, then we can conclude that

(a) rTr=brr > O;

(b) uTr=O;

(c) uru = btu > O;

(d) brb = uru + vrv;

(e) lf pTb < O, then 1 . v is closer to b than any scalar multiple pp of p, ft > O;

(f) If p_°b > O, then 1 . v is closer to b than ftp for ali ft > 0 if and only if

Ilvll > pTb/IIPlI;

(g) If p ..,_0 and v _ ftp, then vTv pTp_ (vTp)2 > 0.

Proof:

(a) The hypotheses imply that )_= 1 is the solution to

min IIb- ,_vII2



Therefore

d (b-Av)T(b-Av)=0 forA= 1
d)_

and vTv = bTv follows. We also have bTv > 0 since v ¢ 0.

(b) Since u = b- v by definition, utr = (b - v)Tv = 0 by (a).

(c) lt follows that uTu = uT(b- v) = uTb.

(d) We have bTb -" bT(u + v) - uru Jt-vrv by (a) and (c).

(e) The unconstrained minimum of the problem

min IIb - pp II

occurs at p* = pTb/pTp, and if pTb < O, we have p* < 0. Because IIb-i,p II2
is a convex function ofp with a minimum at ft', we can conclude ifpTb < 0,

rainIIb - pp II
__>0

must occur at ft = 0. Thus,

rain IIb- ftpII= IIb II.
g>0

Now consider

IIb- v II= bTb- vTv< IIbII.
If pTb < O, we have

t]b - v Ii < IIb II - rain IIb - ftp li.
t,>0

(f) From part (e), we know that the minimum of the problem

min [Ib -/_p II2
_t

occurs at ft" = pTb/pTp, and we see that if pTb > 0, we have _" > 0. Thus,

minIIb- ftpII2= rain IIb- ftpII2.

If v is closer to b than is pp for ali p > 0, then we have

lib-vi12 <: minllb-ppll 2_>0

bTb_ 2vTb + vTv < min(bTb_ 2ppTb + ft2pTp)
_>0

_2vTb_I. vTv < _2_k.p._/pTb_t. pTp

--vTu < (pTb)2 by Fact 2.2, part (a).prp



t,

Therefore, given pTb > 0, we can say that

pTb
Ilvll> Ilpl---i'

Now if instead of assuming pTb > 0, we assume that

pTb
Ilvll>Ilvl---/'

we see that the argument reverses exactly. The result follows.

(g) This is a version of the Cauchy-Schwartz inequality. D

Fact 2.3

Given matrix A E _mxn (.4 _" 0), then ATA has full rank if and only if A has
full column rank.

Fact 2.4

Let {AI,A2,... ,Ak} be a set of linearly independent columns. A unique least-
squares weighting vector x exists, yielding the unconditional minimum of F =
lib- Axll. The unique minimum is found by solving the normal equations
ATAx = ATb.

Fact 2.5

Let {A1,A2,...,Ak} be a set of linearly independent columns. Let x° be the
unique least-squares solution to rain IIb- Z_iAixi ii, and let v° = Y']_iAi;c°" Let
x 1 ¢ x ° be any other weighting of the columns Ai, and let v 1 = _i Aiz_. Then
IIb- (l - A)v' - mv° II2 is monotonically increasing from ,X = 1 to ,X= O.

Proof:

lib- (1 - )_)v I - ,_v°II_= lib- vaII2- 2)_(b- vX)T(v ° - vi)+ ,_211vi - v°ll2

is a strictly convex function, and its minimum occurs at ,_ = 1. Thus this
quadratic function of A strictly increases from ,_ = 1 to ,_ = 0. []

Corollary 2.6

Let v = (1 - A)v 1 + Av°. If v° is closer tc, b than is v 1, then uTtt < UTUl, where
ul = b - v1, and u = b- v for all O < A < 1.

Proof: Let u0 = b-v °. We know that uo #- ul because uTouo< uTux. Therefore

IIu_- u0II2= uTua+ UroUo- 2uTuo> o,

k



< _'_Do+ (1- _)_T_,+ _(1- _)(_T_,+ .Do)
= (_- _)_T_+ _,0%
< (1 -- )I)UTlUl"4")IUTlUl (because UTOUO< nTU1 )

--. _TUl .

Thus any nontrivial convex combination of two vectors v ° and v 1 as shown above
is strictly closer to b than whichever vector v° or v 1 is farthest away from b. H

Corollary 2.7

Let A E _mxn be made up of linearly independent columns, and let z° be the
unique least.squares solution to rain IIb- Ax II.Let v° = Ax °. Assume v° _. O.
lfr I > O, where v 1 is otherwise arbitrary, then a convex combination v of v° and
v 1 can be found to generate a v > 0 closer to b than v 1 for some A, 0 < k < 1.

Proof: From Fact 2.5, we know that lib- (1- A)va- Av°II2 ismonotonically
increasing from A = 1 to A = 0. Thus any convex combination, v = (1 - A)v I +
Av°, has the property that

IIb- vaII2> IIb- v II=> IIb- v° II2 (_ # 0,A# l)

If we want v > 0 with v closer to b than v a, start with A = 1 and decrease A

until ali components of v are > 0. This is possible because va > 0. El

Fact 2.8

Given x > O, y _ O, the minimum A required to make the vector Az+(1-A)y > 0
is

A' = max -Y------A--_
y,<0 xi -- Yi

This concludes the necessary preliminary results.

2.3 Least Squares with Positive Solutions

In this section, we will consider the conditions under which the solution to the

(unconstrained) two-variable least-squares problem

min f(a,/3) = min lib - oev -/3p II2 (2-3)
a,fl

is unique, and the implications of a non-positive solution. Then we will derive

conditions under which the solution is strictly positive.



Theorem 2.9

Let p _ O, v _- pp and u -- b- v. Let min F -- Fo. Then,

(a) the values of (ao,rio) yielding Fo are unique;

(b) Fo "-uru ifand onlyif(ao,/3o)- (I,0).

Proof:

(a) Noting that the condition v _ pp implies v and p are linearly independent,
this follows directly from Fact 2.4.

(b) If (ao,/_o) = (1,0), then we see that Fo = uTu. By part (a), we know that
the values of (ao,/_o) yielding Fo are unique. Therefore, the converse also
holds; that is, Fo = uTu = lib-- 1 .v-- 0.p[I 2 implies (ao,/_o)= (1,0). []

Corollary 2.10

Let 1.v be closer to b than any other )w. If Fo ¢ uTu, then Fo < uTu and
8o _ O. In addition, if min{ao, 8o} < O, then Fo < uTu.

Proof: If Fo _- uTu, we can conclude that Fo < UTU, as F --- uTu is obtainable

at (a,_) = (1,0).
Now assume that Fo < uTu and/_o = 0. Thus, aov +/_0p = c_0v. Since v

is closer to b than is any Av (A _- 1), c_ov cannot be as close to b as is v for
ao ¢ I. Therefore if/_o = 0, then a0 = 1. From Theorem 2.9, we know that if
(a0,/_o) = (1,0), then F = uTu, which is a contradiction.

In Theorem 2.9, we showed that Fo = uTu if and only if (ao,/_0) = (1,0).
We just showed that if Fo _ uTu, then F0 < uTu. If min{a0,/_o} < 0, then
(a0,/_o) ¢ (1,0). Thus we can conclude that Fo _ uTu, which in turn implies
that Fo < uTu. []

Theorem 2.11

Let 1 •v be closer to b than any other Av. Also let v _ pp and let v be closer to

b than any pp, p >_ O. Let F0 = rain F, and let (ao,/_o) be the unique solution
corresponding to Fo. Let vo = aov + /_oP. lfmin{c_o,/_o} < 0, then there exist
no (al,/_l) > 0 such that vi = alv+ _lp is closer to b than is v.

Proof: Assume 3 (al,/_1) _> 0 such that vi is closer to b than is v, i.e., IIb- v II>
IIb- vi II.
Case 1: ao < 0, /Jo > 0.

Let _ be a convex combination of v0 and v_'

= ,_'Jo+ (1 - ,_)vl

= &v + f3p,

L



where c_= Aa0 + (1 - A)al and/} = A80 + (1 - A)81.
Since v0 is formed from the unique solution to rain F, we know that vo is

closer to b than is vi. Thus by Corollary 2.6, we can say that any convex

combination of v0 and vi is at least as close to b as is vi. That is, IIb - _ [[
IIb- vi II. At some point between Vo mid vi, & = 0, since ao < 0 and al _>0.
At such a point, we have fi = _p. However, we know that v is closer to b than

anY 8P for/3 _) 0, so v is closer to b than is ft. That is, IIb - v II < IIb - fi II. We
also know that fi is at least as close to b as is vr, i.e., IIb - _ II -< IIb- vi II. Thus
we have IIb- v [I < IIb- vi II, which contradicts the assumption.

Case 2:/30 < 0, no conditions on a0.
As in Case 1, let fi be a convex combination of v0 and vi:

-- Av0 + (1 - A)vl

= &v + _p,

where &and _ are as defined above in Case 1. Also as in Case 1, we can conclude i

that any convex combination of v0 and vi is at least as close to b as is vi. That

is, IIb - 6 II <- [Ib - vi li. At some point between v0 and vi, we have _ = 0. At
such a point, _ = _v. However, we know that v is closer to b 'than any av for
a # 1. Sov isat leastas closeto b as is i.e.,IIb- vII< IIb- fiII.Wealso
know that IIb- fi II < IIb - v, II. Thus we have Ii b - v II < IIb - vi II, which again
contradicts the assumption. El

Now we will derive conditions under which the solution (ao,/3o) to

min f = min IIb - av - 8P II_
a,0

is strictly positive.

Theorem 2.12

Let v _: pp, p ¢ O. Let v be closer rob than any Av, _ _ 1 and let u = b- v.
Let F and (ao,13o) be as defined in Theorem ILI1. Then 80 > 0 if and only if
p%>0.

Proof." Solving for/30 at the minimum of F, we get

bTp vTv -- bTv ptr

80-" pTp vTv - (pTr)2 .

Consider the sign of _0. From Fact 2.2, we know that pTp vWv _ (pTv)2 > 0, so
we need only consider the numerator:

pTb vTv -- bTv ptr -- pTb vTv -- ptr vTv (by Fact 2.2, part (a))

-- vTv pTu.

Since v :f: 0, we know that vTv > 0. Thus the sign of pTu determines the sign
of the numerator and hence the sign of/3o. The result follows. I'-I



Theorem 2.13

Given the same conditions as in Theorem 2,12 with the addition that v be closer
to b than is pp for tt > O, then ao > 0 if pTu > O.

Proof: Solving for c% at the minimum of F, we get

vrvprp_ (pTv)2_ prupTv
ao = pTp vTv __ (pTr)2

From Fact 2.2, we know that prpvTv -- (pTv)2 > 0, so the sign of ao is the same
as the sign of the numerator vTv pTp_ (pTv)9. _ pTu pTv.

Case 1: pTb > 0:

From Fact 2.2 we know that vTv prp > (pTb)2 ' Therefore,

VTV pTp- (pTr)2 -- pT u pTv > (pTb)2 -- (pTr)2 -- pTv pT u

= (pTb)2- (prv)_- pTvpTb+ (prv)_
= pTb(prb--pTv)

= pTbpru> 0,

since pTb > 0 and pTu > 0. Thus in Case 1, ao> 0 if pru > O.

Case 2: pTb < 0:
We knowpTu > 0and thuspTb-pTv > 0. But pTb < O, sopTv must be

negative. Again we consider the sign of the numerator of a0. By Fact 2.2,
we know vTv pTp_ (pTv)2 > 0, so consider --pTu pTr. However, we know that
pTu > 0 and ptr < 0. Thus --pTupTv > 0. Thus in Case 2, a0 > 0 ifpTu > O. []

Corollary 2.14

Given the conditions of Theorem 2.13, the unconditional minimum of F is at
(a0,/3o)> 0 ii utp> o,

Proof: This tbllows directly from Theorems 2.12 and 2.13. []

2.4 Column Selection Criteria

We have considered the problem (2-3), and conditions under which (ao,/3o) > 0.
So far, we have held both v and p fixed. We now consider holding only v fixed,

but allowing p to be chosen as one of the columns of the matrix A from (2-1).
In particular, we select that column As whose nonnegative combination with

v brings us closer to b than any other Ai, j ¢ s. This is done by solving the
problem

min G = min (rain lib- av-/3Ai 112_. (2-9)
j \ a,_ /



Before finding the minimum of G in the general case, we will first consider the

simpler problem of finding Aj = As that yields the minimum of G when v = 0.
The solution/3 =/30 will be used to set v =/30As as the initial approximation
to b.

Theorem 2.15

If bTAj > 0 for some j, then the solution to

rain (i_f,, b - ,A./,,i)./ (2-5)

is attained at/30 = bTA, where

s = arg_ax bTAj. (2-6)
J

Otherwise, if bTA.i < 0 for all j, then no mat_.er which j is chosen, the inf of(2-
5) is attained at/3 = O. In the latter case, the closest nonnegative approzimation
to b is given by r = O.

Proof: First consider

min F = min IIb-/3A¢ II=.
#

Because the columns of A are normalized, the minimum of F occurs at

brAj

#o= _ = brA¢.

Evaluating F at/30, we get

Ft#=# ° = (b-/3oAj)T(b -/3oAj)

.- bTb_ (bTAj) 2 .

In choosing a particular Ai, we want to minimize this value subject to 30 > 0.
This corresponds to maximizing (bTAj) 2 over ali positive bTAj. If bTAj < 0 for
ali j, then the inf of problem (2-5) is clearly attained at/3 = 0, regardless of the
choice of j. El

We set v = bTAsAs as the initial approximation to b (where s is defined
by (2-6)), and we proceed to seek to improve this approximation by considering
the problem (2-4). For convenience of discussion, we assume that s defined
by (2-6) is unique, although this is not a necessary condition.

,,

10



Theorem 2.16

Let 1. v be closer lob than any scalar multiple Av for ,_ _ 1. Let pAj _ v Vj,
where the columns Aj are normalized as in (2-1). Let v be closer to b than I.tAj
for I_ >. 0 and ali j, and let u = b - v. Under these conditions, the solution to

man(j (_i_>0 IIb-°lv-_3A'[[2) (2-7)

is attained at j = s where

s = argmax. (2-8)

' (vTv- (mTr)2) 1/2'

provided that 3 j: m_u > O. lf3 no j such that ATu > O' then any (a,_) > 0
will produce a value of (2-7) that is greater than or equal to IIb- v II2.

Proof: First consider

min Fj = minllb- zrr- _Aj II2. (2-9)

From the proofs of Theorem 2.12 and Theorem 2.13, we know that the uncon-

ditional minimum of Fj occurs at (c_j, flj) where

(ATAj vrv- ATr ATb vTv ATu )(oq,flj) = _ ATAj vTv _ (ATv)2 , ATAj vr v _ (ATv)2,. .

Since ATAj = 1, this can be rewritten as

vTvZ)(_J, Bi) = -_v-.-_TvF , vTv_ (ATv)2 "\

Evaluating Fj at the minimum (aj,flj), we get

=

=
= bT(b- oqv - t_jAj)

= bTb- c_.ivTv --/_.i bTAj (from Fact 2.2, part (a))

brb ((vrv)2 _ vTv brA_ vTAj _ vTv A_u brAj--_ -- vTv _ ( vTAj ) 2 ) -- _ V'Tv _ ( vTAj )2 ]

= bTb_vTv( vTv-2bTAjvTAj +(ATb) 2)vrv _ (vrAj )2

11



We choose A, so as to minimize Fj. This corresponds to maximizing the
following over Ai'

vTv '_ (vTAj)2 i -- vTv_(ATv)2 + l,

which is the same as choosing j = s so as to maximize

(AT(b- (AT )
,T, _ (AT,)_- .T,,_ (,4T,)_"

(

Let us conslae,r tb,. solution (ao,30) to (2-9). Let minF = F(ao,3o) = Fo.
Note that by Theorem 2.9, the solution (ao,/3o) is unique, and any other solution
(_1,/31) _k (ao,3o) must have the property that F(al_31) > F(ao,/3o).

Case 1: uTAj : 0
From the proof of Theorem 2.12 and Theorem 2.13, we know that (ao,/30) =

(1,0), and F(ao,3o) = lib- vi[ 2, If we were to insist that we minimize over
strictly positive (a,/3), we would get an (al,/31) >_(el,e2) > 0 for some (el,e2),
and (a._,/31) _- (a0,/30). Thus from Theorem 2.9 and Corollary 2.10, F(al,/31) >

F(o,o,/3o), or in other words, F(al,/31) > lib- v[I2

Case 2: uTAj < 0
From the proof of Theorem 2.12, we see that/30 < 0. From Theorem 2.li,

we know that there is no (al,/31 ) >_0 such that F(c_l, 31 ) < IIb- v 112.Therefore
if we were to insist that we minimize over strictly positive (a, 3), we would get

an (ol,31) _> (_l,e2) > 0 such that F(al,31) >_ lib- vii 2.

Case 3: uTAj > 0
From Corollary 2.14, we know that (a0,/30) > 0. We also know that F =

lib- vii 2 is attainable with (a,/3) = (1,0). Because the solution is unique, we

can conclude that F(1,0) > F(a0,_o), or in other words, F(ao,3o) < lib-vii _.
Only in Case 3 are we able to find an (a, 3) > 0 such that

rain IIb- a_ - 3AiII2< IIb- _II2(_,,0)>0

Therefore, the only columns to consider to improve the approximation v are

those such that uTAj > 0, provided that any such columns exist. Thus from the
solution we computed for problem (2-9), we see that the solution to to (2-7) is
given by

s = argmax

; ''
provided that, -I j " ATu > O. We also showed that if ATu _<O, then any solution
with (o_,3) >_0 will produce a minimum of (2-7) that is _>[[b.- v I[2 (and hence
(a,3) : (I,0) is as good a solution as any possible). [:3

12



We will eventually consider more carefully the implications of the situation
when ATu < O, but we need more results first.

2.5 Bas_c Weightings

A set of l';imarly independent colurrms of A, {Al, A2,..., Ak}, will be denoted
by B, and be called a basis; the set of indices {1,2,..., k} will be referred to as
basic indices. A nonnegative weighting of a basis is any v - BzB with z_ > 0.
lt is a positive weighting if zB > 0. A positive weighting such that v is closer
to b than is any other positive weighting will be referred to as a basic weighting.

Given a basis, there may or may not exist a positive weighting that is closest
to b. That is to say, the eldest nonnegative weighting may have some weights
(xB)i = 0, in which case it is a basic weighting for the subset of columns of B
where (zB)i > 0.

Now consider the least-squares problem

min IIb - BxB 112

Let x_ be the solution and let v° -Bx°B. We will refer _o such a v° as the
least-squares weighting of B. Notice that this implies that a _ositive weigI'.ting
of a basis B is a basic weighting if and only _f it is the least-squares weighting
of the columns of B.

Fact 2.17

Any bosic weighting v of a basis B is unique.

Theorem 2.18

Let v = Bzs be a positive weighting of the columns of B. Let u = b-. v. Then
a necessary and sufficient condition that v be a basic weighting is uTB = O.

Proof: We know that if v is a positive weighting, then v is a basic weighting
if and only if it is a least-squares weighting. Thus it is equivalent to prove
that a necessary and sufficient condition that v be a least-squares weighting is
uTB = 0. The normal equations, which are necessary and sufficient conditions

for v to be the least-squares weighting, are

BT(BzB -- b)= 0

Noting BzB - b = v - b = u, the result follows. []

Corollary 2.19

Given v, a basic weighting corresponding to B, and uTAs 7£ 0 where, u = b - v,
then {B, As} is a set of linearly independent columns.

Proof: By Theorem 2.18, uTB = 0 because v is a b,'._sic weighting. Since
uTAo _ O, we know that At is not contained in the space spanned by the
columns of B. (Otherwise A, would be a linear combination of the columns of

B, and we would have uTAs = 0.) []
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Corollary 2.20

lfr is a basic weighting corresponding to B, and u = b- v, then if we select As
by the criterion (2-8}, where ATu > O, then As is linearly independent of the
columns in B.

Proof: This follows directly from Corollary 2.19, as AT,'u_ O. U

Corollary 2.21

If A, is chosen as in Corollary '2.20, then the least-squares problem

minllb- BzB - Asz, II_ (2-10)

has a unique solution.

Proof: B has linearly independent columns. By Corollary 2.20, {B, As } is also
a set of linearly independent columns. Therefore by Fact 2.4, tile least-squares
problem above has a unique solution. []

2.6 Strict Improvement

Theorem 2.22

Let v = BXB be a basic weighting corresponding to basis B and let u = b- v.
Let v be closer to b than laA, for p > 0 and let As be linearly independent of

the columns of B. Let vi = BxlB + Ajz] be the unique least-squares weighting
of the problem (e-lO), and let ul = b- v_. lf uTA, > O, then the least.squares

I
weighting satisfies xs > O.

Proof: We know v is closer to b than is )_v for ,_ :/: 1 because v is a basic
weighting. We also know A, _ pv because utr = 0 by Fact 2.2, and we know
that uTA, > 0. Let F = [Ib-av-x,A,[]2. Let 5 and ks be the values of
and xs at tile minimum of F. From Corollary 2.14, we can conclude that both
5 and xs are positive. Finally, let 5 = i:,A, + Sv. Since 'oI is the least-squares

weighting of {B,As}, we have lib- v' 11_ _<li b- 'VII2.
We need to show that lib- _112< lib- v 112. We know

lib-vii "_ = bTb- 2vTv + vTv (from Fact 2.2)

= bTb- vTv.

From the proof of Theorem 2,16, we know that

_ A, ATb
- t,rv_(ATv)2 and 5= vTt,_(A_v)2 ,

and that

( )IIb - _3II2 = bZb- vTv + 1

14



We know that ATu _ O, so (ATu) 2 > 0. We also know that VTV--(vTAs) 2 > 0
from Fact 2.2. Thus

(A,r.)_
> 0,

vTv - (vTA, )2

so that

( (ATu)2 + 1) > vTv.
VTV

vrv _ (rrA0)2
Thus

( )I]b-._[] 2 = bTb-vTV \vTv_(vTA,)2 +1

< bTb_ vTv

= IIb- _,II2

So we have

lib- vI[j2_<lib- _[[2< lib_ vii2. (2-11)

Assume on the contrary that x_ is nonpositive. From Fact 2.5, we know
that any convex combination of _ and vI is at ]east as close to b as is _. The
coefficient of As is 0 at some combination, since _:s > 0 and we are assuming

that xi < 0. However, _ is strictly closer to b than is v0, and if the coefficient of
A, is 0, this convex combination can be no closer to b than v0. Thus, somewhere
between vi and _ we have a solution that is further away from b than is v0. This
is a contradiction. 12

Corollary 2.23
Given the same conditions as in Theorem g.gg, v1 is strictly closer to b than is
V.

Proof: This follows directly from (2-11). []

Now consider the following situation. As before, assume we have a basis B,
a basic weighting v = BxB, and u = b - v. Now let As be another column
from A, where As is linearly independent of the columns in B, uTAs > 0, and
v is closer to b than is/_As for p > 0. The linearly independent set of columns

{B, A_ }, and the solution {y,_, y_ } to

min IIb - ByB - Zsy, li2

has the property that y* > 0 by Theorem 2.22. Note however, that we cannot
say that y_ > 0.

15



Theorem 2.24

Given the situation described above, we can find a new basis [_ where [_ is
formed from a subset of the columns of ( B As ), and the solution _:B > 0 has
the property that

min IIb - h_BIIz < min IIb- BxBli2.

In addition, As will be one of the columns in [_.

Proof: Let y* = (yb Ys )T be the solution to

minllb-(B A°)yll2.

Because uTA, > 0, we can use Theorem 2.22 to assert that y[ > 0. From
Corollary 2.23, we also have the fact that

IIb- BzBII2> IIb- (E As )y* II2.

In order to continue, we need some additional notation. We will be forming

/3 from ( B As ), and we may need to iteratively delete a number of the columns
of B. We will denote the subset of the columns remaining at some iteration by
BY (indicating that BY corresponds to the current Yb). Initially, this means
that B = B y,

Case 1: y* >0
Let B = ( BY A, ) and let _B = y*. This assignment is valid, sin,ce y* is a

basic weighting of the columns of ( BY As ), and As is one of the columns of

Case 2: y* >0

Let _)*be the positive elements of y'. Remember that y[ > 0, so y_ E_*.
Let /}Y be the columns of BY corresponding to the elements of _)*. Let B =
(/}Y As ) and let SB = _)*. Again, this is valid because _* is a basic weighting
of the columns of (/3Y As ), and As is one of the columns of/3.

Case 3: We do not have y* > 0.

In this case, we know that at least one element of y_ is negative, and we
have a significantly more complicated situation. We need to drop one or more
columns from ( B y As ) such that there exists a positive least-squares solution
for the remaining columns. In order to do this, we must redefine BY and y*,
and then go back and check the sign of y* against Cases 1-3 again. This means
that we could perform the steps (to be described) in Case 3 more than once.

The first time through Case 3, we define z ¢ = XB, and we have B y = B.
(Note that neither equation will be true in subsequent times through Case 3.)

We now form the convex combination

c= =_ +(l-x) yb _>0, u;>0
c, 0 y_ '

16



and seek the smalled X < 1 such that c > 0. This _ is determined by

,_= max -Y_
ri<0 z r - yj

lt is clear for A E (0,1) that cs > 0. We will drop ali columns of(B r As)
corresponding to zero elements of c.

Each pass through Case 3, one convex combination is formed. In the first
pass, we have B r = B, and we have proved that As is retained the first time a
convex combination is formed during the column-dropping process. We need to

prove that no matter how many convex combinations (and corresponding passes
through Case 3) are necessary, As is not dropped. In order to prove this, we
must redefine x e, Br and y° as follows.

Let _ be the positive elements of c. Let /_Y be the columns of B r corre-
sponding to the elements of _. Let '9* be the solution to

minljb-(DY A0)'gJl2,

In order to redefine xe to be _, we need

Ilb-Bx_ll2>llb-(_} r A,)_II2>IIb-(B_ A,)9"ll2, (2-12)

In addition, in order to redefine y* to be '9* and Br to be Br, we need

Ys > 0. (2-13)

We have

IIb-Bxsll2>llb-(B y A,)cll2>llb--(Br m,)Y'II2

from Fact 2.5. We also know that

IIb- (Br As) cII_= IIb- (At As ) _ {]2

from the definition of _ and Ar, and since '9* is a least-squares solution, we have

IIb - ( [_r As ) _ II2> IIb- (/_Y As)y' II_-.

Finally, both '9* and y* are least-squares solutions, but BY is a proper subset of
B r , so

IIb- ( B_ As),9"II2>_IIb- ( B_, As)y"II_.
Alt'_gether, this gives us

IIb-Sxsll2>llb-(B r As)_ll=>llb-(h _' ms)'9°ll2>llb-(Br As)Y'll =,

which proves (2-12).
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Now we need to consider (2-13), the sign of 9s*. We will prove that/)_ > 0
by contradiction, so assume that/)_' _<0. We will form a convex combination of
y* and _)*as follows. Let z be defined as

zj = O, ifB_¢/}Y.'

This gives us

II ()11z >[[b-(B' As)y'l[ 2.[[b-(l}Y As)#*[[2= b-(BY As) Ys* -

Now form the convex combination

()() ()cs = c_ _ z.z _, +(1 - A) y_c, y, y_ "

z =0. Fact 2.5Because Ys*< 0 and y: > 0, we can pick A e (0, 1] such that c,
says that

[[b - (/_Y As ) Y* [I2 _>lib - (/}Y As ) cz li2 >_IIb - ( BY A, ) y* II=.

However, this would imply that

[Ib-Bzsll2>llb-(hY A,)c_[I '_,
Z

which when cs = 0, can be rewritten as

> \ c;

and thus

IIb- Z_. II2> IIb- Z}_c_II2.
However, BY is a proper subset of _he columns of B, and xB is the least-squares
solution to

_nIlb- z=,ii_,
so that we know

IIb- B=BII2_<IIb -/_Y c_ II2.
This is our contradiction. Thus we must have 0; > 0, and (2-13) has been

shown to be true. We can therefore set xc = _, BY =/}_, y* = _)*,and go back
and check this new y* against Cases 1-3. Note that if Case 3 again applies and
additional columns must be dropped, we will have the following upon entry:

IIb-Bx_ll2>llb-(B y Ao)xCll2>_llb-(B y A,)Y*ll 2,
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and when a new convex combination c is formed, we will find

IIb-BxBII2>llb-(B _ As)xcllz>[Ib-(B y As)c[12>llb-(B y As)y*ll 2

by Fact 2.5. Thus (2-12) will still hold in subsequent passes through Case 3.

We repeat this process of checking the sign of y* and dropping columns until
Case 1 or Case 2 is satisfied.

We will now show that y* will eventually satisfy Case 1 or Case 2. We
know that Ys*> 0, no matter how many convex combinations are formed, and
no matter how many times y* and BY are consequently redefined. Therefore
column As is always retained during this process. Thus we can conclude that in

the worst case, we will find y* > 0 when BY = 0 (and As is the only remaining
column in B), at which time Case 1 is satisfied. []

Note that Theorem 2.24 did not disallow the possibility that ali columns be
dropped from A u before we can find a y* > 0. That is, it implies that it could

*
be possible that {Ak} = As and x 1 = Ys. We will prove that this is actually
not possible.

Corollary 2.25

If the first column ever added to B is Ar where r is determined by (2-Q in
Theorem 2.15, then y* will satisfy Case I or 2 before ali columns other than As
are dropped from the basis.

Proof: Assume that y* never satisfies Case 1 or Case 2 until only column As
is remaining (and y* = y[ > 0). From Theorem 2.24, we know that

IIb- B_BII2> IIb- _B II_,

which (if ali columns other than As are dropped) can be rewritten as

iib- zzB Ii2> lib- A,yXII=.

Since Ar was the first column placed in B, we know from Theorem 2.24 that

IIb- Ary* Ii2 > lib- BxB II2,

where y_ > 0 is the solution to

rain IIb- A_y_II2.
Thus

IIb- ArY_ ll2 > llb-- BxB I]2 > llb - A,y s ]l2,

which implies

lib- mry; II2 > lib- Asy, I[_.

However, Ar was chosen to be the solution to (2-5) (see Theorem 2.15). Thus
we have a contradiction. []
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2.7 Infeasibility

Until now, we have not considered the feasibility or infeasibility of (2-1). This
section discusses the issue of infeasibility and how it affects the solution to the
least-squares problems considered in Theorems 2.15 and 2.16, as well as other
related issues.

Fact 2.26

If ATb < O, we can conclude thai (2.1) is infeasible.

Proof: Given that b ¢ 0, this follows directly from Farkas' Lemma. []

Fact 2.26 implies that if in the process of finding the solution to (2-5) (see

Theorem 2.15), we find that ATb < 0 V j, then we have established that (2-1)
is infeasible.

Fact 2.27

Let A be as in Fact 2.26. Let v _ 0 be closer to b than any Av, A _ 1, and let
u = b - v. lfu :p 0 and urA < O, then the original problem (2-I) is infeasible.

Proof: We know from Fact 2.2 that bTu = uTu, and we know that u _ 0.
Therefore this follows directly from Farkas' Lemma. []

Corollary 2.28

Let v be a basic weighting corresponding to basis B and let u = b- v, If

uTAj < 0 V Aj f[ B, then (2-I) is infeasible.

Proof: We know that v is a basic weighting of B, so we can conclude from

Theorem 2.18 that urAj = 0 V Aj E B. Thus we have uTAj < 0 V Ai. We can
see by Fact 2.27 that (2-1) is thus infeasible. []

Theorem 2.29

Let v = BxB be a basic weighting corresponding to the basis B and let u = b-v.

If infeasibility is detected (i.e., if uTAj < 0 V Aj _ B), then v is at least as
close to b as is any other nonnegative weighting of the columns of A.

Proof: Let B1 be the set of indices such that j E'BI if and only if Aj E B.
We can write v as

v= E mj(xB)j,
jeBt

where (XB)j is the component of XB corresponding to Ai.
Since we have discovered infeasibility, we know that u _: 0. We also know

that v is closer to b than is any AvB, _ _: 1 because ZB is the least-squares
solution to

min b- E Aj(zB)j .
j_Bt
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We therefore know: "

uWb = uTu by Fact2.2

uTAj = 0 V j E BI by Theorem 2,18

uTA,i <_ 0 V j ¢. BI because infeasibility has been detected.

Let
tl

j=l

be any other nonnegative weighting of the columns of A. Therefore we have
_j >_0 V j. Let fi = b- _. Consider

Tt

uT_B -" uTb -- uT E Aj _,j

j-1

= u*u__ u*Aj_- _ u*m_
jeBl jCBI

--. uTu- _ uTAj£:j >_uTu.
j fEB I

Now consider

uru=IIufilluII; ur_=IIullll_IIcos0,
where 0 is the angle between u and ft. We have

li_IIII_I1cose> II_Illl_II_ II_IIII_IIcos0> II_IIII_II,
which can be extended to

II_ Iiii_ II_>It_ IIII_ IIcose >_IIu Itll_ II>_IIu IIII_ IIcose.

Therefore _T_ > uT_ > uTu. So we can conclude that v is at least as closem

to b as is any other nonnegative weighting of the columns of A. El

Corollary 2.30

Given B, v and u as in Theorem 2.29. If v is closer to b than is any other
nonnegative weighting of the columns of A, then infeasibility will be detected

(that is, we will find uTA_ < 0 V j qt B).

Proof: Assume that uTAa > 0 for some As _ B. If we add A_ to B and drop
columns as described in Section 2.6, then we will find a /} and £'B > 0 such
that _ = /_:B is closer to b than is v. This contradicts the assumption that v

is closer to b than is any other nonnegative weighting of the columns of A. []
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2.8 The Least-Squares Phase I Algorithm

As stated in Section 2.1, the main objective of the Phase I algorithm to be
presented here is to build a basis matrix, made up of selected columns of A,
and to find positive weightings of these columns such that the basis and the

associated positive weightings are a solution to (2-2). Remember that we have
rescaled (2-1) such that [[Aj [[- 1 V j and [[b[[ "- 1.

At the start of an iteration, we are given a basis B, composed of a linearly
independent subset of the columns of A, with the property that the least-squares
weighting of these columns which yields the closest approximation to the right-
hand side b is a positive weighting. The iterative step tests whether the current

approximation is the closest approximation with a positive weighting, and if not,
selects an incoming column with the property that a positive combination of the

Previous approximation and the incoming column is a strictly better approxi-
mation to the right-hand side. There exists, however, a (possibly proper) subset
of the columns of the augmented basis such that the least-squares weighting is
positive, and is also a better approximation to the right-hand side than the
simple positive combination. This subset of the augmented set of basic columns
can be used to start the next iteration.

Algorithm Pseudocode

Notation and Variables:

A: The original m × n matrix of (2-1).

b: The original right-hand side of (2-1).

nbi: The number of currently basic columns (the number of columns in B).

B: The. matrix of currently basic columns, m × nbi of B is used, and nbi can
be as large as m.

BI: An m-vector containing indices of the columns of B relating them to tile
columns of A. For example, if BI[i] = j, the ith column of B contains
the jth column of A. BI[ii = 0 means no column corresponds to the ith
component of BI, which implies there must be less than i basic columns.

xB: The current positive weightings of the columns of B. The first nbi com-
ponents of xB (corresponding to the nbi columns in B) are used, and nbi
can be as large as m.

v: The current approximation BXB.

u: The current residual b- v.

y: The curre,t least-squares solution of rain IIb- By I[2. The first nbi compo-
nents of y are used, and nbi can be as large as m.
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(
lP

q

X: The vector to hold the solution to (2-1). Note that xB holds the solution

to (2-2),

0. Initialization {no columns initially in basis}
B : = O {nocolumnsinbasis}
ZB := 0 {no current basic solution}
BI := $ {no basic indices}
nbi := 0 {set number of basic columns to 0}
u := b {set residual t.o b}
v := 0 {set current approximation v = BXB = 0}
X := 0 {set final solution to 0}

1. Star,up {find the first column to place in B}

IfbTAj <_0 V j = l,...,n then
Go to 4. {the problem is infeasible}

s : -- argmaxj:brA_>0 bTAj
Place A, in the first column of B.

BI[l]:- s {record first column}
y[1]:- bTm, {record basic solution}
nbi := 1 {set number of basic columns}

2. Main Loop {Add columns to B until u = 0 or infeas, is discovered.}
xB :-"y

v := BxB {set current approximation}
u := b- v {set current residual]
If u = 0 then

Go to 4. {solution found}
If uTAj _ 0 V j ¢ B1 then

Go to 4. {infeasibility discovered}
nbi := nbi + 1 {increment number of basic columns}

s = argmax
,,,,, (vTv-

j_AT_>O

Place As in column nbi of B,

BI[nbi]: = s {record position of incoming column}

3. Least-Squares Loop

SolveIIBy- b II2 for y
If y > 0 then

Go to 2. {new B and XB found; repeat Main Loop}
If y >_0 then
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b _J

Remove ali columns from B and elements from xB that
correspond to zero components of y. Update BI accordingly.
Go to 2. {new B and a:B found; repeat Main Loop}

A := ma.xy,<0-yi/(ci - Yi)

c := Ac + (1 - A)y {form convex combination of c and y }
Remove ali colulnns from B and elements from xB and e that

correspond to zero cc,_ponents of c. Update BI accordingly.
Go to 3. {repeat Least:Squares loop}

4. Done {clean up}

for i '= 1 to nbi do {form the answer to the original problem}
XB1[,I:= xB[i]

Report on feasibility and output the solution found.

We now ,,sake the following observations:

I. The approximation v = BxB is strictly closer to b at each iteration (see
Theorem 2.24). This means that degeneracy does not cause problems;
cycling cannot occur, and the process terminates in a finite number of
steps because given B, x/_ is uniquely determined, and there are a finite
number of bases B.

2. If infeasibility is detected, then the current approximation v = BxB is
closer to b than is any other nonnegative weighting of the columns of A
(see Theorem 2.29). Similarly, if u _ 0 and v = BzB is closer to b than
is any other nonnegative weighting of the columns of A, then infeasibility
will be detected when trying to add a new column (s,_e Corollary 2.30).

3. Whenever a new column is chosen from A to enter B, it is linearly in-

dep'_ndent of the columns currently in B (see Corollary 2.19). Also due
to the linear independence of entering columns, our least-squares solution
(the solution to rain lib-/Oy II) is always unique, so numerical difficulties
aside, rank deficient least-squares problems are never encountered.

2.9 Variations

Free Variables

Consider the system

Ax : b

xi :> 0 for some set of i (2-14)

xj free for some set of j

This system could always be converted to the form of (2- l ) by replacing each free

and " where the original x ivariable x i with two new nonnegative variables x i xj
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is now represented bv x_,- x" However, let us con_ider how to solve a feasibility
¢. 3 j' _ . .

problem with free variables without actually adding any more variables.
In the pure algorithm described in Section 2.8, the entering columns is As

where s is determined by (2-8). This assumes that ali variables are nonnegative.
Pf free variables are present, we can write the rule for selecting the incoming
column s as

/ + + /s = argmax max max

'-,-( ) ""(,,AT.>0vT, (ATr)2 1/_' j,.j-- ,,,A[,,>o,T,_ '

Therefore we see that we can select a.u incoming column when free variables
are present without actually adding new wriables and columns. [nfeasibility is

detected whenATu<0. Vi'xi __O, and ATu = O Vi:xi is free.
The only other char_ge in the algorithm concerns testing the sign of y in

the Least-Squares Loop part of the algorithm. Elements of y corresponding to
free variables may take on any nonzero value. Pf such an element of y is found
to be zero, it is dropped just as any other zero element of y would be. The

only components of y that must be strictly positive are those corresponding
to variables restricted to be nonnegative. Thus, when A is formed, the only
components yi < 0 that are considered are those corresponding to nonnegative

'_ variables.

Ali the results previously discussed (strict improvement, infeasibility de-
tection, etc.) still hold, as these rrIIifications to the pure algorithm simply
implement the result of spli_ting free variables without actually doing the work
of adding variables and columns.

No Denominator

Consider the selection of the incoming rAs. We must form ATu for ali

columns not currently in the basis, _r ali columns such that ATu >
0. As the denominator is never dire of the proofs relating to
infeasibility, strict improvement, the denominator of (2-8)
with 1, we produce a perfectly vt ction rule that requires less
computation per candidate column

It. would be expected that this modified might not perform as well as the
pure rule, since we may not be selecting the A0 that minimizes (2-7). However,
we can still guarantee (c_,/_) :> 0 because ,'Tu > 0.

As it turns out, the results produced (on test problems to be described
later) show very little difference m iteration count between either of these two
variations ("no denominator" and "free variable") and the pure algorithm. Ap-
parently, it is the direction of the candidate incoming column that is important,
not the particular scaling la, tor used in the column-selection rule.
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Crash Basis

Until now, we have built up the basis B starting from scratch--that is, initially
B contains no columns. If we could pick out a starting set of linearly independent
columns without much effort, we could start with them already in B.

Consider multiplying by -1 ali rows of A (and elements of b) corresponding
to negative elements of b. This gives us a positive right-hand side. Now con-
sider selecting ali columns of this modified A that are columns of the identity

matrix, i,e., columns of the form ej, where e is a vector of zeros with a 1 in
the jth position. (Note that most columns ,of this form will correspond to slack

variables.) If we place ali such columns in B, and elirhinate duplicate columns,
we will get the problem min IIb- Bx II, and the solution xB will consist of the
elements of b corresponding to the nonzero elements of the identity columns.

Ali of the theory for the pure algorithm holds for this method as weil, with

the exception of Corollary 2.25. Since we do not know that the column As
satisfying (2-5) was the first column selected to enter the basis, we can no
longer guarantee that ali columns (other than the incoming column) will not
be dropped. In our computational experience, such dropping of ali columns has
not been observed, and is thus presumed to be rare in practice.

2.10 Discussion

We have proved in Theorem 2.29 and Corollary 2.30 that if (2-1) is infeasible,
we will detect such infeasibility when our current solution ZB > 0 is as close as

possible to the right-hand side b. That is, v = BzB is at least as close to b as
is any other nonnegative weighting of the columns of A. Thus we see that the
least-squares algorithm actually solves the problem

llb-AaJl2 (2-15)mhl

s.t. a>0.

If the lea_t-squares algorithm finds a feasible solution to (2-1), then tile optimal
objective value of (2-15) is 0. Otherwise, the optimal objective of (2-15) is
positive, we have an optimal solution aB, and no feasible solution exists to (2-
1).

Problem (2-15) is often called the "non-negative least-squares" problem
(NNLS), arid can also be considered a degenerate case of the "bounded lea.st-
squares" problem (BLS), in which z can have both upper and lower bounds.
Lawson and ttanson [12] present an algorithm for NNLS that is very closely
related to our algorithm. The only differences between the algorithms is that
first, a denominator of "1" is used in the column selection rule of NNLS. Sec-

ondly, after an incoming column A, has been successfully introduced into the

basis (and ali necessary dropping of other b_usic columns is complete), our al-
gorithm takes all basic variables with a zero value and makes them nonbasic,

while Lawson and Hanson's NNLS algorithm does not.
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We implemented both the NNLS algorithm and the "denominator-of-l" vari-
ation of the least-squares algorithm, and tested the efficiency of the algorithms

on the smallest 30 linear programming problems available from N ETLI B. (See [7]
and Section 3 for more details about these problems.) In practice, these two
algorithms rarely chose different, incoming columns. A substantial difference
between the two algorithms was observed only once, on problem SCSD6, which
is highly degenerate in the simplex method sense, lt also appears to be the case
(in practice) that the NNLS algorithm will occasionally have the same final

basic index set as does the least-squares algorithm with an additional handful
of basic variables. In our experiments, these additional basic variables were ali

at a very low level (on the order of 10-l° or less). Thus the least-squares al-
gorithm occasionally found a "cleaner" solution than did the NNLS algorithm,
apparently due to numerical error.

BjSrck [3] presents an algorithm for BLS, that when applied to NNLS, is even
closer to our algorithm that is Lawson and Hanson's algorithm for NNLS. The
only difference between the BLS algorithm and the least-squares algorithm is
that a denominator of "l" is used in the column selection rule of NNLS. There-

fore, the "denominator-of-l" version of the least-squares algorithm is equivalent
to the BLS algorithm. Neither [3] nor [12] give any numerical results for this
algorithm.

We also found the following interesting equivalence between the least-squares

alg, zithm and the convex quadratic programming algorithm due to Dantzig [5]
and Van de Panne & Whinston [14]. Before we can show this equivalence, we
must first reformulate (2-15) as a quadratic programming problem.

The constrained least-squares (2-15) has the following necessary and suffi-
cient conditions for optimality:

-ATb + ATAx > 0

x > 0

xT(--ATb + ATAx) = O.

These conditions can be formulated as the Linear Complementarity Problem
(LCP)

q+Mx __ 0

x _> 0 (2-16)

xT(q "Jt"Mx) = O,

where q = -ATb and M = ATA. Because this M is ,,ymmetric and positive

semi-definite, this LCP is equivalent to the quadratic t.rogram

+ _xTMx = c (2-17)
rnin qTx

s.t. ._ > O,
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(This problem could, of course, be derived directly from (2-15).)
Accordingly, any convex quadratic programming algorithm would be api)li-

cable to (2-17). Although we are going to demonstrate an equivalence between
the quadratic programming algorithm developed by Dantzig and by Van de
Panne _z Whinston, the very same algorithmic ideas are developed by Goldfarb
& Idnani [10] from an active-set point of view. (The following description of
this algorithm is adapted from the book by Cottle, Pang and Stone [4].)

The Quadratic Programming Algorithm
The algorithm is based on principal pivotal transforms of the system y = q+Mx,
which can be written in tableau form as

1 z

2c10 I¢
ylqlMI

where e is as in (2-17). At any point in the algorithm, we will have two index sets
c_ and/_, corresponding to basic and nonbasic z variables, respectively. Thus if

we partition and relabel the original tableau as

1 z_ yo`

2c 0 •
yo qp M.a Mao`
x_ qo` Mo`# Mo`o`

then we can write a general tableau during the algorithm in terms of the original
tableau as

1 z yo`
2c "I" -I '" W -1 "I" -Iqo`Mo,o,Mo 0̀ Mo`o`-qo` Mo`o q̀a, q_ - , qa

- M,_o q̀o` ,Mpp Mo`c,Mo`_ M#aMo`o`YO q_ Mp.o` -_ - Mao` -_ -'
--l --l

zo` - Mo`o q̀a ...... - Mo`o`Mo`# Mo`_

From this tableau, we can see that when the nonbasic variables za .nd y. are
set to 0, the basic variables zo` and ya can be expressed as

-1
zo` : -Mo`o`qo`

Va = qa - M_o`MgJqo`.

We will rewrite the general tableau (after k principal pivots) as
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I x y_

o
,, _p M_

q_ M_/_ M_a

in order to ease the notation when examining the algorithm in more detail.
We now describe the quadratic programming algorithm as applied to (2-17) in
pseudocode.

0. Initialization,

(q0, M 0) :_. (q, M)
k:=O
O_ :"- 0

:= {1,...,n}
1. Check stopping conditions.

s:=argmin{q_ : iea}
If qs_ >_0, the solution is x_ = q_, x/_ = 0.
If qsk < 0, choose xsk as the incoming variable.

Note that we do not need to check for infeasibility here,
as (2-17) always has a solution.

2. Determine outgoing (blocking) basic x variables, if any.
Let

7 = min (qka)i
M k

i:((M:o).) <0_ (( ap)s)i

where ( kMemO)8is the sth column of M_/_,

((M_/3):_)i is the ith component of that column, and
similarly (q_)i is the ith component of q_.

3. Perform a pivot.
If

(q_)i

then there is no outgoing basic x variable. In this case,
Move index s from index set fl to a.
Set k = k + 1.

Go to Step I.
Otherwise, let r be the index corresponding to the minimum ratio 7

Move index r from index set c_ to/_.
Set k = k + 1.

Go to Step 2.
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Further discussion of this algorithm can be found in Cottle, Pang & Stone [4].
We now demonstrate the equivalences between this algorithm and the no-

denominator version of the least-squares algorithm. Let us assume that at some

point in both algorithms we have the same index sets c_ and /_ corresponding
to basic and nonbasic z variables, respectively. We can rewrite the partitioned
original tableau in terms of our least-squares algorithm as

l z y_
2c 0 -b'rN -b'rB '_

yp -N'lb N'rN N'rB
xc, - B'% B_ 'N B'r B

Note that qp = -NTb, and so on. Similarly, we rewrite the general tableau as

1 x 'Ya

2c -b'rB(B'_B) -_ B'% -bTN + b'rB(B'rB) -_ B'rN -b'rB(B'rB) -1
yp -g'rb+ N'rB(B"B)-_B'Ib g'rN L. N'rB(B'rB)-'_B'rN N'rB(B'rB)-_
xc` (B'rB)-'B"b -(B"B)-'B"N (B"'B) ''_

-1 (BTB)-IBTb = xs, and the two solutionsThus we see that x_, = -Mc,_,qc , =
are the same. Therefore, given the same index set of basic z variables, both the

quadratic programming algorithm and the least-squares algorithm produce the
same solution z,_ = zB.

To further compare the two algorithms, assume that again both algorithrrm
have the same index sets a and f3 corresponding to thc basic and nonbasic x
variables. We will consider which nonbasic z variable is chosen to become basic

in both algorithms.

In the quadratic programming algorithm we select incoming variable _:,,
where

s = argmin{q_},

_ M -1- argmin {(q# - M#a a_qa)i}
I'E/_

= argmin {- giTb + NTBxB }

= argmin {--NTu}.

If we find that q_ = -NYau > O, then in the quadratic programming algorithm,
we know we have a solution to (2-17). Similarly, if NTu < O, the lea_st-squares
algorithm has either found a solution to (2-1) (in which case u - 0), or has
detected infeasibility of (2-1). In either case, the least-squares algorithm has
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found a solution to (2-17). Thus NTu < 0 is the termination condition for
both algorithms. (Note that the quadratic programming algorithm never finds
infeasibility, as (2-17) always has a solution.) On the other hand, if q_ =
-N_u < 0, then x, is the incoming variable for both problems. Thus the two
algorithms have the same termination conditions and the same column-selection
rules.

Given that we start an iteration with the same index sets, and that the

same incoming variable x, is selected, we will now consider how the two algo-
rithms proceed. In the least-squares algorithm, x, simply becomes basic, even
though this could cause other basic variables to become negative. However, the
quadratic programming algorithm checks for and pivots out ali (if any) variables
which would become negative, only then making x8 basic. If there is no outgo-
ing basic variable, then both algorithms add xs to the set of basic variables, ali
other basic variables remain nonnegative, and the algorithms again share the
same index sets.

Assume now that bringing x8 into the set of basic x variables will cause at
least one of the other basic variables to become negative. In the case of the least-
squares algorithm, this situation means that at least one of the previously basic x
variables is nonnegative, and at least one of these negative basic variables must
be dropped from the basis. Similarly, the quadratic programming algorithm
must find and eliminate from the basis at least one outgoing (blocking) variable.
We will now demonstrate that given the same index sets, and the same incoming
variable xs, if a column must be dropped from the basis in order to maintain
nonnegativity of the basic x variables, both algorithms will select the same basic
x variable to be removed from the basis.

The quadratic programming algorithm will select xr to become nonbasic,
where

r = argmin (q_)s

= argmin ((BTB)_,BTN,)_((,.,)-.,.,.)<0
(XB)i

= argmin _(do)i,(ao),<0

where dD= -(BTB)-IBTN,. On the other hand, the least-squares algorithm
will select Xr to become nonbasic, where

-yi (xB)i
r = argmax = argmin

y,<0 (=B)i-yi _,<o -yi
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From Theorem 2.24 we know that the last, component of y is strictly positive,
and is thus not considered in the minimum-ratio test. After much algebiaic
manipulation, we can again rewrite the expression for tills minimum-ratio test
a8

( B)i
,' = argmin

(_b--cUr,),.:o -(xB - 7dD)i

where

c NTu; d = NTB(BTB) -1BTNs NTNs3'- _; c--- - .

In order to demonstrate that both minimum-ratio tests must select the same

index r, we will derive conditions that must be met in order for a different index
to be chosen. This will produce a contradiction.

Assume that for some indices j and k, we have

(xB)j > (xB)k and (T,B)j < (XB)k
-(do)j --(dD)k --(xB -- 7do)j --(XB -- 7dD)k'

where

(do)j < 0; (dD)k < 0; (XB -- 7dD)j < 0; (XB -- 7dD)k < O.

This can only be true if we have both

--(dD)j <-(dD)I¢ and --7(dD)j <
(xB)j ( B)k '

which can only be true if 7 > 0 and

(dD)j < 0 and (dD)j > XB)j
7
1

(dD)_: < 0 and (dD)k > _(xB)t¢.

We know that th_, ali of these conditions cannot be satisfied simultaneously if
3' > 0, as we know xB > 0. Therefore, both algorithms select the same index r,
thus choosing the same basic x variable to become nonbasic.

At this point, the basic variable xr is dropped from the basis iii both al-

gorithms, moving index r from the basic to the nonbasic index set. In the
quadratic programming algorithm, the next outgoing (blocking) basic variable
must be determined, as xs has not yet been brought into the basis. In the lea,sl,-
squares algorithm, things are slightly different because the incoming variable x,.
is already basic. However, once xr is dropped from the basis and a new value for
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y is computed by the leasl_-squares algorithm, we are back in the same situation
as described earlier. Thi:s time we have a smaller set of basic variables, and
by the same argument given above, both algorithms will again select the same
basic x variable to leave the basis. Thus we may conclude that given the same
initial index sets a and/_, the same incoming column is selected, and the same
series of variables is dropped from the basis. Once ali necessary basic columns
have been dropped, the qua_dratic programming algorithm finally brings x8 into

nonbamcthe basis, and both algorithims again share the same sets of basic and ' '
indices.

TheRefore we see that thf: only difference between the two algorithms is the
fact that after x, has been s:uc,cessfully introduced into the basis (and ali drop-
ping of basic x variables is cot[ttplete), the least-squares algorithm takes ali basic

variables with a zero value an,_ makes them nonbasic, while the quadratic pro-
gramming algorithm does not. In this degenerate situation, the two algorithms
can develop different index se_:s, and can thus take a different path to find a
different final solution.

Notice that we have also jus't_ proved that this quadratic programming algo-
rithm is equivalent to the NNLS algorithm in Lawson & Hanson [12].

3 Computational Results

In this section, we consider the accrual performance of the algorithm developed
in Section 2. Ali computational results have been obtained using the 30 smallest
linear programming test problems available from NETLIB [7]. These test prob-
lems were converted to the form of (2-1), with the addition that free variables
were allowed (although nonpositive variables were not). This produced a set
of equivalent problems with modified dimensions; see Table 3-1 for the original
and modified dimensions. For bitmaps of the nonzero patterns of many of the
original problems, see [13].

The test environment consisted of the following hardware and software:

Computer: HP 9000/835
32M main memory
100M virtual memory

Operating System: HP-UX 7.0
Language: HP FORTRAN, 64-bit real numbers

The run times reported here include only computation time, as the amount of

main memory used virtually eliminated swapping, and !/O time was negligible,

3.1 The Least-Squares Phase I Algorithm

This section considers the computational results of the least-squares Phase !
algorithm and its variations, as developed in Section 2. See Sections 2.8 and 2.9
for pseudo code of the algorithm, and a discussion of the variations. We do not
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.OriginM Converted

Problem(Nanm / Rows Colunms' Rows " 'Colunms
I(AFIRO) 28 32 28 51
2(SC50A) 51 48 51 78
3(SC50B) 51 ,tS 51 78
4(ADLITTLE) 57 97 57 138
5(BLEND) 75 83 75 114
6(SHARE2B) 97 79 97 162
7(SC105) 106 103 106 163
8(STOCFOR1) 118 111 118 165
9(RECIPE) 92 180 212 298
10(SCAGR7) 130 140 lao 185
11 (BOEING2) i67 143 244 382
12(ISRAEL) 175 142 175 316
13(SHAREIB) 118 225 118 253
14(VTP.BASE) 199 203 346 475
15(SC205) 206 203 206 317
16(GROW7) 141 301 - 42i -- 5'81
17(BEACONFD) 174 262 174 295
18(BRANDY) 221 249 221 303
19(SCSD1 ) 78 760 '78 760
20(E226 ) 224 282 224 472
21 (FORPLAN) 162 421 187 5i4
22(BORE3D) 234 315 247 346
23(AGG) 489 163 489 615
24(CAPRI) 272 353 419 613
25(SCORPION) 389 358 389 466
26(BANDM) 306 472 306 472
27(SCTAP1 ) 301 480 301 660
28(SCFXM1) 331 457 331 600
29(STA IR) 357 467 445 620
30(SCSD6) 148 1350 148 1350

Table,3-1' Size of 'l_st Problems

consider the "pure" algorithm at all, as the variation allowing free variables Is

always more efficien_ when they are present. Thus we will consider the following
four least-squares algorithms:

PIF: The least-squares Phase I algorithm, in which free variables have not

been explicitly converted to pairs of n0nnegative variables.

PIDIF: The same a.s PIF, with the exception that the denominator of the

column selection rule is replaced by "l".

CBPIF: The same as PIF, using a crash basis as described ill Section 2.9.

CBPIDIF: The same as P1D1F, using a crash basis as described in Sec-
tion 2.9.
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Ali of these least-squares Phase I algorithms were implemented using dense
matrix methods. QR factorization was used to solve the embedded least-squares
subproblems, and this factorization was updated using Givens rotations as

columns were added and dropped from the basis. See for example [9] for details
on using the QR factorization to solve least-squares problems, and for details

on Givens rotations (also known as plane rotations).
The least-squares algorithms are compared with LSSOL, an established pack-

age. LSSOL is written in Fortran 77 using dense matrix techniques, and solves
' a class of linearly constrained quadratic programming problems. See [8] for a

more detailed description of LSSOL. In order to compare our Phase ! algorithm
to LSSOL, we use the "FS" option. This causes LSSOL to find a feasible so-
lution to the problem submitted, using its implementation of Phase i of the
simplex method. LSSOL (FS option) will be denoted by FS in the following
result tables, and by LSSOL:FS in the text.

When looking at the least-squares Phase I algorithms, we see that there
is no clear-cut definition for an iteration, because the loop in which columns

are dropped from the basis could be executed a large number of times between
column selections. We decided to define an iteration to occur whenever a least-

squares problem is solved. This means that adding a single column to the
basis is considered to be an iteration, as is dropping a column by forming a
convex combination (see Step 3 of the algorithm). In addition, consider the
situation in which some elements of the solution are 0, and are consequently

dropped. Although no least-squares problem is solved irl this case, enough
work is performed in matrix updates, etc., that this is also considered to be an
iteration.

Table 3'2 displays the iteration counts of the four least-squares Phase l algo-
rithms and LSSOL:FS. Note that the iteration counts for some of the problems
are the same for both the non-crash-basis and crash-basis versions of the least-

squares Phase I algorithm (e.g. STOCFOR1). This is due to the fact that not
ali problems contain columns of the form we look for when building the crash
basis. Also notice that some of the iteration counts are 0. This indicates the sit-
uation when the initial crash basis provides a feasible solution, and no iterations
are necessary.

We see from Table 3-2 that LSSOL:FS takes a number of iterations com-

parable to that taken by the least-squares Phase l algorithms, with the total
lying between P1D1F and CBP1F. As stated earlier, the notion of an iteration
in the least-squares Phase 1 algorithms is somewhat nonstandard. For this rea-
son, actual run times are probably a more accurate measure of the least--squares
algorithms' performance than their iteration counts.

Table 3-3 displays the run times of the .four least-squares Phase ! algorithms
and LSSOL:FS, reported in CPU-seconds. Note that a number of runtimes
are reported as "0". This indicates that the C,PU-times recorded for these
problems round down to less than one CPU-second. We see from Table 3-3 that
the least-squares algorithms run in substantially less time than does LSSOL:FS;
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,Problem(Name) PIF PIDIF CBPIF CBPIDIF ....FS
1(AFIRO) 7 7 0 0 8
2(SC50A) 20 20 0 0 3
3(SC50B) 5 5 0 0 0
4(ADLITTLE) 56 '56 27 27 70

5!BLEND) S , S 0 49
'6(SHARE2B) 248 248 "_22_",, 217 74
7(SCI05) 34 34 ,, (} O 2
8(ST OCFO R1) 98 98 ,98.. _ 98 44
9(RECIPE) 106 106 3'_ ".,: 37 46
10(SCAGR7) 169 169 .... [,iS' 145 22
11 (BOEING2) 206 204':'_.........'-:163 161 181
12(ISRAEL) 171 171 ' ._ . 8 8 338
13(SHAREIB) 189 't 189 'i76 176 150
14(vTPiBASE) 770, I, ,,' 561 , 488 507 1059
15(sc20_ 1 61 ',. 61 0 0 _.
16(GRov_2) " 250 2so _0 0 203
17(BEACONFD) 122 122 89 ,, 89 ' 52
18(BRANDY) 365 365 340 ' 340 300
19(SGSD1) I0 8 10 8 16

201E226) ,203 203 154 154 209
21(FORPLAN) 378 378 347 347 438
22(BORE3D) 175 175 164 164 126
23(AGG) 543 539 134 136 149
24(CAPRI) 586 590 440 444 451
25(SCORPION ) 321 321 293 293 27
26(BANDM) 484 485 419 419 369
27(SCTAP1) 440 411 322 349 430
28(SCFXMI ) 350 343 300 293 271
29(STA [lt) 452 452 464 464 173
30(SCSD6) 207 68 207 68 61
TOTAL 7064 6677 5054 4944 5323

Table 3-2_ Least-Squares Phase I Algorithm Iteration Counts

the LSSOL:FS total time is ahnost 3.5 times longer than the total of the best

least-squares Phase I algorithm (CBP1D1F). In fact, LSSOL:FS solved only one
problem (SCAGRT) faster than did CBP1D1F.

Looking at the least-squares algorithms more closely, the "denominator-of-l"

versions (P1DIF and CBP1D1F) are quite similar to their "full denominator"

counterparts (P1F and CBP1F). However, the crash basis versions (CBP1F

and CBPID1F) are noticeably faster than the "from scratch" versions (P1F
and P1D1F).

So far, we h_,ve discussed iteration count and run times. We will now con-

sider in some sense the path taken by the least-squares Phase l algorithms. In

particular, we will consider the norm of the residual (error vector) as a function

of iteration count. For the least-squares Phase ! algorithms, this is II u II, where
u is as defined in the pseudocode algorithm found in Section 2.8
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' ' ........ ,k

Problem(Name ) PIF PID1F CBPIF CBPIDIF FS
I(AFIRO) 0 0 0 0 1
2(SC50A) 0 0 0 0 l

' 3(SC50B) 0 0 0 0 1 ,
' 4(ADLITTLE) 2 2 I I 5

5(BLEND) 0 1 0 0 6,,

6(SHARE2B) 12 12 11 11 15
7(SCI05) 2 2 i I 5
8(STOCFOR1 ) 7 7 7 7 16
9(RECIPE) 21 21 10 10 61
10(SCAGR7) 15 15 15 ,,. 15 14
11 (BOEIN G2) 61 59 48 47 209
12(ISRAEL) 32 39 5 4 227
13(SHAREIB) 18 17 17 18 51
14(VTP.BASE) 416 311 271 277 2026
15(SC205) II 11 2 2 34
16(GROW7) 207 209 il 11 801
17(BEACONFD) 20 21 18 17 42
18(BRANDY) 79 78 80 75 208
19(SCSDI) 3 3 4 3 7
201E226 ) 63 61 51 51 196
21(FORPLAN) 98 95 90 . 90 398
22(BORE3D) 48 47 47 46 153
23(AGG) 676 686 182 181 889
24(CAPRI) 545 549 472 478 1438
25(SCORPION) 182 182 172 173 277
26(BANDM) 244 242 224 223 571
27(SCTAP1) 274 263 221 229 695
28(SCFXM1) 223 222 202 199 530
29(STAIR) 545 544 586 589 816
30(SCSD6) 130 41 128 41 45
TOTAL 3934 3731 2876 2799 9738

Table 3-3: Least-Squares Phase I Algorithm Run Times

Figure 3-1 illustrates the typical behavior of 1[u [[in P1F. We chose to disl)lay
the behavior of only one of the four least-squares Phase I algorithms because

in this aspect, they were virtually identical. Notice that P1F finds a solution

"close" to feasibility very quickly, spending the vast majority of its iterations

reducing [1u[[ from 0.1 to 0.

The last comparison we will make between the least-squares Phase l algo-
rithms and LSSOL:FS will be based on the accuracy of the final solution found.

When each algorithm found an _: that it claimed to be a feasible solution (or a._

close as possible to such a solution), the error quantity [Ib - A_: 11was formed

and reported. These errors in the final solution are displayed in Table 3-4.

In most problerrrs, there is very little difference in accuracy between the least-

squares Phase ! algorithms and LSSOL:FS. However, in the case of FORPLAN,

the error of the least-squares algorithms is quite large relative to the error of

37



CAPRI
fluff

.-----.___L_

1.00- [ I L PIF

0.80 -
t

0.60- --

0.00 _1 T iterations
0.00 200.00 400.00 600.00

Figure 3-1: Residual Behavior of P1F on CAPRI

LSSOL:FS. This is not surprising, as the error in the computed solution _ in
the least-squares algorithms depends on the squ_,re of the condition number
of the matrix of currently basic columns (except when B is square). (See,
for example [3].) This inaccuracy can occasionally cause least-squares Phaze !
algorithms to report infeasibility incorrectly.

lt may be possible to handle this lack of accuracy by adding iterative refine-
meat to the end of the least-squares Phase I algorithms. That is, we t_,.kethe
(previously final) solution _ and let x° = _. Let B be the matrix of currently
basic columns. We then perform some (small) number of iterations

u_ = b- Br i

B6z_ = u i

z i+1 = x i + 6xi.

Iri practice, we have the QR factorization of B as opposed to B, and 13 is gen-
erally rectangular, so we would actually perform iterative refinement as follows:

u' = b--Q(R)x iO

38
,i



,t

Problem(Name) P1F PID1F CBP1F CBP1D1F FS
1(AFIRO) 0 0 0 0 5e-11
2(SC50A) ' 7e-14 7e-14 0 0 5e-13
3(SC50B) 0 0 0 0 4e-14
4(ADLITTLE) 3e-13 3e-13 2e-13 2e-13 7e-12
SIBLEND ) ' 0 0 0 0 9e-12
6(SHARE2B) 2e-12 ......le-12 le-12 2e-i 2 6e-l'l
7(sc105) 4e-13 4e-13 0 0 2e-12
8(STOCFOR1) 4e-14 4e-14 4e-14 4e-14 2e-10
9(I_ECIPE) le-14 " le-14 le-14 le-14 3e-13
10(SCAGR7) 5e-12 ....8e-12 6e-12 7e-12 2e-10

; ii(BOEING2) le,11 3e-ll 4e-ll §e-12 le-lO
12(ISRAEL) 3e-10 5e-10 le-10 1e-10 5e-09
13(SHARE1B) 3e-10 3e-10 2e-10 2e-10 9e-09
14(VTP.BASE) 7e-10 8e-10 le-09 2e-09 9e-09
1,5/SC205 ) 1e-12 .... le-12 0 0 3e-ll
16(GROW7) 0 0 0 0 le-08
17(BEACONFD) 6e-ll 6e-ll 6e-ll 6e-ll 6e-10
la(BRANDY) 3e-12 3e-12 le-10 le-10 5e-ll
19(SCSD1) 3e-16 2e-16 3e-16 2e-16 2e-15
20(E226) 5e-13 2e-13 7e-14 7e-14 2e-11,,

21 (FORPLAN) Be-01 8e-O1 Be-01 Be-01 9e-10
22(BORE3D) 7e-12 7e-12 7e-12 7e-12 3e-09
23(AGG) le-07 le-07 le-09 le-09 1e-08
24(CAPRI) 6e-11 6e-ll le-10 le-10 3e-09
25(SCORPION) 2e-15 2e-15 2e-15 2e-15 2e-14
26(BANDM) le-ll 6e-ll 2e-ll le-ll 4e-ll
27(SCTAP1) 6e-12 3e-12 4e-12 7e-12 5e-12
28(SCFXM1) 3e-12 2e-11 2e-11 2e-ll 9e-10
29(STAIR) 7e-13 6e-13 2e-12 2e-12 3e-09
30(S.CSD6) le-15 2e-15 le-15 . 2e-15 2e-14

Table 3-4' Least-Squares Phase I Algorithm Accuracy

xi+ 1 = x i + 6xi.

As long as Q is stored, this would not be too much work, especially if only
a few iterations were necessary. Note that this scheme for iterative refinement

depends on Bx = b being nearly feasible. This may not be the case if we have

accumulated a significant amount of error. See [2] for more details, as well as

for the description of a method of iterative refinement that is not dependent on

the feasibility of Bx = b.

To summarize, the four least-squares Phase l algorithms have very favorable

run times relative to the simplex method as implemented by LSSOL, with the

"crash basis" versions performing the best. They also find a solution "close"
to feasibility very quickly. However, due to the least-squares subproblenm ehi-

bedded in the four Phase 1 algorithms, accuracy can be a problem on larger,
more ill-conditioned problems, lt is possible that iterative refinement of the final
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Problem!Name) PSF PIDIF CBPIF CBPIDIF LS
I(AFmO) _7 r ' 0 0 22
2(SC59A) 20 20 0 0 38
3(SC50B) 5 5 0 0 26
4(ADLITTLE) 56 56 27 27 148

5(BLEND) 8 8 0 0 17
6(SHARE2B) 248 .... 248 229 217 243
7(SC105) 34 34 0 O 88

8(STOCFORI ) 98 98 98 98 149
9(RECIPE) 106 106 37 37 204

10(SCA .G'R7) 169 169 145 145 251
11 (BOEING 2) 206 204 163 161 925
12(ISR _;:L) 171 171 8 8 836
13(SHAREIB) 189 189 176 176 409

14(VTP.BASE) 770 561 488 507 2499
15(SC205) 61 61 0 0 218
16(GROWl) 280'" 280 0 ' ' 0 620

17(BEACONFD) 122 122 89 89 214

18(BRANDY) 365 365 340 340 598
19(SCSDI) 10 8 I0 8 35

20(E226!, ' '203 203 154 154 399
21 (FORPLAN') 378' 378 347 ..... 347 436

22(BORE3D) 175 175 164 164 385
23(AGG) 543 539 134 136 608
24(CAPRI) 586 590 440 444 778

,, 25(SCO ,RPION ) 321 321 ......... 293 293 320
26(BANDM) 484 485 419 419 874
27(SCTAPI) 440 411 322 349 1210

28(SC FX M I ) 350 343 300 293 520
29(STAIR) 452 452 464 464 679

3o(scsD.:6) 2o7 6s 207 6s 17s
TOTAL 7064 ..... 6677 ....... 5054 4944 1'3927.....

Table 3-5: Phase I Algorithm and LSSOL:LS Iteration Counts

solution could alleviate such difficulties, but this variation was not imple_nented.

3.2 A Constrained Least Squares Problem

So far we have considered computation results on problem (2-l). ttowever, as
we noted in Section 2.10, our lea,st-squares Phase i algorithm actually solves (2-
15), a constrained least-squares probl,.m. Thus we decided to compare our
Phase i algorithm with thai of LSSOL when applied to (2-15) (by using the
"LS" option). LSSOL (LS option) will be denoted by LS in the following result
tables, and by LSSOL:LS in the text.

Table 3-5 displays the iteration counts of the least-squares Phase ! algorithms
considered in Section 3.1 and LSSOL:LS, and Table 3-6 displays the run times.
Again, the lea.st-squares |)ha.so I algorithms do weil, with the best, CBPII)I F,
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Problem(Name) PIF PIDIF CBP1F CBP1DIF LS
1 (AFIRO) 0 ' 0 0 0 1
2(SC50A) 0 0 0 0 1
3(SCsoB) o o o o 1
4(ADLITTLE) 2 2 1 1 5
5(BLEND) 0 l 0 0 2
6(SHARE2B) 12 12 II II II
7(SC105) 2 2 1 1 7
8(STOCFORI ) 7 7 7 7 10
9(RECIPE) 21 21 10 10 49
10(SCAGR7) 15 15 15 15 19
11 (BOEING2) 61 59 48 47 214
12(ISRAEL) 32 30 5 4 109
13(SHARE1B) 18 17 17 18 31
14(VTP.BASE_ 416 311 271 277 812
151sc2o5) 11 i, 2 2 51

"16(GROWT) 207 209 11 11 409
17(BEACONFD) 20 21 18 17 55
18(BRANDY) 79 78 80 75 109
19(SCSDI) 3 3 4 3 47

,, 20(E226), 63 61 51 51 151
21 (FORPLAN) 98 95 90 90 174
22(BORE3D) 48 47 47 46 120
23(AGG) 676 686 182 181 608
24(CAPRI) 545 549 472 ,!.78 529
25(SCORPION) 182 182 172 173 217
26(BANDM) 244 242 224' 223 409
27(SCTAP 1) 274 263 221 229 711
28(SCFXM1) 223 222 202 199 400
29(STAIR) 545 544 586 589 573
30(SCSD6) 130 41 128 41 342
TOTAL 3934 3731 .... 2876 2799 6177

Table 3-6: Phase l Algorithm and LSSOL:LS Run Times

running irl 45% of the total time taken by LSSOL:LS. Apparently, our least-

squares Phase 1 algorithms are also efficient irl solving this particular kind of
constrained least-squares problem.

4 Summary and Conclusions

Section 2 developed a Phase l algorithm using lea.st-squares subproblems. Sul)-

problem, s are solved to provide both an approximation to the right-hand side

that is as close as possible in the 2-norm (given the current, basic columns),
and to select the next incoming column. The incoming column-selection rule is

myopic, selecting that column whose nonnegative combination with the current

approximaiAon brings us closest to the right-hand side. This Pkase I algorithm
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has the property of strict improvement at each iteration, even in the presence
of degeneracy (in tile simplex method sense). Finally, equivalences between the
least-squares Phase I algorithm and other algorithms were discussed.

Four variations of this least-squares Phase I algorithm were developed, and
the computational results were excellent. The best lea.st-squares Phase ! algo-
rithm ran almost 3.5 times faster than LSSOL's implementation of Phase 1 of
the simplex method, in addition, the same algorithrn ran 2.2 times faster than
LSSOL's constrained LS solver, when applied to problems of the form (2-15).

Future Work

We have demonstrated the initial proof-of-concept of the Phase 1 algorithn,
developed in Section 2. in order for this algorithm to be commercially corti-
petitive, it must be fine-tuned, just as the simplex method has been since its
discovery. In particular, the problem of inaccuracy on unstable problems must
be addressed, perhaps with the inclusion of iterative refinement of the solu-

tions to the embedded least-squares subproblems. In addition, these algorithms
should be implemented using sparse matrix methods to see how they compare
to sparse matrix implernentations of the simplex method,
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