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Abstract

Purpose:  To investigate Y -H2AX (phosphorylated histone H2AX) and 53BP1 (tumour protein
53 binding protein No. 1) foci formation and removal in proliferating and non-proliferating
human mammary epithelial cells (HMEC) after exposure to sparsely and densely ionizing
radiation under different cell culture conditions.

Material and methods: HMEC cells were grown either as monolayers (2D) or in
extracellular matrix to allow the formation of acinar structures in vitro (3D). Foci numbers were
quantified by image analysis at various time points after exposure.

Results: Our results reveal that in non-proliferating cells under 2D and 3D cell culture
conditions, iron-ion induced y-H2AX foci were still present at 72 h after exposure, although
53BP1 foci returned to control levels at 48 h. In contrast in proliferating HMEC, both y-H2AX
and 53BP1 foci decreased to control levels during the 2448 h time interval after irradiation
under 2D conditions. Foci numbers decreased faster after y-ray irradiation and returned to
control levels by 12 h regardless of marker, cell proliferation status, and cell culture condition.
Conclusions:  The disappearance of radiation induced y-H2AX and 53BP1 foci in HMEC have

different dynamics that depend on radiation quality and proliferation status. Notably, the general
patterns do not depend on the cell culture condition (2D versus 3D). We speculate that the
persistent Y-H2AX foci in iron-ion irradiated non-proliferating cells could be due to limited
availability of double strand break (DSB) repair pathways in GO/G1-phase, or that repair of

complex DSB requires replication or chromatin remodeling.



Introduction

The radiation risk from cosmic background radiation due to highly charged, high-energy (HZE)
particles is relevant to long-term space travel such as a manned mission to Mars because it is not
feasible to completely shield astronauts from this type of radiation (overview see (Cucinotta and
Durante 2006; Durante and Cucinotta 2008)). Even though the fluence of protons is much higher
in space than that of heavy ions, heavy ions have a greater ionization potential and contribute
significantly to the total dose equivalent, with iron ions being one of the most important particles
(Durante and Kronenberg 2005). Experimental studies indicate that densely ionizing radiation
such as HZE particles may be a more potent carcinogen than sparsely ionizing X-rays or y -rays,
possibly due to the complexity of the induced DNA (deoxyribonucleic acid) damage (overview
see (Held 2009)). Although ionizing radiation induces DNA base damage, single-strand breaks
and double-strand breaks (DSB), the DNA double strand break is considered to be the most
serious risk to genomic integrity.

We used y-H2AX (phosphorylated histone H2AX) and 53BP1 (tumour protein 53 binding
protein No. 1) nuclear foci to monitor DNA damage as a function of radiation quality in human
mammary epithelial cells (HMEC). Both y-H2AX and 53BP1 foci can be detected by
immunostaining as microscopically visible nuclear domains at physiological relevant doses of
ionizing radiation, which makes this technique a very useful tool to measure DSB induction and
repair (review on y-H2AX see (Pilch et al. 2003)). Rogakou et al. (1998, 1999) showed that
DNA double strand breaks induce histone H2AX phosphorylation at serine 139 in the chromatin
surrounding the DSB. Schultz et al. (2000) reported evidence that 53BP1 focus formation is

specifically associated with agents that induce DSB and occur in similar numbers and the same



kinetics as y-H2AX foci. Furthermore, Sedelnikova et al. (2002) reported a close correlation
between '*1dU induced DSB and y-H2AX focus formation. Soutoglou et al. (2007) observed a
1:1 correlation between Y-H2AX foci and single DNA double stand breaks induced by the

intron-encoded Saccharomyces cerevisiae endonuclease 1 (IScel). Co-localization of 53BP1 with

v -H2AX foci support the assumption that they both occur at sites of DSB (Schultz et al. 2000).

It has been shown that high LET (linear energy transfer) radiation induces more residual DSB
than low LET radiation in pulsed-field gel experiments (Stenerlow et al. 2000; Rydberg et al.
2005), and more persistent foci in immunolocalization experiments (Karlsson and Stenerlow
2004; Desai et al. 2005; Asaithamby et al. 2008). This is probably due to difficulties to repair
complex DSB induced by high LET radiation involving multiple lesions spanning 10-20
nucleotides (Goodhead 1994). High LET radiation also produces DSB in close proximity to each
other (Lobrich et al. 1996; Rydberg 1996), which may also affect repair ability and misrejoining
probability (Rydberg et al. 2005). Most of the previously published repair studies were carried
out using non-proliferating cells, and damage was followed for 24 h or less after irradiation. In
our study we have extended the time of study up to 72 h and looked at both non-proliferating and
proliferating HMEC. Various groups have demonstrated that three-dimensional growth and
signals from the extracellular matrix are critical for normal epithelial cell morphogenesis and
function (for an overview see (Bissell et al. 1982; Barcellos-Hoff et al. 1989; Kenny et al.
2007)). Therefore, we extended our studies of foci formation and resolution to HMEC embedded
in an extracellular matrix (3D) (Debnath et al. 2003; Lee et al. 2007). To avoid bias during the
foci counting and to improve the analysis of a substantial amount of data, foci numbers were
quantified with image analysis programs developed by us (Parvin et al. 2007). We show that

radiation-induced y-H2AX and 53BP1 foci have different resolution dynamics that depend on



radiation quality and proliferation status, but that the general pattern seems to be independent of

2D (monolayer) versus 3D cell culture conditions.



Material and methods

Cell culture

The human mammary epithelial cell line MCF10A was derived from breast tissue from a 36-
year-old woman with extensive fibrocystic disease (Soule et al. 1990). The cells were cultured in
serum free MEBM (mammary epithelial basal medium with bicarbonate and phenol red;
Cambrex, Charles City, [A, USA) supplemented with 100 ng/ml Cholera toxin (Sigma-Aldrich,
St. Louis, MO, USA) and the SingleQuot®Kit (Cambrex) of supplements with growth factors
and cytokines without gentamicin. Post-selection 184v (specimen 184 batch B) HMEC (provided
by Dr. M. Stampfer, Lawrence Berkeley National Laboratory (LBNL)) are finite life-span human
mammary epithelial cells derived from a reduction mammoplasty (Hammond et al. 1984). These

HMEC were cultured in serum-free MEBM (without sodium-bicarbonate and phenol red;

Cambrex) with 70 ug/ml bovine pituitary extract, 5 ng/ml human epidermal growth factor (EGF),
0.5 ug/ml hydrocortisone, 5 pg/ml insulin, 5 ug/ml transferrin, 10 wM isoproterenol (all
supplements provided by Dr. M. Stampfer, LBNL), and 20 uM L-glutamine (Invitrogen,

Carlsbad, CA, USA). All cells were tested for mycoplasma (Bionique Test Labs, Saranac Lake,
NY, USA) and only cells that tested negative were used.

Cells were cultured in 25 cm” or 75 cm? tissue culture flasks (Invitrogen) and incubated at 95%
humidity and 37°C under 5% CO, for MCF10A, or low CO; (0.2 — 0.8%; depending on
incubator) for 184v. For passage, MCF10A cells were washed twice with 0.25% trypsin
(University of California San Francisco (UCSF) cell culture facility, San Francisco, CA, USA)
with 0.5 mM ethylenediaminetetraacetic acid (EDTA; Invitrogen) and incubated with 20% cell

dissociation media (Sigma-Aldrich) in trypsin at 37° C. Trypsinization was stopped by adding an



equal volume of soybean trypsin inhibitor (1 mg/ml in medium; Sigma-Aldrich). 184v cells were
washed twice with 0.05% trypsin (Sigma-Aldrich) with EDTA and incubated in the same for

several minutes at 37°C. After the cells detached from the flask they were washed once in

phosphate buffered saline (PBS; Invitrogen) before reseeded in appropriate numbers.

For immunostaining of 2D cultures, MCF10A cells were seeded in 8 well plastic chamber slides
(Nalge Nunc International, Rochester, NY, USA) with 5000 cells per well 2 days in advance of
exposure for cycling cell experiments and 4 days in advance of exposure for non-cycling cell
experiments. Cells for non-cycling experiments were washed twice with PBS and transferred to
medium without epidermal growth factor 2 days before irradiation.

For measuring foci in synchronized binucleated 184v cells, 8 well plastic chamber slides with
5000 cells per well were prepared 5 days before exposure. After two days cells were transferred

to medium without EGF supplemented with 5 pug/ml of monoclonal antibody 225 (provided by

Dr. M. Stampfer, LBNL (Stampfer et al. 1993)) directed against the EGF receptor (EGFR).
Resting HMEC (184v) were released from the proliferation block by adding 25 ng/ml EGF to the

cell culture medium 15, 17, 19 or 21 h before irradiation. Cytochalasin B (3 pg/ml; Sigma-

Aldrich) was added 1 h after irradiation to prevent cytokinesis and cells were fixed 2 h later.

To examine cells released from proliferation block after irradiation, MCF10A cells were seeded
in a similar manner as described above except no EGFR antibody was added to the cell culture
medium and the cells were released 22 h after exposure or kept in a stationary state for the whole
incubation repair time. For premature chromosome condensation (PCC) MCF10A cells were
seeded in the same way as for the immunostaining samples except that 25 cm? tissue culture
flasks were used. Cell numbers were chosen to reach similar cell seeding densities for both

culture vessels (156,000 cells per T25 flask).



3D cultures of MCF10A cells were established using Cultrex (Trevigen, Gaithersburg, MD,
USA), which is a soluble form of basement membrane purified from Engelbreth-Holm-Swarm
(EHS) tumor (major components include laminin I, collagen IV, entactin, and heparin sulfate
proteoglycan). Four-well coverslip glass bottom chamber slides (Nalge Nunc International) were

coated with 60 pl of Cultrex (Trevigen) per well and incubated for at least 20 min at 37°C to

solidify. 10.000 MCF10A cells in 0.4 ml medium were then seeded per well 7 days in advance of
exposure. Cells were incubated for 30 min to allow them to settle down on the coating and then
another 0.4 ml of 10% Cultrex in medium was added per well (final concentration of Cultrex was
5%). Cells were grown in complete medium for the first six days including EGF to allow for
acini formation and functional polarization and were then transferred to medium without EGF

the day before exposure.

Irradiation

Iron ion exposures with an energy of 968 MeV/amu (LET = 151 keV/um) were performed at
NASA (National Aeronautics and Space Administration) Space Radiation Laboratory (NSRL) at
Brookhaven National Laboratory (BNL) (beamline details can be found at the NASA/BNL
Space Radiation Program homepage at http://www.bnl.gov/medical/NASA/). The dose rate was
1 Gy/min, resulting in short acute exposure times of 0.5 — 2 min at room temperature. Data were
collected during NSRL-6¢, NSRL-7a, NSRL-7c, NSRL-8a, and NSRL-8b runs. Parallel radiation
geometry was used for both 2D and 3D cultures to allow the detection of foci along particle
tracks (Figure 1).

Exposures with *’CS y-rays (LET = 0.91 keV/um (Meesungnoen et al. 2001)) were carried out

at the BNL Controlled Environment Radiation Facility at a dose rate of 0.5 - 1 Gy/min.



Irradiations and dosimetry were performed by the same certified operator. All y-ray exposures

were performed at room temperature with cell cultures prepared in parallel with the iron ion

experiments within one day.

Immunostaining for y-H2AX and 53BP1 in monolayers
Cells for y-H2AX and 53BP1 immunostaining were cultured and stained in 8 well plastic

chamber slides (Nalge Nunc International). After incubation at the indicated times post exposure,
the cell culture medium was removed and the cells were washed twice with PBS. Cells were then
fixed in 2% paraformaldehyde in PBS for 10 min at room temperature, washed twice in PBS and
treated with pre-cooled 100% methanol for 30 min at -20°C to open up the plasma membrane.
After two additional washes with PBS at room temperature, the slides were stored at 4°C. Wells
were filled with PBS and sealed with self adhesive foil (Phenix Research Products, Hayward,
CA, USA) to prevent them from drying out and then shipped to LBNL on ice. Samples were
stained within four weeks after fixation. Before immunostaining the samples were washed with
PBS and once with 1% bovine serum albumin (BSA, Invitrogen) in PBS, then non-specific
binding was blocked by incubation for 1 h in 1% BSA/PBS at room temperature. The samples
were then incubated for 1 h in a mouse monoclonal immunoglobulin (IgG) 1 anti phospho-
histone H2AX (serine 139) antibody (Upstate (Millipore), Temecula, CA, USA; 1 mg/ml, 1:500
dilution in 1% BSA/PBS) and/or a rabbit polyclonal anti 53BP1 antibody (Bethyl, Montgomery,
TX, USA; 1 mg/ml, 1:500 dilution in 1% BSA/PBS). After washing the cells four times in 1%
BSA/1x PBS for 15 min each, they were incubated 1 h with the secondary antibody (Molecular
Probes (Invitrogen); 2 mg/ml, 1:400 dilution in 1% BSA/ PBS) Alexa Fluor 488 goat anti-mouse

IgG or Alexa Fluor 594 goat anti rabbit IgG and washed twice in PBS for 10 min, counterstained



with 0.1 pg/ml 4',6-diamidino-2-phenylindole (DAPI) in PBS for 5 min, and washed one more
time with PBS for 10 min. Slides were air dried and mounted with Vectashield (Vector
Laboratories, Burlingame, CA, USA). Picture acquisition was performed within two months.
Immunostaining for y-H2AX and 53BP1 in binucleated cells was conducted as described but
used acridine orange (10 pg/ml; Sigma-Aldrich), which allowed detection of binucleated cells by
cytoplasmic staining. Acridine orange staining bleached out after about 30 sec of exposure
under the microscope and after that did not interfere with the y-H2AX or 53BP1 foci which were

counted in binucleated as well as mononucleated cells by eye.

Immunostaining for y-H2AX, 53BP1 and integrin o6 in 3D acinar structures

Immunostaining of 3D samples was performed similar to monolayer staining with minor changes
and the addition of integrin o6 staining to verify that the cells were morphologically polarized.
After transport of the slides back to LBNL the PBS was replaced by 10% DMSO (dimethyl
sulfoxide) in PBS and samples were stored at -20°C until immunostaining to prevent
contamination. In addition to the BSA block cells were incubated for 1.5 h at room temperature
in the undiluted blocking reagent “Mouse Detective” (Biocare Medical, Concord, CA, USA).
After blocking, the cells were washed 3x in 1% BSA in 1x PBS before incubated over night at
4°C with the primary integrin o6 antibodies (Becton Dickinson, Franklin Lakes, NJ, USA;
purified rat anti-human integrin a6 chain, 1:800). After washing the cells, they were incubated 1
h with the secondary antibodies (Molecular Probes (Invitrogen); Alexa Fluor 633 goat anti-rat
for integrin o6 in a 1:400 dilution). Cells were counterstained with 0.5 pg/ml DAPI (Sigma-

Aldrich) in 1x PBS for 5 min, covered with 1x PBS to prevent them from drying out, and kept
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refrigerated until picture acquisition, which was performed within two weeks after

immunostaining. Only foci in functionally polarized acini were scored (Figure 1).

Image acquisition

2D cultures were imaged using a Zeiss Axiovert epifluorescence microscope (for details see
(Costes et al. 2007)) with a Zeiss plan-apochromat 40X dry lens (Carl Zeiss, Jena, Germany) and
a scientific-grade 12-bit charged coupled device (CCD) camera (ORCA AG Hamamatsu,
Bridgewater, NJ, USA). All images within the same data set were captured with the same
exposure time so that intensities were within the 12-bit linear range and could be compared
between specimens. We excluded presumptive S-phase cells identified by a high uniform label
and/or a large number of small foci. Images were taken in 11 focal planes with 0.7 um steps over
a range of 7 um total to capture foci in different focal plans. The image analysis was performed
on the maximum projection of these image stacks. At least 100 and up to 600 cells per treatment
group were analyzed for each independent experiment (over 100.000 cells total). Three
independent experiments were performed in duplicates (N = 6) for y -ray and iron ion exposures.
3D cultures were imaged using a Zeiss Axiovert 200M automated microscope with Ludl
position-encoded scanning stage (Carl Zeiss). Images were acquired using a Zeiss plan-
apochromat 63X water objective (numerical aperture (NA) of 1.2), multiband dichroic and
single-band emission filters in a filterwheel, and scientific-grade EM-CCD (electron multiplying
charge-coupled device) camera (Hamamatsu C9100-02, 1k by 1k pixels, , 8 x 8 um® pixels). All
images within the same data set were captured with the same exposure time so that intensities
were within the 12-bit linear range and could be compared between specimens. A CSU-10

spinning disk confocal scanner was used to acquire optical slices of 0.75 wum thickness and
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illumination was provided by 4 solid-state lasers at 405, 491, 561, and 638nm under AOTF
(acousto-optic tunable filter) control. The microscope was operated under Metamorph imaging
software (Molecular Devices, Sunnyvale, CA, USA). Five independent iron ion experiments,

some in duplicate (N = 8), and two independent y -ray experiments in duplicates (N = 4) were

performed.

Computer-based image analysis and estimation of foci numbers

Experiments were designed and annotated with radiation quality, dosage, cell line, growth
conditions, and registered with BioSig (Biological Signature) Imaging Bioinformatics platform.
BioSig has been updated from its previous implementation (Parvin et al. 2002; Parvin et al.
2003) for improved data entry and analysis. Annotations of experimental parameters were then
followed by registering images for each set of experimental variables (e.g., fixation time for
characterizing kinetics of DNA repair) for subsequent quantitative analysis. Image analysis
included nuclear segmentation using convexity (Raman et al. 2007) for 2D specimens and
geometric constraints to incorporate radial organization and homogenous distribution of
fluorescent signals in 3D specimens (Chang et al. 2007; Han et al. 2007; Han et al. 2010; Parvin
et al. 2007). Each detected nucleus provides the context for foci analysis following maximum
projection of foci on nucleus-by-nucleus basis. Some of the same computational modules are
also used for foci detection through iterative radial voting (Han et al. 2007; Han et al. 2010;

Parvin et al. 2007). These quantitative measurements were registered with BioSig.

Premature chromosome condensation and scoring of chromatid breaks
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MCF10A were seeded in 25 cm? flasks (156,000 cells/flask) two days before exposure (0, 0.5,
and 1 Gy) and premature chromosome condensation was induced by adding 50 nM of calyculin-
A (Sigma-Aldrich) at different time points after exposure. Within the 30 min incubation time
with calyculin-A detached cells were collected, centrifuged, resuspended in 0.075 M potassium
chloride (KCI; Sigma-Aldrich) and incubated for 10 min at 37°C. The cells were then fixed twice
in 25% glacial acetic acid (Sigma-Aldrich) in methanol (Sigma-Aldrich). Cells in fresh fixative
were dropped on wet slides, air dried, and stained in 4% Giemsa (Sigma-Aldrich) for 10 min.
After covering the slides with mounting media, chromatid breaks in 50 — 100 G2/M-phase cells
were scored blindly. Only gaps that were wider than the width of a chromatid were counted as a
chromatid break. We were unable to score chromatid breaks in the 0.3 h 1Gy iron ion sample due
to weak condensation of the chromosomes and therefore the chromatid break number per Gy was

calculated from the 0.3 h 0.5 Gy iron ion sample.

Least square fits and statistical analysis

Biphasic foci kinetics was modeled as a sum of two exponential decays:

RIF(t)=Ae ™ +Be™ +C 1.
where k; and k, are repair time constants (in hr') for the fast and the slow components,
respectively; A and B represent the fraction of radiation induced foci (RIF) resolved with fast
and slow kinetics, respectively; and C is the average level of foci measured in the 0 Gy
specimens. Note k; and k;, are often reported as half lives (T, = In(2)/k; or T, = In(2)/ky).
Similarly to what has been done in the past to fit FAR (Fraction of Activity Released) assay data
(Iliakis et al. 1990), we used a two-step procedure. Briefly, time points above 10 hours were used

to determine parameters for the slow components (B and k») by fitting the following equation:
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RIF(t)—C = B.e™™ . Then B and k, were substituted into equation (1) to fit A and k; using time
points less than 10 hours. Repair constants were forced to be positive or null in the fit. In some

instances (3D iron ion data for y-H2AX and 53BP1), the two component fit was not possible

(the least square procedure did not converge into unique values). In this case, data were not fitted
at all, because the disappearance of foci seemed to be more complex than described by equation
1. One can estimate the proportion of the repair curve due to the fast and slow component by
simply looking at the fraction of A or B over A+B. Finally, whenever RIF induction was not
maximum at 20 min post-IR we excluded this time point as it would compromise accurate
estimation of the fast repair component due to an incomplete RIF detection. Non linear least
square fits were performed using the statistical toolbox of Matlab (The Mathworks, Inc., Natick,
MA, USA). Linear fits were used for the unirradiated controls.

The values in the graphs represent the mean value * standard error of the mean (SEM) except

stated otherwise. Statistical significance between control and treated samples was calculated by

using a student t-test.
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Results

HMEC were grown under serum free conditions to permit controlled proliferation by adding or
excluding EGF from the cell culture medium. Less than 5% of the MCF10A cells incorporated
bromodeoxyuridine (BrdU) within a 24 h time window when cultured without EGF for more
than 2 days (data not shown). The immortalized HMEC cell line MCFI10A was used for

comparing the influence of radiation quality (y-rays versus iron ions), the cell cycle status

(stationary versus cycling cells), and cell culture conditions (2D versus 3D) on foci formation,
while the primary 184v finite lifespan HMEC were used to investigate the ability of cells to pass
through mitosis with remaining foci.

We focused on quantitative analysis of persistent foci in HMEC growing under 2D and 3D cell
culture condition several days after exposure to low and high LET radiation. Representative
pictures of immunostained MCF10A cells under 2D and 3D culture conditions are shown in
Figure 1. At this early time the difference in foci distribution within the cell nucleus after high
and low LET irradiation is clearly evident with multiple foci forming along the iron particle

tracks and a more homogeneous distribution of foci after y-ray exposure. y-H2AX and 53BP1

foci co-localize to a high degree at this time point as shown by the merged pictures. Under 3D
cell culture conditions (Figure 1B) the cells formed acini and were polarized as seen by the

integrin o6 staining located predominantly at the acinus periphery (Debnath et al. 2003;

Imbalzano et al. 2009).

Quantitative foci measurements were performed using computer programs developed at LBNL
(Parvin et al. 2007). An example of nuclear segmentation and detection of 53BP1 foci is shown
in Figure 2. The threshold settings for the foci analysis was optimized for foci detection at later

time points, since the emphasis was detection of persistent foci. This resulted in a slight
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underestimation of the foci numbers at early time points due to a change in foci morphology over
time with increase in foci size at later times. Changing the threshold for different time points
within the same data set would have increased the initial induced number of foci but would have
also added bias to the analysis.

The background of foci in non-irradiated MCF10A cells was between 2 and 5 foci per cell. This
number depended on the setting for foci detection and could vary due to details of the
immunostaining procedure. It is not known what these foci represent; they may or may not mark
DSB (overview see (Costes et al. 2010)). However, the background was relatively constant
within each experiment and it is assumed that return of the number of foci per cell after radiation
to the background level of the particular experiment means that the radiation—induced foci were
resolved. The primary 184v HMEC had a lower background level of 0.3 to 1 foci per cell when
scored by eye, which is in line with previous observations that primary cells have a lower foci
level than transformed or aging cells (Sedelnikova et al. 2004, 2008).

At early time points foci levels induced by y-rays and 968 MeV/amu iron ions showed quite
similar values, which suggests that the relative biological effectiveness (RBE) is one for foci
induction. However, while initially induced RIF correlate well with DSB after exposure to y -
rays, RIF after high LET radiation reflect more DSB clusters (Costes et al. 2010). Therefore it is
likely that foci numbers at early time points after high LET exposure under-represent the total
number of DSB. In comparison, Sudo et al. (2008) reported RBE values for HMEC of 1.6 and
1.8 for the D37 (dose resulting in 37% survival) and Djy (dose resulting in 10% survival)

respectively with about 15 —40% of the cells surviving 2 Gy of 1 GeV/amu iron ions.

Foci formation in cycling and non-cycling 2D HMEC
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We studied the formation and disappearance of y-H2AX foci (Figure 3) and 53BP1 foci (Figure
4) after exposure to y -rays (graphs on the left) and 968 MeV/amu iron ions (graphs on the right)
in non-cycling (upper graphs) and cycling cell populations (lower graphs). Foci numbers were
measured up to 48 h in cycling cells and up to 72 h in non-cycling cells respectively. Our results

reveal that the disappearance of radiation induced y-H2AX and 53BP1 foci depends both on
radiation quality and proliferation status. While foci numbers for y-H2AX (Figure 3A & 3C) and
53BP1 (Figure 4A & 4C) return to control level within 22 h after y -ray irradiation regardless of
marker or cell proliferation status, iron ion induced foci were still present at this point (Figure 3B

& 3D, 4B, & 4D). However, most of persistent 53BP1 foci were removed during the next 24 h

while y-H2AX foci in non-cycling cells remained significantly higher (p = 0.035 for 1Gy and p

= 0.007 for 2Gy) than control levels even 72 h after iron ion exposure (Figure 3B).

A possible explanation for the reduction of y-H2AX foci levels over time in cells grown with

EGF (Figure 3D) compared to the stationary cells (Figure 3B) would be increased apoptosis. To
test this idea, apoptosis was measured in cycling and non-cycling MCF10A cells after iron ion
exposure using the caspase-independent cytochrome c release assay (Goldstein et al. 2005). The
level of apoptosis was very low (around 1%) in cycling and non-cycling cells (data not shown),
confirming low apoptotic numbers in HMEC reported by Goldstein et al. (2005). Apoptosis

therefore is unlikely to explain the loss of foci (Figure 3D).

Presence of foci in HMEC (184v) cells undergoing mitosis after irradiation
To further elucidate the mechanism of foci removal in replicating monolayer cells, we tested the
ability of the cells to pass through mitosis while still carrying persistent foci (Figure 5A).

Cytochalasin B and acridine orange staining were used (Figure 5B) to identify 184v HMEC that
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had passed through mitosis and had formed binucleated cells. Cytochalasin B allows the cells to
complete telophase and form nuclear membranes around the daughter nuclei, but prevents
cytokinesis. Therefore cells can complete mitosis but not cell division.

Synchronized 184v cells were released from the cell cycle block in G1-phase by adding EGF to
the cell culture medium 15 h — 21 h before exposure to 0.5 Gy iron ions, which increased the
number of cells in G2-phase at the time of exposure. The addition of Cytochalasin B 1 hr after
irradiation allowed cells exposed in M-phase to proceed into G1-phase and persistent foci were
measured in both mononucleated and binucleated cells for comparison. As shown in Figure 5D

(right), binucleated cells showed elevated y-H2AX and 53BP1 foci numbers 3h after 0.5 Gy of
iron ion exposure (2.57 £0.68 and 2.6 + 0.8 respectively) compared to non-irradiated controls
(0.41 £0.17 and 1.01 +0.63 respectively). This demonstrates that foci can pass mitosis. If such

foci represent DSB, this process could allow further repair in the next cell cycle. The number of
foci detected in the binucleated cells were similar to the foci numbers in mononucleated cells

(2.03 £0.44 and 2.65 +£0.98 respectively) as shown in Figure 5D (left).

y- H2AX foci formation in HMEC after release from cell cycle block
To test the hypothesis that y-H2AX foci induced in non-cycling cells might resolve after a later

release from the cell cycle block we measured foci numbers in cells that were non-dividing
during iron ion exposure and then released 22 h later (Figure 6). Cells without EGF (bold squares
with solid line) showed remaining foci even 72 h after 2 Gy iron ion exposure while cells that
were released 22 h after exposure were back to background level 50 h after release or 72 h after
exposure respectively. The increase in foci numbers at 48 h after 2 Gy iron ion exposure for

released cells (open symbols with dotted line) is most likely due to a higher number of cells in S-

18



phase, even though we attempted to manually exclude these cells. It can be pointed out that also
the control for the released cells showed an increase at the same time even this increase is much
lower compared to the exposed sample. We assume that most of the cells have already passed
through S-phase in the control sample at 48h and that we see more cells in S-phase at that time in
the exposed sample due to a delay in reentry of the cells in the cell cycle or slower progression

through the cell cycle.

Foci formation in 3D
To determine whether tissue-specific organization affected radiation-induced foci formation and
resolution, cells were seeded on top of an extracellular matrix allowing the formation of acinar

structures in vitro. Foci formation and persistence were measured after exposure to y -rays and
iron ions (Figure 7). The number of foci for both y-H2AX and 53BP1 had returned to control
levels within 22 h of y-ray exposure. In comparison, the number of iron-ion induced y-H2AX
foci remained significantly higher than controls for up to 48 h, while 53BP1 levels were at
control levels within 22 h after exposure. Thus, the dynamics of y-H2AX and 53BP1 foci

induction and resolution for non-cycling cells were quite similar independent of cell culture

configuration.

Chromatid breaks measured in premature condensed chromosomes of cycling HMEC

Measuring chromatid breaks in premature condensed chromosomes is a widely used cytogenetic
method for detecting DNA damage after exposure to different qualities of ionizing radiation (for
review of PCC techniques see (Gotoh and Durante 2006)). The number of chromatid breaks after

Y -ray or iron ion exposure was plotted over time (Figure 8). The frequency of chromatid breaks
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returned to control level by 22 h after y -ray exposure, but remained elevated even 48 h after iron
ion exposure. This result is somewhat surprising in view of our findings that y-H2AX and

53BP1 foci in cycling cells were back to control levels within 48 h after iron ion exposure
(Figure 3D & 4D). This suggests that DSB might still be present, although foci numbers are back

to control levels in replicating cells

20



Discussion

Pulsed-field gel electrophoresis experiments have established that high LET radiation induces
persistent DNA double-strand breaks for doses in the range of 25-80 Gy (Stenerlow et al. 2000;
Rydberg et al. 2005). This is interpreted to be due to the higher complexity of breaks compared
to low LET radiation. In most cases, non-proliferating human fibroblasts were used in these
studies and the breaks were measured up to 24 h after exposure. Much less is known about lower
doses, particularly for proliferating cells at longer repair times. Karlsson and Stenerlow (2004)
found persistent Y-H2AX foci for up to 24 h after 1 Gy of high LET nitrogen-ion irradiation in
non-proliferating normal human fibroblasts. Takahashi et al. (2008) showed a slower decrease in
the y-H2AX intensity using flow cytometry after exposure to 500 MeV/amu iron ions compared
to X-ray irradiation in exponentially growing human AG01522 fibroblasts and Asaithamby et al.
(2008) showed similar results in y-H2AX immunostained human HSF42 skin fibroblasts 24 h
after iron ion exposure (300 MeV/amu and 1 GeV/amu). Desai et al. (2005) also showed a LET

dependency for the disappearance of y-H2AX clusters in confluent normal human fibroblasts
between iron (176 kev/um) and silicon (54 keV/um) ions. While both radiation qualities induced
persisting y-H2AX foci 24 h after exposure, cells exposed to iron ions showed significantly

higher residual foci numbers compared to silicon ions. In each of these studies (Desai et al. 2005;

Asaithamby et al. 2008; Takahashi et al. 2008), y-H2AX foci were measured up to 24 h after

exposure.
In the present study we measured foci frequency for up to 72 h and compared the response in

non-proliferating and proliferating HMEC. We found that a fraction of y-H2AX foci persisted

for at least 72 h after high LET iron ion radiation in non-proliferating cells, in contrast to foci
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induced by vy -rays that disappeared after 22 h. This confirms the earlier studies. We and others

have interpreted these persistent y-H2AX foci as evidence of persistent DSB. However the
situation was different for 53BP1 foci, which constitute another marker of DSB. These foci
returned to background level by 48 h. One can hypothesize that the absence of 53BP1 binding
indicates lack of repair at these late time points. Another interpretation is that 5S3BP1, which is
recruited to open chromatin, is excluded when a DSB is rejoined, but y-H2AX, which is a
phosphorylation that requires a phosphatase to resolve, is decoupled from the process. It can be
pointed out that Karlsson and Stenerléw (2004) in the above mentioned study found that another
repair protein, MREI1 (meiotic recombination 11 homolog), showed less persistence of foci
compared to Y-H2AX. Thus, persistent foci that lack essential repair factors, such as 53BP1 and
MREI1, could be indicative of lack of repair and persistence of DSB, or the absence of 53BP1
and MREI11 could be indicative of completed repair, and y-H2AX marks something different.
However, in contrast to the situation in non-proliferating cells, all foci were removed in
proliferating cells within 48 h after iron ion exposure. This suggests that necessary repair
pathways for complex DNA damage, such as homologous recombination or backup pathways of
non-homologous end joining (B-NHEJ) (Iliakis 2009), might be needed but are not available in
non-proliferating G1 cells. Another possibility is that chromatin reorganization or other
processes during DNA replication or mitosis facilitated DSB repair and/or y-H2AX
dephosphorylation. Various reports support these hypotheses. Frankenberg-Schwager et al.
(2009) are suggesting an important role of homologous recombination (HR) and single-strand
annealing (SSA) for complex DSB in S-phase after studying DSB repair in the Chinese hamster

ovary (CHO) cell line AA8 and its repair deficient derivatives after X-ray or o-particle exposure.

A role for homologous recombination in removing a fraction of clustered lesions induced by iron
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ion radiation was recently demonstrated (Zafar et al. 2010), and B-NHEJ has been shown to be
compromised in plateau-phase cells and be most active in G2 (Iliakis 2009). Kato et al. (2008)
studied the induction and disappearance of DNA DSB in synchronized CHO cells after y-ray
exposure, comparing Y-H2AX foci numbers and DSB values measured with the gel
electrophoresis assay. Their data showed much slower disappearance of y-H2AX foci in mitotic
than G1-phase cells while no difference was seen for the gel electrophoresis assay. The authors
suggest that the limited accessibility of dephosphorylation enzyme in metaphase cells or trapped
y-H2AX in condensed chromatin is responsible for the slower dephosphorylation. Increase of
accessibility and decondensation of the chromatin during S-phase could also explain our
observation of y-H2AX foci removal in cycling HMEC. However we found that mitosis per se
did not make foci disappear at short times after irradiation, but instead foci were inherited by the
daughter cells. This experiment was performed using primary 184v cells at early times after
irradiation, but we expect this is also true for the immortal cell line MCF10A used for all other
experiments which can be expected to have less strict cell cycle control mechanisms. However,
since our experiments were performed at early time points (1-3 hr after irradiation) we cannot
exclude the possibility that persistent foci were removed as a consequence of chromatin
reorganization at mitosis at later time points.

To discriminate between DSB repair and y-H2AX dephosphorylation we monitored chromatid
breaks in prematurely condensed chromosomes in proliferating cells at 48 h after irradiation
when the foci had disappeared. We found that an excess of chromatid breaks were still present in
iron-irradiated cells but not in y -irradiated cells. Although the precise relationship between DSB
and chromatid breaks are not known (Bryant et al. 2004, 2008), this suggests that persistent DSB

were still present even though the foci were absent. A possibility is that the breaks at that time
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were permanent and no longer candidates for repair. Overall, our studies suggest a more complex
picture for DSB repair and foci formation and removal than previously anticipated, and suggest
an uncoupling of DSB and foci at later repair times after high LET radiation. In other studies
(Suzuki et al. 2006; Kato et al. 2008) it has been suggested that foci may be present but not
always mark DSB, for example in senescent cells, while our data comparing chromatid breaks
and foci suggest that the opposite situation may also occur, that DSB are present but not marked
as foci.

We also measured radiation induced y-H2AX and 53BP1 foci formation and their disappearance
in HMEC grown under either 2D or 3D culture conditions. As far as we know, this is the first
published study of foci formation and removal in HMEC grown under 3D conditions. Roig et al.
measured colocalized foci of DNA-PKcs (DNA-dependent protein kinase, catalytic subunit) and
y-H2AX in human colon epithelial cells in 2D and 3D after 1 Gy of 1 GeV/u protons or iron ions
and came to the conclusion that the kinetics of DNA damage and repair in epithelial cells after
exposure to low- or high-LET radiation is similar in the 2D and 3D environment (Roig et al.
2009). The authors report that 20% - 30% of the induced colocalized foci are still remaining 24 h
after iron ion exposure in 2D and 3D cultures. These data fit well with our results. We still see

about 20% remaining y-H2AX foci in cycling cells 22 h after exposure in 2D (Figure 3D) as
well as in the 3D cultures (Figure 7B) but the remaining y-H2AX foci in 2D are resolved within

the next 24 h and foci levels are back to baseline 48 h after iron ion exposure (Figure 3D). Roig
et al. measured foci removal only up to 24 h; therefore it is not known if the persisting foci at 24
h in colon epithelial cells would have been resolved 48h after iron ion exposure.

Similar to Roig et al. we found that the general pattern of foci formation and removal at late time

points were the same in both conditions. In particular, the number of remaining y-H2AX and
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53BP1 foci at 48 h was similar. However, we noted a slightly faster 53BP1 foci removal at early

time-points in 3D cultures after y -ray exposure (T;, (fast) for 2D was 3.5h compared to 2h for
3D) while a similar removal was observed for y-H2AX in non-cycling cells. Interestingly, a two

component fit could not adequately describe the apparently more complex foci removal in 3D
after iron ion exposure, so a direct comparison of T}/, for foci removal at early times between the
2D and 3D data in non-cycling cells after iron ion exposure was not possible. The significance of
this observation is not known at present. These results at low doses and long repair times in
proliferating and non-proliferating HMEC cells support the notion that persistent damage is
induced by high LET radiation. This in turn might be a factor that contributes to the higher
efficiency of high LET radiation compared to low LET radiation for a variety of radiation effects

occurring later.

25



Acknowledgments

We thank Dr. Marcelo Vazquez, Dr. Peter Guida, Dr. Betsy Sutherland, and Dr. Adam Rusek
and their groups for support during the NSRL runs at Brookhaven National Laboratory, Dr
Janice Pluth (LBNL) for her help with flow cytometry analysis, Dr. Martha Stampfer and Dr
James Garbe for providing the 184v HMEC cells and for their cell culture support, and
Christopher Pham for his help with fitting the curves. The research was funded by NASA Grant
no. T6275W (awarded to Dr. Mary-Helen Barcellos-Hoff, NSCOR). This work was supported by
the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231.

Disclaimer

This document was prepared as an account of work sponsored by the United States Government.
While this document is believed to contain correct information, neither the United States
Government nor any agency thereof, nor The Regents of the University of California, nor any of
their employees, makes any warranty, express or implied, or assumes any legal responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by its trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof, or The
Regents of the University of California. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government or any agency thereof or
The Regents of the University of California.

Declaration of interest: The authors report no conflicts of interest. The authors alone are

responsible for the content and writing of the paper.

26



References

Asaithamby A, Uematsu N, Chatterjee A, Story MD, Burma S, Chen DJ. 2008. Repair of HZE-
particle-induced DNA double-strand breaks in normal human fibroblasts. Radiation
Research 169: 437-446.

Barcellos-Hoff MH, Aggeler J, Ram TG, Bissell MJ. 1989. Functional differentiation and
alveolar morphogenesis of primary mammary cultures on reconstituted basement
membrane. Development 105: 223-235.

Bissell MJ, Hall HG, Parry G. 1982. How does the extracellular matrix direct gene expression?
Journal of Theoretical Biology 99: 31-68.

Bryant PE, Gray LJ, Peresse N. 2004. Progress towards understanding the nature of chromatid
breakage. Cytogenetic and Genome Research 104: 65-71.

Bryant PE, Mozdarani H, Marr C. 2008. G2-phase chromatid break kinetics in irradiated DNA
repair mutant hamster cell lines using calyculin-induced PCC and colcemid-block.
Mutation Research 657: 8-12.

Chang H, Yang Q, Parvin B. 2007. Segmentation of heterogeneous blob objects through voting
and level set formulation. Pattern Recognition Letters 28: 1781-1787.

Costes SV, Chiolo I, Pluth JM, Barcellos-Hoff MH, Jakob B. 2010. Spatiotemporal
characterization of ionizing radiation induced DNA damage foci and their relation to
chromatin organization. Mutation Research 704: 78-87.

Costes SV, Ponomarev A, Chen JL, Nguyen D, Cucinotta FA, Barcellos-Hoff MH. 2007. Image-
based modeling reveals dynamic redistribution of DNA damage into nuclear sub-

domains. PLoS Computational Biology 3: e155.

27



Cucinotta FA, Durante M. 2006. Cancer risk from exposure to galactic cosmic rays: implications
for space exploration by human beings. The Lancet Oncology 7: 431-435.

Debnath J, Muthuswamy SK, Brugge JS. 2003. Morphogenesis and oncogenesis of MCF-10A
mammary epithelial acini grown in three-dimensional basement membrane cultures.
Methods 30: 256-268.

Desai N, Davis E, O'Neill P, Durante M, Cucinotta FA, Wu H. 2005. Immunofluorescence
detection of clustered gamma-H2AX foci induced by HZE-particle radiation. Radiation
Research 164: 518-522.

Durante M, Kronenberg A. 2005. Ground-based research with heavy ions for space radiation
protection. Advances in Space Research 35: 180-184.

Durante M, Cucinotta FA. 2008. Heavy ion carcinogenesis and human space exploration. Nature
Reviews. Cancer 8: 465-472.

Frankenberg-Schwager M, Gebauer A, Koppe C, Wolf H, Pralle E, Frankenberg D. 2009.
Single-strand annealing, conservative homologous recombination, nonhomologous DNA
end joining, and the cell cycle-dependent repair of DNA double-strand breaks induced by
sparsely or densely ionizing radiation. Radiation Research 171: 265-273.

Goldstein JC, Rodier F, Garbe JC, Stampfer MR, Campisi J. 2005. Caspase-independent
cytochrome c release is a sensitive measure of low-level apoptosis in cell culture models.
Aging Cell 4: 217-222.

Goodhead DT. 1994. Initial events in the cellular effects of ionizing radiations: clustered damage
in DNA. International Journal of Radiation Biology 65: 7-17.

Gotoh E, Durante M. 2006. Chromosome condensation outside of mitosis: mechanisms and new

tools. Journal of Cellular Physiology 209: 297-304.

28



Hammond SL, Ham RG, Stampfer MR. 1984. Serum-free growth of human mammary epithelial
cells: rapid clonal growth in defined medium and extended serial passage with pituitary
extract. Proceedings of the National Academy of Sciences of the United States of
America 81: 5435-5439.

Han J, Chang H, Yang Q, Barcellos-Hoff MH, Parvin, B. 2007. Segmentation of Mammosphere
Structures from Volumetric Data. IEEE International Symposium on Biomedical
Imaging: from nano to macro. 524-528.

Han J, Chang H, Yang Q, Fontenay G, Groesser T, Barcellos-Hoff MH, Parvin B. 2010.
Multiscale iterative voting for differential analysis of stress response in 2D and 3D cell
culture models. Journal of Microscopy. Early view online. Available from:
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2818.2010.03442 .x/pdf

Held KD. 2009. Effects of low fluences of radiations found in space on cellular systems.
International Journal of Radiation Biology 85: 379-390.

Iliakis G. 2009. Backup pathways of NHEJ in cells of higher eukaryotes: cell cycle dependence.
Radiotherapy and Oncology 92: 310-315.

Iliakis G, Metzger L, Muschel RJ, McKenna WG. 1990. Induction and repair of DNA double
strand breaks in radiation-resistant cells obtained by transformation of primary rat
embryo cells with the oncogenes H-ras and v-myc. Cancer Research 50: 6575-6579.

Imbalzano KM, Tatarkova I, Imbalzano AN, Nickerson JA. 2009. Increasingly transformed
MCF-10A cells have a progressively tumor-like phenotype in three-dimensional
basement membrane culture. Cancer Cell International 9:7: 1-11.

Karlsson KH, Stenerlow B. 2004. Focus formation of DNA repair proteins in normal and repair-

deficient cells irradiated with high-LET ions. Radiation Research 161: 517-527.

29



Kato TA, Okayasu R, Bedford JS. 2008. Comparison of the induction and disappearance of DNA
double strand breaks and gamma-H2AX foci after irradiation of chromosomes in G1-
phase or in condensed metaphase cells. Mutation Research 639: 108-112.

Kenny PA, Lee GY, Myers CA, Neve RM, Semeiks JR, Spellman PT, Lorenz K, Lee EH,
Barcellos-Hoff MH, Petersen OW and others. 2007. The morphologies of breast cancer
cell lines in three-dimensional assays correlate with their profiles of gene expression. Mol
Oncology 1: 84-96.

Lee GY, Kenny PA, Lee EH, Bissell MJ. 2007. Three-dimensional culture models of normal and
malignant breast epithelial cells. Nature Methods 4: 359-365.

Lobrich M, Cooper PK, Rydberg B. 1996. Non-random distribution of DNA double-strand
breaks induced by particle irradiation. International Journal of Radiation Biology 70:
493-503.

Meesungnoen J, Benrahmoune M, Filali-Mouhim A, Mankhetkorn S, Jay-Gerin JP. 2001. Monte
Carlo calculation of the primary radical and molecular yields of liquid water radiolysis in
the linear energy transfer range 0.3-6.5 keV/micrometer: application to 137Cs gamma
rays. Radiation Research 155: 269-278.

Parvin B, Yang Q, Fontenay G, Barcellos-Hoff MH. 2003. BioSig: an imaging bioinformatics
system for phenotypic analysis. IEEE Transactions on Systems, Man, and Cybernetics.
Part B, Cybernetics 33: 814-824.

Parvin B, Yang Q, Han J, Chang H, Rydberg B, Barcellos-Hoff MH. 2007. Iterative voting for
inference of structural saliency and characterization of subcellular events. IEEE

Transactions on Image Processing 16: 615-623.

30



Parvin B, Fontenay G, Yang Q, Barcellos-Hoff MH. 2002. BioSig: An Imaging Bioinformatic
System for Studying Phenomic. IEEE Computer 35: 65-71.

Pilch DR, Sedelnikova OA, Redon C, Celeste A, Nussenzweig A, Bonner WM. 2003.
Characteristics of gamma-H2AX foci at DNA double-strand breaks sites. Biochemistry
and Cell Biology 81: 123-129.

Raman S, Maxwell CA, Barcellos-Hoff MH, Parvin B. 2007. Geometric approach to
segmentation and protein localization in cell culture assays. Journal of Microscopy 225:
22-30.

Rogakou EP, Boon C, Redon C, Bonner WM. 1999. Megabase chromatin domains involved in
DNA double-strand breaks in vivo. The Journal of Cell Biology 146: 905-916.

Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. 1998. DNA double-stranded breaks
induce histone H2AX phosphorylation on serine 139. The Journal of Biological
Chemistry 273: 5858-5868.

Roig Al Hight SK, Shay JW. 2009. Two- and three-dimensional models for risk assessment of
radiation-enhanced colorectal tumorigenesis. Radiation Research 171: 33-40.

Rydberg B. 1996. Clusters of DNA damage induced by ionizing radiation: formation of short
DNA fragments. II. Experimental detection. Radiation Research 145: 200-209.

Rydberg B, Cooper B, Cooper PK, Holley WR, Chatterjee A. 2005. Dose-dependent
misrejoining of radiation-induced DNA double-strand breaks in human fibroblasts:
experimental and theoretical study for high- and low-LET radiation. Radiation Research

163: 526-534.

31



Schultz LB, Chehab NH, Malikzay A, Halazonetis TD. 2000. p53 binding protein 1 (53BP1) is
an early participant in the cellular response to DNA double-strand breaks. The Journal of
Cell Biology 151: 1381-1390.

Sedelnikova OA, Rogakou EP, Panyutin IG, Bonner WM. 2002. Quantitative detection of
(125)IdU-induced DNA double-strand breaks with gamma-H2AX antibody. Radiation
Research 158: 486-492.

Sedelnikova OA, Horikawa I, Zimonjic DB, Popescu NC, Bonner WM, Barrett JC. 2004.
Senescing human cells and ageing mice accumulate DNA lesions with unrepairable
double-strand breaks. Nature Cell Biology 6: 168-170.

Sedelnikova OA, Horikawa I, Redon C, Nakamura A, Zimonjic DB, Popescu NC, Bonner WM.
2008. Delayed kinetics of DNA double-strand break processing in normal and
pathological aging. Aging Cell 7: 89-100.

Soule HD, Maloney TM, Wolman SR, Peterson WD Jr., Brenz R, McGrath CM, Russo J, Pauley
RJ, Jones RF, Brooks SC. 1990. Isolation and characterization of a spontaneously
immortalized human breast epithelial cell line, MCF-10. Cancer Research 50: 6075-6086.

Soutoglou E, Dorn JF, Sengupta K, Jasin M, Nussenzweig A, Ried T, Danuser G, Misteli T.
2007. Positional stability of single double-strand breaks in mammalian cells. Nature Cell
Biology 9: 675-682.

Stampfer MR, Pan CH, Hosoda J, Bartholomew J, Mendelsohn J, Yaswen P. 1993. Blockage of
EGF receptor signal transduction causes reversible arrest of normal and immortal human
mammary epithelial cells with synchronous reentry into the cell cycle. Experimental Cell

Research 208: 175-188.

32



Stenerlow B, Hoglund E, Carlsson J, Blomquist E. 2000. Rejoining of DNA fragments produced
by radiations of different linear energy transfer. International Journal of Radiation
Biology 76: 549-557.

Sudo H, Garbe J, Stampfer MR, Barcellos-Hoff MH, Kronenberg A. 2008. Karyotypic instability
and centrosome aberrations in the progeny of finite life-span human mammary epithelial
cells exposed to sparsely or densely ionizing radiation. Radiation Research 170: 23-32.

Suzuki M, Suzuki K, Kodama S, Watanabe M. 2006. Interstitial chromatin alteration causes
persistent p53 activation involved in the radiation-induced senescence-like growth arrest.
Biochemical and Biophysical Research Communications 340: 145-150.

Takahashi A, Yamakawa N, Kirita T, Omori K, Ishioka N, Furusawa Y, Mori E, Ohnishi K,
Ohnishi T. 2008. DNA damage recognition proteins localize along heavy ion induced
tracks in the cell nucleus. Journal of Radiation Research 49: 645-652.

Zafar F, Seidler SB, Kronenberg A, Schild D, Wiese C. 2010. Homologous recombination
contributes to the repair of DNA double-strand breaks induced by high-energy iron ions.

Radiation Research 173: 27-39.

33



Figure legend

Figure 1: Immunostaining of radiation induced y-H2AX (second column) or 53BP1 (third
column) foci and colocalization of both (fourth column) in MCF10A cells grown as a 2D

monolayer (A) or as 3D acini (B) 0.3 h (2D) or 1 h (3D) after exposure of 2 Gy of y -rays (second

row) or iron ions (third row). First row shows unirradiated controls. Counterstaining was with
DAPI (first column). To test for functional polarization, acinar structures were stained in

addition for o6-integrin (fifth column in B). Only functionally polarized acini were included in

the analysis.

Figure 2: Example of a computer based analysis of radiation induced 53BP1 foci in HMEC
(MCF10A) 0.3 h after 2 Gy of iron ion exposure. Detected nuclei are circled in red and foci

detected by the analysis are circled in blue in the right panel.

Figure 3: Induction and repair of radiation induced y-H2AX foci in non-cycling (A & B) and
cycling (C & D) MCF10A cells after y-ray (A & C) or iron ion (B & D) exposure. The mean
numbers of foci per cell are plotted over time. Remaining y-H2AX foci can be observed in non-

cycling cells up to 72 h after 1Gy (p = 0.035) or 2Gy (p = 0.007) iron ion exposure (B). In

cycling cells foci levels are back to control after y -ray (C) or iron ion (D) exposures within 22 h
or 48 h respectively. No significant difference in the dynamic of y-H2AX dephosphorylation is

visible in cycling or non-cycling cells after y-ray exposure (A & C). Error bars indicate the
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standard error of the mean (SEM) for N = 6 (three independent experiments in duplicates). The

curves represent two component exponential least square fits.

Figure 4: Induction and repair of radiation induced 53BP1 foci in non-cycling (A & B) and

cycling (C & D) MCF10A cells after y-ray (A & C) or iron ion (B & D) exposure. The mean
numbers of foci per cell are plotted over time. Foci levels in HMEC are back to control levels

within 22 h after y -ray exposure (A & C) or 48 hrs after iron ion exposure (B &D) in both non-

cycling and cycling cells. Error bars indicate the standard error of the mean (SEM) for N = 6
(three independent experiments in duplicates). The curves represent two component exponential

least square fits.

Figure 5: Panels A to C: Measuring the inheritance of foci in binucleated cells. Synchronized
HMEC (184v) were released from a temporary cell cycle block in G1-phase 15 — 21 h before
exposure and then treated with cytochalasin B as indicated in panel A. Binucleated cells were
identified by acridine orange staining (B). An example of 53BP1 foci in mono- and binucleated
HMEC is shown at 3h after iron ion exposure in panel C. Panel D: Measurement of the presence
of radiation induced foci in mononucleated (left) and binucleated (right) HMEC (184v) 3h after
0.5 Gy of iron ion exposure. Mean numbers of foci per mononucleated (left) or binucleated

(right) cell are plotted for y-H2AX or 53BP1. The binucleated cells have divided once after
irradiation and still show elevated foci numbers for y-H2AX (p = 0.0009) and 53BP1 (p = 0.031)

compared to the control levels. This indicates that cells carrying foci and consequently DNA
damage are able to pass through mitosis and produce progenitors. Error bars indicate the

standard deviation for N = 3 (experiment in triplicates).
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Figure 6: Induction and repair of radiation induced y-H2AX foci in non-cycling (filled symbols

with bold line) MCF10A cells that were released from a cell cycle block by adding EGF to the

cell culture medium 22 h after iron ion exposure (open symbols with dotted lines). Remaining vy -

H2AX foci can only be observed in non-cycling cells while foci levels in released cells returned
to control level within 50 h after the release (72 h after exposure). The increase in foci numbers
at 48 h in the released cells (dotted line) is most likely due to a higher number of S-phase cells at
that time. Error bars indicate standard error of the mean (SEM) for N = 6 (two independent

experiments in triplicates).

Figure 7: Induction and repair of radiation induced y-H2AX (A & B) and 53BP1 (C & D) foci in
non-cycling MCF10A cells cultured in 3D after 2Gy of y-ray (A & C) or iron ion (B & D)
exposure. The mean numbers of foci per cell are plotted over time. Remaining y-H2AX foci can

be observed in cells up to 48h (p = 0.002) after iron ion exposure (B) while 53BP1 foci are back

to control levels (D). Error bars indicate the standard error of the mean (SEM) for N = 4 (y -ray;

two independent experiments in duplicates) or N = 8 (iron ion; five independent experiments,

three in duplicate). The y -ray curves represent two component exponential least square fits. The

iron ion data could not be fitted by a two component exponential curve (see materials and

methods for details).

Figure 8: Induction and repair of radiation-induced chromatid breaks (ctbs) in prematurely

condensed chromosomes (PCC) of cycling MCF10A cells after 1 Gy of vy -ray (triangles) or iron
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ion (squares) exposure. The mean numbers of chromatid breaks per cell are plotted over time.
While the number of chromatid breaks returns to control level (circles) within 22 h after y -ray
exposure we detect remaining chromatid breaks even 48 h after iron ion exposure. The iron ion 1
Gy 0.3 h data point was extrapolated from a 0.5 Gy 0.3 h data point (6.26 + 0.71) due to

insufficient chromosome condensation of the 1 Gy 0.3 h sample. Error bars indicate standard
error of the mean (SEM) of the number of chromatid breaks between cells of the same treatment

group (single experiment). At least 50 cells were scored for each data point.
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