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ABSTRACT

Cylindrical shells exhibit buckling under axial loads at
stresses much less than the respective theoretical critical
stresses. This is due primarily to the presence of
geometrical imperfections even though such imperfections
could be very small (e.g., comparable to thickness). Under
internal pressure, the shell regains some of its buckling
strength. For a relatively large radius-to-thickness ratio and
low internal pressure, the effect can be reasonably estimated
by an elastic analysis. However, for low radius-to-thickness
ratios and greater pressures, the elastic-plastic collapse
controls the failure load. In order to quantify the elastic-
plastic buckling capacity of cylindrical shells, an analysis
program was carried out by use of the computer code
BOSORS developed by Bushnell of Lockheed Missiles and
Space Company. The analysis was performed for various
radius-to-thickness ratios and imperfection amplitudes. The
analysis results are presented in this paper.

INTRODUCTION .

Thin cylindrical shells buckle under axial loads and the
corresponding theoretical critical stress can be calculated by
using the classical, elastic shell theory.  However,
experimental results and field observations have
demonstrated that in reality these shells exhibit buckling at
a much lower compressive stress than the classical critical
stress based on the elastic theory. A close examination has
attributed the causes of this reduction of the buckling
strength to the inevitable and inherent construction and field

conditions that are not reflected in the assumptions for the
classical elastic buckling theory. The major contributors are
the geometric imperfections, nonuniform membrane stress
distribution, and unaccounted boundary conditions and
residual stresses. This paper focusses on the effect of
geometric imperfections which are manifested as local
deformed shapes.

On the other hand, it has been observed that the elastic
buckling strength of a thin cylindrical shell is greater if the
shell is subjected to internal pressure in addition to the axial
compressive load. This is due to reduction of the geometric
imperfection by the internal pressure load. However, when
the pressure load becomes too large the hoop stress becomes
significant and the effect of biaxiality comes into play, which
in turn reduces the gain that has been obtained due to
presence of the internal pressure.

An ASME Code Case (Miller, 1991) provides formulas to
determine the capacity reduction factors (i.e., the ratio of the
allowable buckling strength to the theoretical critical buckling
capacity based on the classical elastic shell theory). These
formulas are based on experimental results for practical
geometric imperfections but do not include the beneficial
effects of the internal pressure. The code case recognizes this
beneficial effect but does not quantify it. On the other hand,
a NASA test program (1968) considered the effect of the
internal pressure but did not necessarily reflect the geometric
imperfections expected in the field. Extensive studies
including experiments and theoretical analyses were performed
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in Europe, Australia, and New Zealand to address both the
detrimental effect of the imperfection and the beneficial
effect of the internal pressure (Vandepette, 1980; Saal, 1977;
ECCS, 1988; Rotter, 1985; Rotter, 1989, Priestly, 1986).

The purpose of a current analytical program at Brookhaven
National Laboratory (BNL) was to compute the buckling
strength of underground cylindrical tanks, that are used for
storage of nuclear wastes, for realistic geometric
imperfections and internal pressure loads. Elastic analyses
were performed for various geometric imperfection shapes
and magnitudes by use of BOSOR4 developed by Bushnell
and the results were published (Bandyopadhyay, 1993).
Subsequently, elastic-plastic analyses have been performed
for a particular geometric imperfection shape. This paper
presents the results of these elastic-plastic analyses and
compares them with other available information for various
pressure loads.

COMPUTER MODEL

Similar to the elastic analysis model (Bandyopadhyay,
1993), a 40-foot high circular cylinder was considered in the
analysis. The top concrete or steel enclosure of an
underground tank was represented in the mathematical
model by a rigid diaphragm. The bottom of the cylinder was
assumed open and the wall was modeled with a hinge
connection along the bottom periphery. The analyses were
performed for various radius-to-thickness ratios (Ri) by
maintaining a constant value of the radius (R = 40 feet) and
varying the thickness. As a result of the earlier studies, a
most reasonable shape of an imperfection was represented
by an axisymmetric inward bulge of shape (1-cos6) located
at the bottom of the wall (Figure 1). The length of the
bulge, L, was selected to match the natural buckling shape
as follows:

L = 3.5/RE (1)

The magnitude of the imperfection in the radial direction,
e, was assumed for normal quality construction as follows
(ECCS, 1988; Rotter, 1985):

1
2 = 55 VFE (2)

The computer program BOSORS developed by Bushnell
(1974) was used for the analysis. An axisymmetric uniform
compressive load was applied on top of the wall.

ANALYSIS RESULTS

The results of the analysis are presented in Figure 2 for RA
values of 400, 600, 900, 1200, and 1500. The buckling
strength is plotted against the hoop stress so that the benefit
of the internal pressure as well as the biaxiality effect is
incorporated. Nondimensional quantities are used with the

following notations:

Ousal = Axial compressive stress at failure obtained
from BOSORS, corresponding to the
governing failure mode

Ocr = Theoretical critical buckling stress based on
the classical, elastic shell theory for a
perfect cylinder

= SR - —-
ta (1-v1) ] i/a R

E = Modulus of elasticity = 283 x 10° psi
(assume)

v = Poisson’s ratio = 0.3 (assume)

F, = Yield strength = 30 x 10° psi (assume)

P = Internal pressure
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Figure 1: Modeled Imperfection Shape

The major observation is that the shell failure is controlled
by elastic buckling until the hoop stress reaches about 25%-
50% of the material yield strength. Beyond that the elastic-
plastic collapse governs the failure mode. In the literature, the
first failure mode (i.e., elastic buckling) is also termed as
"diamond buckling." Similarly, the second failure mode (i.c..
elastic-plastic collapse) is also called "local bending® or
"elephant foot buckling."

Subsequently, in Figures 3 through 7, the results are
compared with those obtained by using the formulas provided



in the ECCS (1988) and New Zealand (Priestly, 1986) codes
and the ASME Code Case N284 (Miller, 1991). It is worth
noting that the presentations of the design formulas are
different in these codes. The ECCS code formulas
incorporate the biaxial effect (meridional and hoop), and
require an iterative procedure to incorporate the effect of
independent internal pressure. The New Zealand code
formulas are decoupled and do not require iteration. The
ASME Code Case formula is very simple and independent
of the internal pressure. The ECCS code results are
obtained with the “additional partial factor of safety" of 1.33
specified in this code, which was introduced to envelope
certain test data. This factor of safety gradually reduces to
1.0 for short and thick shells. The other results were
calculated without introduction of any intentional
conservatisms, The ASME Code Case formulas do not
apply for RA greater than 1000. The following are major
observations:

. The BNL results compare well with both the ECCS
and New Zealand code results in the elastic region.

. In the inelastic region, the BNL buckling results
are slightly higher than the New Zealand results,
and both these results are larger than the ECCS
results. This is apparently because the EECS code
capacity was reduced to include certain test data by
introducing the factor of safety of 1.33. The BNL
and New Zealand results match better with the
ECCS results in this region if the factor of safety is
assumed to be 1.0 as shown in Figure 8.

. A significant improvement in the buckling capacity
in the presence of internal pressure occurs over the
ASME Code Case when the hoop stress is in the
range of 20%-80% of the yield strength. The
difference is more pronounced for thinner shells.
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Figure 2: Influence of Pressure on Axial Compressive
Strength
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Figure 3: Comparisons of Resuits for RA = 400
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Figure 4: Comparison of Results for RA = 600
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Figure 5: Comparison of Results for Rz = 900
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Figure 6: Comparison of Results for RA = 1200
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Figure 7: Comparison of Resuits for Rt = 1500
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Figure 8: Comparison with ECCS Code Results for SF =
1.0 and 133 :

CONCLUSIONS

The BOSORS analysis results confirm the beneficial effect of
internal pressure on the buckling capacity. The results also
show how the gain becomes gradually reduced as the pressure
increases beyond a certain value when the hoop stress starts
playing a role. As such, the cylindrical shell should be
designed for the minimum possible internal pressure in the
elastic range and for the maximum possible internal pressure
in the elastic-plastic range.
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