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Abstract

Recursive Recovery of Markov Transition Probabilities from
• Boundary Value Data

Sarah Kathryn Patch

In an effort to mathematically describe the anisotropic diffusion of infrared radia-

tion in biological tissue Griinbaum posed an anisotropic diffusion boundary value problem

in 1989. In order to accommodate anisotropy, he discretized the temporal as well as the spa-

tial domain. The probabilistic interpretation of the diffusion equation is retained; radiation

is assumed to travel according to a random walk (of sorts). In this random walk the proba-

bilities with which photons change direction depend upon their previous as well as present

location. The forward problem gives boundary value data as a function of the Markov

transition probabilities. The inverse problem requires finding the transition probabilities

from boundary value data.

Problems in the plane are studied carefully in this thesis. Consistency conditions

amongst the data are derived. These conditions have two effects: they prohibit inversion

of the forward map but permit smoothing of noisy data. Next, a recursive algorithm

which yields a family of solutions to the inverse problem is detailed. This algorithm takes

advantage of all independent data and generates a system of highly nonlinear algebraic

equations. Pliicker-Graflmann relations are instrumental in simplifying the equations. The

algorithm is used to solve the 4 × 4 problem. Finally, the smallest nontrivial problem in

three dimensions, the 2 × 2 x 2 problem, is solved.
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Chapter 1

Introduction

Nearly one century has passed since RSntgen took the first radiograph of his wife's

hand. Since that time many different techniques for noninvasive imaging of human tissue

have been developed. A concise history of the development of medical imaging can be found

in [14]. Some of these techniques are direct descendants of RSntgen's radiograph; others

are completely unrelated. Computerized tomography, for example, is a direct descendant

of the radiograph. The word "tomography" refers to imaging an object by slices. X rays

have high energy and travel straight through the body. Both CT and magnetic resonance

imaging, (MR/), permit recovery of an image from knowledge of slices of the object. Data

analysis makes use of the Radon transform, which is linear. Ultrasound and impedance

imaging are examples of imaging techniques which enjoy neither straight travel paths nor

linear inversion formulas. The oxymoron "diffuse tomography" refers to low energy imag-

ing in which the paths of the radiant energy are not necessarily straight and are unknown.

Data analysis in diffuse tomography is highly nonlinear and yields a vector valued function.

Because it is a low energy technique problems in diffuse tomography are highly nonlinear.

Clinical applications such as neonatal imaging and annual mammograms are not amenable

to high energy techniques which might overexpose the patient to harmful radiation. Exper-

imentalists in optical tomography work with infrared radiation. Motivated by their work,

• Griinbaum posed an anisotropic diffusion boundary value problem in 1989.



1.1 Overview of Thesis

This thesisaddressessome of the most basicquestionsin diffusetomography.

Despitethe fundamentalnatureofthiswork,many ofthe calulationsarequiteinvolved.

Thissectionattemptstogivethereadera briefroadmap oftherestofthe thesisinorder

to prevent the reader from becoming lost in a sea of matrices and minors.

In Chapter 2 the forward problem is discussed for the smallest nontrivial two

dimensional problem, for larger problems in the plane, and for problems in d dimensions.

Chapter 3 concentrates on problems in the plane. It constitutes the bulk of this thesis.

Before attempting to solve the inverse problem, a thorough understanding of the range

of the forward map is required. Therefore, consistency conditions amongst the data are

studied in 3.1. The goal, of course, is an inversion formula or inversion algorithm. Because

of consistency conditions amongst the data it is impossible to invert the forward map. It

is possible, however, to find a p-parameter family of solutions where p equals the difference

between the amount of data and the number of independent consistency conditions. In

section 3.2 a recusive recovery scheme which takes full advantage of all of the independent

data is detailed. The base case for this algorithm is solved in section 3.2.1. Gra_mannians

and the Gratlmann-Pliicker embedding are studied in subsection 3.2.1.2. They are used to

simplify the solution to the 2 × 2 problem in section 3.2.1.3. The next level of the recusive

scheme is handled in section 3.2.3, yielding an analytic solution to the 4 × 4 problem. In

section 3.2.3.2 the number of parameters in the solution found in 3.2.3 is reduced using

consistency conditions amongst the data. Consistency conditions and Grat3mann relations

are used to eliminate more of the parameters in section 3.2.3.2.2. Elimination of parameters

continues, in sections 3.2.3.2.3 and 3.2.3.2.4. The reader should be warned that these

sections are quite technical. Finally, the smallest nontrivial three dimensional problem is

studied in Chapter 4.

1.2 BriefOverview of Other Imaging Techniques

To thisday,radiographsareone of themost prevalentimagingmethods. They

aremuch likephotographs,exceptforthefactthatradiographsusehigherenergyradiation

than lightto form theimage.A radiographessentiallyplotsan averagedensityfunction,

= [ dz
JR
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where p is the density of the tissue being imaged.

Computerized tomography, (CT), has quickly become one of the mainstays of

medical imaging. CT images display tissue density. With the help of intravenous contrast

enhancers, CT is capable of providing useful images of soft tissue. It is able to resolve small

features extremely well and data collection can be done quickly, reducing blurring due to

motion of internal organs.

Positron Emission Tomography, (PET), requires injection of a radioactive label

(with a short half life!) into the patient. The isotopes emit positrons which are annihilated

by electrons, creating 7 rays which are measured transaxially. From these measurements

the distribution of the label inside the body can be recovered.

Magnetic resonance imaging provides excellent images contrasting hydrogen con-

centrations and relaxation times of perturbed hydrogen dipoles. MRI is extremely useful
I

for imaging the brain and spinal cord, areas where tissue is soft and CT provides poor

resolution unless intravenous contrast enhancers are used.

Real time ultrasound images have become a useful clinical tool, particularly for

prenatal imaging. Although data analysis is linearized the images obtained are clear enough

to prove diagnostically useful.

Radiographs, CT, and PET assume that the radiating energy/ray travels in a

straight line. Although MR/is a completely different technique, in an idealized setting the

(Bloch) equations governing the response of hydrogen nuclei are linear. Furthermore, MR/

data is often collected for a single "slice" of the object being imaged. In ultrasound and

impedance imaging neither electrical currents nor sound waves are assumed to travel in

straight lines through the body and in that respect they are somewhat similar to diffuse

tomography. In this thesis, however, no approximations or truncations are made to linearize

any of the governing equations.

1.3 Description of Diffuse Tomography

• Experimentalists in optical tomography are presently working with infrared and

near infrared radiation as another means of noninvasive imaging. Optical coherence tomog-

raphy, (OCT), makes use of light waves which are reflected. A beam is directed towards the

tissue being imaged, the light enters the tissue and some of it is reflected backwards. By

comparing the reflected light to the reference beam, the depth inside the tissue at which



the light was reflected can be calculated. Another type of optical tomography motivated

this work. Another group of experimentalists (Barbour et al, Benaron, Chance et aI, Delpy

et al, Gratton, ... ) use information given by light which passes through tissue. For an in-

troduction to optical imaging see the recent articles [16, 17, 18, 19] and [20]. More detailed

research papers can be found in the proceedings [21] and [22]. As photons travel they are

scattered many times. This scattering complicates the inverse problem. Therefore, most

experimentalists use only data provided by ballistic photons, those which are scattered the

least. This thesis gives a detailed study of a Markovian model of photon migration in the

plane and a preliminary look at photon migration in three dimensions. Here we consider

data generated by all photons, no matter how many scattering events they experience inside

the imaging object. We begin by describing the transport model in two dimensions.

Consider an n × n array of pixels in the plane which covers the object to be

reconstructed. On each of the 4n outer edges there are two devices. One device shoots

photons across the outside edge into the neighboring pixel; the other device detects photons

as they leave the system. For each of the 4n outside edges 4n pieces of data may be collected.

The data is stored as a 4n × 4n matrix, Q, where Qid is the conditional probability that a

photon exits the system at detector j given that it entered the system at source i. Within the

array, photons travel in four directions: north, south, east, and west. They change direction

by turning some multiple of lr/2. They do not interact and may be absorbed within a pixel.

Photons move according to a two step Markov process. The probabilities with which a

photon moves to a neighboring pixel depend upon its previous, as well as present, location.

In this two step formulation, the state space consists of locations. The state space may be

redefined so that photons move according to a one step Markov process. In the new state

space a single state accounts for a photon's location at the previous time step and its present

location. There are three different types of these Markov states: incoming, outgoing, and

hidden. The probabilities with which photons move from one state to another are referred

to as transition probabilities. The transition matrix, M, is sparse and may be written as

a block matrix. M's nontrivial subblocks are referred to as P_o, Pih, Pho, and Phh. Pio, for

example, contains the probabilities with which photons in incoming states move directly to

outgoing states. Pih contains the probabilities with which photons in incoming states move

to hidden states. Pho and Phh are the transition matrices for photons starting in hidden

states travelling to outgoing and hidden states, respectively. Pio and Phh are always square

matrices. If the Markov states are ordered carefully, all four of these submatrices of M have



a nice block structure.

The data matrix, Q, is 4n x 4n. Q_,_ represents the probability that a photon

which enters the system at source i exits the system at detector j. Notice that Q provides

no time-of-flight information. The forward map is a function of the transition probabilities

and equals Q. The goal of diffuse tomographers is to invert this map. Given Q, we want

to recover the transition probabilities. For a given object the transition probabilities give a

discretized "image" of the object. In traditional imaging, one recovers a single parameter

for each pixel. From this information a visual picture of the object is made. In diffuse

tomography, however, one recovers many parameters per pixel. From this information one

could make several "pictures" of the object. In both classical and diffuse tomography, fine

discretizations of the covering array provide clearer "images" than coarse discretizations.

The clarity of diffuse tomographic "images" will probably never match that of

CT and MRI. Linear data analysis is certainly preferable to the nonlinear analysis in the

following chapters. Unfortunately, X rays and supermagnets are expensive and potentially

dangerous. Low energy imaging techniques have fewer side effects and are less expensive

than high energy methods. Ultrasound, for example, is relatively inexpensive and harmless.

MRI, however, would not be cost effective for annual mammograms; PET and CT are not

safe for premature infants. It is hoped that optical imaging will become an inexpensive

and safe imaging technique; it is the author's hope that diffuse tomographic models will aid

researchers in optical imaging.



Chapter 2

The Direct Problem
D

Because a thorough understanding of the simplest nontrivial system in the plane

is the cornerstone of Chapter 3, a detailed description of the 2 × 2 problem follows. Later

larger two dimensional systems and as well as d dimensional systems will be discussed.

Consider the setup for the 2 × 2 problem as shown in figure 2.1. On each of

the eight outer edges there are two devices. One device shoots photons across the outside

O1 i 08 Iil is

02 i2 hx hs i7 07

h21 h_l
h3! h.!

O3 i3 h4 h5 i6 06

i.l i_l
04 O5,

Figure 2.1: Incoming, hidden, and outgoing states are labeled with i's,h's, and o's respec-

tively.
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edge into the neighboring pixel; the other device detects photons as they leave the system.

Photons change direction by turning an integral multiple of 7r/2. Photons do not interact.

Another property oi this model is that a photon may die within a pixel.

Photons travelling according to the above rules are simply moving according to

a two step Markov process whose state space consists of locations. When a photon enters

pixel i, j from a particular direction it either dies or continues its journey. Theprobabilities

with which the photon moves forward, backwards, left or right are functions of its previous

as well as present location. To simplify analysis the state space is redefined in order to

make the process a one step Markov process. In the new state space, the previous as well

as present location of a photon define its state. Equivalently, the location and direction

of travel determine a photon's state. There are one "dead" and 24 "living" states. The

"living" states are listed below

il, iN, ..., is, hi, hN, ..., hs, and ol, oN, ..., o8

There are three classes of "living" states: incoming, hidden, and outgoing. See

figure figure 9..1. The "dead" state and all of the outgoing states are absorbing states. There

are four states by which a photon may enter a given pixel. Once inside the pixel there are

five things the photon may do. It may turn right, turn left, reverse directions, continue

straight through the pixel, or it may die insid_ the pixel. The first four transitions are

referred to as dynamic transitions. Each of these five events occurs with some transition

probability and the sum of the probabilities _ identically one. It is sufficient, therefore,

to recover only the four dynamic transition probabilities. There are 4 x 4 = 16 dynamic

transition probabilities for each of the four pixels, yielding a total of 64 unknowns.

The one step Markov transition matrix, M, has a sparse block structure. Ordering

the Markov states so that the incoming states precede the hidden states, which precede the

outgoing states, gives M the following block structure:

0 Pih Pio

(2.1) M= 0 Phh P_,o

0 0 I

M_,j = the probability that a photon in state i moves directly to state j. Pio, Pih,

Phh, and Pho are one step transition matrices. They are sparse and their nonzero entries are

the dynamic transition probabilities. For example, Pio[S,t] = the probability of a photon



. ella
; - F/zel 1, 2

,, ............ ,i

Ir

ells

pixel 2, 1 pizel 2, 2

Figure 2.2: The probability that the photon will travel east into pixel 1,1 and continue east

into pixel 1, 2 is written as elle. The probability that it will turn right and travel into pixel

2,1 is written as ells.

moving from incoming state s directly to outgoing state t; Pis[s, t] = the probability of a

photon moving from incoming state s directly to hidden state t. The one step transition

matrices for the 2 x 2 problem are shown below. Note the sparse 2 x 2 block structure of

the submatrices for the 2 x 2 system and recall the notation as described in figure 2.2.

0 0 slls 0 0 0 0 slle

0 0 ells 0 0 0 0 elle

0 e21n 0 0 e21e 0 0 0

0 n21n 0 0 n21e 0 0 0

(2.2) P,h =
0 0 0 n22w 0 0 n22n 0

0 0 0 w22w 0 0 w22n 0

wl2w 0 0 0 0 wl2s 0 0

sl2w 0 0 0 G sl2s 0 0
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w11n w11w O 0 0 0 0 0

n11n n11w 0 0 0 0 0 0

0 0 s21w s21s 0 0 0 0

0 0 w21w w21s 0 0 0 0
(2.5) Pho=

0 0 0 0 e22s e22e 0 0

0 0 0 0 s22s s22e 0 0

0 0 0 0 0 0 nl2e nl2n

0 0 0 0 0 0 el2e el2n

Submatrices for other systems are not always square. For a two dimensional n × n

system, there are 4n incoming and 4n outgoing states and 4n _ - 4n hidden states. Hence

for a n × n problem, Pio is 4n × 4n, Pih is 4n × 4n(n- 1), Phh is 4n(n- 1) × 4n(n- 1),

and Pno is 4n(n- 1) × 4n. In three dimensions, there are 6n _ incoming and outgoing states

and 6n 3 -6n 2 = 6n2(n- 1) hidden states for a n × n x n system. In this case, Pio is a

6n 2 × 6n 2 matrix, while Pih is 6n 2 × 6n_(n- 1), Phh is 6n_(n- 1) × 6n_(n- 1), and Pho is

6n2(n - 1) × 6n _. More generally, in d dimensions an n × n ×... × n system is made up of nd

d-dimensional cubes and has 2d large outer faces. Each of these large outer faces contains

n (_-1) faces of individual cubes. Therefore this system has 2tin (d-l) incoming and 2tin (d-l)

outgoing states, and 2tin d - 2dn (d-l) = 2dn(d-a}(n -- 1) hidden states. Pio for this system is

2dn (d-x) × 2dn (d-_), Po, is 2dn (d-x) × 2dn(d-a)(n - 1), P_,his 2dn(d-_)(n - 1) × 2dn(d-X)(n - 1),

and Pho is 2dn(d-X)(n- 1) × 2dn (d-x).

For k E N, the i, j entry of the k th power of M is the probability that a photon

starting in state i reaches state j after k Markov steps.

DCk-1) Qk0 • ih.Chh

(2.e) M 0= E.=oP_hPno

o o I

where
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L

(2.7) =P,o+ Ph)
• n"O

Q k is the probability that a photon which entered the system in incoming state

i exits the system via outgoing state j during the first k transitions. Because we have no

time-of-flight information the data we collect is

O0

(2.8) Q _,,,_k_._Qk = p_o + P_h (_ P_'h) Pho = P_o + P_h (I- Phh) -_ Pho
n---O

It is not difficult to show that the sum converges. Although the bulk of the research

done to date is on two dimensional models, equation 2.8 holds in any dimension. We say

that one solves the forward problem when one calculates Q from Pio, Phh, Pho, and Pih. Let

f denote the forward map given by 2.8, so f(P_o, Pih,Pho, Phh) = Q • For a k-dimensional

system, there are 4k a transition probabilities per voxel since a photon may enter a given

voxel via any one of 2k states and may exit the voxel via 2k different states. Therefore, 4k2n k

of the entries in Pio, Phh, Pho, and Pih are nonzero for a n × n × ... × n system. Although

this thesis concentrates on the algebraic inverse problem, there are physical constraints

upon dora(f) and Ira(f). Let dt,d_,... ,d2k be the preferred directions of travel within the

system and let a be a multi-index a = (al,a2,... ,a2h) where al = 1, 2,... ,n for each

i = 1, 2,... , 2k.. Then the domain of the forward map lies in the unit cube in 1_2 _k and

satisfies

4k2n k

(2.9) 0<__ __, d_ad_ <_l Va and i=1,2,...,2k
j=l

There are similar restrictions upon the range. For a n × n ×... × n system f maps

the transition probabilities to the 2kn (_-1) × 2kn (_-1) matrix Q E Ira(f) c MatR(2kn (k-l))

and since Q is a transition matrix the following conditions must hold:

2ka(_-1)

(2.10) 0 <_ _ Q,,_, _<1 i = 1,2,... ,2kn (_-_)

Let Jac denote the Jacobian. Then if rank(Jac(f(x))) < 4k2n _ we cannot hope

to invert f at the point x. If rank(Jac(.f)) = r at a generic point, then at best we can
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express the transition probabilities in terms of the data and I independent parameters,

where I = 4k_n k - r. We shall do just this for two dimensional problems in the following

chapter. In Chapter 4 a small problem in three dimensions will be studied.
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Chapter 3

Two Dimensional Problems

We begin with a study of conditions upon the range of the forward map for prob-

lems in the plane. Later we develop an inversion algorithm which respects and takes ad-

vantage of these consistency conditions amongst the data.

3.1 Consistency Conditions

Consistency conditions amongst the boundary data have the unfortunate effect of

reducing the amount of independent data. When working on an inverse problem, we would

like to have as much data as possible. At best, we may recover as many parameters as inde-

pendent data. In the first part of this chapter consistency conditions amongst the boundary

data are derived and a few examples are given. In these examples we study boundary data

for problems of increasing complexity. It is shown that the number of independent consis-

tency conditions increases faster than the amount of data. Later, the ratio of independent

consistency conditions to total data is studied as the complexity increases. However, the

coarsest nontrivial array provides a good starting point for this study of consistency condi-

tions.

3.1.1 Derivation for the 2 x 2 problem

During earlier work on inverting the forward map for the 2 × 2 problem, consistency

conditions amongst the data were found. Since the theory behind these conditions is the

same for 2 x 2 arrays as rn x n arrays, the derivation for the consistency conditions in the

2 x 2 problem precedes the general derivation.
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In order to recover the probabilities at least as many independent data are required

as there are unknowns. Recall the eight detectors positioned around the outer edges of the

system. When a photon is shot into the system through an outer edge, the photon either

dies somewhere inside the system or is detected as it leaves the system. By collecting data

on many photons which enter through the same edge, one may calculate the probability that

a photon entering the system through edge s will exit through edge _ (here s, t = 1, 2, ... , 8).

The 8 x 8 data matrix, Q, contains 64 pieces of data.

During early work on this inverse problem the author stumbled upon many zero

valued 3 x 3 minors of Q. In this section, consistency conditions amongst the data are

derived. These conditions force the following 4 x 4 submatrices of the 8 x 8 data matrix to

be of rank < 2.m

I
Q2,5 Q2,e Q2,, Q2,8 I Qe,1 Qe,2 Qe,3 Q6,4

(3.1) , ! ,

Q3,5 Q3,e Q3,, Q3,8 ]Q,,I Q,,2 Q,,3 Q,,,
I

Q4,5 Q4,6 Q4,7 Q4,s L Q8,1 Qs,2 Qs,3 Q8,4

Q?,3 Q?,4 Q7,5 Q7,6 Q3,7 Q3,s Q3,1 Q3,2

Qs,3 Q8,4 Q8,5 Q8,8 Q4,7 Q4,s Q4,1 Q4,2
(3.2) , and

Q1,3 Q_,, Ql,s Q_,s Qs,, Q5,8Q_,_ Q_,2

Q2.3 Q2., Q_.5Q2.e Q,., Qe.8 Qs._ Q,.2

By taking advantage of the Markovian nature of the model, we may easily prove

that these matrices are rank deficient. Define

pl,j = probability of going "directly" from

incoming state i to hidden state j

8_,_ = probability of starting in hidden state

i and ever reaching outgoing state j
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For the purpose of deriving the rank deficiency of matrix 3.1 a photon is said to

travel "directly" if its path from incoming state i to hidden state j includes only one crossing

of the thick vertical barrier as shown in figure 3.4. For example, two of the paths Pl,S takes

into account are shown in figure 3.4. One of the paths which 88,5 represents is shown in

figure 3.5. Note that Pl,8 does not include the probability with which a photon travels as

shown in figure 3.6.

Referring to figure 2.1 and the definitions given above, some of the Qi,js may be

expressed in terms of the p_,_s and s_,js

ql,5 "-- Pl,8 88,5 Jr" P1,5 85,5

(3.3) QI,6 = PI,8 s8,6+PI,5 8s,8

Qz,_ = PI,8 s8,7 + PI,5 ss,7

ql,s = PI,8 ss,s + PI,5 ss,s

or,

" [ ](3.4) [ ql,5 Q1,6 ql,7 ql,8 ] "-". Pl,8 '1,5 I 88'5 88,6 88,7 88.8
s5,5 ss,o s5,7 ss,s

Notation: Qz, denotesthe 4 x 4 submatrix of the probabilities with which a photon

travels from left to right acrossthe system, starting from sources1, 2, 3 or 4 and ending

at detectors 5, 6, 7 or 8. Similarly, Q,l denotesthe submatrix of probabilities with which

photons travel from right to left across the system. (_t_ and Qbt are 4 x 4 submatrices

representing the probabilities of travel from bottom to top and top to bottom, respectively.

The entire qt, submatrix can be expressed in the same notation:

qi,5 qz,8 qi,7 qi,8 Pi,8 pi,5

' Q2,5 Q_,6 Q2,7 Q2,s P2,s P=,s [ ss,5 Ss,6 88,_ ss,8
(3.5) = LQ3,5 Q3,e q3,_ q3,s p3,8 ps,s 8s,s ss,e' s5,7 s5,s

q4,5 q4,6 q4,7 _4,s P4,s P4,5

Similarly, the Qtb, Q,z, and Qbt submatrices may be written as follows:
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q5,1 qs,= qs,s q5,4 p5,4 p5,1

Q6,1 Q6,2 Q6,3 Q6,4 P6,4 2)6,1 84,1 84,2 84,3 84,4]

(3.7) = ]q7,1 q7,2 q7,3 q7,4 P7,4 P'r,1 $1,1 81,2 81,3 81,4

q8,1 q8,2 q8,3 q8,4 _8,4 P8,1

Qs,7 Qs,s qs,1 Qs,2 ps,= ps,,

Q,,, q_,8 q4,1 Q,,2 p4,2 p,,, s2,7 s2,s s2,1 s2,,.]
(3.8) = ]Q_,7 qs,o q5,1 qs,= ;o5,= ps,, 87,7 s,,o S,,z sT,=

qe.7 Qe,o qe,z Qe,= pe,_ _,,

Since each of these 4 × 4 submatrices is the product of a 4 × 2 matrix with a 2 × 4

matrix, these 4 × 4 subm_trices are of rank (at most) 2.

3.1.2 Derivation for the m x n problem

Moving on to a general description and existence proof of consistency conditions,

consider an m x n problem as shown in figure 3.7. Let Q,, be the submatrix representing

the probabilities of photons which enter the system on the left and exit on the right of the

thick vertical line. In this case,
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Q1. +2h+1 Q1,, +2h+2 ... ql,

• Q2, +2k+2 ... Q2,N
(3.9) Q,, =

Qm+2h.,,,+2k+l Q,_+2k,,_+2k+2 ... Qm+_k,N

where N = 2(m + n).

" Claim: rank (Qt,) < m.

Proof: For any Qi,_ in QI,,

Qi,_ = _=z pi,° s=,y, i.e.,

(3.1O)Q,_ =

Pl,1 Pl,2 • • • Pz,m Sl,m+2k+l 81,m+2k+2 " " " 81, N

P2,1 P2,2 •.. P2,m 82,m+2k+l 82,m+2k+2 • • • 82,N

Pm+2k,1 Pm+2k,2 • • • Pm+2k,m 8m,m+2k+l 8m,m+2k+2 • • • 8m,N

Since Ql, is the product of a (m+ 2k) x m matrix with a m x (2(n-k)+m) matrix

the rank of QI, is at most m. The same argument holds for Q_z,Qtb, and Qt,t, (although

the ranks of Qtb and Qt,t are no greater than n).

Now consider an even more general left-right transition submatrix. Qz_ represents

the probabilities of photons which start out on the left of the barrier and exit the system

on the right of the barrier shown in figure 3.8.

Without loss of generality assume that 1 < l < k < n. Then
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Q ,M+IQ -z+I,M+2...Q ,N

Q2, +IQN-I.2,M+2...C) ,N
(3.11) Q,,. -"

Qu,u+1 QN,U+2 ...O,u,N

where N = 2(m + n) and M = m + k + I. For any Qi,# in Ql,

r'm+h-I i.e.,Q_,j --- z_,a=l p_,a saj,

so in this case Qz, equals

(3.12)

Pl,1 P1,2 • • • P2m+2n-l-f-l,m_-k-I 81,M-F1 81,Mq-2 . • • 81,N

P2,1 P2,2 • •. P2m+2n-l+2,m-bk-! $2,M+1 82,M+2 • • • 82,N

• , • • • •

PM,I PM,2 • • • PM,m-bk-I J $mq-k-i,M-bl 8mq-k-l,M+2 .. • 8m-i-k-l,N

Q:,istheproductofan (I+ m + k) × (m + k - t)matrixwith an (m + k - I)×

(2n+ m - I- k)matrix.Hence,rank(Qi,)_<(m + k - I).The same sortofargumentholds

fortheotherrankdeficientsubmatrices.Forthebarrierinfigure3.8,rank(Q,z)__m + k - I.

3.1.3 Data subject to Conditions

For a n × n system,thereare16n2 piecesof data.These data arenot allinde-

pendent,however.Data which arepartofsome rank deficientsubmatzixaresubjectto

consistencyconditions.In fact,onlythedata correspondingtononzeroentriesof P_oare

independentofallconsistencyconditions.
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It is not di_cnlt to see that the nonzero entries of Pio correspond to "independent"

data. Notice that these entries are precisely those representing the probability that a

photon may travel directly from an incoming state to an outgoing state. In other words,

if P_o[i,j] _ 0 then it is possible for a photon to travel from source i to detector j without

ever visiting a hidden state. Such a photon enters only one pixel during its lifetime, and

so never has the opportunity to cross any of the barriers which were used to derive the

consistency conditions. Hence, P_o[i,j] _ 0 implies Qt,_ is free of the consistency conditions

derived in section 3.1.2.

Furthermore, only these data are free of the consistency conditions derived in

section 3.1.2. Consider any piece of data Qh,l where Pio[k,l] - 0 and suppose Qh,i is not

part of any rank deficient rank n submatrix. Then there exists no right-left, left-right,

top-bottom, or bottom-top barrier between source k and detector I. Consider the barriers

which immediately surround source k. See figure 3.9. (There are three such barriers unless

source k shoots photons into a corner pixel. In that case there are only two surrounding

barriers.) The barriers do not separate source k from detector l, so there is some path from

k to I which does not cross any of these barriers. Such a path contains no hidden states,

which implies that Pio[k,l] _ O. But P_o[k,l] --- 0, a contradiction. Hence Qh,z is part of

some rank deficient, rank n submatrix.

3.1.4 Examples for square systems

Before looking for an asymptotic limit to the number of independent consistency

conditions as a function of n, consider a few more examples. When n - 1 the array is a

single pixel, and there are no consistency conditions analogous to those derived above. For

a single pixel there are 16 independent parameters per pixel. For larger arrays, however,

there are fewer independent parameters per pixel. See figure 3.10.
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3.1.4.1 2 x 2 problem

For the 2 x 2 problem, there are four rank deficient submatrices of the data.

There is one left-right, one right-left, one top-bottom, and one bottom-top submatrix.

Each submatrix is 4 x 4 and rank two. Although the submatrices overlap, each yields

four independent consistency conditions amongst the 64 pieces of data. The consistency

conditions leave at most 64- 4,4 = 48 independent pieces of data. See figure 3.11. In this

relatively small case, both Maple and Macsyma are capable of computing the Jacobian of

the forward map. At a generic point the rank of the Jacobian is 48. Since the rank of the

forward map is generically 48, there are at no other consistency conditions.

3.1.4.2 4 x 4 problem

As shown in section 3.1.2, there are three rank four Ql, submatrices; three rank four

Q,l submatrices; three rank four Qtb submatrices and three rank four Qbt submatrices. The

QI, submatrices all overlap with each other, as do the other sets of rank four submatrices.

None of the Qi, submatrices overlap with any of the Q,l submatrices. Similarly, the Qtb

and Qbt submatrices are separated.

The Qz, and Q,z submatrices overlap with the Qtb and Qbt submatrices, however.

Recall that these submatrices and the entries of Pio cover the data matrix, Q. We would like

to know how many of the data are independent. The rank four submatrices can easily be

used to show that there are at most 160 independent pieces of data (amongst the 256). From

the forward map we may recover at most ten independent parameters per pixel, (assuming

that it is possible to recover the same number of parameters per pixel). Clearly, the data

which occupies the same positions as nonzero entries in P_o are independent. But what of

the other data? Consider first the 8 x 8 rank four submatrices. Just as in the 2 x 2 case,

a 4 x 4 block from each submatrix may be written off as redundant. See figure 3.12. This

takes full advantage of the fact that the submatrices are of rank four and accounts for all

of the data in the Submatrix. Consider next the data which are part of one of the 10 x 6

rank four submatrices. Most of this data has already been accounted for because it is part

of one of the 8 x 8 submatrices. Only the first and last rows contain unaccounted for data.

Three entries in each of the end rows are assumed known because they lie in neighboring b

8 x 8 rank deficient submatrix.
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We need know only one more piece of data in order to calculate the two unknown

pieces of data in each end row. Analogous reasoning applies to the 6 x 10 rank deficient

submatrices. Therefore, we may write off as redundant additional data within the 4 x 4

subblocks along the diagonal, as shown in fig 3.12.

3.1.4.3 8 x 8 problem

In this case there are seven rank eight submatrices of each stripe: left-right, right-

left, top-bottom, and bottom-top. Once again all of the left-right submatrices are disjoint

from the right-left submatrices, but do overlap with the top-bottom and bottom-top sub-

matrices. (Also, the top-bottom submatrices do not intersect any bottom-top submatrices.)

And the union of all of the rank deficient, rank eight submatrices and the entries of Pio cover

the data matrix. Below it is shown that for n -- 8 we may recover at most nine independent

parameters per pixel from the forward map alone.

Once again begin by considering the 16 x 16 rank eight submatrices. They contain

8*8=64 redundant pieces of data each. Writing off one 8 x 8 block per submatrix takes all of

these consistency conditions into account. Now all data within these submatrices is assumed

to be known. Next: consider the data which is part of an 18 x 14 rank eight submatrix.

As before, most of the data is already accounted for. Only the first and last rows lack

accounted for data. In both the first and last row, seven pieces of data are assumed known,

since they are part of some 16 x 16 rank eight submatrix. If in both rows one more piece

of data is assumed known, then the six remaining pieces of data may be calculated. The

same reasoning applies to the first and last columns of the 14 x 18 rank eight submatrices.

Similar reasoning applies to the end rows and columns of the 20 x !2 and 12 x 20 rank eight

submatrices. Finally, we write off data in the end rows and columns of the 22 x 10 and

10 x 22 rank eight submatrices. See figure 3.13.

III Illlll
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indeI_ndent

n da_a/Fize!

1 16

2 12

4 10

8 9

3.1.5 For napowerof2

For coarse grids, (n <_ 8), the maximum number of independent data per pixel

decreases as n increases. In this section the method by which redundant data was found in

the examples is generalized. The chart below shows the number of independent data per

pixel for n × n systems.

Further, notice that for n > 2 the rectangular (not square) rank deficient sub-

matrices account for the increase in the ratio of redundant data to total data. The data

rendered redundant by these rectangular submatrices may be chosen inside n × n blocks

along the diagonal. Therefore, the n × n blocks of along the diagonal are studied below.

Notice that in the examples, the only necessary data in the blocks along the

diagonal form an 'X'. All other data within these blocks is redundant. The reason is not

too hard to see, even for general n -- 2_, k E N. The redundant data belongs to some

rectangular rank deficient submatrix. Such submatrices, however, are mostly accounted for

by the data in the corresponding square rank n submatrix. There are at least 2n rows

(or columns) common to the square and rectangular submatrices. Consider first one of

the (2n - 2) x (2n + 2) submatrices. Only one column protrudes from either side of the

corresponding 2n × 2n submatrix. For each of these columns, n- 1 of the data are accounted

for because they are part of an overlapping 2n × 2n submatrix. Hence, we need only add

one piece of data to each column in order to calculated the rest of the column. If we choose

to add the piece of data in the corner of the n × n block along the diagonal, then the

(2n - 2) × (2n -t-2) submatrix corresponding to the first square submatrix now has n pieces

of data in the protruding columns, and so the rest of the (2n - 2) × (2n -i-2) submatrix can
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be calculated. Furthermore, one of the protruding rows of a neighboring (2n -t-2) x (2n- 2)

rank n submatrix now has n pieces of accounted for data. So we may also calculate the

n - 2 remaining pieces of data in that row. By adding one piece of data to one protruding

column, we gain 2(n - 2) pieces of data. Adding one piece of data to each protruding

column allows the calculation of the unaccounted for data in both the (2n - 2) x (2n + 2)

and (2n + 2) x (2n - 2) rank deficient submatriees. Similarly, the judicious addition of one

piece of data to each end column of the (2n - 4) x (2n + 4) rank eight submatrices permits

us to calculate the rest of the unaccounted for data in all of the (2n - 4) x (2n + 4) and

(2n + 4) x (2n - 4) rank deficient submatriees. We may continue this process until reaching

the center of the n x n block along the diagonal. The data in the center of the block are

independent entries since they correspond to nonzero entries of P_o. Only 2n pieces of data

within each of the diagonal n x n blocks need be known. The other n2 - 2n pieces of data

are redundant. And among each of the rank n, 2n x 2n submatrices exactly n2 pieces of

data are redundant. Since the redundant data may be choosen independently, there are at

least 4((n 2 - 2n) + n2) = 8n(n - 1) pieces of redundant data, leaving at most 8n(n + 1)

pieces of independent data. The fraction of independent data decreases as the number of

pixels increases.

For most imaging methods, quality improves as pixel size decreases. Large pixels

yield grainy images. The more pixels used to image an object, the clearer the image. For

n = 2h, the fraction of independent data approaches 1/2 as k approaches infinity. For

n > 16, the forward map generates at most eight independent data per pixel. Additional

information about the system is needed in order to recover diagnostically relvant information

from the data. Some a priori knowledge of photon transport is needed to close the system

of governing equations derived in the next section.
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3.2 Recursive Inversion Algorithm

Although it is not possible to invert the direct map because of the consistency

conditions amongst the data, it is possible to recover as much information as there are

independent data. For an n x n system the forward map takes 16n 2 transition probabilities

and maps them to the 4n x 4n matrix Q. The domain of the forward map lies in the unit

cube in R _e_2. The domain is defined by the equations

eije + eijw + eijn + eijs < 1

(3.13) wije + wijw + wijn + wijs < 1

nije + nijw + nijn + nijs < 1

sije + sijw + sijn + sijs < 1

for i,j = 1, 2,... ,n. Because Q is a transition matrix acceptable solutions lie in lltxe"' and

satisfy

4n

(3.14) 0 < _Q[i,_] < 1 i= 1,2,... ,4n

Since the rank of the forward map is less than 16n 2 we cannot hope to invert it. If

the rank of its Jaeobian is generically r, then at most we can recover r pieces of information.

Although we cannot explicitly solve for transition probabilities in terms of the data, we can

express them in terms of the data and k independent parameters, where k -- 16n 2 - r. In

this section a recursive algorithm for finding the k parameter family of solutions is detailed.

3.2.1 Base Case (2 × 2 problem)

3.2.1.1 Solving the Governing Equations

By making several nonlinear changes of variables, we may remove the nonlinearities

from 2.8, (or "move" them to the changes of variables). First define, (assuming that Pho is

invertible),

(3.15) A-- P_-o'

Equation 2.8 may be rewritten as
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(3.16) (Q- P_o)A(I- Phh)- P_h= 0

where O is a matrix of zeros. 0 will denote a vector of zeros. A few more changes

of variables are required to make 3.16 linear:

W = APhh

(3.17) x = P,oA

Y = P_oW--P_h

We can recover Phh, Pio, and P_s in terms of A if we know W, X, and Y. Under

these substitutions, the matrix equation 3.16 becomes

(3.ze) Q(A-w)- (x-Y)= o

Recall that Q is the data, so 3.18 is linear in the unknown matrices A, W, X,

and Y. Furthermore, the new matrices have special block structures. A has the same

diagonal block structure as Pho. X is also block diagonal. Finally, W and Y have the

same off diagonal block structure as Phh and P_h. The variables for each system/column of

equations contains three each of the A_,js, W_,js, X_,js, and Y_,js. The Wi,js, Xi,js, and Yi,js

are functions of Ai,_s which correspond to other columns. Although the variables differ from

column to column (exactly 64 variables totalmno repeats between columns), the columns

are only artificially decoupled.
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(3.19) A-W:

At.; AI.2 -W1.s 0 0 0 0 -WI.s

A2a A2.= -W2.s 0 0 0 0 -W2.,

0 -W's,2 As,3 A:,, -W3,s 0 0 0

0 -W,.2 A,.s A,., -W,.s 0 0 0

0 0 0 -Ws,, As,s As,o -Ws,7 0

0 0 0 -Ws,4 As,s Ae,6 -Ws,_, 0

-W7,1 0 0 0 0 -WT,s A_,7 A_,s

-Wsa 0 0 0 0 -Ws,s As,7 As,s

X1,1 Xi,2 -Yl,s 0 0 0 0 -Yl,s

X_,I X2,2 -Y2,3 0 0 0 0 -Y2,s

0 -¥_,2 Xs,s Xs,4 -¥3,s 0 0 0

0 -Y4,2 X4,3 X4,4 -Y4,s 0 0 0
(3.20)x - Y =

0 0 0 -Ys,, Xs,s Xs,6 -Ys,_ 0

0 0 0 -Ys,4 Xs,s X6,s -Ys,7 0

-YT,1 0 0 0 0 -Y7,6 .X'LT XT,s

-Ysa 0 0 0 0 -Ys,e Xs,_ Xs,s

Now the equations in column six of 3.18 are linear in the variables

{As.., A.,., WT,., Ws,6,Xs,e, Xe,e, YT,6,Ys,6}

and can be written as a homogeneous matrix equation:
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q

Ql,s QI,, QI,_' Q_,s 0 0 0 0 As,s

" Qa,s Q2,e Q2,7 Q2,s o o o o A6,6

Q3,s Qs,s Q3,, Qs,s 0 0 0 0 -W,,s

Q4,s Q,,s Q,,T Q_,s 0 0 0 0 -Ws,e
(a.21) = o

Qs,s Qs,s Qs,_ Qs,s 1 0 0 0 Xs,s

Qs,s Qs,s Qs,, Qs,s 0 1 0 0 Xe,s

Q,,s Q_,,s QT.,.t Q_,,s o o -1 o YT,s

Qs,s Qs,s Qs,_ Qs,s 0 0 0 -1 Ys,s
i

We can do the same for the other columns in 3.18. To each column in 3.18

there corresponds a system of eight linear equations in the variables which appear in the

corresponding columns of 3.19 and 3.20. Note that as far as their zero structures are

concerned, the columns of 3.19 and 3.20 come in pairs. The roles of the A_,js and W,,_s

are reversed in the first and eighth columns of 3.19 as are the roles of the X,,_s and Y_,js

in the first and eighth columns of 3.20. Hence, we must solve the "same" matrix equation

for the first and eighth columns of 3.18. Similarly, the linear systems corresponding to the

second and third columns of 3.18 are given by a single matrix equation; the fourth and fifth

columns by a third matrix equation; and the sixth and seventh columns by a fourth matrix

equation. We are left with four sets of homogeneous linear equations, i.e., four S × 8 matrices

which satisfy the homogeneous equation (_x -- #. Since the trivial solution would not be

interesting enough to write about we may safely assume that there must be other solutions.

This is indeed the case since the upper left 4 × 4 submatrix found in equation 3.21,

Ql,s QI,6 Q1,7Ql,s

Q2,s Q2,6Q2, Q2,s
(3.22)

Q3, Q3,6Q3,, Q,s

Q,.e Q,,7 Q,,s

. representing travel from left to right across the system is rank deficient. As noted in

section 3.1 the submatrix above is of rank two or less. So we may solve 3.21 for at most six

of the eight unknowns in terms of the other two.
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The variables for each system of equations contains two each of the A_,#s, W_as,

Xi,_s, and Y_as. Do not forget, however, that the Wi,_s, Xias, and Y_as are functions of

A,,js which correspond to other columns. Although the variables differ from column to .

column (exactly 64 variables total---no repeats between columns), the columns are only

artificially decoupled. Recall that only six equations per column of 2.8 are independent.

Since the W,,js, .X,,js, and _js are already functions of A_,js, it seems natural to solve

for them in terms of the A,,js. Following this procedure for all eight columns reduces the

number of unknowns from 64 to 16.

To solve 3.21 for the Wijs, Xi,js, and Yi,js in terms of the Ai,js, we need only

solve:

Q3,, Qs,u 0 0 0 0 WT,e Q3,5 Q3,e

Q,,T Q,,s 0 O 0 0 Wu Q,,_ Q,,e

Qs,T Qu -I 0 0 0 Xs,s Qs,s Qs,6 As,s]
(3.23) = JQs,, Q6,s 0 -1 0 0 Xe,6 Q6,_ Q6,6 A6,e

Q,,, Q,,s 0 0 1 0 YT,s QT,s Q,,+

Qs,T Qs,s 0 0 0 1 . Ys,6 . Qs,s Qs,o

For the sake of simplicity the first two rows of the matrix equation 3.21 were

omitted and the equation was rewritten with the unknown Wi,is, X_,._s, and Y_,is on the

lefthand side. The determinant of the lefthand matrix in 3.23 is dQ[s,t],(_,s]. 3.23 has. a

unique solution if and only if dQIs,tl,(T,s]_ 0. A similar requirement holds for each of the

other columns of 3.20. In order to solve each column of equations for the Wi,js, Xi,ls, and

Yi,js in terms of the Ai,js it is sufficient that the following minors be nonzero.

(3.24) dQp,4],(7,s], dQ[7,s],(3,4], dQ(s,e],(1,z], dQ(1,2],(s,6]

If the data satisfy these requirements then we can solve the 48 independent equa-

tions in 64 variables linearly for the nonzero entries in W, X, and Y in terms of the 16

variables in A = P_'o_. Unfortunately, that exhausts the supply of equations for the original

model. Example solutions from each of the four one step transition submatrices are shown

below:
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i

(3.25) w11w = -_ ......A1,2_
dA[1,_],[l,_]

where wllw b an entry in Pho. One of Phh's nonzero entries is

w21e = (dQ[1,_],[3,slAs,sAs,s + dQ[1,2],[s,s]As,sAs,s+

(3.26) dQ[I,2],t4,_]A_,sA4,3+ dQtI,_I,[4,6]A6,_A4,s) /

dQ{1,2],{s,,)dA[s,,],[a,.}

and

n21s - dQ(!'2"]'(4's'e]As'sA"/ dQ[4'8's]'[!'_"IA4'3A3" _-
dQ[1,2],[5,6]dA[s,4l,[s,.] dQ[s,s],(1,_]dA[8,4],{3,4]

(3.27) (dQ[s,6],[1,2ldQ[1,2,,},[a,s,6]- dQ{1,_],[s,6]dQ[,,5,6],[l,2,3])As,a As,+
dQ[1,2],[s,6ldQ[s,6l,[1.2ldA[s,,],{3,.]

is an entry of P_o. Finally, one of the nonzero entries of P_h is

sl2s = (-dQ[s,s],[1,2](dQ[1,_],is,s]dQII,2,s},[s,7,s}- dQ[1,2},[6,7}dQ[1,2,s],[_,u})

-dQ[l,2],t6,_ldQtx,_l,[_,_ldQ[_,_,_],[_,_,_}) A_,_A_,_As,_

+ (dQ{.,s],t,,,] (dQ[_,.],i,,a]dQ[,,,,a],[s,,,,] + dQ[,,,],[a,.,dQ[,,,,,],[.,,,.l )

-dQ[,,al,[_,.]dQ[_,_],[_,_ldQ[a,_,_l,[,,_,_])A,,. AuAs,a

- (-dQ[_,_],[,,,l( dQi,,_l,l_,_ldQ[,,_,m,[_,,,,]- dq[,,_],[_,,]dQ[,,,,s],(_,_,_l)

+ (dQ[,,.},[,,,} ( dQ[,,,},[,,s]dq[,,,,sl,[s,,,s ] + dQ[,,_],[,,s]dq[,,,,sl,t,,,,,])

(3.28) -dQI,,_],t_,z]dQ[,,_],is,_]dQts,s,sl,[_,_,sI) As,_As,sAT,z

+As,zAs,, (dqI,,,l,lulA,,, + dQi,,al,Is.s]As,, )

(-dq[s,.,sl,t,,_,sldqtx,_l,ts,_] + dq[s,_l,[,,,ldqt,,,,sl,ts,s,s])

(dQts,+],[1,m]dQ[l,,,+],{+,+,,;,] - dQ(1,2i,,+,+jdQ{+,+,s],,1,+,7])) /

+ Solutions for variables from a transition submatrix are all of the same form. For

example, all of the transition probabilities in P_o are equal to an entry of A divided by a

2 × 2 minor of A.



...... ]

30

3.2.1.2 Graflmannius ud the Grdmann-Pl/Icker Embedding

Since equation 3.23 is a linear system of six equations in eight unknowns, it is

not surprising that Gra_man_aus and the Gra6mann-Pl_cker embedding come into play.

Graflmannians and the identities which embed them in projective space will be used in the

following section to simplify solutions for incoming-hidden transition probabilities like that

shown in 3.28.

3.2.1.2.1 Graflmannians Given integers k and n, where k < n, G(k, n) is defined as

the set of all k-dimensional lhlear spaces in C". Let A be an element of G(k, n). Then there

exists a set of k I x n spanning vectors of A. Represent A as a k x n matrix whose rows are

these spanning vectors. Because the choice of spanning vectors is not unique, a family of

matrices represent A. Given any g in GL(k), define A' = gA. In the foUowing sections both

the point A E G(k, n) and a k x n matrix representing A will be denoted by A. Hopefully,

context will make the author's meaning clear. The rows of A' sr Anthe same space as the

rows of/I, so we identify A' and A.

Under these identifications, it is easy to construct a bijection between a dense,

open subset of G(k,n) and Ch("-k). Let O be the set of all points in G(k,n) which may be

represented by a k x n matrix whose first k columns are independent. O is a dense open set

in G(k, n). Given any representation for A in O, we can easily find the matrix representation

._ for A such that the first k columns of .A.are the identity matrix. (Simply take g-1 to

be the first k columns of A. The rows of A are independent so g-1 is invertible. Define

.A.- gA.) Only the entries of the rightmost k x (n - k) submatrix of ._ are unconstrained.

More generally, let I -- (i_,ia,i3,... ,ik) index k independent columns of the orig-

inal representation l'or A. Then given any A, we can define the map _j such that _I(A)

satisfies the following: column ij of _I(A) = es, where is is the jth index in I and es is the

jzh canonical vector. In order to define _;, first set g-1 equal to the matrix with columns

il,i_,i3,... ,ik of A. Generically, 9 -I is of rank k so g exists. Then/_ - gA is has column

i s equal to es. The inverse of _; is always uniquely defined.
t
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Let I' denote another set of linearly independent columns. Define Az = _I(A) and
6

At, ffi _I,(A). Then As and Av satisfy AI ffi gA and At, ffi g'A for some g,g' in GL(k).

Then A:, = hA; for some matrix h in GL(k). A moment's reflection reveals that h must

be the inverse of the matrix composed of the columns of A: which are indexed by I'. Note

that the entries of h are analytic functions of the entries of At, so G(?:,n) has the structure

of a complex manifold.

3.2.1.2.2 The Pllicker Embedding Any Graflmannian, G(k,n), may be embedded

into ]_)-1 pN is N dimensional projective space over the complex numbers; we can think

of pN as an N dimensional sphere lying in N + 1 dimensional space with antipodal points

identified. A point, P, in pN may denoted by (Po,Pl,P_,... ,PN), This point is identified

with all other points _ × (po,Pl,P2,... ,PN) for any nonzero scalar a.

in the simplest case, G(1, n), any point of the Grat]mannian is represented by a

single row vector. Since we may multiply each element of the Graflmannian by a nonzero

scalar, we may canonically identify ]I_-1 and G(1,n). Every element, A, of a G(k,n) defines

a/¢ dimensional linear space in C". The PlUcker coordinates of a GratSmannian A are by

definition the determinants of all/c ×/¢ minors of any representation A of an element in

G(k,n). The dual space corresponding to A is A_, the (n- k) dimensional linear space in

C" orthogonal to A. There is a 1- 1 correspondence between the Pliicker coordinates of

A and A±. Since the set of (n- 1) dimensional spaces in C_ is isomorphic to the space

of one dimensional spaces, we can identify any A in G(n- 1,n) with its dual, A_. Hence

G(n- 1, n) and ]1_-1 are identified.

When 1 </_ < (n- 1) more complicated relations are required to embed G(k,n) in

° t'some projective space. It is easy to check that Pliicker coordinates are projec lvely invariant

under representation of A. Let A and A' be equivalent representations for the same element

of G(k,n). Then A = gA' for some g in GL(I¢). Let I be any index of k columns. The

submatrix taken from the I columns of A equals g times the submatrix taken from the I

columns of A'. By the rules of determinants, IABI = IAI [Bt, and so the determinant of the

, lth minor of A equals the determinant of g times the determinant of the lth minor of A'.

This holds for all I, and so if the (_).tuple P are the Pliicker coordinates of A then Igl¶

. are the Pliicker coordinates of A'. Since there are (_) k × k minors of a k × n matrix, the

Pliicker map takes G(k,n) into I_ (:)-1). (Note that the Pliicker map is not onto.)



32

We can check that for 1 < k < n, (_)- 1 __k(n- k). In order for the Pliicker map

to be an embedding, there must be some (i.e., ((_) - 1 - k (n- k))) independent relations

amongst the Pliicker coordinates of a point A in G(k, n). For G(2, n) these are the PlBcker

relations. For general G(k,n) they are called Grdmann relations. In either case the

relations are quadratic in the Pliicker coordinates for A. The Grai3mann relations are easily

derived.

3.2.1.2.8 Derivation of Graflmun-Pi/icker Relations Let A be any rectangu-

lar matrix with k rows and n columns where k < n- 1 and A = (a),_. Let i =

" (is,i_,is,...,i(k-1)) index (k- 1) distinct columns of A. Let .7 = (jl,j=,js,...,j(h+1))

index (k + I) distinct columns of A. Consider the sum,

a.+l ai,il al,i= • ' • _1,ib-s al,jx

_(-1) 'x+l :

ak,h ...... akjh. I ak,j_

aIjt ,.. aijx_1 aIjx+1 ... al,jh+1

(3.29) : : :

ah,jl ... ahj__= ah,jx+_ ... ah,jk+_

To simplify 3.29, expand the first determinant along the last column as shown

below

a1,1s al,_= • •. al,lh_1 alj_ k

(3.30) : : = _ a.,j_ CF.
/===1

ak,h ak,i=_l ak,jx

where CF. is the col'actorof the matrix on the let't-hand side of 3.30 about the (/_,k)=h

entry. Then 3.29 becomes

,, , ,,,,,, ,, III I III - I ' [[[
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i

k+l b _Ijt . • • {ll,jx.1 alj_+1 ... alj_+i

Am1 /A=I

a_,,#1 ... at,#_._ at,j_+_ ... ahd_+l

0 ... 0 a_,,_ 0 .,. 0
h k.l

_--,_CJI_ _ G I.Jl ''' _l,jx., a ljx a lj_+, ... _1,,i,+1/-d
/_=1 All ....

Ok,j: • •. akj__l akj_ ...... aI, jj,+l

at, j1 art,2 ' • ' _t,,jh+1

k al,jl O,l,j: • • • al,j_+i

(3.31) -- _ eft,
' _

il_ 11 • • •

akj_ Ok,j: •., O-,kj,.+t

k

= CF..O
= 0

Denote by lrt the determinant of the minor whose columns are indexed by the

multi-index I. Then

k.l

(3.32) _ _'(_,_,....._h__,#_l_'l_j,....d___,_+_....,#_+_)= 0
A=I

Equation 3.32 defines the Grat_m_ma relations. In the follo,Mng paragraphs a few

simpleexamplesaregiven.

3.2.1.2.3.1 Examples of Graflmann-Plficker Relations- G(2,4) First

we consider G(2, 4). Since G(2, 4) is isomorphic to a dense, open subset of C', and the

Pliicker map takes G(2, 4) into l_, only one nontrivial Graflmann relation is required to

embed G(2, 4) into ]_. Consider the representation for A E G(2, 4)

AI,1 AI,_ A_,3 AI,_
- (3.33) A --

A_,I A_,_ A_,3 A_,_

and consider
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/

• ( a42,2 0 0 0 J421_ 0 0 0 A2t4 I _

JJAI,1 AI,_ AI,s At,, + AI,2 AI,_ At,, + AI,3 AI,s At,.

A2,2 A_,s A2,, A2,2 A2,3 A2,_ A2,2 A2,s A2,.

(3.40)- A2,1 AI,2 A1,s AI, + A,2 AI,s AI,4 + AI,2 A1,s AI,4

A2,2 A2,3 A2,4 A2,2 A2,s A2,4 A_,2 A2,s A_,4

which in turn equals

A_,2 A2,s A_,4 AI,2 A1,s AI,_

(3.41) AI,1 AI,2 A1,s AI,4 -A2,1 AI,2 A1,s A1,4 -Ax,I*0-A2,1*0-0

A2,_ A2,s A2,, A2,2 A2,s A2,.

Therefore, equation 3.34 is identically zero. In the "_r" notation this means that

(3.42) _'l,2Z's,4- z'l,sz'2,4+ z'l,47r:m,s= 0

Equation 3.42 was generated from equation 3.32 by setting ! = (I) and J =

(2, 3, 4). It is an easy excercise to see that the result is the same for any other I and J as

long as INJ = 0. If, however, INJ _ 0, where I = (i) and Y = (i,j_,js) then the resulting

identity is trivial:

3.2.1.2.3.2 Examples of GraBmann-Pl/icker Relations - G(2,5) G(2, 5),

however, is slightly more complicated. G(2, 5) is isomorphic to a dense subset of C_ , and

we shall see that there are (_4)= 5 nontrivial Pliicker relations. But the Pl/icker map takes

, G(2, 5) into ]P', so must be three independent Pliicker relations corresponding to A where
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r A,,I A,,2 A,,s _ _ i,,s 1(3.44) A : """ ]A2,1 A2,2 A2,a A_,4 A2,5

As long as we choose four different columns of 3.44 it does not matter how the

four columns are assigned to Z and J. There are (_) = 5 ways to choose the columns

z1-(1) J1=(2,3,4)

I2 --(1) J:_=(2,3,5)

(3.45) Is = (1) Js = (2,4,5)

z,=(i) J,=(3,4,5)

I5 -(2) Js =(3,4,5)

corresponding to the five Pliicker relations:

_1,2_'s,4- 7rl,s_r2,4+ _rl,47r2,s = 0

lrl,=_rs,s- _'l,s_r2,s+ lrl,sz'2,s = 0

(3.46) _rl,2_r..s- Ir1,41r2,5+ Irl,sTr2,, = 0

z'l,sz'4,5- 7rl,17r3,s+ z'l,sz's,4 = 0

z'2,s_r,,s - z'_,4z's,s+ _'_,sz's,4 = 0

3.2.1.2.3.3 More General Grafimann-Pl_cker Relations For there to be

a nontrivial Graflmann relation, at least three of the "j," must be distinct from the "i,"

and one of the "io" must be distinct fTom the "j,". One c_u check that there may only

be an even number of nonrepeated indices. Suppose for any k < (n - 1) and A in G(k,n),

there are exactly four indices, l_, l_, 13, and 14, which are not repeated. Without loss of

generality assume that I = (i_,i_,...,i(___),lx) and J = (i_,i2,...,i(_-2),12,1s,14). The

PKicker-Graflmann relation generated by I and J is similar to the relation generated by an

element of G(2, 4) where I - (11), J - (l_,ls,14). The other indices don't "matter" because

they contribute only zero terms to equation 3.32. -
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If we consider G(k,n) for k > 2 there are many identities given by 3.32. Some
.m

of these identitites have terms which are identically zero. (Whenever j_ E it, i2,... , it-l,

for example.) Suppose A represents an element of G(k,n) and some of the columns of A

are repeated. If there are only six different columns in A we can calculate the number of

nontrivial Plficker-Gra6mann relations as though we were working in G(3,6). In G(3,6),

I and J have two and four components, respectively. So there are (e) __ 15 ways to pick

I and J so that I has two indices and J has four indices. Hence there are 15 nontrivial

Plticker-GraBmann relations. Note, however, that G(3, 6) is isomorphic to a dense subset

of Ce(e-3) = C9 and that the Pliicker-Graflmann map takes G(3,6) into ]?(ae)-I = pz,.

Hence, among the 15 Pliicker-Gra_mann relations, ten are independent. Pliicker-Gra/|mann

relations will first be used to simplify the solutions to the nonzero entries of Pih which were

calculated in section 3.2.1.1.

3.2.1.3 Simplifying solutions to P_h by adding Graflmann identities

Notice that in 3.28 several of the coefficients in the numerator contain factors

which are quadratic in minors of Q. Some of the identities used to embed G(3, 7) in _)-x

are useful in simplifying 3.28. Consider the matrix:

I Q1,5 Ql,e Q1,7 QI,s 1 0 0

_" (3.47) Q2,s Q,,e Q2,7 Q2,s 0 1 0

Qs,5 Qs,e Qs,7 Qs,s 0 0 1

The quadratic factors appearing in 3.28 are written below as they appear in 3.28

and in the 7rnotation used in section 3.2.1.2.3.

dQi1,_],[s,e]dQll,2,s],ie,7,sl- dQtl,2l,te,_ldQ[1,_,sl,[5,e,s] = _rl,2,77r2,s,4- _r2,3,77rl,2,4

dQ[1,2],ts,s]dQ[1,:_,s],[s,7,sI+ dQ[1,2},[s,s]dQtl,2,s},ts,e,T] = Ir1,_Mrl,s,4+ 7rx,4,71rl,2,3
_

(3.48)dQ[t,_l,[s,eldQ[t,2,s],[s,_.,sl-dQ[_,2],[s,7]dQ[_,_,s],[s,e,s] = _'1,:_,7_'1,_,4-_'La,vTr_,_,,t

dQtx,_l,te,sldQt_,_,sl,[s,_,_] + dQ[1,_],ts,eldQ[_,2,s],[e,z,s] = _r2,,,7_h,_,_+ _h,_,z_r2,_,_

The following Graflmann identities may be used to simplify the equations above:
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?rl,2,7_'2,3, 4 -- _'1,2,211"7,3,4 + _1"1,2,3_'7,2, 4 -- frl,2,4_l",r,2,3 ---" 0

_'1,2,7_'1,s,4- _'l,2,1_'T,s,, + _'1,2,s_'7,1,, - _'_,2,_'7,1,3= 0

(3.49) _1,2,7_'1,3,4 -- _'1,2,17rT,3,4 -_- Irl,2,3_'7,1, 4 -- _1,2,47r7,1,3 _--" 0

7r2,4,T_'1,2, 3 -- _1"2,4,1_'7,2,3 4- 7r2,4,2 _'7,1, 3 -- _'2,4,3_r7,1,2 _--- 0

So we can simplify the right hand sides of the quadratic clusters in 3.48 as follows

_'1,2,7_'2,3,4 -- _'2,3,7_'1,2,4 _--- --_'2,4,7_1"1,2, 3

_'1,2,711"1,3,4 -_- "ffl,4,77r1,2,3 -- _1,2,4_-1,3,7

(3.50) _1"1,2,7_1,3,4 -- 7rl,3,7 71"1,2,4 -- --7['1,4,7 71"1,2,3

7r2,4,7_I"1,2, 3 +" _'1,2,771"2,3, 4 --- _r2,3,7_-1,2, 4

The Graflmann relations in 3.50 allow us to make the following substitutions:

dQ(t,2],ts,6]dQtt,2,s],(6,_,s]- dQ(1,2],[6,T]dQ(1,_,sl,(s,u]= -dQ[1,_],[s,s]dQ[_,_,s],(s,s,_]

dQ[_,_],[s,s]dQ[_,_,s],[s,_,s]+ dQ[_,_],[s,s]dQ[_,_,s},[s,_,_]= dQ[z,_],Is,_]dQ[x,_,s],[s,_,s]

(3.51)dQ[x,=],[s,s]dQ[;,=,s],(s,z,s]- dQ(_,=l,ts,z]dQt_,_,s],[s,s,s] = -dQ[1,_],ts,s]dQt_,=,s],[s,_,v]

dQ[z,_],[u]dQ(_,_,s],[s,_,z]+dQ(_,2l,[s,s]dQ[1,_,sl,[s,v,s] = dQ[1,2],[_,z]dQ[z,=,s],(s,s,s]

When 3.51aresubstitutedintothesolutionin 3.28the resultingsolutionlooks

much simpler:

sl2s = (As,vAs,s (dQtl,=],(e,s]As,e+ dQ(_,=],(s,s]As,s)

(3.52) (-dQ[_,_,_l,(_,_,s]dQ[_,_],[_,_]+ dQ[_,_l,[_,_ldQ[_,_,sl,[_,_,sl)+

dQ[_,_],t_,s]( dQ[_,_l,[1,_ldQt_,2,s],[_,_,_]-dQt_,_l,t_,_ldQ[s,_,s],[_,_,7])A_,_A_,sAs,_+

dQ[_,__],[_,T](-dQ[s,ul,[_,_,sldQ[1,_l,[s,_ ] + dQ[s,_l,[_,_ldQI_,_,sl,(_,_,s])A_,7A_,_As,s +

dQ[,,2l,[s,s] (dQ[s,.],[,,,] dqtx,,,s],ts,_,.] - dqtx,2],(s,_]dq[s,s,s],(,,2,.]) As,sAs,,Az,s +

dQtl,_],[s,,] (-dQts,_,8l,tx,_,sldQ(1,_l,ts,_]+ dQt_,_l,[1,_ldQtx,2,sl,ts,s,sl)As,sAs,sA'r,7 +

av,sa:,, (dqtx,2l,teo,]Ae,e + dQlt,..l,ts,,]As,,)

(dQts,s],(x,2idQ{t,,,s],[s,s,7]- dQ[1,2],is,s]dQ(s,,,s],[1,:_,,]))/

dAt_,sl,tT,sjdQ[x,_l,[_,sldQ[1,_l,ts,_ldQ[s,,],[1,_l

which factorsto become
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s12s - ((As,sdQ[5,s],[xa]dQi1,_,s],[5,s,s]- A,,sdQ[ta],[5,sldQ[5,s,s],tt,2,'l -

• As,sdQ[_,u],[1,2,s]dQ{1,zl,[5,s]+ AT,sdQ[5,6],[t,_ldQ[x,2,sl,[_,s,7])

dQ[la],ts,s]As,sAs,7 + dQ[ta],is,slAs,sAs,r

• +dQ[1,_],[.,7]A.,.A.,. + dQ[1,2],[5,.]A.,.AT,0) /

(3.53) dA[_,sl,[T,sldQ[1,_],[v,sldQ[1,2l,ts,s)dQ[s,6],[1al

AllofthesixteensolutionsfortheentriesinPihintermsoftheentriesofA factor

oncethey havebeensimplifiedusingPliicker-Graflmannrelations.

3.2.1.4 A "special" model with a closed system of equations

Motivated by the observation that the rank of the direct map is generically 48, we

looked for a model which has 48 independent parameters, distributed evenly among the four

pixels. In order to reduce the number of independent parameters we made the following

identifications:

(3.54) eije = wijw, sijs = nijn, sijn = nijs, e._w = wije /or all i,j.

The first two constraints are fairly natural. 'They represent instances of the prin-

ciple of "microscopic reversibility". Notice that the other two conditions are a bit less

natural; they represent a certain type of "mirror symmetry". Experimentalists often make

use of physically plausible constraints. Unfortunately, these constraints do not always sim-

plify the mathematical problem. For example, imposing microscopic reversibility on the

system would lead to less than twelve free parameters per pixel. Data matrices generated

by microscopically reversible n x n models are symmetric. This symmetry renders half of

the otherwise independent consistency conditions redundant. Unfortunately, it also renders

n(n- 1)/2 of the data redundant. In the 2 x 2 case this reduces the rank of the direct map

to 28. Finally notice that we have not made the assumption that the probability of being

" killed in a pixel is independent of the direction from which the photon entered the pixel.
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Once the above identifications are made, the problem has the following features:

the rank of the forward map remains 48, the main diagonals of Pio and Phh are common,

and the off diagonals of Pho and Pih are common.

3.2.1.4.1 Cubics and Quadratics In section 3.2.1.1 we had freedom to choose sixteen

of the 32 equations in the matrix equation 3.16 which were functions only of A and Psh. More

precisely, in each of the eight columns of equations in 3.16 we were free to choose two of the

four equations which were independent of P_o, and Pis. Experimentation with a few of the

(_)s = I, 679,616 possibilities showed that some choices of equations are better than others.

Thanks to a different choice of equations the resttlts presented below are somewhat simpler

than those in [5, 6] and [7]. In this section, the solutions for the transition probabilities

were obtained by disregarding the equations in 2.8 corresponding to the 'z's in the matrix

below:

0 0 0 0 0 0 0 0

0 0 0 0 0 0 O 0

zOO O O zzz

z 0 0 0 0 z z z

(3.55)
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 = = = = 0 0 0

0 = = = = 0 0 0

When substituting the solutions found in section 3.2.1.1 into 3.54 the equations

corresponding to travel straight through a pixel yield eight quadratic identities. Many of

the equations which follow are identically zero and the "-- 0" has been omitted.

dQts,6l,t_,s] (dQ[1,2l,[s,6ldQ[s,e,Tl,[t,2,7,lAs,TAT,s- dQ[s,6l,[1,2ldQ[L2,Tl,ts,6,7]AT,TAs,s

+ (dQ[1,,],[5,e]dQ[s,e,7],[1,a,s]- dQ[5,e],[1,,]dQ[1,,,7],[5,e,s])As,,As,s)

(3.56) -dQ[1,2l,[s,eldQ{5,el,[1,2] (dQ15,61,12,71A2,1AT,7 + dQ[5,el,[2,elAs,7A_,I "

+dQ[5,6],[1,T]Al,1A7,T + dQ[5,61,[1,slAs,TAI,1),
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i,

dQ[s,sl,[t=](dQ[s,61,t_,sldQ[2,s,sI,[_,s,4lA3,_Az,1- dQ[s,s],[s,,jdQ[_,s,s],[2,7,s}A1,_A2,1

' - (-dQ[5,s],13,+}dQ[z,s,.},{,,,,.)+ dQ[,,,,s],[1,s,,]dQ[,,,],[.,.])A,,,A,,,)

(3.57) +dQ[_,61,[LsldQtul,ts,41(dQ[s,6l,[1,slAs,s.4t,2+ dQ[8,6],I2,71AT,sA_,2

+dQ[5,6],tl,TlAT,sAI,2+ dQ[5,6l,f2,slAs,sA_,_),

dQ[t,2],ts,s](dQ[t,=l,[7,sldQtt=,sl,[a,.,slAs,sAs,s- dQ[L2],t3,,]dQ[x,2,s],ts,7,s]As,sAs,e

- (-dQit,2],ts,.]dQ[t,2,,],[,,.,,]+ dQf1,_,5],{s,,,sidQ[z,2i,{r,s])A,.,A,.5)

(3.58) -dQ[l,2],[a,,]dQ[1,2},[_,s](dQ[1,21,[5,7]AT,TA5,5 + dQ[1,2],[u]As,TA_,8

+dQ[t.2].[6.7]AT.7A5.5+ dQ[1.2].[6.,]As.TA6,5),

dQ[t,_],[3,.}(dQ[1,=},[5,6}dQ[3,s,6},[1,2,s]As,3A.,4- dQ[5,6],[1,2]dQ[1,2,s],[s,5,_]A,,_As,4

- (-dQis,_],t,,.idQ[,,.,_],[4,5,o)+dQt,,_,5],t1,,,4]dQtt,,},t_,,l)A.,.A,,,)

. (3.59) -dQl_,_l,[s,sldQl_,sl,[t,_](dQ(_,21,[4,sIAs,sAI,_+ A_,_As._dQ[_,_l,[4,si

+dQ[_,_I,I_,sIAs,_A_,_+ dQI_,_I,[_,sIAs,sA3,_),

dQt+,el,t+,4) ((dQ[.,+,oi,t_.,+]dQ[1,2,41,{+,5,5)- dQ(t,+l,{5,.idQ[4,5,sl,[t,2,+i)A+,4A+,a

-dQ{z,2L{+,+IdQ[I.+,+},tI,+,.]A4,+A+,++ dQls,o},tx,+]dQl+,m,+],14,+,o]Aa,+A4,4)-

(3.60) dQ[L2],[5,+]dQ[5,e],tt,m] (dQts,+],t_,4]A+,4At,_+ dQt+,o],[m,4}A4,4A2,2+

dQts,+],[t,3]At,,A_,++ dQ[5,+],[2,_]Am,+A3,4)

dQtt,_l,[_,_](-dQtt,2I,t_,4]dQIt,=,sI,I_,7,.]As,,_As,_+ dQtx,2],tT,,ldQtl,_,_I,t3,4,sIA_,sAs,_

+ (dQt,.,.Sl.t,.4.+ldQ[t.2].[,.,]-dQtt.,l.t+.,]dQ[x.2.s].ts.z.5])A+.sA_.5)

. (3.61) +dQl_._].l_._ldQ[_._].[_._1(A4.4A_._dQ[1.2I.[4._}+ dQlt._l.t4._lA4.+As.o

+dQ[_,21,[_,_lAs,_A_,4+ dQI_,_1,l_,51Aa,4A_,_),
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dQ[s,s],[1,=](-dQ{s,sl,[s,4ldQ[1,s,sl,[x,7,,lA2= AI,1 . A_,tAx,_dQtt,s,s],t 1,s,']dQ[5'e]'[T'e]

+ (dQ[s,s],{z,s]dQ[x,s,s],[z,s,.]-dQ[,,s,s],[,,,,s]dQ[s,o],[s,'])A,,,A,,,)

(3.62) +dQ[s,sl,lT,sldQ[s,sl,[3,4](dQ[s,sl,12,4lA4,sA2,I+ dQ[s,6l,[2,s]As'sA2'1

+dQls,sl,lt,4].44,sAt,1 + dQ[s,sl,[t,3lAs,sA1, 0 ,

and finally

dQ[lal,[7,s] (dQ[s,6l,[t=]dQtLz,s],[s,s,s]As,TA_,e - dQ[t=l,[s,s]dQ[s,s,sl,[1=,slAT,TAs,s

+ (dQ[5.sl.tt.,ldQ[t.,.sl.[s.s..] - dQ[t=].ts.sldQ[s.s.s].[,.2..]) A ..7A 7.s)

(3.63) +dQ[t,_l,[u]dQ[s,s],[1=](dQIl=],{s,slAs,sAs, s + dQ[1,2l,[s,7]As'sAT's

+dQ[1,2_,[5,TlAs,6AT,s+ dQ[1,_l,[s,slAs,sAs,s)

The identifications corresponding to reversing direction inside a pixel yield eight

cubic equations:

(3.64) - A2,1dQ[s,s],[L2]dQ[s,s],[7,s]dQ[s,6},ts,.]-

dQ[s.s].[2.s](dQ[,._.s].[t.s.,]dQ[s.,l.[v.s]- dQ[,.s.,].[,.v.s]dQ[s.'l.[s.']) As.3A,.,A,.. -

dQtu].[2.. ] (dQt,.s.sl.t..s.,ldQ[s.sl.t,.s ] - dQ[,.s.,].tx.v.sldQ[s.s].[,..]) A...sA_...AI.. -

dQ[s.sl.[..s] (dQ[t.s.s].[,.,..]dQ[s.sl.['.s] - dQ['.s.sl.['.'.sldQ[s.'].[s.4]) At.,A... As.s -

dQ_,,.l,[,,,](dQt',','l,t',_,']dQ_U],['''_- dQ_'""]'_'""ldq_"_'[_"_).4,,_A,,_.4,,,-

dQ[s._l.[,.4] (dQ[u].[,.s]dQ[..s.s].[,.s.. ] - dQ[..s.6l.[,.,.s]dQ[_.sl.[s.4]) A4.sA2..A,., -

(dQ[s.s].tT.sldQ[..s.,l.ta.s.4]- dQtt.,.,l.ta.7.s]dqts.,l.is.4]) A ,._A,.s A2.xdQ[_,_],[t,4]

dQ[s,_l,t_,sldQts,el,ts,_ldQt_,s,_l,[_,_,_]- dQts,_l,t_,sldQt_,s,_l,[_,s,_ldQts,sl,tT,s]+

dQ[s,sl,tx,s]dQls,s],ts,_]dQtt,_,s],t_,7,s])A _,_A_,tAs,s,
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(3.65) A6,sdQtl,2],ts,e]dQtt,_],t3,4]dQtt,2],tT,s]

" +dQ[l,_l,I,,s] (- dQtl,.,s],Ia,,,sjdQ[l,2],l.,sl+ dQ[m},t3,,ldQll,:t,s],[,,,,.})As,sAs,,As,s

+ (dQil,2l,t,,41dQit,21,tT,sldQit=,sl,ts.Ul- dQtt,21,ts,sldQ[1,:tl,[.r,sldQtt,:,,s],[3,4,_,]+

dQtt,_l,ls,sldQtt,_l,ta.4ldQtta,sl,te,7,,l) As,_As,sAs,s

+dQtl,:ti,[s,s] (dQtl,:tI,ts,,t]dQtl,,,s},[,,7,,]- dQ[:t,,,s],[s,,,,oldQtt,,l,tT,sl)As,sAs,.As,,

+dQix,_l,t,,s](dQtx,2l,t3,,tldQ[t,a,,l,to,,,sl- dQtt,_,sl,t3,,t,.]dQtt,_],t,,s])A.,sAs,,As,.

+ dQtl,2l,t6,.](-dQll=,sl,ta,,t,,ldQtt,2l,t,,sI+ dQ[1,:tl,ts,,tldQ[1,2,,l,[,,,,,l)A.,.A.,.A.,8

+dQtl=],ts,.] (-dQt,,2,sl,ls,,t,sldQl,,:_l,g,,sI + dQ[1,_l,[3,4}dQla,:,,s},[s,,,s})As,6A,,,As,s

+dQ[aa].[,..l( dQtt,_l,ts,4ldQlt,2,,l,[O,,,,l- dQtt,_,,l,t:3,4,.ldQtt,2l,t,,sl)A.,.A6,6A.,.

- (dQtt=l.t,.4ldQtt._l.tT.sldQit.2.,l.ts.6.q+ dQtt._l.tS.TlctQtt.2l.tT.,ldQ[t.:_._l.[,.,.6]-

dQ[t,2l,t6,TldQt1,_l,[3,.ldQ[t,2,sl,[5,7,sl)As,sAs,sAT,z,

(3.66) -As.6dQlt.2}.ls.6ldQ[t=].[.._]dQ[t.+.l.[7.s}

+dQ[1,_},[_,_](-dQtl,_,_l,t_,4,_]dQ0.,_],[T,s]+ dQtl,_l,t_,,t]dQ0,,:_,_l,t_,7,s])A_,,_A_,_A_,s

+dQt_,m],t,,,_] (-dQtt,=,_l,t_,,,,]dQtx,=],tT,s] + dQix,=},t:_,4]dQ[:t,=,.},ts,7,s])A4.,As.,Au

+dQix,_},t,t,e}(-dQtx,m,.],t_,4,o]dQtt,m],tT,s} + dQtx,m],t_,,ldQtx=,.},[,,.,.])A_,_A.,.A6,_

+dQta._l,t.,sI (- dQtt,2,.l,ta,4,sldQtx,_l,tv,s]+ dQtx,_l,ta,4ldQtx,m,_l,t_,v,s])A_,_A.,.As,_

+dQtx,ml,[_,_](-dQtx,m,ol,t,,4,_]dQtt,m],[_',,]+ dQtx,2],t_,,t]dQtx,_,s],t.,_,,sl)A_,_A_,4A.,_

- (dQ[x._].Is._]dQtt._].lT.s]dQ[x,_,_],[4,s,_]-dQ[x,_],ta,s]dQit._l.[s.4ldQ[t._.,].t_.v.s]+

dQt_._].[4._]dQ[L2].tT.s]dQt_._._l.t3.4._])A4,4AuAs,_

+ (dQtt._l.t_._]dQt_._l.tT.sldQtt._.si.t_.s._]+ dQl_._].f_.s]dQt_._i.l_._]dQ[_._._].[_.+..s}-

dQt_._].t_._]dQl_._}.lz.s)dQlt._._).13._._}) AU A_._Aa._

• _ (dQt_._].[3._] dQtt._l.tv.s]dQtt._.s].[_._._]-dQtt._l.t_._]dQtx._].[_.4] dQtt.2.,].[,.7.s]+

dQtx._l.[_._]dQtt._l.tz.o]dQtt._._].t3.,._])A_.,As.sA_.s.
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(3.67)-AT,sdQ[1,2},[7,s]dQ[1,2],ls,s}dQ[s,s],[1,2]

-dQ[_=].[,.,](dQ[,.,].{_.,]dQ{_.,.s].[s.,.,]- dQ[x.,].[5.,]dQ[,.u].[x.,.,])A,.,As.sA,.s

- dQ[l.,j,[.,,} (-dQ[,,u},[,,,,sldQ[1,,],[,,,] + dQ[,,,],[l,,ldQ[1,,,s],[,,s,s]) As,'AuA','

-dQ[1,2],[,,,l(-dQ[,,,,sl,[1,2,sldQ[1,2l,[s,,l+ dQ[,,,j,{1=ldQ[1=,sl,[s,,,,])As.,As.TAs.,

-dQ11,21,[5,,1( dQ[s,sl,[1,,ldQ[1=,sl,lS,6,Tl- dQ[l,2l,ls,sldQ[s,s,s],[l,,,,l)As,sAs,,A,,s

-dQli=l,le,,] (dQ[5,el,ll,2ldQll,2,Sl,[S,6,,]-dQ[1,2l,[,,6ldQ[s,u],[1,2,,])AuA.,sA,,.

. -dQ[1=],[,,,] (-dQ[,,u},[1=,,] dQ[,,,],[5,,]+ dQ[s,,],[,,,]dQ[1,,,s],[s,u]) A,,,A.,oA,,,

-dQl1.,l.ls.Tl (dQls.6l.[1.,ldQl1.,.,l.{s.6.T]- dQ{1.,l.[5.eldQls.e.,].[,.2.71)As.sAT.sAT.7

-dQ[1=l.[5..] (-dQ[5.ul.[1=.,ldQ[1.2l.[5.6l+ dQ[_.6l.[1=ldQl1=.sl.[s.ul)As.6As.sAT.7.

(3.68) Ai,3dQ[1,2],[s,4]dQ[1,2],[s,sldQ[s,6],[1.2]

+dQ[1,2l,[s,s](dQ[_,6],{1,2]dQ[1,_,a],[s,s,s]-dQ[8,s,s],[1=,_]dQ[1,=],Is,el)A,,sAs,iAs,3

+dQ [1.2].[s.s](dQ[5.sl.[x.2]dQ[1=.s].[,.s.6]- dQ[s.8.,].[_.,.,}dQ[_._].[_.,])A.._As._A_.,

+dQ[x.z].[3.s](dQ[s._].[..2IdQ{,._.sl.[s.s.s] - dQ[_.s.s].[z._._]dQ[,._].[s.s])As.,As.sA_._

+dQ[_.z].[,.s](dQ [s.s].[1.z]dQ[_.z._].[s.s.s]- dQ[s.s.sl.[_.2.s]dQ[_.z].[_.s])A.., As._As.s

+dQ[_._].[,.s](dQ{s.s].{,.z]dQ[x._._].[,.s.s]-dQ[_._.s].[z._.,]dQ[,.z].[_.s})As,sA.,.Ai,s

+dQ[x._].[,.s](dQ[s.s].[,.z]dQ[,._._].[..s.s]- dQ[s.s.s].{x=.,]dQ[_.z].[_.s])A_.sA.., A,.3

dQ[1.z].[s.s]dQ[s.s].[_._]dQ[x.z._!.[_._.s])As.sA_.sA...

• _ (dQ[s,s],[z,2]dQ[_,_],[s,o]dQ[_,_,s],[3,,,o]+ dQ[_,_},[_,s]dQ[1,2],[s,s}dQ[_,_,_],[_,_,,]

-dQ[1,=],[_,_]dQ[s,el,[_,2]dQ[_,=,a],[_,s,6])Ai,_.A.3,..4e,s,
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(3.69) As,, dQ[s,s],[s,,)dQtl,2],[s,s]dQ[s,s],[1,:,]

' -dQ{s,sl,[,,s] (dQ{s,sl,[,,:_ldQ[,,,,.M,,s,sj-dQt,,,l,[s,sldQl4,s,s},[,,=,.})A:,,A,,,A,,.

-dQ[s,s},[,,.) (dQ [s,el,l,.,]dQ[,,,,4l,[.,s,e}- dQ[,,:,],ts,e]dQ[,,s,e],[1,,,+])A,,sA..4A.,,

+ (dQ[s,sl,[1,2ldQ[1,2l,ts,sldQi,,s,s],tl,s,.]-dQ{s,sl,{i,sldQ{s,6l,{1,2ldQ{1,=,.l,[4,s,6]

+d Q[s,el,{1,,ldQ{t,=l,[s,6ldQ[.,s,e],11,_,s])A I,=A,,4As,s

-dQ[s,s},[,,.} (dQ[s,sl,[,,,ldQ[,,,,.l,t.,u]- dQ[,,,l.[s,s]dQ[,,s,s},{,,,,.])A,.sA,.,A,.4

- - A,,,A,,,A,,,
- (dQ{s,s],{1,_ldQ[1,2l,[s,sldQ[.,s,6],[_,s,4}-dQ[s,s},[_,s}dQll,2],Is,6}dQ[i,s,s],ix,2,.1

+dQ[s,sl,[_,.}dQ[s,s],[1,2]dQ[1,2,.],ts,s,s])A.,sAs.4A2,_

-dQts,sl,[_,3](dQ[s,s],[_,_]dQ[_,_,.],[s,u]- dQl_,_l,[s,sldQ[.,s,sl,[_,_,s])Ax,_A_,.As,s

-dQ[s.s].[_.,l (dQ{s.sl.[_._ldQ[z.:,.,l.[_.s.s]-dQ[_.,i.[s.s]dQ[,.s.s}.[_._.,})A4._A_.2A,.,,

(3.70) - ._s,_dQ[s,s},l_,s}dQ[s,sl,[x,zldQ[_.z],[s,s]

+ (dQts._l.t_._ldQ[_._l.[s._ldQts.s._l.[_._.s]-dQ[s._l.l_._ldQls.sl.l_._ldQ{_._._l.ls.s.s]+

- dQ[s.el.l,.sl(dQ[_.sl.[_._l dQl_._._l.[s.s.sI -dQt_._l.[S.sldQts.s._l.t_.:,.s])As.sAt._ds.7

-dQ[_._l.[_._l(-dQl,._l.tS.eldQ[_._._].[_._.T]+ dQts._].t_.:_ldQt_._.Tl.ts._.Tl) A_.,A,.,A_.s

- (dQt_,_l,[_,_ldQ(_,_],[s,_ldQ{s,s,_,l,t_,_,sl-dQ[s,sl,{_,_]dQ[_,_l,ts,_ldQls,s,_l,l_,_,sl

+dQ[s.sl.[_.sldQ[s.sl.[_._ldQi_._._].ls._.Tl)As.sA_._A_._

-dQ{s._].[_.Tl(dQts._l.t,._ldQt_._._l.[s.Ul-dQl,._l.ls.sldQts._._l.[_._.s])d_.,d,.sAs._

-dQt_,ol,i.,s](dQis,.l,[,,,IdQix,,,_,l,is,.,sI -dQ{_,,],[s,e]dQ[s,s,.l,[,,.,s})As,sA,,_A,,.

-dQ[_,.],[,,_.](-dQt,,,],[_,s]dQ[s,s,7},[_,,,,]4-dqts,.l,t_,,)dQ[_,,,Tl,[s,.,._])A7,7A,,_Av,s

+dQ[s._l.t_.s] dQ{s._l.[_.2ldQ[_._.Tl.[s._j.l)As.sA_._A_._,

and
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(3.71) Ai.=dQ[s.s}.[1._]dQ[s.el.[7.e]dQ[s.s}.[s.,]

+ (dQ{s.s].[_.s]dQ[s.s].[s.4]dQ[=.s.sl.{1._.T1+ dQ[s.e].[1.7]dQ[s.s}.[7.s]dQ[_.s.s}.[2.s.,] "

-dQ[s.s].[2.T]dQ[s.s].[s.,]dQ[2.s.s].[1.7.s]) .47.sA_..2.4_.i

+dQls.s].{x.,](- dQ{s.sl.[s.,idQ[,.s.s].[1.,.,]+ dQ[,.s.s].l,.s.,}dQls.,}.[,.,})AI.,A,.,A,.,

+ (dQts,e],tT,s]dQls,s],[s,.]dQ{=,s,s},[l,2,s] + dQls,s],ll,s]dQls,s],tT,sldQ[2,s,e],12,s,4]-

dQ[s,sl,[2,eldQlsJl,[a,41dQl2,s,sl,ll,7,sl)As.sA2._AI.I

+dQis.sI.[i.s] (-dQls.sl.is.,] dQI,.s.sl.i1._.s] + dQl,.s.sl.ii.s.,ldQis.sl.iT.sl)A,.,A,.IAs.s

+dQ{s.s].[,j.](dQls.el.[7.sldQl_.s.sl.[2.s.,}- dQls.6l.ls.,IdQl=.s.sl.[2.7.sl)A2.1AT.sA2.,

+ (dQ[s,s],[2,TldQ[2,s,sl,[1,s,,]dQ[s,sl,[7,s]-dQ[s,s},[l,7]dQ[s,s},[s,,]dQ{z,s,sl,[z,_,s]

-dQts.si.tT.s}dQts.s].[s.,jdQt=.s.s}.[1.2.7})AI.2A2.1AT.s

+dQ[s.s}.[2.s](dQIs.sl.lT.sldQl,.s.s].l,.,.,]- dQ[s.sl.[3.,ldQI..s.sl.{,.7.s])A,.I As.sA2.2

+dQ{s,s},[,,sl(-dQ[s,sl,[3..ldQ[,,s,sl,ll,7,s}+ dQl,,S,Sl,ll,s,,]dQ[s,sl,lT,sl)AI,,A2,_As,,

3.2.1.4.2Simplifyingcubicsby addingGraflmann identitiesGr_msnn-Pl(icker

relationsallowustosimplifyoneofthecoefficientsin3.64.Notethat

dQ[s,s],[7,sldQ[s,sl,[s,.]dQ[x,s,sl,[1,_,Sl- dQIs,el,[2,s]dQ{_.s,e],[_,s,_]dQ[s,s],{_,._+

(3.72) dQ[s,s],[_,s}dQ[s,s},[s,_]dQ[_,s,s],[z,v,s]=

dQ[s.s].[7.s](dQ[s.sl.l_..ldQ[_.s.s].[_._._l-dQ[s._l.[_._ldQ[_.S.Sl.[_._.,])+

dQ[s,s],[_,_}dQ[s,sl,[s,,ldQ[_,s,sl,[_,7,s]

Ifwe considertheelementofG(3,7),

Q_._ Qx.z Q_.s Q_._ 1 0 0

(3.73) Q_._ _s._ Qs._ Qs., o 1 o

Q_._ Qs._ Qs.s Q_._ o o 1

then we can write

(3.74) dQ[s,_],[_,_]dQ[_,s,s],{_,_,_]- dQ[s,s],[_,_]dQ[_,s,s],[_,_,_]= _rs,,,_r_,_,_- 7r_,_,s_r_,_,.

butifwe usetheGraBmannrelation
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. (3.75) _s,4,sffl,z,:- lra,4,1_rs,z,s+ =rs,4,::rs,l,s- Irs,4,s_s,l,:= 0

we can s_pltfy the _ght _nd side of equation 3.72

(3.76) dQ[s,s},{:,4}dQ[l,s,s},[:,:,s}-- dQis,e},[:0a]dQl:,s,e},il,s,4] = -dQ[s,e],[l.=}dQ[10s,e],i],s04}

when we substitute this into the only "complicated" coemcient in 3.64 we set

dQ[s.sj.[7.s}dQ[s.s}.[s.,}dQ[1.s.s}.ll.2.s}- dQ[s.sl.[2.sldQtl.s.sl.[l.s.,ldQ{s.sl.[T.s]+

(3.77) dQ[s.sl.[1.s}dQls.s].[S.4ldQ[1.s.s].[_,.1.s]=

-dQ[s.sl.[i.sl(dQ{s.s].{,.sldQll.s.s1.{=.s.,]-dQll.s.sj.l,.,.s]dQ{s.s}.ls.,})

when we substitute this into equation 3.64 we get

- A2.1dQ[_.6}.[l._}dQ[s.6}.[T.,IdQ[8.e].[3.,]

-dQ[5.e].[,.s] (dQI,.s.6].ll.a.,]dQl6.e].[7.,]- dQ[l.m.al.[..7.,]dQ[s.6].[,.,])As.sA2._A..I

-dQls.sl.[:_.,1(dQ{,.s.sl.{,.,.,]dQ[s.6l.lT.,]-dQ[,.s.s].[1.7.s]dQ{s.s}.[s.,))A4.sA,.2AI.,

-dQls.s}.[1.s}(dQll.s.s).[1.,.,]dQls.sl.[,.s]- dQ[1.s.e].[x.,.sldQ{s.s].l_.,])A_._A_._A_._

-dQ{s.s}.[_.,] (dQ[_.s.sl.[_.s.,]dQ[s.el.[,.s]- dQ{_.s.sl.l_.,.sldQ{s.e].[_.,])A_._A..sA..z

(3.78) -dQls.sl.t:.s] (dQls.s).[_.s]dQl,.s.sl.l,.s., ] - dQl..s.s].[_._.s]dQ[s.s].[s.,})A_.,As.sA,.,

-dQ[,.e}.[=..} (dQ[_..}.l..e}dQ[..s.,}.i.._.,} - dQ{,.,..}.{,...,ldQ[,.,i.[=.,]) A..s A,., A_..

-dQ[s._].i,._] (dQ[s._l.i_.,]dQl, .s._].{_._.,]- dQ[x .s._].[,._.,idQ[,.e].[,.,]) A,., A=., A_.s

-dQ[s.s].[;..] (dQ[s.e].[z.s]dQl,._.s].{_.s..]- dQ[;.s.s].{=.z.s]dQ{,.e].[_.,})A,.,A,._A,.;

And this simpUfled cubic equation factors neatly:

(3.79) dQ[s.el.[_._lA_._A_.3+ dQ[s.sl.[_.,]A_._A_._)

• (-- A2,1dQ{_,s,s],[_._,s]dQ[s,s},[s,,]+ A_,_dQ[s,s],[_,s}dQ[_,s,s},[_,_,.]+

A_,xdQ[_,s.e},[_,_,.]dQIs,s},[z,s}- A_,_dQi_,s,s],i_,_,s]dQ{s,_l,i_,.]) -

Az._dQ[s.s].i_._ldQ[s.sl.I_.sldQ[s.sl.[_.,l
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After simplification with Grdmann-Pl/icker relations the rest of the cubic equa-

tions factor similarly:

dQ[l,2],ls.s]As,sAs,+ + dQ[1,2},[s,7]AT,TAs,s+

dQ[1=],[s,s]As,sA,,7+ dQ[I=},{s,7]As,sAT,71

As,sdQ[s,s,s},[1,2,s]dQ[l,_],[s,s}- As,sdQ[s,s],[1,2]dQ[1,2,s],[s,s,s]-

AT,sdQ[s,s],[1,_]dQ[1,2,s},[s,s,T}+ AT,sdQ[1=],[s,s]dQ[s,s,s},[1,2,T]1 -

(3.80) AT,sdQ[1=],[T,s]dQ[1,s],[s,s]dQ[s,s],[1,2]

(A2,1As,sdQls,s},[2,s]+ dQ[s,s},[1,T]A1,1AT,s+

AT,sA2,1dQ[s,s],[2,7}+ AI,1As,sdQ[s,s],[1,s})

As,TdQ[1,2],[s,s]dQ[s,s,7],[1,2,s}- As,TdQ[s,s],[1=]dQ[1,_,T],[s,s,s]+

AT,TdQ[I=},[s,s]dQ[s,s,7],[1=,7]- dQ[s,s},[1,2]dQ[1=,T],tS,S,7}AT,T)--

(3.81) As,TdQ[s,s],lT,sldQ[s,s},[1,21dQ[1,2},[s,s}

dQ[1,2],(s,s}As,sAs,T+ dQ[I=],(e,7]AT,TAs,e+

dQ[1,2],[s,s]As,sAs,7+ dQ[1,2],[s,7}As,sAT,T)

As,sdQ[1,2],[3,,]dQ[i,2,s],[s,T,s]- dQtl,2],[T,s]dQil,2,s],la,.,s]As,s+

As,sdQ[1,2],[3,.]dQ[1,_,s],ls,7,s}- As,sdQ[1,2],[T,s]dQ[1=,s},i3,4,s])+

(3.82) As,sdQi1,_],[s,s]dQ[z,_],[3,,]dQ[1,_},[T,s]

- (-A1,_dQ[_,s,s],[z,a,,ldQts,s],[7,s]+ A1=dQ[s,s],[_,.]dQ[_,s,s],[_,T,s]-

A_,_dQ[s,s},[T,s]dQ[_,s,s},[_,a,,}+ A2,_dQ[s,6],t_,,]dQ[_,s,s],t_,T,s])

(A_,zAs,sdQ[s,6},[2,s}+ dQ[s,e},[x,v}Ax,1AT,s+ AT,sA2,_dQ[s,s],[_,T]+

(3.83) A1,zAs,sdQ[s,s},[_,s]). Az,_dQ[s,s],[_,_}dQ[s,s},[7,s}dQ[s,_},[_,.]
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dQ(s.sl.(2.s]As.sA_.2+ dQ[s.s].(2.,)A4.sA2=+

• dQis.s].li.slA1.:,As.s+ dQ[s.s).[1.4lAI.2A4.s)

-A4.4dQ[s.sl.[1._ldQll.2.41.[4j.6]- As.,dQls.sl.(1.2ldQll.2.4l.ls.s.s]+

As.4dQ[x.2l.ls.sldQl4.S.6}.[1.2.3]+ A,.4dQ[1._l.[s.sldQ(4.s.sl.(1=.4l)+

(3.84 ) As.4dQls.sl.ls.4ldQll.2l.ls.sldQls.sl.[1.2)

- (A6.sAs.4dQ[1.2].[s.sl+ dQ[1.2l.(3.s]As.sAs.4+

dQ(1.2].[4.s]As.sA4.4+ dQ(1=l.(4.slAuA_.4)

dQ(1.2].(s.s]dQ[s.s.s].[1.2.,]A,.s- dQ[1.2.s).[,.s.6)dQ[s.s).[I=)A4.3-

As.3dQ[s.s}.[1.2]dQ[1.2=].[3.s.s]+ A3.sdQ(1.2l.[s.sldQ[s.s.s].(1=.s])+

(3.85) A,.sdQ(1._).(3.,]dQ(1.2).(s.s]dQ[s.s].[1.2]

(As.sdQ[1._].[3.4idQ(1=.s).[s.7.s]-A6.sdQ[1.2.s}.[3.,.sldQ[1._].[7.s]+

A6.sdQ(1._l.[_..]dQ(_=.s].(s.7.s]- As.sdQ(1.2._}.i_.,._]dQ(1._l.(7.s})

As.sA_.4dQ[x.:q.[s.s]+ dQ(1._].[_.slAs.sAs.4+

dQ[1=].(,.slAs.sA,..+ dQ(1._].[,._]As.sA_.,)-

(3.86) As.sdQ[1._].(_.sldQ(1._].[_.,]dQ(1.2].(_.s]

3.2.1.4.3 Solving the Equations The variables in these equations appear in a very

systematic form. Each equation is a polynomial in six variables: four from one of the 2 × 2

subblocks of A, the other two from one of the neighboring subblocks of A. Furthermore, for

each cubic there exists a quadratic which is a function of the same six A_,#'s, Finally, each

, of the equations is linear in the A_,_'s from the neighboring subblock. The following table

shows the pairings of variables of the quadratics and the cubics:
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equation linear variable pair o/ two /our variables .

pair linear variables

1 A_,I As,s,A4,s AI,1,A1,2,A2,1,A2=

2 AT.s As.s, AT.s AT.7, AT.s,As.7,As.s

3 As.7 A1.1, A2.1 A_.7, AT.s, As.7, As.s

4 As,s A 7,7,As, 7 A 5,5,A s,s, A_,s, As,s

5 A1.2 A7.s, A8.8 Al.l,AI.2, A2.1,A2.2

6 A3,, AI=, A2= As,3, A3,4, A4,3, A,,4

7 A4,3 As,5, A6,5 A3,3, A3,4, A4,3, -44,4

" 8 As.e As,,, A4.4 As,s, As,e, As,s, Au

(Note that the first column applies only to the cubics.)

From the above chart, we can see that we may either solve pairs 2, 3, 6, and 7 for

the subblocks of A containing A1,1, Ax,2, As,x, A2,=, As,s, As,e, As,s, and A U, (or vice-versa).

After making these linear solves we get solutions of the form
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A1.2 dQ(s.s].[s.4]( 2 2 (dQ[s.sl.[2.3lA_.4+. = - dQ[1,2l,(s,s]dQ[s,s],(l,2] dQ[s,s),[_,4]A4,4A3,4)

+dQ[s.,l.(2.s](dQ[1=.4].[s.s.sjdQ[s.s].(1.2]- dQ(1._}.[s.s]dQ[,.s.s].11._.s))_A_.4A_.s

" d 2+ (dQ[s.s].[2.a)Q[x=).[5.6)dQr,.s.s].[1=.,]

+2 dQ[5.sl.[2.4ldQ_s.6).[1.2ldQ[x.2.4l.[4.s.6]dQ[x._.4].(s.5.6]

-dQ[s.sl.(2.s]dQ(1.2].[s.sldQ(i.s.s).[1._.,]dQ[s.s].(1=!dQ[1=.,].[,.5.s}

-dQ[s.6}.[2.i)dQ[s.6).[z=]dQ[1.2.,l.[3.5.eldQ(1.2].[s.6]dQ(4.s.6).[x._.4)

+dQ s.e.2.4dQ_x.2,s.6dQ 4.u].I=.3dQ[i.s.6).[1=.,[ ][ ] [ )( ] ( [ ] )

-2 dQ[s.6].(2.4]dQ(s.s].[1.2]dQp.2.4].[4.s.s]dQ[1=].[s.s]dQ[4.s.6}.[1._.s))A3,4A4,3A4,4A3,3

+ (dQ[s.s].[1.2)dQ[1.2.4).[4.5.6)- dQ[1.2].[5.6)dQ(4.s.61.[x.2.4])

dQ(s.6].[_.2]dQ[s.6].[2.3]dQ[x,2,4),[4,s,slA42,4A_,3

+dQ[s.6].[2.s](-dQp.2].(s.e]dQ(i.5.s].[x.2.4)+2dQ(s.6].(,.2]dQ[1.2.4}.[,.s.6})

(dQ[_.2.4].[3.s._}dQ[s._].[,_]- dQ[x._).[s,e)dQ[.._._].[1.2.3])A3,4Ai,4A_,s

- (dQ[s.sl.[_=ldQ(_=.41.[4.s._l- dQ[1=l.[s.6]dQ[..s._].(1._.41)

A sdQ(s._].[_.4]dQ[_._l.[s.s]dQ(4.s.e].(x._.4]A3.4A4.4 4.3

+ (dQ[s.s].[_._]dQ[_._.4].[4.s._}- dQ[_._).[s._)dQ[4.s._).[_._.4))

dQ[s._].[_._]dQ[s._l.[_.4ldQ[_.2._i.[4._.sIA3.3A_.4A4.3

- (dQ[x._.4l.[3.s.6]dQ[s.el.[_=]- dQ(z._].[_._]dQ(4.s.e].[_._.3])

dQ(5.s].[_.4]dQ[_._}.[s.s)dQ(_.s._}.iz._.4]A_.4A_.3

(dQ[s.e].[_.4]dQ[_._._l.[3.s._]dQ(s.e].(x._]- dQ[s.sl.(_.4]dQ(_=l.[s.s]dQ[4.s.s].[1.2._]-

dQ(s.s].[2._jdQ[_._l_(s.s]dQ[4.s.e).[_._.4])A3.3A_., A4.3/

dQ[x._).[s.s]dQ[s.s].[1.2]dA(3.4l.[3.4](A4._dQ[s.s].[_.2]dQ[_.2.4l.(4.s.e)

- A4.4dQ[_.2).[s.sldQ[.._.el.[_.2.4)+

A_.4dQ(_._].[_._]dQ(_._.4).(_.s.s]- A3.4dQ[_.2].[s.e)dQ[4.5.e).[_.2.3])

• (-dQ[s._).(2.4]dQ(s.e1.[_.3)+dQ[s.e].(_.4)dQ(s._].(2.3])

• The denominatormay be simplified(alittle)withthe Graflmannrelation

(3.87) -dQ[_.e).[2.3)dQ[_.s).(_.4)+ dQ[s.el.[2.4)dQ(s._].[_.3)= dQ(s.s].[_.2ldQ[s.e].[3.4]
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The result is

AI,_ ( _ 2 (dQ[s,s],[2,s]As,4 +- dQ{1.2].[s.s]dQ[s.e].[1.2]2 dQ[s.s].[2.,]A,.,As.,)
4

+dQ[s.6].[2.3](dQ[1.2.4q.13.s.6]dQ[s.6].11.21- dQll.2l.[s.,ldQ[4.s.6l.ll.2.s])2AI.4A].3

+ (dQls,6],12,sldQ[_,2],Is,6]dQ[_,5,61,[1,2,41

+2 dQ[s.6].[_.4]dQ[s.6l.[1.2ldQ[x.2.4].[4.s.6ldQ[1=.4].[s.s.s]

-dQ[s,s],[2,sldQ[x=],[5,6]dQ[4,s,6l,[x,2,4ldQ[5,6l,[1,2]dQ[1,z,4],[4,5,s]

-dQ[5.6].[2.4]dQ[s.6].[1.2]dQ[1=.4].[s.s.6]dQ[x.2].[s.6}dQ[4.s.6].[x.2.4]

2 d+dQ[5.6].[2.4]dQ[1=].[5.s]dQ[4.s.6].[1._.s]Q[4.s.6].[1=.4]

-2dQ[s.s].[_.4]dQ[s.s].[l.2jdQ[z._.4].[4.5.s]dQ[1._l.[s.e}dQ[4.5.s].[1._._})As.4A4.sA_._As.s

+ (dQls._l.[_.2ldQl_.2.,l.l,.s._]-dQ[_.2l.[s._ldQ[.._.,l.it=.4])
2 2

dQ[s._].[1.=]dQ[s._l.[2.=]dQ[x...il.[_._._]A,.,A_._

+dQ[_.s].[2._](-dQ(_=l,[_,.ldQ[.,s,_l,[_=,41 + 2 dQ(s,_l,[_,_ldQ[_,2,.l,[,,_,o])

(dQ[1,,,4],[3,s,sldQ[s,s],[x,,]- dQ[1,2],[s,s]dQ[4,s,s],[1,z,3]) A3,4A',iAl,3

"-(dQ[s.sl.[1.2ldQll.2.4l.[4.s._]- dQ[_.2l.ts._ldQ[,.s._l.[_=.,])

A _dQ[s.sl.[2._]dQ[x._].[s.s]dQ[4.s._l.[x=.4]A_._A4.4_.3

+ (dQ[_._l.[_._ldQ[_._._}.[,._._}- dQ[_.2l.[_._ldQ[4._._l.[_.2.,I)

2AdQ[s.sl.[_._]dQ[s._l.[2.4]dQ[_._.4].[,.s._]A3.3A.....3

- (dQl_=,4l,[_,s,_ldQls,_l,[1,_}- dQ[_,2l,(_,_ldQ[.,_,_],[_=,_l)
2 2

+ (dQ[_,,,,],[,,s,oldQ[s,s],[_,,] - dQ[_,z],[_,.]dQ[4,_,.l,[z,2,,])

dQ[s,o],[2,4]dQ[_,2,4l,i3,s,oldQ[s,a],[_,2]- dQ[s,ol,[z,_idQ[_,2I,[s,aldQ[4,s,al,[l,Z,3]-

dQ[s,s],[2,3]dQ[_,::],[_,s]dQ[_,s,s],[l,Z,_]) A3,3A3,4_A4,_/

dQ[_,2],[s,s]dQ[s,s],[_,2]dA[3,_],[3,4](A4,4dQ[s,_l,[_,21dQ[1,2,4l,[4,s,_l

- A4,4dQ[I,21,[5,61dQ[4,5,s],[1,2,41+

A3,4 dQ[s,s],[1,2]dQ[1,2,4],[3,s,s]- A3,4dQ[1,2],[s,s]dQ[4,s,s],[1,2,3]) dQ[s,s],[1,2]

Once solutions of this form are substituted into equation pairs 1, 4, 5 and 8, we

are left with eight messy equations. The equations which were once cubic now have twenty

terms; the equations which were once quadratic have one hundred terms. All eight equations
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share one important feature: the remaining A_,_'s appear in pairs. To solve the Isst eight
o

equations we make the substitutions

(3.88) . A4,3 = As,3 ql, A4,4 = A3,4 q_, As,7 = A7,7 qs, As,s = AT,s q+

One of the four (previously) cubic equations is shown below.

-ql A],4(-dQ[s,s,6],[1,2,4ldQ[1,_l,[s,s]+ dQ[1,2=l,[4,s,6]dQ[s,6],[1.2])

((-dQ[s,s,s],[x,2J']dQ[1,2],[',s]dQ[x,2],[s,s]+ dQ[s,s],[1,2]dQ[1,2],{.,s]dQ[1,2,sl,[s,6,.]+

dQ[1,2,sl,[4,7,s]dQ[s,6l,[1,2ldQ[l,2l,[s,6])

( dQ[s,s],[1,_]dQ[x,2,s],[3,s,s]- 2dQ[s.s,s],[1,2,s]dQ[1,2],[s,6])q22

-*-(dQ[_,sl,[x=]dQ[_,2,sl,[4,s,s]dQ[_,2l,[3,sldQ[_,2,s],[s,s,.]+
2

dQ[s,s],[1,2]dQ[1,2],[4,s]dQ[1,2,3l,[s,s,s]dQ[1=,s],[s,e,7]
2

+dQ[s,sl,[1.2]dQ[1,2,3l,[s,s,6}dQ[1=],[s,6]dQ[1,2,sl,[4,7,s]

-dQ[1,2l,[5,s]dQ[s,6],[1,2ldQ[1,2l,[4,s]dQ[1,2.sl,[3,s,61dQ[s,s,s],[1,2,_']

-dQ[_,_},[_,sldQ[s,s],[_,_]dQ[_,_],[_,s]dQ[a,s,s],[_,_,_]dQ[x,_,s],[s,s,v]

-dQ[_,_],[s,_]dQ[s,s],[x=]dQ[x,_],[_,s}dQls,s,sl,[x,_,7]dQ[x,_,_],[_,s,_]

+dQ[s,s],{x,_]dQ[1=,s],[4,s,s]dQ[_,_],[s,s]dQ[_,_,s],[_,z,s])q_q_

(3.89) +dQ[s,sl,[x,_]dQ[x=],[s,s]dQ[1,_,_],[s,s,s]

(dQ[1,_,s],[s,s,s]dQ[s,_l,[x,_]- dQ[s,_,s],[x,_,s]dQ(x,_],[s,s])q_q,

"+'dQ[1,_],[4,sl(dQ[_,_,sl,[_,_,sldQ[_,_],[_,_]-dQ[_,s,sl,{_,_,s]dQ[x,_],[s,s])

( dQ[s,_l,[_=]dQ[_,_,_],[_,_,_]-2dQ[_,_,_],[_,_,_ldQ[_,_],[_,_])q4q2_

+ (dQ[_,_,sl,[s,_,s]dQ[s,_l,[x,_l- dQ[_,_,sl,[_,_,sldQ[_,_],[_,_])

(dQ[s,_],[_,_]dQ[_,_],[_,_]dQ[_,_,3],[_,_,s]+ dQ[_,_],[z,_]dQ[1,_l,[_,sldQ[_,_,3],[_,s,_]

' -'dQ[l,_],[s,_]dQ[_,_l,[a,s]dQ[3,s,s],[_,_,/])q4q_q_

• +dQ[s,_],[_,_ldQ[_,_],[s,s]dQ[1,_,s],[s,_,_]+ dQ[s,_l,[_,2ldQ[1,_],[s,_]dQ[x,_,sl,[3,_,s])q_)
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+ql (dQ[_,s],[1,_]dQ[_,_},[s..](-dQ[s,u},[1,_,,]dQ[l=],[s,s]dQ[1,2],[s,s1

+dQ[s,sl,[1,2ldQ[1,2].[s,s]dQ[1,_.s],{s,e,7]+ dQ[s,s],[lo2]dQ[1,2],[s,s]dQ[1,2,s],[a,7,s])

+dQ[s,s],[1,2]dQ[l,2],[4,s]dQ[1,2l,[S,Sl

(dQ[1=.sl.[s.s.s]dQ[s.,].[1=]-dQ[s.,.si.[1._.s]dQ[1.2].[s.s])q,ql

- (-dQ[s.s.si.[1.2.4]dQ[1.:,].[s.s].I-dQ[1.2.s].[,.s.s]dQ[s.s].[1.2])2

(-dQls.s.s].lx.2.zldQ[1.2l.[4.s]dQ[1.2].[s.s]+ dQ[s.sl.[z.2idQ[1.2l.[4.sidQ[1=.si.[s.s.z]+

dQ[i.2.s].[4.z.sldQ[s.s].lz=]dQ[1._].[s.s})_A3._q2ql

- (-dQ[_,s] 2.[I=]dQ[1.2.3l.[3.s.sldQ[1.2l.[s.6]dQ[3.s.sl.[1=.4]dQ[1.2.s].[s._'.s]

-2 dQ[1.2].is.sldQ[1.=].[=.s]dQ[;.=.3].[,.s.s]dQ[s.e].[;.=]dQ[_.s.s}.[;.=._]dQ[x.=.sl.[s._.7]

d

+dQ[;.=].[s.s]dQ[L=].i_.s]dQ[s._].[x.=]dQ[;=.=].[=.u]dQ[3.s.e].[_=.,]dQ[s.ul.(x.=.z]
3

+dQ[s.s].[;.=]dQ[x=].[_.s]dQ[x.=._].{_.s.s]dQ[;.=._].[,._.s]dQ[;.=.s].[s.s._]

d =-dQ[;.=].[s.s}Q[s._].[;.=]dQ[x.=].[_.sldQ[_.=._].[=.s.s]dQ[_.s._l.[x.=._idQ[;.=.s].[s._._.]

d+2 dQ[x._l.[s.s] Q[_._].i3.s]dQ[x._._].[_.s.s]dQ[s.s].[_._]dQ[3.s.s].[_._._}dQ[s.s.s].[_._._]

d d _

2
-dQ[_._].[s.sldQ[x._].[,.s]dQ[s.s].[_._]dQ[x._._].[_.s.s]dQ[s.s.s].[x=.7}

3

d _-dQ[_.2].[s.s]Q[s.s].[_._]dQ[_._}.[3.s]dQ[L_.3].[3._.s]dQ[_._.3l.I..._._ldQ[5._.sl.[_._.v]
3

+dQ[s._l.[_._ldQ[_._.3l.[3.s._ldQ[_._.3l.[..s.sldQfz;_l.[s.sldQf_._.sl.[_.7.s]
2 2

-2 dQ[_,=],[s,sidQls,s],[_,_]dQ[_,s,_],[_,=,_]dQ[_,=,_},[_,_,_]dQ[_,=,_},[_,_,sl

-dQ[_._].[s._]dQ[3.s._l.[_._.3]dQ(s._l.[_.2ldQ[_._._].[_.s._]dQ[_._.s].[_.7.s]
3 2

+2 dQ[s._].[_._]dQ[_.2].[s.sldQ[3.s.sl.[_._.3ldQ[3.s.el.i_._.4]dQf_._._].[3.z.s])q_A_3,4
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- (-dQ[s,5,.}dm,s]dQ{1,2],{5,,]+ dQ[,,sl,{m]dQ{m,s],[s,5,,])A_,.

+ (-dQ[s,.,el,ll,3,sldQ{1,=l,ls,sl(-dQ[s,.,.l,[m,.IdQ[1,.l,[,,sldQlml,[6,6l

+dQ[s,s},[x,2}dQ[1,2],[.,s]dQ[Lz,s],{s,s,_.]+ dQ[m,sl,[.,7,sldQ [5,sl,[1,2]dQ[1,_],{s,s])q2

+ (dQlm,sl,ls,6,.idQi_,.l,lm]- dQl,,,,el,ll,2,,ldQlz,2],[,,6l)

(dQ{s,s],{1,2]dQ[1,_],{s,s]dQ{L2,s],[a,s,s}q,ql- dQ[s,s,s],[1,2,3}dQ[1,2},[s,s}dQ[1,2],[.,s}q4q22

-dQ[m],[s,sldQ[s,s,6l,[m,s]dQ[L2],{u]q4q2)

. +dQ{5,s],{m]dQ[1,z,s],{3,s,s](-dQ[s,s,s],[Lz,v]dQ[m],{s,sldQ{L3l,[5,e]+

dQ[5,,j],{m]dQ[1,zbfs,5]dQ{L_,s],[s,s,_.]+ dQ[s,s],[L_}dQ[1,_],[.,s]dQ[1,2,sb[s,_,s})ql

-dQls,s,s],Ii,2,s}dQIm],[5,6}(- dQls,6,el,[L_,TldQlmld3,51dQ[l,2],[5,_}

+dq[_,.l,[L.}dQ[L.],[.,s]dQ[_,.,e],[_,.,7 ] + dQ[_,sl,[mldq[L2l,[_,sldQ[_,.,.l,[a,.,.]) q,)

-dQ[1,2],[,,5] (-dQl_,5,.].[L_,.ldQ[l,_l,[_,el + dQIm,_l.(,,_,.IdQ(ul,IL21)_

(dqf_,.,sI,(_,s,sidQ[5,s],[L2]_ dQ[s,s.sl,[L..s]dq[_,2},[s,e])q, q2A],,q,

- (dQiL_,sl,ls,_,sldQls,_l,[mI- dQ[s,,,sl,[_,2,sldQ[L2],[5,_l)

2 d 2 2
(dqts,.l,[m]dQtt,2],t3,s] qtm,3],14,_,6]dQ[l,2,.],[_,_,_]+ dqtul,tm]dQ[m,_l,ta,_,6ldQtl,2l,t4,.]

-dQts,al,tt,2ldQtt,2l,[a,_ldQix,2,_l,[a,5,aldQ[a,_,s],t_,a,_ldQ[_,_l,ts,s}

-2 dQls,ol,[L2)dQi_,aj,ia,_]dQ[L2,s],14,s,_]dQiL_],[_,¢}dQ[a,S,_l,[_,z,a]

dQ_s _2dQ_2 _dQ_2 5sdQ_s _2_dQ12a as_- [ , ],[ , ] [ , ],[ , ] I , ],[, ] [ , , ],t ,, ] [ , , l,[ , , ]
2 2

+dqi, l,[1,21dQi ,21,1s, l(-dQIs,.,sl,II,.,.ldQll,21,[.,sldq[1,2],Is,.]

+dQ[5,al,[L2ldQlL2l,i_,aldQ[_,a,al,[_,a,71+ dQlm,_],[_,v,.]dQ{s,_l,[_,aldQ[ml,[_,a])q_

dQ[_,6],[1,2]dQ[,,2],[3,5]dQ[_,_],,5,.](dQ[L.,s],[_,s,s]dQ{_,.]d,,.]- dQ[5,.,sl,[,,2,sldQ[L2b[_,.}) q.)

Notice that 3.89 is a function ofq_, q2, q4, A],4 and the data. We say that 3.89 is

, a general equation because its coefficients are functions of a general data matrix, Q. Later,

we shall work with data from a phantom. A phantom is the solution to the forward problem

. for a given set of transition probabilities. Data from a phantom are real numbers, whereas

general data are variables, Qi,j. We can solve 3.89 for A_, 4 in terms of q_, q2, q4 and the

2 A2 anddata. Similarly, we can solve the three other former cubic equations for A3,3, _,7,
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A_.s. Each of these solutions is a function of three of the qds and the data. Substituting

these solutions into the four (previously) quadratic equations we get four highly nonlinear

equations in ql, q2, qa, q4. Because the coefficients in these equations are so cumbersome

only caricatures are shown below

q3(a2+ q3as)(q,a4+ qs)(q2a_+ ae)(q2a_.+ a20+ q_an) (q_+ q2a,) a_

(3.90) (qs2q2a7 + q_qs2q4as + q3q2a9 + q_q3q4 alo + q:t all + q2q4a12+

q3als + q32ali + als + qs q4 ale + q4a17 + q32q4als)

q3 (a2 + q3as) (q3 q4a24 + qs a25 + q4a2t) (q4 a4 + q3) (q2 at + ae) (ql + q2a4) a2s

(3.91) (q22ql a_7+ ql q2q3 a2s + ql q2a29 + ql qs aso + ql as1 + q_2qlqs a3_+

q2_q_a_ + a_ + q_q_ a_ + q_ a_t + q_a_7 + q_a_s)

(3.92) (q4q_q_ 9_7 + q_q_ a_s + q_q_ a4_ + q_aso + q_q_ a_ + q_q_q_a_2+

q_q_a_ + q_a_ + q_q_a_5 + a_ + q_ a_7+ q_a_s)

q_aa. (q,a_0+ a_) (q_a_+ q_)(a,_+ q_a_) (q_q_a_ + q_a_ + q_aT_)

(3.93) (q_ + q_a_) (q_ a_o + q_ q_a_ + q_q_ as_ + q_q_ae_ + q_q3q_ae_+

q_qa q_ aea +aee + q_a_ + q_a_s + qa q_ae_ + qaq_ a_o + q_ a_ )

where each of the a,s is a polynomial in minors of the general data matrix, Q, and

the "relevant" term is the last one. The zero valued, or relevant, terms of each of these four

equations is a twelve term polynomial, involves only three of the q_s, and is linear in one of

the qis. The roles of the four 7_soccur cyclically. Solving for two of the variables (linearly)

and replacing the result into the remaining two equations we get two nonlinear equations of

35 terms each. All of this can be done with the general equations!! Solving equations 3.90

and 3.91 for qx and q_ and subsituting into 3.92 and 3.93 yields
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4 S
b_ + qs bs + q3_bl + qsSbl. + qs b2o+ qs bs4 + qaebss+

q_b_ + q_qa b5 + q2qs2b. + q2qsSb_l + q_ qs4b22+ q2q35b2e+ q2 qs_be +

(3.94) q22b13+ q=2q3b. + q22qs2b12+ q22qsSb. + q_q34b24 + q_q3Sb27 + q22qseb. +

q_Sbxx+ q=Sqsb17+ q2Sqs_bx8+ q_SqsSbs2+ q2Sqs4b2e+ q2SqsSb_o+ q_Sqseb7+
4 3

q_4blo + q_4qsble + q:_4qs2bl5+ qa qs bss + q24qs4bso+ q24qsSbs_+ qs'*qs_b8

and

b_s + qa bs7 + q_b,,,, + q_Sb4a+ q_ b,x + qaSb. + qa_be_+

qs bss + qa qs b,o + q_aqs b_ + qaSqs b4_+ q_'*qs b4s + q_ qs b_ + q_ qs bvo+

(3.95) qsabs_ + qsaqabs_ + q=aqsab4s+ qsaq_Sb_o+ qs_q_4b,,_+ qs_q_bsv + q3_qaebes +

q3_bsx+ qsSqabss + qsSqaab_, + q_SqaSb_s+ qsSq_Sb. + qsSq_'be, + qsSqaebeT+

4 2 4 4
q3'bs_ + qs4q_b_4+ qs q2 b. + qs4q_Sbe_+ qs q_ be_ + qs4q_Sb4a+ qs4q_ebeo

where the b_s are polynomials in minors of the data matrix. Thus far, our data

have been the symbols Q_,_, where i,j = 1,... ,8. The size of the polynomials (or rather

the coefficients) in the above equations prohibits further computation with a general data

set. During preliminary work on this problem, the author implemented this algorithm on

several phantoms. The author used a very general phantom: MAPLE's random number

generator was used to assign numerical values to transition probabilities. These values did

not necessarily satisfy conditions 3.13 and 3.14.

Taking the resultant of 3.94 and 3.95 yields 3.96, a huge polynomial equation in

one variable. In our numerical tests we have always observed that 3.96 factors to have

the same form, regardless of the variable with which we take the resultant. The following

caricature cf an equation shows the form of the resultants.
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+ +c,,)' + +c,,)'(q.'c,°+q.c, +
(3.96) (qs_c,,+ qacso+ c5_)*(qsc=+ cs)

(qsSc6+ ca0+ qs'c7 + qsScs+ qs17c1_+ qsS°cls + q3Scz,+

qs_2c2o+ qsS2c21+ qsSlc22+ qslSc2s+ qs_Ic_i + qs1°c2s+ qsaSc2s+

qsl°c_7+ qsSiC2s+ qsSSc_o+ qs2°cso+ qs*c. + qs12Cs2+ qslScss +

qsi'cs, + qslScss+ qs16css+ qsTcs7+ qs2Zcss+ qs2Scl_+ q3:'Scls+

qs27cI, + qs2ec16+ qs2°cle + qs c. + qs2ca+ qsec_+ q32ec_o+ qs2tc1_)

where the c_sare complicated functions of the data and the relevant term is the only linear

term in qs.

The author completed this computation on several phantoms and in each case

the relevant factor was linear (qs c2 + ca) and gave the solution q3 : -cs/c_. Once qs is

computed, it is possible to compute q2 by substituting the solution for qs into 3.94 or 3.95

Next we can substitute the values of q_ and qs into the solutions for q: and q. obtained

from 3.90 and 3.91. Once the values for the q,s are found, A 2s,,, As,s, A_,,, _d A_,, can
be computed from 3.89 and its counterparts. Therefore, we have As,,, As,s, A7,7, and Az,s

modulo signs. We can use this to solve 3.88 for A,,,, A.,3, A,,T, and A.,e up to signs.

In order to assign the proper signs to As,a, As,., A.,s, and A.,, recall that since

A = P_-o_ and A is a block matrix,

I . -IIe21we21s1(3.97) A3,3A.,.- As,4A4,s -A,,s A.%s n21w n21s

For a solution to be physically viable all of the transition probabiUties must be positive.

For example, we know that

(3.98) sgn(As,3A4,4 - As,,A4,s) -'- _gn(A3,s) = sgn(A.,,) = -sgn(A,,s) = -sgn(A3,.)

We can use 3.98 to compute the signs of A_,s, A4,4, A3,., and A4,3.
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3.2.2 Writing the equations for general n
m

For n > 2 the problem becomes worse even though the governing matrix equa-

• tion, 2.8, looks the same. Although there are always 4n incoming sad outgoing states for a

larger n × n system, there are many more hidden states. Including incoming states, there

are four states per pixel (plus 4n outgoing states). Since there are n 2 pixels there are 4n2

incoming and hidden states. That leaves 4n2 -4n hidden states. See figure 3.14. Only

when n ffi 2 is the number of hidden states eqtudto the number of incoming and outgoing

states. For a n × n system P_, is a 4n x 4n matrix and Phh is a (4n2 - 4n) × (4n_ - 4n)

matrix. Pih is a 4n x (4n_ - 4n) matrix and Pho is a (4n2 - 4n) x 4n matrix. For n >_4

the governing equations are so horribly large and nonlinear that MAPLE cannot even solve

the forward problem analytically. (Inverting (I- Phh) is too much for MAPLE.) In order

to begin work on the inverse problem one must somehow cut this monstrosity down to size.

Even if MAPLE were able to handle the equations for any large n x n system the

algorithm described in section 3.2.1 is doomed to failure. Pho is not invertible since it is

not even square. One would like to preserve the '_squareness" of the transition submatrices

as well as reduce the complexity of the problem. A recursive approach allowing only one

layer of hidden states at any recursion level achieves both goals. The recursive algorithm

described below decomposes the system into subsystems which are subsequently decomposed

into subsystems of their own. A system is broken into subsystems by ignoring most of its

hidden states. No matter how one decomposes the system, the new system must adhere to

the consistency conditions discussed in section 3.1.

For any square system, notice that if we choose one horizontal and one vertical

barrier there are exactly 4n hidden states associated with these barriers. (Each of the

barriers is associated with two rank deficient submatrices of rank n. The vertical barrier

is associated with a right-left as well as a left-right submatrix; the horizontal barrier is

associated with a top-bottom as well as a bottom-top submatrix.) Recall that there are

exact]y 4n incoming and 4n outgoing states.
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_,onsider the _ple in figure 3.15. The 4 × 4 array of pixels has been divided into e

four subsrz&ys, labeled 1i, 12, 21, and 22. There are 16 inco_g states and 10 outgoing

states. There are 16 relevant hidden states, those associated with the barriers. The incoming

states which send photons into a subarr&yare considered to be adjacent only to hidden and

outgoing states which send photons out of that subarray. Similarly, hidden states which

send photons from one subarr&yinto a second subsrrsy are adjacent only to hidden states

which send photons from the second subarray into any other subsrray. Finally, hidden

states which send photons into a subarray are adjacent only to those outgoing states which

send photons out of that subsrray. As in the base case, it is assumed that photons can only

'etravel dir ctly from one state to adjacent states.

The governing matrix equation may be rewritten as the following:

(3.99) (Q - P_o)A(!- Ah) - P,h = e

where Q is the data matrix and Pio, Pih, Pho, and Phh are probability transition

matrices for this modihed system and A ffi P_'_. Although 3.99 looks the same as in the 2 × 2

example, the transition matrices are very different. They have nonzero entries wherever it

is possible to travel from one state to another without leaving the subarray in which the

first state puts the photon. The shortest possible path between states in this modified

system may require that the photon travel several steps in the original system. The most

important thing to notice is that these modified transition probabilities are the data for the

subarrays. Once again, the transition matrices Phoand P_oshare block diagonal structures

and Phh and P_s share off diagonal block structures. In fact, repl_ing nonzero entries in

the transition matrices for the 2 × 2 system with dense n/2 × n/2 blocks and zeros in the

2 × 2 system with sparse n/2 × n/2 blocks gives the structure of the modified transition

matrices. Also, A has the same structure as Pho and the same changes of variables which

were used to solve the 2 × 2 problem may be used here.
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e

W = APhh

(s.oo) x ffi P,.A
Y = P_,W-P_s

Finally, notice that X hu the same sero structure u Ps, and P_oand that Y and

W have identical sero structures as P_s and Pss. The governing equation may be rewritten

as

(3.101) 0(A - W)- (X - Y)= e

Just as in the 2 × 2 problem, there are redundant equations in the governing matrix

equation and the columns of 3.101 are decoupled homogeneous systems of linear equations.

As before, one may solve for the Wi,_a, X, os, and Y,,_s in terms of the A,,_s. Prom these

solutions, one can write down the transition probabilities for the modified 4 x 4 system in

terms of the Ai,_s. This exhausts the supply of equations given by the governing matrix

equation for the modified system.

Let the data matrices for the subarrays be denoted as QlI, 012, Q21, Q22. The

entries of the transition matrices P_o,P,h, Phh, and Pho may be written as functions of the

entries of A and are the data in Q11, Q12, Q21, and Q22. Once we recover these data

matrices we can tackle each subarray separately. There are consistency conditions amongst

the data for each of the subarrays. These conditions provide some highly nonlinear equations

which can be used to solve for some of the A,,_'s in terms of the remaining A,,j's. We cannot

hope to recover all 16 • 42 parameters. Some extra conditions must be found, somewhere.

Once the data for each of the four subsystems is found the procedure is repeated on each of

the four subsystems. This recursion continues until the 2 × 2 "base case" is reached. The

algorithm described in section 3.2.1 is then used to glean as much useful information from

the base case as is possible. Notice that there has been no mention of any identifications inI

this section. This method of solving the equations is absolutely general.

¢
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3.2.3 4 x 4 problem

The recursive algorithm described above is developed in detail for a 4 x 4 system.

3.2.3.1 Solving for P,h, Phh, P_,, and Pho in terms of A

The algorit_ for solving the 4 x 4 problem described below requires only one

level of recursion and gives a completely general solution. In other words, the author

makes no assumptions about the physical properties of the system; no identifications of the

form 3.54 are made. There are 16,16 = 256 unknown transition probabilities and (as we

saw in section 3.1) only 160 independent data. In sections 3.2.3.1 and 3.2.3.2 we find a 96o

parameter family of solutions to the 4 x 4 problem.

We start by labeling the states for the 4 x 4 system as in figure 3.15, and all of

the 2 x 2 subsystems as in figure 2.1. The transition matrices for the modified system are

mat ces aresparse block matrices. These ri larger than their 2 x 2 counterparts, but have

similar block structures. The nonzero subblocks of the transition matrices are shown below,

starting with P_h, which has an off diagonal block structure.

Pihl,5 Pihl,6 Pihl,ls Pihlae Pihs,3 Pihs,, Pihu Pihs,lo

Pih2,s Pih2,6 Pih2,15 Pih2,1e Pih6,3 Pihe,, Pihs,o Pih6,1o

Pih3,s Pihs,e Pihs,15 Pihsae PihTa PihT,. PihT,_ PihT,lo

Pih4,5 Pihi,6 Pih,,15 Pih4,1e Pihs,s Pihs,, Pihs,9 Pihs,lo

Piho,7 Piho,s Pihg,ls Pih_,x.

Pihxo,_ Pih_s,s Pihxo,x_ Pihxo,x,
,and

Pih_a,_ Pihaa,s Pihaa,_ Pihx_,_

Pih_,_ Pihx_,s Pihx_,x_ Pihx_,x_

Pihx_,x Pih_,_ Pihx_,xx Pihx_,x_

Pih_,a Pih_,_,_ Piha_,aa Pihx_,x_

Pih_,x Pihx_,_ Pihx_,t_ Pih_,x_

Pihx_,x Pih_,_ Pih_n,xx Pihx_,x_
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Phh has the same block structure as p,h,
c

"rPhho,7 Phho,s Phho,18 Phhoa4. Phhls,l Phhls,2 Phhla,11 Phhls,12

Phhlo,_ Phhzo,e Phhlo,ls Phhlo,l, ] Phh14,1 Phh14,_ Phhx4,1s Phh14,12
- ,

Phh21,7 Phhsl,s Phhls,ls Phhsx,141 Phh!_,l Phh15,2 Phhls,11 Phhss,12
I

Phh12,_ Phh12,8 Phhl_,ss Piths2,14. [ Phhxe,l Phhle,2 Phhle,ll Phhie,12

Phhl,s Phhx,e Phhl,ls Phhl,le Phhs,s Phhs,4 Phhu Phhsao

Phh_,s Phh_,6 Phh_,ls Phh_,se Phho,3 Phhe,4 Phhe,o Phhe,lo
, and

Phhs,s Phh3,6 Phhs,ls Phhs,le PhhT,3 PhhT,. PhhT,0 PhhT,x6

Phh,,6 Phh,,e Phh4,1s Phh4,se Phho,3 Phhs,4 Phhu Phhs,lo

P,o, however, is block diagonal,

Pi01,1 Pi01,_ Piox,_ Piox,. [ Pios,5 Pios,e Pio_,_ Pios,s
I

Pio_,l Pio_,: Pio_,s Pio_,4 I Pio6,s Pioe,e Pioe,_ Pioe,8
'1

Pio_,_ Pio_,_ Pio_,_ Pio3,4 [ Pio_,s Pio_,e Pio_,_ Pio_,8
I

Pi04,_ Pio4,_ Pi04,_ Pi04,4 J L Pio8,_ Pioe,_ Pios,_ Pios,8

Pio,,. Pio,,xo Pio.,ls Pio_,_

Pioso,_ Pioso,_o Pioxo,s_ Pio_o,_
, and

Pion,_ Pioxx,_o Pioxx,sl Pioxx,x_

Piox_,x_ Pioxa,x4 Pios_,x_ Piox_,s_

Piox4,x3 Pi0_4,_4 Pio_4,xs Piox4,xe

' Piox_,_ Pious,x4 Pio_,_ Pioxs,_e

Pioxe,_ Piox_,x4 Pios_,xs Piox_,_
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asis Pho .-

Pho1,1 Phol,2 Phol,3 Phol,4 Phos,5 Phos,6 Phos,7 Phos,s

Pho2,z Pho_,2 Pho_,s Pho2,, Pho U Pho6,6 Phoe,7 Phou

Pho3,1 Pho3,_ Phos,a Phos,4 PhoT,s PhoT,6 PhoT,7 PhoT,,

Pho.,1 Pho4,2 Pho4,3 Pho.,4 Phos,s Phou Phos,7 Phos,,

Phog,9 Phog,lo Pho9,11 Pho9,12

Pholo,. Pholo,lo Pholo,11 Pholo,12
1

Phon,e Pho11,lo Pho11,11 Pho11,l_

Pho12,9 Pho12,1o Pho12,11 Pho12,12

and

Phols.13 Pho13,. Pho13,1s Pho13,16

Pho14,13 Phc_4,14 Pho.,ls Pho.,16

Pho15,_3 Pho_5,_ PhOls,_5 Pho_s,l_

Pho_e,_ Pho_6,14 Phole,lr, Pho_s,_e

See figure 3.16 for a few examples of paths taken into account by the modified

transition probabilities displayed above.

Just as for the 2 x 2 problem, we may rewrite the governing equations for the 4 x 4

problem. Assuming that the matrix Pho is invertible, make the change of variables A = P_J

where the nonzero subblocks of A are
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m

A1,1 A1,2 AI,S AI,i A5,5 A5,6 A5,7 As,s

A2,i A2,2 A2,s A2,4 A6,5 A6,6 Ae,_ Au
(3.102)

As,x As,2 As,s As,4 AT,5 A7,6 A_,7 AT,s

A4,x A4,2 A4,s A4,4 As,5 As,s As,_ As,s

A9.9 A9.1o A9.11 A9.12 AlS.XS Axs.14 AXS.lS Azs.xe

Axo,9 Axo,xo Axo,11 Axo,x2 A14,xs A14,14 A.,xs All,X6

Axx., Axx.xo Axl.xx AII.I_ A15.xs Axs.14 Axs.x5 A15.xe

Ax2,, Ax2,1o AI_,_I AI_,12 Axe,xs Ax6,x4 Axe,15 Ax6,x6

This allows us to write

(3.103) (Q - P,o)A(I- Phi,) - P_h = 0

Once again we may make the following changes of variables:

W = APhh

(3.104) X - _oA

Y = P, oW-_h

The resulting matrices X, W, and Y have very special block structures - the same

block structures as the transition matrices above. X has the same zero structure as Pho and

Pio. W and Y, however, have the same zero structure as Pih and Phh: Once the changes of

•rariables in equation 3.104 have been made, the governing equations become the familiar

(3.105) Q(A - W) - (X - Y) = 0

Just as in the 2 x 2 case the columns of 3.105 come in groups. Only in this case four

of the columns correspond to the same matrix equation. The eleventh through fourteenth¢

columns of 3.105 are written below.
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" Os,ls Qs,14 Qs,zs Qs,ls o o o o o 0 o o -w18,_1 -w1:,I:

Qe,_s Qe,14 Q6,_s Qs,le 0 0 0 0 0 0 0 0 -W14,_I -W14,z=

" QT,la Q7,14 QT,,s QT,Is 0 0 0 " 0 0 0 0 0 -Wls,11 -w1s,12

Qs,ls Qs,z4 Qs,ls Qs,Io 0 0 0 0 0 0 0 0 -W1e,1: -W1e,12

Qo,,s Q9,,4 Qo,,s Qo,,s -1 0 0 0 0 0 0 0 xo,** Xg,,=

Q,o,*8 Q10,,4 Qxo,zs Q,o,ls 0 -1 0 0 0 0 0 0 X,o',l, X,o,,=

Qt_,:: Q:1,:4 Q;I,=s Qzl,;s 0 0 -1 0 0 0 0 0 X;:,:: X11,1:

Q::,zs Q_:,:4 Q::,ls O::,:s 0 0 0 -1 0 0 0 0 X_:,11 XI:,_:

Q2.8,:= O:s,:l Qls,ls Ols,l.e 0 0 0 0 1 0 o 0 Y:a,:l Yls,l:

qx4,1: qll,14 ql4,_s ql,l,le 0 0 0 0 0 1 0 0 Yx4,11 Y1,_,12

" qls,ls Qls,14 q_s,ls qls,lo 0 0 0 0 0 0 1 0 Y15,11 Y_,_

O_s,_s Q_s,_4 _e,_e _e,_e 0 0 0 0 0 0 0 1 Y_s,_ Y_e,_

Q_,_ Q_,_o Q_,- Q_,I_

Q_,. Q_,_o Q_,- Q_,_

Q10,9 Q10,10 Q10,11 Q10,12 "410,11 AIO, 12

(_.1o7) =
¢.,_ 0.,_o 0-,- 0-,_ .4.,. .,4.,_

Q_,_ Q_,_oQ_,- Q_,_ .,4_,. _,_

_,_ Q_,_oQ_,- Q-,_

Q.,_ Q.,_o Q-,- Q_,,_

Q_,_ Q.,_o Q_,- Q_,_

Q16,9 QI0,10 Q1_,11 Q16,1_

Solving for W, X, and Y in terms of A exhausts the supply of equations given by

, the governing matrix equation. Since A is invertible, one may now solve for the entries in

P_h, Phi, P_o, and P_o in terms of the data and A_,_'s. The forms of the solutions are similar

among variables from the same transition matrix; samples of solutions in terms of A_,j's for

one variable from each matrix are listed below. We start with the simplest solutions, those

in Pho:
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4

(3.108) Pho3,4=- dA{!'2'4]'[1':_'8]
dA[x a,s,4},Ixa,s,4]

The next simplest solutions are those for entries of Phh.

Phhs,xu =

- (dA[t,,,s],[t,,,,] (dQ[s,,,Ls],[t,,,s,x,lAxs,xs + dq[5,,,Ls],[x,_,s,t.lAx.,xs

+dQts,ea,sl,[m,3,1s]Axs,t5 + dQ[5,6,7,s],[m,s,x6]A16as)

+ dA[t,2,4],It,2,4](dQ[s,6,T,s],[xa,4,xs]Axs.t5+ dQ[s,6,7,s],[t,2,4,t4lAt4,xs i

(3.109) +dQ[s,s,7,s],p,2,4,15]Axs,ts+ dQ[5,6,7,s},[m,4,16]Ax6,xb)

+ dA[t.s.4].[t._..l](dQIs.s.7.s].[m.,.ls]Als.xs + dQ[s.6.7.s].[1._.,a,]At4.x5

+dQ[s.e._.sl.[x.s.4.1s]A15a5+ dQ[s.e.7.sl.p.n.4.xolAas.xn)

+ dA[_a.4].[xa.4](dQ[s.6.7.s].[2.s.4.tslAls.15+ dQ[s.6.7.s].t2a.4.14]At4.a5

+dQts.e.,.sl.i,.s.,.xs]axs.x5 + dQis.6.,.sl.t,.n.,.t,lat,.xs)) /

dQts,e,T,sl,[x,2,a,4ldAtt,2,s,i],tl,_,s,4]

The solutions for the entries of P_o are a tittle bit longer:

1

Pios,_ = dA[_,_,_,sl,is,_,_,e]

(da[s,%a],[.3,s] (dQ[_,la,li,ls,1.],[1,%a,.,_]As,s+

dQ[s._a.x._.lS.X_].lx._._._._]A_._+ dQl_.t_.t_.xs.x_l.tt._.a._.TlA_._+

dQt,.,,.a,a_.a_].[m._...slAs._)/dQ[x3.x,.x_..6].[m.,.,l -

dA[_,_,,sl,[n,_,,s](dQ[n,xs,a_,t_,_n],[a,:_,3,_,n]A_,6+

dQ[_,xaa_,ta,x_l,[xa,s,4,s]As,,)/dQ[xs,x_,t_,xo],[x,2,s,_] -

(3.110) dA[ao',si,[u,_,_](dQ[a,xa,x_,tu,xol,[a,o,xo,tx,x_]An,s+

dQ[a,xa,t_,xu,t_l,[s,o,xo,at,x_lAs,s)/dQ[xa,x,_,xu,x_],[o,xo,xt,t_]

dAt_._.sl.[_._.s](dQ[_.x3.t_.xa.Xel.[_.o.xo.tX.l:elAa.7+

dQ _ _ _ x_x_ _, _o t_ _ Ae[ .... 1.[ .... I . + dQ[_.xa.l_.ta.xe].[_.o.to.xx.x_lA't._ +

dqi_.x_.t..t_.x.].is.9.xo.tx.x,lA*.,)/dqit*.x..xs.x,l.io.xo.xx.x,])
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Solutions for the entries of P,h are of the form:
r

. 1

Fihlo,14 -'- dQ{5,a,7,s],[,,1o,11,12]

dQ[5,6,7,s,lo},i,,1o,11,1_,is]A13,14+ dQ[5,6,_,s,lo],[,,1o,11,12,1.]A1.,14+

dQ[5,6,_,s,lo],[.,1o,11,12,15]A15,1,+ dQ[5,6,_,s,lo],[,,1o,11,12,16]A16,1.)+

1 ((dQ[5,s,7,s],[9,11,12,13] Ala,I, .t-
dQ[5,s,T,s],[9,1o,11,12]dA[9,1o,11,19],[9,1o,11,12]

dQ[e_,e,7,s],[9,u,12,14]./i-14,14 + dQ[5,e,7,s],(9,11,12,1s]A1e,14 +

(3.111) dQ[s,e,7,s],[.,1i,1_,le]AIe,I.)

(dA[.,11,1.],[.,1oj1](dQ[.,e,.,s,lo,,[.,x3,14,1,,le]A.,1,

+ dQ[5,e,7,s,lo],[1o,13,1.,1_,le]A1oj2+ dQ[5,e,_,s,_o],[_,la,_.,_,_e]A_,z_

+dQ{e,e,_',s,_o],[_,13,_'_,_,_s]A_,_)/dQ[e,e,_,s].[_,_,_,_e]

+dQ[_,e,_,s,_o],[x_,z_,_.,xe,_e]A_,_)/dQ[e,e,_,s],[_,_',x_,_e]

+ dQ[_o,_j_,_e,_e],[_,e,_.,s,_o]A_o,_o+ dQ[_o,_3,_,_e,_e],[_,e,_,sax]A_,_o

+dQ[_o,_,_.,_,_e],[_,e,_,s,_]A_,_o)/dQ[_3,_,_,_e],[_,_,_,s]

+ dQ[_o,_,l_,_,_],[_,_,z,s,_]A_,_+ dQ[xo,_3,_,_.xe],[_,e,v,s,n]A_,_

+dQ[_oja,,,,x_,,ol,[e,o,,,s,,_]A,_,o)/dQ[z_,,,,,e,,e],[a,.,,,s])
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+ (dQ[s,e,z,s],[.,xo,1_,:s]Ais,z4+ dQ[s,s,7,e],[.,1o,zs,z4]A14,14

+dQ[5,6,7,s},l.,xo,12,zs}Axs,14+ dQ[5,s,_,s],[.,xo,x2,16}A16,14)

(dA{,.lo.x2].[9.,o.n](dQ[s.s.z.s.lo].[,.13.1,.ls.ls]A,.x_

+dQ[s,s,7,s,xol,[1o,ls,x4,1s,lslA1o,12+ dQ{s,s,_,s,zo],[zl,xs,14,zs,is]A11,1_

+dQ[s,s,_,s,1o],[12,1s,I4,1s,16]A 12,1_) /dQ[5,s,7,s],[13,14,z5,1s]

- dA[o,Io,12],[o,io,12](dQ[s,s,z,s,lol,[s,13,14.15,1s]Ao,xl

+dQ[s,e,7,s,lo],[1o,ls,14,1s,ls]A1o,zx+ dQ[s,s,z,s,_o],[n,_,_,_,_s]A_z,z_

+dQ[_o,l_,_,_,_e],[_,s,_,s,_o]Axo,_o+ dQ[lo,_a,x.,xe,le],[s,e,_,s,_]Ax_,zo

- dA[s,_oj_],[_o,n,_](dQ[_o,_,l.,_,xs],[_,s,z,s,_o]Axo,.

+dQI_o.,_.z,.,,.,s].[s.s.z.s.,,]A,,.,)/dQ[,_,,.,_.,,s},[s,.,v,s})

+ (dQ[s,s,_,s],[_o,_,_,_a]Axs,_4+ dQ[s.s,_,s],[1o,11,12,14]A14,14

+dQ[s,s,_,s],[_o,_,_2,_]A_,_+ dQ[s,s,z,s],[xo,_,_2,_s]A_,_.)
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,_ (dAtlo.n.12].lo.lo.ll](dQ[s.,.7.s.loLi,.la.l,.ls.l,]A,.12

-I"dQ(s,s,7,s,lo],po,la,14,1s,ls]A1o,12+ dQ[s,s,7,s,lo},[11,1s,l/,is,16)A11,12

" +dQ[s,s,T,s,lol,p2,1a,14,1s,ls]A12,1_)/ dQ[s,s,7,s),{is,1.,is,ls]

- dA[1o,n,x2},[..1o,12](dQ[s,6,7,s,lo],ts,13,1,,Is,16]As,u

+ dQ[s,a,7,s,lo],[1o,18,1.,1s,16]Am,11+ dQ[s,s,7,s,lo),[n,13,1.,is,16]An,lx

+dQIs,s,_',s,lol,I12,1a,1.,Is,lsIA12,11)/dQ(s,e,7,sI,In,1+,Is,16]

+ dA[1o,lx,121,[9,11,x2](dQ[io,13,14,1_,_s],[s,s,_,S,,lA_,_o

+ dQ[_o,l_,_.,_je],[s,e,_,s,_o)Axo,_o+ dQ[_o,_,_.,_S,le],[_,_,z,s,u]A_,_o

+dQ[_o._,__,_s,_],[_,s,7,s,_]A _,_o)/dQ[l_,_+,__,_s},[s,s,_,s]

+ dQ[_o,l_,_4,_,_],[s,e,_,s,.]A.,. + dQ[_o,_,_,l_,1_l,[s,e,7,s,_1]A11,,

+dQi,o.,a.,,.,s._,l.[,.,.,.s.,,]A'_.')/dQlta._,._s.,,].[s.,.7.s])

+dQ[s,a,7,s],[.,1o,_z,_]A1_,_. dQ[s,a,7,s],[o._o,_,_o]A_o,14)
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3.2.3.2 Eliminatins A,,_'s

Each of the four subsystems has an 8 × 8 data matrix. The data matrix for the

I.I subsystem is shown below:

(3.112)

Pio2,2 Pio2,s Pio_,, Pih_,_ Pih2,e Pih2,. Pih2,ae Pio2,1

Pios,2 Pios,s Pios,4 Pihs,5 Pihs,e Pihs,xs Pihs,le Pios,1

Pio4,_ Pio,,3 Pio,,, Pih4,_ Pih,,e Piht,xe Pih4,xe Pio4,1

Pho,.2 Phot.3 Pho4.4 Phh,.5 Phh,.e Phh4.15 Phh4.1e Pho,.:
Qll =

Phos._ Pho3.s Phos.4 Phh3.s Phhs.e Phh3.15 Phh3.1e Phos.x

Pho2._ Pho_.s Pho2.4 Phh2.5 Phh2.e Phh2.x_ Phh_.le Pho2.x

Phox,_ Phox,s Phox,4 Phhx,5 Phhx,e Phhx,x5 Phhl,le Phox,x

Piol,2 Piol,3 Piol,4 Pihl,5 Pihl,e Pihl,ls Pih1,1e Piol,1

Qll has four rank deficient submatrices. They are 4 × 4 submatrices of rank two

(or less). Two constraints axe required to force a generic vector in R' to Lie in a given

two dimensional subspace. Four conditions are required, therefore, to force a genetic 4 × 4

matrix to be of rank two. These consistency conditions upon Qll may be expressed as the

vanishing of 3 × 3 minors. Substituting the solutions for the modified transition probabilities

into these minors forces highly nonlineax polynomials of the A_,_s to be identically zero.

These conditions will be studied in order of increasing complexity. (Clearly, the conditions

which involve variables f_om Pih axe bound to be horrendous, so they are not considered

until much later.) Eight of the conditions axe identities of the form A_,_ = 0. The rest

reduce (at a generic point) to four term linear equations. In the rest of this section, the

right-left, left-right, top-bottom, and bottom-top rank deficient submatrice8 are labeled as

Qij.l, Qijt., Qijtb, and Qijbt where i,j - 1,2. For example,

#
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o

Q11s,1 Q11s,_ Q11O Ql18,4
@

Ql1,,I Ql16,2 Q116,s Ql1,,4
Qll,a =

Ql17,1 Ql17,_ Ql17,8 Ql1_,,4

Q11s,_ Q11s,2 Q11s,s Ql1,,4

Phos,2 Phos,s Phos,4 Phhs,s

Pho2,_ Pho2,3 Pho_a Phh2,5
. (3.113) =

Phol,2 PAol,3 Phol,. Phhl,s

Piol,_ Piol,3 Piol,4 Pihl,5

3.2.3.2.1 Identities Since Qll,t is rank two, the determinant of any 3 x 3 minor is

identically zero. Hence,

Ql15,1 Ql1_,2 Qll_,s

o = QI16,i Ql16,_ Q11s,s

Ql1,,I Ql1,,2 Qll,,s

Phos,2 Phos,s Phos,4

(3.114) : Pho2,2 Pho2,3 Pho2,4

Phol,2 Phol,3 Phol,4

Sincethesolutionsforentriesin P_o intermsof A_,#saresimplest,3.114isthe

simplest3 x 3 minorof3.113when thesolutionsintermsofAi,#saresubstitutedin.Recall

thatA isa 16 × 16 blockmatrix,with 4 × 4 blockson thediagonal.The upperleftblock

ofA istheinverseoftheupper leftblockofPho,and so
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Phi.2 Pho,.,Pho,.,

-A4,, : Pho.a,2 Pho=,s Pho2,, /dPhot,,s,s,4],[,,2,s,.]

Phos,:, Phos,s Phos,.

Q11s,, Qlls,_ Q115,s

= Q11e,, Q11e,2 Q11e,a /dPho[,,2,8,4],[,,2,s,4]

Ql17,, Ql17,2 Ql17,8
- 0

The same reasoning applies to Q11b, and shows that A,,, = 0, This argument also

applies to the rank-deficient submatrices Q21., Q21,b, Qi2z., QI2_,, Q22,t,, and Q22a. and

yields the following identities:

(3.115) A,,4 ffi0, A4,, ffi 0, A6,e - 0, As,a = 0

A,,12 ffi0, A,2,. ffi0, A,s,,s = O, A,e,ls = 0

So really the upper leR subblock of A looks like

A1,1 A,.2 A,.s 0

A2.,A2.2 A2.sA2.4

As,_As,, As.sAs.4

0 A4,: A,,8 A4,4

For larger systems there are even more zero valued A,,_s. In the first recursive

step in the algorithm for the 8 × 8 problem A is a 32 × 32 block diagonal matrix with four

8 x 8 blocks along the diagonal. For exactly the same reason that the blocks of A in the

4 × 4 problem have zero _a/ued corners the blocks of A for the 8 × 8 problem have three
t

zero valued entries in each of their off diagonal corners. The upper left block has the zero

structure :
o
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' A:,I AI,_ AI,_ AI.. AI,j Al,e 0 0

. A2,1 A2,: A2,s A2,4 A2,s A2,e A2,7 0

As,x As,2 As,s As,4 As,5 ,As,., Aa,, As,e

A,,I A.,2 A.,s A4,4 A.,s A4,e A,,7 A,,,

As,1 As,2 As,s As,., As,s As,s As,. As,,

As,l A6,_ As,3 As,, As,s Ae,s As,T As,s

0 AT,2 AT,s A_,4 AT.s AT,s AT,_ AT,s

0 0 As,a As,. As,s As,s As,7 As,s
r

In general, for a n × n problem where n = 2k for some whole number k, the matrix

A at the first level in this recursive algorithm has four n × n blocks and each of these blocks

contains _h=_,)j = _ zeros in its off diagonal corners.

3.2.3.2.2 Easy Conditions Notice that there are sixteen 3 × 3 minors of the matrix

Qll,t. Each rank deficient submatrix like Qll,z yields at most four independent consistency

conditions. Since we already know that A4,1 E 0, we can hope to get at most three more

independent conditions from setting the 3 × 3 minors of Qll,z to zero. When the other

fifteen 3 × 3 minors are first written down, they seem highly nonlinear, but upon closer

inspection they proved to be quite simple. Gral]mann relations may be used to simplify

the equations. Although we need not consider all fifteen remaining minors, we do so for

the Qll,z submatrix. (In later sections minors of other matrices will turn out to be so

cumbersome that we only consider an independent set of minors.)

"Easy" Conditions before Gra/]mann

Eight of the minors factor very easily. The minor d_ll_l[2,s,,].[x,2,s] factors to

become

q
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(_A[_,_,_],[_,_,_}dAi_,_,s],l_,s,4] _Al_,_,,],l_,_,s].

dA[1._.i].[_.s.4]dA[x.s.,].[_._.4]dA[_,_,sl,{_,_,s] -

dA[1,_,4],[l,_,4]d.A[1,3,4],[_,3,4]d.A[1,2,3],[l,_,3]-

dA[_,_,4],[_,_,_]dA[_,_,_],[1,_,4]dA[_,_,4],[_,_,s].

dA[_,_,.},l_,_,_} dA[_,s,,},[_,_,4}dA[_,_,s],[_,a,,])

(3.117) IdQ[_,_s'_4'_s'xsl'[_'s's,_'SlAs'.+ dQ[1,_,",_s,_s],i',_,s,_,e]A4'4+

dQ[_,_,.,.,zs],[_,_,s,_,s]Ax,_+ A_,,dQ[_,z_,.,.,zs],{_,s,s,z,s])



_Easy" Conditions after Grs.6mann

We can use GrMimann relations to simplify the minors 3.116, 3.117, and 3.118

even further. For example, the cubic term in equation 3.116 may be rewritten as

(3.119) dA[_,=,l],[_,s,.](dA[;,2,3].[_,3,/]dA[1,3,1],[1,2,s]- dA[1,_,l],[=,_,i]dA[1,],3],[1,_,_])-

dA[_,_,.],[_,s,_](-dA[_,_,a],[_,_,_]dA[1,3,,],[_,_,_]+ dA[_,_,_],[_,_,4]dA[_,_,.],[1,_,_])+

Using the matrix

Ai,i A_,_ Ai,z A!,i 1 0 0 0

A_,_ A2,2 A2,_ A2,4 0 1 0 0

(3.120)
A3,_ A_,_ A_,_ A_,_ 0 0 I 0

A_,_ A_,_ A,,3 A4,_ 0 0 0 1

we may rewrite 3.119 in GrM_mann notation as
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(3.121) z'l,s,,,_ (z'2,s,,,s z'1,2,3,, - z'z,s,,,e z'l,2,3,s) -I-

lr2,3,_,, (-_r_,3,,,e lr1,_,3,8+ 7r_,3,,,slr_,2,3,e) +

_rl,2,s,_ (-_rl,s,,,n lr2,s,,,6 + z'l,s,,,6 lr2,s,,,8)

We may next make use of the Gra6mann relations

0 = '71"2,3,4,8 _1,2,3,6 -- 7r2,3,4,1 7r8,2,3,6 "+" '71"2,3,4,2 '71"8,,1,3,6 --

(3.122) Ir2,s,4,s 7r8,1,2,6 "4" '71"2,3,4,6 11"8,1,2,3

-_ '71"2,3,4, 8 7rl,2,3,6 -- 71"2,3,4, 6 7/'1,2,3,8 -- 71"2,3,6,8 7/'1,2,3,4

0 "- '71"1,3,4,8 71"1,2,3,6 -- ";i"1,3,4,1 '71"8,2,3,6 "_- _1,3,4,2 7r8,1,3,6 --

(3.123) _T1,3,4,3 7i'8,1,_,6 "4" 71"1,3,4,6 _8,1,2,3

--- 7T1,3,4, 8 lrl,2,3, 6 -- 7/'1,3,4, 6 71"1,2,3, 8 -- 11"1,3,6, $ '71"1,2,3,4 _ 6_T/,d

0 -- 71"1,3,4,8 71"2,3,4,6 -- 71"1,3,4,2 71"8,3,4,6 "_" 11"1,3,4,3 1I"8,2,4,6 --

(3.124) _1,3,4,4 7F8,2,3,6 + 71"1,3,4,6 _Ts,2,3,4

"_-- 71"1,3,4, $ ?T2,3,4,6 -- 71"1,3,4,6 71"2,3,4,8 -1t-" 7['3,4,6, 8 71"1,2,3,4

Using these relations, the expression in 3.121 may be simplified as

(3.125) z'l,s,4,7 z'2,s,e,s 7rl,2,s,4 -

7r2,3,4,'/' 71"1,3,6,8 _1"1_2,3,4 _" ")T1,2,3, 7 7T3,4,6,8 7i'1,2,3,4

Finally, we can make use of the Grat3mann relation

71"1,3,4,7 '71"2,3,6,8 -- "i1"2,3,4,7 7rl,3,6,8 -_-
=

(3.126) Iri,2,3,7 Irs,4,e,8 - 7rs,_,7,s 7rI,_,3,4 = 0

to simplify 3.125. When equation 3.126 is used to simplify equation 3.125, the

result is a product
i

, ,, '_, r_ ' ' Ill Ir,', .... , ' ,
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e

(3.127) _'s,6,7,s _.21,2,3,4

2
which equals Al,sdA[I,2,s,4],[1,2,s,4] in the original notation. We can write the minor

dQ 1L.t[2,s,4],(1,2,s]as

2

-dQ[5,e,_.s],[Is,14,15,16]A1,s dA[1,2,s,.],[1,2,s,41

(3.128) (dQ[1,xs,14,15,16],[s,5,e,7,slAs,4+ dQ[1,1s,14,xs,xel,[4,5,6,7,slA4,4+

dQ[1,1s,x4,_5,1el,[1,5,_,7,s]A1,4+ A2,4dQ[1,1s,14,15,1sl,[2,5,6,_,s])

Similarly, equations 3.117 and 3.118 are equivalent to

2

dQ[5,6,_,s],[ls,14,15,1s]A1,2 dA[1,_,s,4],{1,2,s,4]

(3.129) (dQ[1,1s,14,15,1e],[s,5,6,7,s]As,4+ dQ[1,1s,x4,15,1e],[4,5,e,7,s]A4,4+

dQIl,ls,14,15,10],[1,5,e,7,s]A1,4+ A_,_dQ[_,ls,_4,_,l_l,[_.,5,_,_,s])

and

2
-d Q[5,o,_,s],[is,__,_e,ie]A i,i dA[_,_,s,41,[i,_,s,4]

(3.130) (dQ[1,1s,z4,15,1el,[s,e,e,7,s]As,4+ dQ[1,1s,14,_5,1e],[4,e,e,7,s]A4,4+

dQ[1,1s,_4,1_,_e],[_,e,e,_,s]Al,_+ A_,,dQ[1,1s,14,1e,le],[_,5,e,_,s])

respectively.

Recall that each of these minors must be identically zero, dA[1,2,s,4],I1,2,s,4]_ 0 and

Az,1, A_,_, and Al,s are generically nonzero. Finally, the 4 x 4 minor of _, d_[e,6,_,s],[_s,l_,ze,le],

is also generically nonzero. Hence, in each of these three minors the relevant term is the

last one:
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dQ[1,1s,14,15,16],[s,5,s,7,s}As,4. dQ[1,1s,14,1s,16],[4,5,6,7,s]A4,4

(3.131) .dQ[1,1s,14,15,161,[1,5,6,_,s]Ai,4+ A2,.dQ[1,1s,14,16,1e],{2,5,e,_,s]= 0

There are three more minors which factor easily, dQll_t{1,2,sl,{1,2,4]equals

(-As,_dQ{is,14,15,1e],[2,s,4,5]- Ae,sdQ[is,14,15,1_],{2,s,4,6]-

(3.132) As,sdQ[Is,14,15,16],[_,s,4,s]- AT,sdQ{Is,14,15,16],[2,s,4,_])

(dA[1,s,4],[1,s,4]dA{1,2,4],[2,s,4]dA{2,s,4],[1,:L4].

dA[1,3,4],[2,s,4]dA{2,s,4},[1,s,4]dA[1,_,4],[1,_,4]-

dA[1,s,4],[1,s,4]dA[2,s,4J,[2,s,4]dA[1,2,4],{1,2,4}-

dA[x,s,4],[_,s,4]dA[1,2,4],[1,s,4]dA[2,s,4],[1,2,4]+

dA[I,s,4],[1,2,41dA{1,2,4],{1,s,.]dA[2,s,4M2,s,4]-

dA[1,s,4],[1,2,4]dA[2,s,4],[1,s,4]dA{1,2,4],[2,s,43)

and dQll,.t[x,2,s},[2,a,4]equals

A6,sdQ[ls,14,xs,le],[2,s,4,5]+ Ae,sdQ[ls,14,15,1e],[2,s,4,e].

(3.133) As,s dQ{ls,x4,15,1e],{2,s,4,s] + AT,_dQ[13,14,1_,le],[2,s,4,71)

, (-dA[1,2,4},{1,s,,]dA[_,_,sl,[2,s,4]dA[2,3,4],[1,2,4}-

dA{1,2,4],{2,s,i]dA[2,s,4],[:,s,4]dA[:,_,s],[:,2,4]+

dA{x,2,4],[x,S,4ldA[2,s,4],[2,s,4]dA[1,_.,s],[x,2,4]+

dA[1,_,4],[_,s,4}dA[1,2,s],[x,s,4]dA[_.,3,4},[1,2,4}-

dA[1,2,i],{x,2,4]dA[1,2,s],[x,s,4]dA{2,s,4],[2,s,4]+

dA[_,2,4},{x,2,4]dA[2,s,4],[x,s,4]dA[1,2,3],[2,8,4])
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and dQll,.t[1,2,s],[1,s,4] equalsm

(-As,sdQ[Is,14,15,_6],[2,s,4,5]- Ae,sdQ[_s,14,16,16],[2,s,4,6]-

(3.134) As,5dQ[Is,14,15,1ej,[2,s,4,s]-A_,sdQ[Is,1.,is,lej,[2,s,4,T])

(-dA[1,s,4],[1,s,4]dA[1,2,s],[2,s,.]dA[2,s,4],[1,_,4]-

dA[i,s,4],[2,s,4]dA[2,s,4],[1,s,.]dA[1,2,s],[,,2,4]+

dA[,,s,i],[, ,s,4]dA[2,s,4],[2,s,i]dA[1,2,s],[,,2,4]"t"

dA[1,s,4],[2,s,4]dA[1,2,s],[1,s,,]dA[2,s,4],[1,2,4]-

dA[1,s,4],[1,2,4]dA[1,2,s],[1,s,4]dA[2,s,4],[2,s,4]+

dA[,,s,4i,[i,2,4]dA[2,s,4],[1,s,4]dA[1,_,s],[_,s,,])

Just as before, one may use Graflmann relations to simplify the above minors.

Provided that A2,,, A3,4, and A4,4 are nonzero they yield only one relevant term:

As,sdQ[is,14,15,1,_],[2,s,4,5]+ Ae,sdQ[is,14,1_,_,_],[2,s,_,e]+

(3.135) As,_dQ[_s,_4,_,_],[_,s,4,s]+ A_,_dQ[,s,,_,l_,,e],[_,s,4,,]) -- 0

The s_me hold true for the other rank deficient submatrices, _llbt, Q21.t, _21_b,

Q12t,, _12bt, Q22tb, and Q22z_. Each submatrix has several 3 x 3 minors which factor easily

but these easily factorizable minors yield only two relevant equations per submatrix. For-

tunately, these equations are linear in the unknowns! Recall that each of these submatrices

has one 3 x 3 minor which yields one of the identities in 3.116. So we expect to find only one

more independent relation per rank deficient submatrix. Fortunately, the remaining minors

are easily cleaned up. They are sums of many terms, some of which are eqivalent to the

identities just found (like 3.135) multiplied by some other term. When these identities are

subtracted from one of the remaining minors, _,_other relation amongst the Ai,_s appears.

One example is given below:

t
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dQ[5,6,7,s],[13,14,1s,16]dQ[Is,l.,1s,_6],[5,6,T,s]d-411,4],[2,4]

(3.136) (A.,sdQ[1,13,,4115,,s],[1,2,3,.,.]+ Ae,sdQ[1,1a,l.,15,16],[l,2,3,.,e]+

+ dQ[1,13,14,15,16],[1,2,s,4,s]As,_)= 0-46,sdQIl,la,14,15,16],11,2,3,4,5]

In fact, all of the remaining 3 x 3 minors of Qll,a yield the same relevant term, as

we might expect. Each of the other seven rank deficient submatrices that have been studied

thus far yields exactly one more independent relation amongst the Ai,js.

If the rank deficient submatrices Qll,z, Qllb_, _21,1, Q21_, Q121,, Q12_t, Q22tb,

and Q221, were all independent of each other then they would correspond to 8 • 4 = 32

independent 3 x 3 minors. Unfortunately, this is not the case. The 24 nontrivial minors

may be grouped in eight sets of three according to their unknowns. Grai]mann relations

may be used to show that all three equations per group are equivalent. One of the sets is

shown below:

dQ[1,13,14,15,16],[1,2,3,4,¢]Az,s+ dQ[z,za,14,1s,ls],[1,2,3,.,s]Ao,s+

(3.137) dQ[1,13,14,15,16],[1,2,3,4,5}As,s+ dQ[1,x3,14,1_,_],[_,_,_,4,slAs,_= 0

dQ[_a,_,_s,,e],(a,_,_,e]A_,s+ dQ[_s,,_,_s,_e],(_,_,_,e]Ae,_+

(3.138) dQ(_a,14,_s,_],[_,_,_,s]As,_+ dQ[za,_4,_s,_],[_,_,_,_}A_,_= 0

dQ[s,1s,14,1S,lS],[1,2,s,4j,],4_,,s -t- dQ[s,_a,z_,zs,_},[_,_,3,.,s]-4s,s+

(3.139) dQ[s,l_,14,1_,1_],[1,_,3,4,e]Ae,_+ dQ[s,I_,_4,1_,I_],[_,_,_,4,s]A_,s= 0

Noticethatthisequationdoesnot taketheidentities3.116intoaccount.When

theidentitiesareconsideredtheJacobianoftheabovesystembecomes:

cIQ[Is,14,1s,ie],[9,3,4,e]dQ[is,14,1s,le],(2,s,4,s]dQ[zs,14,ze,ls],[2,s,4,7]

(3.140) dQ[_,_s,_,lS,_ej,[_,_,s,4,s] dQ[1,1s,14,1S,le],[1,2,3,4,e]dQ[1,13,14,1S,le],[l,9,3,4,7]

dQ[s,13,14,15,1e],[1,_,s,4,s]dQ[s,13,14,1s,_],[1,_,3,4,6]dQ[s,13j4,1s,1e],[l,_,3,4,z]

This Jacobianportendstrouble:eitherthesolutionto thesystem3.137,3.138,and 3.139.
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is trivial, or else these equations are not all independent. We may use Graflmann relations

to show the latter. For the equations to be equivalent, the rank of this matrix must be one.

The rank is one if and only if every 2 × 2 minor is identically zero. Start with the uppere

left 2 × 2 minor

dQ[13,14,15,16],[2,3,4,5]dQ[I,13,1.,15,16],[I,2,3,4,6]-

(3.141) dQ[la,14,15,1e],[2,3,4,e] dQ[1,13,14,xs,16],[l,2,_,4,s]

In order to use Grat_mann identities to show that 3.141 is identically zero, consider

the matrix

Q1,1 Q_,2 Q1,3 QI,_ Q_,5 Ql,e Q_,7 1 0

Q8,1 Qs,_ Qs,3 Q8,4-Qs,5 Os,6 Q8,7 0 1

Q13,1 Q13,2 Q13,3 Q13,4 Q13,5 Q13,6 (_13,T 0 0

(3.142)
Q14,1Q.,2 Q14,3Q.,4 Q.,5 Ql4,e Q.,7 0 0

Q15,1 Q15,2 Q15,3 Q15,4 Q16,5 Q15,6 Q15,7 0 0

Q16,_Q16,2Q18,3Q1o,_ Q.,5 QI6,O_,_ 0 0
In the Graflmann notation with respect to this matrix, 3.141 is

(3,143) 71"2,3,4,5,8,9 W1,2,3,4,6,9 -- 71"2,3,4,6,8,9 71"1,2,3,4,5,9

The Graflmann relation beginning with these terms is

(3.144) 7r2,3,4,5,8,9 71"1,2,3,4,6,9- 71"2,3,4,6,8,9 7rl,2,3,4,$,9- 71"2,3,4,5,6,9_1,2,3,4,8,9 --0

Hence, the upper left 2 x 2 minor in equation 3.141 equals

(3.145) dQ[1,13,14,1e,1 _],[2,3,4,5,t_] d_[13,14,15,16],[1,2,3,4]

But the submatrix of Q containing rows [1,7, 8,9,10,11,12,13,14, 15,16] and

columns [2, 3, 4, 5, 6] is of rank four. So the minor dQ[1,13,14,15,16],[2,3,4,5,6] is identically zero.

Then the expression in 3.145 is identically zero, which forces the minor in 3.141 to be

. identically zero. Gra/_mann identities plus consistency conditions can be used to show that

each 2 × 2 minor of the Jacobian in 3.140 is identically zero. The same holds for each of

• the eight sets of three equations. Amongst the two dozen conditions found, only eight are
I

independent. The author prefers to work with the relations whose coefficients are of lowest

degree in the data and uses the following solutions to eliminate eight of the ,4i,jS
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o

A5,5 = + ]
dQ[13,14,1s,16j,[2,3,4,5]

Ate,t2 = Ax°'t2dQIs's'LsJ'(1°'xs't"xs7+ All't_dQ{s'6'"Sl'{la'!a'l_'ts|
dQ[5,6,7,s],[tz,xs,t4,ts]

Axs,x3 = -dQts'6'7'sl'tx°'xx'x_'x']a"'x* + axs'x3dQts'6"'s]'tx°'xx'xm'xs]
dQIs,6,7,s],[to,tt,12,13]

As,s = A_"sdQ[ta'tlas'xe]'[7""i°'x!!+ A*'sdQtla'il'xs't6]'[8'9'x°'xl]
dQt13,1.,Is,t6],[s,.,xo,u]

A9,. = A11'9dQt13'1'as'16]'[6'_'s'11]+ A1°"dQ[13'1"Is'x_]'t_'_'s't°]

A4,t =
dQtx_,xi,x_,xe],[4,_,e,7]

dQt_,e,7,s],tx,2,_,xe]

(3.146) A_,_ = dQ{_'_'Ls]'[_'_"_'_IA2'_ + dQ(_'_'_'sl'{_'_4'_'l_]A3'_

3.2.3.2.3 Hard Conditions We may now substitute the solutions in 3.146 and 3.116

back into the modified probabilities, (the data for the 2 x 2 subsystems which are the nonzero

entries of the modified transition matrices P_a, P_o, Phl,, and P_o). The eight 4 x 4 rank

deficient submatrices which were not used to find the solutions in 3.146 and 3.116 may now

be used to eliminate more of the A_.is. As before eight 4 x 4 submatrices of rank two yield

(at most) 32 independent conditions amongst the remaining 48 Ai._s.

The submatrices which have not yet been used to eliminate A_,_s are QII_,, Qlltb,

Q12,_, Q12_,, Q21_,, Q21_,, Q22_,, and Q22,_. Since the 3 x 3 minors of these equations

cannot all be independent we need not bother simplifying all of them. These 3 x 3 minors

are extremely cumbersome so the author generated a phantom and substituted its data into

the minors in order to look for the simplest maximal spanning set of these minors. Some

of these minors were much simpler than others. Recall that generically four conditions are

required to force a 4 x 4 matrix to be of rank two. Although each rank deficient submatrix

corresponds to four independent 3 x 3 minors, there may be dependencies between minors

generated by different submatrices. As with the submatfices Qll,i, QII_, QI2_,, Q12,_,

Q21,_, Q21,_, Q22_, and Q22_,, which had only sixteen independent minors amongst them,

the remaining eight submatrices correspond to only sixteen independent minors.
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Preferring the path of least resistance, the author chose to simplify as few of

the general minors as possible, starting with the minors corresponding to rows [1,2,3] and

. [1,2,4] and columns [1,2,3] for the submatrices Q12,z, Q21z,, Q22bt, and Q11tb. This choice

of equations is not unique and was made simply because these equations looked simplest.

The first step after writing down the equations is to eliminate their denominators. The next

step is to coUect appropriate terms in the equations. When a data set is substituted into

the general equations the resulting equations have numerical coemcients and are referred to

as numerical equations. The numerical equations have nearly as many terms as the general

equations and many of their terms share the same coefficient. Once terms in the numerical

" equations with like coemcients are collected, the resulting equations have 1000 terms each.

The arguments of like coefficients factor into a neat form (sometimes zeroS). Collecting the

general equations with respect to the minors of the data matrix, Q, yields 1000 term general

equations. We may simplify each of these terms individually. The nontrivial terms which

are independent of the data matrix Q are either of the same form as 3.119 or of the form

(3.147) -dj412,3,4],[1,3,4] dA[1,2,3],[2,3,4] + dA[I,2,3],[I,3,4] dA[2,3,4],[2,3,4]

Referring to the matrix 3.120, we can write 3.147 in GraJ]mann notation

(3.148) Iri,3,4,5 7l'2,3,4,8 - ?I'1,3,4,8 _2,3,4,5

which is the beginning of the Gra_mann relation

(3.149) Iri,3,4,5 Ir2,3,4,s - Ir1,_,4,s _r2,3,4,_ - Ir3,4,5,s 7ri,_,3,4= 0

From 3.149 we can make the substitution

dj/_[2,3],[3,4]dA[1,2,3,4],[1,2,3,4] -- -_A[2,z,4],[1,3,4]d.A.[1,2,3],[2,3,4] .-P _A[1,2,3],[1,3,4]_A[2,3,4],[2,3,4 ]

Once substitutions like this are made, we can factor out a square of one of the

following minors:

dA[_,_,z,4],[1,2,s,4],dAs,6,v,s],[s,e,7,s], dA[9,10,11,_2],[9,10,11,12],_nd dA[13,14,1s,le],[13,14,15,16]

as well as several generically nonzero minors of the data matrix. This step reduces the

' degree of the equations in _41,jsfrom thirteen to five and many of the terms in the equations

are functions of minors of A. As long as the minors are written in the shorthand using the

' symbol dA, the identities in 3.116 are not recognized. So we must (have MAPLE) write out

the minors and substitute the identities 3.116 into the equations. In both the numerical

and general cases, the resulting equations have 256 terms, once they are collected with
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respect to the A_,_s. In the numerical case, the equations factor to have one quadratic term

with 16 terms, another quadratic term with four terms and one linear term with only four

terms. Generically, the relevant term is the linear one. Unfortunately, the author's general

equations do not factor. The coefficients of each of the terms is a polynomial in minors of

Q. The minors are expressed in the by-now familiar shorthand using the symbol dQ. As

the Graflmann relations show, there are many ways of writing a polynomial in minors of a

matrix. If MAPLE were able to handle equations of arbitrary size then the easiest thing to

do would be to rewrite the equations without the dQ notation and ask MAPLE to factor

them. At present, that is not possible. So we must work.

Assuming that the general equations should factor just as their numerical counter-

parts do, we make good use of that knowledge. Consider the 64 combinations of variables

which occur ff we expand both quadratic terms in one of the equations. The coefficient of

any one of these combinations is the desired linear term. Since this procedure was rela-

tively easy, the author took the coefficient of each one of the 64 combinations and got 64

different linear terms. Fortunately, they are all equivalent. Although tedious, it is just as

, straightforward to show that these relations are equivalent as it is to show that the rela-

tions 3.137, 3.138, and 3.139 are equivalent. Once again, the author prefers to work with

the equations which have the coefficients of lowest degree in the data. Two of the identities

are shown below



87

0 = (dQ[s,13,.,is,16],p,_,_,.,s]dQ[6,1s,14,1s,16],[s,,,io,n,12]-

" dQ[e,13,14,1s,le],[1,_,s,4,s]dQ[s,1_,1.,Is,16],[s,,,1o,n,12])As,6+
,

(dQ[_,x3,11,15.1s],[x,2,s,.,zldQ[6,13,1.,xs,ls],[s,9,1o,lz,1_]-

dQ[e,13,14,15,1s],[1,_,s,4,z]dQ[s,13,14,1s,le],[s,.,1o,u,12]-

(3,150) dQpsj.,is,zs],[1,2,s,.]dQ[s,8,1a,1.,15,16},[7,s,.,1o,n,12])Av,_+

-dQ[13,1.,ls,16],p,2,a,4]dQ[s,s,ls,14,xs,ls],[s,s,.,1o,ll,1_]+

dQ[s,13,1.,is,lsl,[1,2,3,4,s]dQ[e,13,1.,is,ls],[s,.,1o,n,1_]-

dQ[s,13,1.,is,16],[1,2,3,.,s]dQls,13,x4,xs,x6],[s,.,1o,n,x_])As,e+

- dQ[1_,_.,is,xe],[z,__,.]dQ[_,s,13,_4,_s,_s],[e,s,.,1o,_,_}-

and

0 = (- dQ[e,_,_4,1S,le],[_,_,_,4,s]dQ[7,_,_4,1e,le],[s,o,_o,_1,1_]+

dQ[s,13,14,1e_,1el,[S,9,1o,11,1_]dQiT,lS,14,zs,1e].[z,_,_,4,s])AS,_ +

(-dQI_,_._,_,l_l,[1,_,_,_,TldQ[_,l_,_,l_._l,[s,_,_o,_,_]+

(3.151) dQ[s,_,_,l_,l_,_e],[_,s,9,_o,1_,1_]dQ[1_.I_,_5,_],[I,_,_,_])A_,_+

(-- dQ[5,_3,14,1s,lSl,[_,_,s,4,sldQ[7,1s,1,_,is,ls],{s..,lo,_z,z21-t-

dQ[s,_,_,_.,_s,1_},[_,s,_,_o,_x,_]dQ[_3,1_,_s,1_],[1,_,_,_l)As,_ +

-- dQ[7._s._4._s.ze].[s.,.lO.11._]dQ[_._s._,._.__].[_._.s.,._]q-

" dQt_,Is,_,_,_e],ts,_,_o,_,x_ldQ[_js,_4,1s,_],[_,_,s,_,e]+

[..... ],[..... ] [ , , , ],t,,,I)As,_

These equationsareindependentand yieldthe followingsolutionsforAs,sand

"45.6•
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As,sffi(- (dQ[s,7,.,.,.,is],p,z,s,,,s,s]dQ[,,13,.,.,Is],{s,,,xo,n,12]+
t

dQ[v,.,.,15,x6],[1,_,s,4,s]dQ[5,s,13,14,.,ieMs,s,,,1o,x1,12]-

dQ[s,v,ls,.,.,161,[5,s,,,xo,n,12]dQ[s,xs,.,Is,16],[1,2,a,4,s]+

dQ[s,7,.,.,.,xsl,[s,s,,,1o,n,12] dQ[s,.,.,Is,xs],[1,_,8,,,5] -

dQ[e,.,.,.,16],[s,,,1o,n,12] dQ[s,7,xs,.,.,le],p,2,s,4,5,6] -

dQ[_,.,.,.,16],[1,2,3,4,6]dQ[5,e,1s,lt,15,1s],[s,s,.,lO,11,l_] -

. dQ[s ,r,13,14,15,1s],[u,9,1o,11,1_] dQ[5,1a,14,iS,lS],[1,2,3,4,5] -4-

dQ[7.13.1,.Is.zs].[s.9.1o.11.1_] dQ[s.o.za._./._.lS].[_._._.,.s.s] +

dQt_,_,_,.,_,_l,[_,s,,,_o,n,_] dQ[_,.,.,_,_el,p,_,_,_,_] .

' dQ[s,s,_,,.,.,.,zs],[_,s,s,e,zO,_l,l_] dQ[z_,.,l_,_e},[_,_,_,,])As,s -

(dQ[_,7,.,.,.,_],[_,_,_,_,_,_]dQ[_,x_,.,_,_s],[8,,,_o,_,_]-

dQ[_J',_,_,l_,Zs],[_,s,,,_o,_,_:_] dQ[_,_,_.,l_,_],[_,_,_,4 j'] -

dQ[_,_,.,.,_],[_,_,_,_,_]dQ[_,_,.,.,.,_],[_,s,,,_o,_,_] +

dQ[_,la,_,_,_],[_,_,_,_,s]dQ[_,_,.,-,_,_e],[_,s,,,_o,_,_]+

dQ[e,_,.,_,_e],[s,_,_o,_,_]dQ[_,z,_,.,xs,_e],[_,.,_,_,_,s]+
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A.,e ffi ((-dQtT,x+,.,xs,x,],p,+,,,+,e) dQ[a,s,xs,.,x,,x,l,[.,,,,,xo,n,lm] +
+,.

dQts,l+,1+,x+,x+l,p,+,s,,,s]dQ[,,+,1+,1+,++,++},te,e,+,+o,lx,1+}-

dQ[e,v,xs,x4,xs,xel,[o,e,0,xo,n,x2]dQts,xa,x+,xs,xe],tx,2,s,4,e}-

dQ[s,v,xs,x4,1s,xsl,p,2,s,4,s,eI dQ [6,xs,x4,xs,lel,ts,o,xo,n,x2]+

dQ[s,z,ls,.,xs,xe],tx,2,s,4,s,s]dQ{s,ls,1+,is,_e],[e,9,to,11,1_]-

dQ[s,6,xs,x4,1+,xs],p,2,a,4,e,s}dQ[v,xa,x4,xs,xsl,ts,0,x0,n,xm])Js,s+

(dQt6,xs,x4,xs,xel,[x,.,s.4,s]dQ[5,v,x3,x+.15,xel,tv,s,o,xo.xt,x2]-

dQ[z,xs,x4,15,1e],[x,2,s,_,s]dQ[s,s,_s,x_,zs,z_l,[z,s,,,m,t_,_} -

dQ[+,_+,_+,_+,xo],p,+,a,+,s]dQle,t,xs,.,_+,xel,t+,s,o,_o,_x,x+} -

dQ[_,o,x+,.,x+,xel,t_,+,s,+,+,+]dQt+,_+,x_,ts,xel,ts,o,m,xx,++]-

dQte,7,xs,.,xs,x0],t+,+,s,+,7,s] dQ[+,t+,_,,x+,+S],ls,,,+o,++,_+}+

(3.152) dQ[s,,,xa,.,z+,,e],[,,+,+,,,,,s}dQ[s,xs,t,,x+,xel,[s,,,xo,xx,xml)A.,,) /

(dQt_,T,xa,x4,xs,xe],[x,_,s,,,,s,s]dQ[sj.s,x4,xs,x_l,[s,s,lo,x_,x_] -

dQ[o,_s.x4,_u,x_l,tx,_,s,4,s] dQ[s,7,X_,l_,Xs,xs],[s,s,s,xo,_x,x:_]+

dQ[7,_s,_,,,_s,ls],[1,_,s,.,8] dQ[_,_,_s,x+,xs,x_],ts,s,o,xo.xx,x_l-

dQto,xs,x,_,xs,xOl,ts,o,xo,xx,x_ldQ[s,7,xs,x,,,x_,xol,tx._,s,,,,_.81+

dQtT,_s,x4,xs,x_l,ta,o,xo,xx,x_]dQ[s,s,xa,t4,1s,Zal,[1,_,s,4,s,s] +

dQ[s3,xs,x4,1s,xo],[s,s,,,1o,11,12] dQ[s,_s,_,,x_,_al,[x,2,_,_,s})

3.2.3.2.4 Very Hard Conditions The only rank deficient submatrices we have not

yet accounted for are _22._, Q11a., Q21_, and Q12_. The autho_ chose to simplify the

simplest minors generated by the phantom, those from columns [1,2,4] and both sets of

rows [1,2,4]and [1,3,4].The equationsobtainedby subtituting3.153and itscounterparts

intotheseremainingminorsarepolynomialsinthe remainingA+,jsand with coef_cients

which arelargepolg++om+alsintheminorsofQ, In preliminarywork witha phantom each

oftheseequationswas a quinticinthe.4+,#sand became theproductofa 32 term quartic

and a linearterm afterfactorization.Upon substitutingthephantom'svaluesfortheA+,js

intothe minors,the relevanttermsturnedout to be thelinearterms.Unfortunately,the
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general versions of these minors did not factor, presumably because the coefficients were

written in the "dQ" notation. As with the hard conditions, the author assumed that the

coefficient of any of the 32 terms in the quartic is the desired linear term.

Because their coefficients are so cumbersome, only a caricature of one of these

identities is shown below

c5(c.ae - 5_c6+ b6ca)dl- dQ[s,e,7,e],lts,lt,ts,t6]dQ[6,6,7,e],[,,to,t1,12]

(dQ[,a.1,.1,.,s}.[s.,.,o,,:t]a,- a,dQlts,l,,,s,le},le,.,to,11])

(bt dQln,ts,t.,ISa.l,t.,Ls,9,tt]-bsdQ[xo,ts.tl,ts,t,l,te,T,s,9,tt])

-dQ[13,.,15,16],[s,T,s,9}dQ[5,o,v,s],[o,lo,na:,]a6(asdQ[tsa.,ts,16},ie,.,1o,xl]

+dQ[s,6,7,t,xol,tto,t3,1.,ts,t6]a_dQ[is,t,,ts,x6},[u,n,12])

+dQ[Is,.,15,16},[s,7,u}dQ[_,s,v,t},[.,xo,t1,12}ax(azdQ[to,13,t,,15,1s],[s,9,zo,tla_]

(3.153) -a_dQ[_,t_,_,,_,_e],[e,_,xo,t_,_])

-dQ[_.s.v.e}.[,.to.tt.t_](b. dQlt,.t,.t_.t,l.t..9.tt.t,]+ b, dQtt_.t,.x_.t,].ts.,.to.tt]) c_a,

+dQts.s.z.s].ig.io.tt.t2](cl a_dQ[t_.tl.l_.ts].ts.v.s._]a,- dQ[s.s.7.s].(t,.ti.tS.l_]C2a2a4

-dQ[t_.tt.l_.to].[_.T.s.g]dQ[l_.tt.l_.ts].{s._.lo.tt]atoa, + dQ[t_.t4.15.t_].[s._.to.l_]b_at c_

+dQlxa,ti,ta,tsl,[S,o,xo,t2]bicaas + dQtta,tt,xa,ts],ts,7,u]atdQtta,i,,ts,ts],fs,o,ii,12]axo

+dQ[a.a.7.s].[,s.,...a.,.]c,a, as - dQt,.s._..e}.[xs.,l.ta.ts]c,a9 a_)) At10.11]

+ (-c_ (c4as - b2cs + beca) dt - dQ[xs.t,.xa.tsl.ts._.s.g]dQ[s.s._.s].[_.to.xl.12]

(badQtx_.x,.xa.xal.ts.,.xo.xxI+ dQtts.xl.xs.xsl.te.,.xx.xm]am)

(-dQts.s.v.,.xxl.to.ta.t..ts.xsla9+ dQta.a.,.s.xo].t,.xs...xs.xe]as)

+dQta.s.,.sl.lo.xoax.xm](b.dQtx3.x..xs.xe].tu.xx.xm]+ badQtx_.x,.x..xe].ts.,.xo.xx])c, a,

-dQ[a,s,7,sl,[o,xo,_,_] (-dQ [x_,_4,_a,zs],[s,z,s,_]dQ[z_a_,_s,_s],[s,_,_o,_}a_a3

+dQtl,,t.,la,lsl,[s,o,io,x_]b.c.a.- clobadQ[_,li,la.xs],is,7,e,.]a_

+dQt._.l,.,a._s].ts.,..o.tm]baa_c,)) At9.11]
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t

+ (dQ[ts,.,im,i,],[s,,,s,,]dQ[,,,,,,,],[,,to,lta2](-dQ[xt,x3,-,1,,-],[,,,,1o,xx,12]

" (-b,dQ[,.sj..s}.[zs.l,a,.Is}+ dQ[,.s.v.s.,o].[x2.1s.-.x,.xsla2)

- (-b, dq[,,,,.,,],O.,,.,1,,,+ ] + dQt,,e,7,s,n],t,2,t+,vL,.,t,]a.) dQo.o,,,,.,,,,to],ts,.,to,t,,t2]) o,

+dQ[ls,.,l+,.j,[a,7,s,,ldQ[5,6,T,,3,[,,to,tl,121(-dQt.,1,,,t+,t6],ts,,,ll,.]bs dQts,e,T,+],tt3,1,,,t.,16]

+dQts,6,7,,,lli,tt2,1s,l,,,],s,.]5+dQtt3,1,,,-,16],Is,,,lo,t_]

+dQ[5,6,7,,,tll,[l:,,ls,.,ls,.ldQ[2,s,.,ls,.],l,,.,ll,_2]a2) a9

-dQtt3,:.,15,t6],[6,,_,a,.]dQts,6,7,sl,[,,lo,11,12](-dQo.3,1,,,,15,t6],Is,,,l_,12161dQ[+,ej',sl,[ls,.,t+,+o]

+dQl_,_,_,s,_o],[_,_,.,_,.]b_dQtt_,.,_,_l,ts,,,_o,_t]

+dQ[_,_,_,s,_ol,[_,_,.,_,.]dQ[t_,.,t_,.],[s,,,_a_]a_) as

-dQls,,j,,s],19,,o,11,l,](b, dQtl,,1,,,,1,,lo],[s,9,11,t,]+ b, dQtl,,.,t+,_.e],[s,,,to,11])cll a,,

+dQl_a,.,_,t_],t_,_,s,9]dQ[s,_,_,s],t,,_o,tLt_]

dQ[_s_s__`_dQ[_s_s_[t_t_t__s_dQ[_a__s_s__

+dQ_s_z_"_]_["_"_;s_dQ[_t_"_s_s]_[s_s_z_=]dQ["_z_;]_[_=_;_"_;_e_

-dQ[_,_,_,sa_],[_,_,t_,_,t_ldQ[_o,t_,_,,_,_o],[_,_,_,s,_]dQ[_,_,_,s,gao,_t],[.,to,_,t_,_,_,_]

+dQ _ _o _.;s.dQ_sze;o_ ,;=..;,_edQ,;_.;_;e _z.;o;=t_, ,_,e, 1,1_.... ] I ..... I,[ ..... ] [ ..... ),[, .... I

-dQts,a,z,s,,ol,t,_,_a,.,_s,,a)dQ ts,a,z,_,o,_t],I,o,_,,_,_,*s,*a)dQt,,*_,_,*.,t_,,al,ts,a,z,s,,,*_]

-dQ__t_"a_s_dQ_s____]dQ____*_*_

- dQ_*_*_*_*_z_dQ_"__9_t_.t4_*_ta]dQ_7__"_s_*a ]

+dQIlo,_l,t_,_,_,x_I,[_,s,Ls,,,_idQis,s,Ls,_o,_],[_o,_,_,_.,_,_)dQI_,s,_,s,,),i_,_,.,_a_))

(- dQt,a,l,u.+,l,],tu,_,l,l_,]°'l+ dQtla,vt.l+,l,],tu,lo,l,]o.+)

+dQt_,_,_,s],t_,_,,_,_]dQ[_,e._,s],[,,_o,_,_}

(-o. +
(b, dQ[z,,,.,,,,,,_,,.],[,,,,s,,,1,]- _ dQ[,o,,,,1.,,,,,,],[.,L,,9,,,])

+csc_d_b_+ c_c_asd_- c_c_d_b_

+ dQi_,s,v,,},[_,;o,;;,;=]cx=bsdQ[x_,.,xs,;_},[,,v,s,9]ax)A[12,11]



__ ..°c,.,,oo,o.,.,°.m.,,on.o,,°.....o.°.°..,,_.__
N
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-I-(-dQ[s,6,7,s],[9,1o,11,12](-c14a9 + ClSas)

+dQ[s,6,_,8},[13,14,1s,16]dQ[s,6,_,,s],[9,1o,11,12]

-c6ClZdlb2+ dQ[s,6,_,8],[9,1o,11,12]dQ[13,14,1s,16],[s,9,1o,12]bsalc13

1(b, 3+ ¢.o,
+dQ[s,s,7,s],[9,1o,11,12]dQ[13,14,1s,z6],[6,9,1o,12]b4as c13

+c4 c13asdl+ c6c13dlb6+ dQ[13,14,1s,16],[6,z,8,9]dQ[s,6,z,s],[9,10,11,12]

(-dQ[5_6_z_1_[11_13_14_15_1s]dQ[s_6_7_1_11]_[1_12_13_14_15_16]dQ[9_11_13_14_1s_16],[5,6,z,s,9,12]

- dQ[10,11,13,14,15,16],[s,6,z,6,10,1_.]dQ[5,6j,,s,9,11],[9,1,.,,13,14,15,16]dQ[5,6,z,S,lO],[11,13,14,15,16]

+dQ[10,11,13,14,15,16],[5,6,v,6,10,12]dQ[5,6,7,6,9,10],[9,12,13,14,15,181dQ[5,6,7,s,11],[11,13,14,15,16]

-dQ [5,6,z,s,9,10,11],[9,10,12,13,14,15,16]dQ[1o,13,14,15,16],[5,6,7,8,12]dQ [5,6,_,s,1i],[11,13,14,15,16]

.dQ[s,6,7,6,10],[11,13,14,15,16]dQi s z dQ _, 11 9 I0 1 15[11,13, 4,15,18],[,6, ,8,12] [5,8,,8,9,10, ],[, ,12,13,4, ,16]

+dQ 1011lS14151856_s912dQ 56_s911 101213141516dQ 567810[ ..... ],[ ..... ] [ ..... ],[ ..... ] [ .... ],[11,13,14,15,16]

- dQ[5_6_9_1_]_[1_12_13_1_15_16]dQ[5_6_6_11]_[11_13_1_15_16]dQ[1_11_13_1_15_16]_[5_6_12]

-dQ[9,10,13,14,15,lS],[s,6,7,S,lO,12]dQ[s,6a,8,10,11],[9,12,'.3,14,15,16]dQ[5,6,z,6,11],[11,13,14,15,16]

-_-dQ[9_1_14_1_16]_[_7_9_12]dQ[_6_z_11_[1_12_3_14_1_16]dQ[_6_v_11]_[11_13_14_1s_1_]

.dQ[5,6,7,8,I0],[11,13,14,15,16]dq[s,63',s,10,11],[9,12,13,14,15,16]dq[9,11,13,14,15,ls],[s,s,v,8,10,12]

+dQ[9_1_11_13_14_15_16]_[_6_7_9_1_1_]dQ[5_6_[13_14_1_16_dQ[_6_7_1_11_[11_12_13_14_1s_16])

(-dQ[13,1,,lS,X6],[s,9,11,12]a1+ dq[x3,1,,lS,16],[s,9,1o,11]a3)

-dQ[5,6,,,8],[9,1o,11,12](dq [13,14,15,16],[6,_,s,9]c16+ c_ dQ[5,6,,,s],[13,14,15,16])

(_ _ + _,b_))A[11,11] 4

where each of the a_s represents a six term quadratic polynomial in minors of Q.

The b_srepresent ten term quadratics in minors of Q. The cis represent two term quadratics

in minors of Q.
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The author has little doubt that equation 3.153 and its counterparts can be sim-

plified significantly if enough time, energy, and computing power are devoted to the cause.

. When this last set of minors is solved linearly for eight more of the A_as in terms of the

remaining A_,is, we are left with a 32 parameter family of solutions for the modified 4 x 4

problem. Therefore, we have 32 parameter family data sets for each of the four 2 x 2 sub-

systems. The last step is to solve each of these subsystems as done in section 3.2.1. The

solution for each of the 2 x 2 subsystems is a 16 parameter family of solutions in terms of the

data. The process of solving all four subsystems introduces another 64 = 4 • 16 parameters

and yields the result promised at the beginning of section 3.2.3: a 96 - 4,16 + 32 parameter

family of solutions for the unknown transition probabilities for a 4 x 4 system.

3.2.4 nxnproblemwheren=2 k,kEN

In the pJcevious section two recursive levels were required to solve the 4 x 4 problem.

A sketch of the author's vision of the algorithm for the 8 x 8 problem follows. Later, the

algorithm for a n x n problem is sketched.

The first step in tackling the 8 x 8 problem is to break up the 8 x 8 system into

four 4 x 4 subsystems. See figure 3.1. Only 32 of the original 8_ • 16 - 32 = 992 hidden

states are considered in this modified system. The modified transition probabilities are the

probabilities with which a photon travels from one of the pertinent states to another such

that its travel path lies entirely inside one of the subsystems. These modified transition

probabilities comprise the data for the 4 x 4 subsystems. Furthermore, the same process

for solving the governing equations 2.8 that was used in sections 3.2.1 and 3.2.3.1 permits

expression of the modified transition probabilities in terms of the entries of A = P_'o1. Pho

is a 32 x 32 block diagonal matrix with four 8 x 8 blocks along its diagonal. Since A has the

same zero structure, we have a 4,82 = 256 parameter solutions for the modified transition

probabilities. There are many consistency conditions amongst the data for each of the 4 x 4

subsystems. These conditions should allow us to solve for all but 64 A_as in terms of the

remaining Alas.
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Notation: Le; A, Pho, P_o, Phh, and Pih denote the modified transition matrices

at the first level of this recursive algorithm. At the next level of the recursive process

each of the four 4 × 4 subsystems will have its own data matrix, Qiljl, where we refer to .

the subsystems as systemiiji, where il,ji = 1, 2. The transition matrices for the modified

4 × 4 systemiljl are referred to as AQjl, Piljlho, Piijl_o, Piijlhh, and Piljl_h. At the last

recursive level of this recovery algorithm, each of the 4 × 4 modified systems will be broken

into four 2 × 2 subsystems. The (i2,j2) th 2 × 2 subsystem of the (ii,jl) th 4 × 4 subsystem

will be referred to as systemiljl_21_. The data matrices for these sub-subsystems will be

referred to as Qiiji_2_2; the transition matrices as Piiji_2ho, Piijii212io, Pilj_i_2hh, and

Piljii2_2_h.

Now that we have 64 parameter solutions for Qll, Q12, Q21, and Q22 we can

implement the recovery algorithm for the 4 × 4 problem on each of the 4 × 4 subsystems

as done in section 3.2.3. See figure 3.2. For subsystemilji we recover Qiijl_2_2 for each

combination i2,j2 = 1, 2 in terms of Qiljl and half of the nonzero entries of Aiiji. Since

each Aiijl is a 16 × 16 block diagonal matrix with four 4 × 4 blocks along the diagonal,

we introduce 1/2 • 4 • 4 • 42 - 128 additional parameters to our solutions for the data

submatrices for the 2 × 2 sub-subsystems. The resulting data matrices, Qiljl_,, should be

functions of 64 + 128 = 192 parameters. Now, we must simpy implement the 2 × 2 recovery

algorithm on each of the 42 - 16 sub-subsystems. We may solve for each set of transition

matrices Piiji_2 _o, Piljii2_ so, Piljl_ _h, and Piijl _ _ in terms of Aiijl_, introducing

another 256 = 42 • 16 parameters. The end result is a 256 + 128 + 64 = 448 '-- 8 • 8(8 - 1)

parameter family of solutions for the transition probabilities in terms of the data matrix Q.

Recall from section 3.1 that the rank of the forward map is at most 8n(n + 1). For the 8 × 8

problem we can at best find a 16n _ - 8n(n . 1)1,= s = 448 parameter family of solutions.
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In general, the recovery algorithm for a n x n system where n = 2k, k E 1_, requires

k - 1 recusive levels before the 2 x 2 "base case" is reached. Pseudocode for this algorithm

is shown below:

solveasubsystem := proc(sysin)

break up sysin into four m x m subsystems

if m = 2 then

solve each subsystem for its transition probabilities in terms

of its data and 16 parameters

else for each subsystem

1. solve for modified transition probabilities in terms of data and A

2. eliminate all but 8m parameters using consistency conditions

3. call solveasubsystem with this subsystem as input

fi;
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JL .L JL l._

-* 01 _" O0 "-
z_J JL zJ I,

r

Figure 3.1: Decomposition of an 8 × 8 system into four 4 x 4 subsystems. The thick lines

separate the subsystems. Only states which are considered when solving for the subsystems'

data are denoted with arrows.

J

1 1 1 1 1 c

* . 2 +_ * . *
1 11 1 1'

9 91 9 _ 9'

9 9] 9 _ 9'
--_ Z,I --7 'Z,Z --_ "'Z,I --_ "'Z,Z

Figure 3.2: Decomposition of a 8 × 8 system into four 4 x 4 which are subsequently decom-

posed into 2 x 2 subsystems. The thick lines separate the subsystems.
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L .J. L _,s

') 7 'i)_)
,_ .J. 4.,I z,j

Figure 3.3: Decomposition of a 16 x 16 system into four 8 x 8 subsystems. The thick lines

separate the subsystems.

il

\ h8
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Figure 3.4: Two routes taken into account by pl,S
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f

!h8

05

Figure 3.5: One of many paths taken into account by ss,5

h8

f

J

Figure 3.6: One route which Pl,s does not take into account.
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I

I
I

k

Figure 3.9: Source k is surrounded bY three barriers indicated by the thick lines.

Figure 3.10: For the 1 x 1 case shown on the left, there are no boundaries. For the 2 × 2,

case, however, there is one left-right and one top-bottom boundary.
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i i x x

i i x x

x x i i

x x i i

x x i i

x x i i

x x i i

x x i i

Figure 3.11: Data for the 2 x 2 problem which may be considered redundant due to 4 x 4

rank two submatrices are marked with an 'x'. Data which are independent of all consistency

conditions are marked with an 'i'. The independent data correspond to nonzero entries of

Pio. Note that the choice of redundant data is not unique.
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i O O X X X X

o i i o x x x x

o i i o x x x x

oo i xxxx

xxxx i oo

xx xx o i i o

xx xx o i i o

xxxx oo i

xzzx i oo

x x x x o i i o

xxx x o i i o

xxx x o o i

xxxx i oo

xxxx o i i o

xxxx o i i o

xxxx o o i

Figure 3.12: Data which may be considered redundant due to 8 x 8 rank four submatrices

are marked with an 'x'. Data which may be considered redundant due to 6 x 10 or 10 × 6

rank four submatrices are marked with an 'o'. Data which are independent of all consistency

conditions are labeled with an 'i'. As before, the choice of redundant data is not unique.
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01 01 01 01 01 01

01 i 02 02 02 02 01

01 02 _ 03 03 02 01

Ol o_ o3 i i o3 o2 o_

o_ 02 o3 i i o3 o2 Ol

o_ 02 03 03 i o_ Ol

Ol o_ o2 02 o2 "i o_

Ol o_ Ol Ol Ol Ol i

Figure 3.13: In any one of the 4 × 4 blocks on the diagonal of the data matrix for the

8 × 8 problem, data which may be considered redundant due to 18 × 14 or 14 × 18 rank

eight submatrices are marked with an 'o1'. Data which may be considered redundant due

to 20 × 12 or 12 × 20 rank eight submatrices are marked with an '02'. Data which may be.

considered redundant due to 22 × 10 or 10 × 22 rank eight submatrices are marked with an

'o3'. Data which are independent of all consistency conditions are labeled with 'i'. Once

again, this choice of redundant data is not unique.
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o,! o1 o14......o4,,,
i,1 iq ,,., "'1 l

11 1 o
J,. JI,. Ji,. /,

hi' h_ h14" his

h_, he hn,, h12

21 oo

i,l i,l i,,t i,,,;
04 08, 09 010,,

Figure 3.15: Decomposition of a 4 x 4 system into four 2 x 2 subsystems. The thick lines

separate the subsystems. The "modified" 4 x 4 system disregards individual pixels. Only

the subsystems are relevant at the first level of this recursive procedure.
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__ i_ h._ _ __

Pih3,xe _ho15,14

_h__j
his ,

I III I

Pios_,8

( Phh_._3

h, )

O8

Figure 3.16: Examples of paths which are taken into account by transition probabilities for

this modified system.
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Chapter 4

Three Dimensional Problems

4.1 Introduction

The setup is essentially the same in three dimensions as it was in two. An n x n x n

array of voxels in ]R3 encloses the object to be reconstructed. There are 6n 2 outer faces,

each with a source and a detector. Preferred directions of travel are north, south, east,

west, up, and down. The transitions matrices are larger than the matrices for an n × n

problem and there are relatively more hidden states in three dimensicus. The governing

matrix equation 2.8 is unchanged, however.

For a n x n x n system there are 6n 2 incoming, 6n 2 outgoing, and 6n 3.- 6n 2 =

6n2(6n- 1) hidden states. Pio is a 6n 2 x 6n 2 matrix, while Pih is 6n 2 × 6n2(n- 1), Phh is

6n2(n - 1) x 6n2(n - 1), and Ph, is 6n2(n- 1) x 6n 2. Q is a 6n 2 x 6n 2 matrix.

One of the differences between the two and three dimensional problems is the

amount of data. In two dimensions there is precisely as much data as there are unknown

transition probabilities. In three dimensions there are 36n 4 pieces of data but only 36n s

unknowns. (There are six ways to enter a voxel and six ways to exit; each voxel has 62 = 36

transition probabilities.) Since the rank of the forward map cannot be greater than the

dimension of its domain, there must be consistency conditions upon the entries of Q. In

• fact, there are enough conditions to make the three dimensional forward map rank deficient.

In [13] it is shown that the Jacobian for the 2 × 2 × 2 problem is generically only of rank 240.

. In the following sections we shall express the unknown transition probabilities in terms of

a 36 • 23 - 240 = 48 free parameters and the data.
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Figure 4.1: Eight voxels, seven of which are labelled above. Voxel 1,2,1 is hidden from

view. Some incoming and outgoing states are labeled as well. A photon which travels north

into voxel 112 via incoming state is and then turns upward traveling out of voxel 112 via

outgoing state o_ does so with probability nll2u.

Notation : The probability that the photon will travel east into pixel 1, 1, 1 and

continue east into pixel 2,1,1 is written as ellle. The probability that it will turn right

and travel out of the system is written as e111s and the probability with which it turns

upwards and travel into pixel 1, 1, 2 is written as e111n.

The transition probabilities satisfy 2.9 (as mentioned in chapter 2)

eijke + eijkw + eijkn + eijks + eijku + eijkd < 1

uijke + uijkw + uijkn + uijks + uijku + uijkd < 1

dijke + dijkw + dijkn + dijks + dijku + dijkd < 1

(4.1) wijke + wijkw + wijkn + wijks + wijku + wijkd < 1

nijke + nijkw + nijkn + nijks + nijku + nijkd <_1

sijke + sijkw + sijkn + sijks + sijku + sijkd < 1

where i,j, k = 1, 2
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' I I

/;I,VI- /:I,VI--/

Figure 4.2: A 2 x 2 x 2 system is split apart so that we can see a few hidden states representing

travel from the "leftmost" voxels, 111, 121, 112, and 122, to the "rightmost" voxels, 211,

221, 212, and 222.

Furthermore, this system satisfies the range conditions (also mentioned in chap-

ter 2)

24

(4.2) 0 _ E Qi,_ <- 1 i--1,2,...,6n 2
_=1

The method for finding a 48 parameter family of solutions to the inverse problem

starts off just like the two dimensional method. The matrix equations 2.8, 3.18, and 3.18,

are the same; only the matrices are different. The matrices for the 2 x 2 x 2 problem also

have special block structures. P_o and Pho are 24 x 24 block diagonal matrices with eight

3 x 3 blocks. P_h and Phh are 24 x 24 matrices with nonzero entries on their off diagonals.

As before, A and X have the same diagonal block structure as Pho; W and Y have the same

off diagonal block structure as Phh and Pih. For the 2 x 2 x 2 problem, each column in 3.18

is a system of 24 linear equations in the 12 variables which appear in the corresponding

columns of A - W and X - Y. Just as in two dimensions, the columns of A - W and X - Y

, come in pairs. The roles of the A_,_s and W_ds are reversed in the first and last columns

of A - W as are the roles of the X_,_s and Y_,_s in the first and last columns of X - Y.

Hence, we must solve the "same" matrix equation for the first and last columns of 3.18. See
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table 4.1. We shah consider column three of 3.18. The third columns of A - W and X - Y
#

axe shown below:

A1,3 Xl,3

A2,3 X2,3

A3,3 Xs,3

(4.3) -W4,3 -Y4,3

-W.,3 -Y5,3

-W_,3 -Ye,3

respectively, where 0 is a column vector of eighteen zeros. The 24 equations in

column three can be written as a homogeneous matrix equation:
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(4.4)

' Q1,1 Q1,2 Q1,3 Q1,4 Q1,5 Q1,6 -1 o o o o o

Q2,_ Q2,2 Q2,s Q2,4 Q2,5 Q2,6 0 -1 0 0 0 0

Q3,1 Q3,2 Q3,3 Q3,4 Q3,5 Q3,6 0 0 -1 0 0 0

Q4,1 Q4,2 Q4,3 Q4,4 Q4,5 Q4,6 0 0 0 -1 0 0

Qs,1 Q5,2 Q5,3 Q5,4 Q5,5 Qs,8 0 0 0 0 -1 0

Q6,1 Q6,2 Q6,3 Q6,4 Q6,5 Q6,8 0 0 0 0 0 -1

Q7,1 Q7,2 Q7,3 Q'/',4 Q'/',5 Q'/',6 0 0 0 0 0 0 A1,3

Qs,_ Q8,2 Qs,s Q8,4 Qs,5 Qs,0 0 0 0 0 0 0 A2,s

Q9,1 Q9,2 Qg,s Q9,4 Q9,5 Q,,e 0 0 0 0 0 0 As,s

Q10,1 Qlo,_ Qlo,s Q10,4 Q10,5 Q10,6 0 0 0 0 0 0 W4,s

Ql1,1 Qll,2 Qll,3 Qll,4 Qll,5 Q11,6 0 0 0 0 0 0 w5,3

Q12,1 Q12,2 Q12,s Q12,,t Q12,5 Q12,8 0 0 0 0 0 0 W6,s

Qls,1 Qls,2 Qls,s Q_s,4 Qls,5 Qls,6 0 0 0 0 0 0 X1,3

Q14,1 Q14,2 Q14,s Q14,4 Q14,5 Q14,6 0 0 0 0 0 0 X2,s

Q15,1 Q18,_ Qls,s Q_,_ Q_,_ Q_,_ 0 0 0 0 0 0 Xs,s

Q_,_ Q_,_ Q_,s Q_,4 Q_,_ Q_,_ 0 0 0 0 0 0 Y_,s

Q_,,_ Q_,_ Q_,s Q_,4 Q_,_ Q_,_ 0 0 0 0 0 0 Y_,s

Q_s,_ Q_,_ Q_s,3 Q_,4 Q_s,_ Q_s,_ 0 0 0 0 0 0 Y_,3

Q_o,_ q_,_ Q_,s q_,4 Q_,_ Q_,_ 0 0 0 0 0 0

q20,_ q_o,_ q:m,s q_0,4 q_o,_ q_o,_ 0 0 0 0 0 0

Q.._,_ Q_,_ Q:.,s Q_,4 Q_,_ Q_,_ 0 0 0 0 0 0

. Q22,1 Q22,2 Q2_,3 Q22,4 Q22,5 Q22,6 0 0 0 0 0 0

Q23,1 Q23,2 Q23,3 Q23,4 Q_.3,5 Q23,e 0 0 0 0 0 0

'_ (_24,1 Q24,2 Q24,3 Q24,4 Q24,5 Q24,6 0 0 0 0 0 0
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We have twelve sets of homogeneous linear equations like 4.4 corresponding to

twelve 24 × 12 matrices which satisfy the homogeneous equation Cz = 0. Since the trivial

solution would not be interesting enough to write about one may safely assume that there

must be other solutions. This is indeed the case since the lower left 18 × 6 submatrix found

in equation 4.4, represents travel into voxels 111 and 112 from the the other six voxels. As

shown in [13] this submatrix is of rank four or less. Since the first six equations in 4.4 are

independent, we may solve 4.4 for at most 6 + 4 -- 10 of the twelve unknowns in terms of

the other two.

4.2 Solving the Equations

Since the Wi,_s, Xi,_s, and Y_,_s are already functions of Ai,_8, it seems natural to

solve for them in terms of the A_,_8. Following this procedure for all 24 columns reduces

the number of unknowns from 288 to 72. The analogous procedure in two dimensions

exhausts the supply of independent equations. In three dimensions, however, we have

enough information to solve for one third of the A_,_s in terms of the remaining Ai,_s.

To solve 4.4 for the Wi,_s, Xi,_s, Yi,_s, and diag(A) in terms of the rest of the A_,_s,

one need only solve:

(4.5)
Q_,_ Ol,4 Q1,s Q_,6 -I o o o o o As,s QI,1 QI,=

Q=,s Q2,4 Q2,s Q2,6 o -I o o o o wi,s O:,_ O=,=

Os,s Os,4 Q_,s Qs,e o o -1 o o o ws,s Os,z Os,2

Q4.8 Q4.4 Q4.s Q4.e 0 0 0 - 1 0 0 W8.3 Q4.1 Q4.:l

Qs.s O,.4 Q,.s Os.e 0 0 0 0 -1 0 Xl,S . ... __ O,,1 Qs,, [ AI,s ]
Q6,S Q0,4 Qo,s Qo,o 0 0 0 0 0 -1 X=,s ] Q0,1 Qo,2 A2,s

I
QlS,3 Ola,4 Qls,6 Qxs,o 0 0 0 0 0 0 Xa,s ' Oxs,l QIs,2

Q14,s Q14,4 Q14,6 Q14,6 0 0 0 0 0 0 Y4,s Q14,1 Q14,2

Qxs,s O_s,4 Q_s,s O_s,o o o o o o o Y_,s Ols,z Q1s,=

qle,s 01o,4 qle,s qxe,e o o 0 0 o o . Ye,a .j qle,1 qxe,2

Notation : Denote the determinant of the submatrix of Q taken from rows It1, r2,... , r,_]

and columns [cl,c_,... ,c_] as dQ[,1,, ,.....,_1,[_1,c,..... o,l
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t

column pairs nonzero minors

1,24 dQta3,a4,xs,x6],tx,22,_a,241 dQlas,a4,as,as],tx,_,s,24]

2,11 dQIla,14,1,,i,le],[2,1o,11,l_)dQI13,1,l,,le,le],I1,2,s,111

3,4 dQtx3,14,1_,le],t3,4,s,61 dQlas,14,15,x6],ta,2,3,4]

5,20 dQtxs,l.,15,x6],ts,l.,2o,n]dQt13,$4,15,1s],[4,5,6,2o]

6,7 dQ113,14,15,16],16,7,s,9] dQl13,14,15,1s],t4,s,6,7]

8,17 d_la,..,s,4l,ts,x6,1r,lsl d_p,2,3,41,[r,s,.,1,]

9,10 dQ[1,_,3,4],[,,10,I 1,1z] d_[1,z,3,4],tT,s,9,1o]

12,13 dQ[1,_,,_,,I],112,13,1,1,1e,] dQll,_,3,,t],ilo,11,12,1s]

14,23 dQI1,2,3,4],[14,22,_-3,24] dQ11,2,3,4],[13,14,15,_3]

15,16 dQlx,2,s,i],[xs,an,xr,xs ] dQtx,z,3,4],lx3,14,xs,1e]

18,19 dQlx,_,s,4],txs,l.,_o,2x ] dQtl,2,s,t],[le,ar,xs,xo ]

21,22 dQ[1,2,3,4],t21,zz,_3,24] dQll,_,:t,4],tlo,_o,_1,z2]

Table 4.1: The columns of 3.18 come in pairs. Each pair is shown in the left hand column.

In order to solve a "column of equations" in 3.18 we require that a minor of Q is nonzero.

These minors are displayed to the right of their corresponding column numb_s.

The determinant of the lefthand matrix in 4.5 is dQt13,14,15,16],t3,4,s,6]. Equation 4.5

has a unique solution if and only if dQ[x_,x4,1s,_l,[S,,,_,_] _ 0. The same sort of requirement

holds for each of the other columns of 3.18. Although there are only twelve different (and

underdetermined!) matrix equations in terms of the unknowns, we must solve 24 different

linear systems of equations in order to solve for the Wids, Xids, Yids and diag(A) in terms

of the rest of the Aids. Table 4.1 shows which columns correspond to the same matrix

equation and minors of the data we require to be nonzero.

If the data satisfy these requirements then we can solve the 240 independent equa-

tions in 288 variables linearly for the nonzero entries in W, X, Y, and diay(A) in terms of

the 48 other variables in A = P_o_. (Note that this choice of equations is not unique,)
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Because the solutions for the transition probabilities in terms of all 72 of the A_,js

are much simpler than their solutions in terms of only the off' diagonal elements of A, we

first solve in terms of all of the entries of A. Sample solutions from each of the four one

step transition submatrices shown below. Since Pho = A -1, the solutions for entries of Pho

are especially simple:

(4.6) u122w - dA("s)'IT's]
dA[7,s,,],[7,8,0]

Solutions for variables from a transition submatrix are all of the same form. For

example, all of the transition probabilities in Pho are equal to a 2 × 2 minor of A divided

by a 3 × 3 minor of A. One of Pha's nonzero entries may be written as

sll2n = (As,TdA[4,5],[4,5]dQ [13,14,15],[4,5,8]"J¢"Ag,TdA[4,6],{4,5]dQ[Is,14,1s],[4,s,9]+

Ag,TdA[i,5],[i,5]dQ[is,li,lS],[4,s,9]+ As,TdA[5,6j,[i,5]dQ[ls,li,15],[5,8,s]+

(4.7) Ag,_dA[s,6],[4,5]dQ[is,1,,15],[s,6,9] + A_,TdA[4,6],[4,5]dQ[Is,I.,15],[4,6,T]+

AwjdA[5,6],[i,s]dQ[13,14,15],[5,6,7]+ -4s,TdA[i,6],[4,5]dQ[Is,14,1s],{4,6,s]+

AT,_dA[4,5},[4,5]dQ[Is,14,15],[i,5,7]) / (dA[4,s,6],[4,5,6]dQ[Is,li,15],[4,s,6])

The solutions for entries of Pho and Pan were quite simple (for MAPLE) to com-

pute. The _lutions for transition probabilities in P_o and Plh appeared to be extremely

messy at first. By grouping terms in the solutions for entries of Pio carefully it is possible

to simplify them using matrix expansions of the forms

(4.8) -dA(2,3],[l,3]As,2 + dA[2,s],[2,s]As,1+ dA[2,s],(L2]As,s = 0

dA[I,2],[I,2]A3,3 + dA[I,_],[2,s]A3,1- dA[I,2],[I,s]A3,2 = dA[I,2,3],[_,2,3]

The resulting solutions are quite simple:

d112u = -dA[4,5],[5,el (dQ[e,13,14,1s],[l,2,3,4]A4,4 + dQ[e,_3,_4,1s],[_,2,3,6]Ae,i+

(4.9) dQ[e,_s,_,,I_],[I,_,s,5]As,4) / dQ[_s,_.,ls],[_,_,s]dA[.,_,e],[.,_,e] -

dA[4,_l,[4,el(dQ[e,ls,_4,_s],le,_g,_O,_llA_,_+ dQ[_,xs,_i,_l,[4,1_,_-o,_lA4,_+

dQ[6,_s,14,1s],[S,l_,20,2_]A_,_)/dQ[ls,14,_],[l_,_o,2_]dA[',_,e],[4,_,e]+

dA[4,s],[_,_](dQ[_,1s,14,_],[_,_.,s,9]A_,e+ dQ[_,_s,_4,1_],[_,7,s,9]A_,_+

dQt6,1s,li,1_j,[4,7,s,9]A4,e)//dQ[_s,i4,I_},[_,,s,9]dA[4,_,e],[i,s,e]
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The identities giving the Grat3mann-Plficker embedding can be used to simplify

the solutions for entries of Pih considerably. The method for simplifying these solutions is

, exactly the same as that used in [7, 6] and 3.2.1.3. One of the simplified solutions for a

transition probability in P_h is shown below:

d122d = -dQIla,14,1s],[4,s,6]dQ {1,2,sj,[10,1T,lsjdQ[is,14,15],[io,11,12]dA[7,s,gj,[7,s,9]

(dQ[7,13,14,15],[7,f,9,12].A12,10 + dQ[7,13,14,15],[7,s,9,10]Alo,lo -_- dQ[7,13,14,15],[7,s,9,11]A11,lO) +

dQ[,aa4,xsl,[4,5,oldQ[xa,al,[,o,l,,xs](Aloao (dA[7,s],[7,sldQilaa.,xsl,[7,s,lo]+

dA[7,9],[7,sldQ[xa,x4,151,[¢,9,1o]+ dA[s,.l,iT,s]dQ[13,14,1sl,[s,9,xo])+

Ala,lo (dA[.t,gl,i¢,sldQ[x3,14,xs],{_,,9,121+

dAis,,l,[_,s]dQi13a4,xsl,[s,ga2]+ dA[¢,sl,[7,s]dQ[13,a4,xsl,[¢,s,12])+

A11ao (dA[7,s],[?,sldQ[xa,x4,asl,[_,,s,111+ dA[s,gl,[7,sldQ[la,vsasl,[s,gaxl+

dA[7,,],[.,s]dQ[1,,x.,xs],[7,,,xl]) ) (dQ[.,la,l/,lS],[,,xo,xla2lA,, ,+

As,.dQ[7,13,14,xsl,[s,lo,xxa_.]+ Ag,gdQ[7,1z,x4,15],[9,1o,11,x21)-

dq[1,,,a],[]..,l't,ls]dq[la,14,1,%[lO,11,1,](A 1.,_.o (dA[7,9],[s,9]dq[1,,x4,15],[7,9,12]+

dA[7,s],is,gldQ[la,a4asl,[7,S,l_]+ dA[s,9],[s,9]dQixa,14asl,[8,9,x2])+

Alo,lo (dA[7,sl,[s,gldQ[xa,x4asl,[_,,S,lO]+ dA[s,_l,{s,_ldQ[xaa4,1_],is,_aol+

dA[7,91,[s,_ldQ[_,_4a_i,[_,_ao]) +

AII,lO (dA[s,gl,[s,gldQ[1s,14,1_l,[s,9,111 + dA[_,gl,[s,gldQ[ls,14,1sl,[7,9,111+

da[7,8],[s,9]dQ[13,14,15],[7,$,11]) ) (Ag,TdQ['t,13,14,15],[4,5,6,9] "{"

AT,_dQ[7,Xa,l_,X_l,[,,s,_,7]+ dQ['t,_a,z4,x,_l,[4,_,_,slAs,7)+

dq[la,l.,15],[4,5,_ldq[la,14,1_],[ao,11,x_l(Axo,lo (dA[s,9],['t,gldqI13,x4,1sl,[s,9,10]+

dA[_,_l,[_,gldQ[xz.x4a_l,[_,_,ao] + dA[7,sl,[7,.ldQ{_,14a_l,[_,s,xol)+

dA{s,_],[7,,]dQ[x_,,4,x_l,[s,_,xx])+ A12,1o (dA[,,s],[,,,]dQ[l_,_.a_l,[,,s,_2]+

" dA[a,9],[.t,9]dQ[la,la,la],[s,9,12] + dA[7,9],[7,a]dQ[13,14,la],[,t,9,12]))l

(As,sdQ[1,2,z,y],[s,16,17,18] + AT,sdQ[1,2,3,7],[7,16,17,18]-_- dQ[1,2,3,7],[9,16,1T,18]A9,8 ) /

(dAi7,s,gl,[7,s,9]dQ[xs,xa,15],[,t,s,91 dQixs,xa,_al,[x0,xl,12] dQ[1s,14,151,[4,5,aldQ[1,2,31,[ 16,17,18])
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These solutions, (4.10, 4.10, 4.6, and 4.8), are analogous to the sixteen parameter
t

solution to the 2 × 2 problem where all of the transitions probabilities can be expressed in

terms of the A_js. In this 2 × 2 × 2 problem, however, we can solve for diag(A) in terms of

the remaining A(,js. One of the solutions for a diagonal entry of A is shown below:

(4.10) A2o,2o dQ[lz'14'15'lO]'[4'5'6'21]A21'2° + dQ[13'14'le'lO]'I4'5'°'lo]A19'2°
= - dQp3,14,15,16],[4,5,e,20]

Half of the solutions for Ph_ factor when the solutions for diao(A) are substituted

into their numerators. Here is one example:

n122d = (-AT,sdQ[13,14,15,16],[S,lO,ll,12]dQ[1,2,3,4],[7,16,17,18]-

(4.11) Ao,sdQ[13,14,15,16},[s,lo,11,12]dQ[1,2,3,4],[,,16,17,1e]+

Ao,sdQ[1,.,3,4],[s,16,1_,le]dQ[13,14,15,16],[9,1o,11,12]+

AT,sdQ[1,2,3,4],[s,16,17,1s]dQ[13,14,15,16],[7,1o,11,12])

A12,10As,odQ[13,14,15,16],[s,9,10,121+ dQ[ls,14,15,1el,(_,9,_o,IIlAT,oA11,10+

dQ[13,14,15,16],[7,9,10,12]A12,10AT,9 + dQ[13,14,15,16],[s,9,10,11]As,oAll,lO ) /

dA[7,8,9] ,[7,8,9]dQ[13,14,1_,16] ,[_,8,9,10]dQ[1,2,3,4] ,[8,16,17,18]dQ[13,14,15,16] ,[9,10,11,12]

Substituting the solutions fo_ diag(A) into the solutions for the transition prob-

abilities yields a 48 = 288/6 parameter family of solutions to the 2 × 2 × 2 problem. In

two dimensions, there are 64 unknown transition probabilities and a 16 - 64/4 parameter

family of solutions to the 2 × 2 problem. Notice that the ratio of unknowns to parameters

is higher in three dimensions than it is in two dimensions. The extension of the two dimen-

sional recovery algorithm to n × n systems gives a 8n(n - I) parameter family of solutions

for the 16n2 unknown transition probabilities. The analogous extension to the solution of

the 2 × 2 × 2 problem will doubtless result in a O(n _) parameter family of solutions to

the n × n × n problem. The author's best guess is that the number of parameters will be

24n _ + O(n2).
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Chapter 5

Conclusion

Diffuse tomography is still in its infancy, and there are many areas which should be

explored. In this thesis a recursive algorithm for computing a 8n(n- 1) parameter family of

solutions for a n x n problem was derived in section 3.2. Before deriving this algorithm it was

necessary to study consistency conditions in section 3.1. A thorough understanding of the

consistency conditions was required in section 3.2.3.2 to reduce the number of parameters in

the solution to the modified 4 x 4 problem. The recu_sive recovery algorithm was sketched

in section 3.2.4. Finally, the smallest nontrivial problem in three dimensions was considered

in Chapter 4.
=
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As yet unexplored areas which pique the author's interest include completion of a l

careful study of consistency conditions for the three dimensional model [13]. Understanding

the consistency conditions is crucial because the amount and type of additional information

required to close the resulting system of equations is directly tied to the number and type

of conditions. The very next item on the agenda is to implement the recursive recovery

algorithm in three dimensional. The algorithm will be analogous to its two dimensional

predecessor. The biggest difference between the two and three dimensional algorithms is

complexity. (The three dimensional version will be much worse!) Last, but certainly not

least, is a careful stability study of these algorithms. Given a "noiseless" set of data for

" the two dimensional problem, the recursive algorithm recovers the transition probabilties

exactly. Noisy data could introduce large errors. One source of error is inverting Pho.

When scattering is isotropic, for example, Pho is singular. Another source of error is the

fact that the algorithm requires solving nonlinear polynomial systems. Schub and Smale

have developed a "condition number" for polynomial systems [15] which could be used in

stability studies for both two and three dimensional algorithms. If the recovery algorithms

prove to be highly unstable, time-of-flight information would give additional data (we would

then have an overdetermined problem) which could be used to reduce errors due to noise.

This thesis work was done on an extremely general Markovian model of photon

transport. Neither time-of-flight information nor any physical information about photon

transport through tissue were taken into account. A priori information about photon trans-

port can and should be incorporated into this model. (The author doubts that clinicians

would find a set of 36n 3 Markov transition probabilities helpful diagnostic information.)

However, the fact that all of the independent data generated by the forward map for this

most general model can be recovered indicates (to the author, at least), that data gener-

ated by photons which scatter many times contain information independent of the data

generated by ballistic photons.
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