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Abstract

Recursive Recovery of Markov Transition Probabilities from
Boundary Value Data

Sarah Kathryn Patch

In an effort to mathematically describe the anisotropic diffusion of infrared radia-
tion in biological tissue Griinbaum posed an anisotropic diffusion boundary value problem
in 1989. In order to accommodate anisotropy, he discretized the temporal as well as the spa-
tial domain. The probabilistic interpretation of the diffusion equation is retained; radiation
is assumed to travel according to a random walk (of sorts). In this random walk the proba-
bilities with which photons change direction depend upon their previous as well as present
location. The forward problem gives boundary value data as a function of the Markov
transition probabilities. The inverse problem requires finding the transition probabilities
from boundary value data.

Problems in the plane are studied carefully in this thesis. Consistency conditions
amongst the data are derived. These conditions have two effects: they prohibit inversion
of the forward map but permit smoothing of noisy data. Next, a recursive algorithm
which yields a family of solutions to the inverse problem is detailed. This algorithm takes
advantage of all independent data and generates a system of highly nonlinear algebraic
equations. Pliicker-Grafimann relations are instrumental in simplifying the equations. The
algorithm is used to solve the 4 x 4 problem. Finally, the smallest nontrivial problem in

three dimensions, the 2 X 2 x 2 problem, is solved.
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Chapter 1

Introduction

Nearly one century has passed since Rontgen took the first radiograph of his wife’s
hand. Since that time many different techniques for noninvasive imaging of human tissue
have been developed. A concise history of the development of medical imaging can be found
in [14]. Some of these techniques are direct descendants of Rontgen’s radiograph; others
are completely unrelated. Computerized tomography, for example, is a direct descendant
of the radiograph. The word “tomography” refers to imaging an object by slices. X rays
have high energy and travel straight through the body. Both CT and magnetic resonance
imaging, (MRI), permit recovery of an image from knowledge of slices of the object. Data
analysis makes use of the Radon transform, which is linear. Ultrasound and impedance
imaging are examples of imaging techniques which enjoy neither straight travel paths nor
linear inversion formulas. The oxymoron “diffuse tomography” refers to low energy imag-
ing in which the paths of the radiant energy are not necessarily straight and are unknown.
Data analysis in diffuse tomography is highly nonlinear and yields a vector valued function.
Because it is a low energy technique problems in diffuse tomography are highly nonlinear.
Clinical applications such as neonatal imaging and annual mammograms are not amenable
to high energy techniques which might overexpose the patient to harmful radiation. Exper-
imentalists in optical tomography work with infrared radiation. Motivated by their work,

Griinbaum posed an anisotropic diffusion boundary value problem in 1989.



1.1 Overview of Thesis

This thesis addresses some of the most basic questions in diffuse tomography.
Despite the fundamental nature of this work, many of the calulations are quite involved.
This section attempts to give the reader a brief road map of the rest of the thesis in order
to prevent the reader from beceming lost in a sea of matrices and minors.

In Chapter 2 the forward problem is discussed for the smallest nontrivial two
dimensional problem, for larger problems in the plane, and for problems in d dimensions.
Chapter 3 concentrates on problems in the plane. It constitutes the bulk of this thesis.
Before attempting to solve the iuverse problem, a thorough understanding of the range
of the forward map is required. Therefore, consistency conditions amongst the data are
studied in 3.1. The goal, of course, is an inversion formula or inversion algorithm. Because
of consistency conditions amongst the data it is impossible to invert the forward map. It
is possible, however, to find a p-parameter family of solutions where p equals the difference
between the amount of data and the number of independent consistency conditions. In
section 3.2 a recusive recovery scheme which takes full advantage of all of the independent
data is detailed. The base case for this algorithm is solved in section 3.2.1. Gramannians
and the Grafmann-Pliicker embedding are studied in subsection 3.2.1.2. They are used to
simplify the solution to the 2 x 2 problem in section 3.2.1.3. The next level of the recusive
scheme is handled in section 3.2.3, yielding an analytic solution to the 4 x 4 problem. In
section 3.2.3.2 the number of parameters in the solution found in 3.2.3 is reduced using
consistency conditions amongst the data. Consistency conditions and Gramann relations
are used to eliminate more of the parameters in section 3.2.3.2.2. Elimination of parameters
continues, in sections 3.2.3.2.3 and 3.2.3.2.4. The reader should be warned that these
sections are quite technical. Finally, the smallest nontrivial three dimensional problem is
studied in Chapter 4.

1.2 Brief Overview of Other Imaging Techniques

To this day, radiographs are one of the most prevalent imaging methods. They
are much like photographs, except for the fact that radiographs use higher energy radiation

than light to form the image. A radiograph essentially plots an average density function,

p(z,y) = /R p(z,9,2) dz



where p is the density of the tissue being imaged.

Computerized tomography, (CT), has quickly become one of the mainstays of
medical imaging. CT images display tissue density. With the help of intravenous contrast
enhancers, CT is capable of providing useful images of soft tissue. It is able to resolve small
features extremely well and data collection can be done quickly, reducihg blurring due to
motion of internal organs. '

Positron Emission Tomography, (PET), requires injection of a radioactive label
(with a short half life!) into the patient. The isotopes emit positrons which are annihilated
by electrons, creating < rays which are measured transaxially. From these measurements
the distribution of the label inside the body can be recovered.

Magnetic resonance imaging provides excellent images contrasting hydrogen con-
centrations and relaxation times of perturbed hydrogen dipoles. MRI is extremely useful
for imaging the brain and spinal cord, areas where tissue is soft and CT provides poor
resolution unless intravenous contrast enhancers are used.

Real time ultrasound images have become a useful clinical tool, particularly for
prenatal imaging. Although data analysis is linearized the images obtained are clear enough
to prove diagnostically useful.

Radiographs, CT, and PET assume that the radiating energy/ray travels in a
straight line. Although MRI is a completely different technique, in an idealized setting the
(Bloch) equations governing the response of hydrogen nuclei are linear. Furthermore, MRI
data is often collected for a single “slice” of the object being imaged. In ultrasound and
impedance imaging neither electrical currents nor sound waves are assumed to travel in
straight lines through the body and in that respect they are somewhat similar to diffuse
tomography. In this thesis, however, no approximations or truncations are made to linearize

any of the governing equations.

1.3 Description of Diffuse Tomography

Experimentalists in optical tomography are presently working with infrared and
near infrared radiation as another means of noninvasive imaging. Optical coherence tomog-
raphy, (OCT), makes use of light waves which are reflected. A beam is directed towards the
tissue being imaged. [he light enters the tissue and some of it is reflected backwards. By

comparing the reflected light to the reference beam, the depth inside the tissue at which




the light was reflected can be calculated. Another type of optical tomography motivated
this work. Another group of experimentalists (Barbour et al, Benaron, Chance et al, Delpy
et al, Gratton, ...) use information given by light which passes through tissue. For an in-
troduction to optical imaging see the recent articles (16, 17, 18, 19] and [20]. More detailed
research papers can be found in the proceedings [21] and [22]. As photons travel they are
scattered many times. This scattering complicates the inverse problem. Therefore, most
experimentalists use only data provided by ballistic photons, those which are scattered the
least. This thesis gives a detailed study of a Markovian model of photon migration in the
plane and a preliminary look at photon migration in three dimensions. Here we consider
data generated by all photons, no matter how many scattering events they experience inside
the imaging object. We begin by describing the transport model in two dimensions.
Consider an n x n array of pixels in the plane which covers the object to be
reconstructed. On each of the 4n outer edges there are two devices. One device shoots
photons across the outside edge into the neighboring pixel; the other device detects photons
as they leave the system. For each of the 4n outside edges 4n pieces of data may be collected.
The data is stored as a 4n x 4n matrix, Q, where Q; ; is the conditional probability that a
photon exits the system at detector j given that it entered the system at source i. Within the
array, photons travel in four directions: north, south, east, and west. They change direction
by turning some multiple of /2. They do not interact and may be absorbed within a pixel.
Photons move according to a two step Markov process. The probabilities with which a
photon moves to a neighboring pixel depend upon its previous, as well as present, location.
In this two step formulation, the state space consists of locations. The state space may be
redefined so that photons move according to a one step Markov process. In the new state
space a single state accounts for a photon’s location at the previous time step and its present
location. There are three different types of these Markov states: incoming, outgoing, and
hidden. The probabilities with which photons move from one state to another are referred
to as transition probabilities. The transition matrix, M, is sparse and may be written as
a block matrix. M'’s nontrivial subblocks are referred to as P;,, Pin, Pho, and Ph,. Pi,, for
example, contains the probabilities with which photons in incoming states move directly to
outgoing states. P;;, contains the probabilities with which photons in incoming states move
to hidden states. P,, and P,, are the transition matrices for photons starting in hidden
states travelling to outgoing and hidden states, respectively. P,, and P,, are always square

matrices. If the Markov states are ordered carefully, all four of these submatrices of M have



a nice block structure.

The data matrix, Q, is 4n x 4n. @Q;; represents the probability that a photon
which enters the system at source ¢ exits the system at detector j. Notice that Q provides
no time-of-flight information. The forward map is a function of the transition probabilities
and equals Q. The goal of diffuse tomographers is to invert this map. Given @, we want
to recover the transition probabilities. For a given object the transition probabilities give a
discretized “image” of the object. In traditional imaging, one recovers a single parameter
for each pixel. From this information a visual picture of the object is made. In diffuse
tomography, however, one recovers many parameters per pixel. From this information one
could make several “pictures” of the object. In both classical and diffuse tomography, fine
discretizations of the covering array provide clearer “images” than coarse discretizations.

The clarity of diffuse tomographic “images” will probably never match that of
CT and MRI. Linear data analysis is certainly preferable to the nonlinear analysis in the
following chapters. Unfortunately, X rays and supermagnets are expensive and potentially
dangerous. Low energy imaging techniques have fewer side effects and are less expensive
than high energy methods. Ultrasound, for example, is relatively inexpensive and harmless.
MRI, however, would not be cost effective for annual mammograms; PET and CT are not
safe for premature infants. It is hoped that optical imaging will become an inexpensive
and safe imaging technique; it is the author’s hope that diffuse tomographic models will aid

researchers in optical imaging.



Chapter 2

The Direct Problem

Because a thorough understanding of the simplest nontrivial system in the plane
is the cornerstone of Chapter 3, a detailed description of the 2 X 2 problem follows. Later
larger two dimensional systems and as well as d dimensional systems will be discussed.

Consider the setup for the 2 x 2 problem as shown in figure 2.1. On each of

the eight outer edges there are two devices. One device shoots photons across the outside
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Figure 2.1: Incoming, hidden, and outgoing states are labeled with i’s,h’s, and o’s respec-

tively.




edge into the neighboring pixel; the other device detects photons as they leave the system.
Photons change direction by turning an integral multiple of /2. Photons do not interact.
Another property ot this model is that a photon may die withia a pixel.

Photons travelling according to the above rules are simply moving according to
a two step Markov process whose state space consists of locations. When a photon enters
pixel 4, j from a particular direction it either dies or continues its journey. The.probabilities
with which the photon moves forward, backwards, left or right are functions of its previous
as well as present location. To simplify analysis the state space is redefined in order to
make the process a one step Markov process. In the new state space, the previous as well
as present location of a photon define its state. Equivalently, the location and direction
of travel determine a photon’s state. There are one “dead” and 24 “living” states. The
“living” states are listed below

i1, %2, «++, i8, h1, ho, ..., hg, and 0y, 03, ..., Og

There are three classes of “living” states: incoming, hidden, and outgoing. See
figure figure 2.1. The “dead” state and all of the outgoing states are absorbing states. There
are four states by which a photon may enter a given pixel. Once inside the pixel there are
five things the photon may do. It may turn right, turn left, reverse directions, continue
straight through the pixel, or it may die inside the pixel. The first four transitions are
referred to as dynamic transitions. Each of these five events occurs with some transition
probability and the sum of the probabilities is identically one. It is sufficient, therefore,
to recover only the four dynamic transition probabilities. There are 4 x 4 = 16 dynamic
transition probabilities for each of the four pixels, yielding a total of 64 unknowns.

The one step Markov transition matrix, M, has a sparse block structure. Ordering
the Markov states so that the incoming states precede the hidden states, which precede the

outgoing states, gives M the following block structure:

0 P, P
(2.1) M={[0 P P
0 0 I

M, ; = the probability that a photon in state 1 moves directly to state j. Pi,, P,
Py, and P, are one step transition matrices. They are sparse and their nonzero entries are

the dynafnic transition probabilities. For example, P;,|s,t] = the probability of a photon




elle
pizel 1,2
'
ells
pizel 2,1 pizel 2,2

Figure 2.2: The probability that the photon will travel east into pixel 1,1 and continue east
into pixel 1,2 is written as elle. The probability that it will turn right and travel into pixel

2,1 is written as ells.

moving from incoming state s directly to outgoing state ¢; P;,[s,t] = the probability of a
photon moving from incoming state s directly to hidden state t. The one step transition
matrices for the 2 x 2 problem are shown below. Note the sparse 2 x 2 block structure of

the submatrices for the 2 x 2 system and recall the notation as described in figure 2.2.

0 o0 si1s 0 ©0 0 0 sile ]

0 0 ells 0 0 0 0 elle

0 e2ln 0 0 e2le 0 0 0

0 n2ln O 0 n2le 0 0 0

(22) Py =
0 0 0 n22w 0 0 n22n 0
0 0 0 w22w 0 0 w22n 0

wl2w 0 0 0 0 wl2s 0 0

512w 0 0 0 G s12s 0 0




0 0 wils 0 ©0 0 0 wlle|
0 0 nlls 0 0 0 0 nile
0 §21n 0 0 s2le 0 0 0

0 w2ln O 0 w2le 0 0 0

(2.3) Py =
0 0 0 e2w 0 0 e22n 0
0 0 0 s2w O 0 s22n O
nl2w 0 0 0 0 nl2s 0 0
] el2w 0 0 0 0 el2s O 0 |
[ n sllw 0 0 0 0 0 0 |
elln ellw 0 0 0 0 0 0
0 0 e2lw e2ls 0 0 0 0
0 0 n2lw n2ls O 0 0 0
(2.4) P, =

0 0 0 0 n22s n22 O 0
0 0 0 0 w22s w22 0 0
0 0 0 0 0 0 wl2e wl2n

0 0 0 0 0 0 s12e¢ sl2n
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wlln wllw 0 0 0 0 0 0
nlln nllw 0 0 0 0 0 0
0 0 s2lw  s2ls 0 0 0 0

0 0 w2lw w2ls 0 0 0 0

(2.5) by, =
0 0 0 0 e22s e22¢e O 0
0 0 0 0 s22s s22¢ O 0
0 0 0 0 0 0 nl2e nl2n
0 0 0 0 0 0 el2e el2n |

Submatrices for other systems are not always square. For a two dimensional n x n
system, there are 4n incoming and 4n outgoing states and 4n? — 4n hidden states. Hence
for a n x n problem, P,, is 4n x 4n, Py, is 4n X 4n(n — 1), Py, is 4n(n — 1) x 4n(n - 1),
and P,, is 4n(n — 1) X 4n. In three dimensions, there are 6n? incoming and outgoing states
and 6n® — 6n? = 6n%(n — 1) hidden states for a n X n x n system. In this case, P, is a
6n? x 6n? matrix, while P, is 6n? x 6n%(n - 1), Py, is 6n%(n — 1) x 6n?(n — 1), and P, is
6n%(n—1) x 6n®. More generally, in d dimensions an n X n x ... x n system is made up of n?¢
d-dimensional cubes and has 2d large outer faces. Each of these large outer faces contains
n{4-1) faces of individual cubes. Therefore this system has 2dn(¢~!) incoming and 2dn(¢-1)
outgoing states, and 2dn? — 2dn(¢-1) = 2dn(?~1)(n — 1) hidden states. P,, for this system is
2dn(4-1) x 2dn(3-1), P, is 2dn(4-1) x 2dn?~Y(n 1), Py, is 2dn?~Y(n~1) x 2dn(¢-V(n~1),
and P, is 2dn'4~1(n — 1) x 2dn(4-1),

For k € N, the i,j entry of the k** power of M is the probability that a photon

starting in state ¢ reaches state j after k Markov steps.

0 PyPGY Q*
(2.6) Mt=10 Py PP,
0 0 I

where
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k-3
(2.7) Q" =Py, + Py (E P) Puo

n=0

d ; is the probability that a photon which entered the system in incoming state
i exits the system via outgoing state j during the first k transitions. Because we have no

time-of-flight information the data we collect is

(2.8) Q=" Q" =Py, + P (D_ Pih) Pro=Pio+ P (I = Pup)™" P,

n=0

It is not difficult to show that the sum converges. Although the bulk of the research
done to date is on two dimensional models, equation 2.8 holds in any dimension. We say
that one solves the forward problem when one calculates Q from P;,, Py, Pio, and Pi,. Let
f denote the forward map given by 2.8, so f(Pio, Pit, Pho) Par) = Q . For a k-dimensional
system, there are 4k? transition probabilities per voxel since a photon may enter a given
voxel via any one of 2k states and may exit the voxel via 2k different states. Therefore, 4k*n*
of the entries in P,,, Pis, Pho, and P;;, are nonzero for an x n X ... X n system. Although
this thesis concentrates on the algebraic inverse problem, there are physical constraints
upon dom(f) and Im(f). Let dy,d,,... ,ds be the preferred directions of travel within the

system and let a be a multi-index a = (o, @,... ,az) where a; = 1,2,... ,n for each
i=1,2,...,2k. . Then the domain of the forward map lies in the unit cube in R**n* and
satisfies

4k3nt
(2.9) 0< Y diad; <1 Va and i=1,2,...,2

j=1

There are similar restrictions upon the range. For an xn x...x n system f maps
the transition probabilities to the 2kn(*~1) x 2kn*-1) matrix Q € Im(f) C Matr(2kn'*~V)

and since Q is a transition matrix the following conditions must hold:

2kn(r=1)

(2.10) 0< Y Qia<t i=1,2,...,2kn"
A=1

Let Jac denote the Jacobian. Then if rank(Jac(f(x))) < 4k*n* we cannot hope

to invert f at the point x. If rank(Jac(f)) = r at a generic point, then at best we can
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express the transition probabilities in terms of the data and ! independent parameters,
where | = 4k?>n* — r. We shall do just this for two dimensional problems in the following
chapter. In Chapter 4 a small problem in three dimensions will be studied.
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Chapter 3

Two Dimensional Problems

We begin with a study of conditions upon the range of the forward map for prob-
lems in the plane. Later we develop an inversion algorithm which respects and takes ad-

vantage of these consistency conditions amongst the data.

3.1 Consistency Conditions

Consistency conditions amongst the boundary data have the unfortunate effect of
reducing the amount of independent data. When working on an inverse problem, we would
like to have as much data as possible. At best, we may recover as many parameters as inde-
pendent data. In the first part of this chapter consistency conditions amongst the boundary
data are derived and a few examples are given. In these examples we study boundary data
for problems of increasing complexity. It is shown that the number of independent consis-
tency conditions increases faster than the amount of data. Later, the ratio of independent
consistency conditions to total data is studied as the complexity increases. However, the
coarsest nontrivial array provides a good starting point for this study of consistency condi-

tions.

3.1.1 Derivation for the 2 x 2 problem

During earlier work on inverting the forward map for the 2x 2 problem, consistency
conditions amongst the data were found. Since the theory behind these conditions is the
same for 2 x 2 arrays as m x n arrays, the derivation for the consistency conditions in the

2 x 2 problem precedes the general derivation.
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In order to recover the probabilities at least as many independent data are required
as there are unknowns. Recall the eight detectors positioned around the outer edges of the
system. When a photon is shot into the system through an outer edge, the photon either
dies somewhere inside the system or is detected as it leaves the system. By collecting data
on mahy photons which enter through the same edge, one may calculate the probability that
a photon entering the system through edge s will exit through edge ¢ (here s,t =1,2,... ,8).
The 8 x 8 data matrix, Q, contains 64 pieces of data. ‘

During early work on this inverse problem the author stumbled upon many zero
valued 3 x 3 minors of Q. In this section, consistency conditions amongst the data are
derived. These conditions force the following 4 x 4 submatrices of the 8 x 8 data matrix to
be of rank < 2.

Qs Qus Qir Qugp Qs1 Qsz Q3 Qsg
5.1) Q25 Qo Qo7 Qags , Qsr Qo2 Qs Qo ,

Qss Qse Qs Qsgp Qrp Qrz2 Qrs Qg

| Qa5 Que Qa7 Qus | [ Qsr @s2 Qss Qs |

Qra Qre Qrs Qrg Qar Q3s Qa1 Qs
Qss Qsa Qss Qs Qa1 Qus Qua Qa2
(3.2) , and
Qi Qe Qis Qi Qs Qss Qs1 Qs
| Q23 Q24 Q25 Q26 | | Qo7 Qos Qs Qo2

By taking advantage of the Markovian nature of the model, we may easily prove

that these matrices are rank deficient. Define
pi; = probability of going “directly” from
incoming state i to hidden state j

8;; = probability of starting in hidden state

¢ and ever reaching outgoing state j
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For the purpose of deriving the rank deficiency of matrix 3.1 a photon is said to
travel “directly” if its path from incoming state ¢ to hidden state j includes only one crossing
of the thick vertical barrier as shown in figure 3.4. For example, two of the paths p, s takes
into account are shown in figure 3.4. One of the paths which sg 5 represents is shown in
figure 3.5. Note that p; s does not include the probability with which a photon travels as
shown in figure 3.6.

Referring to figure 2.1 and the definitions given above, some of the Q; ;s may be

expressed in terms of the p; ;s and s; ;s

Q15 = P1,s 885+ D15 Ss5
(3.3) Q16 = DPis Ss6+P1s 556
Cir = Dis Ss7+DP1s 85,7

Qis = DPis %88 +D1s 858

or,

Sg,5 Ss,6 Ss7 Ss8
(3.4) [Q1,5 Qie Qur Q1,3]=[P1,s Pl,s]

S5,5 Ss5.6 957 Ss58

Notation: Q. denotes the 4 x 4 submatrix of the probabilities with which a photon
travels from left to right across the system, starting from sources 1, 2, 3 or 4 and ending
at detectors 5, 6, 7 or 8. Similarly, Q,; denotes the submatrix of probabilities with which
photons travel from right to left across the system. Q. and Q. are 4 X 4 submatrices

representing the probabilities of travel from bottom to top and top to bottom, respectively.

The entire @Q;, submatrix can be expressed in the same notation:

- - - -

Qs Qe Q17 Qx.s P1s Pis

Q25 Q26 Q2.7 Qz.s P28 P25 Sg5 88,6 S87 Sss
(3.5) =

Q35 Q3.e Q3,7 Qs DP3s DP3s 85,5 Ss56 3857 958

Qs Q4.s Q4,7 Q4,s Pss D45

Similarly, the Q, Q-, and Qp; Submatrices may be written as follows:
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Q7.3 Q7,4 Q'r,s Qe D713 DPre
36) Qs Qss Qss Qss Ps3 Pss 833 834 835 536

Qs Q4 GQis Que P13 Pis 863 S64 365 S6,8

| @23 Q24 Q25 Qa6 | | P23 Pas |

Qs Qs,z Qs,s Q5,4 Psa DPsp

Qe.1 Qe.z Qe.s Qe Pes  DPe,1 84,1 S4,2 S4,3 S4u
(3.7) =

Q7,1 Q7,2 Q'r,a Q7,4 P14 Pra 81,1 81,2 81,3 S14

| Qs1 Qsz Qss Qss | | Poe Psa |

. 1 . 7

Qa.v Qs Qs Qa,z ’ P32 D37

Qa Qus Qi Qs Da2 DPasr 82,7 828 82,1 822
(3.8) =

Qs,v Qs,a Q5,1 Q5.2 Psz2 DPs,;7 877 S8 S711 812

L Qsr Qes Qs1 Qs ] | P62 DPs,7 |

Since each of these 4 x 4 submatrices is the product of a 4 x 2 matrix with a 2 x 4

matrix, these 4 x 4 submatrices are of rank (at most) 2.

3.1.2 Derivation for the m x n problem

Moving on to a general description and existence proof of consistency conditions,
consider an m x n problem as shown in figure 3.7. Let Q,, be the submatrix representing
the probabilities of photons which enter the system on the left and exit on the right of the
thick vertical line. In this case,
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(3.9) Qir

where N = 2(m +n).
Claim: rank (Q,,) < m.

Proof : For any Q;; in Q.,

Ql.m+2k+l

QZ.m+2k+1

Ql.m+2k+2

Qz.m+2k+2

L Qm+2h,m+2k+1 Qm+2k.m+2k+2

Q"'j = Z::l Pix Sa,i» ie.,

(3.10)Q,, =
. aTr
D11 P12 S1,m+2k+1
D21 D22 82,m4-2k+1
| Pm+2k,1 Pm+2k2 +++ Pm+2km J L Sm,m+2k+1

Q1N
QN

Qm+2l¢,N J

81,m+2k+2

S2, m+2k+2

Sm,m+2k+2
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$1,N W

S2,N

Sm,N

Since Q;. is the product of a (m+ 2k) x m matrix with a m X (2(n — k) +m) matrix

the rank of Q,, is at most m. The same argument holds for Q.i, Q:s, and Qs:, (although

the ranks of Qy and Qy, are no greater than n).

Now consider an even more general left-right transition submatrix. Q. represents

the probabilities of photons which start out on the left of the barrier and exit the system

on the right of the barrier shown in figure 3.8.

Without loss of generality assume that 1 <1 < k <n. Then
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QM+ QN-tvr,M42 .. @QiN
Qam+1 Qn-t4a,m42 ... Qan
(3‘11) er =
| QuM+r QnmM+z oo Qumun |

where N = 2(m +n) and M = m + k + 1. For any Q;; in Q,,
Qi =Tatt " i 8a» i€,

so in this case @, equals

(3.12)
Pipg P12 .o Pamidn-itimk-l S1,M+1 $1,M+2 S1,N ]
P21 P22 --r P2mi2n-i4+2,m+k-l 82, M+1 S2,M+2 e S2,N
| PMa PMmM2 ... PM,m+k~I 3 L Smtn-t,M4+1 Smtk-i,M4+2 -+ Smik-|,N |

Q. is the product of an (I + m + k) x (m + k — ) matrix with an (m + &k — ) x
(2n + m — | — k) matrix. Hence, rank(Q;.) < (m+k —1). The same sort of argument holds
for the other rank deficient submatrices. For the barrier in figure 3.8, rank(Q,;) < m+k - [.

3.1.3 Data subject to Conditions

For a n x n system, there are 16n? pieces of data. These data are not all inde-
pendent, however. Data which are part of some rank deficient submatrix are subject to
consistency conditions. In fact, only the data corresponding to nonzero entries of P;, are

independent of all consistency conditions.
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It is not difficult to see that the nonzero entries of P;, correspond to “independent”
data. Notice that these entries are precisely those representing the probability that a
photon may travel directly from an incoming state to an outgoing state. In other words,
if P,,[i,7] # 0 then it is possible for a photon to travel from source i to detector j without
ever visiting a hidden state. Such a photon enters only one pixel during its lifetime, and
so never has the opportunity to cross any of the barriers which were used to derive the
consistency conditions. Hence, P,,[¢,j] # 0 implies Q, ; is free of the consistency conditions
derived in section 3.1.2.

Furthermore, only these data are free of the consistency conditions derived in
section 3.1.2. Consider any piece of data Q. where P;,[k,l] = 0 and suppose Qy, is not
part of any rank deficient rank n submatrix. Then there exists no right-left, left-right,
top-bottom, or bottom-top barrier between source k and detector . Consider the barriers
which immediately surround source k. See figure 3.9. (There are three such barriers unless
source k shoots photons into a corner pixel. In that case there are only two surrounding
barriers.) The barriers do not separate source k from detector [, so there is some path from
k to ! which does not cross any of these barriers. Such a path contains no hidden states,
which implies that P;,[k,l] # 0. But P,[k,!] = 0, a contradiction. Hence Q, is part of

some rank deficient, rank n submatrix.

3.1.4 Examples for square systems

Before looking for an asymptotic limit to the number of independent consistency
conditions as a function of n, consider a few more examples. When n = 1 the array is a
single pixel, and there are no consistency conditions analogous to those derived above. For
a single pixel there are 16 independent parameters per pixel. For larger arrays, however,

there are fewer independent parameters per pixel. See figure 3.10.
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3.1.4.1 2 x 2 problem

For the 2 x 2 problem, there are four rank deficient submatrices of the data.
There is one left-right, one right-left, one top-bottom, and one bottom-top submatrix.
Each submatrix is 4 x 4 and rank two. Although the submatrices overlap, each yields
four independent consistency conditions amongst the 64 pieces of data. The consistency
conditions leave at most 64 — 4 x4 = 48 independent pieces of data. See figure 3.11. In this
relatively small case, both Maple and Macsyma are capable of computing the Jacobian of
the forward map. At a generic point the rank of the Jacobian is 48. Since the rank of the

forward map is generically 48, there are at no other consistency conditions.

3.1.4.2 4 x4 problem

As shown in section 3.1.2, there are three rank four Q,, submatrices; three rank four
Q. submatrices; three rank four Q,, submatrices and three rank four Q. submatrices. The
Q.. submatrices all overlap with each other, as do the other sets of rank four submatrices.
None of the Q. submatrices overlap with any of the Q,; submatrices. Similarly, the Q,;
and @, submatrices are separated.

The Q;, and Q,; submatrices overlap with the Q,, and Q,, submatrices, however.
Recall that these submatrices and the entries of P;, cover the data matrix, Q. We would like
to know how many of the data are independent. The rank four submatrices can easily be
used to show that there are at most 160 independent pieces of data (amongst the 256). From
the forward map we may recover at most ten independent parameters per pixel, (assuming
that it is possible to recover the same number of parameters per pixel). Clearly, the data
which occupies the same positions as nonzero entries in P;, are independent. But what of
the other data? Consider first the 8 x 8 rank four submatrices. Just as in the 2 x 2 case,
a 4 x 4 block from each submatrix may be written off as redundant. See figure 3.12. This
takes full advantage of the fact that the submatrices are of rank four and accounts for all
of the data in the submatrix. Consider next the data which are part of one of the 10 x 6
rank four submatrices. Most of this data has already been accounted for because it is part
of one of the 8 x 8 submatrices. Only the first and last rows contain unaccounted for data.
Three entries in each of the end rows are assumed known because they lie in neighboring

8 x 8 rank deficient submatrix.
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We need know only one more piece of data in order to calculate the two unknown
pieces of data in each end row. Analogous reasoning applies to the 6 x 10 rank deficient
submatrices. Therefore, we may write off as redundant additional data within the 4 x 4

subblocks along the diagonal, as shown in fig 3.12.

3.1.4.3 8 x 8 problem

In this case there are seven rank eight submatrices of each stripe: left-right, right-
left, top-bottom, and bottom-top. Once again all of the left-right submatrices are disjoint
from the right-left submatrices, but do overlap with the top-bottom and bottom-top sub-
matrices. (Also, the top-bottom submatrices do not intersect any bottom-top submatrices.)
And the union of all of the rank deficient, rank eight submatrices and the entries of P;, cover
the data matrix. Below it is shown that for n = 8 we may recover at most nine independent
parameters per pixel from the forward map alone.

Once again begin by considering the 16 x 16 rank eight submatrices. They contain
8*8=64 redundant pieces of data each. Writing off one 8 x 8 block per submatrix takes all of
these consistency conditions into account. Now all data within these submatrices is assumed
to be known. Next, consider the data which is part of an 18 x 14 rank eight submatrix.
As before, most of the data is already accounted for. Only the first and last rows lack
accounted for data. In both the first and last row, seven pieces of data are assumed known,
since they are part of some 16 x 16 rank eight submatrix. If in both rows one more piece
of data is assumed known, then the six remaining pieces of data may be calculated. The
same reasoning applies to the first and last columns of the 14 x 18 rank eight submatrices.
Similar reasoning applies to the end rows and columns of the 20 x 12 and 12 x 20 rank eight
submatrices. Finally, we write off data in the end rows and columns of the 22 x 10 and

10 x 22 rank eight submatrices. See figure 3.13.
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3.1.5 For n a power of 2

For coarse grids, (n < 8), the maximum number of independent data per pixel
decreases as n increases. In this section the method by which redundant data was found in
the examples is generalized. The chart below shows the number of independent data per
pixel for n x n systems.

Further, notice that for n > 2 the rectangular (not square) rank deficient sub-
matrices account for the increase in the ratio of redundant data to total data. The data
rendered redundant by these rectangular submatrices may be chosen inside n x n blocks
along the diagonal. Therefore, the n X n blocks of along the diagonal are studied below.

Notice that in the examples, the only necessary data in the blocks along the
diagonal form an ‘X’. All other data within these blocks is redundant. The reason is not
too hard to see, even for general n = 2%, k € N. The redundant data belongs to some
rectangular rank deficient submatrix. Such submatrices, however, are mostly accounted for
by the data in the corresponding square rank n submatrix. There are at least 2n rows
(or columns) common to the square and rectangular submatrices. Consider first one of
the (2n — 2) x (2n + 2) submatrices. Only one column protrudes from either side of the
corresponding 2n X 2n submatrix. For each of thes> columns, n—1 of the data are accounted
for because they are part of an overlapping 2n X 2n submatrix. Hence, we need only add
one piece of data to each column in order to calculated the rest of the column. If we choose
to add the piece of data in the corner of the n x n block along the diagonal, then the
(2n — 2) x (2n + 2) submatrix corresponding to the first square submatrix now has n pieces

of data in the protruding columns, and so the rest of the (2n — 2) x (2n + 2) submatrix can
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be calculated. Furthermore, one of the protruding rows of a neighboring (2n +2) x (2n — 2)
rank n submatrix now has n pieces of accounted for data. So we may also calculate the
n — 2 remaining pieces of data in that row. By adding one piece of data to one protruding
column, we gain 2(n — 2) pieces of data. Adding one piece of data to each protruding
column allows the calculation of the unaccounted for data in both the (2n — 2) x (2n + 2)
and (2n + 2) x (2n — 2) rank deficient submatrices. Similarly, the judicious addition of one
piece of data to each end column of the (2n — 4) x (2n + 4) rank eight submatrices permits
us to calculate the rest of the unaccounted for data in all of the (2n — 4) x (2n + 4) and
(2n+ 4) X (2n — 4) rank deficient submatrices. We may continue this process until reaching
the center of the n x n block along the diagonal. The data in the center of the block are
independent entries since they correspond to nonzero entries of P;,. Only 2n pieces of data
within each of the diagonal n x n blocks need be known. The other n? — 2n pieces of data
are redundant. And among each of the rank n, 2n x 2n submatrices exactly n? pieces of
data are redundant. Since the redundant data may be choosen independently, there are at
least 4((n* — 2n) + n?) = 8n(n — 1) pieces of redundant data, leaving at most 8n(n + 1)
pieces of independent data. The fraction of independent data decreases as the number of
pixels increases.

For most imaging methods, quality improves as pixel size decreases. Large pixels
yield grainy images. The more pixels used to image an object, the clearer the image. For
n = 2%, the fraction of independent data approaches 1/2 as k approaches infinity. For
n > 16, the forward map generates at most eight independent data per pixel. Additional
information about the system is needed in order to recover diagnostically relvant information
from the data. Some a priori knowledge of photon transport is needed to close the system

of governing equations derived in the next section.
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3.2 Recursive Inversion Algorithm

Although it is not possible to invert the direct map because of the consistency
conditions amongst the data, it is possible to recover as much information as there are
independent data. For an n x n system the forward map takes 16n? transition probabilities
and maps them to the 4n X 4n matrix Q. The domain of the forward map lies in the unit

cube in R'®"". The domain is defined by the equations
eije + eijw + eijn +eijs <1
(3.13) wije + wijw + wijn 4+ wijs <1
nije + nijw + nijn +nijs <1
sije + sijw + sijn + sijs <1
fori,j =1,2,... ,n. Because Q is a transition matrix acceptable solutions lie in R'*"" and
satisfy

4n
(3.14) 0<Y QAN <1 i=1,2,...,4n
A=1

Since the rank of the forward map is less than 16n? we cannot hope to invert it. If
the rank of its Jacobian is generically r, then at most we can recover r pieces of information.
Although we cannot explicitly solve for transition probabilities in terms of the data, we can
express them in terms of the data and k independent parameters, where k = 16n? — r. In
this section a recursive algorithm for finding the k& parameter family of solutions is detailed.

3.2.1 Base Case (2 x 2 problem)
3.2.1.1 Solving the Governing Equations

By making several nonlinear changes of variables, we may remove the nonlinearities
from 2.8, (or “move” them to the changes of variables). First define, (assuming that P,, is

invertible),

(3.15) A=P;}

Equation 2.8 may be rewritten as
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(3.16) (Q - P,)A(I - Py) =Py =0

where © is a matrix of zeros. 6 will denote a vector of zeros. A few more changes
of variables are required to make 3.16 linear:

W = AP;.[,
(3.17) X = P,A
Y = PW-Py

We can recover P, Pi,, and P;, in terms of A if we know W, X, and Y. Under

these substitutions, the matrix equation 3.16 becomes

(3.18) QA-W)-(X-Y)=6

Recall that Q is the data, so 3.18 is linear in the unknown matrices A, W, X,
and Y. Furthermore, the new matrices have special block structures. A has the same
diagonal block structure as P,,. X is also block diagonal. Finally, W and Y have the
same off diagonal block structure as Py, and P;,. The variables for each system/column of
equations contains three each of the A; ;s, W, ;3, X, ;s, and Y; ;s. The W, ;s, X ;s,and Y, ;s
are functions of A; ;s which correspond to other columns. Although the variables differ from
column to column (exactly 64 variables total—no repeats between columns), the columns

are only artificially decoupled.




(3.19) A-W =
All

L]

0
0

(320) X-Y=

Az

L

Az Wi
Azg Wiy
~Wia2 Ass Asg
Wz Ay A
0 ~Ws.a
0 ~Wen
0
0
Xy Xi2 -hhs 0
Xay X2 Y3 O
0 -Ys, Xs3 Xsu
0 Y2 Xz Xea
0 0 0 -Yy
0 0 0 Y
Y, 0 0 0
-Y: O 0 0

0
0
~Yss
~Yis
Xs.s
Xo.s
0

0

0
0
AS.O
AG.G
~Wiy e
~Wie

=Y,

"'YB,O

0
0
~Ws
~Ws,
Arq
As 7

X1
Xo7
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"Wl 8
~Was

Arg

Ass

=Y

-Ya

[}

Xrs

XB,S i

Now the equations in column six of 3.18 are linear in the variables

{As,6, As,6s Wr,61Ws,6, Xs5.60 Xo.6: Y1,6 Yo6}

and can be written as a homogeneous matrix equation:
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[ Qs Qe Qir Qg 0 0 0 0 11 Ao
@ Qa6 Q27 Qas 0 0 0 0 Ag,s
Qss Qse Q37 Qs 0 0 0 0 ~Wre

(3.21) Qus Qus Qi1 Qus 0 0 0 0 ~Wse -0

Qss Qse Q7 Qe 1 0 0 0 Xy
Qos Qoo Qo Qe 0 1 0 0 Xoo
Qs Qre Qrr Qg 0 0 -1 0 Yre

| Qos Qoo Qo7 Qos 0 0 0 1] | Yoo |

We can do the same for the other columns in 3.18. To each column in 3.18
there corresponds a system of eight linear equations in the variables which appear in the
corresponding columns of 3.19 and 3.20. Note that as far as their zero structures are
concerned, the columns of 3.19 and 3.20 come in pairs. The roles of the A; ;s and W, ;s
are reversed in the first and eighth columns of 3.19 as are the roles of the X; ;s and Y; ;s
in the first and eighth columns of 3.20. Hence, we must solve the “same” matrix equation
for the first and eighth columns of 3.18. Similarly, the linear systems corresponding to the
second and third columns of 3.18 are given by a single matrix equation; the fourth and fifth
columns by a third matrix equation; and the sixth and seventh columns by a fourth matrix
equation. We are left with four sets of homogeneous linear equations, i.e., four 8 x 8 matrices
which satisfy the homogeneous equation Qz = 6. Since the trivial solution would not be
interesting enough to write about we may safely assume that there must be other solutions.

This is indeed the case since the upper left 4 x 4 submatrix found in equation 3.21,
[ Qs Qus Qs Qus |
Qs Q26 Q27 Qg
Qs Qas Q7 Qg
| Qus Qus Qa1 Qs |

representing travel from left to right across the system is rank deficient. As noted in

(3.22)

section 3.1 the submatrix above is of rank two or less. So we may solve 3.21 for at most six

of the eight unknowns in terms of the other two.
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The variables for each system of equations contains two each of the A, ;s, W, ;s,
X, j8, and Y ;8. Do not forget, however, that the W s, X, 3, and Y] ;s are functions of
A; s which correspond to other columns. Although the variables differ from column to
column (exactly 64 variables total—no repeats between columns), the columns are only
artificially decoupled. Recall that only six equations per column of 2.8 are independent.
Since the W, ;s, X, ;s, and Y, ;s are already functions of 4, ;s, it seems natural to solve
for them in terms of the A; ;s. Following this procedure for all eight columns reduces the
number of unknowns from 64 to 16.

To solve 3.21 for the W, ;s, X, ;s, and Y; ;s in terms of the A ;s, we need only

solve:
[ Qsr Qe 0 0 00 1T Wi e ] [ Qas Qse ]
Qur Qus 0 0 00 Wa,e Qis Qe
Qsr Qse -1 0 00 Xs.6 Qss Qse Ase
(3.23) =
Qsr Qss 0 -1 00 Xo,s Qos Qo Age
Qi Qs 0 0 10 Yre Qrs Qe
| Qs7 Qss 0 0 0 1 ]| Yoo | | Qss Qs

For the sake of simplicity the first two rows of the matrix equation 3.21 were
omitted and the equation was rewritten with the unknown W; ;s, X, ;s, and Y; ;s on the
lefthand side. The determinant of the lefthand matrix in 3.23 is dQs«,(r,s- 3.23 has.-a
unique solution if and only if dQ3 4 7,s) # 0. A similar requirement holds for each of the
other columns of 3.20. In order to solve each column of equations for the W, ;s, X ;s, and

Y, ;s in terms of the A, ;s it is sufficient that the following minors be nonzero.

(3.24) dQuarey  AQuels4py dQselfizy  4Qn,2)05.0

If the data satisfy these requirements then we can solve the 48 independent equa-
tions in 64 variables linearly for the nonzero entries in W, X, and Y in terms of the 16
variables in A = P;;!. Unfortunately, that exhausts the supply of equations for the original
model. Example solutions from each of the four one step transition submatrices are shown

below:
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Al,!

3.25 willy = — =t
(3.25) dAp ).

where wllw is an entry in P,,. One of P,,’s nonzero entries is

wle = (dQuapsdssss +dQuasadesdsst
(3.26) dQq1 2145455443 + dQ[I,z],u,e]Ao,sA«.a) /
dQy 1341941341004

and
ndls = dQ(1,2,41,(4,5,61 43,3444 _ dQ{t.s,e].[x,2.4]‘44.3«43,4+
dQq 5,504 alisa AQ(s 61,319 A 13,41, 0.4
(3 27) (dQ[s‘el‘[lﬂ]dQ[l'2‘4],[3'5'01 - dQ[Lz]sis\oldQ[‘|5,°],[l'2.3]) A313A3.‘

dQ[x.2].[5.0]dQ[5.0].[1.2]d‘4l3v4]»[3v4]

is an entry of P,,. Finally, one of the nonzero entries of P, is

8128 = ("dQ[s,o].u.z} (dQ(x.z},[s,o}dQu,z,a),(e,-r,a] - de,z],[o,ndQ[x,z.a],[a,e,a])
"dQu.2].[e.a]dq[x.z].[u,o]dQ(s.e.a],[x,2,1)) AgsArs sz
+ (dle.e],(z.zy (dQ[l.2],[6.8]dQ[l.2,8}.[5.6.7] + dQ[x,z],(s.o]dQ(x,2,5),[0.7,3))
“dQu,2].(e.'r]dQ[l,a].(5,o]dQ[s,a,a],|1,2.s}) ArzAe0Ass
~ (- 9Qus 0.0 ( 491 2145,619Qu1 2810578 = AQ2105.19Q1 28108.6)
~dQ(1.z}.[s.a]de.z],[5.odels,a,ul,u,a,71) AssAs1Ars
+ (dQ(,,,a,,[;,g) ( dQq1,2),5,6/9Q1,2,8),(5,7.8) + dQ[x,a).{s,s]dQn.z.s).[s,u,-:})
(3.28) "dQ[l.2].[s,1]dQ[1,2],[5,e]dQ[5,a,s}.[x.z,a]) AssAssAr;
+Ag,7488 (dQn,z),[e,a)Ae.o + dQ[x.z],[s.a]As.o)
(’dQ[s,e.s),[l,2.s}dQ[1‘2],[s.c] + dQ(s,e].[;.z}dQ[l.z,s},[s.o,s))
+Aq847, (dQ[l,zl,[o,-r}Ae.a + dQ[:.z].[s,v]Aa.e)
(4Qus.013. 191 2115671 — 4 245,014 s s 11121 ) /
dA['f.Sl»(T.S]dQ(l.z].(1.a}dQ[1,a].[s,s]dQ[s,o];(l.z]
Solutions for variables from a transition submatrix are all of the same form. For

example, all of the transition probabilities in Py, are equal to an entry of A divided by a

2 x 2 minor of A.
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3.2.1.2 Grafimannians and the Graimann-Pliicker Embedding

Since equation 3.23 is a linear system of six equations in eight unknowns, it is
not surprising that Grafimannians and the Grafimann-Pliicker embedding come into play.
Grafmannians and the identities which embed them in projective space will be used in the
following section to simplify solutions for incoming-hidden transition probabilities like that
shown in 3.28.

8.2.1.2.1 Grafimannians Given integers k and n, where k < n, G(k,n) is defined as
the set of all k-dimensional linear spaces in C*. Let A be an element of G(k,n). Then there
exists a set of k 1 x n spanning vectors of A. Represent A as a k X n matrix whose rows are
these spanning vectors. Because the choice of spanning vectors is not unique, a family of
matrices represent A. Given any g in GL(k), define A’ = gA. In the following sections both
the point A € G(k,n) and a k x n matrix representing A will be denoted by A. Hopefully,
context will make the author’s meaning clear. The rows of A’ sr an the same space as the
rows of A, so we identify A' and A.

Under these identifications, it is easy to construct a bijection between a dense,
open subset of G(k,n) and C*"~*)_ Let O be the set of all points in G(k,n) which may be
represented by a k X n matrix whose first k columns are independent. O is a dense open set
in G(k,n). Given any representation for A in O, we can easily find the matrix representation
A for A such that the first & columns of A are the identity matrix. (Simply take g~! to
be the first k columns of A. The rows of A are independent so g—! is invertible. Define
A = gA.) Only the entries of the rightmost k x (n — k) submatrix of A are unconstrained.

More generally, let I = (i,,43,13,...,4:) index k independent columns of the orig-
inal representation for A. Then given any A, we can define the map ¢; such that ¢;(A)
satisfies the following: column i; of ¢;(A) = e;, where i; is the j;; index in I and e; is the
Jen canonical vector. In order to define ¢, first set g~! equal to the matrix with columns
i1,42,13,...,1% of A. Generically, g~? is of rank k so g exists. Then A = gA is has column
i; equal to e;. The inverse of ¢, is always uniquely defined.
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Let I' denote another set of linearly independent columns, Define A; = ¢;(A) and
Ap = ¢p(A). Then A; and Ay satisfy A; = gA and Aj = ¢g’A for some g,¢' in GL(k).
Then Ap = hA; for some matrix h in GL(k). A moment's reflection reveals that A must
be the inverse of the matrix composed of the columns of A; which are indexed by I'. Note
that the entries of h are analytic functions of the entries of A;, so G(%,n) has the structure
of a complex manifold.

8.2.1.2.2 The Pliicker Embedding Any GraSmannian, G(k,n), may be embedded
into P(3)-1, PV is N dimensional projective space over the complex numbers; we can think
of PV as an N dimensional sphere lying in NV + 1 dimensional space with antipodal pcints
identified. A point, P, in P’ may denoted by (po,p;,P3,...,pn). This point is identified
with all other points a x (py,p1,P3,...,pn) for any nonzero scalar a.

In the simplest case, G(1,n), any point of the Grafmannian is represented by a
single row vector. Since we may multiply each element of the Grafmannian by a nonzero
scalar, we may canonically identify P"~! and G(1,n). Every element, A, of a G(k,n) defines
a k dimensional linear space in C". The Pliicker coordinates of a Grafmannian A are by
definition the determinants of all k x k minors of any representation A of an element in
G(k,n). The dual space corresponding to A is A+, the (n — k) dimensional linear space in
C" orthogonal to A. There is a 1 ~ 1 correspondence between the Pliicker coordinates of
A and A*+. Since the set of (n — 1) dimensional spaces in C* is isomorphic to the space
of one dimensional spaces, we can identify any A in G(n — 1,n) with its dual, A+, Hence
G(n - 1,n) and P! are identified.

When 1 < k¥ < (n~1) more complicated relations are required to embed G(k,n) in
some projective space. It is easy to check that Pliicker coordinates are projectively invariant
under representation of A. Let A and A’ be equivalent representations for the same element
of G(k,n). Then A = gA' for some g in GL(k). Let I be any index of k columns. The
submatrix taken from the I columns of A equals g times the submatrix taken from the I
columns of A’. By the rules of determinants, |AB| = |A| |B|, and so the determinant of the
I,», minor of A equals the determinant of g times the determinant of the Iy, minor of A’.
This holds for all I, and so if the (¢)-tuple P are the Pliicker coordinates of A then |g|{
are the Pliicker coordinates of A'. Since there are (}) k& % k minors of a k x n matrix, the
Pliicker map takes G(k,n) into P(G)-1), (Note that the Pliicker map is not onto.)
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We can check that for 1 < k < n, (§) -1 2 k(n - k). In order for the Pliicker map
to be an embedding, there must be some (i.e., (({) — 1 — k(n — k))) independent relations
amongst the Pliicker coordinates of a point A in G(k,n). For G(2,n) these are the Pliicker
relations. For general G(k,n) they are called Grafmann relations. In either case the
relations are quadratic in the Pliicker coordinates for A. The GraSmann relations are easily
derived.

3.2.1.2.83 Derivation of Grafimann-Pliicker Relations Let A be any rectangu-
lar matrix with k rows and n columns where ¥ < n—1and A = (a);;. Let I =
(31,43,88, . .« y8(a—1)) index (k — 1) distinct columns of A. Let J = (j1,Ja,J8:..Ju+1))
index (k + 1) distinct columns of A. Consider the sum,

Q14 Q14 cc0 Q1. OG5,

h+1
Z(—I)A-‘-l
A=l
Gpyiy  +o0 rer Ohgyny Ok,
Q1 o+ Ciany Grgag o Glgayy
(3.29) : : :
Qigy <o+ Ohjaor Ohjasr o0 Ol
To simplify 3.29, expand the first determinant along the last column as shown
below
Q14 GLiz o0 Ol s X
(3.30) : : =Y a,;CF,
pu=1
Qp,iy Ok,iney  Chyia

where CF, is the cofactor of the matrix on the left-hand side of 3.30 about the (u,k).x
entry. Then 3.29 becomes
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N1 A Gy 0 Q4 CGljyyy ¢ Ol
A4l . . . .
Y (-1)**'Y 6,;,CF,| : : :
Aml p=1
Argy +o0 Ghgaoy Ghygayr oor Ohyjag
o ... 0 Gy i 0 ces 0
] k41
X6, o0 B4l G145 Gy o0 Gl
= }: CF, Z . . . .
p=l A=1 . : . .
Ghgy +o Ohjay Bhjy  cer cer Ohygy,

Qujy Gu2 oo Gujuy,

k
81,4y G155 <+« Q1
ScF| T :

p=1

il

(3.31)

gy Ohga ¢ CGhyjuyy

A
= Y CF,-0
u=1
= 0
Denote by n; the determinant of the minor whose columns are indexed by the
multi-index I. Then

k+1

(3.32) 2 T(issiarenin=102) W1 dareadamtidadtseongr) = 0
A=1

Equation 3.32 defines the Grafmann relations. In the following paragraphs a few

simple examples are given.

3.2.1.2.3.1 Examples of GraBmann-Pliicker Relations - G(2,4) First
we consider G(2,4). Since G(2,4) is isomorphic to a dense, open subset of C*, and the
Pliicker map takes G(2,4) into P°, only one nontrivial Grafmann relation is required to
embed G(2,4) into P*. Consider the representation for A € G(2,4)

Ay A Ay Ay
(3.33) A=
Ay A3; Ajs Agy

and consider
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(3.34)
Ay A || A Arg Ay Aa || Ag Ay, Ay A || Ag Agg
- +
Azy Ass || A2y Asy Azy Ay || Ay Agy Azy Ass (| A2 A2s
since
bw.u s&u.u
(3.35) = ~A124;3 + 4224,
Azy Ag,
Ay Ay
(3.36) = A4z + 42341,
Asy Agg
Ay Aig
(3.37) = ~A14431 + 4344,
Azy Aay
equation 3.34 can be rewritten as follows
Az Asg Az A
(—A12421 + A324,,) - (—A134;51 + Ay34,,)
Azs Az Ay Agg
Az A
(3.38) + (—Ai14dsn + A2441,)
LA.N.N x&.u.u
which equals
Az Ay A, Ay, Az A
Ay | A — Ay + Az,
| A2s Ay Ay Ajyg Az Aags
([ A A Az Arg Az Aig
Aw.wmv - \»n.u .hu.u l.u#_;u +\»—.p
r Az Az, Az Aag Azz2 Az

equation 3.39 can be rewritten again
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Aya 0 0 0 Ay 0 0 0 Ag

A1y Ag Ay Ay |+ Ag A Aa |+ Aa As Ay,

' ¥

Azs Ajs Ay, Az Axs Agy Azg Azs Aja

[

As 0 0 0 A 0 0 0 A
(3.40)- A, Ajg Ay A |t Arg As Ay |+ | A1p Ais Avg

Y +

A22 AZ,! A2,4 I_AGJ A23 A2,4 A22 A2,3 A2.4

¥ ‘

which in turn equals

A3.3 A2,3 Aﬂ,‘ Al,2 A‘,3 Al.‘
(341)Ayx | Aya A Aya | —A2n| A1g A1y Ay [ = 41020 43,50=0
Aza Axs Aay Ay Axs Agy

¥

Therefore, equation 3.34 is identically zero. In the “x” notation this means that

(3.42) T2 = M1,3Ma4 + M2 =0

Equation 3.42 was generated from equation 3.32 by setting I = (1) and J =
(2,3,4). It is an easy excercise to see that the result is the same for any other I and J as
long as I J = 0. If, however, I J # 0, where I = (i) and J = (3, j,, j3) then the resulting
identity is trivial:

(3.43) TiiMiags = MiyjaMis + MijgMijy =0
3.2.1.2.3.2 Examples of GrafSmann-Pliicker Relations - G(2,58) G(2,5),
however, is slightly more complicated. G(2,5) is isomorphic to a dense subset of C*, and

we shall see that there are (§) = 5 nontrivial Pliicker relations. But the Pliicker map takes
G(2,5) into P?, so must be three independent Pliicker relations corresponding to A where
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r
Ay Arg Ay L s
(3.44) A=
Az Az Az Axy Azs

As long as we choose four different columns of 3.44 it does not matter how the

four columns are assigned to I and J. There are (3) = 5 ways to choose the columns

L=Q) J=(234)
L=(1) J=(235)
(3.45) Li=(Q1) Ji=(24,5)
L=Q) Ji=(34,5)
Ii=(2) Js=(3,4,5)

corresponding to the five Pliicker relations:

M ,2M3,4 — M13M24 + MMz = 0
M ,2M3,5 — M1,3M25 + M sz = 0
(3.46) T12M4s — M1 aMgs + M sz = 0
T1,3Te,s — M1 4M3s + M1 5734 = 0
Ma3Me,s — M24M35 + M2 5M3e = 0
3.2.1.2.3.3 More General GraSimann-Pliicker Relations For there to be

a nontrivial GraSmann relation, at least three of the “;j,” must be distinct from the “i,”
and omne of the “i,” must be distinct from the “j,”. One can check that there may only
be an even number of nonrepeated indices. Suppose for any k < (n — 1) and A in G(k,n),
there are exactly four indices, [,, [, I3, and [, which are not repeated. Without loss of
generality assume that I = (i,%s,...,%4k-2),l1) and J = (i1,43,...,8k-2),l2,l3,04). The
Pliicker-Gramann relation generated by I and J is similar to the relation generated by an
element of G(2,4) where I = (), J = (I3,13,l¢). The other indices don’t “matter” because

they contribute only zero terms to equation 3.32.
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If we consider G(k,n) for k > 2 there are many identities given by 3.32. Some
of these identitites have terms which are identically zero. (Whenever jx € #1,%2,... ,%%_1,
for example.) Suppose A represents an element of G(k,n) and some of the columns of A
are repeated. If there are only six different columns in A we can calculate the number of
nontrivial Pliicker-Gramann relations as though we were working in G(3,6). In G(3,6),
I and J have two and four components, respectively. So there are (§) = 15 ways to pick
I and J so that I has two indices and J has four indices. Hence there are 15 nontrivial
Pliicker-Grafmann relations. Note, however, that G(3,6) is isomorphic to a dense subset
of C3(6-3) = C® and that the Pliicker-GraBmann map takes G(3,6) into P®)-1 = P1°
Hence, among the 15 Pliicker-Gramann relations, ten are independent. Pliicker-Gramann
relations will first be used to simplify the solutions to the nonzero entries of P;, which were
calculated in section 3.2.1.1.

3.2.1.3 Simplifying solutions to P;, by adding Graflimann identities

Notice that in 3.28 several of the coefficients in the numerator contain factors
which are quadratic in minors of Q. Some of the identities used to embed G(3,7) in PG3)-!
are useful in simplifying 3.28. Consider the matrix:

Qs Qi Gy Qs 1 0 0
(3.47) Q2s Q26 Q27 Q28 0 1 0
Qss Qss Qs7 Qss 0 0 1

The quadratic factors appearing in 3.28 are written below as they appear in 3.28

and in the 7 notation used in section 3.2.1.2.3.
dQ[l,z},[S,G]dQ[l,2,8],[6,7,8] - dQu,z],[s,7]dQ[1,z.s],[5,s,s] = T1,2,772,34 — 72,3,7M1,2,4
dQ{1,2],[5,6]dQ[1.2,B].[5,7,8] + dQ(1,z],[5,a]dQ[1,2,31.[s,e.7] = T12,771,3,4 + T1,4,77M12,3
(3.48) dQ[x,z].[5,s]dQ(1,z.s],[s.7,s] - dQ[z,z].[5.7}dQ[1.2,a].[5.6.s] = T12,7M134 — T1,3,771,24

dQyy,21,06,619Q1,2.815.6.7 T AQ1,2,(5,6/9QR(1.2,816.,78] = T24,7T1,23 + M1,2,7M2,34

The following Gramann identities may be used to simplify the equations above:
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71,2,7%2,34 — TM1.22M734 + Mi23Mr24 — T12477.23 0
1277134 — T1.217T734 + M23Tra4 — T1247713 0
(3~49) 71,2,7M1,34 — T1,21M734 + M23T7a4 —  T1247713 0
2,4,7T1,23 — T241M723 +  T242T703 —  T2,43M7,1,2 0

So we can simplify the right hand sides of the quadratic clusters in 3.48 as follows

T1,2,772,3,4 — 72,3771,24 = —M24,7M1,2,3

M1,2,771,34 T T1,47T123 = T1,24M1,3,7
(3.50) M1,2,7M1,3,4 — 7"1.3.:7"'1.2,4 = —M14,7T1,23

M2,4,7M1,2,3 + M1,2,7M234 = T2,3,7M1,2,4

The Grafimann relations in 3.50 allow us to make the following substitutions:

dQy 51,15,619Q1,2,81,06.7.8) ~ 21,6719 281568 = Q1,216,891 ,2,81,5,6.7)

dQ1 21,5,699.2,81,15.7.8) + Q1,215,899 285,671 =  9Qq1,21,15,119Q1,2,8),05,6.8)
(3.51) dQpy 1,(5.6/9Q01,2,81,(5.7.8) — Q1,215,791 2805880 = —9Q,21,15,89Q,2,81,05.6,7)

dQp1,2),16.19Q1,2.81,05.6.1 T 91,21,5.6/9R01,2.8,06,7.8) =  9Qq1,21,(6,19Q1,2,681,05.6.8)

When 3.51 are substituted into the solution in 3.28 the resulting solution looks

much simpler:

5125 = (As;7Ass (AQp 21 10,0480 + Q215,51 4s5.6)
(3.52) (—dQ[s.a,s],[1.2,s]dQ[1.2],{5.6] + dQ[s,G],[l,z)dQll,z,sj,[a,G,S]) +
dQq; 2),6.8) ( dQgs,61,(1,219Q1,2,8),(5.6.7) — dQ[1,2],[5,e]dQ[5,6.s].[1,2,7]) AgpArgAsr +
dQ 2).16.7 ("dQ[s,s,s],[1,2,8]dQ[1,2},[5.G) + dQ[s,e}‘[Lz)dQu,2,8],(5,6.8]) Ar7Ag6Ass +
dQq1 2,581 (dQ[s.e],[x,z) dQqy 2.8),5.6,7 — dQ,2.55.81 dQ[s,e,s],(l,z,'l]) AspAgrArs +
dQqy 2,57 (‘dQ[s,s.n,[1.z.a1dQ[1,z],[s,s] + dQ[s,e],p.z]dQu.z.s],[s.s.a]) AseAsgArr +
ArgAzz (dQ[l,z],[s,nAe.e + de,z],[s,nAs,s)
(dQ(S.G],[l,2]dQ[1,2.8],[5,6,7] - dQu,z],[s,e]dQ[s,s,s].[l,z.v))) /
dArr,)(819Q0 217,041 21,6504 Qs 01,112

which factors to become
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8128 = ((As.adQ[s.o].(1,2]dQ(1.2.s],[5.o,s] = A7,8dQ) 215,695 0.8,1.2.1
A sdQps 6,812,091 ,205.6 T A7-0dQ[5.0],[1.2]dQ[1,2.8],[5.8.7])
(dQu,z},[g,g]Ae.oAs,v + dQ[1,z],[5,s]A5.6A!.7
+dQ[1,z],(s,7]A7.1Ao‘e + dQ[;,z},[s,':]As,oA'r.'r)) /
(3.53) dA["-BI'[7'81dQ[1.2].[7.s)dQ[1,2].[5.o1dQ[s.o].[1.z]

All of the sixteen solutions for the entries in P,, in terms of the entries of A factor

once they have been simplified using Pliicker-GraSmann relations.

3.2.1.4 A “special” model with a closed system of equations

Motivated by the observation that the rank of the direct map is generically 48, we
looked for a model which has 48 independent parameters, distributed evenly among the four
pixels. In order to reduce the number of independent parameters we made the following

identifications:
(3.54) eije = wijw, sijs = nijn, sijn = nijs, eijw = wije for all i,j.

The first two constraints are fairly natural. They represent instances of the prin-
ciple of “microscopic reversibility”. Notice that the other two conditions are a bit less
natural; they represent a certain type of “mirror symmetry”. Experimentalists often make
use of physically plausible constraints. Unfortunately, these constraints do not always sim-
plify the mathematical problem. For example, imposing microscopic reversibility on the
system would lead to less than twelve free parameters per pixel. Data matrices generated
by microscopically reversible n x n models are symmetric. This symmetry renders half of
the otherwise independent consistency conditions redundant. Unfortunately, it also renders
n(n— 1)/2 of the data redundant. In the 2 % 2 case this reduces the rank of the direct map
to 28. Finally notice that we have not made the assumption that the probability of being
killed in a pixel is independent of the direction from which the photon entered the pixel.
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Once the above identifications are made, the problem has the following features:
the rank of the forward map remains 48, the main diagonals of P,, and P,, are common,
and the off diagonals of P,, and P;, are common.

3.2.1.4.1 Cubics and Quadratics In section 3.2.1.1 we had freedom to choose sixteen
of the 32 equations in the matrix equation 3.16 which were functions only of A and P,,. More
precisely, in each of the eight columns of equations in 3.16 we were free to choose two of the
four equations which were independent of P;,, and P,;,. Experimentation with a few of the
(3)® = 1,679,616 possibilities showed that some choices of equations are better than others.
Thanks to a different choice of equations the results presented below are somewhat simpler
than those in [5, 6] and [7]. In this section, the solutions for the transition probabilities

were obtained by disregarding the equations in 2.8 corresponding to the ‘z’'s in the matrix

below:
[0 000000 0]
0 0000 OTU OO
z 0 00 0z z
z 00 00 z z =z
(3.55)

0 zzz 2 0 00

0 2z z 2z 2z 0 0 O

When substituting the solutions found in section 3.2.1.1 into 3.54 the equations
corresponding to travel straight through a pixel yield eight quadratic identities. Many of

the equations which follow are identically zero and the “= 0” has been omitted.

dQys 6,7,8) (dQ{x.z],[5.a]dQ[s.a;r).(x.z,‘r]AB.TA7.8 = dQps6,11,2/4Q1.2,7)5.6,7 A7.7 48,8
+ (dQu,2],[s,o]dQ|s,e.7].(1,2,3] - dQ[s,e],[x,2]dQ[1,2,1],(5,o,s]) As,-rAs,a)
(3.56) =dQyy 2),(5,69Qs.6),(1,2] (dQ[s,o],[z,-r]Az.lA'l.v + dQs 6),2,8/ 48,7421
+dQs g11,11 A1 47,7 + AQyy 4111, 148,741 )



(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

41

dQs,6,1.9) (dQ[s.o].(m]dQ(z,s.c].[z.s.qu.zAl.x — dQys,01,(3,49Q2,5,6),(2.7.8) 41,3 43,1
- ("dQ(a,o).la,c)dle,a.o].[1,7,3) + dle.s.o},(x,a.qu[s.o}.(m]) Am«‘h.z)
+dQs o1(7.019Qs 05,41 (4Qus, 01191 48.8 413 + dQp g1 3.1 Ar8 An
+dQys 611,71 A7.8412 + dQ(s,e),(z,a]Aa.lAz.Z‘) '

dQq1,2),(5.01 (dQu,zl,(?,adeu.z.s],[a,4,a}Ao,oAu.u — dQq1 2,(3,40dQ)1,2,5),(5,7.8) 46,8 45,6
- (-dQII-3]v[3»4]dQ[1.I.S].[G.T.O] + dQ[1,z.5].(s.4.o]dQ[1.2}.(7,0]) Ao,oAs.a)
=dQs,2),(3,49R1,2).17.8) (dQu,z),[s,nAz'.'IAs,u +dQ( 2, 15.848,74s5,8
+dQy 21,81 A7,7 405 + dQu.z],[o.s]As,'rAe.s) )

dQq1,),(3,4) (dQ[:.z],[a,oldQ[a.a.o).{x,:.a)As.aA4,4 = dQs,6,11,219RQ(1,2,3),(3,5.6) 44,3434
- ('dQIM].[1.2]dQll.2.a},|4,s.o] + dQ[a.s.o],[1.:.4]dQ(1,z].[s.c}) A4.4-44.s)
=dQy ),(5,6)9Qs.61,(1,2) (dQ[x,z}.u.s;Aa.aAa,s + Ay,346,54Qq 2),4.0)
+dQy 3 (3,6 48,843,3 + dQ[;,z],ls,s)As,aAs,a) )

dQis 61,(3,4) ((dQ[s.cl.u,z]dQ[x.2.4].(3.s.e) - dQ{x,2],(5.o)dQ[4,5.ol.{z,2,3]) Ay Ay
—dQq1,21,(5.6/9Q4,5,61,(1,2,4 44,3 43,4 + dQ(s,a),u,a]dQu.z,q.u,s,o}Aa.aA4.4) -
dQp1,2),(5.619Qys 61,01, (dQ{s,ol.u.«}AMAm +dQys 62,4 A4 u Azt
dQs 1,1,9141,243,4 + dQ[s,o].(z.s]Az.zAs.q)

dQp 311501 (~4Q21,09Q1 2,000,781 Ao 0 45,5 + AQy1 27,8141 201,001 Ao.5 4
+ (dQp2.0.8.459Q 1,781 = AQ1,2,05.49Qs 2015.701) As.ass)
+dQp1,2),3,419Q1.2),(7.8) (A4.4A6,edQ[1,2).[4,6] + dQpy 2,145/ 44,4 45,6
+dQ; 9),3.6) 48,6 43,4 + dQ[x.z].lz,s)Aa.4As.e) ,
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dQ 0112 (~4Qs.015.09Qa.8.011.7.042.2 411 + A2.141.29Q15,6101.0.49 s 1,7
+ (dQ[s.ol.[v,s]dQ[x.a,s],[z,a.q - dQ[:.s.o),[z.‘r.s]dQ[a,o].[3,4]) Az.an,z)
(3.62) +dQus 17019154 (9Qus 120400421 + dQps g1 2,540,842
+dQ[5,e],[1,4]A4.aAl.x + dQ[s,o],n,a]As.aAl.l) )

and finally

dQy 3),7.8) (dQ[s,ol,[1.z]dQ[1.z.sl.[s,o.s1Aa.'rA'r.a — dQy 2),15.69Q1s.6,8).1,3.0)A7.7 488
+ (dQ[s,o].[1.a]dQ[1,2.s],(s.o,1] - dQ[l.z},[s.o]dQ(s,s,a].[1,2.1]) A1,1A7,s)
(3.63) +dQy 2),(5.619Q3,61,01. (dQn.z),[s.s]As.aAa.e +dQy; 316,71 46.8Ars
+dQq 3,5, As0Ars + dQ[x,z].[o,s}At.aAo.s)

The identifications corresponding to reversing direction inside a pixel yield eight

cubic equations:

(3.64)  —A21dQs g),1,219Qs 01, 17,019Qs. 013,01 ~
dQqs¢),2.9) (dQ[l,s,c].[1,3,4]dQ[5,o],[7,s] - dQ[l.a.o).[l.'r.a]dQ[s,cl,(a,q) As3Azz4: —
dQys g1 2.4 (4 5.011.3.409Qus 01070 = aQy 5.0, 1.7.09s,015.4) A3 422411 =
dQqs.6),11.9) (dQ[x.s,c].[1,3,4]dQ[5.o].[7,s] - dQu.a.s],[1,1,a1dQ[s.e].[3,41) ArpA11433 -
dQqs 6),01.4] (dQ(x,a.o}.(x,s,4]dQ[s,e],[1,a] - dQ[l,5.0],[1,7.8]dQ[5,e],[s,4]) AraAa4r -
dQqs,61,(2.3) (dQ[s,q,w.ndQu.s,e],(z.s,4] - dQu,s,c].[z.r.a]dQ(a.q.(s,q) Az14;33422 —
dQqs g12.4) (AQs.017.619 s 5,012 = dQ 5 612700 Qs 0100.4) Ae3 421422 =
dQ(s 61,11.4) (dQ[!s.e],['r.s]dQ(l,5.0].[3,3,4) - dQ[l.s,e].[2,7,e]dQ[a,n],[s.4]) A12A4 343,
(dQ[s.G].['r.a]dQ[s.o],[s,quu,a.u],[1.2.3} — dQy5.6),(2,39Q1,5,61,01.3.4195 01,07,
dQ[s.o).[x,s]dQ[5.o).[s.4]dQ[1,5,e].(2.7,3]) A1 2421453,




(3.65)

(3.66)

As,54Q 215,691,215, Q12178

+dQp1,5),5.8) (- dQys,2,80,13.4.519Q1,2)7.8) T de.x),[s,a]dQ[x,:,a].[s.v,a]) AseAgrAss

+ (dQu.:1.[a.41dQu.z;.[m]dQu.z.s],[s.e‘s] = dQ1,3,10.019Q1.2),7,819Q1,2,8),(3.4.5
Q215,619 23,49Qs 2.1, 0.7.0)) A8, 7468 As s

+dQ(1 2),0.8) (dQ[l.z].{s,qu(l,z,s],[c.?.a] - dQu,z.s),13.4,a1de,z),[1.a)) AssAs740,6

+dQp,2),5.8) (dQ[x.z],{s.qu (1,2.5),18,7.8) — dQ(1,2,5),(3,4.6] dQu,a],[m)) Ao As o

+ dQ 36,7 ("dQ[m.s).|a.4.s}dQ(i.zy,[7.s1 + de.z],[s,c]dQ[l,z,s).{s.’r.s)) ArrAssAss

+4Qu 15,1 (=49, 2.0.05.0819Q, 207 + 9Q2,25.09Q1 25105.7.) AssArAss

+dQ[1'3),[6'7J ( dQllﬂ].[3»4]dQ[1.2.8].[0.7.a] - dQu.2.51.[3.4,o]dQ[1,n],[m]) AssAssArr

- (dQ[l,z].[3.4]dQ[1.z].[7.u)dQ[1.2,5].[s,o.7] +dQ,2),15,79Q(1,2),17,8)9Q(1,2,8), 3.4~
dQ[m]‘(o.?]dQ(x.21,(3,4]dQ[1.z,s).{s.-r.a)) Ao,sAs.oA1.n

—As,6dQp1,),(5,6/4Q1,2),13,49Q1,2),17.9)

+dQu 215, (~9Qu1 2015.4919Q 1,019 + 9Q1.215,49R 3.15.701) As4Ass4se

+dQq 0,01 (~Qs.2.00(5,45192 217,01 + A3 215.09Q 2015781 ) A4 As s Ao

+dQp 2,40 ("dQu,z,e),[s.4.s1dQu,z).(m) + dQ{x,z).[s,quu.z.e).(e,7,s]) AssAsadas

+d Q2 (4.5 (" dQp1.2,0),(3,4,519Q1,2),17.8) + dQ[x.2].[3,4]dQ[1.2.6}.[5.7.3}) AssAiiAsg

+dQqy 21,.0) (“dQ(x,z,cl.(s.4,s]dQ(1.zl.(7,s] + dQ{l.2},[3.4]dQ[1,z,a},[o,‘r,s}) AgsAseAes

= ( 4Qp,21,05.09Q.2107.8) Q12001058 ~ 9Q1214.5) Q125,049 201 0,701+
dQ[l,2],(4.6]dQ[l.2}.[7,!]dQ[1.2.6],[3.4.5]) A4 Asoss

+ (dQp 213,49 Q 21.7,619Q1 26115, + AQ1213.19Q1 215,09Q1 2.1,5.7.8)—
dQp,25.519Q0, 27819 26105.40)) AssAsadag

— (4Qp21.0.6 4Qu 7.8 211550 = 4Q1,215,69Q,21.5,41 IQ 20187+
dQ[l,z],(a.a]dQ[l.2].[7.s]dQ[1,z.s].[s.4,5]) A3 AgsAs s,
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(3.67)

(3.68)

= Ar,8dQy 2),17,69Q01,2),(5,69Q3,6),01,2)

~dQys 2101 (A5 013,19 28150 dQps 215,19 ,811.477) Ar.7 40,8474

~ dQqy,2),(0.8) ("‘dQ(u,o,a},[x.z.a]dQ[x,zl,[s,e] + dQ(s.a],[x.z]dQ[x.z.a).[s.o.s)) AgsAe0As,7
=dQy,2,5.9] (“dQ[s.o,s].[l,z,a]dQ{l.2].(5.0] + dQ[s.o],[l.zdeu.z.a].[a.e,s]) AseAs,7Ass
-dQy 2,158 ( dQs,6),(1,219Q1,2,8),(5.6,1 — dQ(x,2).(s.a]dQ[s,o,a],[1.2,1]) AseAs1A7,s
=dQq1,2),0.8) (dQ[s.e),{1,z]dQ[1.z.al,[s.e.1] - dQ[l.z].[s.e]dQ(s,e,I].(l,z.'r]) Ag0Ar34s,7
'"dQII-?l-IM] ("dQ[ls.e.s).u,z.o] dQ[x,z],[s,e] + dQ[s.s].[x.z] dQu,z.n].[s.o.a]) Ar1Agohss
~dQy 21571 (4Qus 01,0299 201581 ~ AQs.215.019Qys,0.8,11.2,7) A0 Ar.s Ar 7
—dQu 1051 (—4Qs08101.209Qs 211501 + A 0,01.79Qs 201 50,1 As.sAs,sAr.1,

Ad3dQ 215,490,215, Qs 0111.2

+dQy 3),(3,5) (dQ(s,el.(1,2]dQ[1.2,a},(3,s.¢1 = dQys5,6,01,2,39Q (1,2].[5,3]) As;sA3 A3

+dQ (1,2),(3,5] (dQ[s.e].[m] dQq.2,31,4.5.0) — dQ[a.s.o],u.z,quu.z).[s,o]) Aq3Ass s,

+dQ(y 9),(3.6) (dQ(s.e].u,z}dQ(x.z.s},(s,s,o] - dQ(a,s.e],[z,2.3)dQ{1.2].[5,e]) AsuAssAss

+dQy),4,8) (dQ (5,60,12.219Q(1,2,31,(3.5.0) — dQ[s.s.e].[1,2.3}dQ[1,z],[s.c]) AqAssAgs

+dQ[1»2]-[4-0] (dQ(G,o].{l.2]dQ(1,z,a],(c,a,e] = dQ[a.s,o].[x,2,4]dQ[1.z].[a,o)) AssAiidas

+dQq1,2,14.8] (dQ[a,o].[1,2]dQ[1,2.3].{4.5,c] ~ dQ(3,5,6),(1.2,49Q [1.:1,[;.«1) AssAiiAys

+ ( AQys,61,11,2/9R1,21,(5.8) AQp1,2,31,05,4,8) — Q11,214,591 ,21,15,019Qs.5,01,11,2.5
dQ[l.2],[a,s]dQ[s.G],(l.z}dQ[l,2,8},[4,5.6]) AssA3 3

- (dQ(s.q.p,z]dQ[n,z}.[s,o]dQu.z,s],[a.4,o1 + dQp1,2),15,619Q1,21,15.619Q3,5,01,11,2,4)

"'dQu,z],u,e}dQ[s.e],[1,3}dQ[1,2.31.[a.5,o]) A3 445,

4“4




(3.69)

(3.70)

and
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Ay Qs 6),13,419Q1,2),15,619Rs.0),11,3]

—dQs.61,2.9) (dQ(s.a].(1,2}dQ{1,a.4),[4.s.a] - dQu.z),[s.a]dQu.a.o).n.m)) AzaAssAie

—dQs,6),(2.4) (dQ (8.61.219Q01,2,4), (4.8, — dQ[x.z],[s,e]dQ(c,a.o],u.z.q) A3Aidaa

+ (dQu 1..919Q.1,05,619Qu,8.0101.8.41 ~ Qs 0,41,919Rs,0,1.219 Q1 2.4100.8.)
+dQ(s.¢],(1.qu(x.z),[s.a)dQu.a.a],[x.z,a}) AraAiadss

~dQys,60,11,4) (dQ[a,el.[x.a]dQ[x.2.4).[4.5,0} - dQu,z],[s,o]dQu.s.o],u.a,q) AsAra444

-=dQqs.0)2.9) (dQ[u.el.[1.:]dQ[1.:.41.(:.s.e1 - dQ[l,2],[5.5]dQ[4,s.o],[1,2,3}) As Az 243,

- (dQ[s.ol.u,zdep.z].[u.o]dQu,a.e].(z.a.q = dQys,01,12,319Q1,2,5.019Q4 5.,61,11.2.4)
+dQ(s,e},za.qu;s,oJ,{1,:}dQu.a,¢),[a,s.ol) AisAsadsg

—dQs 61,113 ( dQps01,(1,2/9R(1.,2,4113,8.8) — de.2].[5.0]dQ[4,s.¢].[1.z.s]) A12434Ass

"dQIS»GMMI (dQ(MI-[l-ﬂdQ{l.ﬁ-dl-(M.cl - dQ[l.2].[5.d]dQ[4.8.G].ll,2.3]) Ai3Ar2434,

= Aa,7dWs,0)17,69Qs.611,219Q1.2)5.0)

+ (thb.o]‘[1.2]dQ[1.1].(5.e]dQ[s,a.7].[1.1.a] = dQys,61.01,19Qs,6,12,219R1,2,71,18.6,81+
dQ 50100199125, Qe.0.7,012,1) AraAra sz

= dQgs 0,118 (dQ{s.ﬂ,ll.zl dQqu 2,715,608 — dQ[x.z}.[a.o]dQ(s.u.'r],u,z.a]) As s Ay 1A

—dQ(S»Gl.ll"’] (—dQ[ml»ls»ﬂldqls.ﬂ,'ll.(l,n.‘rl + dQ[a.o}.u.z]dQ(x,:J].[s,e.n) Arz A1 Arg

- (dQ[s,o].[l,zl dQyy 3),5,6/9Qs.6,7,11.7.60 = IQs,0,2.7191,21,15.0) IQs,6,7.12.2.8)
+dQ[5.¢].[1.s)dQ[s.o],[1,2]dQ{1,2,7),[5,5.1]) AggAr 141,

—dQs 61,027 (dQ[s.o],[x.nde[x.2,1].[5.6.3] - dQ[x.z].[s,e]dQ[s,o.'l].[1,2,0]) Az Argde

=dQs,6),(2.8] (dQ[s,o].[l.zl dQq 2,715.6.8 — 4R350 dQ{s.a.r],{x.z,s}) AssAzyAs

=dQs,61,02,7) ("dQu‘z],[5,o]dQ[s,o,n,u,z,1) + dQ[s.a).[1.z1dQ[1,a.71.[s.o.71) ArpAg Ang

- (dQ[s.q.[x,zldQ (1,2.5.6/ds.6.1.02.7.60 = 9Qs,01.02,719Q1,21,05.6) IQys.8,71,11.2.8)
+dQys,6),(2,8) dQ[s.o].[x.2]dQ[x,z,1].[5.a.‘l]) AssArrAza,
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(3.71)  A1,2dQpy 112,29 Qs 01,(7.619 Q.6 13,4

+ (dQ(s.cl.u.qu(s.q.(a.qu(z.s.a;.(x,a.n + dQys,01,11.719Qs.01,17.0/9 2 ,5.6,12.3.4
“dQ[s.o]‘(2.1]dQ[a.o}.[s.A]dQ(z.a.c],[z,1.:]) Arpdaad,,

+dQ(5-¢l-(l.ﬂ (" dQ(MlJSA}dQ[&b-GMI.".'] + dQ{z,a,s].[1.3.4}de.o].l1.t)) A1341141r8

+ (nga,q.[m]dQ[s,o).(a.c)dQ[z.o.cl.[m.a] + dQis,01,11,619Qys.01,(7,619Q2,8,01,(2,3,4
dQ[s.o].[:,c}dQ(u.o),[a.qu[z.s.e},(x.v.o]) AgsAsa41,

+dQpy 61,118 ("dQ(a,o}.(a.q dQa 5,61.7.8) + 9Qa5,61,11,5.09Qs,0107.0)) 1241148

+dQs 61,12,7) (dQ[s,o}.(m]dQ[z.s.o),[a.a,q - dQ[s,s],[s.qulz.s.o].[z,'l.a)) Az Ar54:,

+ (4Qp.0,019Q s 2081 = 9Qs01.719Q. 01050 4018
"dQl&.G},tM) dQ(s.s}.la.qulz.s,a},[x.z,n) ArA;1 47,

+dQys 101 (4Qs,017.09Qs.5.013.84 = 9Qs 018,09 Qa,,01.7.01) Az1 Ava Az

+dQ3.6),2,9) (’"dQ(s.q.(a.qu (2,8,6),01,7.8) + AQya.5.6),11,3.4] dQ(u.a}.n,a]) Ay 3431448

8.2.1.4.2 Simplifying cubics by adding Grafimann identities GraSmann-Pliicker
relations allow us to simplify one of the coeficients in 3.64. Note that

dQqs,6),17,819Qs,61,(3.419Q(1,5.01,02.2.81 — 4Q5,01,(2,319Q1.5,01,(1,3.419Pys 81,761 +
(3.72) dQ(s.s},[x,a}dQ[u.o).(3,4]dQ[1.s.o].[2,1,s1 =
dQys,0),17.8) (dQ[s.o].[a,qu[x,s,o].[x‘:,a] - dQ[s,o].[zmdQu.s.ej,[l,a,q) +
dQys,6),(1,3)9Qs,01,15,09R1,5.,6),12,7.8)

If we consider the element of G(3,7),
Qi Qia s Qi 1 00
(3.73) Qsq Q532 Qs3 Qs 0 1 0
Qer Qoa Qo3 Qed 0 0 1
then we can write
(3.74)  dQs.61,(3.4/dQ.5,61,(1.2,3 ~ AQ(s,61,(2,59R1.5,6),(1,93.4) = T3,4,571,2,3 ~ T2,3,58T1,3,4

but if we use the Gramann relation




47

(3.75) T3,48T1,3,8 — Ma4,1Ms,2,8 + M3,42%s,1,8 — W3 4,3Ms,1,2 =0

we can simplify the right hand side of equation 3.72

(3.76) Qs 01,10, ,8.0111.2.8 — 9Qs,01,2.99Q1 5.0101.0.0 = ~9Qps,01,11,391,8,61,13.3.4)

when we substitute this into the only “complicated” coefficient in 3.64 we get

dQ[a.e].(1,o}dQ[s,c),[a,n]dQ{x.n.o).[x.:,a) - dQ[s.G].lz.aldQ(l.5.6)-[1.3.41dQ(5'0H7.01+
(8.77) dQis,6)1.94Qs 012,09 501278 =

—dQs 61,01, (dQ(s.c).[v.lde(l.5.0].(2.3.4] ~ dQq1,5.,6),(2.7.8) des.o),ta.q)

when we substitute this into equation 3.64 we get

= A2,1dQys 6111.2/9 Q5,011,019 Qs 0113.4
~dQys,61,12.9) (dQu,s,e).[1.3.4]dQ[s.a).(1.s) =~ dQpy 5.01,1.7.09Qs,81,3,41 ) 433422411
~dQs,61,(2.4] (dQu,s.ox.u,a.qu{s.a].(r,-] = dQp; 5.61.11.7.019Qs.0),13.4) ) 44342241,
—dQys.0),01.3 (dQu.s.u).[z,u}dQ[s,o].n.s] ~ dQp s.01,11.7.89Qs.0,3.4)) 41,2411 43,3
(

(3.78)  —dQsep2.3 (dqls,o),(':,a]dQ(x.s.ol.(z.s.c} = dQy 5.01,12,7.019Q5.0),19.4) ) A21 43,3422
=dQys6)12.4 (dQ{s.em.l)dQn,a,e}.lz.a.q = dQy 5,61,(2,7.619Q5.6),(3.4) AaAsaAa
=dQis.01,11.9) (dQ[s.e].['r,s]dQ[x.s.e].[z.s.q ~ dQy 5.01,02.7.89Qs,0),13.41 ) A1242.143,

—=dQis.0),1.4) (dQ1.8,01,(1.3,09Rs.0).17.8) ~ dQu.s.o).u.1.9)dQ[s.u1,(s.41) A13A3A14
~dQis.6,11.4) (dQ(s.o}.n.s]dQn.a.o].(z,s.q - dQ(l.5,0}.{2.7,a)dQ[b.e].{a.4]) A1aA 34,

And this simplified cubic equation factors neatly:

- (dQlu,q,(z,a)Aa.aAz.: + dQ(a,q,[:,4]A4.3-42,2+
(3.79) Qg .01 413 43, + Qs g11.0412443)
("Az,ldQ(x.a.s].(2.7.s]dQ(5.o),(a.4) + A3,1dQs 67,6191 5,0),12.3.4
A1,1dQ)y 5.6)11,3,99Qs,0).17.8) — A:.deu,a.e].n,1,a]dQ|a.e].{3.4]) -
A21dQps 61,11,219Q(s,01,17.819Q(s,01,13.4)
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After simplification with Gramann-Pliicker relations the rest of the cubic equa-
tions factor similarly:

(dQn,z),[o,qu.eA.t.'r + dQy 318,11 A7.7 400+
dQy1 25,8 45,6 4s,7 + dQ(:,z},(s.ﬂAs,oAv,'r)
(AS.ldQ[s.u.a).(m.o)dQ[l.:).ps.s] — As0dQps,0),1,29Q1,2,8),15,0.8)~
Ar,0dQpy 1,11,19Q0,2,0),(8.6.1 T Av.adQu.n),(a.e]dQ(s,o.a],[x.z.n) -
(3.80) Ar,44Qq 7,919 21,095,010

(Az.lAl,ldQ[a,o],[z,u] + dQps¢p, 1.7 411478+
ArgAz dQps g2 + Ax.an.ades.e].u.a])
(A8.74Q 2145,610Qs 0.1,020) ~ A.74Qys 012,29Q 278, 0.01+
A‘l.de[l.z].[s.e]dQ[s.o,v].(l.2,7) - dQ[s,c].u,z]dQu,z.v].[s,u.v)A'r.'r) -
(3.81) Ag,7dQys,0),7,59Qs,01,11,2)9Q1,2)13.0)

(dQu,n,[o.a)Ae,cAe.v +dQq 5,61 A7,7 406+
dQp 35,545,648, + dQ(x,z],[s,v)An.oA-:.v)
(AG'SdQII,z],Is.A]th.2,5].[0.7.01 - dQ[l.z),[v.qu[x.z.u].(a,;,u]Ae.s+
As5dQp 5),03,499Q,2,5)45.7.8) — As.sdQ[x,2].[7,u]dQ|1,2,s],(3.4,s]) +
(3.82) As,54Q(1 2)(5,619Q1,2,15,49Q1 217,9)

= (~A129Qp 5,010,509 01178 + 41.29Qys 615,09z 5,01,11,78~
A3,2dQs,0)7,8/9Q12,5.6)12.3.4) T Az.2dQ[s.e],(s.4]dQ[z,s,e].[2,7.3))
(Az.nAa.adQ[s.a},[z,a) +dQys 61,7 41,1 47,8 + Ar343,1dQ5 6y 12,7+
(3.83) Ay, Aa,sdQ{s,a],[x.a)) + A1,2dQp5.61,11,219Q5,6),7,8/9Qs.6),3.4
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(dQ[s.o].[z.a]As.aAz.z + dQps ¢),(3,4) 44,3422+
dQis.6),1,91 41,2433 + dQ(s,q,[x,qu,2A4.3)
(—Ac,4dQ(a.e],[x.z)dQu,2.41,(4.5.01 ~ A3,4dQs 6),11,219Q1,2,41,13.8,0
A3,4dQ1,2),5,09Q0 5.61,2.3 T 444.4dQ[m].[a.o}dQu.a.o).n.a.q) +
(3.84) A3« dQs 6),(3,:Q1,2),5,6/dQ5,01,01,2)

- (A“"‘A’-‘dqll.z}Js,ol +dQp 3,545,843+
dQ )45 455404 + dQu,z],[4,o]As,sAc.4)
(dea],(s.c}dQ[s,a.ol,u.z.qu.s = dQq1,2,),4.5.019Qys,0),11,2) 443~
As,3dQys 6),1,2)9Q(1,2,9),(3.5.8) + Aa.sdQu,z}.[s.o]dQ[a.s.o},(x.2.3]) +
(3.85) A4 3dQq 9),05,419Q(1,2),5.619 Qs 6),2.2)

(As.ch[x,z].[a,qu[:,z.o}.[s.?.a] — As,6dQy1 3,6),03,4,69Q1,2)17.8)F
Ae,6dQ1 1,(3,09Q1,2,0),(6,7.8) — As.on(l,2,0].[3.4,51dQ(1.2).[1,s))
(A6.5A3,4dQ[1,2].[3,0] + dQyy ) (3,5 45.543,4+
dQq,2), 145148, 44,4 + dQ[;,z),[4,qu,uA4,‘) -
(3.86) As,6dQ)1 2),5,609Q1,2),(3.4/9Q1 27,81

3.2.1.4.3 Solving the Equations The variables in these equations appear in a very
systematic form. Each equation is a polynomial in six variables: four from one of the 2 x 2
subblocks of A, the other two from one of the neighboring subblocks of A. Furthermore, for
each cubic there exists a quadratic which is a function of the same six A, ;’s. Finally, each
of the equations is linear in the A, ;’s from the neighboring subblock. The following table

shows the pairings of variables of the quadratics and the cubics:




equation linear variable
pair
Aza

Arp
Asa
Aus
8 Asg

N N, T S R CRE
&
o>

pair of two

linear variables
Az, Ags
Ag g, A1
A1y, Az,
Ar1,As
Az, Ass
A1, A3,
Ass, Ass
Asy, Ada

four wvariables

A1, A12, 421, A2
A7, Avs, As7y Ass
Ar, A7, As7, Ass
Ass, As6) Ae,s) As,s
A1, A1, 42,1, 42,2
A3,3 ) A3.4 ) A‘,31 A‘,‘
A3z, Az As Ay
Ass, As g, Ass, Asse

(Note that the first column applies only to the cubics.)
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From the above chart, we can see that we may either solve pairs 2,3,6, and 7 for
the subblocks of A containing Al,h Al,z, Az'l, Az,z, As,s, As'g, Ag‘s, and AB,G, (01' vice-versa).

After making these linear solves we get solutions of the form




Arz = dQs 573,41 ( — AQf2),15,619Qs 11,2 (dQ[s,ej.(z,31A§,4 + dQ[s,e],[z.4]A4,4A3.4)
+dQs.61,12,3] (dQn,z.q,[3.s,a]dQ[s,s],[1.21 - dQ[x,2}.[5,6}dQ[4,s,6],[1,2,3])2 Af AL,
+ (dQ[s,G},[z,S]dQ[zlJl,ls,s]dQ?t,S,o].[l.2.4]
+2 dQ[s.s],[z,4]dQ[25.e] 1.219Q11,2,4.14,5,619R1,2,41,(3,5.6]
—dQs,61,12,319Q11,21,(5,6/d Qe 5.61,12,2,09Qs.61,11,2)9Q1,2,4,(4,5.6]
—dQps,6),12.4) 9Qys,01,01,219Q1,2,4113,5,6) AQ1,2),15,619Rua5.61,01,2.4)
+dQps,6),12,09Q01 215,619 Qa.5.61,12,2,31 94,561, 12,2.4
—2dQys 61,2, 9Qs,6),01.219Q1.2,41,14.5.6] dQu,z],[s.s]dQu,s,e],{:,2.3]) A3 Ag3A44433
+ (dQ[s.G),[x,z]dQ[l,z,4],[4,5,6] - dQ[m].[5,e]dQ[4,s.6],[1,2,4])
dQys 61,11,219Qs 61,12,519Q1 2,41, 14.5.61 44,443 3
+dQgs.6),(2,3] ('dQ[l.z].(s.eldQ[«t,s,c],[x,2,4] +2 dQ[a,s].[1,2]dQ[1,2.4],[4,5,s})
(dQ{x,z,q,[3.s.c]dQ[5,e),[1,z) - dQ[l,2],[s,s]dQ[4.5,s].[1.2,3]) Az A AL,
- (dQ[s,G],[l.2]dQ[1,2.4],[4,5.e] - dQ[l.2],[s,s]dQ[4,5,6],[1,2,4])
dQps 6).12,09Q1 215,614 Qu 5.61,11,2,4 As.4 A1, e AL s
+ (dQ[s,s].[1,2]dQ[1,z,4}.[4.5,e] - dQ[l,z],[5,6]dQ[4,s,e],[1,2,4])
dQs 61,11,219Qs 01,12, 9 Q1 2,41,14.5.6 43,3 4% 4 Aa 3
- (dQ[1,2.4],[3,5,e]dQ[5,e],[1,z] - dQ[l,z],(s,e]dQ[4.5,e].[1,2.3])
dQgs 61,12.419Q1,2115,6/ 4 Qs 5,61,11.2,6143 4 44,3
+ (dQ[m,q,[3.5,s]dQ[5,e],[1,z] - dQ[x,z],[s,s]dQ[4,5,s].[1,2,3])
(dQ[s,o],[2,4] dQp1 2,41,(3.5,619Qs,61,(1,2) — IQs,61,(2,4/9R1,21,15,619 e 5.61,12,2,3
dQ(s,a].[z,s]dQu,z]',(5,e]dQ{4.s,sj,u,2.4)) As3Af Ags/
dQy;,2),(5,619Q5,61,11,2)8A(3,4),13.4) (A4.4dQ[s.s].[1,z]dQ[l,z.q.u.s,e]
—A4,4dQq 2),(5,6)dQ4 5,61, [1,2.4) T
Az dQ{s,s},u,z]dQ(1.2.4],(3.5,s} - A3-4dQ[1,2),[5,51dQ[4,5,61,[1’2»3})
(—dQ[s.s].[z.q dQ(s 6),11,3 + Qs,61,11.4] dQ[s,s].[z.a])

The denominator may be simplified (a little) with the Grafmann relation

(3.87) —dQys,61,12,319Qs 01,114 + 9Q(s,6,12,04Qs,61,11,8) = 4Qs,61,11,214Qps,61, 13,41

51
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The result is

Arz = ( — dQf 215,995 01,122 (dQ[s.el,[z,31A3.4 + dQ[s.a],[u]AMAs.d)
+dQps5,6),02,3) (dQ[l,z,4],[3,5.c]dQ[s,e].[1.2] - dQ[l,z],[s,ode[4,5,6].[l.2,3])2 AS AL,
+ (dQ[s,G].[2,3]dQ[21,2].[5,6]dQ[24.5,6],[1,2,4]
+2 dQys 6),12,419Qfs 01,12,219Q1,2,41,04.5,619Q1 2,41 13.5.6]
~dQs61,12.319Q01,21,15.614Qa,5,61,11,2,419Qs,61,11,219Q1 2,41, 14.5.0)
~dQys,61,12,4) 9Qs,61,11,2)9Q01.2,41,13,5.6) Q1,2),15,6/9R4.5.61,11,2,4)
+dQ[s,s],[z.4)dQ?1,z].ls.s]dQ[:t.s,o].[1,z.sldQ[4,5.o].[1.2,4]
-2dQs 6, 12,4 4Qp5,61,12.219Q01,2,41,14.5.6) dQ[x,z],[s.&]dQ[4.s,o],[1,z,3)) AssAg3Asads
+ (dQ[s,s],(x.z]dQ[1.2.4],[4,s.c] - dQu,z],[s,o]dQu.s.e],u,z.q)
dQs,61,12,219Qs 012,319 2,4104,5.61 47,443 3
+dQ5,61,(2,3) (“dQu.21,[s,e]dQu.s,s).u,z,q +2 dQ[S,o],(l,zldQ[1,2,4],[4,5,6])
(dQ[l.2,4).[3.s,e]dQ[s,6],[1,2) - dQ[x.2],[5,3]dQ[4.5,6],[1,z,3]) AsAguAl,
- (dQ{s.o}.[l.z]dQ[l.2,4],[4,5.6] - dQ[:,z],[s.s]dQu,s,s).[1,2,4])
dQgs 6),12.419Q1.2),(5.619Qu5.61,11,2,41 43,4 Aa0 AL 5
+ (dQ[s,s],[l.2]dQ[1,2,4],[4,5,6] - dQ[1,z),[s,e]dQ[4,5,s),[1,2,4))
dQs 61,12,219Qs 01,2,419Q1 2,414,5,61 43,347 1 Ae 3
- (dQ(1,2,4],[3,s,e]dQ{5.e].(1.2] - dQ[x,z],[s,s]dQu,s.e}.[1.2,3])
dQs 112,491 21,(5,619Qa 5.6)11,2,4143 4 41,3
+ (dQ[x.2,4],(3.5,s]dQ[5,s].x1.:] - dQ[m],[s.e]de.s,e],u.2.3]) '
(dQ[s,G].[z,q dQq1,2,41,(3,5.6/9Qs.61,11.2] — 4Qys,61,(2,19R1,21,(5,6/9R4,5.61,(1,2,3
dQ[s,s],[2,3]dQ[l,2].[5,s]dQ[4,s,s),[1,z,4]) A3 3A3 (Aus/
dQ 215,195 01,2945, 4015.41 (4449Qps.0,0,29Q 2,0 105.
= A44dQp 21,(5,6/9Rs 5,681,112, T
Ase dQp56)11,219Q1,2,4),(3,5.6) — A3.4dQ[1.2],[5,6]dQ[4,5.6].[1,2.3]) dQgs 6,11.2)
Once solutions of this form are substituted into equation pairs 1, 4, 5 and 8, we

are left with eight messy equations. The equations which were once cubic now have twenty

terms; the equations which were once quadratic have one hundred terms. All eight equations
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share one important feature: the remaining A, ;’s appear in pairs. To solve the last eight
equations we make the substitutions

(3-33) . -44,3 = As.s Ui AM = As,4 q2, As,'r = Am qs, As,s = A-r,s s

One of the four (previously) cubic equations is shown below.

-q1 A3, ("dQ[s.s.e].[1.2.4]dQ[1,2].[5,u) + dQ[l,z.s],u,s.e]dQ[s,e].[1,2])
((‘dQ[s,o.a],[x.z.nde.z].[4,s)dQ[1,21.[s.el + dQqs.6,11,219R1,21,(4,5/9Q1,2,8), (5.1
dQ[x.2,5],[4.7.s]dQ[5,o],[1,2]dQ[x,2],[s.o])
( dQ[s.s),[1,z]dQ[1.z.3],(3,s,o] - 2dQ[s,s.a),[l,z,s]dQ[x.z],[s,s]) 0’
+ (dQ[zs.s].[l.z]dQ[x.z.3].[4,s,o)dQ[1,21.[3,5]dQ(1,2,3],[5,6,7]"‘
dQf; 01,292 (1.2),14.59R1,2,3113.8.61 9Q01.2,81,15.6.7
+dQf 61,11,2) Q1 ,2,3)03,5,09Q01,2105.6 9Q1,2,51.4,7.8]
—=dQq1 25,61 4Qys,61,2,219Q1,21,04,5) IQ1,2,3),3.5,6/R5,6.8),01,2,7]
—dQy1,2),(5,6/9s,6),11,2)4R1,2),13.5/ 43 5.61,11,2,419R1,2,8),(5.8.7)
"dQ{lﬂL[M]dQlM)Jl.zldQ[1,2),[s,s]dQ[s,c,s],u,z.-r]dQ[1,z,a],[4.s,e]
+dQf; 2115,6/9Q1,21,3.5993,5.61,12,2.419Qs,6.81,1,2,7
~dQ 2),15,619Qs,6,11,219Q3,5.01,2.2,419Q1,2,8,(5.7.8)
+dQ[25,6M1.2ldQ[1.z.a].[4.5,a]dQ[x.z],[s.a]dQ[z,z,s],[a,v,a]) X))
(3.89)  +dQ5,61,1,219Q,2),(3,5/dQ11,2,3),3.5.6]

(dQ[l,2,8},[5.6.8]dQ[5,6}.[1.2] - dQ{s.s.s],u,z.a]dQu,2],[5,5]) U 7R3

+dQq1 2),(4,5) (dQ[1,2.s],[s,s,s]dQ[s,e].[l.zl - dQ[s,s.s].(l,z.sldQ[x,z],[5.0})
( dQys,6),(1,219Q1,2,3),(3,5.6) — 2 dQ[s.s.s),[1,2,3]dQ[1,2].[5,o]) 0 q°

+ (dQ[m,s],[s,s,sldQ[s,o),[l.z] - dQ[s,s,s].[x.2.s]dQ[1,z].[5,s])
(dQ[s,s],u,z] dQ1,2),3,59Q,2,3), (45,6 + dQs,61,01,219Q11,2),(4,5/9Q2,2,3),(3.5.6)

"dQ[1,z].[5.6]dQ[1,z],[a,s]dQ[a,s,s],[l,z,q) 9920

+dQs.6),11,2/9Q1,2,3),(3,5.6) (_dQ[s,s,s],[l,z.ﬂdQ[l,2],[3,5]dQ[1.2],[5,6]

+dQys 6),1,219Q1,2),(3,5191,2,8),5.6,7 + dQ[5,e],[1,z]dQu,z],[5,e]dQ[1'2,5],[3,7,B]) q1)
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+q (dQ[zs,e],p,ade[zl.i].[S.d] (“dQ[s.o.a].[x.z.ndQ[x,2].[a.s]dQ[1.z].[s,c]

+dQ[s,¢].{1.a]dQ(;.z].(s.s]dQ(z.z,s),(s,e.f] + dQ[s.s}.[1,z]dQ[m].(a.e]dQ[x,a,u),[3,7,31)

+dQfy 6),11,219Q1,2,14,519Qf1 215,61
(dQ[x,z,s],(s,e,a]dQ[s,e],(x,z] - dQ[s,u,a}.[l.2.ade[1.2),[s.s]) U

- (-dQ[a.s.a].[l,z.4]dQ{x.2},[s.o] + de.2.:;],[4.3.«)de5,o],[l,:])2

(“dqls.o.s].[l,:.T]dQu.z].u,s]dQ[x.2],[5,61 + dQs,61,(1,2/9Q1,2), 14,5191, 2,81, (5.6, F
dQ(1.z,s],(4.7.a]dQ(s.o].[1, ]dQ[x.z],[s.o]) A:.AQ22Ql

- ("dQ[zs,o),[1.z]dQ(z,z.a].[a.s.o]dQﬁ.z],(s.e}dQ (3,5,6),(1.2.4/9Q1,2,8),(3.7.8]
=2 dQy 21(5,6/9Q1,21(3,8) IQ1,2,9114,5,019Q5.01,11,219Qs,5,6)11,2,319Q1.2,815.6.7)
+dQ) 2).5,69Q01,2)14519Q3,5,01,01,2,99Q1,2,31, 35,6195 112,21 AR5 0,81, (1.2,7
+2dQf; 515,61 Q1,213,593 5,01,12,2,419Qs.5,61,11,2.319Qs,6),11,2 92,8, (5.6,
+dQf; 215,61 9Q1,21(5.519Qs,61,11.29Q1,2,9,(3,5,69Qs,5.6112,2,419Qs 0.8, (1,271
+dQiy ¢1,(1.29Q1,21(5.519Q1,2,81(3,5.6/991,2,31, 148,61 IRs,2,1,15.6,7)
-dQII,Z].ls.G) dQ?ﬁ,ﬂ],[l,ZJdQ[l,2],[3,5]dQ[1,2,3],[a,s,ﬁldq[a.ﬁ,ﬂl.[l,2,4]dQ[1,2,8].[5.e.7]
+2 dQf, 2),15,61991,21,12.519R1,2,51,14.5.619s.61,12,219R.5.61,1,2.9) 95 0,81, 11,2.7
+dQ(1.z].[4,5)dQ[35,o).[1,2)dQ121,z,a),(a,a,s]dQu,z.sl.[5.6.1)
~dQy1,2,(5.619Q1,21,14,519 Qs 01,01.2 91 2,31,(2.5,61 Qs 0,81, 11,27)
~2dQp 218.519Qs.5.61.01.2.4199.5.0),2.99Qs,0.8111.2.19Q1 15,0
~dQ 215,691 21,4.5193,5,611,2.319Q1,23100.5.019Qs ,2,219Q1 281, 5.0,7
=dQy 2,5.619Qs 01,2191 218,519 2,9 35,6191 2.8, ,5,619 Qs .8,2,27
+dQ(as.s],u.z]dQ{x.z.s).{s.s.c]dQ[x,z,a],[q.a.e]dQ(x;z],(s.edep,z,s].[s,v.s]
~2dQf; 21,15,69s 61,12,219Q3,5,61,11.2,319Q1,2,9), 145,992 [1,2,51,3.7.8
—dQ? 5 5.0) dQs 5.61,(1,2,919Qfs 61,(1,219Q1 2,31, (3,5.61 91 2,57,4.7.8]
+dQs 0111.219Q1,21,15.014Q1.2,313,5.619Q1 2.5 4,79
+2dQys 611,2) 9Qfs 25,6193 561,012,519 Q.5.6,1.2.419Q 251 .7.1) 92 A3
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= (“dQ[a.s.o].[1.z,s]dQ(1,zj.(s.o] + dQ(s.e],(1.:]dQ(1.z.a],(s.u.a]) A3
+ (“dQ(s.u.q.u,z.a]dQ(;.:].za.o} (“"dQ(s.o.s),[l.2.1)dQ[1,z},u.n)de,z],[s,e)
+dQ5,6),11,2)9Q1,2),4.59Q(1,2.8),8.6.7) + AQ(1,2,8,(4,7.0/9Q (s,o],[1,2]dQ[1.z],(s.s]) g°
+ (dQu,z.n].[s.c.s]dQ[s.o].(x.2} - dQ[s,a.o],(:.a.a]dQ[x,z],[5.0])
(dQ(s,q,u.z]dQ[x,z}.[s.a]dQ(x,z.a}.(a.a,q‘h 01— dQy3,5,0),11,2,3191,21,15,61 91,31 {4,594 02
"dQ[m],[a,s}dQ[a.a,e].(1,2.3}dQ[1,:],[s,o]‘14 Qa)
+dQys 010,19t 25105.0) (~ 45 001,0,2719121,5.69Q1 21 5.0+
dQis 0),(1,219Q1,2),(3,819Q1 2.81,18.6,7) + dQ{u.o],[z,z}dQ[l.2),[5,o)dQn,z.sj,{s.v.a)) Q
—~dQy3,5,61,11,2,39Q1,2),(5.6) ("dQ[u.e,q,u,z,ndQu,z],(a.s]dQ[x,z].[s.o)
+dQs 1,1,219Q1,2100.59Qs 2.8105.871 + 9Qs,01,01.219Q1 215.09Q 26105.781) 22)
=dQy2),4,8) ("dQ[a,s.o].u.z.qdQ[m].[s.o; + dQ[x.z,a],(A.s.oldQ(a.o].[x,z])2
(dQ[x.z,a].[5,e.s]dQ(s.e].[1,z] - dQ[a.u.s].u.2.s]dQ[1,2].(5.o)) U} 422A§,494
~ (4Qu 210,09 Qs 01020 = A 831,29, 318.0)
(dQ[zs.c].[1.z]dQ[l,2].[3,5]dQ[1,2,3].[4,s,o]dQ[x,z.sl,[a,s.o] + AQs 6),11,219Q 2,31, (3.5,619Q1 214,81
=dQs,61(1,214Q1,21,(3.8/9Q1,2,31,15.5,009Q(3.5,01.11,2.419 Q1,21 .
=2 dQs61,11,219Q,2),13.8) 4Q1,2,3),14.5,619Q1,21,(5.6) 9R3,5.61,11,2.3)
—dQs 6),1,21dQ1,21,14,5)9R1,2), 15,619 Qy3,5,0),11,2,314Q1,2,3),13,5.6)
+2 dQ[x.2],[s,s]inal,zj,[s.c]dQ[s.5.6].{1.2,4]dQ[3.5.a].[1.2,3}) g2 A3 494
+dQf; 611,219 150) (~8Qys 0..219Q 24,519 21150
+dQys,61,(1,2)9Q1,2),4,519Q1,2,8,5,6,7 T AQ(1,2,8),(4,7.8) dQ[s,o],[l.z]dQ[l,z],[5.0]) Q
QY 6101299, 2155.519Q 215,01 (Q1.2.1,15.6019Qs 1121 = 4Qys 0.101.2.9Q1 2115.07) )

Notice that 3.89 is a function of q;, ¢2, ¢4, Ag'4 and the data. We say that 3.89 is
a general equation because its coefficients are functions of a general data matrix, Q. Later,
we shall work with data from a phantom. A phantom is the solution to the forward problem
for a given set of transition probabilities. Data from a phantom are real numbers, whereas
general data are variables, Q; ;. We can solve 3.89 for A3, in terms of q,, g3, g4 and the

data. Similarly, we can solve the three other former cubic equations for A3;, A?,, and



56

A},. Each of these solutions is a function of three of the g;s and the data. Substituting
these solutions into the four (previously) quadratic equations we get four highly nonlinear

equations in ¢;,¢2,93,q¢. Because the coefficients in these equations are so cumbersome

only caricatures are shown below

(3.90)

(3.91)

(3.92)

(3.93)

g3 (a3 + g3 a3) (4 64 + gs) (g2 65 + aq) (g2 @10 + 20 + Q1 a21) (@1 + Q2 04) 0
(s%g2 01 + 92 93°qu as + 93 92 @9 + G2 g3 G4 G10 + @2 @11 + 2 G4 Q12+
3 @13 + 937014 + 015 + g3 G4 Q16 + Q4 Q17 + 37 G4 018)

s (az + g3 a3) (gs g4 @24 + @3 Q35 + 4 G36) (Q4 a4 + g3) (g2 05 + ag) (@1 + g2 a4) @23
(9201 @27 + q1 92 3 G2s + @1 Q2 @29 + @1 Q3 A0 + Q1 O3y + 92’01 3 Gaz+

42q3 ass + a3q + g3 92 ags + g22ase + g2 g7 + g3 Ggs)

@1 (s @0 + a41) (G4 Gaz + Ga3 + 3 @as) (4 @4 + G3) (a4s + Q1 Gus) (01 + G2 a4) a39
(g4 nlgan+ 012qs aus + 91292 649 + Q17050 + 1 Qu a5 + Q4 @1 @2 A2+

q1 92 as3 + G1 Qg4 + 2 G4 G55 + Qge + g2 As7 + G4 Ass)

@1 @59 (4 G40 + @41) (G4 @4 + G3) (Qus + 01 G4e) (91 92 Qe + 01 @12 + G2 013)
(g1 + g2 @4) (91 g0 + 91 04 G61 + @1 05 Q62 + G1 94 Ge3 + G1 3 G Qos+

193 942 ags + Qes + 94 Qo7 + g3 Ggs + g3 G4 Qgp + G2 94 7o + G4Zar1)

where each of the ¢;s is a polynomial in minors of the general data matrix, @, and

the “relevant” term is the last one. The zero valued, or relevant, terms of each of these four

equations is a twelve term polynomial, involves only three of the g;s, and is linear in one of

the g;s. The roles of the four ¢;s occur cyclically. Solving for two of the variables (linearly)

and replacing the result into the remaining two equations we get two nonlinear equations of

35 terms each. All of this can be done with the general equations!! Solving equations 3.90

and 3.91 for ¢; and ¢; and subsituting into 3.92 and 3.93 yields
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bas + g3 by + ¢3”b1 + ga*b1o + ¢s*bag + 9s°bs¢ + ¢5°bss+
gaba + 2 03 by + 9205 be + g2 gs*bay + G2 9s*baa + 2 93" bas + 92 0a°bs +
(3.94)  ga’bis + 02 g3 i + 02795 b1a + 92705 bas + 02”95 bag + 9270 bar + 427 0s%by +
g2°bu1 + G2°qs bir + 62°0sbrs + 2% 05 b3a + 9a°qs*bag + ¢2°qs%bae + 02%4s%br +
ga*bio + 0203 brs + 92*9a7bus + 02 q5°bsa + 92' 93 s + 92'qs°bay + ¢a*qs°bs

and

bes + @3 bar + Ga*bus + 62°baa + @2*bar + G2°bys + 42 beo+
gs bss + 92 qs bo + 92703 bes + 2>qs bug + 92" 93 bus + 92°qs bes + 92°gs bro +
(3.95)  gs?bss + G372 bap + ga>gs’bus + 952 bso + 4s’qa*bar + ¢s° 02 bsr + g3 g2 bes +
g3°bs1 + s°qa bss + s> qabss + 3° G2 bes + G302 bso + 3°q2*beu + 93°q2%ber +
qs*bsa + g3*a bsa + g3*qa’bae + 5*9a°ber + ' bez + 95*92°bas + 95 92°beo

where the b;s are polynomials in minors of the data matrix. Thus far, our data
have been the symbols Q; ;, where i,j = 1,... ,8. The size of the polynomials (or rather
the coefficients) in the above equations prohibits further computation with a general data
set. During preliminary work on this problem, the author implemented this algorithm on
several phantoms. The author used a very general phantom: MAPLE'’s random number
generator was used to assign numerical values to transition probabilities. These values did
not necessarily satisfy conditions 3.13 and 3.14.

Taking the resultant of 3.94 and 3.95 yields 3.96, a huge polynomial equation in
one variable. In our numerical tests we have always observed that 3.96 factors to have
the same form, regardless of the variable with which we take the resultant. The following

caricature cf an equation shows the form of the resultants.
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¢ (gs’ceo + gscar + Cn)2 (gs®cas + gs cas + c«)2 (gs®ces + @3 Car + c“)’
(3.96) (gs7cas + gs cao + cs1)” (g3 €2 + €3)
(gs’ce + cap + gs*er + gs°co + ga'"err + @™ chs + gs®cro+
87 ca0 + @M1 + gs* cas + 05" cas + g5 M cau + ' + 93¥ca0 +
gs*%car + gs®*cas + 93 a0 + gs™cp0 + gs%css + ga'%cys + as*3cys +
g3 csa + gs"cas + g3'%ca0 + gs" a7 + g5 cas + gs*C1a + gs¥cyg +

93 10 + qs™%cis + g3?%cio + g3 o + gs’cs + ga’cs + g3¥ci0 + q:“cu)

where the ;s are complicated functions of the data and the relevant term is the only linear
term in gs.

The author completed this computation on several phantoms and in each case
the relevant factor was linear (gsc; + cs) and gave the solution g = —c3/c;. Once g is
computed, it is possible to compute g; by substituting the solution for ¢4 into 3.94 or 3.95
Next we can substitute the values of ¢; and g, into the solutions for ¢, and ¢, obtained
from 3.90 and 3.91. Once the values for the g;s are found, 43 ,, 4},, A7;, and A3, can
be computed from 3.89 and its counterparts. Therefore, we have Ay 4, A3 3, A7, and Arg
modulo signs. We can use this to solve 3.88 for A4, A43, Ag;7, and Ay up to signs.

In order to assign the proper signs to A3s, As«, Aq3, and A, recall that since

A = P! and A is a block matrix,

1 Age  —Asy e2lw e21s.
A3.8A4.4 - Aa.uh.a

il

(3.97)
""'A.g'a Aa'g n2lw n2ls

For a solution to be physically viable all of the transition probabilities must be positive.

For example, we know that
(3.98) sgn(As;3Ai — AsuAis) = sgn(As;) = sgn(Asy) = —sgn(Ay3) = —sgn(Asy)

We can use 3.98 to compute the signs of A3 3, A4 4, A3y, and Ay ;.
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3.2.2 Writing the equations for general n

For n > 2 the problem becomes worse even though the governing matrix equa-
tion, 2.8, looks the same. Although there are always 4n incoming and outgoing states for a
larger n x n system, there are many more hidden states. Including incoming states, there
are four states per pixel (plus 4n outgoing states). Since there are n? pixels there are 4n?
incoming and hidden states. That leaves 4n? — 4n hidden states. See figure 3.14. Only
when n = 2 is the number of hidden states equal to the number of incoming and outgoing
states. For a n x n system P,, is a 4n x 4n matrix and P, is a (4n? — 4n) x (4n? — 4n)
matrix. Py, is a 4n x (4n? — 4n) matrix and P, is & (4n? — 4n) x 4n matrix. For n > 4
the governing equations are so horribly large and nonlinear that MAPLE cannot even solve
the forward problem analytically. (Inverting (I — Py) is too much for MAPLE.) In order
to begin work on the inverse problem one must somehow cut this monstrosity down to size.

Even if MAPLE were able to handle the equations for any large n x n system the
algorithm described in section 3.2.1 is doomed to failure. P,, is not invertible since it is
not even square. One would like to preserve the “squareness” of the transition submatrices
as well as reduce the complexity of the problem. A recursive approach allowing only one
layer of hidden states at any recursion level achieves both goals. The recursive algorithm
described below decomposes the system into subsystems which are subsequently decomposed
into subsystems of their own. A system is broken into subsystems by ignoring most of its
hidden states. No matter how one decomposes the system, the new system must adhere to
the consistency conditions discussed in section 3.1.

For any square system, notice that if we choose one horizontal and one vertical
barrier there are exactly 4n hidden states associated with these barriers. (Each of the
barriers is associated with two rank deficient submatrices of rank n. The vertical barrier
is associated with a right-left as well as a left-right submatrix; the horizontal barrier is
associated with a top-bottom as well as a bottom-top submatrix.) Recall that there are

exactly 4n incoming and 4n outgoing states.
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Consider the example in figure 3.15. The 4 x 4 array of pixels has been divided into
four subarrays, labeled 11, 12, 21, and 22, There are 16 incoming states and 16 outgoing
states. There are 16 relevant hidden states, those associated with the barriers. The incoming
states which send photons into a subarray are considered to be adjacent only to hidden and
outgoing states which send photons out of that subarray. Similarly, hidden states which
send photons from one subarray into a second subarray are adjacent only to hidden states
which send photons from the second subarray into any other subarray. Finally, hidden
states which send photons into a subarray are adjacent only to those outgoing states which
send photons out of that subarray. As in the base case, it is assumed that photons can only
travel directly from one state to adjacent states.

The governing matrix equation may be rewritten as the following:

(3.99) (Q—Pi)A(I - Py) - Py =90

where Q is the data matrix and P,,, Pi, P, and P,, are probability transition
matrices for this modified system and A = P;;!. Although 3.99 looks the same as in the 2 x 2
example, the transition matrices are very different. They have nonzero entries wherever it
is possible to travel from one state to another without leaving the subarray in which the
first state puts the photon. The shortest possible path between states in this modified
system may require that the photon travel several steps in the original system. The most
important thing to notice is that these modified transition probabilities are the data for the
subarrays. Once again, the transition matrices P,, and P,, share block diagonal structures
and P,, and P;, share off diagonal block structures. In fact, replacing nonzero entries in
the transition matrices for the 2 x 2 system with dense n/2 x n/2 blocks and zeros in the
2 x 2 system with sparse n/2 x n/2 blocks gives the structure of the modified transition
matrices. Also, A has the same structure as P,, and the same changes of variables which
were used to solve the 2 x 2 problem may be used here.
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W = AP,
(3.100) X = PioA
Y = P,W-P,

Finally, notice that X has the same zero structure as P,, and P;, and that Y and
W have identical zero structures as P;, and P,,. The governing equation may be rewritten
as

(3.101) QA-W)-(X-Y)=8

Just as in the 2 x 2 problem, there are redundant equations in the governing matrix
equation and the columns of 3.101 are decoupled homogeneous systems of linear equations.
As before, one may solve for the W, ;s, X, ;s, and Y; ;s in terms of the A, ;s. From these
solutions, one can write down the transition probabilities for the modified 4 x 4 system in
terms of the A;;s. This exhausts the supply of equations given by the governing matrix
equation for the modified system.

Let the data matrices for the subarrays be denoted as Q11, Q12, Q21, Q22. The
entries of the transition matrices P,,, Pix, Pyr, and P,, may be written as functions of the
entries of A and are the data in Q11, @12, Q21, and Q22. Once we recover these data
matrices we can tackle each subarray separately. There are consistency conditions amongst
the data for each of the subarrays. These conditions provide some highly nonlinear equations
which can be used to solve for some of the A, ;’s in terms of the remaining 4, ;'s. We cannot
hope to recover all 16 » 42 parameters. Some extra conditions must be found, somewhere.
Once the data for each of the four subsystems is found the procedure is repeated on each of
the four subsystems. This recursion continues until the 2 x 2 “base case” is reached. The
algorithm described in section 3.2.1 is then used to glean as much useful information from
the base case as is possible. Notice that there has been no mention of any identifications in
this section. This method of solving the equations is absolutely general.
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3.2.3 4 x 4 problem

The recursive algorithm described above is developed in detail for a 4 x 4 system.

8.2.3.1 Solving for P, Py Pi, and P,, in terms of A

The algorithm for solving the 4 x 4 problem described below requires only one
level of recursion and gives a completely general solution. In other words, the author
makes no assumptions about the physical properties of the system; no identifications of the
form 3.54 are made. There are 16 » 16 = 256 unknown transition probabilities and (as we
saw in section 3.1) only 160 independent data. In sections 3.2.3.1 and 3.2.3.2 we find a 96
parameter family of solutions to the 4 x 4 problem. '

We start by labeling the states for the 4 x 4 system as in figure 3.15, and all of
the 2 x 2 subsystems as in figure 2.1. The transition matrices for the modified system are
sparse block matrices. These matrices are larger than their 2 x 2 counterparts, but have
similar block structures. The nonzero subblocks of the transition matrices are shown below,
starting with P;,, which has an off diagonal block structure.

[ Pihys Pihys Pihyys Pihyag | [ Pihss Pihgy Pihgg Pihgao
Pihz'g Pihz,a Pihg.u Pihg'u Pihg’g Piheﬁ Pihg.g Pihg,m
Pihs'g Pihg“ Pihg'ls Piha_u Pih'(.a Pih7'4 Pihq'g Pih',,m

| Pihyy Pihye Pihigs Pihess | | Pihes Pihay Pihsg Pihgy |

Pihgs Pihgy Pihgis Pihgy, |

Pihyyy Pihyog Pihyops Pihioag
,and

Pihy, 7 Pihy g Pihys  Pihyy g

| Pihyar Pihiag Pihyzas Pihiggg |
[ Pihysy Pihysa Pihysyy  Pihyag, ]
Pihyyy Pihya Pihygan Pihygga

Pihysy Pihysa Pihisyn Pihysaa

L Pihlﬂ,l Pihld,ﬂ PthG,ll Pihlﬁ,l)




Py, has the same block structure as P,

[ Phhgy Phhgg Phhgys Phhyyy 10 Phhys, Phhyss Phhysyy Phhyg g,
Phhyoy Phhiog Phhioys Phhig,sg Phhyy Phhys Phhyy Phhygas
Phhyyy Phhys Phhyyys  Phhyyag ’ Phhyy,y Phhysy Phhysyy Phhysgg
| Phhiyr Phhyag Phhysys Phhiagg | | Phhigy Phhiga Phhigyy Phhigas
[ Phhys Phhys Phhyys Phhyg | [ Phhss Phhs, Phhsoe Phhgyo |
Phhys Phhye Phhyys Phhgge J Phhys Phhey Phhey Phhgyo
Phhys Phhos Phhoss Phhsse | | Phhss Phhre Phhrs Phhrao
| Phhys Phhye Phheys Phhage | | Phh,3 Phhyy Phhyg Phhg,o |
P,,, however, is block diagonal,
Pio,, Pio,; Pioys Pioy, 1T Pioys Piosy Pios: Piogs ]
Pio;, Pioy3 Pioys Piogy Piogs Piogs Piogs Pioss
Piog,;, Pioys Piossy Piog, ’ Pio5 Piorg Pioys Piory
| Piogy Pioys Piogs Pioy 4 | | Pioss Pioss Piogs Piogs |
[ Piogy Piogio Piogy Piogas |
Pioye Pioyo,9 Piowa1 Pioyaa
, and
Pioy 9 Pion,ye Piona Pionga
Pioyz9 Pioyay Piong1 Pioy; |
[ Pioysys Piowy Pionsas Pioysss |
Pioyg,13 Pioyae Pioggs Pioyg e
Pioy,3 Pioisay Pioygs Piogse
| Piojs,3 Pioieaq Piojess Piose,e |



as is P,

[ Pho,y Phos Phoyg
Pho,, Phoy; Phoyg
Phosy Phos; Phoss
Pho,y Phoss Phoygs

Phoy o
PhOm'g

Ph0u'9

L P hOlz 9

and

[ Phoys s
Phoy4 13

Phoys 13

| Phoye,13

See figure 3.16 for a few examples of paths taken into account by the modified

Phoy, |
P hOzA

Phos,4

Ph04'4 i

Phog 10

Phoyo,10

Phos s
Phog s

Phoss

L P h03,5

PhOQ'u

P hom.u

Pho 10 Phoj 11

Phoiz2,10

Phoys 14
P h014,14
Phoys 14

P hom,u

transition probabilities displayed above.

Just as for the 2 x 2 problem, we may rewrite the governing equations for the 4 x 4

problem. Assuming that the matrix Py, is invertible, make the change of variables A = ) 2t

where the nonzero subblocks of A are

P h012,n

Pho,s s
Phoyss
P h015,1s

Pholﬁ.lS

P hOs 8
P hOg 6
P h07 6

P hOs .6

PhOg'u W

P hOm.n
P hou.lz

Phoiz,2 |

P hOxa,m
) h0u,1s
P hoxs,xe

P h01e,1s

Ph05'1
P hOg",
P h01,7

Pho”

Phos, |
P hOg 8

Ph07'g

P hOa'g i



Ay Ay A Ay ] [ Ass Ase Asqz Ass

(3.102) Azx Azz A2z Azu ’ Ass Ass Agr Ags
Asy A3z Az Asy Ars Arg Arp Arg
| At Aga A Ay | Ass Ass Asr Asg

[ Ao Asse Aeu Assz | [ Aiaze Ause A

Ao Ao A Aoz Az Augas Augs

Auye Auge Aun Az ’ Ajsis Aisie Agsas

| A1z Azp0 Az Az | | Asgs Arsas Auss

This allows us to write
(3.103) (@ = Pi)A(I — Pup) — P = ©

Once again we may make the following changes of variables:

(3.104)

W =
X =
Y =

APy,
P A
E,W - Rh

|

A6
A6

A15,16

Ase,e |
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The resulting matrices X, W, and Y have very special block structures - the same

block structures as the transition matrices above. X has the same zero structure as P,, and

P.,. W and Y, however, have the same zero structure as F;, and P,,: Once the changes of

variables in equation 3.104 have been made, the governing equations become the familiar

(3.105) QUA-W)-(X-Y)=©

Just as in the 2 x 2 case the columns of 3.105 come in groups. Only in this case four

of the columns correspond to the same matrix equation. The eleventh through fourteenth

columns of 3.105 are written below.
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[ Q19 Q100 @1 @113 Qs Qiae¢ Q118  Qiae 0 [4 0 0 0 0 0 07
Q9 Q310 Q3111 Q312 Q313 Q214 Qi1 Qa6 0 (4 0 o 0 0 o0 0
Qs Q310 Qsa1 Qsaz Qsas Qsae Qs Qsae 0 0 0 6 0 0 0 O
Q4,0 Q410 Qean Q412 Qe Q44 Q418 Qg 0 0 [} 0o 0 0 0 O
Qso Qs20 @s1: Qsaz Qa8 Q514 Qa8 Qsae 0 0 0 0 0 0 0 0
Qee Qo0 Qear Qsa2 Qsis Qei4  Qers Qo6 0 0 0 0 0 o0 o0 o
Q1.0 Q7,10 Q711 Q112 Qras  Qraa Qras Q116 0 [} [ o 0 0 0 O
Qs,0 Qs,10 Qs,11 Qa2 Qsas Qsa4 Qsas Qa0 0 0 0 0o 0 0 0 O

Qo0 Q0,10 Qo1 Qo2 Qo  Qois Qoas Qo1e -1 O 0 0o 0 0 0 O

Q10,0 Qioa0 Qioa1 Q10,12 Q1018 Qi0,4 Q018 Qi0ae ¢ -1 0 0 0 0o 0 O
Q1,9 Qua0 Qua1 Quiiz Quias Qiigne Quras Quiae 0 o ~1 0 0 0 0 O
Quz0 Qizi0 Quu Q212 Q2,18 Q1204 Quaas @z O 0 ¢ -1 0 0 0 O

Q13,9 Qisi0 Qs Q13,12 Qisas Qusae Qisas Qusae O 0 ] 0 1 0 0 O
Q40 Qa0 Que11 Q12 Q438 Queaa Queas Quene O 0 o 0 o 1 0 O
Q5,0 Q15,0 Q5,11 Q1512 Qis1s Qsae Qisas Qispe O 0 0 o 0 o0 1 O

L Q189 Q1610 Qie,31 Que12 Qisexs Qie14 Qre15 Qieas O 0 0 o o o o 1]

[ Ao,11 Ap 12 ~Wo1s  —~Wg 14

A10,11 A10,12 -Wicas -Wio,ae
A11,11 A11,13 -Wi1as  ~Wiy a4
A13,11 Agzgz ~Wizas Wiz

-Wis,n  ~Wisiz  Asas A1s,14

~Wig1  -Wiq12 Asg,18 Asq,14

-Wig,11  —~Wigaz Aisas A1g,14

(3 106) ' -Wisa1  -Wieaz Ajye,1s Ais,14 =0
' Xo,11 X012 Yoas Yo,14 -

X10,11 X10,12 Y10,13 Y10,14

B X11,11 .Xu.xz Yi1,18 Yi1,14
X12,11 X122 T"2.13 Y12,14

Yis1 Y1s,12 X13,13 Xis,14

Y11 Yi4,12 X14,13 X14,14

Y15,11 Y15,12 X18,13 X18,14

L Yienn Yie,12 X16,13 X10,24 J

Just as in the 2 x 2 case, not all of these equations are independent. Consistency
conditions force the 8 x 8 upper left submatrix of the first matrix in equation 3.106 to be
of rank four or less. We can solve for the W ;’s, X, ;’s, and Y; ;s in terms of the A, ;’s.

Solving the first two columns of 3.106 is equivalent to solving the equation



Qs.13
Qe,13
Q713
Qs
Qo.as
Q10,13
Q11,13
Q12,18
Q13,18
Qa3
Q15,13

L Q1618

(3.107)

Q3,14 Qs18
Qe,14 Qe,18
Q7,14 Q7,18
Qsa4  Qsas
Qo4 Qoas
Q10,14 Qo8
Q13,14 Quias
Qiz,14 Qua,18
Qis,14 Q318
Qia,14 Queas
Q5,14 Qis,186
Qie,14 Qie1s
Q5,D
QG,D
Q9
Qs
Qo0
Q10,9
Q11,9
Q12,9
Q13,9
Q4
Q15,9
i_Qm,o

Qs.10
Qe,10
Q.10
Qs,10
Qo6
Q10,10
Q11,10
Q13,16
Qis,16
Q4,10
Q16,10

Q16,16

Qs,10
Qs,10
Q7,10
Qs,10
Q9,10
Q10,10
Q11,10
Q12,10
Q13,10
Q14,10
Q15,10
Q16,10

Q5,11
Qs,11
Qrn
Qs,11
Qo1
Qo1
Qi1
Qiz,1
Quzn1
Q14,11
Q5,11
Q16,11

Q5,12
Q6.12
Q7,12
Q8,12
Q9.12
Q10,12
Q11.12
Q12,12
Q13,12
Q14,12
Q15.12
Q16.12

AQ 11

)
Alo,ll

All,ll

| A2,

-Wisa1
-Wig11
-Wis,11
~Wie.11
Xo.11
X101
X11,11
X13,11
Y11
Yu..u
Yism

L Yie.11

Ag1y |
A10,12

All,lz

Az, |

~Wis,12
~-Wiq12
~-Wis,12
-Wie12
Xo,12
X10,12
Xi11,13
X13,12
Yisa2
Y14,12
Yisa2

Y1e,12
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Solving for W, X, and Y in terms of A exhausts the supply of equations given by

the governing matrix equation. Since A is invertible, one may now solve for the entries in

Pi., Puny Pio, and Py, in terms of the data and A; ;'s. The forms of the solutions are similar

among variables from the same transition matrix; samples of solutions in terms of A;;’s for

one variable from each matrix are listed below. We start with the simplest solutions, those

in Py,
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dAi,2,4),01,2,3
3.108 Phos g = ——22(134),(1,2,3]
( ) 34 dA; 2,3,40,01,2,34]
The next simplest solutions are those for entries of Py,.

Phh3'15 =

- (dAu,z,a].u,z,q (dQ[s.e,'r,s].[1,2,3.13]A13.15 + dQ[s,c,v,u},[1,2,3.14]A14.15

+dQs,6,7,6),11,2,3,151 415,15 + dQ[u.e,7,s],[1,2,3,10]A1o,1s)

+ dA[1,z,4],[1,z,4] (dQ[s,e,7.a],[1,z,4,13]Als.ls + dQ[5,6.7,8],[1.2.4,14]A14,15
(3.109) +dQs,6,7,8),11,2,4,15) 415,15 + dQ[s,c,1,3),[1,2,4,161416,15)

+ dAj1,3,4),01,2,4) (dQ[s,s,'r.s}.[l,3.4.13]A13,15 + dQs,6,7,8),(1,3,4,241 414,15
+dQs,6,7,8),(1,3.4,151 415,15 + dQ[s.o.7,3},(1,3.4,10]A10,15)

+ dA[2'3-‘l»[1-2.4l (dQ[s,6,7,31,[2.3.4.13]4413.15 + dQ[s,c.’r.s],[2.3,4,14]‘414,16

+dQs,6,7,8),(2,3,4,15) 415,15 + dQ[B,o,'I,B],[2,3,4,16]‘416,15)) /
dQqs,6,7,8),1,2,3,4194(1,2,3.4,{1.2,3,4]

The solutions for the entries of P,, are a little bit longer:
1

Pios, = _m
( dAs 78818 (dQ(s,13,14,15,16].[1.2,3,4,5]A5,s+
dQy5,13,14,15,16),(1,2,3,4,6 46,5 + dQ5,13,14,15,16),11,2,3,4,7 475 +
dQ[s,ls,u,u,ml.[1,2,3,4,91-43,5) / dQIl:;,14,1s,16],[1.2-3'4] B
dAs,7,8),(5,7,8) (dQ[s,zs.u.w,lG].[l»2'3"’5]‘45'6-*-
dQs,13,14,15,16),(1,2,3,4,6046.6 + AQ(5,13,14,15,16),(1,2,3,4,7 47,6 +
dQ[s,w.14,15.16]7[1,2,3,4,81113,6) /dQ[13,14.15-16M1~2'3"] -
(3.110) dA(s,7,8),5,6,7] (dQ[5,13,14,15,1s],[5.9,10.11,12]A5,s+
dQ(s,13,14,15,16),(6,9,10,11,12} 46,8 + AQ(5,13,14,15,16],(7,9,10,11,12] A7,8 +
dQ[5,13.14.15v1“]'ls'g'lo’ll'lzlAs’s) /dQ[13,14,15.16]’[9,10,11,12]
dAs,7.8)[5,6.8 (dQ[s.ls,u,xs,m].[5-9v1°'11’12]A5'7+

dQ[s,m.u,m.m},[6,9,10,11,12)A6.7 + dQ[5.13,14.15,16],[7,9,10,11,12]A7.7 +

dQ[5.13,14,15,16].[8‘9,10.11.12]AB.") /dQ[m,u,w,16],[9,10,11.12])




Solutions for the entries of P;, are of the form:

1
dQ(s 6,7,8),19,10,11,12)

Pihyo14 =

(dQ(s.e,v.a.w].[o,z0.11.12.13)-413.14 + dQs,6,7,8,10,(9,10,11,12,14) 14,14 +

dQs,6,7,8,10),(9,10,11,12,15) 415,14 + dQ[s,o.-r.s,m].(9.10.11,12.15]A16.14) +
1

dQ[s,ﬁ,7,3],(9,10,11,12]dA[o.w,11,12},[9,10,11.12]
dQs 6,7,8),0,11,12,141 414,14 + AQ(56.7.8),(9,11,12,15] 418,14 +

(3.111) dQ[s,o,v.s],[9,11,12,191A16.14)

(dA[n,n.m],[o,m,u} (dle.e.v,s,w].[9,13,14,15.161‘49,12

((dQ“!eJ’s]1[9,11.12.13]‘413.14 +

+ dQs 6,7,8,10],(10,13,14,15,16) 410,12 + Q5 6,7,8,10] (11,13,14,15,16] 411,12
+dQ[5.c.7.s.1a].[12,13,14.15,xa]A12.12) /4Qs 67,81, 113,14,15,16)
— dApg,11,12),(9,10,12] (dQ[s.u,'r,s.m].[9.13.14.15,16]As.u
+ dQ[s,o.'r.a.m].[10.13.14,15,16]Alo,u + dQ[s,s,’z,s.w].[u.ls,u,15.101A11.11
+dQ[5,s,1.s,10],[12,13,14.15.10]‘412.11) /dQ[s,o.m],[13,14.15,10]
+ dAjp,11,12),[9,11,12] (dQ(m,m.u.u.ls},[5.0.7.8.9]A9,1o
+ dQ(10,13,14,15,16],(5,6,7,8,10) 410,10 + dQ(10,13,14,15,16),(5,6,7,8,11] A11,10
+dQ[m,1a.14.15.1e].[5,0,7.3,12]A12,1o) /4Q3,14,15,16,(5,6,7,8)
— dAp,11,12)110,11,12) (dQ[m,m,u.m.w],[s.a,'r.s.10]A10,9
+ dQ(10,13,14,15,16),(5,6,7,8.0) 49,9 + dQ(10,13,14,15,16],(5,8,7,8,111 4119

+dQ[1o,1a.14.1s.16].[s.e,'r.s,xz]Alz.D) /dQ[m.u.m,m],{5,0,7.3])

69
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+ (dQ[s.o,1,u}.(9,10.12.1314413,14 + dQqs 6,7,01,(0,10,12,141 414,14
+dQs,6,7,8),09,10,12,15) 418,14 + dQ(&,ﬂ,‘r,!],[9.10,12,1G]A16,14)
(dA[9.1°»121.[9.1°.111 (dQ[s,a.'r.s,w].{o.xa.u,xs,m]Ao,xz
+dQs 6,7,8,100,(10,13,14,15,16] 410,12 + Q5.6 7,8,10],(11,13,14,15,16) 411,12
+dQ[s,o,7.a.1o},(u,u,u,1s,u)Alz.u) /dQys 6,7,8),(13,14,15,16)
- dA[e,m,n],[mo,n] (dQ[s.s,v,s.m),19,13,14.15.101-49.11
+dQ[5.G,7.8‘101-[10-13'14'1&101‘410»11 + dQ[s.e.'r,a,m],[11.13.14.15,10}11;1.11
+dQ[a,o.7,a.101,[12,13,14,15,10)A12,11) /dQys,6,7,81,113,14,15,16)
+ dAl9-10.131'[9-11»12] (dQuo,m,u,15.16],[5,6.1.8,9]Ao.xo
+dQl10‘13»14.15.1°]'[5.6,7.8,1014410,10 + dQ[xo.w.14.15.10],[5,e,1,a.u]-4u.1o
+dQ[10,13.14,15'16],[5,6.7,8,12]A12.10) /dQ13,14,15,161,[5,6,7.8)
— dAjp10,12),[10,11,12) (dQ{1o,1s,u.1s,1o].[s.e.v.s,m]Am,o
+ dQ(10,13,14,15,16),5,6,7,8,9) 49,0 + dQ(10,13,14,15,16],(5.6,7,8,11]A11,9
+dQ(10.13,14.15,16],[5,6,7,8,12]A12.9) / dea,u,15,13],[5.5,7.3))
+ (dQ[s,e,7,3],[10,11.12.13)A13.14 +dQps,6,7,8),110,11,12,1 414,14
+dQys6,7,8,110,11,12,15) 415,14 + dQ[s.a,7,s],[10,11,12.16)A16.14)



(dA[xo,n,n].[o,m,u] (dQ[s,e,-r,s,xo),[o.13,14,15.10]449,19
+ dQ(s,6,7,6,10],(10,13,24,18,20) 410,12 + AQy3.6.7.8,10),(11,13,14,18,10) 411,12
+dQ[s,o,1,s.10].(12,13.14.15,15]Au.m) /dQs,6,7,8},13,14,18,16)
= dApo,11,1),(9,10,12) (dQ[s.o,v.a,m].[9.13.14.15.16]Ao.u
+ dQys,60,7,8,10),(10,13,14,15,10) 410,11 + AQs 6,7,8,10),11,13,14,15,16) 411,11
+dQ[5,s.7,s.10}.(12,13,14.15,16]Au,u) /9Qys 6,7.81,113,14,15.10)
+ dApo,1,3),(9,11,12) (dQ[w,ls.14,15.10}.{5,6,7,3.9]A9.m
+ dQ(10,13,14,15,16),(5,6,7,8,10) 410,10 + dQ10,13,14,15,16),(5,6,7,8,11} 411,20
+dQ(1o.13.14,15.1e],[5,e.7.8,12]Au.m) / dQu‘s.u.15.13),[5.0,7,3)
= dA10,11,12),{10,11,1] ( dQ[10,13,14,15,16],[5,6,1,8,10]A10,9
+ dQy10,13,14,15,16),(5,6,7,8.91 49,8 + AQ(10,13,14,15,16],(8.,6,7,8,111 4119
+dQ[10.13,14,15.16].[6,8,7,8,12]A13,9) / dQ[m,14,15.10],[5,0,7.3])
+ (dQ[s,e,'r,s],[s,10,11,13]‘413,14 +dQqs,0,7,8),(9,20,11,14) 414,14
+dQs,6,7.8),9,1011,15) 415,14 T+ dQ[s,e,’r,s],[s.xo,u.m]Alc,u)
(dA[s,m,u).[o,m,u] (dQ[s,e.7,s,m],[9,13,14,15,16]A9.12
+dQs 6,7,6,10},(10,13,14,15,26] 410,12 + Qs 6,7,8,10),(11,13,14,15,10 411,12
+dQ[5.6.'r.8.10}.[12,13,14,15,16]A12.12) /dQs,6,7,8],(13,14,15,16]
- dAI9'10»11],I9-1°»12} (dQ[s,e.v.s.m).[9.13,14,15,16]-49.11
+dQ(5,6,7,8,10],(20,13,24,15,16) 410,11 + AQy5.6.7,68,10),11,13,14,15,16) A11,11
+dQ[s,a.1.a.1o].[12.13,14,15.16]A12.11) /dQy5.,6,7,8),(13,24,15,16)
+ dApg 1011),09,11,12) (dQ[10,13,14,15,16],[5.6,7,8,9]-A9,10
+dQ(10,13,14,15,16),5,6,7,8,10) 410,10 + AQ[10,13,14,15 16),[5,6,7,8,11} 411,10
+dQ[1o,13,14.15.1s],{s.6,7.8.12]AIZ.!D) /dQ[ls.l4.15,16],[5.6,7,8]
- dA{9.10,11]-[1°,11,12] (dQ[m.xa.u.ls,m],(5.6.7.3,10]-410,9
+ dQ10,13,14,15,16),5,6,7,8,0)49.9 + dQ(10,13,14,15,16) 5.6,7,8,11]411,9

+dQ[10,13,14,15.16],[5.6,7,8,12]A12,9) /dQ[13,14,15,16],[5,6,7,8]))
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3.2.3.2 Eliminating A;,’s

Each of the four subsystems has an 8 x 8 data matrix. The data matrix for the
1,1 subsystem is shown below:

(3.112)
[ Pioys Pioys Pioss Pihys Pihyy Pihyss Pihyss Piog, |
Piog; Pioss Pioy, Pihss Pihys Pihsis Pihgss Piog,
Pio,; Pioys Pioys Pihes Pihys Pihess Pihgse Piogs
o Pho,; Phoys Phoys Phhys Phhes Phheys Phhess Phos,

PhOa,g PhOgla PhOa,g Phhs‘g Phha'q Phhg'“ Phha,m Ph03‘1
Phoys Phoys Phoyy Phhys Phhys Phhyyy Phhyys Phogy
Phom Ph01,3 Ph01‘4 Phhq'g Phhl'o Phhx,u Phhl,“ Phom

Piom Piol,g Pi01'4 Pih1’5 Pihllg P‘ihl'ls Pihx,“ Piol,l

e

Q11 has four rank deficient submatrices. They are 4 x 4 submatrices of rank two
(or less). Two constraints are required to force a generic vector in R* to lie in a given
two dimensional subspace. Four conditions are required, therefore, to force a generic 4 x 4
matrix to be of rank two. These consistency conditions upon Q11 may be expressed as the
vanishing of 3 X 3 minors. Substituting the solutions for the modified transition probabilities
into these minors forces highly nonlinear polynomials of the A, ;s to be identically zero.
These conditions will be studied in order of increasing complexity. (Clearly, the conditions
which involve variables from P;, are bound to be horrendous, so they are not considered
until much later.) Eight of the conditions are identities of the form A,; = 0. The rest
reduce (at a generic point) to four term linear equations. In the rest of this section, the
right-left, left-right, top-bottom, and bottom-top rank deficient submatrices are labeled as
Qijris Qijiry Qijes, and Qijse where i,j = 1,2. For example,



Qil,,
Qll,,
Ql 17'1

| Qll,,
[ PhOa’g

Qllel =

P hon,z

i

(3.113)
Phom

P iou

Q11,,
Qil,,
Q11,,

Q11,,
Phoy s

Pho;,a
Pho, 3

Pioy

Qll
Qlly,
Qll,,

Qlly,
Phos ¢

P hOz,‘
P hOl 4

PiOLQ
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Q11 |
Qlld,l
Q117"

Qll,, |
Phhgys |

Phhys
Phhys

Pih1’5 |

3.2.3.2.1 Identities Since Q11,; is rank two, the determinant of any 3 x 3 minor is

identically zero. Hence,

Q115,1
0 = Qll,,

Ql1,,

Qll,,

Qlly, Qlly,
Qllqs

Q117‘2 Q117,3
Phos,, PhOa,s P h03,4

(3.114) = | Phosa Phoy3 Phoy,

P h01'z

P h01 3 P h01 4

Since the solutions for entries in P, in terms of A ;s are simplest, 3.114 is the

simplest 3 x 3 minor of 3.113 when the solutions in terms of A4, ;s are substituted in. Recall
that A4 is a 16 x 16 block matrix, with 4 x 4 blocks on the diagonal. The upper left block
of A is the inverse of the upper left block of P,,, and so
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. Phoys Phoys Phoyy
~A4y = | Phoya Phoss Phoyy |/dPhopasaasa
Phosa Phoys Phoyy
Qlly;, Qlly, Qlly,
= Qil,, Qi1,, Qll,y, /8Phoys,2,8,4,11,3,8.4)
Q11,, Ql1,, Qll,,

= 0

The same reasoning applies to Q11,, and shows that A, = 0. This argument also
applies to the rank-deficient submatrices Q21,;, Q21¢, Q12;,, Q12,,, Q22,,, and Q22;, and
yields the following identities:

(3.115) Ahg = 0, Ag,l = 0, Ag’. = 0, Aa‘a =0
Ag 12 =0, Ao =0, Aj16=0, Ajeas =0

So really the upper left subblock of A looks like

r b

Ay Ay A3 O
Asy Aaa Ay Ay,

ASI ASJ A33 AS,(

¥ 1

0 Az Az A

For larger systems there are even more zero valued A;;s. In the first recursive
step in the algorithm for the 8 x 8 problem A is a 32 x 32 block diagonal matrix with four
8 x 8 blocks along the diagonal. For exactly the same reason that the blocks of A in the
4 x 4 problem have zero valued corners the blocks of A for the 8 x 8 problem have three
zero valued entries in each of their off diagonal corners. The upper left block has the zero

structure :
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Ay Ag Ay Ay Ay Ay O 0

1 ¥

Ay Ay Ajy Ay Ass Age A7 O

Asy Asg Ass Asy Ass Ase Ay Asy
Ay A Ay Ay A Aye Ay Ay
Asy Asy Asy Asy Ass Ase Asr Asy

fl

Aoy Aoa Ass Agy Ass Ass Asr Agy

0 Ays Arg Ay Arg Arg Arr Agy

0 0 Ass Ase Ass Ase Az Agg

L

In general, for a n x n problem where n = 2* for some whole number k, the matrix
A at the first level in this recursive algorithm has four n x n blocks and each of these blocks
contains ES?.]‘) j= .':!!?-_11 zeros in its off diagonal corners.

o

3.2.3.2.2 Easy Conditions Notice that there are sixteen 3 x 3 minors of the matrix
Q11,;. Each rank deficient submatrix like Q11,; yields at most four independent consistency
conditions. Since we already know that A,; = 0, we can hope to get at most three more
independent conditions from setting the 3 x 3 minors of Q11,; to zero. When the other
fifteen 3 x 3 minors are first written down, they seem highly nonlinear, but upon closer
inspection they proved to be quite simple. Grafimann relations may be used to simplify
the equations. Although we need not consider all fifteen remaining minors, we do so for
the Q11,, submatrix. (In later sections minors of other matrices will turn out to be so

cumbersome that we only consider an independent set of minors.)

“Fasy” Conditions before Grafimann
Eight of the minors factor very easily. The minor dQ11,i33,,1,2,5 factors to

become



(3.116)

(3.117)

dQ(a,o.r.s).m.u.u.u]
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(_dA{l,’.“lp"") dA[l.a.().[l ¢3|‘] dAhc,o’]![szv‘l""

dAp 3.4,(2.84)
dA{13,4)11.3.4)
dAp,2,4,13.4)
dAp 2,4),(2,34)
dA(1,2,4),11,3,9)

dA(,3,4,1,3,4]
dA; 3.4,02.3,4)
dAj,2,9),12,94)
dApas),84
dAp,2,9),1.3.4)

dApa,3)0,9 —
dA a0 +
dApsan39) —
dAp 4109 +
dAn,3.4),(2.3.4)

(dQ[l.13.u,u,xe].{s.s.c.'r,a]-43.4 + dQ(x.13,14.15.101.[4.5»6»"-'1‘4"‘+

de,:a,u.u.lol,ll,ﬁ-""’r’lAl" <+ Az.4dQ[1.13.14.15.101,12.5.0.7,31)

—dQqs6,7.8),13,14.15.16)

the minor dQ11,y1,3,4,01,2,35) becomes

(dApaapnag dApaspse d4nsqnzet

dA(,2,4.02.8.4)
dAp 24,0124
dAp 240234
dAp 241,02
dAp 24,139

dAq,3,4,01,34]
dAp 3,4, 12,34]
dApj 2,300,341
dAj 2,9)1,24]
dAp 3,4),01,2,4)

dAp,a,3),0,2.9 —
dAp,2,3),00,2,3) —
dAns,an09 +
dA(1,3.4,(2,34) —
dA(1,2,9),(2.3.4)

(dQ[1,13.14.15.101»13-5-""'31A’" +dQp 13,10,15,10)14,8,8, 7.8 A0at

4Qu13,1418,10)1.8,0.7.841.4 + -42.4dQ(1.13v1‘»“'1°1'("5""7"1)




”

and the minor dQll,z[l,a,g],um.Q] is

dQys,6,7,8),13,14,18,10)
(dApagnas dApsaqnad d4padnse—
dApaa e dApaanss  dAnsa s -
dApasnae  94n4.0,2.9 dAj 34,04 +
dApaaae  dAp24029) dAp s34+
dA[l.z,a].[x.a,A] dA[x.a.t].[x.z.a] dA[x,a.«],[x,z,q -
dApasise 9Apadas dAj3.4),124)
(3.118) (dQu,xa.u.u,u].[a.a.o.v.s]AS.l + dQp 13,1418.00) (4,8.0,7,8 A4+

dQ[x.13,14.15,10],[1.5.0.1.0]A1.4 + Aﬂ.tdle.xa,u.w.u],(a.s,c.'r.a])

“Easy” Conditions after Graimann

We can use GraSmann relations to simplify the minors 3.116, 3.117, and 3.118

even further. For example, the cubic term in equation 3.116 may be rewritten as

(3.119) dAp1,2,4),(1,8.4) (dAp,2,90.12.3.4940 3,411,238 — dA[l.3.4].l2,3.4]d‘4l1.2.3].[1.2,3]) -
dAp 2.413,9.4 (—dAp,2.8,0.2,89 40 3484 T dAp 23,1349 40,3.4,0,2,3) +
dAp 24,129 (dAp,2,9,11.3.40040,3.4123.4) — dAp2,9)023.4940.3.4)01,3.4)

Using the matrix

A11 Al'g A1,3 Al,q 1000

Agy Azs Ay Ay 01 00
(3.120)
Agy Asg Ags A3 0 0 10

| A Ada Ags Aga 0 0 0 1 |

we may rewrite 3.119 in Grafmann notation as



(3.121)

(3.122)

(3.123)

(3.124)

(3.125)

(3.126)

78

1347 (M2348 71,236 — T2346 T1238) -+
T2,3,4,7 (“7"1,3,4.6 1238 + Tiaas Ti236) -+
T1237 (—T1348 M2346 + TMia46 T2348)

We may next make use of the GraSmann relations

= M348 M,236 — TM2341 782368 + 72342 78136 —
2,343 781,26 T+ T234,6 78,123

= 72348 71,236 — T2346 T1,238 — 72368 NM1,234

= 71,348 71236 — T34, 78236 + TMi342 78136 —
M,34,3 78,126 + Ti346 78123

= M348 7M,236 — 71346 71238 — Ti1368 N1,234 and

= T1348 T2346 — T1342 78346 T TM1343 7Te246 —
T1,34,4 78236 <+ 71346 78234

= T1,348 72348 — T1346 72348 + TM3468 T1,2,34

Using these relations, the expression in 3.121 may be simplified as

T1,34,7 72,368 71,234 —
T2,34,7 71,368 71234 + T1237 T3468 71,234
Finally, we can make use of the GraBmana relation
M1,347 72368 — T2347 71368 T
71,237 73468 — 736,78 71,234 ~ 0

to simplify 3.125. When equation 3.126 is used to simplify equation 3.125, the

result is a product

o " W . " [ ' " ' I oo
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(3.127) Tae78 Tz

which equals A1_3dA[2,,2,3,4]'[1,2'3‘4] in the original notation. We can write the minor

dQ11f1[2,3 +,(1,2,3) as

—dQs 6.7, 13141510413 AN 23,0123,
(3.128) (dQ[l,13,14,15,16],[3,5,6,7,8]A3,4 + dQ(1,13,14,15,16],(4,5,6,7,8] 4,4+

dQ[1,13,14,15,16],[1,5,6,7,3]A1,4 + Az.tdQ[l.13,14.15,18},{2,5,6.7,8])

Similarly, equations 3.117 and 3.118 are equivalent to

dQy5,6,7,6),(13,14,15,16) 41,2 dA[21.2,3.4],[1,2,3,4]
(3.129) (dQu,13,14,15,16],[3,5,6,7,51A3,4 +dQ1,13,14,15,16),(4,5.6,7,8) 444+

dQ[1,13,14,15,16],[1,5,6.7.3]A1,4 + Az.ldQu,n,u,m,m],[2,5,5.7,81)

and
"dQ[s,o,'r.s],[13,14,15,16]Al,ldA?l,z,a.q,[l.2,3.4]
(3.130) (dQ[I,13,14,15,16],[3,5,6,7,8]‘43:4 + dQ(1,13,14,15,16],(4,5.6,7,8] 44,4+
dQ[1.13,14.15,1e],[1,5,6,7,8]AM + A2.4dQ[1.13,14,15.1e].[2,5.6.7,8])
respectively.

Recall that each of these minors must be identically zero, dA,2,3,4),1,2,3,4) # 0 and
A;,, Ay 2, and A, ; are generically nonzero. Finally, the 4x4 minor of @, dQs,6,7,6],(13,14,15,16]s
is also generically nonzero. Hence, in each of these three minors the relevant term is the

last one:

vy Lo | T o
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dQy1,13,14,15,10),(3,5,6,7.8) 43,4 + dQpy 13.14,15,16),4,5,6,7,81 44,4

(3.131) +dQ(1,13,14,15,16),1,5,6,7,81 41,4 + A2,48Q(1 13,14,15,16),(2,5,6,7,8 = 0

There are three more minors which factor easily. d@11,1,23),(1,2,4] €quals

("As,sdQua,u,15.1«1,[2,3,4,5] — A6,5dQ(13,14,15,16),2,3,4,6]
(3.132) As,5dQ13,14,15,16,12,3,4,8) — A7,sdQ[1a.14,15,13],[2,3,4,1])
(dA,3,4,1,8,09401,2,41,2.8,41dA12,3,4),(1,2,4F
dA(13,4),(2,3,4194(2,3,41,1,3,494(1,2,4),1,2,4) ~
dA(1,3,41,01,3,4194(2,3,41,(2,3,410411,2,4),(1,2.4) ~
dAp,3,4),2,3,419401,2,4,01,3,4104(2,3,4),[1,2,4) +
dA(,3,4),(1,2,419401,2,4),(1,3,4184(2,3,4],2,3,4] —
dAp 3.4,01,2,419412,3,4)11,3,4144(1,2,4),2,3.4)

and dQ11,1,2,5,(2,3,4) €quals

(As,sdQus.u.15,1e1,[z,a,4.s] + A6,5dQ(13,14,15,16),[2,3,4,6)
(3.133) | As,54Q13,14,15,16,(2,3,4.8) T A7.5dQ[13,14,15.16].[2,3,4,7})
(—dAp2,0,1,3,0d40,2,3),2,3,404A4(2,3,4,[1,2.4)—
dAp,2,4),2,3,419412,3,4),01,3,404401,2,3),[1,2,4) +
dAp,2,4),1,3,4194(2,3,4,12,3,0940,2,3),(1,2,4) T
dAj1,2,4,(2,3,49401,2,3),1,3,41042,3,4),11,2,4] ~
dAp1,2,4),1,2,419401,2,3),(1,3,4094(2,3,4)(2,3,4] +

dAp,2,4,1,2,40412,3,4),1,3,4194(1,2,3),2.3,4])
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and dQ11.12,3],01,3,4) €quals

(—As,sdQ[m.14,15.15},[2,3,4,5] — Ag,5dQ15,14,15,10],(2,3,4,6]
(3.134) Ass AQ(13,14,15,16),[2,3,4,8] — A7,5dQ[13,14,15.16].[2,3,4,1})

(—dAp,3,4,1,3,0940,2,8),(2,3,094(2,3,41,(1.2,4

dAj 3,4),2,3.419412,3,4,11,3,409401,2,3,1,2,4] +

dAp 3,4,1,3,419412,3.4,2,3,4940,2,3],1,2,4) +

dAp 3,4),02,3,419401,2,9),11,3,4942,3,4),11,2,4) —
dAp,3,4),01,2,419401,2,3),11,3,044(2,3,4),02,3,4) T+

dA( 3,41, 1,2,419A(2,3,4)11,3,49A01,2,3),(2,3,4])

Just as before, one may use Grafimann relations to simplify the above minors.

Provided that A, 4, A4, and Ay, are nonzero they yield only one relevant term:

(AS.sdQ[la.u,ls,m].[2,3,4,5] + A6,5dQq13,14,15,16),2,3,4,6) T
(3.135) As5dQ(13,14,15,16),(2,3,4,8) A'I.sdQ[13,14.15.16],[2.3,4.7]) =0

The same hold true for the other rank deficient submatrices, Q11,, @21,;, @214,
Q12;,, Q12,, Q22,,, and Q22;.. Each submatrix has several 3 x 3 minors which factor easily
but these easily factorizable minors yield only two relevant equations per submatrix. For-
tunately, these equations are linear in the unknowns! Recall that each of these submatrices
has one 3 x 3 minor which yields one of the identities in 3.116. So we expect to find only one
more independent relation per rank deficient submatrix. Fortunately, the remaining minors
are easily cleaned up. They are sums of many terms, some of which are eqivalent to the
identities just found (like 3.135) multiplied by some other term. When these identities are
subtracted from one of the remaining minors, another relation amongst the A; ;s appears.

One example is given below:
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dQ[s,G,"I,B],[13,14,15,16]dQ[13,14.15,16],[5.6,7.8]d‘4[1»4].[3'4]
(3.136) (A'r.sdQu,xa.u,u,:u],[1,2,3.4,7] + As,5dQ1,13,14,15,16),(1,2,3,4,6)
As,5dQ(1,13,14,15,16],(1,2,3,4.5) T dQu,13,14.15,16).{1,2,3.4,3]As,s) =0

In fact, all of the remaining 3 x 3 minors of @Q11,, yield the same relevant term, as
we might expect. Each of the other seven rank deficient submatrices that have been studied
thus far yields exactly one more independent relation amongst the A, ;s.

If the rank deficient submatrices Q11,;, Q114,, Q21,,, Q21,, Q12;,, Q12,, Q22,,
and Q22;, were all independent of each other then they would correspond to 8 * 4 = 32
independent 3 x 3 minors. Unfortunately, this is not the case. The 24 nontrivial minors
may be grouped in eight sets of three according to their unknowns. Grafimann relations
may be used to show that all three equations per group are equivalent. One of the sets is

shown below:

dQ(1,13,14,15,16],(2,2,3,4,71 478 T AQ(1,13,14,15,16),(1,2,3,4,6) A6.,5F

(8.137) dQ[1,13,14,15.16],[1,2.3,4,5]A5,5+dQ[1.1a,14,15.1s],[1.2,3,4,31A8,5 =0

dQq13,14,15,16),2,3,4,5) 45,5 + AQ13,14,15,16),(2,3,4,6) 46,5
(3.138) dQ(ls,u,ls,16],(2,3,4,8]A8,5 + dQ[13,14,15,1a],[2,3,4.1]‘47,5 = 0

dQ[s,13,14.15,1s],[1,2,3,4,7]A7,5 + dQ[s,13.14,15.16],[1,2,3,4,8]A8.5+

(3.139) dQ[s,la,u,m,m],[1,2,3.4.6}A6.5 +dQ[a,13,14,15,16].{1.2,3,4.5]Ab.s =0

Notice that this equation does not take the identities 3.116 into account. When

the identities are considered the Jacobian of the above system becomes:

dQ[13,14,15.1e],[2.3,4,5] dQ[13,14,15,16],[2,3,4.6] dQ[za,14,15,16},{2,3,4,71
(3.140) dQ[l,13,14.15,16),[1,2,3,4,5] dQ[1,13,14,15,16],[1,2,3,4,6] dQ[l,13,14,15,16],[1,2.3,4,7]

dQis,13,14,15,16),(1,2,3,4,5] 9Q(s,13,14,15,16),(1,2,3,4.6) AQs,13,14,15,16),1,2,3,4,7]

This Jacobian portends trouble: either the solution to the system 3.137, 3.138, and 3.139
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is trivial, or else these equations are not all independent. We may use Gramann relations
to show the latter. For the equations to be equivalent, the rank of this matrix must be one.
The rank is one if and only if every 2 X 2 minor is identically zero. Start with the upper

left 2 X 2 minor

—

dQ[m,u.w,m],[2.3,4,51 dQ[1,1a,14.15,1a],[1.2,3,4.5}

(3.141) dQ[13,14,15,16],[2,3.4,6] dQ[1.13,14,15,16],[1.2.3,4,5]
In order to use Grafmann identities to show that 3.141 is identically zero, consider
the matrix ‘
[(Qu Q2 Qs @ Qs Qe Q1 0]
Qs: @52 Qs Qsse Qs Qs Qsr 0 1
Q13,1 Q13,2 Q18,3 Q13,4 Ql3,5 Q13.6 Q13,7 00
(3.142)

QM.I Q14.2 Q14,3 Q14,4 QH.S Q14,6 Q14,7 00
QIS,I Q15,2 Q15,3 Q15.4 QIB,S Q15,6 Q15,7 0 0

| Qien Qusz Qies Quea Ques Ques Quer 0 0 |
In the GraBmann notation with respect to this matrix, 3.141 is

(3-143) 72,3,4,58,9 71,2,3,4,6,9 — 72,3,4,6,8,9 71,2,3,4,5,9
The GraBmann relation beginning with these terms is
(3.144) 72,3,4,5,8,9 71,2,3,4,6,0 — 72,346,890 71,2,3459 — 72,34,569 T1,23.4,89 =0

Hence, the upper left 2 x 2 minor in equation 3.141 equals

(3.145) dQ1,13,14,15,16),(2.3,4,5.6] 9Q[13,14,15,16},1,2,3,4]
But the submatrix of Q containing rows [1,7,8,9,10,11,12,13,14,15,16] and

columns [2, 3,4, 5, 6] is of rank four. So the minor dQ1,13,14,15,16),(2,3,4,5.6] is identically zero.
Then the expression in 3.145 is identically zero, which forces the minor in 3.141 to be
identically zero. Graimann identities plus consistency conditions can be used to show that
each 2 x 2 minor of the Jacobian in 3.140 is identically zero. The same holds for each of
the eight sets of three equations. Amongst the two dozen conditions found, only eight are
independent. The author prefers to work with the relations whose coeflicients are of lowest

degree in the data and uses the following solutions to eliminate eight of the A; ;s
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Ass = — Aquga,u,u,m],(2.3,4,01 + A’f,SdQ[ls.u.u,m].[2,3.4,71
dQ(13,14,15,16),2.3,4,5)
_ Alo,xzde,e,v,s],ua,xs,u,lg + Al1,12dQ[5.0,7,81.[11,13.14,15]

Aun = dQs.6,7,8,(12,13,14,15]
Ay = - dQis 6,7,6),110,11,12,14] 414,13 + A15,13dQy5 6.7,6,(10,11,12,15)
' dQs,6,7,8),110,11,12,13]
As s = - A7.8dQ(13,14,ls,1e],[7,9,10,11] + Ae.adQ(13,14,15,16].[6,9,10,11}
' dQq13,14,15,16],(8,9,10,11]
Ay, = - A11,9dQ)15,14,15,16),06,7,8,11) T A10,99Q(13,14,15,16),(6,7,8,10]
' dQ[13,14,15,1s].[5,7,3,9]
A = - A2,44Q(15,14,15,10),12,5.6,7) T A3,44Q13,14,15,16),3,5.,6,7]
' dQ(13,14,15,16],(4,5,6,7]
4 _ A1516dQ5.6,7,8),01,2,3,18) T A14,16dQs 6,7.8),11,2,3,14]
1e1e = dQ(5.6,7.,8),(1,2,3,16]
(3.146) Ay = - dQis 6,7,8),12,14,15,16) 42,1 + dQ(s 6.7.5),13,14,15,16 43,1

dQ[s,s.v,s].u,u,m,w}

3.2.3.2.3 Hard Conditions We may now substitute the solutions in 3.146 and 3.116
back into the modified probabilities, (the data for the 2 x 2 subsystems which are the nonzero
entries of the modified transition matrices Pi,, Pi,, Py, and P;,). The eight 4 x 4 rank
deficient submatrices which were not used to find the solutions in 3.146 and 3.116 may now
be used to eliminate more of the A, ;s. As before eight 4 X 4 submatrices of rank two yield
(at most) 32 independent conditions amongst the remaining 48 4, ;s.

The submatrices which have not yet been used to eliminate A; ;s are Q11;,, Q11,
Q12,;, Q12y, Q21;., Q21;, Q22;, and Q22,;. Since the 3 x 3 minors of these equations
cannot all be independent we need not bother simplifying all of them. These 3 x 3 minors
are extremely cumbersome so the author generated a phantom and substituted its data into
the minors in order to look for the simplest maximal spanning set of these minors. Some
of these minors were much simpler than others. Recall that generically four conditions are
required to force a 4 x 4 matrix to be of rank two. Although each rank deficient submatrix
corresponds to four independent 3 x 3 minors, there may be dependencies between minors
generated by different submatrices. As with the submatrices Q11,;, Q11;,, Q12;,, Q12,,
Q21,;, Q21,, @224, and Q22;,, which had only sixteen independent minors amongst them,

the remaining eight submatrices correspond to only sixteen independent minors.
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Preferring the path of least resistance, the author chose to simplify as few of
the general minors as possible, starting with the minors corresponding to rows (1,2,3] and
[1,2,4] and columns [1,2,3] for the submatrices Q12,;, @21;,, @225, and @11. This choice
of equations is not un.iqde and was made simply because these equations looked simplest.
The first step after writing down the equations is to eliminate their denominators. The next
step is to collect appropriate terms in the equations. When a data set is substituted into
the general equations the resulting equations have numerical coefficients and are referred to
as numerical equations. The numerical equations have nearly as many terms as the general
equations and many of their terms share the same coefficient. Once terms in the numerical
equations with like coeficients are collected, the resulting equations have 1000 terms each.
The arguments of like coefficients factor into a neat form (sometimes zero!). Collecting the
general equations with respect to the minors of the data matrix, Q, yields 1000 term general
equations. We may simplify each of these terms individually. The nontrivial terms which

are independent of the data matrix Q are either of the same form as 3.119 or of the form

(3.147) -dA[g,a,q,[l,s,q dA[1.2,3],[2,3,4] + dA[1,a,3],[1,3,4] dA[2.3.4],[2,3.4l

Referring to the matrix 3.120, we can write 3.147 in Grafmann notation

(3.148) M,34,5 T2348 ~— 71,348 W2,345

which is the beginning of the Grafimann relation

(3.149) T1345 72348 — 71348 72345 — T3458 71234=0

From 3.149 we can make the substitution

dAp 3 34dAn 2340234 = —dA12,3,4),01,8,49840,2,3),2,3,4 T EA[1,2,3),1,3,41dA4(2,3 4, (2,3.4)

Once substitutions like this are made, we can factor out a square of one of the

following minors:

dA{1,2.3,4],[1,2,3,4}, dAs.6,7,8),5,6,7.8)» dAjg,10,11,12),[9,10,11,12] and dA{13,14,15,16],[13,14,15.16]

as well as several generically nonzero minors of the data matrix. This step reduces the
degree of the equations in A, ;s from thirteen to five and many of the terms in the equations
are functions of minors of A. As long as the minors are written in the shorthand using the
symbol dA, the identities in 3.116 are not recognized. So we must (have MAPLE) write out
the minors and substitute the identities 3.116 into the equations. In both the numerical

and general cases, the resulting equations have 256 terms, once they are collected with
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respect to the A, ;s. In the numerical case, the equations factor to have one quadratic term
with 16 terms, another quadratic term with four terms and one linear term with only four
terms. Generically, the relevanf term is the linear one. Unfortunately, the author’s general
equations do not factor. The coefficients of each of the terms is a polynomial in minors of
Q. The minors are expressed in the by-now familiar shorthand using the symbol dQ. As
the Grafimann relations show, there are many ways of writing a polynomial in minors of a
matrix. If MAPLE were able to handle equations of arbitrary size then the easiest thing to
do would be to rewrite the equations without the dQ notation and ask MAPLE to factor
them. At present, that is not possible. So we must work.

Assuming that the general equations should factor just as their numerical counter-
parts do, we make good use of that knowledge. Consider the 64 combinations of variables
which occur if we expand both quadratic terms in one of the equations. The coefficient of
any one of these combinations is the desired linear term. Since this procedure was rela-
tively easy, the author took the coefficient of each one of the 64 combinations and got 64
different linear terms. Fortunately, they are all equivalent. Although tedious, it is just as

 straightforward to show that these relations are equivalent as it is to show that the rela-
tions 3.137, 3.138, and 3.139 are equivalent. Once again, the author prefers to work with
the equations which have the coefficients of lowest degree in the data. Two of the identities

are shown below



0 = (dQ[S.IS.M‘lB.lO],[1,2.3,4,B]dQ[G,la.lt,ls,lﬂ].[8.9.10,11.12]_

(3.150)

and

0

(3.151)

dQ(o,m.u,w.16].[1,z,s,4.3}dQ(u,13,u.us,u].[s.o.m,u.n]) Ase +
(dQ[s.xa,u,m.m],[1,3.3.«.7}dQ[e.1s,x4,15,16).(3.9.10.11.12]-
dQys,13,14,15,10),(1,2,8,4,719Q5,13,14,15,16],(8,9,10,11,12] —
dQ(1s,14,15,10),1,2,3,49Q [5,6,13,14.18,10).[1.8.9,10,11.12]) Are +
("'dQ(IS,ld,ls.lG],[l.2.3,4}dQ[E.6,13.14.15,16],(5.8.9,10.11,12]+
dQqs,13,14,15,10),(1,2,9,4,519Q6,13,14,15,16),(8,9,10,11,12) ~
dQ[o,13,14,15,1s},[1,2,3.4,5)dQ15,13,14.15,16],[8,9,10.11.12]) Ase +
(" dQ(13,14,15,16},(1,2,3,4]9Qs,6,13,14,15,16),(6.,8,9,10,11,12) —
dQs,15,14,15,16),(1,2,3,4,6/9Q(5,13,14,15,16],(8,9,10,11,12) T

dQ[8.13.14,15,18),[8,9,10,11.12]dQ[5.13,14.15,16].[1.2.3,4.0]) As,s

("'dQ[s,m,u.ls.m].[1,2.3,4,s]dQ['l,la.u,x5.16],{3,9,10,11,1z]+
dQ[5.13,14,15,16],[8,9.10,11.12]dQ[7,13,14,15,10},[1.2.3.4,8]) Ags +
(“dQ[s,ls.u.m.16],[1.2.3,4.7]dQ[v.la,14.15.16],(s,s,m,u,u}+
dQ[7,13,14,15,1e),[1,2,3,4,7]dQ[5,13.14,15.10],[8.9,10,11,12] +
dQ(s,?.ls,u.ls,m].['r,s,9.10,11,u]dQ[la.u,ls,m],[x,2,3,4]) AM +
(“dQ[5,13.14,15,1s],[1.2,3.4,5]dQ(7,13,14.15,1e],(s,c,1o,n.zz}+
dQ[5,13.14,15,1e],(8.9,10.11.1z]dQ[7,13,14.15,1e],{1,2.3.4,5] +
dQ[5,7.13,14,15,1e],[5,8,9.10,11,12)dQ[13,14,15.1e],[1,2,3.4]) Ase+
(" dQ[7,13.14,15.16],(3,9,10,11,xz]dQ[5,13.14.15.16],[1.2,3.4,6]+
dQ[s,la,14,15,16],[3,9,10,11,12]dQ(7,13,14,15,1e],[1,2,3.4,6] +

dQ[5,7,13,14.15,16),[6,3.9.10,11.12]dQ[13,14.15,16].[1.3,3,4]) Ags
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These equations are independent and yield the following solutions for Ag¢ and
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Ags = (‘ (dQ[o.1.13,14.15.10].[1.2.s,«,a.e] dQps13,14,08,10),(8.0,10,11,12) +
dQ7,13,14,18,16},[1,2,3,4,6] dQ[s.o.xs.u.u,xo].(5.3.9.10,11,121 -
dQ[s,1.13.14,15,10].[5.9.9.10,11.12] dQ[u.xa.u,u,u].[l.2.3,4.6} +
dQ[s,7.18,14.15,10].[0.3,9,10,11.1:] dQ[e.ls.u,xs.16),(1.2.3,¢.5} -
dQe,13,14,15,16),8,9,10,11,13] dQ[s,v,xs,u,u.m].[l.2.3,4,5,01 -
dQ[1.1s,14,15.1o},[1,2,3,4,5] dQ[s.a.13.14,15,16}.(6,8.9.10.11.12]
dQ(,7,13,14,15,16],(6,8,8,10,11,12] dQ[&,ls.M.lS,lo],ll.2,3,4,5]

dQ[’r.n,u,u,m].[a.9.10‘11.12] dQ(s,u.m,u.xs.m].[l.2,3,4,5,6]

+ + o+

dQs,7,15,14,15,16),(5.8910,11,12)  AQ[s,13,14,15,16),[1,2,3,4,6)
dQs,6,7,13,14,15,16],(5,6,8,9,10,11,12] dQ(m,u.xs,w},[x.2.3,4]) Ass —
(dQ[o.'r,m,u,ls.m],[l,2.3.4,5,1] dQps,13,14,15,16)8,9,10,11,12) —

dQ(s,7,13,14,15,26)5,8,9,20,11,12)  9Q6,13,14,15,16),(1,2,3,4,7
dQqr13,14,15,001,11,23.48)  dQ[5,6,13,14,15,16),(7,8,9.10,11,12]

dQ[7,13,14,15,18].(1.2,3,4,7} dQ[S.G.lS,M,15,16],[5,8,9‘10,11,12)

+ + +

dQ[s.v,xs,u,n,m],[1.8.9,10,11.121 dQ[e,13.14,15.16].(1.2.3.¢,5]
dQ[ma.14,15.16],[3,9.10,11.12] dQ[s,s,m,u,m.xe),[1.2,3,4,5,7] -
dQ{o.‘r,w,u.ls,m].[7.8.9,10,11.12] dQ{s,u,u,u.m].[1.2,3,4.5] -
dQ[a,13.14,15.16],[3,9.10,11,12] dQ[s,'r.xs,n,xs,le],[1,2,3,4,5,7] +
dQ[e.v,m.u,u,m].[s,s.s.m,n,xz] dQ[s,la,u.ls.m],[1,2,3,4.1] +
dQ[za.u,xs,lo],[1,2,3,4) dQ[5,6,7,13,14,!5,16],[5,7,8,9,10.11,12]) A'r.e) /
(dQ[6.7,13,14.15,16].[1.2,3.4,5,8] dQ[s.m,14.15,16],[8,9,10,11,12} -
dQ[a,n,u.xs,m],[1,2,3,4,8] dQ[a,7,13,14,15,10].[5.5,9.10,11,12] +
dQ[7.13,14.15,16].[1.2,3.4,8] dQ[s,e.13.14,15,16].[5,8,9,10,u,u] -
dQ[o,m,u.ls,m],[a,s.m,u.u] dQ[5,7,13,14,15,18],(1,2,3,4,5.8]
dQ[7,13,14.1s,1a],[s.o.m,u.xz] dQ(s,e,13.14,15.1s].(1,2.3,4,5,3] +

dQ6,7,13,14,15,16},(5,8,9,10,11,12] dQ[s,xa,u,m,m}.{x,2,3,4,31)
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Ase = (("dQ[ma.14.15,10),(1.:.3.4.3] dQs s.19,14,15,10)(6,8.9,10,11,13) +

-

dQqe,13,14.15,16],(1,2,3,4,8] dQ[s.v.13.14.15.13),[0.:,9,10.11,121

dQ[e.1,13,14,1s.xn}.[o.e,o.m.u.12] dQ[s,xa.u.u,1e},[1,2,s,4,a]

dQe,713,1418.00) (123408 9Q (sa3,1408.20)80,000102) F

——

dQ(a.‘I,lS.l(,lE.lG].[l.2,3,1,6,8] dQ(o,w,u.w.xa].[a.o,m,u.n]

dQys,6,13,14,15,10),[1,2,3,4.6,8] dQ[ma.n.u.xe],[s.o.m,u.u]) Ago +

(dQ[ﬂ.13.14.15,16],[1,2.3,4,8] dQ[S.'I.lS,ll.l&,lO].[7,8,9.10,11,12)

dQ['r,xs,u,ls,u],(x.2,3.4,31 dQ(a.e.xs,u,u.xa],{1,3.9.10.11,12}

dQ[s.xs,u.u,m},p.2,3.4,31 dQ[o,'r,n,u.u,xe].[1,:,9.1o,u.12]

dQ{s,o.xa.u,ls,m],[l.2.3,4,7.5] dQ['r,m,14.15.10].[3,9,10.11,12]
dQ[o,ma,14,15.10],[1,2.3,4.7,3] dQ[s.xa,u,xs,16}.[3,9.10.11.12] +

(3.152) dQ[s,v,xa,u,w,m},{x,3.3.4,1,3) dQ[o,u,u,xs,u],[a.o.m.u,u]) A'M) /

(dQ[o,f.n,u.u.m].[1.2,3.4,5.81 dQ[s.xs.u.xs,lo].[s.o.m,u.n]

dQ[e.13.14.15,13],[1.2,3,4,3} dQ[5.1.13.14,15,16],[s,a.e.m,n.xz] +

dQ[1.13,14,15.1e],[1,2,3,4,8] dQ[s,s.la,u.15.10],[5,5,9,10,11,12]
dQ[6.13.14,15.16],[8,9,10,11,12]dQ[5,7,13,14,15.16].[1.2.3,4,5,8] +
dQ[’ma.14.15,16],[&,9,10.11.12] dQ[5.6.13.14,15,1e],[1.2.3.4.5’8] +

dQ[G,T,l3.14.15.16],[5.8,9,10.11.12] dQ[s,xs,u.ls.lo),u,2,3,4,3})

3.2.3.2.4 Very Hard Conditions The only rank deficient submatrices we have not
yet accounted for are Q22,,, Q11,,, Q21,, and Q12,. The author chose to simplify the
simplest minors generated by the phantom, those from columns [1,2,4] and both sets of
rows [1,2,4] and [1,3,4]. The equations obtained by subtituting 3.153 and its counterparts
into these remaining minors are polynomials in the remaining A; ;s and with coefficients
which are large polynomials in the minors of Q. In preliminary work with a phantom each
of these equations was a quintic in the A; ;s and became the product of a 32 term quartic
and a linear term after factorization. Upon substituting the phantom’s values for the 4, ;s

into the minors, the relevant terms turned out to be the linear terms. Unfortunately, the
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general versions of these minors did not factor, presumably because the coefficients were
written in the “dQ" notation. As with the hard conditions, the author assumed that the
coefficient of any of the 32 terms in the quartic is the desired linear term.
Because their coefficients are so cumbersome, only a caricature of one of these
identities is shown below
(cs (caas — byce + bgcs)dy — dQ[a.e.'r,o].[u.u.u,xo]dQ[s,o.‘r.u],[o.m,u,u]
(dQ[u.u,u,xo],[s.o.xo.u)“l - Q4 dQ[xa,u,xs.lo),[a,o,w.n])
(bl dQ[n.xs.u.u.xa].[c.u.o.u} —bs dQ[lo.m.14.15,10].[3,7,3,9,11])
—dQp13,14,15,26),(6,7.8,0)9Q(5,6,7,8),09,10,11,12) %8 (Ga dQy13,14,15,16),18,9,10,11)
+dQ(s,6,7,8,101,[10,13,14,15,16]82 dQ[xa.u.xs,xo],[a.o.u.u))
+dQp13,14,18,16),(6,7.8,919Q5,,7,8),19,10,11,12)81 (a-, dQy10,13,14,15,10),(8,9,10,11,12]
(3.153) —~ag dQ[n.13.11,1s.xo].[s,o,xo.n.n])
+dQy13,14,15,16),(6,7.8,519Q5,6,7,8),19,10,11,12) (a-, dQy13,14,15,10],(8,9,10,11]
+dQ[s,o.7,s,11},[10,13.14.15,10]42 dQ[l3.14.15.16],[8,9.11.12]) ad
—dQ[s.o,v,a},[o,xo.u.u) (b4 dQ(la.u.m.m],{s,s.u,u} + by dQ(xa.u,u,m}.[s,s.m,u]) Cs Q4
+dQ(s.o.1,s],[9,io,u.n] (c; a3 dQus.n.u,u].[0.7.3.9103 - dQ[s.a.7.3).(13.14,15,10}‘33 az a4
"dQ[ls,u,15,10],[0.7,a,o]dQ{u.u,u,u],[s.o.xo,u]alo a; + dQ(m,u,n,m],[a,s,w.n]ba a; C
+dQ[xs,u.15,15],[3,9,10.12)b4 csas + dQ[xa.14.15.10},[5.1,3,9]01 dQ(xa.u,ls.15],[3,9,11.12]“10
+dQ(5,6,7,8),113,14,15,16¢3 @2 86 — AQ(s 6,7,6,[13,14,15,16)C7 @9 a,)) A[10,11]
+ (—co (coas —bacs+ bg cs)dy —~ dQ[13,14.15.m].(o.v,s,s]dQ[s,c,r.a],[o.m.x1,12]
(bs dQi,1418,16),/8.9,0,1) + dQ[xa.u,us.xs],[s,o.u.u]az)
(—dQ[a.e,'r,s.u],[9,13,14‘15.10109 + dQ(s,c,1.3.10],(9,13,14.15,10]‘16)
+dQ[5,e.7,a],(9.10.11.12] (bi dQ[la.u.xs,m).[a.n.u,u]4+ by dQ[xa,u.u,m],[s,o.m.u]) Co Qg
—dQs,6,7,8],(9,10,11,12] ("dQ (13,14,15,16},(6,7,8.9)4Q(13,14,15,16),(8,9,10,11)011 B3
+dQ[13,14,15.16],[6.1,8,9]0'1 dQ(la.u.15.13],[8.9,11,12]“11 — C10 @2 dQ[la.14,15.10],[5,1,3.9]“3

+dQ[la.u.xa.16],[8,9.10.12]b4 ¢y @3 — C10 bs dQ[la.u.u,w].[6,7.8,9]al

+dQ(13,14,15,10),(8,9,10,12)D5 @1 Cv)) A[9,11]
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+ (dQ(xs,u,xs,xo],[e.7,3,9]dQ(s,o.1,s].[9.10.11,12] ("dQ[u,xa,u.u.u].[u,o.m,u,n]

("bl dQqs,6,7,8)113,04,18.20) + dQ(s.e,v,a.m},m,m,u.u.m]aa)

- ("bs dQs 6,7.8)13,14,18,16) dQ(a.e.v.s.n].[n.n,u.u,m}aﬂ) dQ(m,xs.u.u.xe].(a,o.m.u,u]) a3

+dQ13,14,18,16),(0,7.8,9/9Q5,6,7,8),09,10,11,13) ("dQ[xa,14.15.10],[3.9,11.12]ba dQs,6,7,0),13,14,18,16)
+dQpg,6,7,8,111,113,13,14,18,10)08 AQ13,14,18,16),(8,9,10,11]

+dQ(s,e.7,s,n].[12.13,u,u.m)dQ[u,u,u.w],{3.9.11,12102) a9

~dQp3,14,18,101,(6,7,8,919Qs,6,7,81,19,10,11,13] (‘dQ{xa,u,u.m].(s.o.u.u]bl dQs,6,7,8),113,14,18,10)
+dQys,6,7,8,100,113,13.04,18,1005 AQ13,14,18,10),8,9,10,11)
+dQ[5.o,'r,a,1o).[u,13,u.xmo}dQna.u.u.xs}.(3,9.11,1:]02) ae

~dQys,6,7,8),(9,10,1,13] (b4 dQ(13,14,18,16,(8,9,11,12 T b5 dQ{ls,u,x5.16].[8,9.10,11}) 1104

+dQ|1a.u.xs,u}.[e,1,9.9]dQ[s.0,1,31.[9,10,11.12]
(dQ[s,e,-r,s.u],[12,1a.14.1a,m]dQ[s.c,v.s.xo.n],[10.12,13.1gu.m]dQ[n,m,n.u,xs,xe],(s,a,v.s,o.m
+dQ[s.e.'r.a.xo],m,la,u.is.m]dQ[n,13,14.15,m].[s.o,7,s,zz)dQ[5,0.7.3,9,10.11].[9.10.12,13.14.15,16)
—dQys6,7,0,11),13,19,14,15,10)9Q(10,13,14,15,16,(5,6,7,8,139Q(5,6,7,8,9,10,11),(9,10,12,13,14,15,16]
+dQiy 6,7,8,10),(12,18,14,15,16]9Q5,6,7,8,10,11],[9,12,13,14,15,16]9Q0,11,13,14,15,16}/5,6.7,8,10,13)
~dQys 6,7,8,101(12.19,14,15,16/9Q (5,6,7,8.10,11),10,12,13,14,15,10/9Q0,11,13,14,15,16),(5,8,7,8,9,13)
~dQ(s,6,7,8,11),(12,18,14,15,16]9Q5,6,7,8,10,11),19,12,13,1¢,15,16)4 R0, 10,13,14,15,16),[5,6,7,8,10,12]
— dQ(10,11,13,14,15,16),(8,6,7,8,10,1219Qy5,0,7,8,10,11119,12,13,14,15,16]AQ5,6,7,8,91,(12,13,14,15,16)
+dQ10,11,13,14,15,16],(5,6.7,8.9,1219Q3,6,7,6,10,11},[10,12,13,14,15,16) dQ[s,o,v,a,s).[12.13,14,15.10))
(" dQ(13,14,15,16),(8,9,11,1201 + dQ[Is.)4.15‘16].[8.9,10‘1110'3)

+dQ[s.6,7,31,(13.14,15,10]dQ{a,e,'r,s],{o,w,x1,12}
(—04 dQps,14,15,16),(8,9,11,12) T+ dQus,u.xs,m].[s.9,10,12]‘13)

(b, dQp1,13,14,15,16),[6,7,8,9,1) ~ s dQ[lO,13,14,15,16],[6,7,8,9,11])

+cgcindybg +cicriagdy — cgc1di by

+cn (54 a3 + a, bs) dQ[u,u,ls,m}.[s,a,1o,u]dQ[s,e.1.a].[9,10.11,12]

+bs (—a9cr — a4 €z + ¢3 86) dQ(5,6,7,6),(13,14,15,10) AQs,6.7,8),(9,10,11,12]

+ dQyp 0.7,8(9,1011,12112 b5 8Q14.15,10,f0.7.00101 ) A[12,11]
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+ (_dQ[s,s.v.s],[9,10.11,12] (—c14 @9 + ¢15 ag)
(bs dQ[13,14,15,16],[8,9,10,11] + dQ[13,14,15‘16],[3,9’11’12]az)
+dQ(5,s,7,s],[13,14,15,16]dQ[s,s,7’,s],[9,1o,11,12]
(_dQ[13,14,15,16],[8,9,11,12]0‘1 + dQ[13'14715,15].[8,9.10,11]‘13)
(bl dQ[ll.13,14.15,16],[6,7,8,9,11] — bs dQ[10,13,14,15,1e],[6,7,3,9’11])
—csc13dy by + dQ[s,6,7,8],[9,10,11,12]dQ[13,14,15,16],[8,9,10,12]bS a; C13
_dQ[s,s,v,s],[9,10,11,12] (b4 dQ[1a,14,15,1a),[3,9,11,12] + by dQ[13,14.15,16],[s,9,10,11]) C13 a4
+dQ(s,6,7,8),00,10,11,12]9Q(13,14,15,16],8,9,10,12)04 @3 C13
+¢q 13 05 dy + ¢s €13 di b + AQ(u3,14,15,16),06,7,8,919Qs,6,7.,81,19,10,11,12]
(_dQ[5'6’7’8’1°]’[u’13’“'15’161dQ["’»G’7v3'1°,111.[10,12»13'14.15,16]dQ[9.11,13,14,15,16],[5,6,7,8,9,12]
— dQq10,11,13,14,15,16),(5,6,7.8,10,12)4Q5,6,7,8,9,11],(9,12,13,14,15,16)4Q5,6,7,8,10),11,13,14,15,16]
+dQ[10,11.13,14,15.16],[5,6,7,8,10,12]dQ[5,6,7,8,9.w],[9,12,13,14‘15'16] dQ[s,s.7,s,u1,[11,13,14,15,16]
_dQ[5’6’7’8’9’1°’11]'[9’10’12'13’“’15’16]dQ[m’m’“’ls’m]'[5’6'7'8’121dQ[5,6,7,8.11],[11,13,14,15,16]
+dQs,6,7,8,10)(12,13,14,15,1614Q (11,13,14,15,16),(5,6,7.8,12)4Q5,6,7,8,9,10,111,19,10,12,13,14,15,16]
+dQ[1o,u,13,14,15,16],[5,s,7,8,9,1z]dle,s,v',s,g.u),[10,12,13,14,15,16]dQIs’s,.,’B,m]’[11'13,14,15’16]
- dQ[5,6,7,s,9,1o],[10,12,13,14,15.15]dQ[s.s,'r,s,n],[11,13,14,15,16]dQ[10’u’13’14’15’18],[5,6,7’8‘9,12]
._dQ[s,10,13,14,15,16],[5,6,7.8.10,12]dQ[5.6,7,8,10,11],[9,12,13,14,15,15) dQ[S,s,’r,s,u],[n,13,,4,15'15]
+dQ[9’1°v13r14’15a16],[5,6.7.8,9,12]dQ[5,6,7,8.10,11],[10,12,13.14,15,16]dQ[5,6,7,3,111,[11'13714’15‘16]
+dQ[5»63,8,10],[11.13,14,15,161 dQ[5,6.7,8,10,11],[9,12,13,14,15,16]dQ[9,11,13,14,15,16],[5,6,7,8,10,12]
+dQ[9,10,11.13,14,15,16],[5,6,7.8,9,10,12]dQ[s,6,7,8],[13,14,15’15]dQ[5’6,7’8,10’11},[11‘12’13,14’15‘161)
(_dQ[”’“'“"“]'[8’9’11'121“1 * dQlla,u.ls,wL[s,s,m,n]as)

—dQ;s,6,7,8),(9,10,11,12] (dQ (13,14,15,16),(6,7,8,0)C16 + C2 dQ[5,6,7,3]’[13’14'15‘16])
(az as + a; b5)) A[ll, 11]

where each of the a;s represents a six term quadratic polynomial in minors of Q.
The b;s represent ten term quadratics in minors of Q. The ¢;s represent two term quadratics

in minors of Q.
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The author has little doubt that equation 3.153 and its counterparts can be sim-
plified significantly if enough time, energy, and computing power are devoted to the cause.
When this last set of minors is solved linearly for eight more of the A; ;s in terms of the
remaining A, ;s, we are left with a 32 parameter family of solutions for the modified 4 x 4
problem. Therefore, we have 32 parameter family data sets for each of the four 2 x 2 sub-
systems. The last step is to solve each of these subsystems as done in section 3.2.1. The
solution for each of the 2 x 2 subsystems is a 16 parameter family of solutions in terms of the
data. The process of solving all four subsystems introduces another 64 = 4 * 16 parameters
and yields the result promised at the beginning of section 3.2.3: a 96 = 416+ 32 parameter

family of solutions for the unknown transition probabilities for a 4 x 4 system.

3.2.4 n xn problem where n =2 ke N

In the previous section two recursive levels were required to solve the 4 x 4 problem.
A sketch of the author’s vision of the algorithm for the 8 x 8 problem follows. Later, the
algorithm for a n X n problem is sketched.

The first step in tackling the 8 x 8 problem is to break up the 8 x 8 system into
four 4 x 4 subsystems. See figure 3.1. Only 32 of the original 8% x 16 — 32 = 992 hidden
states are considered in this modified system. The modified transition probabilities are the
probabilities with which a photon travels from one of the pertinent states to another such
that its travel path lies entirely inside one of the subsystems. These modified transition
probabilities comprise the data for the 4 x 4 subsystems. Furthermore, the same process
for solving the governing equations 2.8 that was used in sections 3.2.1 and 3.2.3.1 permits
expression of the modified transition probabilities in terms of the entries of A = Pl P,
is a 32 x 32 block diagonal matrix with four 8 x 8 blocks along its diagonal. Since A has the
same zero structure, we have a 4 x 82 = 256 parameter solutions for the modified transition
probabilities. There are many consistency conditions amongst the data for each of the 4 x 4
subsystems. These conditions should allow us to solve for all but 64 A; ;s in terms of the

remaining A; ;s.
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Notation: Le. A, Pho, Pio, Py, and Py, denote the modified transition matrices
at the first level of this recursive algorithm. At the next level of the recursive process
each of the four 4 x 4 subsystems will have its own data matrix, Q%,j;, where we refer to
the subsystems as systemi,j,, where %,,j; = 1,2. The transition matrices for the modified
4 x 4 systemi, j; are referred to as Aiyj1, Piyjin,y Pl1jrioy Pi1Jipn, and Piyj1,,. At the last
recursive level of this recovery algorithm, each of the 4 x 4 modified systems will be broken
into four 2 x 2 subsystems. The (i5,72)"™ 2 x 2 subsystem of the (i1,7,)"™ 4 x 4 subsystem
will be referred to as systemi,ji;,;,- The data matrices for these sub-subsystems will be
referred to as Q%,j);,;,; the transition matrices as Pi,jy,,;, ho! Piyjy,;, w00 Pladig,j, AR and
PirJiis o

Now that we have 64 parameter solutions for Q11, Q12, @21, and Q22 we can
implement the recovery algorithm for the .4 X 4 problem on each of the 4 x 4 subsystems
as done in section 3.2.3. See figure 3.2. For subsystemi;j; we recover Qiyj,,;, for each
combination i,,j, = 1,2 in terms of Qi;j; and half of the nonzero entries of A:,j,. Since
each Ai;j; is a 16 x 16 block diagonal matrix with four 4 x 4 blocks along the diagonal,
we introduce 1/2 * 4 x 4 x 42 = 128 additional parameters to our solutions for the data
submatrices for the 2 x 2 sub-subsystems. The resulting data matrices, Qi,J3,;,, should be
functions of 64 + 128 = 192 parameters. Now, we must simpy implement the 2 x 2 recovery
algorithm on each of the 42 = 16 sub-subsystems. We may solve for each set of transition
matrices Piyjy;,;, ho! Pirjiign,00 Pirdtipne and Pi1j1;2,-,,.h in terms of Ai,j,,,,,, introducing
another 256 = 42 x 16 parameters. The end result is a 256 + 128 + 64 = 448 = 8 x8(8 — 1)
parameter family of solutions for the transition probabilities in terms of the data matrix Q.
Recall from section 3.1 that the rank of the forward map is at most 8n(n+1). For the 8 x 8

problem we can at best find a 16n? — 8n(n + 1)|,-s = 448 parameter family of solutions.
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In general, the recovery algorithm for a n x n system where n = 2%, k € N, requires
k — 1 recusive levels before the 2 x 2 “base case” is reached. Pseudocode for this algorithm

is shown below:

solveasubsystem := proc(sysin)
break up sysin into four m x m subsystems
if m = 2 then
solve each subsystem for its transition probabilities in terms
of its data and 16 parameters
else for each subsystem
1. solve for modified transition probabilities in terms of data and A
2. eliminate all but 8m parameters using consistency conditions

3. call solveasubsystem with this subsystem as input
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Figure 3.1: Decomposition of an 8 x 8 system into four 4 x 4 subsystems. The thick lines
separate the subsystems. Only states which are considered when solving for the subsystems’

data are denoted with arrows.

¢ 4+ 4 4 S, S )

1 1 1.9 1.2
*TITLT T2 TIT T2
<-—>-+ 4<- -o-* ~ -v‘ 44- -o-’ 4-4———
--—o-‘ *4- -»* *« -»+ +4-1 -.-‘ *1-——

1 1 1.9 1.9
R YT T 12,2 ke &% G Ik B ¥4
$ 1t Rt ] (R I
2 92 29 2 9
=371l =TI, Tl T2
4—-—’ 4<—- -—* -] »-* +<— ->* ’4--—
92 2 2.9 2 9
b e 9 § T¥2,2 bkl 29 § Y22
R R

Figure 3.2: Decomposition of a 8x8 system into four 4 x 4 which are subsequently decom-

posed into 2 x 2 subsystems. The thick lines separate the subsystems.
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LN
LN

Figure 3.3: Decomposition of a 16 x 16 system into four 8 x 8 subsystems. The thick lines

separate the subsystems.

i

Y

Figure 3.4: Two routes taken into account by p; g



hs

Figure 3.5: One of many paths taken into account by sg 5

U

e

Figure 3.6: One route which p, s does not take into account.
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k 2 1 N
k+1
m+k
m+k+1 m + 2k m+n-+k

Figure 3.7: An example of a larger system. The thick vertical line separates the “left”
states from “right” states. In order for a photon to travel from one of the sources left of the
barrier to a detector right of the barrier, the photon must enter at least one of the states

marked with arrows.

k 2 1 N
k+1
m+k
m+k+1 m-+k+1 m+n+k

Figure 3.8: Example of a larger system with a weird boundary. In this particular example,
(k=1)=2.
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Figure 3.9: Source k is surrounded by three barriers indicated by the thick lines.

Figure 3.10: For the 1 x 1 case shown on the left, there are no boundaries. For the 2 x 2,

case, however, there is one left-right and one top-bottom boundary.
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Figure 3.11: Data for the 2 x 2 problem which may be considered redundant due to 4 x 4
rank two submatrices are marked with an ‘x’. Data which are independent of all consistency
conditions are marked with an ‘i’. The independent data correspond to nonzero entries of

P,,. Note that the choice of redundant data is not unique.
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t 0 © r T Tr T
o 1 t O r T T T
o t vt o0 T X T T

o 0 1 r T T X

Figure 3.12: Data which may be considered redundant due to 8 x 8 rank four submatrices
are marked with an ‘x’. Data which may be considered redundant due to 6 x 10 or 10 x 6
rank four submatrices are marked with an ‘o’. Data which are independent of all consistency

conditions are labeled with an ‘i’. As before, the choice of redundant data is not unique.
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[ 1t 0O 07 03 0y 03 Oy
01 ] Oy O3 02 O3 (121
0y 02 t 03 O3 0y 0
0y O3 O3 '3 7 03 0; O
01 02 O3 ? 1 03 0 O
01 0 03 03 & 02 O
01 Oy 02 0y O T o

i 0 00 00 0 07 0 1 |

Figure 3.13: In any one of the 4 x 4 blocks on the diagonal of the data matrix for the
8 x 8 problem, data which may be considered redundant due to 18 x 14 or 14 x 18 rank
eight submatrices are marked with an ‘o,’. Data which may be considered redundant due
to 20 x 12 or 12 x 20 rank eight submatrices are marked with an ‘o,’. Data which may be-

considered redundant due to 22 x 10 or 10 x 22 rank eight submatrices are marked with an

¢ b

0;’. Data which are independent of all consistency conditions are labeled with ‘i’. Once

again, this choice of redundant data is not unique.
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921 01 %16 01sT
? ) 1 1
) 2l 1 lq l% )

03 13 . 1]4 0!4
04 | 24 433 [ 013
. ‘ 3
95 | % . Y210
Og ig i]] 0;1
i] ig in ilﬂ
O Og} Ogy O10

Figure 3.14: A 4 x 4 system. The incoming and outgoing states are labeled; all unlabeled
states are hidden states. There are 16 incoming and 16 outgoing states, but 48 hidden

states.
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Figure 3.15: Decomposition of a 4 x 4 system into four 2 x 2 subsystems. The thick lines
separate the subsystems. The “modified” 4 x 4 system disregards individual pixels. Only

the subsystems are relevant at the first level of this recursive procedure.
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014

2

Figure 3.16: Examples of paths which are taken into account by transition probabilities for

this modified system.
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Chapter 4

Three Dimensional Problems

4.1 Introduction

The setup is essentially the same in three dimensions as it wasintwo. Ann xn xn
array of voxels in R® encloses the object to be reconstructed. There are 6n? outer faces,
each with a source and a detector. Preferred directions of travel are north, south, east,
west, up, and down. The transitions matrices are larger than the matrices for an n x n
problem and there are relatively more hidden states in three dimensicus. The governing
matrix equation 2.8 is unchanged, however.

For a n x n x n system there are 6n? incoming, 6n? outgoing, and 6n® — 6n? =
6n2(6n — 1) hidden states. P,, is a 6n% x 6n? matrix, while P, is 6n? x 6n*(n — 1), P, is
6n%(n — 1) x 6n*(n — 1), and Py, is 6n%(n — 1) x 6n®. Q is a 6n? x 6n® matrix.

One of the differences between the two and three dimensional problems is the
amount of data. In two dimensions there is precisely as much data as there are unknown
transition probabilities. In three dimensions there are 36n* pieces of data but only 36n®
unknowns. (There are six ways to enter a voxel and six ways to exit; each voxel has 62 = 36
transition probabilities.) Since the rank of the forward map cannot be greater than the
dimension of its domain, there must be consistency conditions upon the entries of Q. In
fact, there are enough conditions to make the three dimensional forward map rank deficient.
In [13] it is shown that the Jacobian for the 2 x 2 x 2 problem is generically only of rank 240.
In the following sections we shall express the unknown transition probabilities in terms of

a 36 x 23 — 240 = 48 free parameters and the data.
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1,2,% *o/ ;om /1 222
b/ o /
L~ ™~

.
1,1,2 / / N 2,2,1

113 130

VARV
/2-2' e 2,1,2

1,1,17 2,1,1

Figure 4.1: Eight voxels, seven of which are labelled above. Voxel 1,2,1 is hidden from
view. Some incoming and outgoing states are labeled as well. A photon which travels north
into voxel 112 via incoming state ¢ and then turns upward traveling out of voxel 112 via

outgoing state og does so with probability n112u.

Notation : The probability that the photon will travel east into pixel 1,1,1 and
continue east into pixel 2,1,1 is written as ellle. The probability that it will turn right
and travel out of the system is written as ellls and the probability with which it turns

upwards and travel into pixel 1,1,2 is written as ellln.

The transition probabilities satisfy 2.9 (as mentioned in chapter 2)

eijke + etjkw + eijkn + eijks + eijku + eijkd <1

uijke + uijkw + uijkn + uijks + uijku + uijkd <1

dijke + dijkw + dijkn + dijks + dijku + dijkd < 1

(4.1) wijke + wijkw + wijkn + wijks + wijku + wijkd <1
nijke + nijkw + nijkn + nijks + nijku + nijkd <1

sijke + sijkw + sijkn + sijks + sijku + sijkd <1

where 1,5,k =1,2
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Figure 4.2: A 2x2x2 system is split apart so that we can see a few hidden states representing
travel from the “leftmost” voxels, 111, 121, 112, and 122, to the “rightmost” voxels, 211,
221, 212, and 222.

Furthermore, this system satisfies the range conditions (also mentioned in chap-
ter 2)

(4.2) 0<) Q<1 i=1,2,...,6n2

The method for finding a 48 parameter family of solutions to the inverse problem
starts off just like the two dimensional method. The matrix equations 2.8, 3.18, and 3.18,
are the same; only the matrices are different. The matrices for the 2 X 2 x 2 problem also
have special block structures. P,, and P,, are 24 x 24 block diagonal matrices with eight
3 x 3 blocks. P, and P, are 24 x 24 matrices with nonzero entries on their off diagonals.
As before, A and X have the same diagonal block structure as P,,; W and Y have the same
off diagonal block structure as Py, and P;,. For the 2 x 2 x 2 problem, each column in 3.18
is a system of 24 linear equations in the 12 variables which appear in the corresponding
columns of A— W and X -Y. Just as in two dimensions, the columns of A-W and X -Y
come in pairs. The roles of the A, ;s and W, ;s are reversed in the first and last columns
of A — W as are the roles of the X; ;s and Y; ;s in the first and last columns of X - Y.

Hence, we must solve the “same” matrix equation for the first and last columns of 3.18. See
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table 4.1. We shall consider column three of 3.18. The third columnsof A— W and X - Y

are shown below:

[ Ais ] [ X1 |
A2.3 X2,3
A3,3 X3,3
(4.3) ~Wsa -Yis
—W5.3 "Y5,3
~We,s ~Yes
L 0 . L 9 .

respectively, where 6 is a column vector of eighteen zeros. The 24 equations in

column three can be written as a homogeneous matrix equation:




(4.4)

Q12
Q1,2
Qs,2
Qa2
Qs.2
Qs,2
Q2
Qs,2
Q9,2
Qo2
Qu2
Q2,2
Q13,2
Qu,2
Q15,2
Q16,2
Q17,2
Qis,2
Q9.2
Q20,2
Q21,2
Q22,2
Q23,2
Q24,2

Q14
Q24
Q34
Qau
Qs4
Qe
Q74
Qs
Qo
Qo4
Qua
Q12,4
Q13,4
Q14,8
Q15,4
Q16,4
Q17,4
Q18,4
Q19,4
Q20,4
Q21,4
Q22,4
Q23,4
Q24,4

Qo5
Qo5
Qus
Q12,5
Q13,5
Quas
Q15,5
Q16,5
Q17,5
Qs
Qo5
Q20,5
Q21,5
Q22,5
Q23,5
Q24,5

Q1.
Qa8
Qs
Qu.s
Qs.6
Qs.6
Qs
Qs.6
Qo6
Q10,6
Q11,6
Quz,6
Quse
Qa6
Qis.6
Q16,6
Q17
Qs
Que,6
Q20,6
Q21,6
Q22,6
Q23,6
Q.6

111
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We have twelve sets of homogeneous linear equations like 4.4 corresponding to
twelve 24 x 12 matrices which satisfy the homogeneous equation Cz = 6. Since the trivial
solution would not be interesting enough to write about one may safely assume that there
must be other solutions. This is indeed the case since the lower left 18 x 6 submatrix found
in equation 4.4, represents travel into voxels 111 and 112 from the the other six voxels. As
shown in [13] this submatrix is of rank four or less. Since the first six equations in 4.4 are
independent, we may solve 4.4 for at most 6 + 4 = 10 of the twelve unknowns in terms of

the other two.

4.2 Solving the Equations

Since the W, ;s, X, ;s, and Y; ;s are already functions of A, ;s, it seems natural to
solve for them in terms of the A;;s. Following this procedure for all 24 columns reduces
the number of unknowns from 288 to 72. The analogous procedure in two dimensions
exhausts the supply of independent equations. In three dimensions, however, we have
enough information to solve for one third of the A4; ;s in terms of the remaining A; ;s.

To solve 4.4 for the W, ;s, X, ;s,Y; ;s, and diag(A) in terms of the rest of the A, ;s,

one need only solve:

(4.5)

[ Qs Q4 Qs Qe -1 0 0 0 o o ][ 4ss ] [ Q11 Qs ]
Qis Q4 Q5 Q¢ 0 -1 0 0O 0 o Wa,s Qax Qi
Qss Qs« Qs Qe 0 O -1 0 o0 O Ws,3 Qs1 Qs
Qa8 Qas Qa5 Qa0 0 0 o -1 o 0 We,s Q4,1 Q4.2
Qss Q54 Qs Qse o o 0 o -1 0 X1,3 _ Qs Qs.2 Ars
Qo3 Qo,4 Qe Qe,0 0 0 0 0 o -1 Xa,s - Qe Qs.2 [ A ]
Qiss Quse Qi35 Quse O o o o o 0 X33 Qis,1 Qusgz
Qies Qued Ques Quee O o o o o o Yo Qe Quaga
Q5,3 Qise Quss Quse O o o o o 0 Yi.s Qis,r Qus,2

| Qies Qied Qios Qi O 0 0 0 0 0 J L Yes L Qien  Qiea

Notation : Denote the determinant of the submatrix of Q taken from rows [ry,7s,... ,7,)

and columns [¢1,C3y ... ,Cn) 85 AQry,ra,....ralilc11c3reee scn]
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column pairs nonzero minors
1,24 dQ13,14,15,16),(1,22,23,24) FQ[13,14,15,16],(1,2,3,24]
2,11 dQ(13,14,15,16),(2,10,11,12)  AQ[13,14,15,16],(1,2,3,11]
3,4 dQ(13,14,15,16],(3,4,5.8) dQ13,14,15,16),(1,2,3.4]
5,20 dQ(13,14,15,16),(5,19,20,21] dQ13,14,15,16],4,5,6,20]
6,7 dQ13,14,15,16],(8,7.8,9] dQ13,14,15,16),(4,5.6,7)
8,17 dQ1,2,3,4),(8,16,17,18] dQp1,2,3,4),[7,8,917)
9,10 dQ1,2,3,4,[9,10,11,12) dQp,2,3,4)7,8,9,10]
12,13 dQp 23,4, 12,13,14,15  dQ[1,2,3,4),120,11,12,1)
14,23 dQ(1,2,3,41,(14,22,23,24] dQ(1,2,3,4,[13,14,15,23)
15,16 dQ1,2,3,4),(15,18,17,18) dQ1,2,3.,4),(13,14,15,16)
18,19 dQ1,2,3.4),(18,19,20,21) dQ1,2,3.,4,(16,17,18,19]
21,22 dQ(1,2,3,4),(21,22,23,24) dQ1,2,3,4),19,20,21,22)

Table 4.1: The columns of 3.18 come in pairs. Each pair is shown in the left hand column.
In order to solve a “column of equations” in 3.18 we require that a minor of @ is nonzero.

These minors are displayed to the right of their corresponding column numbsfs.

The determinant of the lefthand matrix in 4.5 is dQ[13,14,15,16),(3,4,5.6)- Equation 4.5
has a unique solution if and only if dQ13,14,15,16},(3,4,5.6) # 0. The same sort of requirement
holds for each of the other columns of 3.18. Although there are only twelve different (and
underdetermined!) matrix equations in terms of the unknowns, we must solve 24 different
linear systems of equations in order to solve for the W, ;s, X; ;s, Y; ;s and diag(A) in terms
of the rest of the A;;s. Table 4.1 shows which columns correspond to the same matrix
equation and minors of the data we require to be nonzero.

If the data satisfy these requirements then we can solve the 240 independent equa-
tions in 288 variables linearly for the nonzero entries in W, X, Y, and diag(A) in terms of

the 48 other variables in A = P;'. (Note that this choice of equations is not unique.)
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Because the solutions for the transition probabilities in terms of all 72 of the A; s
are much simpler than their solutions in terms of only the off diagonal elements of A, we
first solve in terms of all of the entries of A. Sample solutions from each of the four one
step transition submatrices shown below. Since P,, = A~!, the solutions for entries of P,

are especially simple:

. w1220 = SArsY
dA[T,B,Q].["»svgl

Solutions for variables from a transition submatrix are all of the same form. For
example, all of the transition probabilities in P, are equal to a 2 X 2 minor of A divided

by a 3 x 3 minor of A. One of P,,’s nonzero entries may be written as

8112n = (AS."dA[t.S],B.S]dQ (13,14,15),[4,5,8) + A9,7dA[4.6],[4,SldQ[m,u,xs],u,e,s]+
A9.7dA[4.5].[4,SldQ[13.14,15],[4,5,9} + As,TdA[!:,G],[LS]dQ[la,u.ls],[s.e,s] +
(4.7) A9,7d‘4[5»°]-[4,5]dQ[ls,u,ls],[s.e,o] + A7'7d‘4[4,°],[4,5]dQua.u.xs].[u.ﬂ +
A7 1dAs,0),14.519Q)13,14,15),(5,6,7) T A8,78A(4,6),(4,519Q (13,1415, (4,6,8) T
A'r.'ldAli.S],[t‘sldQ(xs.u,ls],u.s,n) / (dAM,S.B}-M.S.GIdQ[m,u.m],[4.5,6])

The solutions for entries of P,, and Py, were quite simple (for MAPLE) to com-
pute. The golutions for transition probabilities in P;, and P, appeared to be extremely
messy at first. By grouping terms in the solutions for entries of P,, carefully it is possible
to simplify them using matrix expansions of the forms
(4.8) —dApz,3),1,9)43,2 + dAp,5),2,3 43,1 + dAp 3121433 = 0

dAp 243 +dAp g 2,943) — dAp 13432 = dAp2s)n2g
The resulting solutions are quite simple:

d112u = —dA[4’5].[5‘61 (dQ[6,13,14.15).[1,2.3.4]‘44,4 + dQ(s,m,u,15].[1.2.3,5]A6.4+
(4.9) dQ[e,ls.u,m],[l,2.3.5]A5,4) /dQ{xa.u.15).[1.2,a]dA[4»5.6].[4.5.6] -
dA[4.5],[4.61 (dQ(e,la.u,m],[6,19,20,21]A6.5 + dQ[e,13.14.15),[4.19,20,21]A4.5+
dQ[s,la.u.ls],[5,19,20,21]-45,5) /dQ[n,m,:s],[19.20,21]dA[4.5.6].[4-5,61 +
dA(4,5),4,5) (dQ[e,la.14.15].[6.7,8.9]AG.G + dQg,13,14,15),(5,7,8,9) 45,6
dQ[o,13,14,15},[4.7,s.9]A4,6) /dQ[13.14.15],[7,8,9]dA[4.5.6],[4.5,6]
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The identities giving the Grafimann-Pliicker embedding can be used to simplify
the solutions for entries of P;, considerably. The method for simplifying these solutions is
exactly the same as that used in 7, 6] and 3.2.1.3. One of the simplified solutions for a
transition probability in P, is shown below:

d122d = "dQ[xa.u,ls],u,s,e]dQ {1.2.a].[10,17,18]dQ[13.14,15].[1o.11.12)dA[7.8-9}-[713'91
(dQ['l.13.14.15),[7.8.9.12]A12,10 + dQ(7,13,14,15),(7.8,9,201410,10 + dQ[7,13,u,m],[v.s,s,u]Au'lo) +
dQp13,14,18),4.5,619Q01,2,9),(16,17,18) (Am,m (dA['r.a],[v,a]dQ[m.u,ls].['r.s.10]+
dA[7-9]-(7»8}dQ[1a.14.151,[7,9,10] + dAlﬂ,ﬂl,l"vﬂldQ[xa,u.ls].[s.s.m}) +
A1z,10 (dA[ml,[7»81dQ[13,14.15].(7,9.12]+
dA[s.o],[7.s]dQ(13,14.15].[3.9,12] + dAIT.Sl,[7.8]dQ[13,14.15].(7,8,12]) +
An.m (dA('r.a},(?.a]dQ[13,14,1s].[7.s.11] + dA[M],[?.s]dQ[la,u,l5],[3,9,11}+
dArr,o],(7.s]dQ[13,14,15].[7.9.11])) (dQ[-z.xa.n,xs},[v.xo.u.u]Am+
A8,9dQ[7.13,14.15],[8,10.11,12] + A9,9dQ[7,13.14.15].[9,10,11,12]) -
dQ[l,z,a].[16,17,1a]dQ[13.14,151.[10.11‘12] (Alz,w (dA(’w].[8.9}dQ(13,14,1s],{7,9,12]+
dA(7,8),(8,9dQ13,14,15),[7,8,12) T dA[s.s}.[s,9]dQ(13.14.15],[9,9.12]) +
Alo,m (dA['r.a],[8‘9]dQ[13.14,1s],[7,s,1o] + dA[M]‘[8.9]dQ[13.14,15),[s,s.:o]+
dA[7-9],[8.9]dQ[13,x4,15].{7.9,1o]) +
A0 (dA[s.s).[s.oldQ[13,14,15],[8,9.u] + dA[7,9l»[8-91dQ[13.14.15].[7.9,11}'*‘
dA(hB].[8.9]dQua,u.w].['r,a,u])) (A9.7dQ[7.13.14.15],[4,5,6.9}+
A72dQpr 13,148,145, T dQ[1,13,14,15],[4,5,e,s]A8,7) +
dQ[xa,u‘ls],[4,s,s]dQ[13,14.1s].[10,11,12] (AIO,IO (dAl8.9],[7.9]dQ[13,14.15],[5.9,10]+
dA[?.s].[7,9]dQ[1a,u,1s],[7,9,10} + dA['I.B].{7,9]dQ[13,14.15].[7.8.10]) +
A11.10 (dA[‘I.Sl.[7,9]dQ[13,14,15].[7.8.11] + dA[‘l,s],[7.9)dQ[13,14,15).[7.9.11]+
dA{&O].[7.9]dQ(13.14.15],[8,9,11]) + A12,10 (dA['I.a],[?.o]dQ[13,14.15],(7,s.12)+
dA[s.s],[7.9]dQ[1a,14.15],[s.s,n] + dA[7.9].[7»9]dQ[13.14,15],[7.9,12]))
(As.sdQu.z.z,n,[s,m,n.:s] + A7,8dQq 2.3,7),17,16,17.28) T dQ[1.2,3,7]‘[9.16,17,1s]A9.8) /

(dA[7.8.9],[7.8.9)dQ[1a.14.15],[7.8.9]dQ[13,14.15],[10,n.12]dQ(13,14.151,[4,5,e]dQ[1,2,3},[16.17.18])
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These solutions, (4.10, 4.10, 4.6, and 4.8), are analogous to the sixteen parameter
solution to the 2 x 2 problem where all of the transitions probabilities can be expressed in
terms of the A, ;s. In this 2 x 2 x 2 problem, however, we can solve for diag(A) in terms of

the remaining A; ;s. One of the solutions for a diagonal entry of A is shown below:

(4 10) Azo 20 = __dQ[13,14,15,16].[4.5,6,21]‘421,30 + dQ[13,14,15.16].[4,5,6.19]‘419,30

dQ[ls,u,ls.m].[4,5,0,20]

Half of the solutions for P, factor when the solutions for diag(A) are substituted

into their numerators. Here is one example:

nl22d = (“‘A7,sdQ[la,14,15,15],[3.10.11.12]dQ[1,2,3,4],[1.15.17.13]‘

(4.11) Ao 8dQ(13,14,15,16),(8,10,11,12]9Q(1,2,3,41,(9,16,17.18] T
As,sdQu,2,3.4],(8,16,17.1a]dQ[13,14,15,1e].[9,10,11,12] +
AT.adQ[1,z,3.4],[5,16,17,1s]dQ{13.14.15,16].[7.10,11.12])

(A12.10A8,9dQ[la,14,15,16].[8,9,10,12] + dQ[13.14,15,16],[7,9.10,11]A7.9A11.10+
dQ[la.14,15,16],[7,9.10,12]A12.10A7,9 + dQ[13,14,15.16].{8.9.10,11]A8,9A11,10) /

dA[7.8.9],[7.8.91dQ[13.14,15,16].[7,8,9,10}dQ{1,2,3,4],[8.16,17,1s]dQ{13,14.15.16],[9,10.11,12)

Substituting the solutions for diag(A) into the solutions for the transition prob-
abilities yields a 48 = 288/6 parameter family of solutions to the 2 x 2 x 2 problem. In
two dimensions, there are 64 unknown transition probabilities and a 16 = 64/4 parameter
family of solutions to the 2 x 2 problem. Notice that the ratio of unknowns to parameters
is higher in three dimensions than it is in two dimensions. The extension of the two dimen-
sional recovery algorithm to n X n systems gives a 8n(n — 1) parameter family of solutions
for the 16n% unknown transition probabilities. The analogous extension to the solution of
the 2 x 2 x 2 problem will doubtless result in a O(n®) parameter family of solutions to
the n x n X n problem. The author’s best guess is that the number of parameters will be
24n® + O(n?).
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Chapter 5

Conclusion

Diffuse tomography is still in its infancy, and there are many areas which should be
explored. In this thesis a recursive algorithm for computing a 8n(n — 1) parameter family of
solutions for a n xn problem was derived in section 3.2. Before deriving this algorithm it was
necessary to study consistency conditions in section 3.1. A thorough understanding of the
consistency conditions was required in section 3.2.3.2 to reduce the number of parameters in
the solution to the modified 4 x 4 problem. The recursive recovery algorithm was sketched
in section 3.2.4. Finally, the smallest nontrivial problem in three dimensions was considered
in Chapter 4.
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As yet unexplored areas which pique the author’s interest include completion of a
careful study of consistency conditions for the three dimensional model [13]. Understanding
the consistency conditions is crucial because the amount and type of additional information
required to close the resulting system of equations is directly tied to the number and type
of conditions. The very next item on the agenda is to implement the recursive recovery
algorithm in three dimensional. The algorithm will be analogous to its two dimensional
predecessor. The biggest difference between the two and three dimensional algorithms is
complexity. (The three dimensional version will be much worse!) Last, but certairﬂy not
least, is a careful stability study of these algorithms. Given a “noiseless” set of data for
the two dimensional problem, the recursive algorithm recovers the transition probabilties
exactly. Noisy data could introduce large errors. One source of error is inverting Pi,.
When scattering is isotropic, for example, P,, is singular. Another source of error is the
fact that the algorithm requires solving nonlinear polynomial systems. Schub and Smale
have developed a “condition number” for polynomial systems [15] which could be used in
stability studies for both two and three dimensional algorithms. If the recovery algorithms
prove to be highly unstable, time-of-flight information would give additional data (we would
then have an overdetermined problem) which could be used to reduce errors due to noise.

This thesis work was done on an extremely general Markovian model of photon
transport. Neither time-of-flight information nor any physical information about photon
transport through tissue were taken into account. A priori information about photon trans-
port can and should be incorporated into this model. (The author doubts that clinicians
would find a set of 36n® Markov transition probabilities helpful diagnostic information.)
However, the fact that all of the independent data generated by the forward map for this
most general model can be recovered indicates (to the author, at least), that data gener-
ated by photons which scatter many times contain information independent of the data

generated by ballistic photons.
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