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Summary |

Given a sqfﬁciently bright electron beam, the self-amplified-spontaneous emission (SASE)
can provide gigawatts of short wavelength cbherent radiation. The advantages of SASE approach
are that it requires neither opticai cavity nor an imput seed laser. In this note, we estimate the peak
power performance of SASE for wavelengths shorter than 1000 A. At each wavelength, we
calculate the saturated power from a uniform parameter undulator and the enhanced power from a
tapered undulator.

The method described here is an adaptation of that discussed by L. H. Yu [1], who

discussed the harmonic generation scheme with seeded laser, to the case of SASE.

1. Basic Formula

° Peak undulator magnetic field of an Ng-Fe-B undulator (2]

BJT] = 3.44 exp [-5.08 (@A) + 1.54 (@AD)] (1)

where g = magnet g&p, Ay = undulator period.

. Deflection parameter:
K =0.934 AJem] - B, [T] , ()
. Resonance condition for radiation wavelength A:
2
yMll+KY2) )
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where Y = electron energy/rest energy.

. Natural focussing in the undulator for the case of equal horizontal and vertical focussing via

parabotic pole shaping:
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. Given the rms electron beam emittance €, the rms beam size Oy is given by

O‘% = ex/kﬁ ’ ‘ (5)

2. Exponential growth

In the linear regime, the electromagnetical field grows exponentially as follows [3]:

|A] ~ etkaz | k, = 2m/Ay (©6)

The growth rate , taking into account the 3-D and the inhomogeneous sprcad effects, was first
calculated by Yu, Krinsky and Glucstern [4] for the waterbag modci and later for general phase
space distribution by Chin, Kim and Xie [5]. The result for the Gaussian distribution can be

conveniently parameterized in the following form [5]:

log & =-(0.75 + 0.23 X + 0.016 X?)

D
x(1+ (EBJ? ‘+(41.34 +360X +362x)[s2+2.185¢ +709 8 . )
(0.17 + 0.0304 log B) ’
where

D=g_K3[2__..I_l”2.[JJ]_ 8)
1+K¥2 Ia Y

Here I = peak current and I5 = 1.704 x 104 Amp. Also

[17) = Jo(K%4 (1 + K%2)) - 1, (K24 (1 + K%2)) ,

23
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and E= e,/(}\/4n) (scaled emittance)

B=kg(kuD) , ku=2m/Ay

X =log (E/B)
S =o/(yD) , oy=rms energy spread.

The formula (7) should not be trusted When % < 0,01

For a conditioned beam [6], the factor (EB)2/(0.17 + 0.0304 log B) should be replaced by

zero.
3. Saturated power in a uniform parameter undulator

Let €2 (z) be the synchrotron oscillation frequency using z as the time. The FEL saturates at
z = L where

L
f QzMz = w
0
Since Q o A2 « exp (%— },Lkuz),we obtain

Q(L)zlzluku .

On the otherhand, the FEL efficiency can be expressed as [1]

<’Y"Yo\ = Q4(L)
Yo/ (4pPkt



where p is the Pierce parameter related to D by

>

Ay

D2=m (4pP ®

Here X is the electron beam transverse area (defined by I/Z = peak current density).

For a Gaussian distribution

Y =2nc? . ©)

Combining these, the saturated power is estimated to be

by

4
Pesi~ 19.1 = D2 (X[ Py a1
A A D v

u

where Ppeam is the electron beam power.
The noise power at input per unit frequency interval is given by pmc2y/2z [7]. Also, ihe
bandwidth at saturation is about Aw ~ pw [8][9]. The length of the undulator Lg, required to read

saturation through self-amplified spontaneous emission is therefore, roughly

Lga ~ 4—% log [Psa,/(-;- p2 mc? yﬂ (12)

The bucket (half) height at saturation is given by

(ﬁ) =9(;£)=L(H_)D , (13)
b



If the length of the undulator Ly, is shorter than the saturation length Lgy, the power is

Py =Py & llat-1a) | (14)
The correéponding bucket height is
(2‘1) - (E)D.e-uku(usat-Lu)/z , (15)
Yh 2D ‘
4. Power from tapered undulator

More power can be extracted by employing a tapered the undulator after saturation in the

uniform parameter undulator. By solving the KMR equation [10], the power after a quadratic B-

field tapering of Niape periods is
_Z 2_ K2 1 : 2
Pout = =2 (& P firap [JJ] ANtape Sin 16
out 4 ( 02) (1 +K2/2)2 2 { beam trap[ ] tape Wr} ( )

where Zg = 377 ohms, and figap is the trapping fraction. Equation (16) is the same as that derived
by Yu[1] except for the factor K2/2 (1 + K2/2)2. In deriving Eq. (16), it is assumed that the

efficiency N =Pou/Pbeam is small:
1N = Pout/Ppeam << 1 . 17

Also, since the KMR equation is valid for monochromatic radiation, the radiation bandwidth Aa/®

at the beginning of tapered section must satisfy

Aw ?1!)
o «('Y X n . (18)



The trapping fraction firap may be taken to be

(o)
ft.rap = 1, when (-8"'Y"'Y‘)b > _'{Ix ’
= (éz) ,gy_ , otherwise . (19)
Yh ¥

For the cases we are interested here, the bucket height is usually very large so that firap = 1.

Taking sin ¥r = 0.5, Eq. (16) becomes for a Gaussian density distribution

2

2 2
Py W] = 1.44 1011 K2 fp i A o Nupel 20)
(1 +K22) | Ox
5. The Procedure to calculate FEL power at a given A

Assuming that the total length of the undulator Ly is fixed, the peak power is calculated in

 the following step starting from a uniform parameter undulator:

i) Input parameters are ;yex, Loyy.

ii) Choose a reasonable value of g.

iil)  Choose Ay. Determine Bo (Eq. (1)), K (Bq. 2)), ¥ (Eq. (3)), kg (Eq. (4)), ex and
ox (Eq. (5)), and D (Eq. (8)), 1 (EQ. (7)), Pgar (Bq. (1)), Lgar (Eq. (12))-

iv) If Leat < Liot, then choose Ly = Lgg. The undulator power Py is the same as Psay
(Eq. (11)). If Lgag > Lioy then Ly = Lygy, and Py is given by Eq. (14).

v) If Lga = Ly < Lyot, introduce a tapered section of length Liape = Liot - Ly = Niape
Ay, and calculate the power from Eq. (20).

vi) Go back to iii) to find A, that maximize the output power.



We have calculated the SASE performance in the short wavelength region for the case,
Yex = 1.5 x 106 m-rad, I = 1000 A, oyx = 2.2 X 104, and g =4 mm, and Lot = 30 m. The
result is presented in Fig. (1). Without tapering, a peak power of 4.5 x 108, 3.6 x 108, 1.8 x 108,
and 6.5 X 10° watts are predicted at wavelength 1000, 100, 20 aﬁd 10 A, respectively. For
wavelengths longer than 20 A, Lgat is shorter than 30 m so that a tapered section is introduced to
increase the power. At 100 A, Ly = 11.6 m, and the power from a 18.4 m tapered section is
36 GW. At 1000 A, Lgy = 4.4 m, and the power calculated from Eq. (20) using Liap =25.6 m is
7.3 % 1011 w. However this is impossible, being larger than the electron beam power
(3.25 x 1011 W), By employing a shorter tapered section (5.2 m) the power becomes
Piap =30 GW at 1000 A, corresponding to a 10 % efficiency. Table 1 gives a list of the elecwron
beam and amplifier parameters.

The FEL performance can be enhanced further by employing external focussing stronger

than that given by Eq (4).
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Table 1. SASE Amplifier Parameters*

A (A) 1000 | 100 50 20 : 10
E (GeV) 0.325 0.8 1.1 1.8 3.25
Py (MW)_ 450 360 300 175 0.65_
Lgai(m) 4.4 11.6 16.7 28.4 47.0
Lyap (m) 5.2 18.4 13.3 0 0
Piap (GW) 30 36 9.3 0 0

Lgain_ 0.24 0.66 1.0 1.8 3.1
Ay (cm) 2.0 1.75 1.75 1.75 2.0
Lotm) | 9.6 30 30 30 30

*electron beam parameter Yex = 1.5 mm-mrad, I = 1000 A, oy/y =22 x 104.
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