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ABSTRACT

We describe the process used in combining an existing computer simulation with both Virtual
Reality (VR) input and output devices, and conventional visualization tools, so as to make the
simulation easier to use and the results easier to understand. VR input technology facilitates di-
rect user manipulation of three dimensional simulation parameters. Commercially available vi-
sualization tools provide a flexible environment for representing abstract scientific data. VR
output technology provides a more flexible and convincing way to view the visualization results
than is afforded in contemporary visualization software. The desired goal of this process is a
prototype system that minimizes man-machine interface barriers, as well as enhanced control
over the simulation itself, so as to maximize the use of scientific judgement and intuition.

In environmental remediation, the goal is to clean up contaminants either by removing them or
rendering them non-toxic. A computer model simulates water or chemical flooding to mobilize
and extract hydrocarbon contaminants from a volume of saturated soil/rock. Several wells are
drilled in the vicinity of the contaminant, water and/or chemicals are injected into some of the
wells, and fluid containing the mobilized hydrocarbons is pumped out of the remaining wells.
The user is tasked with finding well locations and pumping rates that maximize recovery of the
contaminants while minimizing drilling and pumping costs to clean up the site of interest.

I. HISTORICAL BACKGROUND OF VIRTUAL REALITY

In 1965, Ivan Sutherland charted a course for research in computer graphics, which has yet to
be fully achieved. He defines the "Ultimate Display" as "a window through which one beholds
a virtual world. The challenge to computer graphics is to make the picture look real, sound real
and the objects act real." [see 1] Added to this lofty and elusive goal is the notion that we, as
human beings, can interact with the objects in this virtual world in a way which is "natural."

, These two concepts come together to define, in broad terms, computer"Virtual Reality." Suther-
land's vision has guided the computer graphics industry for nearly thirty years.

In contrast, one of the goals of scientific visualization [2] is to "see the unseeable." Rather than
pursue the Grail (exactly producing what we can already see) of the ultimate renderer and the
ultimate motion or deformation model, it is desirable, through abstraction, to make images of
what was previously unseeable, or nonexistent. Mathematical formulas, theoretical molecular



structures, structures of the galaxies evolving over time, behavior of algorithms, and so forth,
are all things that are simply "unseeable." As humans, we tend to accept what we see, and when
we see an image of a complex mathematical formula, we tend to believe that the shape that we
see is "real." Our acceptance of the images of the "unseeable" is further reinforced when the
objects representing the unseeable behave in the same way as objects in the "real" world. They
can be picked up, moved around, and so forth. At this juncture, VR and scientific visualization
overlap and provide natural complements for one another.

Over the years, the visual and interactive aspects of VR have received much attention. More
recently, studies have been undertaken that explore beyond the better-understood visual and in-
teractive aspects of VR. Such studies explore haptic systems that provide tactile feedback ([3],
[4]), and the use of sound [5].

2. INTRODUCTION

We consider the terms Virtual Reality and Virtual Environments to be synonymous, and consist-
ing of three broad components: a computer model which is rendered into an image; the process
of user-model interaction; and the process of model viewing.

The model itself is, in broad terms, independent of any VR hardware. A model can come from
a variety of sources; a CAD package, visualization tools, imaging tools, and so forth. The model
can include, in addition geometric information, dynamic information, such as motion paths or
kinematics. The model is something the user can "see" in the virtual world and can directly ma-
nipulate. In our prototype application, the model consists of visualized simulation output, con-
sisting of geometry and volumetrics, along with simulation parameters represented geometrical-
ly. The model, in general, consists of geometric (and possibly volumetric) information. (The
simulation itself is also a model in it's own right. However, the simulation doesn't appear on
the screen as an "object" in the same way as the simulation parameters, such as the wells, for
example.) The simulation is manipulated indirectly, while the parameters are directly subject
to user control.

Model interaction includes at least two subcomponents. Implementing this man-machine inter-
face requires some type of input device and software which supports updating the model based
upon user input. For now, we assume that the final image presented to the user changes whenever
the model is changed. We permit the user to directly manipulate only a select set of visualized
simulation parameters. Manipulation requires a pick operation, to indicate which of the parame-
ters to edit, and then modifying a location value.

Viewing the model involves three subcomponents. A rend_'ing system is needed which is capa-
ble of producing images from a model. Display hardware is used to present the image to the user.
Input devices gather user input about viewing parameters. The configuration Of hardware and
software that we use, along with an overview of design decisions and goals, will be discussed
in a later section.

There are numerous software tools that may be used for creating a Virtual Reality (using the deft- ,
nition we have adopted), numerous gadgets that may be used for getting input from the user and
for displaying images of this virtual environment. Enumerating these, and providing a taxono-
my of devices and the different shades of VR is beyond the scope of this paper. In this paper,
discussion of these devices is limited to the actual hardware and software used. See [6] and [1]
for more information, such as taxonomies of input and output devices, ranges of VR from Win-
dow-on-a-World through complete immersion.



To achieve our goal, namely a VR interface to an existing simulation, we extended a commercial-
ly available package for scientific visualization to include VR input, and ported the simulation
into this environment. We gain the benefits provided by VR input, namely enhanced control over

, three dimensional information (the simulation input, and user viewpoint), as well as the benefits
of a flexible environment for visualizing scientific data.

., We will explore some of the previous work in combining VR with scientific visualization and
indicate the relationship between our work and previous studies. A discussion of site remedi-
ation, the specific simulation, its parameters, output arid how they are visualized and manipu-
lated follows. Finally, number of observations about the process of combining VR technology,
a simulation and a dataflow visualization package, and the results of the project are discussed.

3. SCIENTIFIC VISUALIZATION AND VIRTUAL, REALITY

Cruz-Neira, et al, describe the CAVE, an immersive environment that employs three--dimen-
sional tracking devices, three-dimensional picking devices, auditory feedback, and a number of
projections screens that surround the user, thus forming a "cave" [7]. The CAVE has been used
for architectural walkthroughs, cosmic exploration, fractal exploration, viewing the behavior of
algorithms implemented on parallel machines, and understanding weather and molecular dy-
namics [8]. Among the advantages of this type of VR system are the ability to track the user in
a confined space providing control over the user environment, a high-resolution stereo display
in which each screen has a resolution on the order of 1K by IK pixels displayed in stereo at
120hz, as well as providing an environment for an immersive experience for a group of partici-
pants.

Bryson and Levit have implemented a system called the "Virtual Wind Tunnel" [9]. The purpose
of this system is to facilitate the study of flow fields using immersive technology such as the Fake
Space BOOM for display and a glove for providing three-dimensional input. A glove is used
to specify seed points for releasing particles into the flow field in order to trace their trajectories.
The boom-mounted display makes it easy to enter/exit ("unsuit") to/from the virtual environ-
ment. Additionally, the BOOM provides the benefit of delivering high-resolution stereo images
to the user and has a wide field of view (in contrast to consumer grade head-mounted displays).
This system facilitates user study of regions of interest in the flow field.

Sherman [10] reports VR extensions to two systems for scientific visualization that employ the
dataflow paradigm [12]. Dataflow-based packages consist of reusable program modules, which
have a consistent interface for inter-module data communication. These systems facilitate ex-
perimentation and allow for rapidly bringing new data into the system for viewing and interac-
tion. Dataflow packages are extensible through user-written modules. Sherman's work de-
scribes extensions to one such package to support VR input (VPL dataglove) with an input mod-
ule, and VR output (to the Fake Space BOOM) with a custom rendering module. An important
conclusion of this work is that the same environment that is used to create visualization programs
can be used to create VR applications for viewing and interacting with scientific data. Hence,

' users already familiar with the use of one of the dataflow packages will require minimal addition-
al training to use VR.

• Our work is most similar to that of Sherman's in the respect that we extend a dataflow package
to incorporate VR input and output. Using stereo window-on-a-world VR output (see [1] or
[6]), we are able to successfully merge a window into our virtual world with traditional window-
system-based GUI's for access to menus, dials and sliders. The combination of control over



three dimensional parameters using VR input devices, along with access to scalar parameters via
a mouse, allow us to effectively control a simulation for chemical flooding which executes with-
in the dataflow model. The menus, dials and so forth which provide control over one- and two-
dimensional parameters all appear on the same screen as the window into the virtual world. A °
presentation of this type dispenses with the problems encountered in those system that require
"unsuiting" in order to change parameters. ,

4. COMPUTER SIMULATION OF CHEMICAL FLOODING IN .A
VIRTUAL ENVIRONMENT

In this section, we discuss the chemical flooding simulation, describing its inputs and outputs,
some porting issues, and the extensions we made tca dataflow visualization system.

Site remediation is the process of removing a contaminant from the subsurface. The simulation
fer this project models water or chemical flooding to remove hydrocarbon contamination. Hy-
drocarbon contamination can occur as a result of a leaking oil tank or from years of dumping jet
fuel on the ground. The parameters that are of primary interest in site remediation are the loca-
tions of injection wells into which water or chemicals are injected, in order to mobilize the hydro-
carbon, and the locations of production wells from which the fluid containing the hydrocarbon
is pumped. The most crucial problems encountered in this type of work are to determine the opti-
mal locations of the injection and production wells together with suitable pumping rates. Opti-
mal placement of wells and pumping rates will result in reduced drilling and remediation costs.

At the start of this project, the simulation itself was in the form of a batch program. The major
modifications required to this code involved changing the manner and means by which it ob-
tained input and how it disposed of its output. Such an activity is typical of porting any code into
a dataflow package.

The simulation requires as input a three dimensional finite-difference grid, a description of the
initial state of subsurface parameters (e.g., permeability, porosity, and initial hydrocarbon dis-
tribution and concentration), locations of each of the injection and production wells, the rates
of injection and production, and the type of fluid injected (water or a chemical mix).

Given that we wanted to provide visualization tools for not only the input parameters (e.g., the
grid, the values of the subsurface parameters at each grid node, etc.), but also allow some of these
parameters to be edited by the user (the wells) as well as display simulation output, the following
breakdown of tasks was identified.

A custom module was written which parses the simulation "grid file." The grid file contains
information about the spatial structure of the three dimensional finite-difference grid, as well
as values of permeability and porosity at each grid node. The grid-reading module produces as
output a structure which can then be visualized in a number of ways. The simplest manner of
visualizing the grid is as a wireframe mesh, which simply shows the spatial structure of the grid.
Figure 1 shows a visualization of a three dimensional finite--difference grid, along with an initial
placement of wells. In addition, the initial permeability distribution in the grid is visualized us
ing direct volume rendering [11]. Areas of low permeability are more opaque, while areas of
higher permeability are more transparent. It is possible to permit the line segments forming the
visualized grid to be color-code5 according to the values of one or more of the parameters, but
in practice, this tends to not work out well (it is hard to interpret), especially when other data is
visualized simultaneously with the grid, such as output from the simulation. As an alternate way
of visualizing the grid, the grid-reading module also constructs a cell-based model of the grid.

k
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The ceil'based model is composed of a number of hexahedral-shaped cells. Permeability and
porosity values, from the input grid file, are associated with cell nodes. The user is free to use
either of these structures, and a variety of visualization tools, to represent the grid visually as they

, see fit.

Figure 1

Thethreedimensionalfinite--differencegrid,iconicrepresentationsof the wells,
andpermeabilityvisualizedusingdirectvolumerendering.

A second module was written which parses the simulation "wells file." This file contains in-
formation about the locations of the wells with respect to the grid, the well type (production or
injection), injection or production rates, as well as other well parameters. For each well read in,
a geometric representation of the well is constructed and passed on as output (to the rendering
module of the system). Using feedback loops within the dataflow package, it is possible to detect
when the user has performed a pick operation on a particular well. In AVS, pick information is
detected by the rendering module, and is performed using the mouse. When a well pick is de-
tected, that well is highlighted. Information about that well, such as it's location in the finite-dif-

.Q

ference grid, is displayed. The user may then make use of the Spaceball to move the well around
in the grid (the wells module contains code which reads information from the spaceball device).

° After completing the editing operation on one well, the user may elect to move another well
around, or to run the simulation using new well parameters. In addition to creating the output
geometry used to visualize the well locations, this module also creates a text file describing the
weUs, and associated parameters, for the simulation.



The third component is the simulation module. The process of porting the simulation code into
the dataflow environment presents several software engineering challenges, not the least of
which is segregating input/output tasks from the rest of the code into structured interfaces. Due
to time constraints, and a high level of interdependencies within the code, we elected to leave
the simulation input/output facilities in a fairly unmodified form. This means that the simulation
still gets its input from text files.

In terms of'porting" the output of the simulation into a form suitable for use in the dataflow envi-
ronment, the simulation module will accept as input the grid structure produced by the grid mod-
ule, "throw away" the permeability and porosity values associated with each _'rid node, and "fill
in" values on the grid with chemical concentrations as the simulation proceeds through time.
Thus, the user has two grids to visualize. The first, as described in above, contains the structural
information about the grid, as well as initial parameters about the subsurface. These parameters
are static for the duration of the simulation. The second, computed by the simulation module,
contains new values for oil, water, and other chemicals, at each time step at each grid location.
Thus, the two grids are identical topologically, but contain different types of information at each
node.

Figure 2
Early in the simulation,watercon-
centrationis high nearthe top of the
injectionwell.

Figure 3
As the simulation proceeds, the water
begins to mobilize the contaminant.



The simulation module executes asynchronously (once it has all its input parameters specified)
from the rest of the dataflow network. As each time step is finished, a new chemical concentra-

tion grid is passed as output to the downstream modules in the dataflow network. At the present

, time, the simulation executes on the same CPU as the dataflow package and the rendering sys-
tem, which is a graphics workstation. Future plans include porting the simulation to a massively

parallel machine, while leaving the visualization and dataflow scheduling tasks to the graphics
• workstation.

Figure 4

The shape of the water isoconcentra-

tion surface is affected by perme-
ability within the ground. Areas of

low permeability appear visually to

_i be more opaque, while areas of
_ higher permeability appear as being

more transparent.

Figure 5

, The user is free to experiment with alternate methods of visualizing the grids. In Figures 2 and

3, we show, from two time steps in the simulation, the grid, the wells used in this particular run

of the simulation, along with two isosurfaces. The isosurface closer to the top of the injection

well represents a surface of constant water (injectant) concentration, and the lower isosurface



represents a surface of constant hydrocarbon concentration. Figures 4 and 5 show the use of vol-
ume rendering [11], combined with isoconcentration surfaces, for the same time steps as Figures
2 and 3. Hydrocarbon concentration is represented with opacity: in areas of high concentration,
the volume appears more opaque, in areas of low concentration, the volume appears more trans- '
parent. These static images are difficult to interpret, but when the objects in the image are rotated
by the user, the physical structures represented by the volume rendering become easier to under- 'lb

stand.

In summary, porting the "simulation" into the dataflow environment required three custom mod-
ules. One is the simulation itself, which computes chemical concentrations on a grid at each time
step. A "grid" module reads the grid information, and creates two structures. The user is free
to experiment with different visualization techniques to depict either the simulation input grid,
along with associated static parameters, or the simulation output grid. The freedom to choose
and experiment is a benefit of using the dataflow environment. A "wells" module is the interface
to the well editing operation.

5. DISC.US.&SION

At the onset of this work, we were faced with a numbe_ of interesting problems. First, UTCH-
EM, the simulation code used for this project [13], c_:nbe characterized as "dusty--deck Fortran",
which was developed over time by a number of discip!Jne-science researchers and which was
built to be run on a vector machine, lnteractivity was not a part of the design of this code, nor
was graphical output. Porting this code into a dataflow visualization system required special
attention to compatibility issues with regard to simulation input and output. The simulation was
written to perform all input and output operations to text files. The dataflow packages make use
of data structures or data models for data communication between modules.

Second, at LBL, we make use of dataflow based visualization systems for most of our visualiza-
tions tasks. Given the flexibility and extensibility of these packages, as well as for support for
distributed computing (modules to execute on remote systems), these environments for visual-
ization and computing make efficient use of existing resources. We wished to leverage upon this
efficiency by extending these systems to not only include simulations, but to also act as a testbed
or "breadboard" for including VR operations.

Third, we wanted to explore the use of VR as applied to scientific research and the visualization
cycle. We wanted to provide for more natural and intuitive manipulation of three dimensional
information, such as well locations for the chemical flooding simulation. Application of VR in-
put technology produced satisfactory results in this project.

Fourth, we wanted to integrate all of these items into one environment that would support mak-
ing a relatively seamless transition from "desktop" VR (in as much as VR can be done on the
desktop) to VR "in the graphics lab." When the first of the dataflow-based visualization systems
appeared, they were built to run on a single machine, typically a high-powered graphics
workstation. The scientist had to be physically at the console of the workstation to run the sys-
tem. Aside from being an inconvenience at a large research facility, there was the constant prob-
lem of competition for access to the workstation. As the visualization systems evolved to use
network-based window systems (e.g., the X windowing system), scientists were then able to do
visualization on the desktop. This was immensely popular; the problems of competition and
having to be physically in front of the graphics workstation disappeared. The tradeoff, obvious-



ly, is one of performance, but the degraded performance was, by and large, acceptable most of
the time and viewed as the cost of convenience.

In our graphics laboratory, the dedicated graphics hardware consists of a DEC Alpha 3000/400,
q

_, with a Kubota Pacific Denali 6/20 (the graphics engine), a Tektronix stereo shutter, cardboard
polarizing stereo glasses, and a Spaceball Technologies, Inc. spaceball. The desktop system is

, a Sun Sparc 2 with a GX graphics adapter, and a spaceball. We use AVS as the dataflow visual-
ization system. A single module was written for acquiring spaceball events and injecting them
into the dataflow network, where they were further processed by modules that place the wells
and specify a camera position for the rendering module.

6. CONCLUSIONS

This has been an experiment in which we wanted to maximize the use of very valuable resources,
namely scientific knowledge and human intuition. In the virtual environment, the scientist may
experiment with simulation parameters and get immediate feedback as to their effect on the sim-
ulation. The VR extensions provide a means to easily control three dimensional parameters,
something which has been missing in computer simulations.

A set of reusable software tools, combined with commercially available VR gear, commercially
available computing equipment and visualization software has been integrated into an environ-
ment for experimenting with parameters for a simulation of water/chemical flooding, resulting
in enhanced scientific productivity and new insights into a physical system.
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