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1.0 INTRODUCTION

1.1 PURPOSE

Information regarding flammable vapors, gases, and aerosols is presented and
interpreted to help resolve the tank 241-C-103 headspace flammability issue. Analyses of

. recent vapor and liquid samples, as well as visual inspections of the tank headspace, are
discussed in the context of tank dynamics.

1.2 SCOPE

This document is restricted to issues regarding the flammability of gases, vapors, and
an aerosol that may exist in the headspace of tank 241-C-103. While discussing certain
information about the organic liquid present in tank 241-C-103, this document addresses
neither the potential ¢or, nor consequences of, a pool fire involving this organic liquid; they
have been discussed by Postma et al. 1994.

1.3 BACKGROUND

Concern that the headspace of tank 24 I-C-103 may contain a flammable mixture of
organic vapors and an aerosol of combustible organic liquid droplets arises from the presence
of a layer of organic liquid in the tank. This organic liquid is believed to have originated in
the plutonium-uranium extraction (PUREX) process, having been stored initially in tank
241-C-102 and apparently transferred to tank 241-C-103 in 1975 (Carothers 1988). Analyses
of samples of the organic liquid collected in 1991 and 1993 indicate that the primary
constituents are tributyl phosphate (TBP) and several semivolatile hydrocarbons (Prentice
1991, Pool and Bean 1994). This is consistent with the premise that the organic waste came
from the PUREX process, because the PUREX process used a solution of TBP in a diluent
composed of the n-Cull24 to n-CtsHa2normal paraffinic hydrocarbons (NPH).

At the temperature of the waste surface, the vapor pressure of the PUREX process
TBP-NPH solution is known to be far too low to support flame propagation (van Tuyl 1983,

. Huckaby and Estey 1992). However, if a very dense aerosol of organic liquid droplets were
present in the headspace, a flammable condition could exist. The possibility of such an
aerosol was supported by reports that the headspaee was foggy, and by data from a
developmental vapor sampling event in 1989 (Ulbricht 1991, Trent 1990) that was shown to
have been experimentally flawed (Story 1992).

A methodology for determining the flammability of the tank 241-C-103 headspace was
developed between September and December 1992 by a team of scientists and engineers
working for the Tank Vapor Issue Resolution Program. This methodology involved three
steps° The first step, performed in November 1993, was an initial evaluation of the

1-1
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concentrations of flammable permanent gases present. The second step, performed in
December 1993, was to determine the total concentration of N'PH, both in the aerosol and
vapor phases, in the tank 241-C-103 headspace. For this, filtered sorbent traps were inserted
directly into the headspace to trap the NPH in situ (Huckaby 1993).

The November and December sampling events provided direct evidence that the fuel
content of the headspace is well below levels of concern. Section 3.0 describes and discusses
the sampling results. The November sampling was accomplished by non-intrusive means,
drawing tank gases and vapors directly from access ports on two of the tank risers. This
sampling method limits the validity of the sampling with respect to condensible and
condensate-soluble vapors, but affords a reasonably good analysis of permanent gases such as
hydrogen and methane. Results, discussed in Section 3.2, indicate that these gases are at
acceptable levels. The initial sampling for NPH, performed in December, revealed that the

I
current NPH concentration in the headspaee is far below levels of concern for flammability.
The December sampling event also established that no aerosol was visibly present in the
headspace.

The third step to resolve the tank 241-C-103 headspace flammability issue, begun in
January 1994 but planned to continue throughout the year, requires that representative
samples be collected from the headspace for determining the concentrations of flammable
gases and volatile organic species, as well as further analyses of semivolatiles such as NPH.
The sampling events are planned to characterize the toxicologically significant species in tank
241-C-103, but will also serve to ensure seasonal variations do not significantly affect the
conclusions of this report.

1.4 DATA QUALITY

This report discusses both historical and recent vapor and aerosol data. Historical data
is deemphasized in this report, since the quality of the data has been an issue (e.g., Ulbricht
1991 and Story 1992). Recent data, obtained in 1993 and 1994, has been collected by the
Tank Vapor Issue Resolution Program in accordance with Tank 241-C-103 Vapor and Gas
Sampling Data Quality Objectives (Osborne et al. 1994), at the Westinghouse Hanford
Company (WHC) Safety and Quality impact level 3 (Huckaby 1993, Conrad 1993).

1-2
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2.0 HEADSPACE CONDITIONS

2.1 TANK DESCRIPTION

Tank 241-C-103 is a 1.9-ML (530-kgal), high-level nuclear waste storage tank.
Constructed in 1943-1944, it has a single, 22.9-m (75-ft)-diameter mild steel liner supported

. by reinforced concrete and a reinforced concrete dome. The dome supports 11 steel pipe
risers through which the tank contents may be accessed. Figure 2-1 depicts the arrangement
and schedule of tank 241-C-103 risers, and the locations of the 3 concrete access pits. As
shown in Figure 2-2, tank 241-C-103 is also directly connected to tank 241-C-102 by a
buried, 7.6-m (25-ft)-long, 7.6-cm (3-in.)-diameter cascade line. When tank 241-C-102 was
full, the cascade line allowed the overflow of liquid to tank 241-C-103. A similar cascade
line connects tanks 241-C-101 and 241-C-102.

Currently, tank 241-C-I03 contains approximately .738 ML (195 kgal) of sludge and
aqueous liquid waste (Hanlon 1994), as calculated from a measured waste depth of 168 cm
(66 in.) In addition, tank 241-C-I03 has a floating layer of organic liquid waste (immiscible
in the aqueous waste) determined to be between 3.8 and 5 cm (1.5 and 2.0 in.) thick in
December 1993. A Food Industries Company (FIC) automatic level gauge, mounted on riser
#8, is used to determine the aqueous waste surface, by conductivity, on a weekly basis.

The relative stability of the waste surface level in tank 241-C-103 is an indication that
the tank does not undergo periodic venting of gases from the stored waste. Burke (1991) has
charted the surface level data from tank 241-C-103 between 1980 and 1991. The data
indicate a decrease in the surface level of the tank of about 4 cm (1.6 in.) over the 11-year
period, which Burke attributes to the evaporation of water. Deviations from the running
baseline level are indicated to be on the order of tenths of an inch, or at about the resolution

of the level gauge itself. Though the level gauge data is not recorded continuously, there is
no evidence tank 241-C-I03 is undergoing episodic gas release events. This issue has been
addressed in a safety assessment by Postma et al. (1994).

2.2 HEADSPACE CONVECTION

The headspace of tank 241-C-I03 is expected to be mixed by convective air currents.t,

Radioactive decay occurring within the waste generates heat that is transferred in all
directions from the tank. The waste surface is thus warmer than the concrete dome,

- resulting in the upward convection of air warmed by the waste surface and downward
convection of air cooled by the concrete dome. According to a model developed by
S. A. Wood (1992) to describe the headspace of a similar situation in tank 241-C-I09, warm
air rises in the central region of the tank, flows outward along the dome, and falls at the tank
wall.

2-i
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Figure 2-1. Tank 24 l-C- 103 Riser Locations.

R2 - HEPA/CARBON FILTER
3" CASCADE R7 - OBSERVATION RISER
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Figure 2-2. The Tank 241-t2-101,241-C-102, and 241-12-103 Cascade.

GRQUND SURFACE

............. ........

" == / 3" CASCADE OVE;FLOV LINE j Wj .

Evidence of headspace mixing was recently obtained during the December 1993 vapor
sampling event in tank 241-C-103. Resistance temperature devices (RTDs) located on the
sampling line indicated that the headspace temperature was 40 *C about 0.9 m (3 ft) above
the surface and also at a point 3.05 m (10 ft) higher. This is consistent with the expectation
that if convection is significant, the steepest temperature gradients would be found in the
relatively stagnant regions very near the surface and near the dome, and that a relatively
small temperature gradient would exist between those regions.

Visual inspection through the observation riser during the December sampling event
was performed shortly after the cover flange was removed, and indicated that a low particle
number density, non-uniform aerosol did exist in the riser itself. The thermal gradient
between the cool riser cover flange and the tank headspace itself was apparently large enough
to promote convection within the 4.9-m (16-ft)-long, 30.5-era (12-in.)-diameter riser,
producing an aerosol as warm, moist tank air contacted air cooled by the riser flange. This
observation suggests that even air within the risers is not subject to stagnation as long as the
top of the riser is occasionally much cooler than the headspace.

2.3 HEADSPACE BREATHING
i.

Pressure differences between the atmosphere and tanks 241-C-101,241-C-102, and
24 I-C-103 due to generation of gases and vapors in the tanks and to barometric changes, are
relieved by passive ventilation. Each tank has a dedicated breather riser that is equipped
with a high-efficiency particulate air (HEPA) filter to limit release of radioactive particulates
from the tank. Additionally, small openings and cracks in the pit covers and unsealed risers

2-3



WHC-EP-0734 Rev. 1

iiiiiiiii i i i ,11 , i1,,,i i i ii

allow some air to pass unfiltered between the tanks and the atmosphere, t Currently, valves
at the HEPA filters of tanks 241-C-101 and 241-C-103 are shut, so that all 3 tanks in the
cascade breathe through tank 241-C-102 and its HEPA filter. This has been the ventilation
configuration since March 1993.

Changes in the barometric pressure cause passively ventilated storage tanks at the
Hartford Site to exchange an average of 0.46 percent of the air in their headspaees with the
atmosphere per day2. Given the headspace volume of tank 241-C-103 is about 2,550 m3
(90,000 ft3), barometric pressure changes would cause about 11.6 m 3 (410 ft_) of air to be
exchanged between the tank and the atmosphere each day. During an average day, the
barometric pressure rises for approximately 8 hours, falls for approximately 8 hours, and
shows negligible changes during the remaining 8 hours (Crippen 1993).

Dry instrument air is also introduced at a rate of 1.4 to 1.7 m3/hr (50 to 60 ft3/hr) at
the FIC level gauge housing of tanks 241-C-102 and 241-C-103 to prevent condensation of
moisture in the housing 3. This flow rate of instrument air results in about 1.3 to 1.7 percent
of the headspace being purged each day. The typical diurnal barometric cycle is such that
some air would still be drawn into tank 241-C-103 from tank 241-C-102 and from unsealed
risers and pit covers, but only during the steepest barometric pressure increases. In
summary, the average total daily inflow of fresh air is estimated to be no more than about 2
percent of the headspace volume.

2.4 HEADSPACE TEMPERATURE

The waste and headspace temperatures are monitored on a weekly basis. Three
thermocouples are located in the waste; the lowest thermocouple is essentially on the tank
bottom, the second 0.61 m (2 ft) above the bottom, and the third 1.22 m (4 ft) above the
bottom. The sole thermocouple in the headspace is approximately 2.79 m (9 ft 2 in.) above
the waste surface.

The thermocouples in tank 241-C-103 indicate the waste and headspace temperatures
fluctuate with the seasons, and are generally hottest in October and November, and coolest in

1The potential spread of radioactive contamination via these pathways is monitored by
area air monitors, and is being addressed by the EPA (Pelletier 1993).

2This value was calculated in the manner of Garfield 1975, using hourly barometric
readings for 1988, 1989, 1990, and 1991 from Crippen 1993, and assuming negligible
resistance to the exchange of air.

3The rotameters on tanks 241-C-102 and 241-C-103 measuring flow of instrument air
were monitored on several occasions during November and December 1993. Air flow was
observed to fluctuate in the stated range, apparently due to minor supply pressure
fluctuations.
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April and May. These seasonal changes are related to groundtemperatures(Croweet al.
1993). Given the relatively small fraction of headspace gases exchanged per day as
discussed in Section 2.3, effects on the temperature of the headspace by the diurnal inflow of
cold or hot ambient air appear to be negligible. The headspace temperature of tank
241-C-103 has been observed to be as high as 44 °C (111 °F) and as low as 37 °C (98.6 OF)
in the last two years.

• Gradual reduction of the heat-generating radioactive materials in the waste tanks by
radioactive decay results in successively less heat generation and cooler waste temperatures.
Recent thermocouple data indicate that tank 24 l-C-103 is cooling at a rate of about 0.6 °C
(33 °F) per year (Crowe et al. 1993). The radiolytic and chemical production of flammable
gases and vapors by first order reaction kinetics should also decline. Furthermore, as the
tank cools, the vapor pressure of the organic liquid in the tank will also decrease.

2-5
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3.0 I__IABLE ItEADSPACE CONSTITUENTS AND THEIR M[EAS_

The flammability of a mixture of gases and vapors depends on the concentrations of
fuel and an oxidizer. In the headspace of tank 241-C-103, the only significant oxidizer
known to be present is oxygen4, which is at roughly the same concentration as it is in
normal air. Fuels known to be present in the headspace of the tank include inorganic gases

, such as ammonia and hydrogen, organic gases such as methane, volatile organic vapors such
as acetone and butanol, and semivolatile organic vapors such as NPH and TBP (Ulbricht
1991, WHC 1993, Ligotke et al. 1994, and Einfeld 1994).

3.1 COMBUSTIBLE GAS METERS

Combustible gas meters (CGMs) are used routinely by health and safety technicians at
the HartfordSite to assess the flammability of waste tank gases and vapors prior to intrusive
tank work. CGMs provide a digital readout of the fuel content of an air sample as a
percentage of the lowest concentration of fuel which will support flame propagation, the
lower flammability limit (LFL). When calibrated with pentane, as has been determined to be
optimal by WHC Industrial Hygiene Field Services, the CGMs tend to overestimate the
contributions of such combustible gases as hydrogen and methane to the flammability of a
sample (ISC 1991). Conversely, the CGMs used tend to underestimate the fuel value of high
molecular weight organic vapors. An important example of the latter is NPH, for which a
pentane-calibrated CGM may underestimate the fuel value by as much as a factor of 3
(Estey 1992).

Monitoring of the November and December sampling events was performed using an
Industrial Scientific Corporation model TMX-410 meter. It was calibrated with pentane each
morning prior to use, according to a standard single-point calibration method per the
manufacturer's specifications. According to the CGM, total fuel content was determined to
be 0 to 7 percent of the LFL from a total of 11 readings at risers//2, g7, and #8
(WHC 1993). Three readings of the headspace, taken via a tube lowered through riser Y7
into the headspace approximately 4.9 m (16 ft) above the waste surface on December 2, 14,
and 15, were 4, 7, and 7 percent of the LFL, respectively. A similar reading of the
headspace, taken just prior to sample probe installation in riser #7 on January 21, 1994, was
6 percent of the LFL.i.

' Sample analyses indicate nitrogen oxides, organic nitrates, and certain other oxidizers
are not present at concentrations high enough to affect the headspace flammability (e.g.,
Einfeld 1994).

3-1
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3.2 FLAMMABLE GASES

Flammable gases such as hydrogen, methane, and ammonia are known to be produced
by radiolytic and chemical reactions within the high-level waste. As such, their current
levels reflect a dynamic balance between their generation rates and such depletion
mechanisms as tank breathing.

i Hydrogen and methane have been detected in tank 241-C-103. Air samples collected
in November from the FIC riser (#8) and the HEPA filter riser (#2) were analyzed and
determined to contain between 590 and 874 parts per million by volume (ppm) hydrogen, and
between 13.2 and 17.7 ppm of methane (Einfeld 1994). Given that the LFL for hydrogen is
4.0 percent by volume, and 5.0 percent by volume for methane (Zabetakis 1965), these air
samples contained between 1.5 and 2.2 percent of the hydrogen LFL, and between 0.03 and
0.04 percent of the methane LFL.

The concentration of ammonia is not expected to be near its LFL of 15 percent by
volume (Zabetakis 1965). Though validated sampling for ammonia in tank 241-C-103 has
not been conducted, industrial hygiene monitoring during the November and December
sampling events indicated a maximum ammonia concentration of 200 ppm. This corresponds
to 0.13 percent of the LFL for ammonia.

The CGM monitoring data supports the argument that these permanent gases are not
present at levels of concern. Since the CGM used during the November and December 1993
sampling events overreacts to the presence of hydrogen by about a factor of 2 (ISC 1991),
the hydrogen in the headspace would account for roughly half of the 4 to 7 percent of the
LFL response of the CGM.

3.3 FLAMMABLE ORGANIC VAPORS

The flammable organic compounds in the headspace of tank 241-C-103 may be
classified as being either semivolatile or volatile. The semivolatile organic compounds
present in the headspace come primarily from evaporation of the organic liquid waste. The
dominant species in the organic liquid, namely TBP, n-Ct2H26, n-CtsH2s, and n-C14H30,are all
found in the vapor phase. The volatile organic compounds present in the headspace are
primarily radiolytic or chemical degradation products of semivolatile and nonvolatile organic
waste.

The December 1993 vapor sampling event was performed to quantify the N-PH and
TBP present in the headspace of tank 241-C-103. Headspace samples were collected using
OSHA versatile sampler (OVS) traps, which were lowered through the observation riser (#7)
to an elevation about 0.9 m (3 ft) above the waste surface. OVS traps contain a prefilter to
trap and coalesce any aerosol droplets, and two layers of a solid sorbent that adsorb
semivolatile organic vapors. Laboratory testing of the OVS traps, including aerosol
challenge testing and extraction efficiency testing, as well as analytical quantitation

3-2
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methodology, has been documented by Ligotke et al. (1993). A total of 10 OVS trap
samples were collected from the headspace, with one being sacrificed for a radiolyti¢ assay
to allow transport of samples to the laboratory. The design of the OVS traps, sampling
equipment, and detailed analyses results are discussed by Ligotke et al. (1994).

NPH quantitation results from the December vapor sampling are summarized in
Table 3-1. Uncertainties in the values reported were estimated to be 21 percent by Ligotke

, et al. (1994), the dominant uncertainty being 20 percent due to analytical quantitation. Total
sample volumes for OVS I, 2, and 3 were about 0.22 L; volumes for OVS 4, 5, and 6 were
about 0.88 L; and volumes for OVS 8, 9, and I0 were about 4.4 L. Comparison of values

• in the last column of Table 3-I suggests the discrepancies between samples are related to the
volumes of air sampled. Though no reason for this apparent relationship has been
established, it may be due to the specific manner in which NPH was extracted from the three
sets of OVS traps.

Table 3-1. NPH Concentrations Measured in OVS Traps from Tank 241-C-103.

Sample n-CttH2, n-Ct2H26 n-Ct3H2s n-Ct4H3o n-CtsH32 Total NPH
number mg/L mg/L mg/L mg/L mg/L mg/L

OVS 1 <0.07 0.306 0.429 0.100 <0.07 0.835

OVS 2 <0.07 0.287 0.435 0.085 <0.07 0.807

OVS 3 <0.07 0.247 0.336 0.076 <0.07 0.659

OVS 4 <0.02 0.278 0.401 0.103 <0.02 0.782

OVS 5 < 0.02 0.235 0.358 0.099 < 0.02 0.692

OVS 6 <0.02 0.215 0.349 0.058 <0.02 0.622

OVS $ <0.003 0.411 0.527 0.129 <0.003 1.067

OVS 9 < 0.003 0.383 0.574 0.158 < 0.003 1.115

. OVS 10 <0.003 0.349 0.578 0.140 <0.003 1.067

Average - 0.301 0.443 0.105 - 0.85() ....

As indicated in Table 3-1, quantities of n-CttH24and n-CtsH32were below limits of
detection in all samples, n-CttH_, typically present in significant quantifies in the PUREX
process diluent, has apparently been virtually eliminated by preferential evaporation from the
organic waste during 24 years of storage in the tank farm. The very low vapor pressure of
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n-CIsH32,and its low concentration in the organicliquid waste, explain its absence at
analyticaldetection levels.

In addition to the three dominant NPH species listed in Table 3-1, several other
compoyundswere detected in the samples. These were neitherpositively identified nor
quantitated,but initial screeningindicated them to be semivolatilebranchedalkanes. Though
quantitationby species was not attempted,NPH collectively representedabout 90 percentof
the total ion abundanceof the mass spectra(Ligotke et al. 1994).

The headspaceconcentrationof Nt'H indicated by averaging results from the nine
samplesis 0.85 mg/L, with an uncertaintyof :l: 0.18 mg/L. Given an LFL for NPH of
approximately46 mg/L (Zabetakis1965), these results indicate the headspaceto be at about
1.8 :l: 0.4 percentof the LFL for NPH.

TBP was above the analytical detection limit only in OVS 8, 9, and 10. The maximum
observed TBP concentrationwas about0.05 rag/L, or roughly4.3 ppm (Ligotl_ et al. 1994).
Though TBP is properly considereda fuel, its vapor pressureis so low that the flashpointof
TBP-diluentmixturesis determinedby the partialpressureof the diluent ($chulz et al. 1984).
At the observed 0.05 mg/L concentration,TBP does not contribute significantly to the fuel
content of the headspace.

Samplesof the liquid organicwaste in tank 241-C-103 were also collected during the
December 1993 samplingevent. Analysis indicates that the predominantcomponents of the
organic liquid waste are all semivolatile. The principlecomponents of the organic liquid,
listed approximatelyby increasingvapor pressures,are given in Table 3-2 (Pool and Bean
1994).

Liquidsample analyses supportthe vapor sampleanalyses; the three Nt'H species that
dominate the vapor phase constituteover 80 percent of the non-phosphatespecies in the
liquid phase. The partial pressureof alkanesis significantly reducedby the presenceof
TBP. While flashpointsof the alkanes listed in Table 3-2 rangefrom 71 to 132 °C (159.8 to
269.6 °F), the flashpointof organic liquid waste sampleshas been estimated to be in the
vicinity of 100 °C (212 °F) (Pool and Bean 1994).

The introductionof fresh air to tank 241-C-103, either as dry instrumentair or from
the atmosphereby naturalbarometricchanges, could reduce the concentrationof flammable
vapors. However, the breathingand instrumentair purgerates are small relative to the
headspacevolume, so it is reasonableto expect the semivolatile organic vapors in the
headspace to be nearly in equilibrium with the floating pool of organic liquid. Consequently,
changes in the ventilation configuration, such as venting all three tanks of the cascade
through tank 241-C-103, would not significantly impact the concentration of semivolatile
organic vapors.
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Table 3-2. Principle constituents of 0rgani¢ Liquidwaste in Tank241-c-103.

Compound Relativeweight Flashpoints
percent (°C)

n-dodecane (n-CnH2j 3.8 71

alkane* 0.3

" alkane* 1.5

n-tridecane(n-CIsH20 15.5 79

alkane* 0.6

alkane* 1.3

n-tetradecane(n-Ct4Hx0 8.1 99

alkane* 1.0

n-pentadecane(n-C_sHsz) 1.2 132

dibutylbutylphosphonate(DBBP) 2.6

tributylphosphate(TBP) 64.0 193

*Tentativelyidentified as branchedalkanes in the CnH2_to C_4H3orange.

Volatile organiccompounds arenot present in significant quantities in the organic
liquid, according to the analysis shown in Table 2. Analyses of SUMMA_ canister vapor
sampleshave indicated dozens of volatile organic compounds are present at trace quantities
in the headspace,but definitive concentrationsof these species are as yet unavailable(Einfeld
et al. 1992, Einfeld 1994).

The contributionof volatile organic compounds to flammability of the headspacecan
be estimatedfrom calibratedCGM data collected duringthe November and December 1993
samplingevents. Assuming that the in-tankCGM readingsof 7 percentof the LFL are
correct,and that the CGM overcompensatesfor the hydrogenpresentby a factorof 2
(ISC 1991), and the responseof the CGM to the N'PHconstituentsis negligible, then volatile

• organic compounds would be responsible for 2.8 to 4.0 percent of the LFL as measured by
the CGMo

SAldrich1991

_SUMMAis a registeredtrademarkof Molectrics, Inc., Cleveland, Ohio.
i _ ii i ii i i

i i iiiiii i i H
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3.4 FLAMMABLE ORGANIC LIQUID AEROSOL

Aerosols form in the high-level waste tanks by the same mechanism as clouds form in
the atmosphere. Warm, vapor-laden air from near the surface of the waste rises and is
cooled below its dewpoint by contact with cool air from near the tank dome or the dome
itself. While it may be said with reasonable confidence that an aerosol has existed in
tank 241-C=103 in the past, it is not known whether the aerosol was composed of aqueous
droplets, organic droplets or both (I-luckabyand Estey 1992).

Inspections of this tank on December 2, 14, and 15, 1993 and January 21, 1994
indicated no visible aerosol was present in the headspace. That an aerosol did but presently
does not exist in tank 241-C-103 may be due to a variety of effects, including the gradual
cooling of the tank waste, reduction of the volatility of the organic layer, or seasonal
temperature changes that result in an aerosol during certain times of the year but not others.
Further consideration of an organic aerosol is given here because it cannot be proven yet that
an organic aerosol does not exist at other times of the year. Planned sampling events will
address this issue.

Key concepts for understanding the combustion of an aerosol of liquid NPH droplets
have been given by Huckaby and Estey 1992. Essentially, the fuel available in the aerosol
droplet phase must first be vaporized, and this consumes some of the energy of the fuel.
Furthermore, droplets larger than about I pm in diameter are not apt to evaporate completely
and thus burn before the rapidly moving flame front passes the droplet. This makes some of
the fuel in larger droplets unavailable for flame propagation. These factors tend to increase
the minimum concentration of fuel (vapor + aerosol) required for flame propagation in an
aerosol-vapor system. Fuel in the aerosol droplet phase is less flammable than in the vapor
phase. It is erring on the safe side to apply the calculated LFL for NPH vapor to an NPH
aerosol-vapor system.

Estimates of the probable mass concentration of an NPH aerosol in tank 241-C-103
have been performed by Huckaby and Estey 1992 and Postma et al. 1994. The former
estimated the concentration of the aerosol to be at or less than I mg/L from a report that the
waste surface was visible through the aerosol, and from considerations of likely aerosol mass
loading. Given an LFL for NPH of about 46 rag/L, this aerosol mass concentration would
be about 2.2 percent of the LFL.

Postma et al. 1994 used the MAEROS-2 program (Gelbard 1982) to model the
formation and deposition rate of an organic aerosol in the tank. Their simulation predicted a
mass concentration of 0.043 mg/L. Allowing for possible errors in the estimation of
conditions and properties, a worst-case calculation was run by increasing the aerosol
generation rate by a factor of 10. The maximum aerosol mass concentration for this case
was calculated to be 0.22 mg/L. These estimated and estimated maximum aerosol mass
concentrations correspond to about 0.1 and 0.5 percent of the LFL for NPH, respectively.

,n, ,, ,, ,, " --
in i lUin ii ii inn in I I I n
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Insummary,thoughnoaerosolwasobservedintheheadspaceoftank241-C-103in
December1993,itispossiblethattemperaturechangespromotetheexistenceofanaerosol
atothertimesoftheyear.Ifanorganicliquidaerosolisproducedatothertimes,
calculationsindicatethatitwouldnotcontributesignificantlytotheflammabilityofthe
headspace.
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Data and evidence have been presented that indicate gases and vapors in the headspace
of tank 241-C-103 are well below the LFL. The principle fuels in the headspace are thought
to be: hydrogen, present at 1.5 to 2.2 percent of its LFL; the semivolatile NPH vapor,
present at 1.4 to 2.2 percent of its LFL; and volatile organic vapors, collectively present at
2.6 to 4.0 percent of their LFL. Assuming the independence of these calculated flammabilityI

contributions, the flammability of the headspace is estimated to be between 5.5 and 8.4
percent of the LFL of the mixture. This is well within the operational guideline limit of

• 20 percent of the LFL established by Tank Farm Safety.

Recent inspections of the tank 241-C-103 headspace indicate that no visible aerosol is
currently present. In the event that an aerosol is present under marginally different tank
conditions, calculations discussed indicate that the mass concentration of NPH in the aerosol
droplet phase would not significantly affect the headspace flammability. Additional sampling
will be performed to verify the premise that the vapors do not change significantly with time
or season.

Though the observed levels of hydrogen gas are greater than expected, the estimated
fuel content of the tank 241-C-103 headspace is within bounds set by the engineering
assessment of Huckaby and Estey 1992.

Further vapor sampling of tank 241-C-103 is being performed to address the issue of
vapor toxicity. Analytical data from this sampling will be evaluated to reaffirm current
understanding of the headspace flammability and to verify that seasonal changes in the
headspace do not significantly alter this document's conclusions.

i ii i lllSli n i I llml --
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