

li

#

Preprint MCS.P424.OII4, Matbem&tics zud Computer Science Divkiou, Argonne Ns|iouLi L&bora_tory, Argonne, 111.

MPMM: A MASSIVELY PARALLEL MESOSCALE MODEL

Ian Foster
John Michalakes

Mathematicsand Computer ScienceDivision

Argonne NationalLaboratory
Argonne,Illinois60439

1. Introduction

Static domain decomposition is a technique that provides a quick path
to porting atmospheric models on distributed memory parallel computers.
However, parallel inefficiencies in the form of load imbalances and ill-tuned
communication are difficult to correct without complicated and explicit re-
coding. Reconfiguring the code to run on larger or smaller numbers of pro-
cessors may require recompiling. Modularity and machine independence may

also suffer. If full advantage is to be taken of Massively Parallel Processing
(MPP) technology, tools and techniques that allow for dynamic performance
tuning and reconfiguration are required.

Program Composition Notation (PCN) isa language and run-time system
for expressing parallel programs developed at Argonne and at the California

: Institute of Technology (3, 5). It provides an intermediate layer between the

application program and the physical processors of a computer. It allows the
' model to be statically decomposed over a virtual machine, but this virtual

"This work was supported by the Applied Mathematical Sciences subprogram of the

Office of Energy Research, U.S. Department of Energy, under Contract W-31-109-Eng-38,
and was performed in part using the Intel Touchstone Delta System operated by Caltech
on behalf of the Concurrent Supercomputing Consortium. Acccss to this facility was

provided by Argonne National Laboratory.

MASTEBby I contractor o! the U, S. Government
under contract No, W-31.109-ENG.38.
Accordingly, the U, S. Government retlin$ i
nonexctusive, royllly-tree licenw to Pubhsh
or reproduce the published !ore of this
contribution, or IIIow others to do so, for
U. $. Government purposes,

D_UTIIJN OFTills OOCIIME_TIll UltlUI!IIIT!_ll

machine can be mapped and remapped dynamically over the physical com-
puter. Programs are portable to as many machines as PCN itself, modularity
is easily preserved, and communication tuning for a particular computer is
encapsulated within the PCN run-time system.

In this paper we report on a project at Argonne National Laboratory
to parMlelize the Penn State/NCAR Mesoscale Model version 5 using a fine
grain decomposition dynamically mapped and managed under PCN.

2. The Mesoseale Model and MPP

The Penn State/NCAR Mesoscale Model simulates meso-alpha scale (200-
2000 km) and meso-beta scale (20-200 km) atmospheric circulation systems
(1, 7). MM has been developed over a period of twenty years, first at the
Pennsylvania State University and more recently also at the National Center
for Atmospheric Research. It is used for real-time forecasting and atmo-
spheric research, including climate prediction and storms research. The need
for performance has up to now been met by designing and optimizing the
model for vector supercomputers and this has been adequate for many cur-
rent problems. However, while multitasking can increase performance by
perhaps an order of magnitude, technological and physical constraints limit
the absolute performance that can be attained by conventional supercom-
puter architectures. In addition, the reliance on custom components makes
this approach very expensive. Hence, the MM is costly to run and is near its
upper limit of performance on current problems.

Massively Parallel Processing (MPP) achieves high performance by us-
ing, instead of one or a small number of very expensive vector processors,
hundreds or thousands of inexpensive microprocessors. By distributing mem-
ory locally and connecting processors with scalable communication networks,
very large MPP machines may be constructed. Building on recent develop-
ments in interconnect technology and microprocessor design, this approach is
already competitive with conventional supercomputers and is far from reach-
ing its limits. Hardware architectures capable of scaling to teraflops peak
performance have already been announced by Intel and Thinking Machines
Corporation, and teraflops computers should be available within five years.

Finite difference codes such as the MM have proven particularly well
suited to parallel implementation, because of their regular nearest-neighbor
communication pattern. A prototype parallel implementation of version 4 of

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product,or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Governmentor any agency thereof.

the MM code executed at nearly one-third the speed of a 1-processor Cray Y-
MP on 12 i860 microprocessors. This prototype used a static (compile-time
configured) one-dimensional west/east decomposition of the model grid into
equal sized sections. Off-processor data was stored in fixed array extensions
and kept up to date by message passing (Figure 1).

i_ ° ' _'"• :_'.'I' I,'.'. i

',,_ ,, I....... _:: o.. e _ i ,.o_. i

il : _._i :::_'•._ i :

"'" I
i :_:i:!: ,i

0 1 2 p-1

Figure 1: Static decomposition of MM4 grid. Data communication was through
extended array "pads" that replicate off-processor memory.

To utilize a larger number of processors, the MM grid must be decom-
posed in a second horizontal dimension. This could be achieved by following
a static decomposition strategy, adding array extensions in the second dimen-
sion and providing :dditional structure and communication to account for
diagonal data dependencies between grid cells• However, reallocating work
to processors for load balancing or machine utilization would difficult, since
the static decomposition requires regular rectangular patches. Tuning, in
particular overlapping computation and communication, would require com-
plicated explicit recoding that would also introduce machine dependencies.
The decision was made to adopt a dynamic rather than a static decomposi-
tion when moving from the prototype to a production version of the MM.

2. Massively Parallel MM5

Version 5 of the Penn State/NCAR Mesoscale Model, released in the
fall of 1992, incorporates and standardizes a number of features that either
were new or that had been added to MM4 for specific applications. Features
include a nonhydrostatic option, four-dimensional data assimilation, movable
nested grids, and improved physical parameterizations. A pre-release version

of the MM5 code was made available for MPMM development in the spring of
1992, and work is continuing. In MPMM, the static decomposition strategy
was abandoned in favor of an approach that would support dynamic load
balancing and modular implementations of 4DDA, nested grids, and model
coupling.

2.1 Fine-Grained Implementation

MPMM utilizes a fine-grained horizontal decomposition of the Mesoscale
Model domain in which each multicomputer node is allocated some small

but not statically determined number of columns in the grid. The shape
of the processors' allocated region tends toward rectangular (where there
are no load imbalances), but columns are able to migrate away from more
heavily loaded processors when necessary. The technique that allows for this
nonstatic decomposition of the grid is to make a distinction between the
logical decomposition from the physical decomposition. The grid is decom-
posed over a virtual topology of logical PCN processes; the virtual topology
is then mapped dynamically onto the physical processors of a particular par-
allel computer (for example, a mesh of processors as ill the Intel Touchstone
Delta computer).

The processes are connected by streams over which they communicate
needed data to effect horizontal interpolation and finite differencing within
the grid. Where communication streams are cut by physical processor bound-
aries, interprocessor communication is automatically generated by the run
time system. Messages over streams between collocated processes are han-
dled as memory references. Moving a process to a different physical processor
during model execution does not alter the virtual topology itself, so commu-
nication streams "follow" the process to its new physical location (Figure 2).
The PCN parallel programming system handles the underlying mechanisms
for constructing virtual topologies of processes, mapping them to physical
processors, and implementing communication streams automatically.

In addition to the processes representing the model grid, we define a num-
ber of global or quasi-global monitor processes which implement such global
functionality as managing input and output, coordinating load balancing,
interfacing with coupled model systems such as a general circulation model,
and interfacing with interactive graphical systems. The monitor processes
may be mapped to a single physical processor or may themselves be im-

Figure2:Duringan MPMM run,columnprocessesinthevirtualtopologymay
bemigratedaway frommoreheavilyloadedphysicalprocessors.Communication
streamsautomaticallyfollowundertherun-timePCN systemimplementingthe
virtualtopology.

plementedasparallelprogramsexecutingon a separatevirtualtopologyof
logicalnodes•

2.2 Dynamic Performance Tuning

Atmospheric models are subject to load imbalances resulting from vary-
ing amounts of work over the model grid (8) when decomposed over a set
of distributed memory processors in a multicomputer. MPMM will use dy-
namic load balancing to maintain parallel efficiency when the amount of work
required per grid point is not constant; for example, because of the use of a
more elaborate convection scheme in columns containing storm systems or
because of dynamically created subgrids. The workload on each processor
will be continuously monitored; periodically, imbalances will be corrected by

0

moving vertical grid columns from heavily loaded to lightly loaded proces-
sors. This activity is coordinated by a load balancing monitor process which
periodically collects and analyzes load data from each of the processors in
the physical topology and instructs column processes in the virtual topology
to relocate as needed• Alternative load-balancing algorithms can be substi-
tuted without changing other components of the parallel code, allowing a
high degree of customization for load characteristics of a particular modeling
application.

The fine grain decomposition of MPMM provides natural opportunities
for the PCN run-time system to overlap computation and communication,
effectively hiding communication costs. PCN handles this automatically in
the course of scheduling processes that have received their data and are ready
to run. For example, a process on the edge of a physical processor's allocation
may be blocked waiting for data. During this time, processes on the interior
or processes that have already received data execute.

2.3 Nesting and Coupling

We intend that MPMM be usable by a broad community of scientists.
Critical to this usability will be mechanisms to simplify the implementation
of nesting and coupling to other software systems such as other geophysical
models but also including interactive graphics packages. We will implement
both these capabilities using common mechanisms for transferring data be-
tween domains with different resolutions. In essence, a nested grid will be
treated as a coupled run of the model at a finer resolution. Each grid will
typically be distributed over the entire parallel computer, and appropriate
interpolation/averaging routines will be used to transfer data between grids.
In the case of coupled models, data transfers may also involve files or poten-
tially parallel versions of other models running on the same computer. We
anticipate supporting coupling with BATS and CCM2 initiall_ ; other models
such as RADM will be considered if required.

The modularity of the design permits the installation of special-purpose
monitor processes into the model. Work is currently under way at Argonne
to develop a PCN/AVS parallel graphical interface that will allow real-time
interactive 2- and 3-dimensional visualization of the model as it executes on

a parallel computer. Such an interface could be easily encapsulated within a
monitor process, and would permit scientists to interactively "explore" the

data within their models. Additional modules will support the data move-
ment necessary to implement 4-dimensional data assimilation iit a p,lt'alleI
mesoscale model.

3. Implementation

In general, using PCN to parallelize an existing code involves replacing
the topmost levels of the original call tree with PCN modules that emulate

the original control structure of the program but that also set up and manage
parallelism. In MPMM, PCN manages the main loop over time steps and it
manages iteration over latitude and longitude, which are now expressed as
parallelism. The remaining FORTRAN code has been restructured to oper-
ate on individual vertical columns in the grid. That is, the FORTRAN code
to compute a complete time step for one cell i,j has been transformed into a
module. The FORTRAN is restructured with the assumption that all neigh-
boring data is in local memory before the module is called. PCN portions of
the code must communicate data between processes as necessary to satisfy
this requirement. Therefore, a complete understanding of the horizontal data
dependencies in the model is required.

For example, an interpolation of pressure between staggered grids is com-
puted as follows:

hscrl(i,j) = 0.25*(psa(i,j)+psa(i-l,j)+
$ psa(i,j-l)+psa(i-1,j-l))

In addition to the value of PSA at the grid point i,j, the value from the
west (i,j-I), the south, (i-l,j), and the south-west (i-l,j-1) must be avail-
able. Because intermediate results are also required from neighbors, several
communications are necessary for each computed time step.

Detailed inspection of the code, assisted by automatic FORTRAN anal-

ysis tools developed at Argonne determined what data was needed by a grid
process and when. Figure 3 shows message sizes and sources/destinations for
the three communication phases identified for each time step. If the model
grid is completely decomposed so that each parallel process represents a sin-
gle grid cell, the process requires ten bidirectional streams to neighboring
processes. This can be reduced to only six if the grid is decomposed so that
no fewer than four cells are assigned to each process. This provides the ad-
ditional benefit that no streams need to pass through a process, avoiding a
source of possible message routing contention on some computers.

DD D

@@
D

I. 2. 3.

Figure 3: To compute a time step, the shaded grid cell uses data from its neighbors.

A process representing the cell must communicate three times with its neighbors.
The first communication exchanges data necessary for interpolating pressure be-
tween staggered grids and also for decoupling (removing a p* term) from horizontal
wind velocity. The second communication exchanges data needed for second and

fourth order differencing for horizontal advection and diffusion. The final step
is required for additional interpolation between staggered grids. Communication

points and volumes are shown in bytes. Only receives are indicated but equivalent
data must also be sent at each communication step.

4. Performance

At the time of this writing development work is continuing. This section
describes anticipated performanced based on a model of communication and

computation in MPMM. The performance model simulates the the cost of

computation and the cost to send messages between processors for different

mappings of grid processes to physical processors. For a given decomposition,

streams are enabled or disabled as necessary to account for inter-processor

and intra-processor communication between processes.

Table 1 shows expected performance for MPMM on the Intel Touchstone

Delta computer using the following parameters: The decomposed grid has

40 cells in latitude, 60 in longitude. Grid cells are allocated four to a PCN

process, allowing use of the six point communication stencil described earlier.

The mapping of processes to simulated processors is as close to regular as
possible. The cost of computing a single grid cell is 13 milliseconds. This was

based on observed performance of the MM4 prototype. The cost of starting

a message is 600 microseconds; the cost for transmitting one byte of the

....processors compute communicate total efficiency
' 1 31.20 0.00 31.201.000

5 6.24 0.34 6.58 0.947
10 3.12 0.22 3.34 0.933
15 2.08 0.24 2.32 0.896
25 1.24 0.17 1.41 0.879
50 0.62 0.11 0.74 0.841
75 0.41 0.10 0.51 0.806

100 0.31 0.08 0.39 0.791
150 0.20 0.06 0.27 0.763
300 0.10 0.04 0.15 0.690
600 0.05 0.02 0.08 0.641

..

Table 1: Simulated times in seconds for one time step of MPMM on Intel Touch-
stone Delta computer.

message is 80 nanoseconds (6). Times shown are for a single time step. As the
number of processors increases, parallel efficiency is maintained. Although
the amount of work on each processor decreases, so does the number of
incoming and outgoing messages.

5. Conclusions

We have described a research and development project intended to de-

velop a massively parallel mesoscale model (MPMM), capable of exploit-
ing both current and future generations of parallel computers. Projected
teraflops computers will allow MPMM to achieve performance superior by
several orders of magnitude to that currently achievable on conventional
supercomputers. In addition, MPMM opens the possibility of using more
cost-effective platforms (e.g., networks of multiprocess workstations) for ap-
plications that do not require tera.flops performance.

MPMM will provide the meteorological community with a cost-effective,
high-performance mesoscale Jll,.I,'l. 'l'lli,_ iJl ttlt'll will i,t,,,J,l,_tJ Ill,' J,lJll,° illl,l
size of problems that can be studied, permitting scientists to consider larger
problem domains, longer simulations, finer-resolution grids, and more com-
plex model processes, than have previously been possible. In addition, the

s

parallel algorithms and code developed for MPMM will be directly applicable
to projects developing parallel implementations of other, similar models.

References

1. l:t. Anthes, E. Hsie, and Y. Kuo, Description of the Penn State/NCAl:t
Mesoscale Model Version 4 (MM4). NCAR Technical Note, NCAR/TN-
282+STR (1987), 66 pp.

2. J. Brown and K. Campana, An economical time-differencing system for
numerical weather prediction. Mon. Wea. Rev., 106 (1992), 1125-
1136.

3. K. M. Chandy and S. Taylor, An Introduction to Parallel Programming.
California Institute of Technology. Pasadena, California. 227 pp.

4. J. Dudhia, A nonhydrostatic version of the Penn State/NCAR mesoscale
model: Validation tests and simulation of an Atlantic and cold front.

(1992) Preprint, NCAR.

5. I. Foster, R. Olson, and S. Tuecke, Productive parallel programming: The
PCN approach. Scientific Programming, 1(1), (1992), 51-66.

6. I. Foster, W. Gropp, R. Stevens, The Parallel Scalability of the Spectral
Transform Method, Monthly Weather Review, 120, No. 5, (May 1992),
pp. 835-850.

7. G. Grell, J. Dudhia, and D. Stauffer, MM5: A Description of the Fifth
Generation PSU/NCAR Mesoscale Model. (1992). Draft NCAR Tech-
nical Note.

8. J. Michalakes, Analysis of Workload and Load Balancing Issues in the
NCAR Community Climate Model. Argonne National Laboratory Tech-
nical Memo, (1991), ANL/MCS-TM-144, 20 pp.

10

m m
I I

