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Abstract proaches also underlie the parallel implementations

described, for example, in [12] and [6].

We present a two-step variant of the "successive The approach described in this paper, on the other
band reduction" paradigm for the tridiagonalization of hand, is a two-step instantiation of the "successive
symmetric matrices. Here we reduce a full matriz first band reduction" framework suggested by Bischof and
to narrow-banded form and then to tridiagonal form. Sun [4]. We first reduce the dense matrix to band-
The first step allows easy ezpioitation of block orthog- width nb using block orthogonal transformations em-
onai transformations. In the second step, we employ ploying the so-called W'Y representation [5]; this is
a new blocked version of a banded matrix tridiagonal- described in Section 2. The remaining narrow-banded
ization algorithm by Lang. In particular, we are able matrix is then reduced to tridiagonal form using a new
to express the update of the orthoqonal transforma- variant of an algorithm originally suggested in [13]. In
tion matriz in terms of block transformations. This particular, we have devised a way of blocking the or-
expression leads to an algorithm that is almost en- thogonal transformations. The new algorithm is de-

tirely based on BLAS-3 kernels and has greatly ira- scribed in Section 3. The reason for considering this
proved data movement and communication character- two-step approach is that in our experience the reduc-
istics. We also present some performance results on tion of A is a computational bottleneck in the tradi-
the Intel Touchstone DELTA and the IBM SP1. tional approaches for tridiagonalization. By accom-

plishing the tridiagonalization in two parts, we are
able to work on A more efficiently in either of the

1 Introduction two parts. We have also devised ways for blocking the
aggregation of orthogonal transformations in either of
the two parts, resulting in good efficiency here as well.

Reduction to tridiagonal form is a major step in
eigenvalue computations for symmetric matrices. If
the matrix is full, the conventional Householder tridi-

agonalization approach [9, p. 276] or a block variant 2 Reduction of a Full Matrix to Nar-
thereof [8] is the method of choice. These two up- row Banded Form
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and S E R _x_. As a result, the application of P-.s_,_r_,mock_,_m_v^

these transf°rmati°ns n°w inv°lves BLAS-3 °pera- 2' i_...i' . i i i' " i '

tions, such as matrix-matrix multiplication, which

perform efficiently on contemporary high-performance _:.............. ,'_:'lh"i............... i'"_'_i_'"_'_i ...............

architectures [7]. What complicates the formulationot _-".i .... i F-,8_.' _,10 i
block algorithms for tridiagonalization is the fact that, 2o...............

if one wishes to reduce a matrix directly to tridiagonal _ ts...............i.._."._...:_::i:i:t__._

form, the update of the next column must involve the

full remainder of the matrix to be reduced, not just a
part of it. To illustrate, partition

14
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where b is a vector, and C is a matrix. To reduce b to l0

a multiple of the canonical unit vector, one employs a ! ;
. ., I,,, I , I ,
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Figure 1: Per-Node Performance of Blocked Band Re-
for properly chosen u. If one now considers the sym- duction Code on the Intel DELTA
metric application of H to A, one sees that the up-
date of the second column of A requires knowledge
of the matrix-vector product urC. As a result, any
reduction approach that directly goes to tridiagonal Table 1: Preliminary Performance Results on 16-Node
form must access all of the remaining data. There- IBM SP1

fore, even block approaches to implementing tridiag- [ ,_ [.b b ] Mflops/proc. [ Mflops/total
onalization [8, 6] can at most halve the data transfer 1000 1 20 10.1 162
cost compared with the traditional approach. 1000 15 15 18.7 299-

On the otherhand, ifone reducesa fullmatrixto 2'000....1 20 ........I0.0' 160
bandwidth nb, one can employ a standardone-sided 2000 10 10 26.2..... 4i9

QK factorizationalgorithmto reduceA(nb + I •n,1 : 3000 1 10 10.9 174
rib) to upper triangular form without the need to ac- :300d 15 15 .... 33.7 539
cess any other part of A, accumulate the nb House- 4000 20 20 38.2 611

holder transformations in a block orthogonal trans-
formation, and only then access the remainder of A.
This approach reducesdata accessesby a factorof

nb and has been shown toperformefficientlyon par- sizeon eachprocessorwas keptconstantat500 x 500.

allelmachines [3,2]and in out-of-corefactorization The executionratesare based on the standardsym-

approaches [10]. metric flop count of (8n3)/3. These experiments were
We have implemented this algorithm using a two- performed in double precision.

dimensional block torus wrapping. The block size nb Some preliminary performance results on an IBM
of the block torus wrapping is also the block size used SP1, using the EUI-H transport layer, are shown in
for orthogonal transformations, which are expressed Table 1. Here n is the overall matrix size, nb is the

with the WY representation [5]. To develop a portable block size used, b is the number of sub(super)diagonals
code, and to allow a maintainableimplementation, we the full matrix is reduced to, and the last two

chose to base our implementation on the Chameleon columns are per-processor performance and overall
parallel programming tools [11]. performance for a double-precision run, again based

The performance of this code is promising. Its per- on the standard flop count. These results should be
formance on the reduction of a full random matrix to taken because a lower bound on the ultimate perfor-

bandwidth 10, including the accumulation of orthogo- mance, as the performance of the IBM software and

nal transformations, on the Intel Touchstone DELTA of Chameleon is improving rapidly. We see that the
is shown in Figure 1. In these experiments, the matrix performance of the blocked code is superior to that of



the unblocked code, on both the DELTA and the SP1. ,- _,*-_:_-
For example, on the SP1 in the time that we can re- r (1_)Il,_"_-. 3

' ,- (2,1)/ L ,k.4..-.%.,, 4
duce a 2000 x 2000 matrix to tridiagonal form using O,I) / L o-o',." _-*-4,-_ o s
the unblocked approach, we c._n reduce a 3000 x 3000 (_ t .o-_.'(l_z) / ;`% 4 i`% -. 6

o"";'(_.) I t o ,..%:,._.'_. ?
matrix to bandwidth 10, even though the latter re- "_:3,2)l L..--*"',-° _, _',,... s

duction involvesroughly 3.5 times more floating-point _) ." (3,3)I t......-',." `%, ,%. .11
.--';(_) / t. "..-',4., °`%. ._o

operations.

We note that the code we have implemented can (_ to..-_r (1,4)/ "%. ;% ..... 12o,,'""_- (2,4) / L o `%..`% ....13
not only reduce a full matrix to banded form but also "*(3,4)/ t ..-'; `%, .`% ...14

t .."(1,S) L _ 15

narrow the band of a matrix that is already banded. (_
We will report elsewhere on the performance of this (_
transformation.

Figure 2: Illustration of the Tridiagonalization Algo-
rithm

3 Reduction of a Narrow Banded Ma-

trix to Tridiagonal Form but induces an O(nb) flops update for the correspond-
ing columns of Q.

To complete our tridiagonal reduction, we are now We have developed an algorithm that allows for a
faced with the task of reducing a narrow-banded ma- blocked update of Q by exploiting the freedom inher-
trix to tridiagonal form. To this end, Lang [13] sug- ent in the partial ordering of the transformations. As
gested the following algorithm, which we illustrate on in Figure 2, let (k, i) denote the transformation that

the 15 x 15 matrix with bandwidth 3 shown in Fig- reduces the lth bulge induced by the reduction of the
ure 2. In the first step, we generate a Householder kth column. In our convention the first bulge con-
transformation (labeled (1,1)), which reduces a(2:4,1) sists of the subdiagonal entries of the kth column it-
to a multiple of the first canonical unit vector el*. As self. Also let the term "kth sweep" denote transfor-
indicated by the dashed lines in the band matrix, the mations (k, 1), (k, 2), .... If we use "<" to denote the

application of this transformation generates fill-in in logical precedence of a transformation over another,
entries a(6,2), a(7,2), and a(7,3). The first column then the order of generation of Householder transfor-
of this so-called bulge is eliminated by Householder mations and their application to A must satisfy the
transformation (1,2), which reduces a(5:7,2), gener-
ating, as indicated by the dotted line_ fill in a(9,5), column order requirement: (k, l) < (k + 1, l),

a(10,5), and a(10,6). Again, we generate a transfor- same-sweep chasing requirement: (k, 1) < (k, 1+
mation, labeled (1,3), to eliminate the first column of 1), and the
that bulge. After applying transformations (1,4) and
(1,5), the first column of the bulge has been chased successive-sweep chasing requirement: (k,l) <
out. Notice that once transformation (1,2) has been (k + 1, l- 1).

completed, we can also reduce a(3:5,2) via the trans- Once the transformations have been generated,
formation labeled (2,1), which again generates a bulge however, we have considerably more freedom in ap-
that is chased by transformations labeled (2,2), (2,3), plying these transformations to Q. First note that
and (2,4). transformations are applied only to Q from one side,

Unlike the traditional approaches, which rely on so that all transformations generated by one sweep
BLAS-1 operations, this algorithm allows for the use can be applied to Q at the same time, since they in-

of BLAS-2 kernels. If one desires to accumulate the volve disjoint sets of rows or columns. That is, we
orthogonal transformations, one can apply the orthog- need not be concerned with the "same-sweep chasing

onal transformations in a matrix Q on the fly, using requirement" any more. Since transformations must
BLAS-2 kernels. If the size n of the matrix is much be applied to any particular column of Q in the same
larger than the semibandwidth b, however, the accu- order as they were applied to A, we still must satisfy
mulation of the orthogonal transformations is by far the column order and the successive-sweep chasing re-

the dominant portion of the work, since a Householder quirements. So even if we generate orthogonal trans-
update involving b rows of A requires only O(b 2) flops, formations in the usual order (1,1), (1,2), (1,3), (1,4),

*In the sequel, we assume that we always reduce vectors to (1,5), (2,1), (2,2),..., we can apply them to Q ina dif-
multiples of el, and omit this f_ct for brevity, ferent order, as long as it is consistent with the column
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Figure 3: Tridiagonalization Performance (including Figure 4: Performance of the Reduction and of the
Accumulation of Q) on a Single Node of the IBM SP1 Update on a Single Node of the IBM SP1

order and successive-sweep chasing requirements. For Q are separated. The former is not affected by the
example, if we assume that we reduced the first three blocking. We observe that the blocked update of Q

can almost run at the full speed attainable for ma-columns, and saved the associated transformations, as
shown in Figure 2, we can accumulate transforms, trix multiplication on that machine. This capability
tions (1, k), (2, k) and (3, k) into a block transforma- is especially important because the update of Q dom-
tion [5, 14], and apply them "bottom-up" as indicated inates for larger matrices. For example, for n = 1400
by the numbers in circles. The bottom-up approach and b = 105, the work on Q takes about 82% of the

is mandated by the successive-sweep chasing require- total time.
meat, and the antidiagonal gathering of transforma- A parallel implementation of this algorithm is in
tions then satisfies the column order requirement. In progress. In order to enhance data locality and reduce
general, if we use O(nb • n) workspace to save the communication requirements, the narrow-banded ran-
Householder transformations associated with the re- trix is replicated across rows of the two-dimensional

duction of nb columns, we can then use orthogonal logical process mesh. The orthogonal transformation
transformations with blocksize nb for the update of matrix Q is stored in the same 2-D block torus wrap
Q. Hence, the overall fraction of work performed in mapping as before. We also mention that, unlike the
this algorithm via block orthogonal transformations original code used in [13], we employ the same packed

3b., storage scheme as in LAPACK [1], which allows us
is (1 - n) and almost all work is performed using to formulate the packed storage block algorithm more
block orthogonal transformations in the case where A succinctly, and naturally employs BLAS-2 kernels. We
is large and the band is small, also mention that in addition to increasing the corn-

The performance of the serial code on a single node putational efficiency on each node, the use of block
of the IBM SP1 is given in Figure 3. For these timings, transformations also decreases the number of commu-
the "shape" of the matrix A was fixed, or precisely, the nication steps of the algorithm by a factor nb, which
ratio of bandwidth b to matrix size n was kept con- reduces the impact of memory latency.
stant at 3/40. For nb > 1, the update of Q was done
via block transformations, whereas nb = 1 refers to

updating Q on the fly. All computations were done in 4 Summary
double precision, and the performance data are based

on the standard flop count of 6bn 2 for the reduction We have presented an approach for reducing a ma-

of A and 2n3 for the update of Q. As can readily be trix to tridiagonal form through a particular instanti-
seen, the blocking leads to a significant improvement ation of the successive band reduction (SBR) frame-
in the overall performance, work. By first reducing the matrix to narrow band,

In Figure 4 the times for reducing A and updating and then applying a new blocked variant of Lang's



tridiagonalization algorithm, we arrived at an algo- Rep. ANL/MCS-TM-99, Mathematics and Com-
rithm that accomplishes the tridiagonalization and puter Science Division, Argonne National Labo-
the accumulation of the orthogonal transformations ratory, September 1987.
almost exclusively with BLAS-3 kernels, and also re-
duces data access and communication costs by a factor [9] G. H. Golub and C. F. V. Loan, Matrix Corn-
that is proportional to the block size• The techniques putations, The Johns Hopkins University Press,
presented in this paper are also directly applicable to 1983.

the reduction of matrices to bidiagonal form, the usual [10] R. G. Grimes and It. D. Simon, Solution of large,
condensed form employed for singular value decompo- dense symmetric generalized eigenvalue problems
sition algorithms, using secondary storage, ACM Transactions on

Mathematical Software, 14 (1988), pp. 241-256.
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