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• Nuclear Physics: Macroscopic Aspects

W.J. Swiatecki

Nuclear Science Division, Lawrence Berkeley Laboratory, 1 Cyclotron Road,
Berkeley, California 94720, USA

ABSTRACT

A systematic macroscopic, leptodermous approach to nuclear statics and
dynamics is described, based formally on the assumptions li _ 0 and b/R << 1,
where b is the surface diffuseness and R the nuclear radius. The resulting static
model of shell-co2Tected nuclear binding energies and deformabilities is accurate
to better than 1 part in a thousand and yields a firm determination of the
principal properties of the nuclear fluid• As regards dynamics, the above
approach suggests that nuclear shape evolutions will often be dominated by
dissipation, but quantitative comparisons with experimental data are more
difficult than in the case of statics. In its simplest liquid drop version the model
exhibits interesting formal connections to the classic astronomical problem of
rotating gravitating masses.

1. INTRODUCTION

The earth, as seen from a spaceship, may be described approximately as a
sphere. To apply this approximation to the description of the Alps would be
foolish nonsense. Yet the approximation is useful in the proper context. Using a
macroscopic approximation in nuclear physics is a little like saying that the earth
is a sphere. Thus, to pretend that a nucleus is like a macroscopic droplet of
nuclear matter' is only useful if you stand back far enough to be willing to
disregard shell effects and the quark-gluon structure of the nucleons themselves.
In a sense that means disregarding the most interesting aspects of nuclear
physics. Still, for some purposes it is useful to think of the earth as a sphere, and
of a nucleus as a droplet of nuclear matter.

" 2. THE LEPTODERMOUS IDEALIZATION

What is the formal approximation according to which a nucleus becomes a
droplet of nuclear matter? With some qualifications the answer may be stated as
the leptodermous idealization [1]. This states that the thickness b of the nuclear
surface is small compared to the nuclear radius R. More precisely, that the



presence of the surface is felt only in a region of limited thickness of order b. The
surface thickness is determined by the range a of nuclear forces, which is of the
order of the interF _ _icle spacing, i.e., of the radius constant r0. The radius
constant is itself of the order of the Fermi wavelength _,F of the most energetic
nucleon in the nucleus since, for a Fermi gas, _F = (8/9_)Y3r0 • Thus the formal
small expansion parameter in a leptodermous treatment is the dimensionless
ratio £, where

e = b/R o¢a/R o, ro/R o¢_F/R • (1)

The smallness of r0/R suggests an expansion of nuclear properties in powers of
A-1/3, since R = ro A1/3. The smallness of _F/R, if understood as implying formally
that l_ --, 0 (rather than that R -_ oo), leads to a semi-classical approach, such as
the Thomas-Fermi approximation, analogous to the Thomas-Fermi approximation
in atomic problems. (This approximation actually goes beyond the leptodermous
idealization, in that it is useful even ifb/R is not small [2,3].)

As usual, when one commits oneself to using a certain approximation, two
questions naturally arise:

1. What are the consequences?
2. What are the limitations?

The second is the more difficult one, since it involves estimating effects beyond
the idealization in question. Let us then start with the first question.

3. STATICS

If a system is truly leptodermous, the deviations from bulk behavior are
confined to a thin surface region and one expects an expansion in b/R to be useful.
Indeed, one can then write down the following expansion for the static energy of
the system [4]:

Relative Order

E = C1.4 _R 3 Volume Energy 1 A
3

+c2 _ dc Surface Energy b/R A2/3

+c3 _ Kdc_ Curvature Energy (b/R) 2 A 1/3

+c4 _ Fdo Gaussian Curvature Energy (b/R)3 A 0

+c 4 _ _:2dc_ Squared Curvature Energy (b/R) 3 A0

+ corrections that tend to zero as powers of A-1/3

+ non-local terms non-analytic in b/R, e.g., of the form e-R/b .

In the above the integrals are over the surface of the system, K is the total
curvature at a point on the surface (the sum of the reciprocals of the principal



radiiofcurvature,RI and R2) and r isthe Gaussian curvature lfRiR2. The

quantitiesci,...c4 are constantsindependentofthe system'ssizeand shape (but
dependent, in general,on the bulk density and composition of the nuclear
droplet).For standardnuclearmatterciisproportionaltothebindingenergy per

' particleand c2 isthe surfaceenergy per unit area. Ifthe binding energy per
particleistaken todepend quadraticallyon the relativeneutron excessaccording

. tothe expression-al + JI2,where I = (N-Z)/A,ifterms beyond the surfaceenergy
are neglectedand ifan electrostaticenergy ofa uniform charge distributionis
added, one obtainsthe standard Liquid Drop model of nuclear masses and
deformabilities.The model has four adjustableparameters: al, c2,J and ro.
(Alternatively,one may impose on rothe value deduced from measurements of
nuclear sizes.) If one wishes to go to the next order in A-1/3 and 12 consistently,
i.e., in such a way that all terms of this order are included in the energy, one is
led to the Droplet Model [5], based on the following hierarchy:

Order __._e:'

in A -1/3 __0"

Orderin A A2/3 i!_,

¢

g,//
o,og

This self-consistencyoftheDropletModel requiresthatthe neutron and proton
densitiesshoulddeviateslightlyfrom uniformityinthebulkand thatthey should
be bounded by two slightlydifferenteffectivesurfaces.The latterleads to the
appearance ofa neutron skin. Itturns out thatthe DropletModel has now nine
adjustableparameters,fivemore than the LiquidDrop model. The three most

• importantofthe new parameters are the compressibilitycoefficientK ofnuclear
matter,a coefficienta3 (proportionalto c3)determiningthe curvaturecorrection
tothe surfaceenergy,and a coefficientQ, determiningthe effectiveresistanceof

" the surfaceenergy againstthe formationofa neutron skin. In a nuclearmass
formula thiscoefficientisfound tocontrolthe dependence ofthe surfaceenergy
term on the neutronexcess(theso-calledsurfacesymmetry energy).



An even more ambitious macroscopic scheme is the Thomas-Fermi model
[2,3,6,7,8],which not onlygoesbeyond the DropletModel,but doessowith fewer
parameters (typicallysixorseven).The priceone pays forthisisthe lossofmuch
ofthe algebraicconvenienceoftheLiquidDrop orDropletmodels. #

What aresuch macroscopicmodels good for?There arethreeaspects:
1. The models areusefulina semi-empiricaldescriptionofthebindingenergies

ofnuclei,ofnuclearfissionbarriers(alsoathigh spin)and,more generally,they
providethe macroscopicpart ofthe deformationenergy in dynamical processes
such as fissionornucleus-nucleuscollisions.

2. The models are a toolfordeducing variouspropertiesofthe nuclearfluid
(e.g.,volume and surfaceenergies)by fittingthemodels'adjustableparametersto
experimentaldata.
3. Using the above information,the macroscopicmodels may then be used to

estimate the equation ofstateof nuclearand neutron matter in astrophysical
applications(neutronstars,supernovae explosions).This iswhere a macroscopic
treatmentistheonlyoptionavailable:you cannotuse a microscopicHartree-Fock
theorytodiscuss1057nucleonsina neutronstar.
Where do we stand today? Ground statebindingenergiesare accountedfor

very well by macroscopicmodels, within the expected deviationsdue to shell
effects. The principal properties of the nuclear fluid determined by fits to binding
energies are [9]" al = 16.2 MeV, a2 -4r:r2c2 -- 24MeV, J _- 33 MeV. When shell
corrections calculated according to the Strutinsky method are allowed for, the
RMS deviation between experimental and theoretical binding energies for some
1650 nuclei is about 0.67 MeV. A good part of this deviation is actually due to the
limited accuracy of the Strutinsky estimate of shell effects for light nuclei. If the
deviations for nuclei with N < 65 are left out, the RMS deviation in the remaining
region is only about 0.45 MeV [9]. This is 0.45 MeV out of a total binding energy
of some 1000 MeV for a medium heavy nucleus!

It is interesting that one can do almost as well with the Liquid Drop model,
without the Droplet Model refinements. But not quite. For some time there has
been evidence for a surface symmetry energy describable in the Droplet Model
using a value of the Q parameter equal to about 30 MeV (with considerable
uncertainty as to the precise value). More recently, evidence has also emerged in
fits to binding energies for a finite value of the compressibility coefficient K.
Figure 1, taken from Ref. 9, shows how the fit to ground state masses is improved
if one goes from a Liquid Drop model (with K = oo) to a Droplet Model with
K = 240 MeV. (See also Ref. 10.) As regards the third Droplet Model refinement
associated with the curvature correction to the surface energy, there is an
interesting puzzle [11]. Fits to binding energies are happiest without a curvature
correction term proportional to A 1/3, whereas various theoretical estimates
suggest a3A1/3, with a3 = 10 MeV. How serious this might be is brought out by
comparing calculated and measured fission barriers. (Because a deformed fission
saddle point shape has an integrated curvature considerably different from that
for a sphere, the curvature energy becomes relatively important.) Thus a recent
refined Thomas-Fermi model, fitted to nuclear ground state masses and sizes, and
which is characterized by a curvature correction coefficient a3 = 11 MeV, when
applied to fission, gives for 194Hg a shell-corrected barrier of 25 MeV where
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Figure 1. The top band in each panel shows the difference between measured
masses of nuclei and droplet model masses (upper panel) and liquid drop model
masses (lower panel). Lines connect isotopes of a given element. The middle
bands show the calculated Strutinsky shell corrections. The bottom bands show
the discrepancies between measured masses and shell-corrected droplet or liquid
drop masses. For lighter nuclei (with N g 64) the discrepancy is due mostly to the
limited accuracy of the shell correction. For heavier nuclei the improvement
brought about by the droplet model is largely due to the finite value of the
compressibility coefficient (K = 240 MeV). From Ref. 9.

measurements indicate 14 MeV [3]. By contrast, a model which (by construction)
has no curvature correction (and does not insist on reproducing nuclear sizes) can

. reproduce the measured fission barriers (of some 28 nuclei) to within about 1 MeV
[9]. Something is not understood here about the curvature correction and fission
barriers.

• A word about the still higher-order terms at the Ao level in the leptodermous
expansion. As a function of A they are constants. As a function of shape some of
them have a peculiar behaviour that could make them important despite their
relative smallness. Thus the term _(l!RiR2)dc_ is proportional to the Euler-



Poincar_ topological invariant. It is strictly independent of shape, and changes
only--but then suddenly--when the topology changes. Thus the above term is 4_
for a single fragment of any shape, 8_ for two fragments of any shape, zero for a
torus,etc. This causes problems ifsuch a term iskept in the binding energy
formula,which isthen used todescribefission.Thus, at the instantofscission,
thisterm would jump discontinuouslytotwiceitsvalue!An open problem ishow
such a term reallychangesinthe vicinityofscission,when the diffusenessofthe
nuclearsurfaceistaken intoaccount. There isthen no well-definedscission

point,but a fuzzedout scissionneighborhood.We shouldask mathematiciansto
work outforus a generalizedEuler-Poincardnear-invariantfordiffusesurfaces.
Strangelyenough thereisanotherterm atthe A 0 levelwith a similarunusual

behavior. Itisthe so-calledWigner term, which isoftenincludedin binding
energy formulae.Ithas the form W[ II,with W --30 MeV. There isevidencefor
such a term in the measured masses of the lighternuclei,and there are

theoreticalreasonstoexpectitspresence[5].The peculiardependence on [N-Z I
is a reflectionof the factthat the Wigner term has probably to do with the

number ofpairsofnucleonsinidenticalorbits.[Thinkofa group ofZ men and N
women paired offas dancing partners. The number of couples is N or Z,
whichever is less, and this can be written as 1/2(N+Z- IN-Z I)]. The Wigner I
term is formally of order A ° and, interestingly, the same dependence on shape
seems to be implied as for the topological A0 term: according to the simplest
model [5] there should be no shape dependence until scission, followed by a
sudden doubling. Since for a 264Fm nucleus we have I = 0.24, the predicted jump
at scission would be about 7 MeV. Again one needs a more careful analysis of
how such a schematic jump is washed out in the case of real nuclei.

Finally a word about the non-analytic term e-ye. Far from being an academic
curiosity it is this type of term which is responsible for the so-called proximity
interaction between the surfaces of two approaching nuclei, an interaction
essential for the description of nucleus-nucleus collisions [4,12]. But even in the
case of a single nucleus such a term is expr:cted to be present. Most of it can be
understood as resulting from a 'proximity' interaction of surface elements on the
opposite sides of a nucleus. The presence of such a term is nicely illustrated by
the (exact) formula for the interaction energy E of a prototype leptodermous
system consisting of a uniform density p inside a sphere of radius R, whose
elements interact via a Yukawa interaction of range a [13]"

E=alA-l+_(a/R)+O.(a/R)2-_ _(a/R) 1+ exp(-2R/a) . (2)

Here al is the appropriate volume energy coefficient and A = (4/3)_R3p. In
addition to the polynomial in (a/R) there appears a non-analytic term, exponential
in the ratio of the sphere's diameter to the range of interaction. The retention of a
term of this general type may be important in semi-empirical mass formulae, but
the problem needs further study. (Note: the vanishing of the curvature
correction term in Eq. (2) is not typical of more realistic models.)



4. A GLOBAL LOOK

Let us now forget all these higher order terms and go back to the I
incompressible liquid drop with simple surface and electrostatic energies, but /• generalizedtoincorporatea rotationalenergycalculatedby assuming a common
angular velocityforthe drop'smass elements. There are two dimensionless i

, parameters in thisidealizedgyrostaticproblem. They specifythe amount of
charge and the amount ofangularmomentum on the drop. They may be chosen
as the conventionalfissilityparameter x and therotationalparameter y,defined
as follows:

(electrostatic energy of spherical configuration)
X--

2 (surface energy of sphere)
(3)

(rotational energy of spherical configuration)

Y = (surface energy of sphere) "

One can now pose the following grand problem [14,15]: given a pair of values
(x,y), discuss the many-dimensional deformation energy landscape for such a
drop; in particular determine all the stable and unstable configurations of
equilibrium, i.e., minima, mountain tops, saddle-point passes with various
degrees of instability, etc.; repeat this exercise for all values of x and y, positive
and negative!

For x in the range 0 to 1 and small y, one is discussing idealized rotating nuclei
in the periodic table. The results are useful in interpreting fission barriers of
rotating nuclei and the existence of superdeformed spinning nuclei. See Fig. 2.
But what does' the rest of the x-y parameter space correspond to?

Negative x means that the repulsive electrostatic energy has been replaced by
an attractive gravitational energy. For x =-1/2 the gravitational and surface
energies are equal. For a globe of water this happens when the radius is about
10 m. So this regime of x-values would correspond, for example, to small
asteroids when in a molten state. (The number of molecules in such an object is of
the order of 10 33. You can readily verify by a dimensional argument that this is
the order of the ratio of the electromagnetic to the gravitational coupling constant
between molecules.) For still larger negative values of x the surface energy
becomes negligible, and at x _ --oowe make contact with the classic 19th century
problem of the equilibrium shapes of rotating, _avitating masses [16].

What about negative values of y? At first this sounds silly: a negative
rotational energy or an imaginary angular momentum? Actually, negative y
corresponds to nothing more exotic than bubbles in a uniformly rotating liquid.

" The mass of a bubble in relation to the surrounding medium is negative, and an
air bubble in a sealed glass cylinder filled with water and rotating about its axis
experiences a negative centrifugal force. With increasing angular velocity the

" bubble is drawn to the axis of rotation and assumes stretched-out prolate
configurations of equilibrium. These configurations are a continuation to
negative rotational energies of the well-known oblate Plateau shapes of rotating
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(a) _ Y = 0

(c) y = 0.09
x=O.6

Figure2.A pairofequilibriumshapes(groundstate,labeledH, and saddlepoint,
labeledPP) fora liquiddrop with fissilityparameterx = 0.6and rotation
parametery = 0,0.08,0.09.The casey = 0.09correspondsapproximatelytoa
superdeformedrare earthnucleusrotatingabout the verticalaxiswith an
angularmomentum ofabout85h. In thiscasethe two shapes shown have
approximaterotationalsymmetryaboutthehorizontalaxis.From Ref.14.

globes with surface tension (most conveniently studied in spaceships). When the
bubble is in a gravitating or uniformly charged liquid the system corresponds to
negative y and positive or negative x-values. (See Fig. 3)

Suppose we now calculate, for a given x,y, the set of equilibrium shapes that
make the energy stationary. Suppose we label the n-th shape with some
characteristic quantity, say its maximum extension Ln. Considered as functions
of x and y these quantities Ln(x,y) trace out sets of two-dimensional surfaces. If
one of the parameters is frozen, for example if y is taken to be zero, we will have
sets of curves depending on x. Figure 4 shows what some of these curves look like
for x > 0. When the extra dimension y is added to the plot, the curves become
families of surfaces that fold and cross in intricate ways. There are useful general
rules which relate the degrees of instability of the equilibrium shapes that come
together at the folds or crossings (Poincar4's rules of'exchange of stabilities') [17].
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Figure 4. The connections between different families of equilibrium shapes can be
illustrated by plotting some characteristic quantity (in this case one of the semi-
axes) against one or more parameters specifying the system (in this case the
fissility x, with y held fixed at zero). Figure based on Refs. 25-27 and
unpublished work.



Imagine now that we project the locations of the folds and crossings onto the x-y
plane. This divides the x,y parameter space into several domains with different
physical meanings, as illustrated in Fig. 5. [The projections obey (for the most
part) the canonical rules of'Catastrophe Theory" [18], but some generalization of
the standard rules appears necessary.]

This somewhat abstract global way of generalizing the rotating nuclear liquid
drop problem has, among other things, shed new light on the classic discussions of
idealized astronomical masses studied through the centuries by Newton, Jacobi,
Riemann, Poincar_, Darwin, Jeans, Lyapunov, Appell, and, more recently, by
Chandrasekhar [16] and others. Figure 6 summarizes what was known until rel-
atively recently about the locations of the most important families of astronomical
equilibrium configurations, and indicates an attempt to relate them to each other
and to a further set of"ghost families" required to avoid loose ends [15].

Figure 5. The regimes in the space of the fissility and rotational parameters x
and y where the ground-state equilibrium shapes are oblate or triaxial. With
increasing angular momentum these shapes disintegrate by loss of stability to a
triaxial deformation if 0.73 g x < 1, by loss of equilibrium to symmetric necking if
-0.4 _ x _ 0.73 and by loss of stability to asymmetric necking if -oo < x _ -0.4.
From Ref. 15 supplemented by Ref. 28.
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Figure 6. The major semi-axes Rmax of rotating equilibrium shapes of uniform
gravitating masses, plotted as a function of angular momentum squared. The
right hand side shows how the conventional picture on the left may be completed
by using insights gained from a global analysis that includes rotating idealized
nuclei. A "ghost" is a conventional rotating configuration accompanied by a
vanishingly small satellite in synchronous orbit. (Ref. 15.)

5. WHEN IS THE MACROSCOPIC APPROACH JUSTIFIED?

Afterthisdigression,back tothe dropofnuclearmatter and tothesecond,more
difficultquestion: When isthe macroscopic,leptodermous approach justified?
The crucialapproximationsare ti--_0 (no shelleffects)and the localizationof
surfaceeffectsto a thinlayer,b << R. For an ordinaryliquidwhere both the
range ofinter-molecularforcesand the molecularmean freepaths areshort,such
a localizationiswelljustified.But inthe caseofa nucleusthe situationismore
subtle.The range ofthe nuclearforceisindeedsmall,but the mean freepath is
longratherthan short.Does thatpose a problem? Itdoes indeed,ifthe nuclear
mean-fieldpotentialissuch thatthe nucleonicmotions are integrableor nearly
integrable.(A dynamical system isintegrableifthereare as many constantsof
motion as degrees offreedom. Examples: a particlein a rectangularbox, a
sphericalor spheroidalbox,a harmonic oscillatorpotential,isotropicornot.)In
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such cases each particle has encoded in its behavior knowledge of the constants of
motion that it has to respect. This means knowledge of a global property of the
potential well. It is then unlikely that the properties of a fluid made up of such
particles can be described by reference to localized surface conditions.

At the other extreme from integrable dynamics is chaotic dynamics,
characterized by exponential sensitivity to initial conditions. In that case there is
nothing special about any particular shape of the potential, and one shape is as
good as another so long as it stays away from the subset of near-integrable
configurations. In that case an averaged, leptodermous, macroscopic treatment
might be relevant even when the mean free paths are long. These expectations
are borne out by numerical studies of classical or quantal particles in various
potential wells. As regards the static deformability of such systems the
macroscopic-leptodermous approximation is found to be extremely good. Large
deviations are indeed present for assemblies of particles whose dynamics is
integrable, but even then the average deformability of the assembly is well
described by the leptodermous expansion [1,19].

The net result is that we are now in possession of a semi-empirical description
of the average static energy and deformability of a nuclear drop, based on the
leptodermous expansion which, when corrected for shell effects, is accurate to
better than an MeV- except near scission, where there are questions left
unanswered.

6. DYNAMICS

Now we come to a new problem: can we say something equally simple about
the dynamic properties of a nuclear drop, when the drop's shape is changing in
time, as in fission or in nucleus-nucleus collisions? In particular, let me focus on
the dissipative resistance to shape changes or, equivalently, on the rate Of energy
dissipation that would be expected when a nuclear drop is changing its shape at a
given rate. Let us again make the following idealizations: macroscopic (ti _ 0),
leptodermous (b/R<<l), together with the assumption of long mean free paths and
chaotic nucleonic motions. Taken literally, these assumptions mean that we are
dealing with a gas of independent point particles in the classical limit, moving
chaotically in a slightly diffuse potential well. The well is now made to change its
shape (at fixed volume) and the questions is: what is the dissipative resistance
against this change or, equivalently, at what rate is the gas being heated up?

Since the potential well is fiat in the bulk, the only transfer of energy from the
wall motions to the particles takes place in a thin surface region. (This remains
true even if the particles are quantized!) This immediately suggests that one
should be able to write down the rate at which the gas is being heated up, dE/dt,
as an expansion in b/R, analogous to the leptodermous expansion of E itself.

The result is the following dynamic analogue of the static leptodermous
expansion [20,21]:

12



Relative Order

d__EE= kl (volume integral) = 0 --
dtQ

+k2§n2do Wall formula b/R A 2/3

, +k3§ fl2t_d_ Curvature correction (b/R) 2 A 1/3

+ k4 _ fi2Fd_

+k_ _ fi2_2d_ Higher-order corrections (bfR) 3 A °

+kg}(grad/l)2do

+ corrections that tend to zero as powers of A-1/3

+ non-local (correlation)terms.

In the above,/1 specifies the normal speed of the deforming surface at the point in
question, and grad fl is the two-dimensional gradient of fl considered as a
function of position on the surface. The leading term in the leptodermous
expansion is the "wall formula" for dissipation. The coefficient k2 is the nuclear
mass density p times the mean nucleonic speed v

k 2 = pv = (27 / 32 _ )(_ / 3) y3 (ti / r4 ) = 1.0 x 10 -22 MeV sec fin-4. (4)

Estimates of ks suggest k3/k2 = i fro. These values follow "from first principles" in
the idealized model specified earlier. One could, however, regard the coefficients
as (someWhat) adjustable parameters, in analogy with the semi-empirical
approach to nuclear binding energies.

The numerical value of k2 turns out to be such that in many cases nuclear
dynamics would appear to be dominated by dissipation, i.e., inertial terms in the
equation of motion should be negligible [22]. Let us then combine the lowest
order (liquid drop) potential energy with the lowest order dissipation term (the
wall formula) to obtain an equation of motion for the way the shape of an
idealized nucleus would be expected to change with time. Imagine the
displacement of the surface in time 5t to be specified by 5n. The energy dissipated
is

dE

5E = -_-St = pv_ fiSnd(_. (5)

The change in the sum of electrostatic and surface energies is

5 (Potential Energy) = Pe _ ¢Snd(_ + T_ _:Sndo, (6)

13



where Pe is the charge density, _ the electrostatic potential on the surface and
T(-ffic2)is the surface energy per unit area. (I have made use of well-known
expressions from electrostatics and analytical geometry of surfaces.) By
conservation of energy the sum of Eqs. (5) and (6) should be zero for volume
preserving deformations. This implies that

pvn + Pe_ + T_ = constant. (7)

Taking the surface average of this equation determines the constant as Pe_ . T_-
(Bars denote surface averages. The surface average of fl is zero by volume
conservation.) There follows a delightfully simple equation of motion

dn
--= P/pv, (8)dt

where P = Pe(_-¢)+(_-_) is the pressure excess at a point on the surface due to
the imbalance between electric and surface tension forces, and pv is the constant
given by Eq. (4).

This type of equation of motion, generalized for the presence of overall
translations or 'drifts' and for the presence of necked-in shapes (when a 'window
dissipation' appears), has been used in numerous studies of fission and nucleus-
nucleus collisions [22,24]. Figure 7 shows the kinetic energy released in fission j
for nuclei ranging from medium to heavy. The calculation--without the
adjustment of any parameters--reproduces the measurements fairly well. The
upper curve in Fig. 7 shows what happens when the dissipation is switched off,
and the lower curve the result of a calculation with a large viscosity of the
conventional ('two-body') kind, appropriate for fluids consisting of particles with a
mean free path short rather than long compared to the size of the system. By
adjusting such a viscosity arbitrarily one could reproduce the measurements, but
a short mean-free-path assumption is not appropriate at low nuclear
temperatures. Figures 8 and 9 show other comparisons between the one-body
(i.e., wall formula) dissipation and the two-body viscosity applied to the study of
ternary fission.

The idealized dynamics represented by Eq. (8) (with refinements for drifts and
constrictions) has also been applied to nucleus-nucleus collisions [23,24]. In
particular, it has been used to study what happens when for two sl_fficiently
heavy nuclei the Coulomb r_ulsion at contact is so large that the nuclei do not
want to fuse and, after a period of amalgamation as a binary or 'composite'
system, they reseparate. In such cases an extra push over and above the Coulomb
barrier is required to form a compound nucleus. The strength of this extra push
and the rate at which it grows with increasing size of the colliding nuclei should
reflectthe strength of the dissipative forces (which tend to reduce the efficacy of
the extra collision energy in inducing fusion). Of the many comparisons between
experiment and the macroscopic dynamic theory outlined above I have chosen
Figs. 10 and 11. The former confirms the existence of the extra push
phenomenon, but suggests that the idealized calculations, as they stand, predict a
steeper increase of the extra push than is observed experimentally and that shell

14
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Figure 7. Fission fragment ]dnetic energies are compared with predictions of a
liquid drop mode] incorporating a very large conventional (two-body) viscosity or
one-body dissipation. (Ref. 22.)

effects play an important role. Figure 11, taken from the extensive comparisons
of experimental data with the one-body dissipation theory in Ref. 24, suggests
that the rate of mass transfer between two unequal nuclei in contact is roughly
that predicted by theory. See also Ref. 23.

7. SUMMARY

I described an extreme macroscopic, leptodermous approach which considers
• the nucleus to be a droplet of a nuclear fluid. All structure effects are

disregarded, or incorporated later as separate contributions. There are two
aspects to the problem: static and dynamic. The static macroscopic model based
on the leptodermous expansion with adjustable parameters is extremely

15



i

A = 400, Z = 160

o- 0 0 0 - o
I

__..1- 0 0 0 -5

0 "-, 2 - _ _ 10 TM,

O O

3- _ _ O -15""0,.) (D
E C-_=-z-----'_ ", E

i-= 4- O -_ _ - 20 i-.7-

5 - "-'""- .... ( --'"--'< '"" - 25

6 - # = 0 0.02 TP One-body - 30
Two-body viscosity dissipation

7 35

Figure 8. The difference between conventional (two-body) viscosity and one-body
dissipation is illustrated by a liquid drop study of a hypothetical super-heavy
nucleus. The conventional viscosity coefficient of 0.02 terapoise was adjusted to
reproduce fission-fragment kinetic energies. Note the short time scale and the
prediction of a well-developed third fragment at scission in the case of fission with
conventional viscosity. (Ref. 29.)

successful. It describes shell-corrected nuclear deformation energies to within an
MeV or better, except near scission, where there are problems. Using this model
the major bulk and surface properties of the nuclear fluid have been determined,
and estimates of secondary (droplet model) refinements have become available,
except for the curvature correction coefficient, which remains a puzzle.

The dynamic macroscopic model makes an interesting qualitative prediction
about nuclear dynamics being dominated by dissipation when the nucleonic
motions are chaotic. When used in its extreme idealized form, without the
adjustment of any parameters, the model is sometimes reasonably successful, but
in one instance at least there is an indication that the unadorned wall formula
may be overestimating the dissipation in nucleus-nucleus collisions.

In contrast to the statics, where the Strutinsky method has provided a good
estimate of shell effects, the incorporation of quantal and shell effects into the
macroscopic dynamics--in a simple way--has not progressed very far.
One might, in fact,say that the outstanding challenge is to develop a

reasonablysimplemacroscopic-microscopictheoryofnucleardynamics analogous
tothesimilartheoryofnuclearstatics. o
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Figure 9. Using conventional viscosity one would predict that nuclei near the end
of the periodic table would typically fission with a measurable amount of matter
released between the main fragments at scission. With one-body dissipation
ternary fission would not occur until much higher masses. (Ref. 29.)
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' Figure 10. A schematic liquid drop model with one-body dissipation predicts that
when a certain 'mean fissility' Xm exceeds a value near 0.72 a rapidly increasing

, 'extra push' energy in excess of the Coulomb barrier is needed to make the nuclei
fuse. Experimental data appear to deviate significantly from this prediction. (For
x _ 0.7 measurements, shown schematically as dots, are consistent with zero
extra push.)
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Figure11. When the angleofrotationina quasi-fissionreactionisused as a clock

tomeasure therateatwhich mass flowsfrom a U targetintovariousprojectiles,a
time scalemay be establishedfor thistype of asymmetric collectivedegree of
freedom. The resultsare in semi-quantitativeagreement with a liquiddrop
model incorporatingone-bodydissipation.(Ref.24.)

REFERENCES

1. C.F.Tsang,"Inthemicroscopicand macroscopicaspectsofnuclearstructure

with applicationsto superheavy nuclei,"Ph.D. thesis,Lawrence Berkeley
LaboratorypreprintUCRL-18899, May 22,1969 (unpublished).

2. W.D. Myers and W.J.Swiatecki,Annals ofPhys. 204 (1990)401.
3. W.D. Myers and W.J.Swiatecki,Annals ofPhys.211 (1991)292.

4. J.Blocki,J.Randrup, W.J. Swiateckiand C.F.Tsang, Annals ofPhys. 105
(1977) 427.

5. W.D. Myers, Droplet model of atomic nuclei (IFI/Plenum, New York, 1977).
6. A.K. Dutta, J.-P. Arcoragi, J.M. Pearson, R. Behrman, and F. Tondeur, Nucl.

Phys. A458 (1986) 77.

18



7. F. Tondeur, A.I_ Dutta, J.M. Pearson, and R. Behrman, Nucl. Phys. A470
(1987) 93.

8. J.M. Pearson, Y. Aboussir, A.K. Dutta, R.C. Nayak, and M. Farine, Nucl.
Phys. A528 (1991) 1.

' 9. P.MSller,J.R.Nix,W.D. Myers,and W.J.Swiatecki,"NuclearGround state
masses and deformations,"Los Alamos preprintLA-UR-93-3083,Aug. 16,

. 1993,submittedtoThe AtomicData and NuclearDataTables.
10. P.MSller,J.R.Nix,W.D. Myers,and W.J.Swiatecki,Nucl.Phys.A536 (1992)

61.

11. W. Stocker,J.Barrel,J.R.Nix and A.J.Sierk,Nucl.Phys.A489 (1988)252.
12. J.Blockiand W.J.Swiatecki,AnnalsofPhys.132(1981)53.
13. R.W. Hasse and W.D. Myers,"GeometricalRelationshipsofMacroscopic

NuclearPhysics,"Springer-VerlagBerlinHeidelberg,1988,p.9.
14. S.Cohen,F.Plasil,andW.J.Swiatecki,AnnalsofPhys.82 (1974)557.
15. W.J. Swiatecki,"The rotating,chargedor gravitatingliquiddrop,and

problemsinnuclearphysicsand astronomy,"Proc.InternationalColloquium
on Drops and Bubbles,CaliforniaInst.ofTechnologyand JetPropulsion
Lab.,28-30Aug. 1974,p.52;LawrenceBerkeleyLaboratorypreprintLBL-
3363,Aug.1974.

16. S. Chandrasekhar,"EllipsoidalFiguresofEquilibrium,"Yale University
press,1969.

17. P.Appell,"Trait_de M_chaniqueRationelle,"Gauthier-Villars,Vol.4,Paris
1932.

18. R.Thorn,"ParabolesetCatastrophes,"Flammarion,1983.
19. W.D. Myersand W.J.Swiatecki,Nucl.Phys.81 (1966)1.
20. J.Randrup and W.J.Swiatecki,AnnalsofPhys.124(1980)383.
21. W.J.Swiatecki,Progr.Part.Nucl.Phys.4 (1980)383.
22. J.Blocki,Y. Boneh,J.R.Nix,J.Randrup,M. Robel,A.J.Sierk,and W.J.

Swiatecki,AnnalsofPhys.113(1978)330.
23. W.U. Schr_derand J.Huizengain "Treatiseon Heavy IonScience,"D.A.

Bromley,ed.,Plenum,1983,Vol.2,Chapter3.
24. W.Q. Shen,J.Albinski,A. Gobbi,S.Gralla,K.D.Hildebrand,N. Herrmann,

J.Kuzminski,W.F.J.Miiller,H. Stelzer,J.TSke,B.B.Brack,S.Bjcrnholm,
and S.P.Scrensen,Phys.Rev.C36 (1987)115.

25. S.Cohen and W.J.Swiatecki,AnnalsofPhys.19(1962)67.
26. W.J.Swiatecki,"TheSurfaceEnergy ofNuclei,"Ph.D.thesis,Universityof

Birmingham,1949.
27. W.J.Swiatecki,PhysicaScripta28 (1983)349.
28. W.J.Sierk,Phys.Rev.C33 (1986)2039.
29. N. C_rjan,A.J.Sierk,and J.R.Nix,Nucl.Phys.A452 (1986)381.

19



/./,/ IT/
// l/




