Association for Information a

7,
N

nd Image Management
e, Suite 1100

Avenu
Silver Spring, Maryland 20910

1100 Wayne

301/587-8202

Centimeter

10 11 12 13 14 15 mm

9

8

2 3

1

25

22

20

18

!
I

= ||
l

I

=
3.2

==

==

| 28

I

Inches

L0

it}

I

125

I

MANUFACTURED TO AIIM STANDARDS
BY APPLIED IMAGE, INC.

‘ SANOIYS - 1228

Conb-9411)9__2.

Split-C and Active Messages under SUNMOS on the Intel
Paragon

Rolf Riesen* Arthur B. Maccabe!
April 1994

Abstract

The compute power of the individual nodes of massively parallel systems increases
steadily, while network latencies and bandwidth have not improved as quickly. Many
researches believe that it is necessary to use explicit message passing in order to get the
best possible performance out of these systems. High level parallel languages are shunned
out of fear they might compromise performance.

In this paper we have a look at one such language called Split-C. It fits into a middle
ground between efforts such as High Performance Fortran (HPF) and explicit message
passing. HPF tries to hide the underlying architecture from the programmer and let the
compiler and the run time system make decision about parallelization, location of data,
and the mechanisms used to transfer the data from one node to another. On the other
hand, explicit message passing leaves all the decision to the programmer. Split-C allows
access to a global address space, but leaves the programmer in control of the location of
data, and offers a clear cost model for data access.

Split-C is based on Active Messages. We have implemented both under the SUNMOS
operating system on the Intel Paragon. We will discuss performance issues of Split-C and
make direct comparisons to the Thinking Machines CM-5 implementation. We will also
scrutinize Active Messages, discuss their properties and drawbacks, and show that other
mechanisms can be used to support Split-C.

This work was supparted by the United
States Department of Energy under
Conirict DE-ACN4-94ALR5000,

*Organization 1424; Sandia National Laboratories; Albuquerque, NM 87185-1109; . email:
rolf@cs.sandia.gov

tDepartment of Computer Science; The University of New Mexico; Albuquerque, NM 87131 email:

maccabe@cs.unm.edu

DIEWBUTION OF THIS DOCUMENY IS UNLIMITED

1 Introduction

There are many proposals and suggestions
on how to “best” program massively parallel
machines. Depending on the goals of soft-
ware developers and end-users, “best” can
take on several and, unfortunately, contra-
dictory meanings. Most tradeoffs are be-
tween performance and ease of use. Mas-
sively parallel systems are the current state
of the art and are priced accordingly. It
would therefore be wasteful not to utilize
these systems to the highest degree possible.

Split-C, in the spirit of the C programming
language, gives full access to the hardware
and the available resources, while providing
an extra level of abstraction. With Split-C, a
programmer doesn’t have to worry about ex-
plicit message passing anymore. At the same
time the structure of the distributed memory
is not hidden, and lets developers optimize
algorithms and control the location of each
data item.

In this paper we explore the price of this
convenience. We have implemented active
messages (AM), the foundation of Split-C,
under the SUNMOS operating system for the
Intel Paragon. This gives us the opportu-
nity to measure the performance of AM and
Split-C programs and compare them to re-
sults published earlier for the Thinking Ma-
chines CM-5 [vECGS92] [CDG193].

Specifically, we are interested in the ef-
fect of the low latency and low bandwidth
network of the CM-5 on user level applica-
tions, versus the comparatively high latency
and high bandwidth network of the Intel
Paragon.

The paper is structured as follows. In the
next section we give some background infor-
mation about Split-C, AMs, the CM-5, the
Intel Paragon, and SUNMOS. In section 3 we
explain the steps and decisions we made to
bring Split-C and AMs to the Intel Paragon.
Section 4 directly compares the CM-5 imple-
mentation with ours. We give exact numbers

for sending and receiving AMs as well as reg-
ular messages, and measure an application
program running on the CM-5 and the Intel
Paragon. In section 5 we discuss the pros and
cons of AMs, based on our experience with
them on the Intel Paragon. Section 6, finally,
closes the paper with some conclusions and
ideas for further work. '

2 Background

Split-C [CDG*93] is a superset of the C pro-
gramming language. The main feature is
access to a global address space distributed
among the processors of a massively paral-
lel machine. The language differentiates be-
tween global and regular pointers. Derefer-
encing a global pointer is more costly than
dereferencing a regular pointer, since it will
result in a remote data request, if the data
is residing on another node. In contrast to
languages such as High Performance Fortran
(HPF), it is always clear whether data is lo-
cal or remote. Therefore, a programmer can
make decisions based on a clear cost model
for memory references.

Split-C gets its name from the possibility
of split-phase access to remote data. That is,
through the use of special assignment opera-
tors a remote data access can be initiated and
then completed in the background, while the
program continues processing. At the point
where the data is actually needed, a sync op-
eration is performed to ensure the data has
arrived. If the data is not available yet, sync
will block until the data arrives. The follow-
ing code fragment illustrates this:

double *global gPtr;
double local, x;

/* Split phase assignment */
local:= *gPtr;

/*

** other processing... state of

%% "local" unknown.
*/

sync();

/%

*x The global value pointed to by
*% "gPtr' is now available in the
** variable '"local".

*/

x = local * 3.0;

The advantage over explicit message pass-
ing is, that the node holding the data does
not have to explicitly synchronize with the
requesting node. There is no need to antici-
pate and receive the request. This simplifies
programming parallel systems greatly.

To accomplish this, Split-C uses active

messages (AM) [VECGS92]. An active mes-

sage consists of a function address and up to
four 32 bit parameters. The node receiving
the AM will execute the function specified
and pass it the parameters. The functions
executed, called AM handlers, are intended
to be short and are used to send requested
data back, update counters, or store data
on the remote node. AMs are quite flexible
and can be used to implement other message
passing schemes or can serve as the founda-
tion for parallel languages. ‘

The fundamental property that makes
AMs possible, is that the application and
the environment are homogeneous. All nodes
have the same physical characteristics and
the programs running on them are the same.
This means that the start address of a spe-
cific function is the same on all nodes the ap-
plication is currently running on. The same
is true for statically allocated data objects.
This makes it possible to determine the ad-
dress of a variable on one node and read that
address on another node to get the value of
the same variable on the remote node.

The Split-C compile: and library are avail-
able via ftp from the University of California
at Berkeley. The compiler is based on gcc
and has been ported to a variety of architec-
tures.

The original implementation of Split-C ran
on a Thinking Machines CM-5. The CM-
5 uses Sparc microprocessors as its node
computing elements. Optionally, four vector
units per node can be installed to enhance
floating-point performance. The topology
connecting the nodes is a fat tree. Access to
the network can be done from the user level;
no traps into the kernel are required. This
makes very low latencies below 10us possi-
ble. The bandwidth of the data network is
between 5 MB/s and 20 MB/s, depending
on the “distance” between the communicat-
ing nodes. This is low compared to the Intel
Paragon [PJ92] [BEK93].

Timing studies for this report were per-
formed on an Intel Paragon XP/S. The
individual nodes are connected in a two-
dimensional mesh. The achievable band-
width of the network in our configuration is
175 MB/s peak. Each node consists of two
i860-XP microprocessors and 16 MB or 32
MB of memory.

The vendor supplied operating system for
the Paragon is OSF1/AD using the Mach
microkernel. Our implementation of Split-
C and AMs runs under the Sandia and Uni-
versity of New Mexico (SUNMOS) operat-
ing system. SUNMOS can replace OSF on
the compute nodes and offers much higher
network bandwidth and lower latency than
OSF. SUNMOS consumes less than 2% of
the available physical memory and is there-
fore well suited to run applications requiring
large ammounts of physical memory [Int92]
[BEK93].

3 Implementation

We have modified the SUNMOS kernel to
send and receive active messages. Sending an
AM is very similar to sending a zero length
message, since there is no data packet. The
format and length of an AM is always the
same, so we were able to pack the function
address, sixteen bytes of parameters, as well
as the parameter types and the source node
rank into the message header. Figure 1 de-
picts an AM header.

4 Bytes
OSF Type

OSF Source OSF Length
Function Address

Argument 1

Argument 2

Argument 3

Argument 4

Parameter Types

Figure 1: Active Message Header

The original AM implementation on the
CM-5 exploits the fact that the Sparc CPU
uses the same type of register to pass inte-
gers and floating-point numbers to functions.
The calling conventions for the i860 CPU
require that the type of the arguments is
known on the receiving node. We encode the
type in the last word of the message header.
Opposed to the CM-5, accessing the commu-
nication hardware requires a trap into the
kernel.

Any message arrival causes an interrupt
on the receiving node. For AMs the kernel
sets up a new context to run the AM han-
dler. Instead of returning to the user level
where the interrupt occurred, execution con-
tinues in the AM handler. When it is done,
execution resumes where the interrupt oc-
curred without another trap into the kernel

(the original context can be restored at the
user level). If an AM handler is already run-
ning, the kernel queues new arrivals until the
current handler finishes. Therefore, AM han-
dlers execute atomically with respect to each
other. Figure 2 shows the timing diagram for
active messages under SUNMOS on the Intel
Paragon.

Most of the time in porting Split-C to
SUNMOS and the Intel Paragon was spent
retargeting the compiler for the i860 and
rewriting the Split-C library. The original
library is very much CM-5 oriented and has
to deal with the idiosyncrasies of that archi-
tecture. For example, messages are limited
to a length of six words (24 bytes) including
the destination address. Also, care has to be
taken choosing the correct network to avoid
the possibility of deadlock. Unfortunately,
many of these aspects are visible through the
AM layer and make it rather tricky to port
AMs to anotlier architecture.

Since we were striving for the best possi-
ble performance, we removed all CM-5 de-
pendencies in the library, as long as it did
not require a change to the Split-C compiler.
AMs were only used where necessary and
we took advantage of specific SUNMOS fea-
tures wherever performance or convenience
demanded it. For example, a bulk.get call
results in the posting of a non-blocking re-
ceive and an AM to the node that currently
owns the data. The AM handler on the re-
mote node then sends the data using the
SUNMOS send primitive. When the data ar-
rives on the receiving node, the kernel incre-
ments a flag as part of the receive operation.
Thus, there is no second message required to
notify the receiving node that the data has
arrived.

The mechanisms in the kernel are very
much like the ones used to implement sig-
nals and hrecv. As a matter of fact most
of the code is shared and conditionals make
sure execution continues at the correct place.

time 0

70 80 90

100 110 120 130 140 150 160 170 180

Sender

ettt
47 micro sec.
e
T =
N ¢ . user level
))
Send AM
trap / . kernel level
/ restore
85 micro sec 28
L > e
& >
Lol ____S
Receive and {"\
schedule AM / AM handler

/\
Receiver interrupt

user to user latency = 110 micro sec

<

Figure 2: Active Message Timing

The Intel NX call hrecv, is a preposted re-
ceive. When a matching message arrives,
a user specified signal handler is activated.
In a sense they are very similar to AM, ex-
cept that the receiving node determines what
function gets executed. The hrecv call could
be used to implement AM. A program starts
by preposting a hrecv with a pointer to an
AM dispatcher. When an AM arrives, the
dispatcher gets activated which then calls
the function specified by the AM. When the
function returns the dispatcher preposts an-
other hrecv, so the arrival of the next AM
reactivates the dispatcher again.

By taking advantage of SUNMOS features
in our version of the Split-C library we were
able to support Split-C with only one of
the forty or so functions of the CM-5 AM
layer. Furthermore, we have plans to elim-
inate AMs altogether and port Split-C to
Puma[WMR*94] [MW93]. Puma, the suc-
cessor of SUNMOS, offers openings into a
user program'’s address space, called portals.
AMs are used by Split-C mainly to store and
retrieve data from remote nodes. Portals of-
fer that functionality and are faster than the
current implementation of AM under SUN-
MOS. The reason is, that the Puma kernel
will handle the request without first passing

control to the user level.

4 Performance

Figure 2 shows the timing diagram for send-
ing and dispatching an AM under SUNMOS.
In [VECGS92] the authors report a time of
1.6us to send an AM on the CM-5. That is
about thirty times faster than the SUNMOS
number of 47us. The need to trap into the
kernel to access the communication hardware
is responsible for the overhead.

The situation on the receiving end is, at
first sight, even worse. Eicken, Culler, et al.
report 1.7us to dispatch an incoming AM.
That is about a tenth of the time it takes to
save context in SUNMOS when an interrupt
occurs. However, the main reason this can
be done so quickly on the CM-5 is that the
AM layer polls for incoming messages. For
benchmarking purposes it is easy to setup
a scenario where an AM gets received and
dispatched in record time, due to the fact
that the receiver was ready and waiting for
the incoming message.

In order to see how AMs really perform we
have to turn to applications that use them.
Matrix multiply is a favored benchmark in
the scientific computing community. Tt is

Matrix Multiply

3000

TT

2500

2000
SUNMOS »—
CM-5 --—

1500

MFLOPS

1000

CM-5 peak \

'y L

A

'y (] L

16 32

Figure 3: Matrix multiply on 64

the basis or part of many algorithms and its
performance is a good indicator for a cer-
tain class of applications. The Split-C dis-
tribution from UCB comes with the example
program mm. The matrices are subdivided
into blocks and distributed among the avail-
able processors. A hand coded assembly rou-
tine is responsible for multiplying individual
blocks on each node. The Split-C function
bulk.get is used to transfer blocks between
nodes. Results for the CM-5 have been re-
ported in [CDG%93] and are reproduced in
Figure 3.

The test was run on 64 nodes without vec-
tor processing units. Each of the three matri-
ces A, B, and C consist of 8 x8 blocks. The z
axis of the graph shows increasing block sizes
from 8 x 8 to 1024 x 1024 double precision
floating-point numbers. The y axis measures
the total number of Million Floating Point
Operations per Second (MFLOPS) the pro-
gram achieved.

64 128
Block Size N

256 512 1024

nodes. Each matrix is 8x8 blocks.

In order to run this program under SUN-
MOS, the assembly code had to be replaced.
We chose to use the BLAS library function
dgemm, available for the Paragon, as a re-
placement. The function expects the ma-
trices in Fortran style format (column ma-
jor order). Therefore, we have to transpose
the blocks before and after the call to dgemm.
The timings in Figure 3 for the SUNMOS
version of mm include the transpose times.
The mm program requires the storage of two
blocks on each node in addition to the stor-
age requirements for part of the three ma-
trices A, B, and C. Since each node has
only 32 MB of memory, we were not able to
fit the required portions of the 8 x 8 blocks
with 1024 x 1024 elements onto our nodes.
Note that it would be possible to fit 16 x 16
blocks of size 512 x 512. However, this would
skew the direct comparison, and we have it
left out for that reason.

Communication overhead in mm is low, and

the astounding performance of the Paragon
is mainly due to the floating-point per-
formance of the i860-XP. The more than
ten times faster network bandwidth of the
Paragon helped to speed up the transfer of
the larger blocks.

On the CM-5, AMs are used at the low-
est level and other message passing mecha-
nisms are built on top of it. We believe that
this is not a generally acceptable practice.
To confirm our suspicion, we measured the
transfer time of a 16 byte message. That is
the amount of data that is transferred by a
single AM. Figure 4 shows the result.

The timings for an AM and a 16 byte
transfer are very similar. It costs less to send
an AM since no checking of the parameters
is needed. The four arguments are passed by
value and the function address is presumed
to be valid. The Memory Management Unit
(MMU) of the receiving node will prevent ex-
ecution of codc that is not in the user’s ad-
dress space. The regular send needs to make
sure that the sending process has read ac-
cess to the 16 bytes. However, the savings
are dwarfed by the time it takes to trap into
the kernel and to send the data.

To simply receive a 16 byte message is even
faster than dispatching an AM, since process-
ing the AM takes time and an additional con-
text save and restore is needed for the AM
handler. One could argue that the prepost-
ing of the receive has to be taken into account
also, which would swing the pendulum back
in favor of AMs again.

The hardware of the Intel Paragon trans-
fers larger packets at a higher bandwidth
than smaller ones. It is also easier to amor-
tize the high startup cost of sending a mes-
sage, when several data items are grouped
and transferred together. The program mm
does a good job at that. Using AM as a low-
est level layer on the CM-5 is only beneficial
because the packet length is limited to 24
bytes. It is not applicable for architectures

such as the Paragon and SUNMOS, where
the maximum packet length is not limited.

There is a fear in the high performance
community that any attempt to avoid ex-
plicit message passing will degrade perfor-
mance and make the raw capabilities of the
underlying hardware inaccessible. The mm
program serves as a good example that this
need not be the case. The maximum re-
ported compute rate for the hand coded
assembly routine is between 6.5 and 7.5
MFLOPS. This means the highest attainable
rate on 64 CM-5 nodes is 480 MFLOPS. The
maximum performance of dgemm for a 512 x
512 double precision matrix is 45.9 MFLOPS
[Int93]. That results in 2937 MFLOPS on 64
nodes. Both these peak numbers are shown
in Figure 3. Both, the CM-5 and the Paragon
implementation, come very close to their re-
spective maxima. Therefore, a message pass-
ing solution using the same core matrix mul-
tiply cannot be significantly faster.

While it is possible to transfer small items
of a few bytes length in Split-C, a good pro-
grammer will group them together as much
as possible and transfer them with a single
request. The same is true for explicit mes-
sage passing. However, Split-C can make the
task easier since no explicit synchronization
between nodes is needed.

5 Critique of Active Mes-
sages

AM are a very powerful and general mech-
anism that is going to influence further re-
search into message passing paradigms and
solutions to conquer the latency problem of
MP machines. In this section we discuss
some of the drawbacks of AMs and show
ways how a language like Split-C, that de-
pends on AMs, can be implemented without
them.

The most cumbersome aspect of AMs in
their current form is their closeness to the

56 micro sec
< —>

user ‘level —> N= 0000000 e —S
send 16 bytes

Sender trap /7 ’

kernel level —>

40 micro sec 68 micro sec
fe—— : —>|
<7__ prepost *“’“SS‘“*" '—%
/ receive / receive 16 bytes

Receiver trap interrupt

user to user latency = 92 micro sec\‘
b —>

Figure 4: 16 Byte Message Timing

CM-5. This is an implementation issue that
needs to be addressed before AMs can be-
come more widespread. It should be possible
for AMs to deliver more than the four words
of parameters to a function that can be done
on a CM-5. In most cases this is not a severe
limitation, but there is no reason to inhibit
performance on machines that do not have
the 24 byte packet limitation of the CM-5.

In their most general form, AMs take
a variable number of arguments of various
types, up to a total of 16 bytes. Any type
information is lost at the sending node. Ar-
chitectures that pass parameters through in-
teger and floating-point registers need that
information on the receiving end. Therefore,
a uniform way has to be found to pass the
type of the arguments to the function that
sends the AM.

There are other restrictions of the CM-
5 architecture that carry through the AM
layer. For example, on the CM-5 an AM
handler can use the CMAM_reply function and
activate another AM handler on the sending
node. To prevent deadlock, the second AM
handler is not allowed to send yet another
AM to the the receiving node. This issue is
irrelevant in the SUNMOS implementation,

since sending an AM is not a blocking oper-
ation (the SUNMOS kernel never blocks).

There are calls to poll and wait for mes-
sages that are not needed in interrupt driven
implementations of AMs. All in all, for AMs
to become available and uniform on other ar-
chitectures, the interface needs to be cleaned
up and freed of as many machine dependen-
cies as possible.

The are more fundamental problems,
though. AMs only work because of the ho-
mogeneousness of the environment and ad-
dress space of an application. Some ma-
chines, such as the Intel Paragon, make it
possible to run applications on a mixture of
nodes that have different memory sizes. A
program running on a 16 MB node cannot
easily access information on another node in
the same application that has 32 MB of mem-
ory installed.

It is also very difficult to debug program
that use AMs, since the arrival and the
amount and type of work done by the AM
handler is non-deterministic. With explicit
message passing the point at which the state
of a node changes, is under programmer con-
trol. The receiving node also has control over
what portions of memory can be altered by

a message arrival. This is not so for AMs.
Here, the sending node determines when and
how state changes. Coupled with network
latencies, this makes detecting a bug on the
receiving node very hard.

A single threaded program using AM in-
herits some of the complexity associated with
multithreading. For example, the updating
of a local counter has to be done atomically
now, if an AM handler could be activated
that accesses the same counter. Split-C al-
lows the atomic execution of functions. Since
AM handlers run atomically with respect to
each other it is easy to sequentialize access
to a counter by sending an AM to do that,
even if the counter resides on the same node.
Again, this works well on the CM-5 where la-
tencies and dispatch times are negligible. In
our implementation there are better ways to
control access than incurring a trap into the
kernel.

AM handlers are meant to be short func-
tions that do not block. However, what an
AM handler does is under the control of the
sending node. Therefore, it is possible for a
node to spend many CPU cycles on behalf of
other nodes without any way to control the
amount or type of work done.

The Split-C team at Berkeley has ported
Split-C to the Paragon under the OSF op-
erating system. Preliminary tests indicate
that mm’s performance under that implemen-
tation is about half that of the SUNMOS
implementation. While SUNMOS delivers
better communication than OSF, compute
performance is nearly identical. Since mm
is not communication bound, where is the
difference coming from? The hardware, the
compiler, and the underlying BLAS function
dgemm are all the same. The difference is,
apart from the OS, in the Split-C library.
The Split-C team attempted to use hrecv to
implement their library. Since that function
does not work properly under the current re-
leases of OSF, they had to resort to a polling

strategy. To exploit dgemm fully, very large
matrices should be multiplied. That means
that the CPU spends most of its time inside
the BLAS routine without polling for new
AMs. This, of course, delays data delivery
to the node that sent the AM.

This is a good example to show that an in-
terrupt driven implementation is more real-
istic than one that polls for new AMs. While
the latter has the appeal of very short receive
and dispatch times, it is not a good approach
when the receiving node is supposed to do
other work than simply polling the network.

We mentioned earlier that AM are a pow-
erful and general mechanism. However, it is
not clear yet how that power can be utilized
and harnessed. Split-C uses AM only to ac-
cess data on remote nodes. There are other
mechanisms available for that purpose that
avoid the above mentioned problems.

6 Further Work and Con-
clusions

The availability of two i860’s on each node
gives us the chance to experiment with var-
ious setups. We already have the ability to
send and receive regular messages with one
CPU while the second CPU continues pro-
cessing. It should be possible to handle AMs
in a similar fashion. This would leave the
main CPU uninterrupted while AMs are be-
ing handled.

We have already seen that Split-C can be
implemented without AMs. Work on Puma
suggests that readmem and writemem por-
tals are enough to support Split-C. This
should further decrease latency, since the
Puma kernel will handle the data requests.
There will be no time wasted returning to
the user level [WMR*94].

More work with more complex applica-
tions than mm is needed to further define the
tradeoffs between Spilt-C and explicit mes-
sage passing.

In conclusion, we find that Split-C offers a
nice level of abstraction over explicit message
passing without incurring any undue perfor-
mance penalties. The muck higher perfor-
mance of the Intel Paragon over the CM-5
for the matrix multiply example is mostly
due to the better floating-point processing
capabilities of the i860 over the Sparc CPU.

For the mm application used in this report,
AM latency has not been a major factor.
However, it is important to note that polling
for AM is not a good solution, since that can
cause other processors to block unnecessar-
ily. The overhead for processing an interrupt
can easily be amortized by another node pro-
cessing data instead of waiting for the next
polling cycle on the remote node.

7 Acknowledgments

We wish to thank T. Mack Stallcup and
Michael C. Proicou of Intel’s Super Com-
puting Division who helped us tame the big
Paragon. We would also like to thank the
Split-C group at the University of Califor-
nia at Berkeley for providing us with CM-5
numbers and answering our questions.

References

[BEK93] Tilman Bénniger, Riidiger
Esser, and Dietrich Krekel. CM-
5, KSR1, Paragon XP/S: a com-
prative description of massively
parallel computers on the basis
of a catalog of classifying charac-
teristics. Technical Report KFA-
ZAM-1P-9320, Forschungszen-
trum Jiillich Gmbh, Zentralin-
stitut fiir Angewandte Math-
ematik, D-52425 lJiilich, Ger-
many, October 1993.

[CDG*93] David E. Culler, Andrea
Dusseau, Seth Copen Goldstein,

[Int92]

(Int93]

[MW93]

[PJ92]

[VECGS92)

[WMR+94]

Arvind Krishnamurthy, Steven
Lumetta, Thorsten von Eicken,
and Katherine Yelick. Parallel
programming in Split-C. In Pro-
ceedings of Supercomputing ’93,
pages 262-273, November 1993.

Intel Corporation. Paragon
OSF/1 User’s Guide, Septem-
ber 1992.

Intel Corporation. Paragon Ba-
sic Math Library Performance
Report, October 1993.

Arthur B. Mac-
cabe and Stephen R. Wheat.
The PUMA architecture: An
overview. Technical report
SAND93-1372, Sandia National
Laboratories, 1993.

John Palmer and Guy L. Steele
Jr. Connection machine model
CM-5 overview, IEEE, pages
474-483, 1992.

Thorsten von Eicken, David E.
Culler, Seth Copen Goldstein,
and Klaus Erik Schauser. Ac-
tive messages: A mechanism for
integrated communication and
computation. In Proceedings
of the 19th International Sym-
posium on Computer Architec-
ture, Gold Coast, Australia,
May 1992. ACM Press.

Stephen R. Wheat, Arthur B.
Maccabe, Rolf Riesen, David W.
van Dresser, and T. Mack
Stallcup. PUMA: An operat-
ing system for massively par-
allel systems. In Proceedings
of the Twenty-Seventh Annual
Hawaii International Confer-
ence on System Sciences, pages

56-65. IEEE Computer Society
Press, 1994,

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

10

DATE
~ FILMED
10/ 5 /94

/f. B
N B
E O
- s
i
I o ‘ . C o

