
__o__ A--°,.,,o.,or,n on.,,°.,. _
Wayne Avenue, Suite 1100 _-_

__ q_ll,o. _ " 1_¢ _._ 301,587-8202 __

'Ob MANUFACTURED TOIMAGE. INC. _ _>_

, AIIM STANDARDS _ _

BY APPLIED _

Split-C and Active Messages under SUNMOS on the Intel

Paragon

Rolf Riesen* Arthur B. Maccabe t

April 1994

Abstract

The compute power of the individual nodes of massively parallel systems increases
steadily, while network latencies and bandwidth have not improved as quickly. Many
researches believe that it is necessary to use explicit message passing in order to get the
best possible performance out of these systems. High level parallel languages are shunned
out of fear they might compromise performance.

In this paper we have a look at one such language called Split-C. It fits into a middle
ground between efforts such as High Performance Fortran (HPF) and explicit message
passing. HPF tries to hide the underlying architecture from the programmer and let the
compiler and the run time system make decision about parallelization, location of data,
and the mechanisms used to transfer the data from one node to another. On the other

hand, explicit message passing leaves all the decision to the programmer. Split-C allows
access to a global address space, but leaves the programmer in control of the location of
data, and offers a clear cost model for data access.

Split-C is based on Active Messages. We have implemented both under the SUNMOS
operating system on the Intel Paragon. We will discuss performance issues of Split-C and
make direct comparisons to the Thinking Machines CM-5 implementation. We will also
scrutinize Active Messages, discuss their properties and drawbacks, and show that other
mechanisms can be used to support Split-C.

Thiswork wa._supr,_rted by the United
Slates Department of Energy under
Contr_.ctDE-ACn4- 94ALRSOn0.

"Organization 1424; Sandia National Laboratories; Albuquerque, NM 87185-1109;., emalh
rolf_cs.sandia.gov

t Department of Computer Science; The University of New Mexico; Albuquerque, NM 87131 email:
maccabe_cs.unm.edu

M, TEB
EII_Z/_II'gLtTIONOFTHISDOCUMENTIS UNLIMITEZ/

t

1 Introduction for sending and receiving AMs as well as reg-
ular messages, and measure an application

There are many proposals and suggestions program running on the CM-5 and the Intel
on how to "best" program massively parallel Paragon. In section 5 we discuss the pros and
machines. Depending on the goals of soft- cons of AMs, based on our experience with
ware developers and end-users, "best" can them on the Intel Paragon. Section 6, finally,
take on several and, unfortunately, contra- closes the paper with some conclusions and
dictory meanings. Most tradeoffs are be- ideas for further work.
tween performance and ease of use. Mas-

sively parallel systems are the current state

of the art and are priced accordingly. It 2 Background
would therefore be wasteful not to utilize

Split-C [CDG+93] is a superset of the C pro-
these systems to the highest degree possible, gramming language. The main feature is

Split-C, in the spirit of the C programming
access to a global address space distributed

language, gives full access to the hardware
among the processors of a massively paral-

and the available resources, while providing lel machine. The language differentiates be-
an extra level of abstraction. With Split-C, a tween global and regular pointers. Derefer-
programmer doesn't have to worry about ex- encing a global pointer is more costly than
plicit message passing anymore. At the same

dereferencing a regular pointer, since it will
time the structure of the distributed memory result in a remote data request, if the data
is not hidden, and lets developers optimize is residing on another node. In contrast to
algorithms and control the location of each

languages such as High Performance Fortran

data item. (HPF), it is always clear whether data is lo-
In this paper we explore the price of this cal or remote. Therefore, a programmer can

convenience. We have implemented active make decisions based on a clear cost model

messages (AM), the foundation of Split-C, for memory references.
under the SUNMOS operating system for the

Split-C gets its name from the possibility

Intel Paragon. This gives us the opportu- of split-phase access to remote data. That is,
nity to measure the performance of AM and

through the use of special assignment opera-
Split-C programs and compare them to re- tots a remote data access can be initiated and
sults published earlier for the Thinking Ma-
chines CM-5 [vECGS92] [CDG+93]. then completed in the background, while the

program continues processing. At the point
Specifically, we are interested in the el- where the data is actually needed, a sync op-

fect of the low latency and low bandwidth
eration is performed to ensure the data has

network of the CM-5 on user level applica- arrived. If the data is not available yet, sync
tions, versus the comparatively high latency will block until the data arrives. The follow-

and high bandwidth network of the Intel ing code fragment illustrates this:
Paragon.

The paper is structured as follows. In the double *global gPtr;
next section we give some background infor- double local, x;
mation about Split-C, AMs, the CM-5, the

Intel Paragon, and SUNMOS. In section 3 we /* Split phase assignment ,/
explain the steps and decisions we made to local:= ,gPtr;

bring Split-C and AMs to the Intel Paragon.
Section 4 directly compares the CM-5 imple- /,

mentation with ours. We give exact numbers ** other processing.., state of

** "local" unknown. The Split-C compilez and library are avail-
*/ able via ftp from the University of California

at Berkeley. The compiler is based on gcc

sync () ; and has been ported to a variety of architec-
tures.

/* The original implementation of Split-C ran
** The global value pointed to by on a Thinking Machines CM-5. The CM-
** "gPtr" is now available in the 5 uses Sparc microprocessors as its node

** variable "local". computing elements. Optionally, four vector
*/ units per node can be installed to enhance

floating-point performance. The topology
x -- local * 3.0; connecting the nodes is a fat tree. Access to

the network can be done from the user level;
no traps into the kernel are required. This

The advantage over explicit message pass- makes very low latencies below 10/_s possi-
ing is, that the node holding the data does ble. The bandwidth of the data network is

not have to explicitly synchronize with the between 5 MB/s and 20 MB/s, depending
requesting node. There is no need to antici- on the "distance" between the communicat-

pate and receive the request. This simplifies ing nodes. This is low compared to the Intel
programming parallel systems greatly. Paragon [PJ92] [BEK93].

To accomplish this, $plit-C uses active Timing studies for this report were per-
messages (AM)[vECGS92]. An active rues-_ formed on an Intel Paragon XP/S. The
sage consists of a function address and up to individual nodes are connected in a two-

four 32 bit parameters. The node receiving dimensional mesh. The achievable band-

the AM will execute the function specified width of the networt,' in our configuration is
and pass it the parameters. The functions 175 MB/s peak. Each node consists of two
executed, called AM handlers, are intended i860-XP microprocessors and 16 MB or 32

to be short and are used to send requested MB of memory.
data back, update counters, or store data The vendor supplied operating system for
on the remote node. AMs are quite flexible the Paragon is OSF1/AD using the Mach
and can be used to implement other message microkernel. Our implementation of Split-
passing schemes or can serve as the founda- C and AMs runs under the Sandia and Uni-

tion for parallel languages, versity of New Mexico (SUNMOS) operat-
The fundamental property that makes ing system. SUNMOS can replace OSF on

AMs possible, is that the application and the compute nodes and offers much higher
the environment are homogeneous. All nodes network bandwidth and lower latency than
have the same physical characteristics and OSF. SUNMOS consumes less than 2% of

the programs running on them are the same. the available physical memory and is there-

This means that the start address of a spe- fore well suited to run applications requiring
cific function is the same on all nodes the ap- large ammounts of physical memory lint92]

plication is currently running on. The same [BEK93].
is true for statically allocated data objects.
This makes it possible to determine the ad-
dress of a variable on one node and read that

address on another node to get the value of
the same variable on the remote node.

3 Implementation (the original context can be restored at the
user level). If an AM handler is already run-

We have modified the SUNMOS kernel to ning, the kernel queues new arrivals until the
send and receive active messages. Sending an current handler finishes. Therefore, AM ban-
AM is very similar to sending a zero length dlers execute atomically with respect to each

message, since there is no data packet. The other. Figure 2 shows the timing diagram for
format and length of an AM is always the active messages under SUNMOS on the Intel

same, so we were able to pack the function Paragon.
address, sixteen bytes of parameters, as well Most of the time in porting Split-C to
as the parameter types and the source node SUNMOS and the Intel Paragon was spent

rank into the message header. Figure 1 de- retargeting the compiler for the i860 and
picts an AM header, rewriting the Split-C library. The original

library is very much CM-5 oriented and has

.<_ 4 Bytes _ to deal with the idiosyncrasies of that archi-
tecture. For example, messages are limited

OSF Type
to a length of six words (24 bytes) including

OSF Source OSF Length the destination address. Also, care has to be

Function Address taken choosing the correct network to avoid
Argument 1 the possibility of deadlock. Unfortunately,

Argument 2 many of these aspects are visible through the

Argument 3 AM layer and make it rather tricky to port

Argument 4 AMs to another architecture.
.... Since we were striving for the best possi-

Parameter Types ble performance, we removed all CM-5 de-

pendencies in the library, as long as it did
Figure 1: Active Message Header not require a change to the Split-C compiler.

AMs were only used where necessary and

The original AM implementation on the we took advantage of specific SUNMOS fea-
CM-5 exploits the fact that the Sparc CPU tures wherever performance or convenience

uses the same type of register to pass inte- demanded it. For example, a bulk.get call
gers and floating-point numbers to functions, results in the posting of a non-blocking re-
The calling conventions for the i860 CPU ceive and an AM to the node that currently
require that thc type of the arguments is owns the data. The AM handler on the re-

known on the receiving node. We encode the mote node then sends the data using the

type in the last word of the message header. SUNMOS send primitive. When the data ar-
Opposed to the CM-5, acceasing the commu- rives on the receiving node, the kernel incre-

nication hardware requires a trap into the ments a flag as part of the receive operation.
kernel. Thus, there is no second message required to

Any message arrival causes an interrupt notify the receiving node that the data has
on the receiving node. For AMs the kernel arrived.

sets up a new context to run the AM han- The mechanisms in the kernel are very
dIer. Instead of returning to the user level much like the ones used to implement sig-
where the interrupt occurred, execution con- nals and hrecv. As a matter of fact most
tinues in the AM handler. When it is done, of the code is shared and conditionals make

execution resumes where the interrupt oc- sure execution continues at the correct place.
curred without another trap into the kernel

time 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

I I I i I I I --i.....t I ', i i--_ J t l I I

47 micro sec.

C _ _ user level

Sender Send AM

trap _ kernel level

res tore

J
85 micro sec 28

,__ - _i-,_---- -_

Receive and ,

Receiver interrupt schedule AM AM handlerii

user to user latency - 110 micro sec

>t

Figure 2: Active Message Timing

The Intel NX call hrecv, is a preposted re- control to the user level.
ceive. When a matching message arrives,
a user specified signal handler is activated.
In a sense they are very similar to AM, ex- 4 Performance
cept that the receiving node determines what
function gets executed. *The hrecv call could Figure 2 shows the timing diagram for send-

be used to implement AM. A program starts ing and dispatching an AM under SUNMOS.
by preposting a hrecv with a pointer to an In [vECGS92] the authors report a time of
AM dispatcher. When an AM arrives, the 1.6#s to send an AM on the CM-5. That is

dispatcher gets activated which then calls about thirty times faster than the SUNMOS
the function specified by the AM. When the number of 471zs. The need to trap into the

function returns the dispatcher preposts an- kernel to access the communication hardware
other hrecv, so the arrival of the next AM is responsible for the overhead.

reactivates the dispatcher again. The situation on the receiving end is, at

By taking advantage of SUNMOS features first sight, even worse. Eicken, Culler, et al.
in our version of the Split-C library we were report 1.7#s to dispatch an incoming AM.

able to support Split-C with only one of That is about a tenth of the time it takes to
the forty or so functions of the CM-5 AM save context in SUNMOS when an interrupt
layer. Furthermore, we have plans to elim- occurs. However, the main reason this can

inate AMs altogether and port Split-C to be done so quickly on the CM-5 is that the

Puma[WMR+94] [MW93]. Puma, the suc- AM layer polls for incoming messages. For
cessor of SUNMOS, offers openings into a benchmarking purposes it is easy to setup

user program's address space, called portals, a scenario where an AM gets received and
AMs are used by Split-C mainly to store and dispatched in record time, due to the fact
retrieve data from remote nodes. Portals o5 that the receiver was ready and waiting for

fer that functionality and are faster than the the incoming message.

current implementation of AM under SUN- In order to see how AMs really perform we
MOS. The reason is, that the Puma kernel have to turn to applications that use them.

will handle the request without first passing Matrix multiply is a favored benchmark in
the scientific computing community. It is

MatrixMultiply
I I I 'I I I I

3000

................ ..
2500

2000
SUNMOS

ca-5 .,

__ 1500

1000

___ CM'5 peak "XX._

0
8 16 32 64 128 256 512 1024

BlockSize N

Figure 3: Matrix multiply on 64 nodes. Each matrix is 8x8 blocks.

the basis or part of many algorithms and its In order to run this program under SUN-
performance is a good indicator for a cer- MOS, the assembly code had to be replaced.

tain class of applications. The Split-C dis- We chose to use the BLAS library function
tribution from UCB comes with the example dgenun, available for the Paragon, as a re-

program ntm. The matrices are subdivided placement. The function expects the ma-
into blocks and distributed among the avail- trices in Fortran style format (column ma-

able processors. A hand coded assembly rou- jot order). Therefore, we have to transpose
tine is responsible for multiplying individual the blocks before and after the call to dgenm.

blocks on each node. The Split-C function The timings in Figure 3 for the SUNMOS
bulk.get is used to transfer blocks between version of rm include the transpose times.

nodes. Results for the CM-5 have been re- The mmprogram requires the storage of two
ported in [CDG+93] and are reproduced in blocks on each node in addition to the stor-

Figure 3. age requirements for part of the three ma-
The test was run on 64 nodes without vec- trices A, B, and C. Since each node has

tor processing units. Each of the three matri- only 32 MB of memory, we were not able to
ces A, B, and C consist of 8 x8 blocks. The x fit the required portions of the 8 × 8 blocks
axis of the graph shows increasing block sizes with 1024 x 1024 elements onto our nodes.

from 8 x 8 to 1024 × 1024 double precision Note that it would be possible to fit 16 x 16
floating-point numbers. The y axis measures blocks of size 512 × 512. However, this would

the total number of Million Floating Point skew the direct comparison, and we have it
Operations per Second (MFLOPS) the pro- left out for that reason.

gram achieved. Communication overhead in nunis low, and

,s I'
, q

the astounding performance of the Paragon such as the Paragon and SUNMOS, where
is mainly due to the floating-point per- the maximum packet length is not limited.
formance of the i860-XP. The more than There is a fear in the high performance
ten times faster network bandwidth of the community that any attempt to avoid ex-

Paragon helped to speed up the transfer of plicit message passing will degrade perfor-
the larger blocks, mance and make the raw capabilities of the

On the CM-5, AMs are used at the low- underlying hardware inaccessible. The mm
est level and other message passing mecha- program serves as a good example that this
nisms are built on top of it. We believe that need not be the case. The maximum re-
this is not a generally acceptable practice, ported compute rate for the hand coded
To confirm our suspicion, we measured the assembly routine is between 6.5 and 7.5
transfer time of a 16 byte message. That is MFLOPS. This means the highest attainable
the amount of data that is transferred by a rate on 64 CM-5 nodes is 480 MFLOPS. The
single AM. Figure 4 shows the result, maximum performance of dgemmfor a 512 x

The timings for an AM and a 16 byte 512 double precision matrix is 45.9 MFLOPS

transfer are very similar. It costs less to send [Int93]. That results in 2937 MFLOPS on 64
an AM since no checking of the parameters nodes. Both these peak numbers are shown
is needed. The four arguments are passed by in Figure 3. Both, the CM-5 and the Paragon
value and the function address is presumed implementation, come very close to their re-
to be valid. The Memory Management Unit spective maxima. Therefore, a message pass-

(MMU) of t,he receiving node will prevent ex- ing solution using the same core matrix mul-
ecution of code that is not in the user's ad- tiply cannot be significantly faster.
dress space. The regular send needs to make While it is possible to transfer small items
sure that the sending process has read ac- of a few bytes length in Split-C, a good pro-
cess to the 16 bytes. However, the savings grammer will group them together as much
are dwarfed by the time it takes to trap into as possible and transfer them with a single
the kernel and to send the data. request. The same is true for explicit rues-

To simply receive a 16 byte message is even sage passing. However, Split-C can make the
faster than dispatching an AM, since process- task easier since no explicit synchronization
ing the AM takes time and an additional con- between nodes is needed.
text save and restore is needed for the AM

handler. One could argue that the prepost-
ing of the receive has tobe taken into account 5 Critique of Active Mes-
also, which would swing the pendulum back sages
in favor of AMs again.

The hardware of the Intel Paragon trans- AM are a very powerful and general mech-
fers larger packets at a higher bandwidth anism that is going to influence further re-
than smaller ones. It is also easier to amor- search into message passing paradigms and

tize the high startup cost of sending ames- solutions to conquer the latency problem of

sage, when several data items are grouped MP machines. In this section we discuss
and transferred together. The program ram some of the drawbacks of AMs and show

does a good job at that. Using AM as a low- ways how a language like Split-C, that de-
est level layer on the CM-5 is only beneficial pends on AMs, can be implemented without

because the packet length is limited to 24 them.
bytes. It is not applicable for architectures The most cumbersome aspect of AMs in

their current form is their closeness to the

56 micro sec

Sender trap/k send 16 bytes

kernel level _

40 micro sec 68 micro sec

//k receive receive 16 bytes

Receiver trap i _ interrupt

user to user latency - 92 micro sec

Figure 4:16 Byte Message Timing

CM-5. This is an implementation issue that since sending an AM is not a blocking oper-

needs to be addressed before AMs can be- ation (the SUNMOS kernel never blocks).
come more widespread. It should be possible There are calls to poll and wait for mes-
for AMs to deliver more than the four words sages that are not needed in interrupt driven

of parameters to a function that can be done implementations of AMs. All in all, for AMs
on a CM-5. In most cases this is not a severe to become available and uniform on other ar-

limitation, but there is no reason to inhibit chitectures, the interface needs to be cleaned

performance on machines that do not have up and freed of as many machine dependen-

the 24 byte packet limitation of the CM-5. cies as possible.
In their most general form, AMs take The are more fundamental problems,

a wriable number of arguments of various though. AMs only work because of the ho-

types, up to a total of 16 bytes. Any type mogeneousness of the environment and ad-

information is lost at the sending node. Ar- dress space of an application. Some ma-
chitectures that pass parameters through in- chines, such as the Intel Paragon, make it
teger and floating-point registers need that possible to run applications on a mixture of

information on the receiving end. Therefore, nodes that have different memory sizes. A

a uniform way has to be found to pass the program running on a 16 MB node cannot
type of the arguments to the function that easily access information on another node in
sends the AM. the same application that has 32 MB of mem-

There are other restrictions of the CM- ory installed.

5 architecture that carry through the AM It is also very difficult to debug program
layer. For example, on the CM-5 an AM that use AMs, since the arrival and the

handler can use the CMAM_epIy function and amount and type of work done by the AM
activate another AM handler on the sending handler is non-deterministic. With explicit

node. To prevent deadlock, the second AM message passing the point at which the state
handler is not allowed to send yet another of a node changes_ is under programmer con-
AM to the the receiving node. This issue is trol. The receiving node also has control over

irrelevant in the SUNMOS implementation, what portions of memory can be altered by

a message arrival. This is not so for AMs. strategy. To exploit dgemm fully, very large

Here, the sending node determines when and matrices should be multiplied. That means
how state changes. Coupled with network that the CPU spends most of its time inside
latencies, this makes detecting a bug on the the BLAS routine without polling for new
receiving node very hard. AMs. This, of course, delays data delivery

A single threaded program using AM in- to the node that sent the AM.
herits some of the complexity associated with This is a good example to show that an in-

multithreading. For example, the updating terrupt driven implementation is more real-
of a local counter has to be done atomically istic than one that polls for new AMs. While
now, if an AM handler could be activated the latter has the appeal of very short receive

that accesses the same counter. Split-C al- and dispatch times, it is not a good approach
lows the atomic execution of functions. Since when the receiving node is supposed to do

AM handlers run atomically with respect to other work than simply polling the network.
each other it is easy to sequentialize access We mentioned earlier that AM are a pow-
to a counter by sending an AM to do that, erful and general mechanism. However, it is

even if the counter resides on the same node. not clear yet how that power can be utilized
Again, this works well on the CM-5 where la- and harnessed. Split-C uses AM only to ac-

tencies and dispatch times are negligible. In cess data on remote nodes. There are other
our implementation there are better ways to mechanisms available for that purpose that

control access than incurring a trap into the avoid the above mentioned problems.
kernel.

AM handlers are meant to be short func-
6 Further Work and Con-tions that do not block. However, what an

AM handler does is under the control of the Elusions
sending node. Therefore, it is possible for a
node to spend many CPU cycles on behalf of The availability of two i860's on each node

other nodes without any way to control the gives us the chance to experiment with var-
amount or type of work done. ious setups. We already have the ability to

The Split-C team at Berkeley has ported send and receive regular messages with one
Split-C to the Paragon under the OSF op- CPU while the second CPU continues pro-

erating system. Preliminary tests indicate cessing. It should be possible to handle AMs
that ram's performance under that implemen- in a similar fashion. This would leave the
tation is about half that of the SUNMOS main CPU uninterrupted while AMs are be-

implementation. While SUNMOS delivers ing handled.

better communication than OSF, compute We have already seen that Split-C can be
performance is nearly identical. Since mm implemented without AMs. Work on Puma
is not communication bound, where is the suggests that readmem and writemem por-

difference coming from? The hardware, the tals are enough to support Split-C. This

compiler, and the underlying BLAS function should further decrease latency, since the
dgemm are all the same. The difference is, Puma kernel will handle the data requests.

apart from the OS, in the Split-C library. There will be no time wasted returning to
The Split-C team attempted to use hrecv to the user level [WMR+94].
implement their library. Since that function More work with more complex applica-

does not work properly under the current re- tions than mmis needed to further define the

leases of OSF, they had to resort to a polling tradeoffs between Spilt-C and explicit mes-
sage passing.

In conclusion, we find that Split-C offers a Arvind Krishnamurthy, Steven
nice level of abstraction over explicit message Lumetta, Thorsten von Eicken,
passing without incurring any undue perfor- and Katherine Yelick. Parallel

mance penalties. The muc,L, higher perfor- programming in Split-C. In Pro-
mance of the Intel Paragon over the CM-5 ceedings of Supercomputing '93,

for the matrix multiply example is mostly pages 262-273, November 1993.
due to the better floating-point processing
capabilities of the i860 over the Spare CPU. lint92] Intel Corporation. Paragon

For the mmapplication used in this report, OSF/1 User's Guide, Septem-

AM latency has not been a major factor, ber 1992.
However, it is important to note that polling

for AM is not a good solution, since that can lint93] Intel Corporation. Paragon Ba-
sic Math Library Performancecause other processors to block unnecessar-

ily. The overhead for processing an interrupt Re_rt, October 1993.

can easily be amortized by another node pro- [MW93] Arthur B. Mac-
cessing data instead of waiting for the next cabe and Stephen R. Wheat.
polling cycle on the remote node. The PUMA architecture: An

overview. Technical report

7 Acknowledgments SAND93-1372, Sandia National
Laboratories, 1993.

We wish to thank T. Mack Stallcup and
Michael C. Proicou of Intel's Super Corn- [PJ92] John Palmer and Guy L. Steele

puting Division who helped us tame the big Jr. Connection machine model

Paragon. We would also like to thank the CM-5 overview. IEEE, pages
Split-C group at the University of Califor- 474-483, 1992.

nia at Berkeley for providing us with CM-5 [vECGS92] Thorsten von Eicken, David E.
numbers and answering our questions. Culler, Seth Copen Goldstein,

and Klaus Erik Schauser. Ac-

References tive messages: A mechanism for
integrated communication and

[BEK93] Tilman BSnniger, Riidiger computation. In Proceedings
Esser, and Dietrich Krekel. CM- of the 19th International Sym-
5, KSR1, Paragon XP/S: a com- posium on Computer Architec-
prative description of massively ture, Gold Coast, Australia,

parallel computers on the basis May 1992. ACM Press.

of a catalog of classifying charac-
teristics. Technical Report KFA- [WMR+94] Stephen R. Wheat, Arthur B.

ZAM-IP-9320, Forschungszen- Maccabe, RolfRiesen, David W.
trum Jiilich Gmbh, Zentralin- van Dresser, and T. Mack

stitut fiir Angewandte Math- Stallcup. PUMA: An operat-
ematik, D-52425 Jiilich, Ger- ing system for massively par-
many, October 1993. aUel systems. In Proceedings

of the Twenty-Seventh Annual

[CDG+93] David E. Culler, Andrea Hawaii International Confer-

Dusseau, Seth Copen Goldstein, ence on System Sciences, pages

56-65. IEEE Computer Society
Press, 1994•

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the

United States Government or any agency thereof.

l0

iO jr S

'iT "'

