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Abstract

• Linear Adaptive Noise-reduction Filters for Tomographic Image Reconstruction:

Optimizing for Minimum Mean-square Error

by
Winston Y. Sun

Doctor of Philosophy

University of California at Berkeley

Professor Thomas F. Budinger, Chair

This thesis solves the problem of finding the optimal linear noise-reduction filter

for linear tomographic image reconstruction. The optimization is data dependent and

results in minimizing the mean-square error of the reconstructed image. The error

is defined as the difference between the result and the best possible reconstruction.

Applications for the optimal filter include reconstructions of positron emission tomo-

graphic (PET), X-ray computed tomographic, single-photon emission tomographic,

and nuclear magnetic resonance imaging. Using high resolution PET as an example,

the optimal filter is derived and presented for the convolution backprojection, Moore-

Penrose pseudoinverse, and the natural-pixel basis set reconstruction methods. Sim-

ulations and experimental results are presented for the convolution backprojection

method.

Linear filters which optimize for minimum mean-square error (mmse) are called

Wiener filters; such filters require the knowledge of the signal and noise statistics. Un-

fortunately, the noise and signal statistics are unknown other than the well-accepted

rondel that the PET-detected events follow Poisson statistics. This work investigates

a novel technique of spectral estimation using the concept of reprojection (measur-

" ing the projections of _ reconstructed image). The technique is adaptive wherein

the filter shape changes to accommodate for the number of detected events and the

shape projection of the object. Simulations show that the technique results in good

agreement between the theoretical values and the experimental results.



The characteristic noise power of a reconstructed image for a particular to-

mograph geometry is found by averaging the power spectral density (PSD) of 500

white-noise reprojections. White-noise reprojections are obtained by projecting re-

constructions (using only a ramp filter) of white-noise projections. Estimating the

noise power in a particular projection of a specific data set is accomplished by nor-

malizing the noise PSD characterization to the total power of the reprojected data set

in the high-frequency band where noise dominates over the signal. Normalization is

done by a single parameter scale factor to achieve a least-squares fit over the upper m

frequency indices. The PSD of the signal is therefore the remainder after subtracting

the normalized noise power from the total PSD. Robustness of the estimation tech-

nique was measured in terms of sensitivity to the number (m) of frequency indices

used to normalize the noise power characteristics. Simulations using a complex-brain

phantom show that varying m over the highest 25% of the frequency band results

in less than 0.1% change (relative to the local mean) in the standard deviations of

selected uniforrr, regions.

A set of simulations comparing the results of the conventional Butterworth (BW)

noise-reduction filter and the Wiener filter are presented. The standard deviations

for selected regions of uniform activity were measured for simple geometric phantoms

(uniform disk, uniform rectangle and ring with two rectangles) for varying number

of detected events. Both the BW-filtered and the Wiener-filtered results show that a

ten-fold increase in the number of counts from 2 × 10s to 2 × 106 reduces the standard

deviation by a factor of 2.50 or more. The simulations show that the adaptive Wiener

filter outperforms the BW filter for non-isotropic phantoms where the spectral con-

tent of the phantom varies from angle to angle.

A new approach to measure reconstructed-image quality was derived to compare

the Wiener filter method to other algorithms. Despite the fact that the standard devi-

ations for the Wiener-filtered reconstructions are generally smaller than BW-filtered

counterpart, the improvement is only minor. However, the visual quality of the

Wiener-filtered images have distinct characteristics and markedly different appear-

ances compared to the BW-filtered results --- the BW-filtered images are character-

ized by coarse 2-.D textural noise whereas the Wiener-filtered images are characterized
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• GLOSSARY

1-D one dimensional

2-D two dimensional
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CBP Convolution Backprojection (aka filtered backprojection)

LLSE Linear Least-Square Estimate

LSI Linear Shift Invariant

MLE Maximum Likelihood Estimation

mmse minimum mean-square error

mse mean-square error
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MTF Modulation Transfer Function (point spread function)
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PET Positron Emission Tomography

PSD Power Spectral Density

ROI Region of Interest

RSR Ring Surrounding (2) Rectangles (phantom)

SNR Signal to Noise Ratio
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Chapter 1

Introduction

1.1 Statement of thesis

This thesis investigates the techniques of solving for optimal linear filters which

results in the minimum mean-square error (mmse). As will be shown, a prerequisite

for the solution to these optimal filters is some a priori knowledge of the signal and

noise characteristics. One of the main difficulties is to obtain estimates for these

unknown parameters. The main focus of this work is to develop a new technique to

estimate the noise and signal statistics given only one low-count measurement.

The problem of linear tomographic reconstruction has been investigated by many

authors. Baker [1], aamachandra [2], Marr [3], Buonocore [4], etc.., have all solved

the inverse problem. The problem remains that for high resolution positron emis-

sion tomograph (PET) data, the signal-to-noise ratio (SNR) is limited and a noise-

reduction filter is necessary to reconstruct images of "good" quality. The "goodness"

of an image can be defined many ways. For instance, one of the benefits of filtering

out the noise is that the SNR will be improved and hence the visual fidelity of the

reconstructed image enhanced. However, the visual fidelity criterion is not a well

defined mathematical cost function and for quantitative studies an objective metric4

is necessary. Thus, the mean-square error will be considered as a metric to measure

the "goodness" of an image.
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Incorporating known priors such as the modulation transfer function (MTF)

of the tomograph, reconstruction method, and statistical behavior of the noise this

work develops a method of estimating the noise and signal power spectra to be used in

Wiener filters which can then be used to achieve mmse estimate of the original object.

Finally, as a practical clinical tool the implementation of the algorithm must be made

such that fast reconstruction times are possible. Applications of the optimal filtering

can then be used in other medical imaging modalities such as fast X-ray computed

tomography (X-ray CT) and single photon emission computed tomography (SPECT)

as well as PET.

1.2 Motivation and background

The goal of this work is to reconstruct images without time-consuming itera-

tions for the data acquired by the Donner 600-crystal high-resolution tomograph.

Currently, the standard method of image reconstruction involves manually iterating

and selecting the cut-off frequency and filter order of the Butterworth (BW) low-pass

filter as depicted in figure 1.1. Several reconstructions using different BW filters are

done and the "best" image is selected for clinical use. One clinical application for the

Conventional reconstruction approach

tomograph ........

Butterworth
filters _ reconstruction

subjective
filter selection

Figure 1.1: Block diagram illustrating the conventional reconstruction using the Butterworth filter
requiring manual iteration and subjective filter selection.

tomographic reconstruction tools is for use with fast X-ray CT's. Traumatic head



. injuries must be quickly diagnosed using the X-ray CT scanners and reconstruction

times in ten seconds per slice is necessary. With current computing technologies the

, only method of reconstruction capable of attaining these speeds is with the convolu-

tion backprojection (CBP) method (also referred to as filtered backprojection). By

developing an algorithm that automatically generates the ideal noise-reduction filter

based on the data collected, the manual iteration and selection process can be elimi-

nated and an optimized reconstruction can be achieved as a pictured in figure 1.2.

Desired reconstruction approach

tomograph

L

meas_uredprojection

Figure 1.2: Block diagram illustrating the desired approach of reconstruction where the data is
processed and analyzed to determine automatically the optimal noise reduction filter.

Parallel projections form what are known as the Radon transform [5] of an image.

A perfect reconstruction of the original image is possible by inverting this operation

using the inverse Radon transform (for a square integralable b(x, y)). However, a true

Radon transform requires measurements in infinitesimal increments in both angle and

projection bins as indicated by integrals in the Radon and its inverse transform equa-

tions 1.1 and 1.2 below: (7' denotes the projection or the Radon transform, B denotes

the backprojection operation, and T_ denotes the linear shift-invariant ramp filtering

operation where the ramp filter in the frequency domain is merely: R(f) = Ifl for

' f'-_< f < c_).

/5/5, p(s,O) - 7:'b= b(:c,y)£(xcosO + ysinO- s)dzdy, (1.1)
oo oo

with -o_ < s < oo; 0 _<0 < 7r



and for the inverse,

/:/?b(z,y) = BT_p = IfflP(Z_,O)expD'2r_(xcosO + ysinO)]d_dO (1.2) .
oo

where P(GO) is the 1-D Fourier transform of p(s,O) in the s (the radial coordinate)

direction and _ is the Fourier component of s. Note that the inner integral in the

inverse Radon transform is merely the 1-D inverse Fourier transform of I_IP(_,0)

which is just p(s,O)® (ramp-filter kernel), where ® denotes the convolution operator.

In practical PET, parallel projection measurements can only be made in finite number

of angles and bins. Hence, the common method of reconstructing PET images uses

the approximation to the inverse Radon transform [2] [6] [7] [8] [9] which can be

written in an equation as follows:

O-1 K-1 I

a - k)
n=O k=0

where

= x cos(hA) + y sin(hA) (1.4)

and

(1.5)

Again, the second summation is a discrete circular convolution and r(s) is the 1-D

inverse discrete Fourier transform of a truncated ramp function, i.e.

R(f) = F2Io{r(s)} = Ifl (1.6)

forf:-fo<f<_fo

where fo is the Nyquist rate, .T2So is the discrete 2fo-point 1-D Fourier transform

operator and f is the frequency index. Another alternative to R(f), when using the

discrete approximation to the inverse Radon transform, is:

R(f) = 9V2fo{.T'_10{lf[}} (1.7) .

for f:-2.['o < f < 2fo



. where the _4fo indicates a discrete 4fo-point Fourier transform. The discrete Fourier

transforms are implemented using the fast Fourier transform (FFT) algorithm. The

• above R(f) aliases less in the spatial domain than the first approximation to the ramp

filter as more frequency indices are used to approximate the ramp kernel.

This method of reconstruction does an outstanding job of reconstructing the

original image in the absence of noise as the original uniform circular disk versus

reconstructed image is shown below in figures 1.3 and 1.4. However, practical tomo-

Figure 1.3: The original uniform circular disk Figure 1.4: The reconstructed image in ab-
phantom sence of noise

graph measurements include noise as well as the true signal (the projections). Figure

1.5 shows what the same reconstruction looks like when simulated noise is added to

the projection data before reconstruction. The simulated noisy projection data is a

realization of a Poisson process such that the noisy projection, p'(s, 8), is generated

by the following:

p'(_,O) = Poi_on(A = p(_,O)) (1.8)

• where p(s, 8) is the ideal analytic projection.

Previous attempts at noise-reduction filtering techniques have been based pri-

marily on heuristics including non-adaptive filters such as the Hanning, Hamming,

Shep-aogan low-pass filters [7] [2] [10]. Adaptive filters based on heuristics include



Figure 1.5: Reconstruction for a 500,000 event Figure 1.6: Reconstruction of the same data
simulation without using any NR filters, set using a Butterworth NR filter.

the Butterworth [11] [10] and Metz filters [12]. The Butterworth (BW) filters are

perhaps the most universally used noise-reduction filters because of their flexibility.

By manually iterating the parameters of cut-off frequency and filter order, a clinician

is able to attain a reconstructed image with good visual fidelity or appearance. Figure

1.6 illustrates one possible BW-filtered reconstruction of the same uniform circular

disk phantom. The drawback to this technique is that bias is introduced by each

clinician or viewer who picks his/her own BW parameters. Thus, a goal of this work

is to develop a method to filter the projections in an objective way.

Adaptive Wiener filters which minimize mean-square error have been suggested

in various forms by Tsui [13] and Shim- Cho [14]. Tsui's filter is to be used in

conjunction with the conventional CBP reconstruction whereas Shim-Cho's filter is

based on the pseudoinverse (of the projection formation matrix) reconstruction. In

either case, prior knowledge of the noise and signal statistics (power spectra, auto-

correlation matrix) is required. This thesis further develops the concepts of Wiener

filtering developed by Tsui and improves upon the method of estimating the noise

and the signal power for measurements with poor SNR's.

Other reconstruction methods for PET have been developed in recent years

which are based on Bayesian methods (MAP) [7] [15] [16] and the maximum likeli-



. hood estimation (MLE) method [17] [18] [19] [20]. The MAP method results in the

identical solution as that of the mmse filtering method for noise which have zero mean

, [7]. Again, as in the case of the mmse solution, prior knowledge of the noise and sig-

nal statistics is necessary to use the MAP approach. The MLE uses the expectation-

maximization (EM) algorithm which is an iterative approach to solve a log-likelihood

equation for a Poisson process for which there is no closed-form solution [21]. This

method makes efficient use of the data as it utilizes the Pois_on statistics without

having to model it as an additive Gaussian. There are, however, some drawbacks

to the MLE method. Computationally, the iterative EM algorithm takes an order

of magnitude (or more) more time to reach to a convergent solution. Furthermore,

the solution that the MLE method converges to is typically characterized by large

oscillations in the pixel values within a region of constant value. In order to correct

for these large oscillations various "stopping" rules and heuristic low-pass filtering is

applied to achieve smoother and visually appealing images [20] [22] [23]. However,

these "stopping" rules and heuristic low-pass filters add bias to the solution.

A more complete summary of tomographic reconstruction algorithms are given

by Rangayyan [24].



Chapter 2

Theoretical Considerations

Mathematical model of the data acquisition as well as the data itself is the topic of

i discussion in the first section of this chapter. Methods of reconstruction as well asi

the reconstruction optimization are considered. Using an additive independent noise

model for the measured data, three methods of image reconstruction are presented

as well as the optimizing reconstruction filter to be used with each method.

2.1 Data Acquisition

The ideal data acquisition process can be mathematically modeled by the vector-

matrix equation 2.1 below

p = Fb. (2.1)

In this equation, p is the measured projection vector, b is the vectorized object, and

F is _he measurement matrix (or the projection formation matrix). For the case of

an ideal Radon transform, the vectors would be infinite dimensional and F would be

the continuous space projection formation operator. However, in order to simplify

calculations, the object b is modeled as a gridded or pixelized 2-dimensional object

with uniform density in each pixel [25] [26] [27]. This pixelization is illustrated in

figure 2.1 below.



_onti.uo.,2-D\ I
object "N I

Figure 2.1: Example of how a continuous 2-D object is modeled as a collection of uniform pixels.

A simple example of a 4× 4 pixelized object below (figure 2.2) illustrates the phys-

ical interpretation of equation 2.1. In this example, two projection angles orthogonal

i

bl b2 b3 b4 pl_l = bl + b2 + b3 + b4

b5 b6 b7 b8 project pl_2 = b5 + b6 + b7 + b8

b9 blO bll b12 pl_3 = b9+blO+bll+bl2

b13 b14 b15 b16 pl_4 = b13 + b14 + b15 +b16

_' project _'_"'_16 pixelizedelementsof
a 2-D object b

p2_l = b4 + b8 + b12 + b16

p2_2 = b3+b7+bll+bl5

p2_3 = b2+b6+bl0+ b14

p2_4 = bl +b5+b9+b13

Figure 2.2: Example of a square object gridded into 16 uniform pixels and its projections in two
angles. Pn-m is the m-th projection bin in the n-th projection angle.

to one another measures four bins in each angle. The 2-D object, b is vectorized as a

column-ordered vector as shown below:

_b.b--- [ 191b2 b3 b4 b5 b6 hr bs b9 bao bll bx2 b13 hi4 b-15 hi6 ]T

" The F matrix is the measurement matrix that transforms the object vector b and

the results in the projection vector p_p_.The F matrix is determined by the geometry
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of the tomograph and how measurements are physically made. Horizontal projec-

tion through the upper fourth of b in the above image results in a projection p1-1

(lst projection angle - 1st bin) = bl + b2 + b3 + b4; Thus, the first row of F is

[1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0]. The other 7 row entries can be similarly determined

by inspection of the equation below.

= P1-1 P1-2 P1-3 Pl-4 P2-1 P2-2 P2-3 P2-4

bl + b2 + b3+ b4

b5 + b6 + br + bs

b9+ blo + bu + b12

b13+ b14+ bls + b16

b4 + bs + b12 + b16

b3 + br + blx + b15

b2 + b6 -b bl0 q- bx4
I

bl + b5+ b9 + b13 i

In PET, the ideal projection formation equation must be interpreted in a statis-

tical manner because the physics of the measurement process do not correspond to

analytical projection measurements. The measurement process for PET proceeds as

follows. A metabolically active tracer labeled with a positron-emitting radionuclide

is injected into a patient where after a short time, accumulation (of the radionuclide)

in that part of the anatomy for which the tracer molecule has an affinity occurs.

When the radioactive nuclei decay they emit positrons which immediately annihilate

with nearby electrons to produce a pair of 511-keV photons traveling in opposite di-

rections. When the photon pairs are detected simultaneously, an annihilation event

somewhere along the line connecting the two de_,ectors is assumed to have occurred.

After detecting 500,000+ events (for the Donner 600-crystal tomograph measuring a
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. brain) a reconstruction can be made. Each labeled tracer molecule is a positron emit-

ter which undergoes a radioactive decay and like all other radioactive decay processes

• it is modeled as a Poisson process. Since each tracer molecule decays independently

from others, emissions can be modeled as independent Poisson processes. The tomo-

graph measurement is simply the collective sum of all detected emissions so that each

projection bin can be modeled as the superposition of independent Poissons. The

statistical interpretation of the measurements becomes

Ep__= Fb (2.2)

where the E is the expectation operator. Or, the expected value of the measurements

is equal to the value of the analytic projections. Since the data is Poisson, the vari-

ance of the data is equal to the expected value.

For a random variable, x, having Poisson statistics a Gaussian substitute de-

scribed by equations 2.3 and 2.4 [28] [29]'

x ... Poisson(A = Ez) (2.3)

' x" V_x) (2.4)x = +N(# = 0, a =

where x" = Ex and N(/_, a) is a Gaussian with mean = p and standard deviation = a

models the first and second order statistics of a Poisson process. As can be seen from

equation 2.4, the new random variable x' has the same expected value and variance

as x. If a measured signal has stationary Poisson statistics, there are advantages

of modeling that signal using the Gaussian model where the signal component can

be thought of as Ex and the noise being N(0, v/-E-'_). Modeling the projections as

Poisson, the noise is no longer purely additive [30] and linear methods of solving for

a mmse-producing filters are not possible.
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2.2 Linear Reconstruction

The reconstruction of tomographic images is that of an inverse problem. That

is, all linear methods are based on inverting the data acquisition process. Whether

it involves finding the exact inverse, approximating the inverse or finding the Moore-

Penrose pseudoinverse the basis of reconstruction is solving for b in the equation

p_.= Fb.

In the case of PET, the F matrix is the projection formation operator as de-

scribed in an earlier example shown in figure 2.2. The F matrix is a function of the

tomograph geometry including the number of sampling angles and number the detec-

tors (or bins). The 8x 16 F matrix below, corresponding to the projection formation

matrix for the sampling geometry shown in figure 2.2

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

00001 1 1 i 00000000

00000000 I I 1 I 00 00

000000000000 I I I I
F =

0001000 100010001

0010001000 1000 10

0 1000 10001 000 i 00

1 0001 000100010 00

is not full rank as you can add the first four rows and subtract the fifth, sixth, and

seventh row to yield the eighth row. In general the size of the F matrix is OK

x dim(b), where ® is the number of projection angles, K is the number of bins in

each angle, and dim(.) is the dimension of the argument. Another example shown

below in figure 2.3 uses geometries more convenient for typical tomographs. Here,

the tomograph samples at four evenly space angles with two projection bins in each

angle. For this case, F is described by a 8×8 matrix as shown below. The object b

is dissected into eight equal parts and the first projection bin in the first angle, pll,
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bl
q

pl bl+b2+b7+b8

n_b'b3 + b4 + b5 + b6

P J P_ bl+b2+b3+b8

b2+b3+b4+b5 6 p3 b4+b5+b6+b7
Vbl +b6+b7+b8

bl + b2 + b3 +b4

b5 + b6 + b7 + b8

Figure 2.3: Example of a circular object gridded into 8 pixels and its projections at 4 equally spaced
angles.

is simply the sum of the upper 4 pie pieces which is just bl + b2+ br + bs. Thus, the

first row of F is

Fl,n-[11000011].

The rest of the F matrix can be filled in by looking at the projection bin values

and determining the correct linear combinations of bi's. The resulting F matrix is as

follows:
1 1 0 0 0 0 1 1

0 0 1 1 1 1 0 0

1 1 100001

0 0 0 1 1 1 1 0
F =

1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

• 0 1 1 1 1 0 0 0

1 0 0 0 0 1 1 1

Again, this 8x8 matrix is not full rank as the linear combination of the first 7 rows

yield the eighth. For any projection formation matrix, F, the rank of F can be shown
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to be O (K- 1) + 1 [1] [31] and thus always singular. This means that t)_e equation

is ill-posed and there is no unique solution when solving for b.

There are, however, ways to over come the singularity problem. The conven-

tional filtered backprojection is based on the approximation to the Pu_don/inverse

Radon transforms. As stated in the previous chapter, for the case where projec-

tions measurements are made in infinitesimal increments both in angle and bin width

perfect inversion/reconstruction (for a projection of the original square integralable

function, b(x,y)) is possible as shown below:

b(x, y) = [_[P(_,O)exp[j27r_(xcosO + ysinO)]d_dO

By replacing the integral sign with a summation sign on the inverse Radon equation

and replacing the ramp filter with a truncated ramp filter an approximation of inverse

radon transform is made and is the basis for the conventional filtered backprojection

reconstruction.

O-1 K-1

_b=E E k)
0--0 k=O

It is noteworthy to investigate the relationship between the projection operation

and the backprojection operation. Let u and v be real Hilbert spaces where u is the

range space and v is the domain space of the Radon transform, 7"4.Namely,

b(x,y) e v and p(s,O) e u.

Starting from the projection equation (Radon transform) below,

p(s,O) -- _b = b(x,y)6(xcosO + ysin0- s)dxdy,

then with <., .) denoting the inner product,

I: t/2/?('Pb, p)v = ds dO b(x,y)6(xcosO + ysinO - s)dxdy] (2.5)
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= dO dx dyb(x,y)p(xcost9 + y sin 0,0)
O0 O0

C£fo= dx dyb(x, y) dOp(x cos 19+ y sin 0,19)
00 _0

- (b,_p)u (2._)

Thus the backprojection operation is the adjoint of the projection operation. Which

meallS

<_b,p)_= <b,_p)_ (2.7)

This relationship will hold for the discrete space case so that the backprojection

transformation in a real finite-dimensional Hilbert space is simply F T. Thus, the

conventional convolution (or filtered) backprojection reconstruction can be denoted

by the following vector-matrix equation:

_b_= rTrte (2.8)

where R is the truncated-ramp filtering operation in matrix form. The physical

interpretation of the above equation is as follows: filter the projections with kernel R

and then backproject using the backprojection operator F T.

Another alternative solution or estimation for b is to use the Moore-Penrose

(M-P) pseudoinverse denoted by the superscript(+). Using the M-P inverse,

Lh= F+P_. (2.9)
q

The M-P inverse yields the minimum L2 norm solution with the least-square error

where the error=_e is defined as:

= b- _.. (2.10)
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The M-P inverse of a matrix A have the following relationships [32] [33] [34]"

1) AA+A = A

2) A +AA + = A +

3) AA + = [AA+] T

4) A+A = [A+A] T

The M-P inverse can be found by using the singular value decomposition (SVD)

of a matrix F. Any matrix F can be decomposed as follows [35] [34]

F = UAV T (2.11)

where U and V are unitary matrices with orthonormal columns uj and vj respectively

and A is a diagonal matrix not necessarily square. The M-P inverse of F is simply

F + = VA+U T. (2.12)

By using the definition of the M-P inverse and equation 2.12 the reconstruction

equation can be made to look very similar to that of the conventional convolution

backprojection.

-b2= F+_P. (2.13)

= F+ FF +p_

= [F+F]TF +_p_

= FT[F+TF+]p__

= FT[uA+TvTvA+UT]_p

= FT[UA +TA+UT]p_

=FTRp_ (2.14)

where 1_,= [UA +TA+UT]. The above equation is identical to that of the conven-

tional convolution backprojection reconstruction with the exception to the filtering
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. kernel R.

The reconstruction approach taken by Baker [1] is given as follows: the pixelized

reconstructed image is an approximation to the continuous space domain object de-

scribed by the following equation:

(2.15)
rnn

where BTmn(x,y) defines the generalized pixels, and c_'s are the linear scaling or

weighting factors for each pixel. The above equation can be expressed as

b ,_, BTc_. (2.16)

The weighting factor c_'s is solved, in vector form, using the least-squares criterion

given below:

__-----argrn_n{]lp__- FBTc[[_} (2.17)

where F was a projection formation operator that maps from a continuous space
i

domain to a discretized projection space whose SVD is given as follows:

F = US. V r (2.18)

where VT is an unitary operator that simply rotates it's operand in the continuous

space domain, S selects components from the operand in the continuous space and

maps them to a discrete vector space, U is a finite dimensional unitary matrix. Baker

chose a pixelization operator, B T, such that the its basis set was orthonormal and

governed by F. Baker's B is given as follows"

S = [(S. S)+]½ S. vT. (2.19)

Solving the equation 2.17 for c yields

= [(S. S)+]½UTp. (2.20)

Substituting, the reconstructed image _ _

= V. ST(S . S)+UTp_.. (2.21)
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2.3 Optimization

Before delving into the specific case of PET image reconstruction a very impor-

tant result will be presented here for the linear least-squares solution for a system

with additive random noise vector to a stochastic signal vector shown in figure 2.4

below. The linear least-squares estimate (LLSE), _ (labeled in figure 2.4 as y) is

also the mmse estimate of x_[36]. The LLSE of _xis arrived at by applying a linear

stochasticnoise
vectorn

stochasticsignal filter _
vector x mateofx

observablesignal

Figure 2.4: Generalizedblock diagramof filtering to produce mmse

transformation to the noisy vector [z__+ n__]such that

= H(_x + n_). (2.22)

The linear transform H expressed below in equation 2.33 is the generalized Wiener

filter for all linear systems with additive noise. The result can then be applied to

the problem of PET image reconstruction from noisy projection data set. H is solved

using calculus of variations on H. That is, let AH be a perturbation to H. Conditions

on AH is placed to insure that the cost function, mse,

rose= EII__-ill_ (2.23)

is minimized to solve for H [37]. The solution proceeds as follows"

n = argm_n{EIl__-YlI_} (2.24)

where y_= H(z_ + '__n).Consider n + AH and let y_= (H + AH)(x_ + n_).

Ellz_- y ll22= E[x__- (H + AH)(z__ + _n)JT[_x- (H + AH)(x_ + n_q)] (2.25)
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. = E{(x_T(I- H T - AHT)--n_THT--n_TAHT)((I - H- AH)x_-Hn_AHn_)} (2.26)

. = E[[(I- H)x_- Hn_[[_+ E[[AH(z_ + n__[[_

-2E{[x_T(I - H T) - n._TH'r]H'r(x_.+ n_n_)} (2.27)

The first term in the above equation is a constant with respect to AH. The second

term is a quadratic in AH and the third term is linear in AH. The entire quadratic

equation achieves a minimum when the linear term reaches zero [38] [39].

=>E{[x_T(I - H T) - n_THT]AHT(_x + n)} = 0 (2.28)

Now, let _zT - x_.T(I - H T) - n_THT , _z2 = (x_+ n) and A - AH. Then, the above

equation can be expressed as

= 0 (2.29)

Ez_.rAz_._= EEi z,_A_jz_j= 0

Now, a relationship between _z1 and z_2 in equation 2.29 can be derived for for any A.

Consider

_ _ 1 i-m,nA " A_j
t 0 otherwise

=>Ez_z2_ = 0 (2.30)

Ez,z =0 (2.al)

E{[(I - HW)x_- nn_](x_ T + n_T) } = 0 (2.32)

E {x____xT - n z...__xT "Jr"z_.__nT - H xn__T - H n x___T - H n n T } -- 0

For the additive Gaussian model of equation 2.4 En_ - 0 and x_is independent from

n_n_.So,

• =_ H = R_[R_ + 1_] -_ (2.33)

Section 2.2 discussed possible methods to estimate _bfrom the equation

p__= F_b.
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However, in practical PET data there is measurement noise. Thus, instead of solving

the above equation a more realistic equation to use is the following:
J

V_ -- Fb + n_. (2.34)

where n__is the additive noise in vector form.

The main source of the measurement noise is due to the Poisson nature of the ra-

dioactive tracer decay. Obviously, the dosage of the tracer a patient receives must be

made low and the amount of time a patient can remain still while being scanned both

contribute to the limited amount of radionuclide decay that can be measured. Other

sources of noise include Compton scattering of photons within a patient and also scat-

tering of photons in a detector crystal causing a neighboring crystal to scintillate and

falsely detecting a photon. Another source of noise comes from crystal penetration

where a high energy photon penetrates through a crystal without causing a scintilla-

tion to occur but the secondary crystal scintillates thus falsely determining that the

photon had hit the secondary crystal first. The correction of this noise source was in-

vestigated by Huesman, et al [40]. Blurring due to the positron range was investigated

and corrected by Haber [41]. Other sources which contribute to low SNR are things

like crystal deadtime where typically several hundred milliseconds must pass before

a detector crystal can scintillate again and when neighboring crystals simultaneously

detect a photon. Due to the limitation in the electronics a coincidence window of ten

nanoseconds is used to determine whether a photon pair was emitted from a single

source. If, however, two neighboring crystals simultaneously receive photons the elec-

tronics cannot determine which photon pairs struck which pair of detectors. Thus,

all such coincident photons are thrown out. All of the above contribute to limited

statistics of a particular PET data set and hence cause the SNR to degrade.

Since measurements contain noise and the F matrix is singular, the equation

PZ= F_b + n_ is not deterministic nor is there a unique b which satisfy the equation.

Thus, only an estimate of the unknown, b, can be made. As stated in the first chap-

ter, a mathematically tractable cost function of the mean-square error (mse) will be

minimized in "b,the estimate of the original object b.
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' 2.3.1 Filter for CBP reconstruction

One approach to minimizing the mse is to solve for a filter or operator, H1,

in the system depicted by the block diagram below where the reconstruction block

is the CBP operator denoted by G, i.e. G = FTR. In the block diagram, the

Block diagram of data acquistion, filtering and reconstruction

nois_n Pmeasuted

/ /
"' ° Lprojection

formation I I kv\ J --I space -----_Recoastruction[ image 1o o,o ll\--,0,,0 o o,or__-
Projection signal = p

_-. Reconstruction best
possible

operator image

Figure 2.5: Block diagram of the data acquisition, pre-filtering the projections and reconstruction.

ideal reconstruction, or the best possible reconstruction is indicated by y0 where

reconstruction was done using noiseless projection data p.p_.The measured data, how-

ever, is filtered with HI and then reconstructed. Thus, the LLSE of the best possible

reconstruction is

Yl = GHIp_' (2.35)

where p_' is the measured projection, (p_p_+ n). The mse cost function is the difference

between the ideal reconstruction, Y-o,and Yl" The same method of solving for H in the

previous section of considering H + AH can be utilized again to solve the following:

HI = arg n_n{El[Y_o - Y__II_}. (2.36)

' Again, consider HI + &H and let Y_!_= G(H1 + AH)(p_ + n_).

Elly0 - _11_= E[y_0- G(H1 + AH)(p_ + n_)]T[yo-- G(H1 + AH)(p_ + n__)] (2.37)



22

= E[]G(I- HI)E - GH1nl[_+ E[[G A H(p_+ n__[]_

HIT)- n H ]GTG a H(p+ (2.38)

As before, setting the linear term in AH to zero,

E{ [E,_T(I- H T) -n__THT]GTG ZIHT(p_+ n__)}= 0 (2.39)

Now, let _zT=z_r(I -H T)-n__THTGTG, z2=(p_+n__)and A=AH. Which

leadstoEz_i_z2r = 0 and

E{GGT[(I - HI)p_- H1n__][i,_+ n__]T} = 0 (2.40)

With the same assumption as before (p_independent of n_)we arrive at

H1 = Rw[l_ p + l_n]-' (2.41)

Which is identical to the generalized Wiener filter. It should be noted that even

though G = FTR for this above derivation, the filter H1 is not a function of G so for

any linear reconstructor G, the above H1 will satisfy the optimization requirement

in equation 2.36.

An alternative approach for solving this problem is depicted in the block diagram

below. The only difference between this second approach and the first is the placement

Block diagram of data acquistion, reconstruction and filtering

noisv=n

/ / Prmasur©d

F +* G

(__._. projection _ Image y2formation I _vk,_ v] Rcc°nstru_i°n ge 1

Projectionsignsl= p

Figure 2.6: Block diagram of post filtering the reconstructed image.

of the Wiener filter block. As can be seen, the second approach filters reconstructed
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, image rather than filtering the projections before reconstruction. The LLSE of the

best possible reconstruction now becomes
* I

_! = H2G___' (2.42)

where//is the measured noisy projection. Using the same method as the two previous

cases, H2 can be solved.

H2 = arg n_n{E]lYo - Y2]l_} (2.43)

where Y--2= H2G(p_ + rA). Consider H1 + AH and let y_ = (H2 + AH)G(IV + n_).

Ellyo- - E[yo- (H + AH)G(IV + n__)]T[y_.0-- (H + AH)G(p__ + n_n_)] (2.44)

= E[](I-H2)Gp_- H2Gn__]]2+ EI[AH2G(_P+ n)ll

-2E{[p_TG(I- H T)- nTGTHT]AHG(p_ + n__)} (2.45)

Setting the linear term in AH to zero,

E{[p__TG(I- H T) - nTGTHT]Z_HG(p__ + n_)}= 0. (2.46)

Let z T = [p_TG(I -- H T) - nTGTHT], z_2 = (p + n) and A = _HG.

=> E{[(I- H2)Gp- H2Gn_][IVT + n_T]}= 0 (2.47)

For p_independent of n_.,

=>(I- H2)GRpp - H2GR.. = 0 (2.48)

=>H2G = Gl_p[l_p + R_.]-_ (2.49)

In general, G is singular and only a LLSE estimate of H2 is possible which is

H_ = GR_[I_p + l_n]-lG + (2.50)

It is trivial to show that Y--1and -Y2 (the reconstructions using H1 and H2, re-

spectively) are equivalent if the reconstruction operator, G, is invertible. However,
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the linear reconstruction operators are not invertible because FT, the backprojection

transformation, is singular which follows because F is singular. Thus, the two results

shown above are not necessarily equivalent.

H_ is only the least-squares approximation to the filter that achieves the mmse.

Whereas the result of the first method achieves the mmse. Meaning that achieving

mmse in the projection space results in the mmse in the final image. The resulting

error pre-filtering, using H_, is always less than or equal the error which results from

post-filtering with H2. The reason filtering in the image space does not necessarily

produce the "best" result is that the dimension of the domain space of the linear

I reconstruction transform G is larger than the dimension of its range space. Another

words, there is a loss of information when a signal undergoes the G transformation

as the singular values of G that are zero cause the null space of G to be mapped to

zero. The vectors that lie in the null space may contain information which can reduce

the error. For example, if there are correlations between the vectors in the null space

and the vectors not in the null space they will appear in terms of Rr_ which in turn

can reduce the error.

2.3.2 Filter for M-P Inverse

For the case of the reconstruction based on the M-P im-se and the SVD of F,

one can take advantage of the SVD structure to derive an elegant representation of

the Wiener filter which boils down to the calculating weighting factors for the singular

values of F. The smaller the singular values (_'s), the more the corresponding noise

can be amplified in the reconstruction. Thus, the weighting factors are used to control

the amplification of the noise. This idea was first suggested by Shim and Cho [14]

and later applied to magneto encephalography by Hughett [39]. Consider the block

diagram pictured in figure 2.5. Instead of the reconstruction operator G being FTR,
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, let G = F +. Now, the LLSE of the best possible reconstruction becomes

. Yl = F+ Ht--.' (2.51)

where p' is the measured noisy projection. Since F's domain space is spanned by V,

b can be decomposed in terms of v_'s, the right singular vectors of F. Thus,

K-1

_b= =v_z (2.52)
k=O

Similarly, n can be decomposed in terms of !!j's, the left singular vectors of F. Thus,

J-1

n_= _ rb_u_u3 = Ur/ (2.53)
j---O

Thus,

p'=/_ + n = uAVTV__ + Ur/ (2.54)

So,

Y-o= F+/_ (2.56)

Y0 = VA+UTUAVTV_ = VIt__ (2.57)

where It is a truncated identity matrix formed by A+A.

Y--1= F+HtU(A- _ + 77) (2.58)

From equations 2.33 and 2.36, H1 = R_[l:_p + P,.,,]-_. Written in terms of U and

V,

Ht = UAR_AA+[R_ + Rn_]-IA+U T (2.59)

which can be expressed as

• Ht = UDU T (2.60)

y, = VA+D(A_B 4-r/) (2.61)

where D is a diagonal matrix if f_j's and r/k's are independent. As stated in section

2.1, PET data is a collection statistically independent Poisson processes thus, it is



26

reasonable to assume rlk'Sand/_j's are independent as stated in section 2.1. Thus, D

will be assumed diagonal with di as the diagonal elements. Now, Ht can solved by

simply mmimizing the mse, with the error being _ - _- _.

h'-I _k
=_ _ = _ £k[Bk- d_(Bt + rlk)] (2.62)

k,_O

where K is the rank of F. Thus,

EII_II]= _ _ {_[& - dk(/3k + _'kr/k]T}{_Zj[_ -- dj(_j 4" r/j]} (2.63)k--O j--.O

But note that _'s are orthogonal, thus

{_ k=jvr "vJ = 0 otherwise

Which leads to

Ell_ell]= E_(1 - &,)2 + Edk ( __1 - dk)/3krlk+ 2E /3_ (2.64)

Now, solving for dk's proceeds as

0EIl_ell_ = 0. (2.65)
Odk

Which leads to
2 2

'kkE_qk (2.66)dk = 2 2_EZk + E_
Thus, the Wiener filter, H1 for the M-P inverse reconstruction is UDU T with the

diagonal elements of D being the dk's above.

2.3.3 Filter for Natural Pixel Reconstruction

Using the orthonormal-natural pixels [1] for reconstruction, a similar filtering

scheme is appropriate where a diagonal matrix, D, acts to weigh the singular values
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, to achieve a mmse estimate. Thus, the filtered weighting factors for the natural pixels

become

. = D[(S.sr)]½uTE (2.67)

and thefilteredreconstructionis

= V. STD(s . sT)+uT_ (2.68)

where E' = P + _, the measured projection.

As with the SVD reconstruction using square pixels in the previous discussion,

19'can be written in terms of the left singular vectors of F, U.

b = V./Y. (2.69)

So,

['= US. V T. V . /3 + U_) (2.70)

Now, since D and [(s.sT)]½ axe both diagonal, they commute. So, the above equations

can be written as

__= [(S. sT)]½DuTu(s •Z + 0__) (2.71)

which leads to

__= [(S. sT)]]D(S . t3 + 7}) (2.72)

and

b = V. sT(s . sT)+D(S •B + _). (2.73)

The above equation can be written as

/_= V. STA'D(S./3 + 7/) (2.74)

where A' = (S. ST) +. This can be expressed as

__, vkdj,(_k + _-_rlk) (2.75)k

where _ is the diagonal element of A' and j3k = (/3k' b = __,kvkt3t¢). The above

equation leads to the identical error equation (e = bo - b) as in equation 2.62 except
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thatv_isnow a functionand nota vector.As inthepreviouscase,D canbe solvedby

minimizingEllell_,bydifferentiatingElleil_withrespecttodi,thediagonalelements

of D. Using thesame assumptionthatthenoiseand signalareindependent,the

diagonalelementsare

A_E/_ (2.76)

which is identical to the previous result. As stated in section 2.3.1, the Wiener filter

is independent of reconstruction method as long as it is linear. Furthermore, error

resulting from pre-filtering the projections is always less than or equal to post-filtering

the reconstructed image.

2.4 Frequency Space Filtering

Spatial frequency filtering of 2-D signals such as a tomographic image is easily

accomplished by applying the projection-slice theorem. The projection slice theorem

states that the Fourier transform of the projection of the 2-D signal at angle 0 is

equal to the slice of the 2-D Fourier transform of the original image at angle 0 [7]

[42] [43]. An equivalent form of 2-D filtering is to apply the appropriate 1-D filters to

the projections of the 2-D object followed by inverse Radon transforming the filtered

projections. PET data lends itself to spatial-frequency filtering as the collected data

are modeled to be projection measurements of the original object. Thus, applying

1-D noise-reduction filters to the PET projection data accomplishes spatial-frequency

filtering of the reconstructed image.

In terms of the reconstruction equation,

= FT l:te (2.77)
m

the R is a linear shift-invariant (LSI) transform. LSI transforms have a special form

when written in matrix form. Since LSI operation is equivalent to a convolution with
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. a filter kernel as expressed below

. = x(i)h(.- i), (2.rs)
i

it can easily be shown that a circulant matrix H operating on a vector _ (W-- H_.)

is equivalent to the convolution operation described in equation 2.78. As can be seen

from above, the structure of LSI operators are written as circulant matrices. Fur-

thermore, because the signals being filtered are very sensitive to phase information

(images signals are phase sensitive [44] [45]), the LSI filters must be zero phase opera-

tors. This means that the filter kernels are symmetric mad real resulting their Fourier
!

transforms being symmetric and real. This requirement makes the LSI operators to

be not only circulant but also symmetric. A symmetric matrix, A, has SVD which is

in the form:

A = UAU T. (2.79)

That is, the left and right singular vectors are equivalent as ATA = AA T for A = A T .

For LSI operators, the sirxg,alarvectors u_Aare simply sinusoids as e(j_0 are eigenfunc-

tions for continuous LSI time-domain systems. As evidenced by the SVD of LSI

operators the property of commutability exits amongst LSI transforms. Two LSI

transforms At and A2 have SVD's shown below:

A1 = UAtU T (2.80)

A2 = UA2U T. (2.81)

A1 A2 = UA1UTUA2 UT (2.82)

= UAtlA2U T

= UA2At U T
i

= UA2IAI U T

t

= UA2UTUAt U T
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= A2AI (2.83) .

4

Applying the spatial-frequency noise-reduction filter to the projection can now

be expressed as the following:

= FTRHp ' (2.84)

= FTHRpj (2.85)

where H is the spatial-frequency noise-reduction filter. The linear transform operator

which results in the mmse estimate still applies to the above equation but H in the

above equation must be LSI. This can only happen if H = l_=[Rx= + 21_, + l_n] -1

is circulant and symmetric. The above is true if each correlation term (R's) is circulant

and symmetric. This places statistical constraints that the correlation of the signal

and the noise amongst each other and between the two axe functions of only the

distance between the signal in question. In other words, the signal and the noise

must be wide-sense stationary (WSS). The WSS requirement for the signal and noise

was the original constraint used by Wiener [46] for his mmse producing filter.

Using the Gaussian model of equation 2.1 where the total signal is represented

by x':

x'-- x" + N(0, V_x) (2.86)

with x being a WSS stochastic process a WSS model with additive independent noise

can be used for the LSI Wiener filter. With the above model, the noise is independent

from the signal and thus uncorrelated. It follows that the filter in Fourier spatial-

frequency domain can be found by simply taking the 1-D Fourier transform of the

first row of the H matrix. Since the kernel is

h(n) = r=_(n)/[r_(n) + rn,(n)] (2.87)

where rx_(n) and r_(n) are autocorrelation functions of the signal and noise, respec-

tively. The Fourier transform of h(n) results in the following:

H(w) = [P=_(w)+ P,,(w)] (2.88)
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. where Px:_(w)and P,.,n(w) are the power spectral densities of the signal and noise,

respectively.

' Though the WSS constraint may be valid for short-time samples of voice signals,

it is usually not a good assumption for projection measurements. This is made clear

by considering the projection of a uniform circular disk which is just an elongated half

circle. The mean value (in the projection space) of a uniform circular disk phantom

with Poisson emission process would be exactly this elongated half circle and it is clear

that this violates the WSS condition that the mean be constant and the correlation

•1alue be only a function of distance and not position. However, all conventional CBP

reconstruction with noise-reduction filtering uses a LSI transform as it is the fastest

method of reconstruction.
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Chapter 3

Wiener filter implementation

The previous chapter outlined the derivation for the Wiener filter for three types of

reconstructions. However, in each formulation the filter is a function of signal and

noise statistics. This chapter discusses the method of estimating the power spectra

of the noise and signal used for Wiener filter in the CBP reconstruction algorithm.

The outline of the Wiener filter implementation is presented and the robustness of

the estimation technique is discussed.

3.1 Power Spectral Density Estimation

The preceding chapter outlined the methods for mmse filtering but key ingre-

dients in each of the three filters are still missing. All three versions of the Wiener

filters are functions of the noise and signal statistics, namely the autocorrelation ma-

trix (and the cross correlation matrix if the signal and noise are correlated). The

two reconstructions based on SVD have Wiener filter representation which depend on

autocorrelation of the both the signal and noise parameters. As for the convolution

backprojection reconstruction, the filtering is done in the Fourier or frequency domain

and the filter is a function of the power spectra of the noise and signal, which is merely
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, the Fourier transform of a row of the auto-correlation matrix. Up to this point, only

the equations have been derived for these optimizing filters without considering how

• the noise and signal characteristics can be estimated.

The ironic problem with Wiener filtering is that one needs to know the signal

and noise statistics in order for the filter output to be the mmse estimate of the signal.

One ends up estimating the signal so that filter can be found to be used in making

the LLSE of that same signal.

Since the CBP method is the most computationally practical reconstruction

algorithm and also the most common algorithm, this chapter investigates how the

power spectral densities (PSD's) of the noise and signal may be estimated. Tsui [13]

applied the Wiener filter to X-ray CT data where the SNR is generally an order of

magnitude better than that of PET. Using a simplistic approach to the estimation

problem, Tsui followed the model of the projection as being similar to the model

given in equation 2.4. That is, the projections were modeled as being signal plus an

additive white noise which is independent from the signal. Furthermore, ergodicity

of the mean and variance was assumed in the measured projections. Thus, all that

was needed was to calculate the mean and the variance of each projection angle and

the noise PSD was simply a white spectrum with the projection variance as its mag-

nitude. Based on the additive independent Gaussian model, this method makes an

unbiased estimate the noise power [47]. However, for PET data with a much poorer

SNR this method can lead to the signal power estimates with a large variance. The

2 [48]. But for those frequenciesvariance of the noise estimate is distributed as X4K+2

where the signal power is small relative to the noise power, the error in the signal

power estimates can become excessively large. As Penney, et al [49] has shown the

performance of the Wiener filter is a strong function of how well the signal PSD can

be estimated.
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3.1.1 PSD Estimation Using Reprojections

0

The raw collected data, as described in section 2.1, is described with Poisson

statistics. Equation 2.4, rewritten below models the first and second order statistics

of a Poisson stochastic process.

V "_ Poisson(A = Ep)

p' = p" + N(# = O,a = V_)

where p" = Ep and N(#,cr) is a Gaussian with mean =/* and standard deviation =

#. That is, if p" is considered to be the signal and N(0, x/-_) is considered to be the

noise, then the signal power to the noise power ratio is p" itself. Using this additive

noise model is useful in heuristically describing the noise-reduction that occurs when

an image is reconstructed with noisy projections.

Example- Point source

Consider this example: a point source positron emitter is placed at the center

of the tomograph as shown in the figure 3.1.

The projection at angle 0, as shown in the figure will be

=po+ (3.1)

for the center bin for all projection angles where ne is the noise component at angle

0. For a tomograph which samples projections at O angles, the reconstruction of this

point source would be the following:
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Pl

Figure 3.1: Example of a point source placed in the center of a tomograph and the projection
measurements taken by the tomograph ring,

1

_ po + _ _] no. (3.2)t_

The result of the reconstruction is an averaging effect of the O observations and hence

the SNR is improved. The SNR in the image has improved by a factor of O as com-

pared to the SNR in the raw projection space by simply reconstructing the image

without applying any NR filters.

3.1.2 Noise in the Projections vs Image vs Reprojections

Based on the additive noise model, a rigorous calculation of the transformation

of the noise between the raw measured projection space to the reconstructed image

space without NR filtering is presented below. Again, consider the block diagram of

the data acquisition process and a generic reconstruction process (designated by G)

in figure 2.5.

• The observable projection measurement is p' = Fb + n_n_,where n_is the noise

component. The covariance of the projection vector is simply the covariance of n,

• based on the additive noise model where b is deterministic. The reconstructed im-

age, therefore, is represented in vector form as GFb + Gn_. The covariance of the
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reconstructed image is therefore

Ey = cow(y) = E[_y- Ey_][y_- Ey_]T (3.3) .

_y = G_nG T (3.4)

where E,_ is the covariance of n_. For a special case where the noise is zero-mean

and independent, _n is diagonal. Furthermore, if the noise is also identically dis-

tributed, _n = a2I. That is, the covariance of the noise is a constant scalar equal

to its variance multiplied by the identity matrix. Under the independent, identically

distributed (lID) conditions, _y = _2GGT. Thus, if the induced L2 norm of GG T

(or the largest, singular value of GG T is less than unity, the induced L2 norm of the

covariance in the image space is less than the induced L2 norm of the covariance in

the projection space. Meaning, the noise is reduced in the image space.

Similar analysis can be carried out in the continuous domain for a LSI reconstruc-

tion operator with impulse response G(f). However, instead of looking at the covari-

ance matrices as in the discrete case above the PSD of the image can be written as

a function the PSD of the projections. For a LSI operator having impulse-response

function HLsl(f) and a WSS stochastic process input, the WSS output process' PSD

is described as follows:

_o_,tv,t(f) = IHLsI(f) 2_in_t(f) (3.5)

where _(f) denotes the PSD of a WSS process. It follows that

_u(f) = [G(f)l°'¢v(f). (3.6)

Now only the noise component in the projections so that the PSD in the projection

is due to noise alone, i.e.

_(f) = O_(f). (3.7) .

Hanson [50] has shown that the IHLst(f)l _"for a CBP reconstruction along a radial

line of the image is

7r 12IHcs_,(f)l= = -_lfllFT(f) (3.8)
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, where O is the number of projections and FT(f) is the impulse response of the

backprojector which takes into account the interpolations that may exit in a back-

' projection algorithm.

The above equation indicates that if IG(f)l 2 is less than unity, the component

of the reconstructed image due to noise will be attenuated as compared to the orig-

inal noise component in the projection space. Hence, the SNR in the image will be

improved over that of the projection space SNR.

Given IG(f)l 2 is less than unity for all f, one can extract a better estimate of

the signal by studying the reconstructed image. The extraction of the better esti-

mate of the signal in the imag. can be done by projecting the reconstructed image.

The projections of the reconstructed image will be referred to as reprojections. The

exact same analysis of the noise transformation from the original measured projec-

tion to the reprojection can be made by substituting the reconstruction-reprojection

operator for G. For the case of the convolution backprojection, the reconstruction is

denoted by FTR and the (re)projection by F. Thus, substituting FFTR for the G

in equation 3.4, the covariance in the reprojection, z, is

2Ez= (FFTR)_n(FFTR) T (3.9)

which" reduces to

' ]Ez = a2FFTRRTFF T (3.10)

for the IID noise case. Again, if the largest singular value of FFTRRTFF T is less

than unity, the noise in the reprojection is reduced compared to the original measured

projections.

Similar substitution for the continuous-space version can be made where G(f)

is substituted by G'(f) which is the impulse response function of the reconstruction-

reprojection operator. For a reprojection operator which is a true Radon transform,

. the reprojections represents the information in the reconstructed image. Thus, given

that IG'(f)l 2 is less than unity, we have a tool to reduce the noise and to improve

. the SNR and a better estimate of the signal is possible by analyzing the reprojec-

tions. As an example, a uniform circular disk phantom will be used to illustrate

the SNR improvement between the original noisy projections and it's reprojection.
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A narrow-band (mid frequencies) noise was added to a set of ideal projections of a

UCD phantom. A comparison between the norm square of the Fourier transform of

the ideal projections, narrow-band noise added projections and the reprojections are

shown in the graph pictured in figure 3.2. Comparing the graph of the reprojection

and the original projection in the frequency band where noise was added the power

of reprojection projection is attenuated by 60% compared to the original projection's

power.

Similar experiment is carried out with Poisson data. Simulated projections for

the UCD with Poisson statistics and its reprojections are pictured in figure 3.3. Again,

the power in the reprojection is attenuated compared to the original projection.
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Figure 3.2: Comparison of the power between the ideal projections, narrow-band noise added pro-
jections, and the reprojections for a UCD phantom,
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Figure 3.3: Compaa'ison of tile power between the ideal projection, simulated noisy projection (Pois-
, son statistics), and its reprojection for a UCD phantom.
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3.1.3 Using MTF priors to estimate PSD's

By looking at a block diagram representation of the data acquisition scheme

which incorporates the non-ideal characteristics of the tomograph, shown below in

figure 3.4, a very important information can be used to estimate the noise PSD. The

modulation transfer function of the tomograph (MTF) is the impulse-response or

point-spread function of the instrument. Though strictly speaking, the tomograph

Block diagram of data acquistion including MTF of the
tomograph and reconstruction

tomograph nois_n Pm©asured

MTF _ j "]Reconstruction

• ,..... image
Projection signal = p

Figure 3.4: Block diagram of the data acquisition including the MTF of the tomograph, l

is not shift invariant. The tomograph response is isotropic (rotationally invariant)

[40] but radially varying. Furthermore, the response function for a detector pair is

not shift invariant. The response of a detector pair to a positron-emitting source

placed mid-way between the detectors is a Kronecker delta function whose height is a

function of the point source location as indicated below [41] in figure _,.5. The response

of the tomograph is governed by the physical limitation of the scintillator crystal

(typically bismuth germanate [BGO])[11] [51] [52]; both the physical dimension and
t

the crystal's ability to scintillate before the high energy photon can either penetrate

or scatter through to another crystal dictate the tomograph response characteristics.

However, useful analysis can be done making an engineering approximation of
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Figure 35: The height of the Kronecker delta response function of a detector pair in a tomograph as
a function of point source location, where d is the width of a detector crystal (3ram for the Donner

600-crystal tomograph).

shift invariance and hence the response of the tomograph will be referred to as its

MTF. When the MTF is measured by imaging a very small positron-emitting source

the resulting reconstruction can be modeled as a narrow or "peaky" 2-D Gaussian.

Taking the Fourier transform of the point spread function allows one to see the band

width o! the iastrument. Figure 3.6 is the frequency domain representation (I-D) of

the MTF.

Modulation transfer funotion

• 1.0 10°

c

08. 0 10"1

o
"- 6.0 10"1

4.0 10"1

2.0 10"1

0.0100 _ " J
0 64 128 192 256
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6

Figure 3.6: MTF of the Donner 600-crystal tomograph - the frequency axis is measured in frequency
indic_ where index of 256 corresponds to the Nyquist limit equal to 6.67 cycles/cm,

As can be seen, the frequencies near thc Nyquist rate the get attenuated by 60dB

or more and thus the measured power in those high frequencies can be attributed to
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noise alone. This suggests that one can estimate the average noise power in the high

frequencies by merely looking at the total power in those frequencies.

Using the method of reprojecting the reconstructed image (without NR filtering),

we can now proceed to implement the Wiener filter in conjunction with the CBP

reconstruction. The reprojoction vector, _:, is:

= FFTR(_ + n) (3.11)

Now, let _ represent the estimate of 2 and _ denote the estimate of n. Now, the

estimate of the autocorrelation matrices, R_ and 1_,, will be

PL.pp----KEppTK T (3.12)

and

R,_,, = KEmTK T (3.13)

where

K = FFTR. (3.14)

It follows that the Wiener filter using these estimates is

ItI = KP_KTK T. (R_p + R_,)K T. (3.15)

The averaging effect of the reconstruction improves the SNR and hence the variance

in the estimate of the autocorrelation matrices. The price to be paid is that the

resultant estimates become biased. However, the finer the sampling done by F the

better FTR approximates it's true inverse and smaller the resultant bias introduced

by K = FFTR. As will be demonstrated, for the Donner 600-crystal tomograph the

bias introduced is minimal and very good estimates of the Wiener filter can be im-

plemented.

To take advantage of the speed of the CBP reconstruction algorithm, we need to

implement the Wiener filter in the frequency domain. Furthermore, we want to use

the prior knowledge of the MTF of the tomograph to estimate the PSD of the noise.

As before, using the WSS model of the signals the Wiener filter becomes a function

of the PSD's. The PSD estimates are now done using the PSD of the reprojections.
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. The impulse response of K = FFTR, the reconstruction-reprojection operation

one can be generated by Monte Carlo simulations; starting with white noise pro-

' jections of known PSD reconstruct without a NR filter followed by projecting the

reconstructed image. Repeating this operation five-hundred times and averaging over

the five-hundred experiments, ]K(f)l 2, the square of the impulse response can be

found by the relationship

e_ou,put(f) --]gLm(f)laOi,ma(f). (3.16)

The colorization of the noise term, N(/_ = 0, a = v/_), due to IKLst(f)l 2 is shown

below on figure 3.7. The shape of the colorization curve reflects the impulse re-

sponse of the projection and reconstruction algorithm; interpolations in the pixeliza-

tion causes the curve to deviate from the ideal linear curve (as when IFT(f)I 2 is

unity in equation 3.8). It should be noted that this Monte Carlo simulation need

only be done once. Once the colorization curve is determined for a particular set of

reconstruction parameters (such as PWlDTH, number of angles, number of projec-

tion bins, reconstruction size, projector/backprojector operator), it can be stored as

a look-up table and used for all reconstructions with the same parameters.

As stated earlier, the highest frequency components can be attributed to noise

alone. Thus, the estimates of the noise PSD (corresponding to the Kn term) can be

made by scaling the colorization curve shown on figure 3.7 such that a least-squares

fit is achieved between the PSD of the reprojections and the scaled colorization curve.

The graph on figure 3.8 depicts how the noise PSD term is estimated by normalizing

the noise PSD curve to the PSD of the reprojection (signal + noise) over the upper

frequency indices denoted by the hash marks. Once the noise power is determined,

the signal power can be determined by subtracting the noise ':,ower from the PSD of

the reprojection. Hence, the Wiener filter can be implemented by using these PSD

estimates.
6

Determining how many of the highest frequency indices used for normalization

. depends on where the noise power begins to dominate over the signal power. The

following two section discusses the choice the noise-power dominance parameter, the

number of frequency indices used to perform the normalization.
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Figure3.7:"I_ransferfunctionbetween a white input noisesourceinthe projectionversusthe colorized

output of the reprojection.Frequency index of 256 isthe Nyquist limitequal to 6.67 cycles/cm.

3.2 Outline of the Wiener filter implementation

A step by step outline of the Wiener filter is presented below: First, a coloriza-

tion curve needs to be generated and kept as a look-up table for the Wiener filter

routine. As indicated in the previous section, a Monte Carlo simulation (500 exper-

iments were carried out as an example) of the reconstruction-reprojection operation

is used to characterize how a white noise process is going to be transformed and thus

correlated.

For a given tomograph data set and reconstruction routine an identically struc-

tured white noise projections need to be generated. For the example presented, the

projections from the Donner 600-crystal tomograph has 300 angles with 201 projec-

tion bins per (angle for the clam-shut mode). The data is zero-padded to 512 to

reduce aliasing when filtering and thus the white noise projections used to generate



45

I

_ _ rcproj_tion power

t

_ noisepower

\/'x I i=_ _._ • _ • "_ ',

/ _,',_",',_"

r, Ls s s. s s s s

fr_lu©ncy

Figure 3.8: Illustration of how the noise PSD is estimated from reprojections and the noise col-
orization curve. After normalization, the noise power spectrum agree over the last m frequency
indices.

the colorization curve for each Monte Carlo experiment has 300 vectors each with 512

white-noise elements. Picking the projector-backprojector pair used for the recon-

structions (i.e. pll-bll, pin-bin, pll-bin, etc...), reconstruct the white-noise projections

using a ramp filter and reproject the resultant white-noise induced image. The re-

projections must be done at the same angles and the same number of projection bins.

Determine the PSD in the reconstruction by calculating the mod-square of the Fourier

transform of the reconstructions. Store the PSD of the reprojections. Repeat the ex-

periment (500 times) and average the PSD over all experiments (500 experiments

with 300 reprojections per experiment). The resultant average is the characteristic

colorization curve which needs to be stored as a look-up table.

The implementation of the Wiener filter as a part of the CBP reconstruction

is as follows. Start with the raw measured projections and reconstruct using only

the ramp filter. Reproject the resultant image and determine the total PSD in the

reprojections (rood-square of the Fourier transform of the reprojections). For each

reprojection angle, determine the single normalization scale factor which when mul-

tiplied to the noise colorization curve results in the least-square error between the

• highest rn frequency components of the reprojection and the noise power curve. The

normalized noise power curve represents the estimate of the noise in each reprojection,

and the difference between the total PSD of the reprojection and the noise power is

the estimate of the signal power. The least-squares normalization calculation is car-
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ried out as follows: let P__. be the reprojection and 19 be the characteristic colorized

noise power. The error vector for the last rn frequency indices (the noise-power dom-

inance parameter) is simply e.____= P_r_,_-,_ -a/V. Solve for a which minimizes the

norm of the error as follows:

I1=  11= (3.17)

d[ [em[ [_ ^ T T /_ ^ T ^= -(N-_P,._v,._,_ + P__,._,,._,__,.,)+ 2ag,,g,,., = 0 (3.18)
do_ m m

^T

NmP--_¢w-_ (3.19)C_--" ^T ^ "

Nw,_Nm

M fiC(i)P._(i)
a = E_=M-m+_ (3.20)M

E,:M_m+I/V_(i)

where i = M corresponds to the Nyquist frequency index. Thus, the estimate of the

noise PSD becomes

• N = a_ (3.21)

and the estimate of signal PSD becomes

S = P--_pr - aN-__. (3.22)

Substituting the above for the Wiener filter,

S(f) (3.23)
Hw(f) = S(f) + N(f)

where f is the frequency index.
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. Example: Ideal vs. Predicted

Using the Wiener filter generation outlined above, a Wiener filter was generated

for a uniform circular disk with radius 16 pixels and a contrast ratio of 1:0 (back-

ground emits no counts). The graph depicted in the figure 3.9 compares the ideal

Wiener filter generated from the known phantom geometry and the filter generated

using the algorithm outline above.

Ideal vs. predicted Wiener

1,0100

0 0-1_.. 8.01 - ,, .
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Figure 3.9: Comparison of an ideal Wiener filter and the Wiener filter generated by the outlined
method. The filter is for an uniform circular disk phantom with a radius of 16 pixels.
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3.3 Robustness of PSD Estimation Technique

In the previous section outlining the Wiener filter implementation the last m

points of the reprojection PSD was used to calculate the normalization scale factor.

As indicated in the graph of the tomograph MTF in figure 3.6, the tomograph at-

tenuates the signal significantly at 50% of the Nyquist rate. In this section, a study

of how the choice of m, the noise-power dominance parameter, effects the Wiener fil-

ter performance is done. For this purpose, simulation studies using a complex brain

phantom generated by Llacer [20] which mimic the data set collected by the UCLA

PET machine is used.

The description of the data set is as follows: each complete data set consists of

160 projection angles with 128 projection bins and the reconstructed image size is

128 x 128. Reconstructing the raw data results in a very small brain image and there-

fore a small PWIDTH value of 0.588 is chosen for the final reconstruction, consistent

with the choice used by Llacer. There are 24 independent sets of projection data (24

X 160 projection angles with 128 bins) so that results of 24 independent experiments

(reconstructions) could be averaged to produce better estimates. The image of the

phantom is shown in the figures below.

The effect of the choice of m will be measured by 2 metrics: 1) a subjective

measure of visual fidelity and 2) a quantitative measure of error determined by the

standard deviation in a ROI in the reconstructed image. The values of m chosen for

this study are 4, 8, 16, and 32. The 32nd highest frequency index corresponds to

f = 0.75f0, or 75% of the Nyquist rate. The 4 images pictured below are typical

reconstructions (1 of 24 data sets) with the varying value of m. The Wiener filter

averaged over 160 angles for m = 4,8,16, and 32 is pictured in figure 3.14. ROI studies

in two regions are done for this brain phantom _ one in the high intensity region

and another in a low intensity region. The quantitative results for the ROI studies

are summarized in table 3.3.

As the table indicates, the quantitative error varies little with the choice of m.

However, the image quality does show that there is more attenuation in the high
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. frequencies (marked by finer noise textule_) with the higher rn values, as predicted

by the Wiener filter graphs.
i
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Figure 3.10: Wiener filter with the noise- Figure 3.11: Wiener filter with the noise-
power dominance parameter, rn, equal to 4 power dominance parameter, rn, equal to 8
to do the least squares fit. to do the least squares fit.

Figure 3.12: Wiener filter with the noise- Figure 3.13: Wiener filter with the noise-
power dominance parameter, rn, equal to 16 power dominance parameter, rn, equal to 32
to do the least squares fit. to do the least squares fit.
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Figure 3.14: Comparison of the Wiener filter for 4 different noise-power dominance parameters:
rn = 4, 8, 16, and 32. The frequency index of 256 corresponds _o the Nyquist rate equal to 6.67
cycles/cm.

.......Llacer brain phantom ROI studies
reconstruction filter Wiener I ROI 1 ROI 2 #x/#2

method m I a (% of #) cr (% of #) ideal=4
! CBP Wiener 4 1.8% 7.4% 4:'I

CBP Wiener 8 1.8% 7.1'% 4.2
CBP Wiener 16 1.9% 7.4% 4.1
CBP Wiener 32 1.9% 7.5% 4.1

Table 3.1: Summary of ROI statistics of the Llacer brain phantom. Wiener m corresponds to
the highest rn frequency indices used to perform the le_t squares fit to the noise curve. ROI 1

. corresponds to the high intensity region and ROI 2 corresponds to the low intensity region.
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Chapter 4

Results

In this chapter, results from simulations as well as experimental data will be pre-

sented. The first section describes results from simple geometric phantoms (uniform

circular disk, uniform rectangle, and a ring surrounding a pair uniform rectangles of

differing intensities) that are generated by software. The second section investigates

the visual quality of the image as a function of the statistical error in the reconstruc-

tion. The third section studies a more complex brain phantom. Statistical error

in reconstruction is presented and compared to reconstructions using the maximum

likelihood estimate (MLE) and also CBP method with a Butterworth NR filter. Ap-

plying the same technique to experimental data taken from the Donner 600-crystal

tomograph of a Hoffman brain phantom, the reconstruction results are presented in

the fourth section.

4.1 Simulation Studies of Simple Phantoms
t

Using the algorithm outlined in the previous chapter for spectral estimation to

be used in the Wiener filter, simulations will be studied to evaluate the performance

of the Wiener NR filter. Phantom studies are carried out to simulate the Donner
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. 600-crystal tomograph's data set. For each study, the projection data set consists

of 300 projection angles with 201 projection bins (which simulates the clam shut

" mode) and the data possess Poisson statistics. The reconstructions are done using

the RECLBL library and results in a 256 x 256 image. The PWIDTH parameter,

the ratio between the pixel width and the projection bin width, is 1.0; the projector

and backprojector are "pll" and it's adjoint "bll", respectively. The error will be

quantitatively measured by determining the standard deviations in the regions of

constant activity in each phantom. As before, 24 independent projection sets were

generated for each phantom study so the quantitative results presented are averaged

over 24 independent experiments.

Uniform circular disk (UCD) phantom, uniform rectangle phantom (URP), and

a ring surrounding a pair of rectangle (RSR) phantoms of different intensities will

be used as examples to compare the results of the Wiener filter with that of no NR

(just ramp) filter and the Butterworth (BW) filter which were picked after manually

iterating over the cut-off frequency and filter order to produce the "best" looking

images. The BW filter in the RECLBL library is not restricted to having an integer

filter order. The BW filter in the frequency domain is defined below

1

Hsw(f) = ¢1 + [f_c]2N (4.1)

where f is the frequency index, f_ is the cut-off frequency, and N is the filter order-

not necessarily an integer. Aside from the flexibility of having adjustable parameters

to shape the BW filter, another advantage of the BW filter is that it is zero phase. As

stated in chapter 1 images are sensitive to phase information, thus, image restoration

filters are ge_erally zero phase filters. The general "rule of thumb" for picking the

BW parameters go as follows: smaller the number of detected events the smaller the

the cut-off frequency but higher the filter order. This makes intuitive sense as smaller

the number of events the noisier the data set will be and the higher frequencies should

be attenuated more and the attenuation should begin at a lower frequency. It should

be noted that there is good correlation between the visually pleasing images and the

quantitative measure of the standard deviation in the regions of interest (ROI's). It

should also be noted that, other NR filters are available in the RECLBL library (such



54

as the Harming, Hamming, and Parzen filter) but the flexibility of the Butterworth

filter by adjusting its two parameters allows it to resemble most other NR filters

in shape and performance. Thus, the BW filter has been the NR filter of choice

amongst the clinicians. Both quantitative results presented as the standard deviation

in ROI's and the reconstructed images will be presented. For each phantom, three

simulations will be presented- one with low statistics (250,000 detected events),

one with medium statistics (500,000 events) and one with high statistics (2,000,000

events). The medium statistics cases simulate realistic counts for the Donner 600-

crystal tomograph. For each phantom, the simulations are carried out for varying
i

counts (number of detected events) to study the effects of differing effective intensi-

ties. For example, the uniform circular disk has a contrast ratio of 4:1 (foreground to

background) and for the 250,000 (250k) event case the effective intensity in the UCD

is about 10 events per pixel (before being sce_ed between 0 and 255, the 8-bit image

display scale); for the 500,000 (500k) event case the effective intensity is about 20;

and for the 2,000,000 (2M) event case it is about 80.

To simulate the data obtained from the Donner 600-crystal tomograph, 300

projection angles with 201 projection bins per angle are necessary. Simulated noisy

projections for the uniform circular disk (UCD) were generated as follows. First, ideal

projections were calculated analytically using the line-length algorithm [10]. The an-

alytically determined projections are then passed bin by bin to a random number

generator which outputs a realization of a Poisson process whose mean is the ideal

projection.

4.1.1 Uniform circular disk example

The first simulation study is with the UCD whose contrast between the disk

and the background is 4:1. The 250,000, 500,000, and 2,000,000 event simulations are

given below. The UCD is centered in a 256 x 256 image with a radius of 64 pixels.
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. The resultant intensity (before being normalized to the 0 - 255 image display scale)

in the UCD is about 10, 20 and 80 for the 250k, 500k, and the 2M event case, respec-

' tively. The ideal projections are identical for every angle since the UCD is isotropic

(rotationally symmetric). The ideal projection is an elongated half circle shown be-

low in figure 4.4 with simulated projection for a 500k event study overlaying the ideal

projection. (The amount of elongation is linearly proportional to the intensity or

height of the UCD.)

Figure 4.1 shows the original phantom. In figure 4.2 reconstruction results of

the UCD in the absence of noise, or the best possible image given the reconstruction

algorithm (which in this case is the CBP method with no NR filter). For the simu-

lation done with 250,000 events, the reconstruction using the BW filter is shown in

figure 4.5 and the Wiener filtered reconstruction is shown in figure 4.6. For this sim-

ulation, the Butterworth filter cut-off frequency is chosen to be 40% of the Nyquist

rate, and the filter order was chosen to be 3.250. The comparison of the Butterworth

filter and the Wiener filter (averaged over all 300 angles) is shown in figure 4.7.

The two ROI's are depicted in figure 4.14. Since the phantom is uniform, the

two ROI's should have the same mean value and the standard deviation or be com-

parable. Results of the ROI studies are given in table 4.1.

The visual quality of the two (BW and Wiener-filtered) reconstructions are poor

for this simulation. The foreground (the UCD phantom itself) is barely distinguish-

able from the background. Since the resultant intensity level is low and the contrast

level is low the poor image quality is expected. However, the two images have distinct

visual qualities; the BW-filtered version has large noise grains whereas the Wiener

filtered version have very fine grains. This can be explained from the contrasting the

two filters. The BW filter passes a lot more mid-frequencies and less of the highest fre-

quencies as compared to the Wiener filter which has a relatively constant attenuation

. factor from frequency index of 40. The larger noise grains of the BW-filtered image

occupy the mid-frequency spectrum and the fine grains of the Wiener-filtered image

. appear "white". The quantitative results for the two reconstruction show that the

BW version performed slightly better than the Wiener reconstruction. The standard

deviation in the ROI for the BW was roughly 135% of the mean while the Wiener
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version had a standard deviation of about 158%. They both had relatively stable

mean (or DC) values in the two ROI's.

The simulation studies for the UCD phantom with 500,000 detected events are

presented below. The BW filtered reconstruction is shown in figure 4.8 and the Wiener

filtered reconstruction is shown in figure 4.9. The Butterworth filter parameters for

the 500,000 case was the following: cut-off frequency = 45% of the Nyquist rate and

the filter order was 3.00. The comparison of the two filters is shown in figure 4.10.

The quantitative results for the ROI studies are summarized in table 4.1.

The visual quality for the 500,000 event simulation was better due to the 3dB

improvement in signal strength. However, the two reconstructed images still retain

very distinct visual qualities much like that of the previous low statistic case. Since

the overall filter shapes did not change too much from the previous case the images

basically retained those same similar characteristics. However, the quantitative re-

sults show that the Wiener filter performs better as compared to the 250,000 event

case. With the improved signal strength, the Wiener filter behavior becomes much

more clearly dominated by the first-order Bessel function spectrum of the UCD pro-

jections. The humps in the low frequencies is analogous to the humps displayed in an

earlier example figure 3.9 where the UCD had a much smaller diameter (and hence a

much wider humps in the spatial frequency domain). The standard deviation for the

BW version is about 106% whereas the Wiener version produces a standard deviation

of about 111%. Again, the mean value in the ROI's were stable for both reconstruc-

tions.

The simulation studies for the UCD phantom with 2,000,000 detected events

is presented below. The BW filtered reconstruction is shown in figure 4.11 and the

Wiener filtered reconstruction is shown in figure 4.12. The Butterworth filter param-

eters for the 2,000,000 event case was the following: cut-off frequency = 55% of the

Nyquist rate and the filter order was 3.00. Comparison of the two filters are given

in figure 4.13. As stated earlier, with larger number of detected events, the SNR is

improved and more spectral content can be passed through the low-pass NR filter

and hence the cut-off frequency is made higher and the filter order made lower. The

statistics from the ROI studies are summarized in table 4.1.
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. Again, the two reconstructed images display visual qualities similar to the lower

statistics cases. That is, the noise in the Wiener reconstruction appear more white

• and thus more uniform whereas the BW reconstruction have much larger grains. With

large number of events, the SNR is much improved and the the existence of humps in

the lower frequencies is much more evident. Due to the improved SNR, the BW filter

passes a lot more information as expected. The quantitative results show that the

Wiener filter performs as well as the BW counter part for this high count simulation.

The standard deviation in the ROI's for the Wiener is down to 52.5% of the mean

. and the BW version has standard deviation of about 55% of the mean. Again, the

mean values are stable for both reconstructions.

It should be noted that the noise iri the Butterworth reconstruction can vary

significantly depending on the filter parameters. When the filter order is chosen too

large, the resultant image contain miniature donut.shaped noise artifacts. If the cut-

off frequency is chosen too high, the standard deviation in the ROI's become severely

degraded. There are trade-offs in choosing the BW filter parameters. One of the short

comings is that the BW filter roll-off rate is governed only by the filter order and is

uniform when measured on a log-log scale (as it is an aJl-poh filh_r). Thus, the amount

of attenuation increases with frequency and cannot be made to reach a constant level.

With only the two degrees of freedom (filter order and cut-off frequency) the shape

of the BW filter cannot be made to match the shape attained by the Wiener filter.

This first set of simulations using the UCD favors the BW filtering approach since

the ideal projections are identical from angle to angle. Thus, the same filter should

be adequate to filter all projections. The next, two simulations using nonisotropic

phantoms show that the Wiener filter can outperform the BW filter.

The quantitative studies of the ROI's show that the error, measured in standard

deviations as a percent of the ROI average, is reduced in the Wiener reconstructions.

. Furthermore, the lower the number of events, the better the BW filter performs. For

the case with 250,000 events, the standard deviation in the ROI is about 160% of the

• mean for the Wiener and 130% for the Butterworth. For the case with 500,000 events,

the standard deviation for the Wiener drops to about 110_ and for the Butterworth,

it drops to about 105°£. For the case with high statistics of 2,000,000 events, the
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standard deviation in the ROI's for the Wiener drops to 52% of the mean and for the

Butterworth it drops to 55% of the mean. SNR improves with larger statistics and

hence a better estimate of the signal is possible. With better estimates of the signal

and noise PSD's, better estimates of the Wiener filter result which lead to better

reconstructions.
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Figure 4.1" The UCD phantom centered on a Figure 4.2: The best possible reconstruction,
256 × 256 array with radius = 64 pixels, i.e. no noise case, for the CBP algorithm.
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Figure 4.3: Reconstruction for a 500,000 event Figure 4.4: Ideal and simulated (500k events)
• simulation without using any NR filters• projection for a UCD phantom.
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Figure 4.5: BW (fc = 0.40f0,N=3.25) ill- Figure 4.6: Wiener filtered reconstruction of
tered reconstruction of a 250k event UCD. the 250,000 event UCD phantom.

Filter comparison for 250k UCD
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Figure 4.7: Comparison of the BW filter and the Wiener filter (averaged over all projection angles)
used for the 250k event UCD reconstructions.
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Figure 4.8: BW (fc = 0.45f0,N=3.0) filtered Figure 4.9: Wiener filtered reconstruction of
reconstruction of a 500k event UCD the 500,000 event UCD phantom
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Figure 4.10: Comparison of the BW filter and the Wiener filter (averaged over all projection angles)
used for the 500k event UCD reconstructions.,
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Figure 4.11: BW (fc = 0.55f0,N=3.0) ill- Figure 4.12: Wiener filtered reconstruction of
tered result of a 2M event UCD a 2M event UCD phantom
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Figure 4.13: Comparison of the BW filter and the Wiener filter (averaged over all projection angles)
used for the 2M event UCD reconstructions.



63

Phantom I" Uniform circular disk

c_t ....._:_F:::::iiii!i:.ii_:_i_ii!_::ii::z._i_i!ii!!i!i:;!i_........ OI 1:121 pixels

i :_iz!:!:_i_:!iii:' OI 2:121 pixels

Figure 4.14: The UCD phantom is centered (128.5,128.5) on a 256 x 256 gridded array with a
radius of 64 x_iy:els. ROI 1 has its lower left corner at (128,123) and its upper right corner is at

(138,133). ROI 2 has its lower left corner at (128,115) and its upper right corner is at (138,125).

Uniform circular disk phantom ROI studies
number of filter ' BW param's [ ROI 1 ROI 2 #1/#2

events type --fc (% of fo) ] order ] a (% of#) a (% of #) (ideal = 1)
250k ramp ....310% 320% 1.10
250k BW 50% 3.25 130% 139% 1.05
250k Wiener .... 160% 156% 0.99i ,,. .......

..... 500k ramp 260% 268% 1.02
500k BW 55% 3.05 105% 106% 1.00 •
500k Wiener 112% 111% 1.01

2M ramp .... 122% 125% 1.04
2M BW ' 60% 3.00 54% 56% 1.02
2M W_ener .... 52% 53°£ 1.02

Table 4.1' Summary of ROI statistics UCD phantom study, fc and fo are the cut-off frequency
and the Nyquist rate, respectively, a and # are the standard deviation and mean of the ROI,
respectively.

i.
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4.1.2 Uniform rectangle example

The Uniform rectangular phantom (URP) simulations is useful in demonstrating

the adaptive nature of the Wiener filter. Since the rectangle is not isotropic (rota-

tionally symmetric), the filter shape should change more dramatically than for the

isotropic UCD. Figures 4.18 and 4.19 show the difference in the projections when

the projections are measured at 0° and 90°, where the 0° is the projection measured

north-to-south in the image and the angles are measured clock-wise. The rectangle

is centered on a 256 X 256 image having a height of 86 pixels and width of 13 pix-

els. The contrast for this phantom is 6:1 as compared to 4:1 used in the UCD. The

contrast ratio and the size of the phantom is such that the effective intensity (before

normalization to the 0-255 image display scale) in the URP is about 20, 40, and

160 for the 250k, 500k, and 2M event cases respectively. The image of the original

phantom is displayed on figure 4.15; the best possible reconstruction (no noise case)

is on figure 4.16; an example of a reconstruction without using a NR filter (500k

event simulation) is on figure 4.1.2; the ideal and simulated projections at 0° is on

figure 4.18 and the 90° projections are on figure 4.19. The reconstructions and quan-

titative results are presented below.

For the 250k event simulation, the image quality is slightly better compared

to that of the 250k UCD for both the Butterworth and the Wiener due to the 3dB

improvement in the signal strength. The two reconstructions are placed side-by-side

for comparison in figures 4.20 and 4.21. The noise in the reconstructed images has

characteristics very similar to those of the 250k UCD simulations; the noise in the

Butterworth filtered images is characterized by large grain sizes as compared to the

Wiener. The Butterworth filter parameters for this case are: cut-off frequency = 55%
Q

of the Nyquist rate and the filter order is 3.50. The cut-off frequency is higher as

compared to the UCD example for the same number of detected events due to the

fact that the sinc function spectrum of the projections measured vertically has zero

crossings that are wider than the of zero crossings of the Bessel function spectrum
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. of the UCD projections. The Wiener filter is displayed for two different projection

angles: one at 0° and another at 90°. As can be seen, the filter shape is governed by

• spectrum of each projection angle. Since the 90° projection is a wide square pulse

compared to the 0° projection, the sinc function spectrum of the 90° projection has

zero crossings that occur more rapidly than the 0° projection. This can be seen in

the close-up of the low-flequency portion of the Wiener filter shown on figure 4.29.

For the 500k event simulation, the Butter worth filter parameters are the follow-

ing: cut-off frequency -- 60% of the Nyquist and filter order is 3.1. Again, the BW

filtered images had noise grains which were much larger causing larger false hot spots

to appear. Figure 4.23 and 4.24 are the reconstructed images and figure 4.25 show

the Wiener filter at two different angles.

For the 2M event simulation, the Butterworth filter parameters are the following:

cut-off frequency = 64% of the Nyquist and filter order is 3.00. With the expected

value of the intensity (before scaling to 0 - 255) being around 160 the SNR approx-

imately being _ = 22dB the two reconstructed images look much less noisy and

the image quality is good for both reconstructions.

As with the simulations using UCD phantom, the BW filter parameters var-

j ied according to the number of detected events. With improving SNR, the cut-off

frequency is made higher and filter order made smaller. As explained in the UCD

section, the shape of the BW cannot be made to look similar to outline of the Wiener

filter. If the parameters are chosen the mimic the outline of the Wiener in the low

frequencies, the BW filter would end up over attenuating the mid to high frequencies

causing the result image to have blurred edges as well as having ea_ a image quality

similar to that of looking at an image through ground or etched glass. _

The two ROI's for the URP simulation is illustrated in figure 4.30 and the sum-

mary of the ROI statistics is presented in the table 4.2. Quantitatively, the Wiener

filter performed better for this non-isotropic phantom as compared to the i_otropici

UCD. The BW filtered images and the Wiener filtered images resulted in having

nearly identical standard deviations in the ROI for the all three cases despite the

remar'kably different image appearances. For the low statistics case: a _ 70%. For

the medium statistics case: G _ 50%. For the high statistics case: a _ 25%.
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Figure 4.15: The URP _.as height-86 pixels Figure 4.16: The best possible reconstruction,
and width-13 pixels, i.e. no noise case, for the CBP algorithm.

Figure 4.17: Reconstruction for a 500,000
event simulation without using a NR filter.
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" Ideal vs noisy projection for URP
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Figure 4.18: Ideal and simulated (500k events) projection for a URP at 0 °.
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Figure 4.19: Ideal and simulated (500k events) projection for a URP at 90 °.
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Figure 4.20: BW (fc = 0.55f0,N=3.5) ill- Figure 4.21" Wiener-filtered reconstruction of
tered reconstruction of a 250k event URP the 250k event URP

Filter comparison for 250k URP
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Figure 4.22: Comparison of the BW filter and the Wiener filter (at 0° and 90°) used for the 250k
event URP reconstructions.
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Figure 4.23: BW (fc = 0.60fo,N=3.1) ill- Figure 4.24: Wiener filtered reconstruction of
tered reconstruction of a 500k event UI'IP the 500k event UR,P

Fllter comparlson for 500k URP
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Figure 4.25: Comparison of the BW filter and the Wiener filter (at 0 ° and 90 °) for the 500k event
URP reconstructions.

i
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Figure 4.26: BW (fc = 0.64f0,N=3.0) ill- Figure 4.27: Wiener filtered reconstruction of
tared reconstruction of a 2M event URP the 2M event URP

Filter comparison for 2M URP Wiener filter comparison at low freq'a
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Figure 4.28: Comparison of the BW filter and Figure 4.29: Blow up of the low frequencies to
the Wiener filter (at 0 ° and 90 °) for the 2M illustrate the adaptive nature of the Wiener ill-
event URP. ter.
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. Phantom 2: Uniform rectangle
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Figure 4.30: The URP is centered on a 256 × 256 array with a height of 86 pixels and width of 13
pixels. ROI 1 has its lower left corner at (123,165) and its upper right corner is at (132,170). ROI
2 has its lower left corner at (123,125) and its upper right corner is at (132,130).

Uniform rectanguIaFphantom 1_19Istudies .......

number of filter [ BW paraxn,'s.................ROI 1 [ "' ROI'2 pi'/')_2events type f c (% of fo) xder a (% of V) a (% of .) (ideal = 1)
- 2501_- '"" r_p ............ " - ......'i58% " ......i6'8%- ' - l':'i0 .....

250k BW ' 55% 3.50 64% 67% 0.98
- 250k Wiener ............. 70% 6g% ....... 1.02

500k ..... ramp ................ " : i22%':....' .....0.98....
500k BW 60% 3.10 .........52% - 55%- i.00
500k Wiener ....... 49% 47% _ 1.0i

-- _-- ' , '.... , ,11,, h .....

2M ramp ............... 53% 62% 0.99
2M BW" 64%' 3:00' 27% ...... 3i% .....i' 1'.'01 '"
2M '_ Wiener .... 'i'ii' 26%-- 29% Lh i.'01

Table 4.2: Summary of ROI statistics for the uniform rectangular phantom study, fc and fo are
the cut-off frequency and the Nyquist rate, respectively, cr and p are the standard deviation and
mean of the ROl.
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4.1.3 Phantom of ring surrounding a ptax of rectangles

Simulations studies carried out on the ring surrounding a pair of uniform rect-

angles phantom shown on figure 4.31 is presented below. As shown on the image,

the ring and the upper rectangle have equal but lower intensity levels than the lower

rectangle. The contrast levels are 4:1 and 8:1, respectively. The ring is centered in
I

the image and has an outer diameter equal to 128 pixels and an inner diameter of

120 pixels. The two rectangles have height equal to 11 pixels and length equal to 65

pixels. The two rectangles are separated by 11 pixels. Using the lower left corner of

the image array as the origin (row=0,column=0), the lower left corner of the bottom

rectangle is located at (row=96, column=ill). The intensities in the 4:1 contrast

regions are approximately 12.5, 25, and 100 for the 250k, 500k, and the 2M event

simulations respectively. (The intensities in the 8:1 region is double the above.) As

in the URP studies, results of the Wiener filter will be presented for the 0° and the

90° cases. The best possible reconstruction is displayed on figure 4.32; an example of

a reconstruction without the use of a NR filter is shown on figure 4.1.3 (500k events);

the ideal and simulated projections are on figures 4.34 and 4.35. As before, simula-

tions are done with 250k, 500k and 2,000,000 events.

For the 250k simulation, the reconstructed images are shown on figures 4.36

and 4.37. The ring is barely visible in both reconstructions though the rectangles,

due to a larger width is much more visible. The lower rectangle, with a 3dB improve

SNR, is even more visible than the lower rectangle as expected. Again, the image

quality and the visual quality of the noise is similar with the previous phantom stud-

ies. The BW filter parameters chosen for this reconstruction are: fc = 0.46 f0 and

N=3.40. The comparison of the BW filter and the Wiener filter (at 0° and 90°) are

presented in figure 4.38.

For the 500k simulation, the Butterworth filter parameters are the following:

cut-off frequency = 64% of the Nyquist and filter order is 3.1. Again, the BW filtered
0

images had noise grains which were much larger causing non-uniform textures to ap-

pear in regions which are supposed to be uniform.
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. For the 2M event simulation, the Butterworth filter parameters are the following:

cut-off frequency = 66% of the Nyquist and filter order is 3.00. With the expected

" value of the intensity (before scaling to 0 - 255) being around 100 (and 200 for the

high intensity region) the SNR approximately being _ - 20dB (and 23dB) the

images look much less aoisy and the image quality is similar.

The two ROI's for this phantom is shown in figure 4.46. ROI 1 is in a region

where the contrast ratio is 4:1 and ROI 2 is in a region where the contrast is 8:1.

The results are presented in the table 4.3. For the 250k event case, the BW filtered

reconstructions have standard deviations that are slightly smaller than the Wiener

filtered reconstructions. The BW a for the 4:1 contrast region is 78% of the mean

compared to the Wiener a of 89%. In the 8:1 contrast region, the BW a is 40%

compared to the Wiener a of 58%. For the 500k event case, the ROI studies resulted

in comparable results: ROI 1 has cr's around 65% and ROI 2 has a's around 35%.

For the high statistics case, again, the results were comparable: ROI 1 has a's around

38% ROI 2 has a's around 20%.

As with the previous two phantom simulations, the BW filter parameters varied

according to the number of detected events. With improving SNR, the cut-off fre-

quency is made higher and filter order made smaller. As explained in the previous

two sections, the shape of the BW cannot be made to look similar to outline of the

Wiener filter. If the parameters are chosen the mimic the outline of the Wiener in

the low frequencies, the BW filter would end up over attenuating the mid to high

frequencies causing the result image to have blurred edges as well as having an a

image quality similar to that of looking at an image through ground or etched glass.
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Figure 4.31: The RSR phantom: contrast Figure 4.32: The best possible reconstruction
level of the lower rectangle is 2X of the up- for the CBP reconstruction algorithm (i.e.. no
per rectangle, noise case).

Figure 4.33: Reconstruction for a 500,000
event simulation without using a NR filter.
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" Ideal vs. noisy projection for RSR
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Figure 4.34: Ideal and simulated (500k events) projection for a URP at 0 °.
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Figure 4.35: Ideal and simulated (500k events) projection for a URP at 90 °.
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Figure 4.36: BW (fc = 0.55f0,N=3.5) ill- Figure 4.37: Wiener filtered reconstruction of
tered reconstruction of a 250k event URP the 250k event URP.

Filter comparison for 250k RSR
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Figure 4.38: Comparison of the BW filter and the Wiener filter (at 0 ° and 90 °) used for the 250k
event RSR reconstructions•
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Figure 4.39: BW (fc -- 0.fi0fo,N--3.1) ill- Figure 4.40: Wiener filtered reconstruction of
tered reconstruction of a 500k event RSR the 500k event RSR

i

Filter comparison for 500k hSR
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Figure 4.41: Comparison of the BW filter and the Wiener filter (at 0° and 90 °) for the 500k event
RSR reconstructions.



78

Figure 4.42: BW (fc = 0.64fo,N=3.0) ill- Figure 4.43: Wiener filtered reconstruction of
tered reconstruction of a 2M event RSR the 2M event ILSR

Wiener filter comparison at low freq'sFilter comparison for 2M RSR
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Figure 4.44: Comparison of the BW filter and Figure 4.45: Blow up of the low frequencies to
the Wiener filter (at 0 ° and 90 °) for the 2M illustrate the adaptive nature of the Wiener ill-
event URP. ter.
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• Phantom 3: Ring surrounding 2 rectangles

, 4:1 contrast OI 1:168 pixels

_iii'ii_ii OI 2:168 pixels

_8:1 contrast

Figure 4.46: The RSR is centered on a 256X256 array with a the outer diameter of the ring of 128
pixels and inner diameter of 120 pixels. The upper rectangle has its lower-left corner at (96,133)
and upper-right corner at (160, 145). The lower rectangle has its lower-left corner at (96,111) and
upper-right corner at (160,123). ROI 1 is located in the upper rectangle and has its lower left corner
at (115,135) and its upper right corner is at (135,142). ROI 2 s located in the lower rectangle and
has its lower left corner at (100,113) and its upper right corner is at (120,120).

......Ring surrounding rectangles - ROI studies
number of filter BW param's ROI1 ROI 2 #1/#2

events type fc (% of fo)"l Order a(% of #) _ (% of/z) (ideal,= 2)
250k ramp 250% 137% 2.02
250k BW 46% 3.30 76% 40% 1.99
250k Wiener 95% 55% 1.99 ........

500k ramp 180% 94-% ' 2.01
500k BW 50% 3.10 61% 33% 1.99
500k Wiener 72% 37% 1.01

2_ ramp .... 92% 48% 1.99
2M BW 64% 3.10 42% 21% 1.98
2M Wiener 39% 20"% 1.99

Table 4.3: Summary of ROI statistics for the RSR phantom study, fc and fo are the cut-off
frequency and the Nyquist rate, respectively, cr and # are the standard deviation and mean of the
ROI.
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4.2 Visual quality

This section investigates a new metric for measuring the image quality. The stan-

dard deviation of a selected region of uniform intensity is not the optimal measure

the image quality of a reconstructed image. Using the URP with 500,000 detected

events as an example, this section presents how the vlsual quality is effected by the

fluctuations of the statistical error within a region of known uniform activity.

The profiles of the reconstructed images using the BW filter and the Wiener fil-

ter are shown in 4.47 through 4.50. Comparing the profiles through the center of the

image, both horizontally and vertically, shows that the deviations from the mean is

larger for the BW filtered image as predicted by the statistical summary in table 4.2.

How the larger deviations translates to the visual quality is displayed in figures 4.52

and 4.53. In these images, a 8 x 8 region of uniform activity is magnified and seg-

mented such that the dark pixels represent pixels whose value is within :i= 50% of

the local mean and the light pixels are those that exceed the -4-50% bounds. In this

example, the BW-filtered image contain 35 pixels (out of 64) that exceed the thresh-

old whereas the Wiener-filtered image only contain 11 pixels. The clustering of the

light-colored pixels in figure 4.53 can lead to a false-positive reading in a BW-filtered

image.

Finer quantization of the pixel values in the same ROI's is depicted in figures 4.54

and 4.55. The pixel values are segmented into the following bins: +12.5% of the ROI

mean, between =k12.5% and =t=25%,between =t:25% and -4-50%, between =i:50% and

=k75% of the mean, and beyond =i:75% of the local mean. These finer quantizations

further demonstrate that the dispersion of pixel values in an uniform ROI is much

larger in the BW-filtered reconstructions than in Wiener-filtered reconstructions. Due

to the fact that the BW-filters used in the reconstructions pass more mid-band fre-

quencies, the fluctuations from the mean in the BW-filtered images tend to vary

slower as compared to the Wiener-filtered results. This causes the pixels that have

larger deviations from the mean to cluster together for the BW-filtered reconstruc-
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, tions as displayed in figures 4.53 and 4.55. These large clusters of pixels with larger

deviations from the mean explain the coarse 2-D texture of the noise present in the

' BW-reconstructed image.

Although the standard deviations of the Wiener-filtered and the BW-filtered

reconstructions are comparable (49% for the Wiener and 52% for the BW), due to

the relatively small sample size (64 pixels) the distribution of the noise in the image

is not measured well by the standard deviation. The histogram of the pixel values

in a 8 × 8 uniform region measured by sampling 24 independent reconstructions is

shown in figure 4.56 and 4.57. These histograms as well as the spatial distribution

of the fluctuations (figures 4.54 and 4.55) clearly indicate that the Wiener-filtered

reconstructions preserve uniformity better in regions of constant activity. There is,

however, a relationship between this new image quality metric and the standard de-

viation. The smaller the standard deviation, the more likely that the concentration

of pixels with small deviation is higher.

i
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Column profile of Wiener image
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Figure 4.47: Profile of the Wiener-filtered reconstruction of the 500,000 detected event URP -- the
profile is through the middle of the image (column=128).

Column profile of BW image
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Figure 4.48: Profile of the BW,filtered reconstruction of the 500,000 detected event URP -- the

profile is through the middle of the image (column=128).
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Row profile of Wiener Image
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Figure 4.49: Profile of the Wiener-filtered reconstruction of the 500,000 detected event URP N the
profile is through the middle of the image (row=128).
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Figure 4.50: Profile of the BW-filtered reconstruction of the 500,000 detected event URP N the
profile is through the middle of the image (column=128).
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URP reconstruction

phantom

8x8 ROI magnified
and displayed below

Figure 4.51: Illustration of the ROI in the 500,000 detected event URP reconstruction (for both the
Wiener and BW-filtered results)

Figure 4.52: An example of a magnified 8x8 ROI Figure 4.53: An example of a magnified 8x8 ROI
shown above for the Wiener-filtered reconstruc- shown above for the BW-filtered reconstruction.

tion. Threshold was set such that the dark pix- Threshold was set such that the dark pixels are
els are within =1=50°_ of the mean of the ROI within =i:50°]0 of the mean of the ROI while

while the light-colored pixels fall outside the the light-colored pixels fall outside the thresh-
threshold window, old window.
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Figure 4.54:8x8 pixels from the Wiener-filtered reconstruction (same as figure 4.52) quantized 5
levels of gray scale. The darkest pixels are within 4-12.5%, the next darkest shade is between
4-25% and 4-12.5%, t !5%, the second lightest
shade is for pixels that h he mean, and the lightest
shade is for pixels beyor

Figure 4.55:8x8 pixels from the BW-filtered reconstruction (same as figure 4.53) quantized to 5
. levels of gray scale. The darkest pixels are within 4-12.5%, the next darkest shade is between

4-25% and +12.5%, the next darkest shade is between 4-50% and 4-25%, the second lightest
shade is for pixels that have values that lie between 4"50% and -I-75% of the mean, and the lightest
shade is for pixels beyond -4-75% of the local mean.

t
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Histogram of pixel values (Wiener)
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Figure 4.56: Histogram of the pixel values in a 8 x 8 region of uniform activity measured by sampling
24 independent Wiener-filtered reconstructions of the 500,000 detected events URP.

Histogram of plxel values (BW)
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Figure4.57:Histogramofthepixelvaluesina 8 × 8 regionofuniformactivitymeasuredby sampling
24 independent r ,_-filtered reconstructions of the 500,000 detected events URP. °
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4.3 Simulation studies of a brain phantom

Using the Llacer brain phantom (with 1.5M detected events) pictured below

in figures 4.58 and 4.59, simulations comparing the results of the CBP reconstruc-

tion with the Butterworth NR filter, and the CBP reconstruction with the Wiener

NR filter, and a reconstruction using the maximum likelihood estimation (MLE)

method will be presented. The MLE reconstruction was carried out using the MLE-

CV reconstruction software package described in [20]. Statistical error are measured

and compared for the 3 reconstruction techniques in two ROI's -- one in a high in-

tensity region and another in a low intensity region. Results are summarized in table

4.4. The same data set used in section 3.3 (study of m vs. Wiener performance) is

used for this study.

As the summarized results in table 4.4 indicate the Wiener filter performs favor-

ably compared to both the BW-filtered result and the MLE reconstruction.

........Llacer brain phantom ROI Stt_dies
reconstruction filter .... ROI 1 ROI 2 _1/#_.

method a (% of p) a (% of p) ideal=4_
'CBP " Wiener 1.9% 7.5% 4.1

CBP BW 2.4% 11.3% ' 3.9
MLE 2.8% 8.2% 4.2

Table 4.4: Summary of ROI statistics of the Llacer brain phantom. BOI 1 corresponds to the high
intensity region and ROI 2 corresponds to the low intensity region. The Wiener filter was generated
using 32 highest frequency indices to perform the power normalization. The BW parameters are

, fc = 0.5fo and N=3.50.
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Figure 4.58: Wiener-filtered reconstruction of Figure 4.59: BW-filtered reconstruction of the
the Llacer brain phantom Llacer brain phantom (fc = .5fo, N=3.5)

Figure 4.60: MLE reconstruction of the Llacer

brain phantom
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. 4.4 Experimental results of the Hoffman brain

. phantom

The Hoffman phantom is a plexiglass which has been milled to resemble the

cross section of a human brain. Sealing the plexiglass after filling it with a positron-

emitting tracer and placing it in the tomograph, projection data is measured. Unlike

human subjects, the dosage can be made large to increase the SNR so that very good

reconstructions are possible as will be shown. Two reconstructions are presented: one

with 500,000 detected events and one with 34,000,000 events. Comparisons are made

in the resulting Wiener filters and the reconstructed images with the Butterworth

filtered images below.

As in the simulations, the comparison between the Wiener filters and the But-

terworth filters show that the Butterworth filters pass more mid-frequency informa-

tion and attenuate the high frequencies more than the Wiener filters. Similarly, the

comparison of the reconstructed images shows similar image quality with those of the

simulated data. That is, the Wiener-filtered images contain noise which appears more

white with fine texture while the BW-filtered images have a much coarser texture.

In the 500k case, the noise in the BW filtered reconstructions have mottled noise

artifacts. For the 3,iM event case, the two reconstructions both have good visual

appearance but the BW filtered image still contain more mottled noise texture.
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Figure 4.61" Reconstruction of the Hoffman Figure 4.62: Reconstruction of the Hoffman
brain phantom with 500,000 counts using the brain phantom with 500,000 counts using the
Wiener filter. BW filter.

Filter comparison for 500k Hoffman
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Figure 4.63: Comparison of the BW filter and the Wiener filter (averaged over all 300 angles) for the
500,000 event Hoffman phantom. The BW parameters are: fc -- 0.42 and N=3.0. The frequency

index of 256 corresponds to the Nyquist limit equal to 6.67 cycles/cm.
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Figure 4.64: Reconstruction of the Hoffman Figure 4.65: Reconstruction of the Hoffman
brain phantom with 34,000,000 counts using brain phantom with 34,000,000 counts using
the Wiener filter, the BW filter.

Filter comparison for 34M Hoffman
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Figure 4.66: Comparison of the BW filter and the Wiener filter (averaged over all 300 angles) for
' the 34,000,000 event Hoffman phantom. The BW parameters are: fc = 0.59f0 and N=4.0. The

frequency index of 256 corresponds to the Nyquist limit equal to 6.67 cycles/cm

P
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Chapter 5

Conclusion

5.1 Summary

The goal of this thesis is to derive a computationally efficient algorithm for

an optimal linear noise-reduction filter for linear tomographic image reconstruction.

Implementing such a filter was done using a frequency-space adaptive-Wiener filter

for the convolution backprojection reconstruction method. Theoretical results of the

Wiener filter performance was verified through experimental results. Both simulated

and experimental data was used to compare the Wiener-filtered reconstructions with

the BW-filtered results. Simulation results showed tliat the adaptive Wiener filter

outperformed both the conventional Butterworth NR-filter and the reconstruction

using the MLE method in terms of the statistical error measured in standard devi-

ations. However, the standard deviation does not measure image quality and a new

image quality metric was developed. By measuring the number of pixels in a region

of uniform activity that fall within a chosen threshold, a quantitative measure of the

image quality can be described. Using the uniform rectangular phantom with 500,000

detected events as an example, it was shown that the Wiener-filtered reconstructions

contained more than twice as many pixels within the :t:50% threshold as compared to

the BW-filtered result. This new metric is related the standard deviation as the the

number of pixels that fall within a percentage of the local mean is inversely related



93

, to the local standard deviation.

The visual quality of the Wiener-filtered reconstructions were shown to be char-

" acterized by fine 2-D noise textures with a uniform gray scale whereas the BW-filtered

reconstructions were shown to have a coarse texture with oscillating gray-scale values.

The coarse texture caused by clustering of pixels with large deviations from the local

mean degraded the image quabty of BW-filtered reconstructions.

Integral to the adaptive Wiener filtering technique is estimating the signal and

noise statistics. Estimation of signal PSD is made difficult in PET data due to the

poor SNR of the measured data. This thesis demonstrated a novel technique of

estimating the signal and noise PSD's by using the concept of reprojections. By

measuring the projections of a reconstructed image, a better estimate of the signal is

possible because _he SNR is improved in the reprojections. Furthermore, the char-

acteristic noise power can be removed from the reprojections as the noise behavior

in the reprojections was calculated using Monte Carlo simulations. Hence, better

estimates of the signal and noise PSD was derived and implemented for the adaptive

Wiener filter.

5.2 Future work

One direction for further research on the adaptive-Wiener filter for the CBP is

to reduce the systematic bias introduced into the filter. The algorithm of the Wiener

filter implementation presented in chapter 3 prevents negative filter values to appear

by forcing Hw(f) = 0 when the noise power estimate exceeds the total power. The

, algorithm assumes that all of high frequencies are noise which should result in the

average value of the filter at those frequencies to be zero. However, as a result of

, forcing the filter value to go to zero when the calculated value is negative, the average

filter value at those highest frequencies become greater than zero. Heuristic schemes

to force the average filter values to zero have been suggested such as if neighboring
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frequency indices have filter value of zero, then the filter value for that frequency

should also be forced to zero. However, such schemes have not been implemented.

Future research in developing an adaptive-Wiener filter for linear reconstruction

methods based on the SVD of the projection formation matrix is outlined below.

Incorporating priors such as the MTF of the tomograph and the impulse response of

the reconstruction algorithm can improve the estimates of the second order statistics

required to implement the Wiener filters for the SVD-based reconstructions. The

autocorrelation matrix for the noise and signal represented in the basis set of the left

and right singular vectors (functions) of F needs to be estimated. For both the M-P

inverse and the Baker reconstruction method a diagonal matrix, D, acts as a filter by

properly weighing each component of the basis set. The diagonal elements of D was

shown to be

2 2

dk = AkEflk
_E_ +E,_

wh_ &'__r_the_lem_ntsof__={__"_,=V__}_ndsimi1_rly,'7_'__ th__1_m_nt_of
7/= {rl •n_= Url}. The U and V are the unitary matrices (operators) which consists

of the left and right singular vectors (or functions) of the projection formation matrix,

F.

As with the frequency-space adaptive-Wiener filter, an estimate of the second

order statistic of the noise can be derived by using Monte Carlos simulations. Utilizing

the same normalization scheme of least-squares fitting the characteristic noise power

to a specific data set, the characteristic Erl2 shape can be normalized to a specific

data set in the highest m indices of k. The scaled signal parameter, 2 2AkEflk can then

be estimated by subtracting the normalized Er/_ curve from Epr_, the second order

statistic of the measured noisy projection. Thus, an adaptive-Wiener filter can be

implemented for the two reconstruction methods based on the SVD of F.
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