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CATALYST AND FEEDSTOCK EFFECTS IN THE
THERMOCHEMICAL CONVERSION OF BIOMASS TO LIQUID
TRANSPORTATION FUELS

B. Rejai, F. A. Agblevor, R. J. Evans and D. Wang
National Renewable Energy Laboratory (NREL)
1617 Cole Blvd
Golden, CO 80401

ABSTRACT

The thermochemical conversion of biomass
feedstocks to liquid transportation fuels can be
accomplished by three processes, namely
gasification, high-pressure liquefaction, and
pyrolysis. In this study, the pyrolysis option is
selected which is followed by the catalytic
upgrading of pyrolysis vapors to aromatic and
olefinic hydrocarbons (PYROCAT process). The
aromatics constitute a high-octane gasoline blend,
while the olefins can be utilized as feedstocks for
various chemicals. :

The PYROCAT process has been studied in a
laboratory-scale fixed-bed catalytic reactor.
Consecutive biomass samples were pyrolyzed
rapidly in steam at 550°C and atmospheric
pressure, and then the pyrolysis vapors were
passed over a zeolite catalyst. The catalytic
upgrading products were monitored in real-time
using molecular-beam mass-spectrometry
(MBMS). The yields of major products were
estimated from mass-spectral data. Several zeolite
catalysts were screened in the upgrading process
and promising catalysts with high yields were
identified. Feedstocks studied included: the woody
biomass species aspen (Populus tremuloides),
basswood (Tilia americana), and willow (Salix
alba);, the three isolated components of wood
lignin, xylan and cellulose; and the herbaceous
species bagasse (Saccharum spp. hybrid), wheat
straw (Triticum aestivum), and Sericea lespedeza
(Lespedeza cuneata).

1. INTRODUCTION

The periodic occurence. of oil crises in the world,
along with the threat of environmental
degradation caused by acid rain, smog, ozone, and
carbon monoxide pollution have increased the
need for and interest in renewable sources of
energy. Biomass, as the most abundant renewable

e

energy resource in the world and capable of facile
conversion to liquid fuels, presents a more
environmentally sound alternative than fossil
fuels. In biomass, solar energy is stored as
chemical energy through the photosynthetic
activity of plants. Although the stored energy can
be recovered by combustion, the lower energy
density of biomass (10-20 MJ/Kg)! as a solid fuel
makes it less favorable than fossil fuels for
transportation. An inherent problem associated
with the utilization of biomass as fuel results from
its high oxygen content (35-45% wt). In biomass
pyrolysis, where no reducing agent is present,
oxygen must be removed as CO, or CO to

increase the hydrogen content of the products?,
Another difficulty stems from the highly
dispersed nature of biomass, which adds
considerable cost to the transportation and
processing of this fuel. On the other hand, some
advantages of biomass over fossil fuels include
low sulfur content (typically 0.1%) and low ash
(0.1-3%). Also, if biomass is produced at a
sustainable rate, carbon dioxide production from
the combustion of biomass fuels can be
counterbalanced by that removed from
atmosphere during photosynthesis. Thus, the
overall bioenergy cycle will have no net
contribution to the global warming. Furthermore,
the emission of other major air pollutants
(nitrogen oxides and hydrocarbons) are
considerably lower for oxygenated biofuels than
those from fossil fuels3. These advantageous
features make biomass an environmentally sound
alternative fuel for futurc energy needs.

Options for the production of high-density liquid
fuels from biomass consist of biochemical and
thermochemical conversion processes. These
processes are currently under development at the
National Renewable Energy Laboratory (NREL).
The thermochemical processes include
gasificaiion, high-pressure liquefaction, and low-



pressure pyrolysis to produce pyrolysis oil
(biocrude). Although biocrude is a low-viscosity
oxygenated liquid, perhaps suitable for
combustion in furnaces and turbines, the
deoxygenation of the vapors by shape-selective
catalytic upgrading at atmospheric pressure*-!3
can result in a gasoline-like hydrocarbon blend,
which presents a more attractive option. In this
paper, we discuss the pyrolysis option and
examine the catalytic deoxygenation of biocrude
to aromatic and olefinic hydrocarbons
(PYROCAT process). The screening results of
various shape-selective catalysts are presented.
Also some potential biomass feedstocks, which
were analyzed by conventional methods, are
evaluated for the thermochemical conversion
process.

2. : ND METHOD
2.1 Biomass Feedstock Preparation

Biomass feedstocks in this study consisted of both
herbaceous and woody species. The wheat straw
(Triticum aestivum) and sugar cane bagasse
(Saccharum spp. hybrid) are standard reference
biomass materials, obtained from the National
I'istitute of Standards and Technology (NIST),
The aspen (Populus tremuloides), willow (Salix
alba), basswood (Tilia americana), and Sericea
lespedeza (Lespedeza cuneta) were taken from
the NREL's biomass collection. The NREL
biomass samples were ground in a Wiley mill to
pass through a I-mm screen. No further
preparation was carried out on these samples. The
cellulose sample was Avicel PH-102 (FMC Corp.,
Philadelphia, Pennsylvania) with an average
particle size of 90 um. The hemicellulose was an
acetylated, alkali free xylan prepared from aspen
wood by H. Schroeder of the Colorado State
University, Fort Collins, Colorado. The lignin
was a ball milli/enzyme liberated sample prepared
from cottonwood (Populus deltoides, clone #42-
7) at NREL. Some of the biomass samples were
analyzed for their elemental composition (C, H,
O, N, and ash) by Huffman Labs (Golden,
Colorado)..

2.2 Catalyst Preparation

Catalyst samples were obtained from F. V.
Hanson and D. C. Longstaff of the University of
Utah. Samples included the pure crystalline form
of ZSM-5 variations. The structural details of
these catalysts cannot be disclosed at this time

because of proprietary reasons. A sample of
commercial ZSM-5 with binder (catalyst 6) was
provided by Mobil Research and Development -
Corporation, Overall, 17 catalysts were tested for
the thermochemical conversion of biomass.
Approximately 1.0 g of the catalyst was sieved to
a mesh size of 25-45 and was packed in the
reactor between quartz wool on both sides (see
Figure 1).

2.3 Catalytic Upgrading of Pyrolysis Vapors

Biomass samples were pyrolyzed in steam at
550°C, and the pyrolysis vapors were immediately
passed through a fixed bed of zeolite catalyst.
Samples were introduced in batches of
approximately 30 mg and were repeated in
triplicate. A two-stage quartz reactor with dual-
bed configuration (as shown in Figure 1) was used
in both catalyst and feedstock screening
experiments. This symmetrical reactor
configuration, interfaced with the molecular-beam
mass-spectrometer (MBMS)!6 allows rapid
comparisons of two catalysts and allows the study
of longevity of catalysts under severe operating
conditions, Steam and helium carrier gases were
passed through the inner tubes at various flow
rates. The outer flow of helium was used for the
dilution of gaseous products for MBMS
sampling!2 and for the introduction of standard
calibration mixtures to the MBMS without
disturbing the catalyst beds. The temperature
control of the pyrolysis and catalytic cracking
zones was achieved by a four-zone furnace
surrounding the reactor.

3. RESULTS AND DISCUSSION

3.1 Catalyst Screening

Gaseous product yields (as weight percent of the
oven-dry feedstock) for each catalyst in the
conversion of biomass pyrolysis vapors were
determined from the MBMS results. The
quantitation method was based on the calibration
of mass spectrometer intensities. The procedure
has been previously described!3. Yields of two
major classes of hydrocarbons, namely aromatics
and olefins, were determined. The aromatics
measured consisted of benzene, toluene, xylenes,
phenol, cresol, styrene, naphthalenc, and methyl
naphtalene. The olefins accounted for were in the
C,-C, range (ethylene, propylene, butenes,
pentenes, and hexenes). Although the yields were
determined under different conditions of weight-
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Fig. 1. The reactor configuration for catalyst and
feedstock screening tests

hourly space velocity (WHSV) and steam-to-
biomass ratio (S/B), only maximum yields for
each catalyst under optimal conditions of WHSV
and S/B are reported here. WHSV is inversely
proportional to the residence time of the pyrolysis
vapors in the catalyst bed. It should be noted that
the calculated WHSYV in this work represents an
average value by approximating the biomass pulse
with a square pulse of equal area. All
measurements of yields were taken during the
steady-state behavior of the catalyst and before
any deactivation caused by coking occured. The
maximum yields for 17 catalysts, when basswood
is used as the feedstock, are shown in Figure 2.
These values are averages from three replicate
experiments with standard deviations shown on
the graph.

Hydrocarbon Yield, %

12345678 91011121314151617
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Fig. 2. Catalyst screening results at optimum
conditions for the conversion of basswood

The ranking of catalyst activities was found to be
similar to that reported for refuse-derived fuel
(RDF)!5, Four promising catalysts (1 through 4)
produced high yields of hydrocarbons (15% or
higher). From a simplistic point of view, one can
calculate the maximum limit on the yield of
olefins and aromatics from basswood (48.1% C,
6.3% H, and 45.2% O) based on purely
stoichiometric considerations and arbitrary
selection of products:

Wood to aromatics (yield = 25.5%),
CH, 570070—>0.79CH | 55 + 0.21CO, + 0.29H,0 (1)

Wood to olefins (yield = 23.6%),
CH, 570¢7¢—>0.70CH , + 0.31CO, + 0.09H,0  (2)

It was assumed in the above calculations that only
60% of wood was converted to pyrolysis oil with
the same elemental composition as wood itself.
Under actual experimental conditions, CO is also
produced, which slightly reduces the theoretical
upper limits on yields. The aromatics in the above
calculations were assumed to have an average
empirical formula of CH, o5, similar to that of

xylene (CgH o). Figure 2 indicates that for catalyst
1, about 75% of the limit on the combined yields
of olefins and aromatics has been achieved.

3.2 Feedstock Screening
Three herbaccous species, three woody species,

and isolated xylan, cellulose and lignin were
evaluated for the thermochemical conversion by



PYROCAT. One catalyst with moderate activity
(catalyst 6) and one set of industrially acceptable
operating conditions (WHSV of 6 and S/B of 1)
were selected for these experiments. The results
are presented in Figures 3 and 4 for aromatics
and olefins, respectively. Experiments we in
triplicates, and the standard deviations a:~ shown
on the graph bar.

4-4

% Yield of Aromatics

WS SL BG WL ASBW LG XY AV
Biomass Feedstock

Fig. 3. The yields of aromatic hydrocarbons from
various feedstocks; WS=wheat straw, SL=sericea
lespedeza, BG=bagasse, WL= willow, AS=aspen,
BW= basswood, LG=lignin, XY=xylan,
AV=avicel.
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Fig. 4. The yields of olefinic hydrocarbons from
various feedstocks

On the basis of the total yield of hydrocarbons,
the biomass species can be classified into three
groups: high hydrocarbon yielding species such as
aspen and basswood; intermediate hydrocarbon
yielding species such as willow, sericea lespedeza,
and bagasse; and low hydrocarbon yielding
species such as wheat straw. The yield of
hydrocarbons from these biomass species is
affected by several factors including ash ind
nitrogen contents. Biomass feedstocks with high
ash content tend to produce light gases in high
yields because of the catalytic activity of the alkali
metal salts in the ash!7. This results in low yields
of hydrocarbons. The high ash content also

~promotes charring reactions, which reduce the

amount of volatile pyrolysis vapors available for
catalytic upgrading to hydrocarbons. The high
nitrogen content of feedstocks also tends to
promote reactions between the amino compounds
and the carbohydrates at high temperatures of
pyrolysis. These reactions result in char
formation. However, if a suitable pretreatment
process is devised to reduce the ash and nitrogen
contents of these feedstocks, they could find
application in thermochemical conversion
processes. The total yield of hydrocarbons from
basswood lies between that of lignin, cellulose,
and hemicellulose, as expected. Also the high
yield of aromatics from lignin can be attributed to
the high polyphenolic structure of lignin.

4. CONCLUSIONS

The following conclusions can be drawn from the
present study:
- The MBMS system provides a rapid screening

tool for catalysts, feedstocks, and operating
conditions,

- Promising catalysts have been identified that
result in high yields of hydrocarbons,
approaching 75% of the theoretical upper limits,
- The upgrading products can be used as a high-
octane aromatic gasoline blend. '

- The yields of hydrocarbons from various
biomass species appear to be influenced by their
nitrogen or ash content, which results in char
formation.
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