

# Examination of Sludge from the Hanford K Basin Fuel Canisters

B.J. Makenas

R.B. Baker

R.P. Omberg

Duke Engineering & Services Hanford, Inc.

Date Published

April 1998.

To Be Presented at

DOE Spent Nuclear Fuel and Fissile Materials Management

ANS/DOE

Charleston, South Carolina

September 8-11, 1998

Prepared for the U.S. Department of Energy



Fluor Daniel Hanford, Inc.

P.O. Box 1000

Richland, Washington

Hanford Management and Integration Contractor for the  
U.S. Department of Energy under Contract DE-AC06-96RL13200

Copyright License By acceptance of this article, the publisher and/or recipient acknowledges the  
U.S. Government's right to retain a nonexclusive, royalty-free license in and to any copyright covering this paper.

Approved for Public Release; Further Dissemination Unlimited

# **Examination of Sludge from the Hanford K Basins Fuel Canisters**

Prepared for the U.S. Department of Energy



**Fluor Daniel Hanford, Inc.**  
Richland, Washington

Hanford Management and Integration Contractor for the  
U.S. Department of Energy under Contract DE-AC06-96RL13200

---

Copyright License By acceptance of this article, the publisher and/or recipient acknowledges the  
U.S. Government's right to retain a nonexclusive, royalty-free license in and to any copyright covering this paper.

## RELEASE AUTHORIZATION

Document Number: HNF-2034-FP

Document Title: Examination of Sludge From the Hanford K Basin Fuel Canisters

This document, reviewed in accordance with DOE Order 1430.1D, "Scientific and Technical Information Management," and DOE G 1430.1D-1, "Guide to the Management of Scientific and Technical Information," does not contain classified or sensitive unclassified information and is:

APPROVED FOR PUBLIC RELEASE

V. L. Birkland

V. L. Birkland

Lockheed Martin Services, Inc.  
Document Control/Information Clearance

4/22/98

Reviewed for Applied Technology, Business Sensitive, Classified, Copyrighted, Export Controlled, Patent, Personal/Private, Proprietary, Protected CRADA, Trademark, Unclassified Controlled Nuclear Information.

COPYRIGHT LICENSE NOTICE. By acceptance of this article, the publisher and/or recipient acknowledges the U.S. Government's right to retain a nonexclusive, royalty-free license in and to any copyright covering this paper.

LEGAL DISCLAIMER. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. This report has been reproduced from the best available copy. Printed in the United States of America.

## INFORMATION CLEARANCE FORM

|                                                |                                          |                                                     |                                          |
|------------------------------------------------|------------------------------------------|-----------------------------------------------------|------------------------------------------|
| A. Information Category                        |                                          | B. Document Number                                  | HNF-2034- <sup>FP</sup> <sub>REV-6</sub> |
| <input type="checkbox"/> Abstract              | <input type="checkbox"/> Journal Article | C. Title                                            |                                          |
| <input type="checkbox"/> Summary               | <input type="checkbox"/> Internet        | EXAMINATION OF SLUDGE FROM THE HANFORD K BASIN FUEL |                                          |
| <input type="checkbox"/> Visual Aid            | <input type="checkbox"/> Software        | CANISTERS                                           |                                          |
| <input checked="" type="checkbox"/> Full Paper | <input type="checkbox"/> Report          |                                                     |                                          |
| <input type="checkbox"/> Other                 |                                          | D. Internet Address                                 |                                          |

## E. Required Information

1. Is document potentially Classified?  No  Yes (MANDATORY)

*RPC*  
Manager's Signature Required

If Yes  No  Yes Classified  
ADC Signature Required

2. Internal Review Required?  No  Yes  
If Yes, Document Signatures Below

Counsel \_\_\_\_\_

Program \_\_\_\_\_

3. References in the Information are Applied Technology  No  Yes  
Export Controlled Information  No  Yes

## 4. Does Information Contain the Following: (MANDATORY)

a. New or Novel (Patentable) Subject Matter?  No  Yes

If "Yes", Disclosure No. \_\_\_\_\_

b. Information Received in Confidence, Such as Proprietary and/or Inventions?  No  Yes If "Yes", Affix Appropriate Legends/Notices.

No  Yes If "Yes", Attach Permission.

c. Copyrights?  No  Yes If "Yes", Attach Copyright.

d. Trademarks?  No  Yes If "Yes", Identify in Document.

## 5. Is Information requiring submission to OSTI?

If Yes UC-2070 and B&R-EW 704 0000

6. Release Level?  Public  Limited

7. Charge Code *LG030*

## F. Complete for a Journal Article

1. Title of Journal *N/A*

G. Complete for a Presentation  
DOE SPENT NUCLEAR FUEL AND FISSION MATERIALS MANAGEMENT

1. Title for Conference or Meeting *ANS/DOE*

2. Group Sponsoring *Sept 8-11 1998*

4. City/State *Charleston SC*

3. Date of Conference

5. Will Information be Published in Proceedings?  No  Yes

6. Will Material be Handled Out?  No  Yes

H. Author/Requestor

Responsible Manager

*S. Makenna* *on J. McLean*  
(Print and Sign)

*RPC* *RP OMBERG*

(Print and Sign)

I. Reviewers

Yes Print

Signature

Public *Y/N* (If N, complete J)

General Counsel

*J. W. DEE*

*S. A. Woody* *4/9/98*

*Y/N*

Office of External Affairs

*Approval for release*

*S. A. Woody* *4/9/98*

*Y/N*

DOE-RL

*J. S. Shiven*

*J. S. Shiven* *4/9/98*

*Y/N*

Other

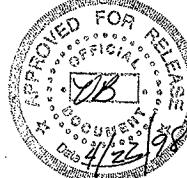
\_\_\_\_\_

\_\_\_\_\_

*Y/N*

Other

\_\_\_\_\_


\_\_\_\_\_

*Y/N*

## J. If Information Includes Sensitive Information and is not to be released to the Public indicate category below.

Applied Technology  Protected CRADA  
 Personal/Private  Export Controlled  
 Proprietary  Procurement-Sensitive  
 Business-Sensitive  Patentable  
 Professional  Other (Specify) \_\_\_\_\_  
 UCNI

Information Clearance Approval



K. If Additional Comments, Please Attach Separate Sheet

## EXAMINATION OF SLUDGE FROM THE HANFORD K BASIN FUEL CANISTERS

B. J. Makenas, R. B. Baker, and R. P. Omberg  
 Duke Engineering & Services Hanford, Inc.  
 Post Office Box 350  
 Richland, Washington 99352  
 (509) 376-5447, 376-5109, 376-9353

## ABSTRACT

Samples of sludges with a high uranium content have been retrieved from the fuel canisters in the Hanford K West and K East Basins. The composition of these samples contrasts markedly with the previously reported content of sludge samples taken from the K East Basin floor. Chemical composition, chemical reactivity, and particle size of sludge are summarized in this paper.

## INTRODUCTION

The two water-filled Hanford K Basins (East and West) have been used to store uranium metal fuel from the N Reactor for roughly 20 and 15 years respectively. Efforts are currently underway to move the fuel to interim dry storage. Surrounding the fuel over a dozen different types of sludge (Figure 1) are found in these basins and their specific chemical and physical characteristics depend on the particular location of origin. Characterization is being performed to facilitate removal, transportation, treatment, and storage of sludge. A previous paper (Baker 1996) covered the characterization of sludge found on the floor of the K East Basin. This work has now proceeded through examination of the sludge found in the stainless steel and aluminum canisters used to store fuel in both basins (Figure 2). These in-canister sludges proved to be quite different than that found on the K East floor. There are also clear differences between sludges recovered from the K East versus K West canisters. K West canisters are sealed through a system that allows only limited water exchange with the basin. K East canisters are open to the pool. The compounds formed by the metals present are different in the two situations because of water stagnation and higher pH in the K West case.

## RESULTS

The composition of various sludge types is summarized in Figure 3. The uranium content of sludge, primarily in the form of oxides and hydrates, was greatest in canister sludges (as a result of damaged fuel element corrosion) while the iron content (from rusty structural racks) was greatest in floor sludge. The inference of some hydride and unoxidized metallic uranium in the canister sludge can also be made respectively from

X-ray Diffraction data and high dry particle density in excess of what would be expected for oxide. The presence of reactive materials in canister sludge is further demonstrated by the generation of hydrogen bubbles in samples of sludge during laboratory operations (see Figure 4).

K West canister sludge tends to have a smaller particle size (as determined by wet sieving and by laser scattering) than K East canister sludge and to settle more slowly. An example of particle size measurements is shown in Figure 5. K West canister sludge tends to have a higher uranium content than similar K East material because it is not diluted with the sand, concrete, paint chips, and organic material that enter the open-top K East canisters. Conversely, K West canister sludge contains a considerable amount of the graphite material that makes up the canister lid gaskets and some aluminum hydroxide that forms as a coating on assemblies housed in sealed aluminum canisters (Pitner 1998).

## FUTURE WORK

Current efforts are focused on characterizing sludge from other areas of the basins as well as on the chemical treatment aspects of sludge disposal. Such treatments will include the oxidation of pyrophoric materials, the adjustment of particle size and the elimination of some organic compounds. These efforts will result in a reduction in the potential for hydrogen generation, better criticality control, and less regulatory rigor for hazardous constituents. Characterization information is being gathered to ensure that the chosen conditioning process can handle most or all of the various sludges at K Basins since they will nearly all wind up on the same ultimate disposal path.

#### ACKNOWLEDGEMENT

This work was supported by the United States Department of Energy. It was made possible through the efforts of many people at the Hanford K Basins, Hanford 222-S Laboratory, and Pacific Northwest National Laboratory.

#### REFERENCES

R. B. Baker, B. J. Makenas, and R. P. Omberg, "Sampling and Analysis of Sludge from the Hanford K East Basin," ANS, DOE Spent Fuel and Fissile Material Management, Reno, Nevada, June 1996.

A. L. Pitner, and B. J. Makenas, "Surface and Subsurface Deposits on Irradiated N Reactor Fuel Stored in Hanford K Basins," ANS, Charleston, DOE Spent Nuclear Fuel and Fissile Materials Management, September 1998.



Figure 1. Sludge Trails from a Canister as it is Lifted from the K East Basin Floor.

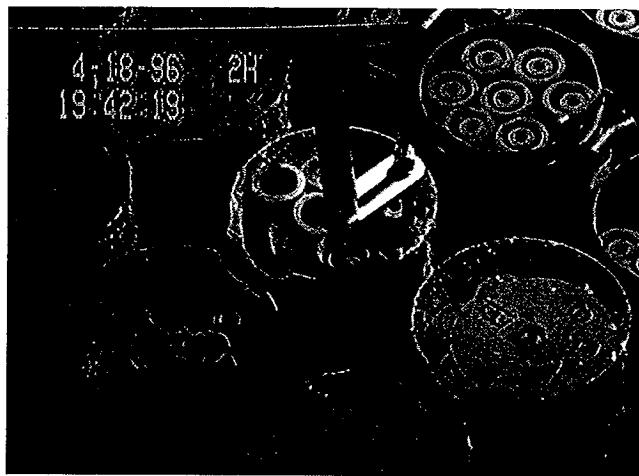



Figure 2. Sludge Extraction Tube Inserted in a K East Basin Canister.  
Note the canister barrels are 8 inches in diameter with up to  
seven fuel assemblies per barrel.

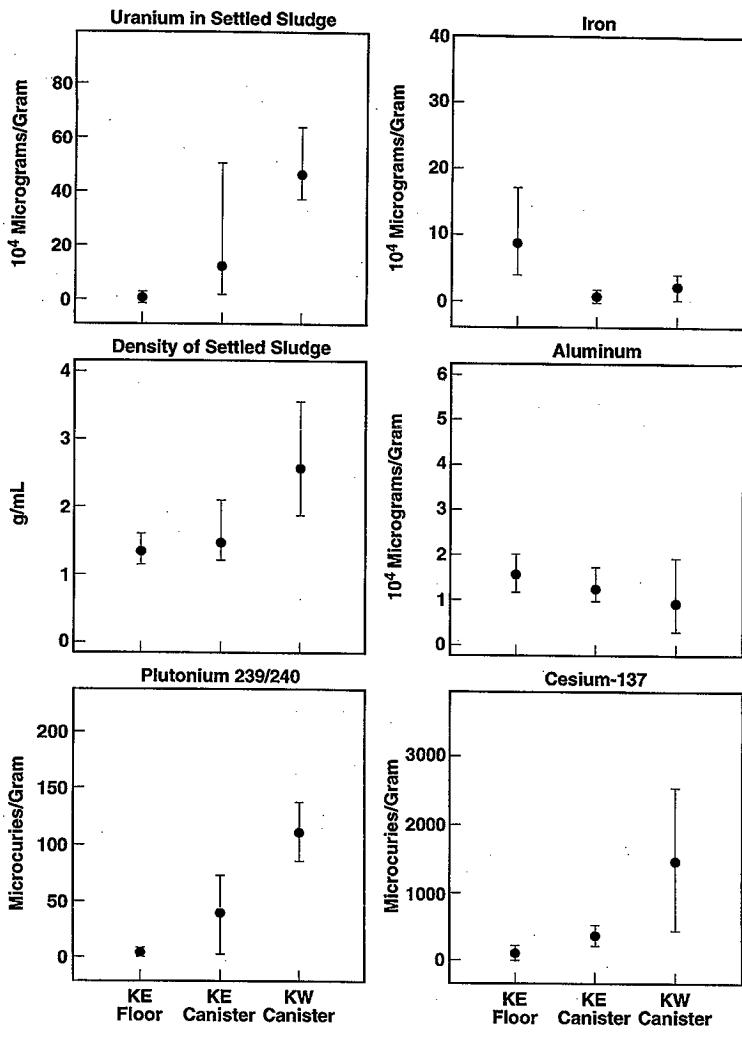



Figure 3. Comparison of Settled Sludge Composition for K East Basin Floor, K East Basin Canisters, and K West Basin Canisters.  
Points are the median of data and error bars encompass 50% of the data.

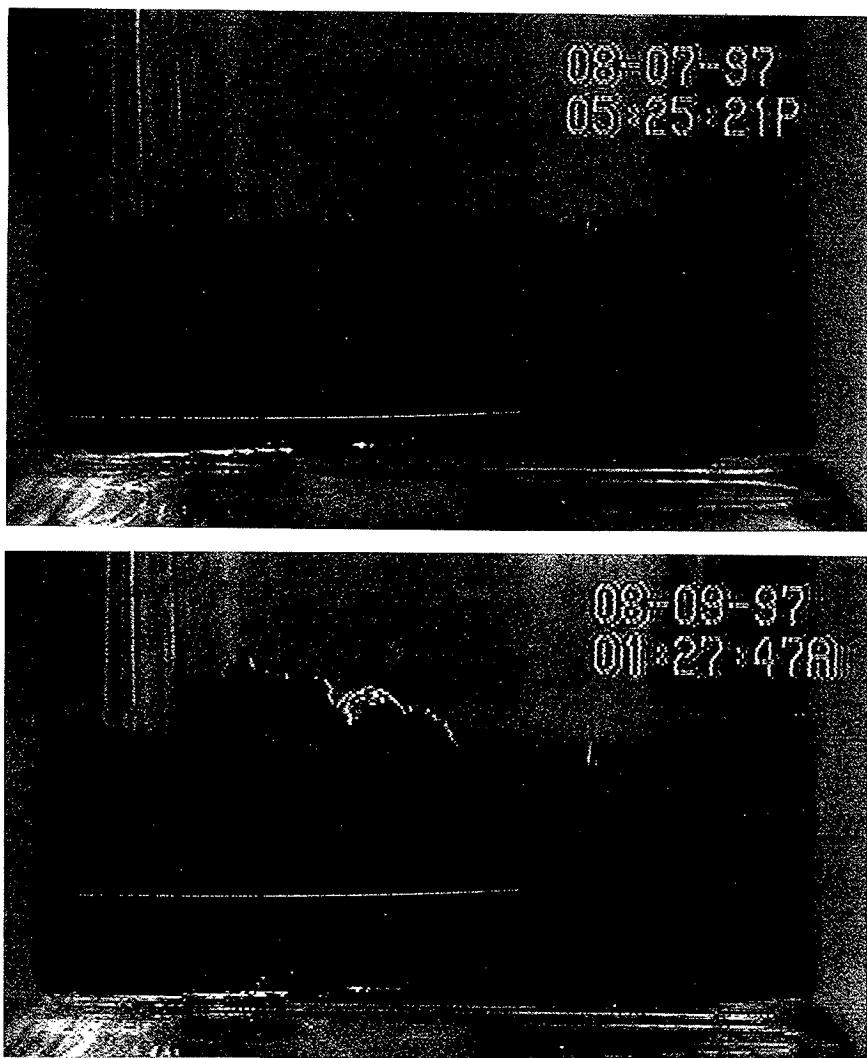



Figure 4. Two Views in a Hot Cell of a K East Canister Sludge Sample (Approximately 32 Hours) Apart.  
Includes only as-sieved sludge less than 710 microns in diameter. Note hydrogen  
bubble and displacements due to bubble formation.

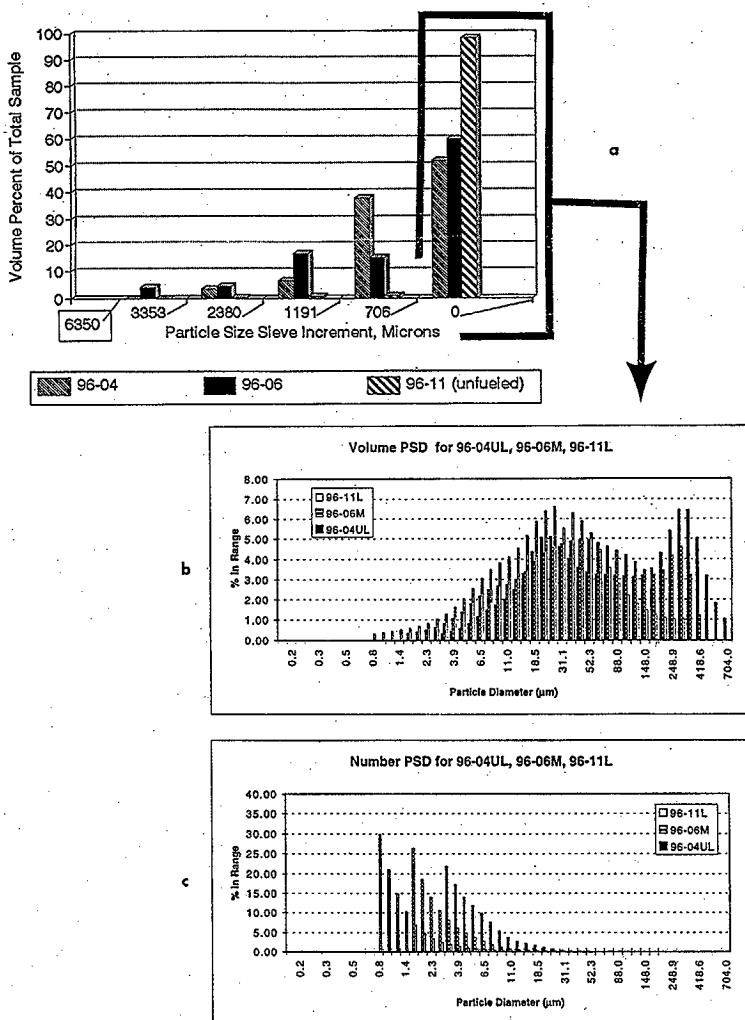



Figure 5. Particle Size Distribution for Three Samples of K East Basin Canister Sludge.  
 (a) Sieving of all particles (b) volume distribution and (c) number distribution  
 by laser scattering for particles less than 700  $\mu\text{m}$  in diameter.