
++++++ "'_ MIM
+r+++'+++'+," <:b+.:..... _._++ \. Association for Information and Image Management

+'+i . % 1100 Wayne Avenue, Suite 1100,.._ Silver Spring, Maryland 20910 b _ ;,;!_i__a _'

+.,,:+++ ++
+" +

+ _}++:+/+ . ++++++_:,,.,,,

'£_ ++++++++]__ URED TO RIIM STI:qNDI:::IRDS

_?+ + MRNUFI:::ICT --u _ (_

BY IqPPLIED TI'IIqGE, TNC. _b_ _ J_L"



I



LBL-35224

UC4(_O_o
II]] ] I i

LawrenceBerkeleyLaboratoryUNIVERSITY OF CALIFORNIA
II I

t

EARTH SCIENCES DIVISION
,t,

To be presented at the Tenth International Conference on
Computational Methods in Water Resources,
Heidelberg, Germany, July 19-22, 1994, and to
be published in the Proceedings

A Lagrangian-Eulerian Finite Element Method with
Adaptive Gridding for Advection-Dispersion Problems

Y.IjiriandK.Karasaki

February1994

Preparedfor theU.S.Departmentof EnergyunderContractNumberDE-AC03-76SF00098



DISCLAIMER

This document was prepared as an account of work sponsored by the
United States Government. Neither the United States Government

nor any agency thereof, nor The Regents of the University of Califor-
nia, nor any of their employees, makes any warranty, express or im-
plied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial
product, process, or service by its trade name, trademark, manufac-
turer, or otherwise, does not necessarily constitute or imply its en-
dorsement, recommendation, or favoring by the United States Gov-
ernment or any agency thereof, or The Regents of the University of
California. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government
or any agency thereof or The Regents of the University of California
and shall not be used for advertising or product endorsement pur-
poses.

w

Lawrence Berkeley Laboratory is an equal opportunity employer.



LBL-35224
UC-400

A Lagrangian-Eulerian Finite Element Method
with Adaptive Gridding

for Advection-Dispersion Problems

Yuji ljiri and Kenzi Karasaki

Earth Sciences Division
Lawrence Berkeley Laboratory

University of California
Berkeley, California 94720

February 1994

Thiswork wassupportedby the Director,Officeof CivilianRadioactiveWasteManagement,Officeof
ExternalRelations,Officeof GeologicDisposal,of theU.S. Departmentof EnergyunderContractNo DE-
AC03-76SF00098in collaborationwithU.S. GeologicalSurvey,and wasalsosupportedby Taisei
Corporation

,.r ._-_



A Lagrangian-Eulerian Finite Element Method with Adaptive Gridding

for Advection-Dispersion Problems

" YUJI IJIRI1 AND KENZIKARASAKI

Earth Sciences Division, Lawrence Berkeley Laboratory

University of California, Berkeley, California 94720

ABSTRACT

In the present paper, a Lagrangian-Eulerian finite element method with adaptive

gridding for solving advection-dispersion equations is described. The code creates new

grid points in the vicinity of sharp fronts at every time step in order to reduce numerical

dispersion. The code yields quite accurate solutions for a wide range of mesh Peclet

numbers and for mesh Courant numbers well in excess of 1.

INTRODUCTION

The advection-dispersion equation used for simulating subsurface transport of solutes

has been solved by a number of numerical methods including Eulerian, Lagrangian and

Lagrangian-Eulerian methods. In recent years, many attempts have been made to eliminate

numerical oscillation and dispersion, which are especially troublesome for advection-

dominated problems. The mixed Lagrangian-Eulerian methods have been gaining

popularity for solving these problems.

lln the mixed Lagrangian-Eulerian methods, the advection-dispersion equation is

• decomposed into two parts, one controlled by pure advection and the other by dispersion

(Neuman, 1981,1984). The advected concentration profiles are calculated by Lagrangian

, approaches such as particle tracking methods, whereas the dispersed concentration profiles

are numerically solved by conventional techniques such as the finite difference method or

f'mite element method on fixed Eulerian grids.

1Now atTaiseiCorporation,TechnologyResearchCenter,344-1Nasemachi,Totsukaku,Yokohama245,
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Neuman (1984) proposed an adaptive scheme for calculating the advected profile. In

his paper, continuous forward panicle tracking is used for nodes in the vicinity of sharp

fronts and single-step reverse particle tracking is used for nodes away from sharp fronts.

However, his method still suffers from some numerical dispersion due to the interpolation

scheme used in the tracking methods. Furthermore, the accuracy of the results is highly

dependent on the number of particles introduced in the model.

The interpolation scheme of Neuman (1984) was improved by Cady and Neuman

(1988). In their scheme, the fixed grid is covered by a cloud of front-tracking particles, the

concentration at the grid is calculated from the concentrations of the cloud particles by

triangulating these cloud particles according to the algorithm of Sloan and Houlsby (1984)

and then the residual dispersion finite element equations are solved on this local grid using

linear functions.They noted that their approach is based on a mesh refinement idea.

Another mesh refinement approach with a Lagrangian-Eulerian method has been

developed by Yeh (1990). His approach successfully reduces numerical dispersion by

zooming the sharp-front elements in which the gradients of concentration are steep, and

activating hidden fine-mesh nodes in the elements.

Karasaki (1987,1988) developed a numerical code that employs a mixed Lagrangian-

Eulerian scheme with adaptive gridding, which is called TRINET, for three-dimensional

fracture networks of channels. This approach avoids numerical dispersion by creating new

Eulerian grid points instead of interpolating the advected profile back to the fixed Eulerian

grid. Another important feature of his approach is that he used tracking methods not for

particles but for nodes. Therefore, the number of particle introduced in the model is not an
issue.

In the present paper, the scheme used in TRINET is extended and applied to a two-

dimensional porous medium model, TRIPOR. In addition to the ability to handle a two-

dimensional continuous medium, the main advantage of TRIPOR is its capability to create

new nodes anywhere in a two-dimensional domain while TRINET creates new nodes only

along existing channels. The present paper describes the numerical approach and some

applications for one- and two-dimensional problems in order to demonstrate the capability

of the method. Comparing results of the preliminary studies against analytical solutions ii

suggests that the present method gives accurate results for a wide range of Peclet numbers
and for Courant numbers well in excess of 1.
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NUMERICAL APPROACH

The flow field is first solved by a simple Galerkin finite element method in order to

• calculate the velocity profile for the entire domain. Since linear shape functions are

currently used to calculate the flow field, the velocity is assumed to be uniform within a

• given element. The code then solves the solute transport problem expressed by the

advection-dispersion equation written as

Oc
_'i = V (D .Vc - vc ) + q (1)

where c is solute concentration, D is dispersion coefficient, v is pore water velocity, q is a

source term and V is the gradient operator. Since the equation is decomposed into two parts

as mentioned earlier, advection and dispersion problems are calculated separately. The

advection part is solved by tracking methods and the dispersion part is solved by a Galerkin

finite element method with fixed Eulerian grids. Triangular elements are used for finite

element discretization in TRIPOR.

Tracking Methods for Advection

The tracking methods used in this approach are done in the same manner as described

in Neuman (1984) except that they are applied not to particles but to nodes. Therefore, no

particles are introduced in the model. First, backward tracking is applied to obtain an

advected concentration for all nodes (Figure 1(a)). The advected concentration of node j at

time t+At, ._it+At' is given by that of the point xj , which is tracked backward along the
streamline from node j.

, ft+_
xj xj jt= - vdt j=l, ,2 ...,N (2)

- t+At - •
• c j = c (xj, t+At) = c (xj, t ) (3)

where xj is the location of node j, c (xj, t ) is the concentration of xj at time t, At is time
step size and N is the number of nodes.

t+at is calculated by aIf the tracked point, x;, does not correspond to a fixed node, J
finite element interpolation scheme written as

- t+At 3
c j = _, c (xm, t )¢m(Xj) (4)m=l
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where $rn(X;) is the basis function evaluated at xj and x denotes the vertex of the, m

triangular element surrounding xj.

Second, forward tracking is used for nodes where concentration gradient is greater than a

user-defined tolerance, or for nodes defined by the user as moving nodes. The node j is
I

tracked forward along the streamline to the point _, and the concentration of the point at
*t+_ is given by that of nodej at time t.ftme t+z_t, cj ,

' = ft+zltxj xj + v dt j= 1,2,...,N (5),/t

o P

<'9',+A,)=c
#

If the tracked point, _, does not correspond to a fixed node, a new node is created at
the point as shown in Figure 1(b). In this manner, sharp fronts are kept at exact positions

during the simulation. If the sharp front has passed through the area, the created nodes in

the area are not necessary and are eliminated.

Flow Direction Flow DireOion

V
/I

X

(a) (b) "

Figure 1. Tracking methods in TRIPOR: (a) backward tracking method,

(b) forward tracking method: Cross denotes the point tracked backward.

Solid circle and dotted line denote the new node and element, respectively,

created by forward tracking method.
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Finite Element Method for Dispersion

As a Galerkin finite element method is used for discretization in space, the dispersion
4

part of equation (1) can be written in matrix form as

. [R] _t'} + [P] {c } = {F} (7)

[R], [P] and {F} are given by

e-1 Ve¢i _) dVe (8)

Pij = _ fve (V¢: ).D "(Ve = l _}je) dV e (9)

Fi = _ fre dp: n .[D .(Vc)] dFe (10)e=l

where ¢}e is the basis function of element e associated with node i, Ve is the region of the

element, N is the set of elements connected to side i-j, Fe is the boundary of element e, M is

the set of boundaries connected to node i andn is the unit vector normal to Fe and pointing

outward. As a finite difference approximation is used for the time derivative, equation (7)
can be written as

(_t + O Pij ) c_+At = [ R-'ij-- (1- O ) Pij ] c_ + FiAt (11)

where c_+_ and c_are the concentrations of nodej at time t+At and t, respectively and 0 is
#

the weighting function for time and is 2/3 in this paper.

The Complete Mixing Method in TRINET

° Here, we briefly describe the complete mixing method which is currently assumed at

intersections of channels in TRINET. All the fixed nodes are tracked backward for At along

the possible channels as shown in Figure 2(a). The nodes in the vicinity of sharp fronts arem

also tracked forward for At along the possible channels as shown in Figure 2(b). In these

procedures, if the grid is tracked more than one channel, the concentration at intersections

are calculated by the complete mixing method. In the method, the concentrations in

downstream channels, Cd,are given by
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I J

Cd=i_:uqu //_lqd (12)

whereq isfluxandsubscriptsuandddenoteupstreamanddownstreamofintersection,

respectively.Therefore,theconcentrationof a fixednode iscalculatedfrom the

concentrationsofupstreampointstrackedbackwardbyapplyingequation(12)toeach

intersection.Intheforwardtrackingmethod,theconcentrationsofcreatedpointsare

calculatedinthesamemanner.ThecompletemixingmethodisalsousedinTRIPOR if

flowisconvergingintothesamenodefrommorethanoneposition.

Figure 2. Tracking methods in TRINET: (a) backward tracking method,

(b) forward tracking method: Open circle denotes the node being tracked.

Cross denotes the point tracked backward. Solid circle denotes the new

node created by forward tracking method.
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APPLICATIONS

In the following preliminary studies, TRINET is used to model a porous medium by

setting appropriate value of apertures for channels in a lattice configuration.

One-Dimensional Problem

The one-dimensional problem concerns the solution of the following advection-

dispersion equation in a uniform velocity field.

/}c_ D _2c /}c
/)t- b-_x2 -v_-_ 0__.x<oo (13)

subject to

c(x, O) = 0 0 <_x < oo

c(0, t) = 1 t>0

c(x, t ) --->0 t > O,x --->o,

The. analytical solution is given by Carslaw and Jaeger (1946) and can be written as

  fc(X-Vt) 1
c(x, t)= 1 [_)+ _ exp(_-) erfc(X+Vt'_[,_) (14)

First, we solve the problem using a fine grid system [Ax=0.01(0_t_l)]. Figure 3 and

4 show the results of our methods at t=50 for case A (D= 10-5, v= 10-2, zit=5, Peclet

number:Pe=vAx/D=lO, Courant number:Cr=vAt/Ax=5) and case B (D=10 -6, v=10 -2,

At=-5, Pe=100, Cr=-5), respectively. In both cases, no nodes are defined as moving nodes.

As can be seen in these figures, the results of both TRINET and TRIPOR agree very well

with the analytical solution for a wide range of Peclet numbers and for Courant numbers
well in excess of 1.

In order to demonstrate the capability of our methods, an irregular grid system is also
@

used for solving this problem (case C). In this grid system, only the vicinity of the

concentration boundary is discretized [Ax=0.01 (0<..x_0.2), no discretization for 0.2<x<l],
Q

and the nodes for _0.2 are defined as moving nodes. The parameters used here are the

same as in case A except Pe and Cr. The results of TRIPOR at t=50 are shown in Figure 5.

Although no nodes are initially set for 0.2<x<l, the code yields quite accurate results by

creating new nodes in the vicinity of the concentration front. This result suggests that
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hardly any attention has to be paid to discretizing the domain away from the concentration

boundary.

1

0.8

0.6

0.4

_Analyti_

0.2 x TRINET
t TRIPOR

0
0 0.2 0.4 0.6 0.8

x

Figure 3. Results obtained with TRINET and TRIPOR, and

analytical solution for one-dimensional problem at t=50 for

case A (Pe=10, Cr=5).

0.8

0.6

0.4

0.2 x TRINET b

• TRIPOR

0 , I 0 I _ .... '.........................

0 0.2 0.4 0.6 0.8 1 '
x

Figure 4. Results obtained with TRINET and TRIPOR, and

analytical solution for one-dimensional problem at t=50 for

case B (Pe=100, Cr=5).
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0.8

0.6

0.4

i i0.2 ,, TRIPOR

0 __. , I , I _ . , I , -

0 0.2 0.4 0.6 0.8 l
X

Figure 5. Results obtained with TRIPOR and analytical

solution for one-dimensional problem at t=50 for case C

lax----0.01 (0<_x_0.2), no grid for 0.2<x<l].

Two-Dimensional Problem

The two-dimensional problem concerns the solution of the advection-dispersion

equation in a uniform velocity field, which is written as

_9c _92c .. _2c _c

=o,._+v_b-_- __ (Is)

subject to the following initial and boundary conditions

• c(O,y,t)= 1 -a <y<a

c(O,y,t)=O y<-a, y>a

. '2rn _c run _c

y__}±**_y O, x__}**_x - 0

where DL and Dr are longitudinal and transverse dispersion coefficient, respectively, and a

is half length of a line source. The direction of flow is along the x-axis. The analytical

solution of this problem is given by Javandel et al. (1984) and can be written as



4_/_D__

<16>"
A schematic view of this problem is shown in Figure 6. The parameters used in this

problem are DL=10 -2,Dr=2.5×10 "3,v--0.1 and a=0.5. Two cases using different grid

systems are analyzed. The geometric parameters for case D are Ax--0.2, Ay=0.1,

At=2(Pe=2,Cr=2) and those for case E are Zlx=0.5, Ay---O.l, At=5(Pe=5,Cr=l). The

concentration distribution obtained with TRIPOR for case D, which is almost identical to

that of the analytical solution, is shown in Figure 7. The concentration profiles obtained

with TRINET and TRIPOR at different coordinates are shown in Figure 8. Although a

smaller Peclet number (case D) yields better results, the results of all cases agree favorably

well with the analytical solution.

Because the domain is discretized along the flow direction, new nodes are created along

elements in TRINET and along the sides of elements in TRIPOR. Therefore, not much

difference is seen between the results of the two codes. Further study is needed where the

flow direction is variable in space to demonstrate the advantage of TRIPOR over TRINET

for two-dimensional problems.

Y

3.05 ,,
ii i

"- I,'

illllllllll

- X
2a "-

,, - 10.0
'l.

iiii

-3.05

Figure 6. A schematic view of the two-dimensional model.
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0.0 1.0 2.0 3.0 4.0
X,

• Figure 7. Concentration distribution obtained with TRIPOR
at t=20 for case D.
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-X_ Amrdc
0.8 _ X TRINET,ca_D

'_ + TRINET,caseE ,
0.6 ___ • TRIPOR,caseD

,_ ,caseE
0.4

0.2

0 I 2 3 4 5
X

(a)

0.2 ' I ' I ' I ' I '

_Analytical(y=0.75)
x TRINET,caseD

0.15 + TRINET,caseE
e TRIPOR,caseD

,t,-
, caseE

"_ 0.1

0.05 ...
0 , I , I , I ___._ ,.._,

0 1 2 3 4 5
X "

(b)

Figure 8. Concentration profiles obtained with TRINET and

TRIPOR, and analytical solution for two-dimensional

problem at t=20 for case D and E: (a) y--0.15, (b) y=0.75,

(c)x=l.0,(d)x=2.0.
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Figure 8. Concentration profiles obtained with TRINET and

TRIPOR, and analytical solution for two-dimensional

problem at t=20 for case D and E (continued): (a) y=0.15,

(b) y----0.75, (c) x=-l.O, (d) x=2.0.
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CONCLUSIONS

Our preliminary studies suggest that our method is capable of accurately solving

advection-dispersion problems for a wide range of Peclet numbers and for Courant

numbers well in excess of 1. Since the codes create new nodes in the vicinity of the

concentration fronts at each time step, hardly any attention has to be paid to the

discretization of space away from the concentration boundary.

The code, however, sometimes creates flat elements (high aspect ratio elements) when

the tracked points are close to the sides of elements. These flat elements will affect the

convergence of the matrices and the accuracy of the results will be decreased. Further

studies are necessary in this respect.
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