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ABSTRACT

The relationship between production rates of large diame-
ter geothermal production wells, and slimholes, is stud-
ied. The analysis is based on wells completed in liquid-
dominated geothermal fields, where flashing occurs either
in the wellbore or at the surface. Effects of drawdown in
the reservoir, and pressure drop in the wellbore, are in-
cluded; heat losses from the wellbore to the formation are
not presently included in our analysis. The study
concentrates on the influence of well diameter on
production rate. For situations where the pressure drop is
dominated by the reservoir, it is found that the mass
flowrate varies with diameter according to W ~ D@,
where the exponent o is a function of reservoir outer
radius, well diameter and skin factor. Similarly, when
pressure drop in the wellbore is dominant, the scaling
exponent was found to be a function of well diameter and
pipe roughness factor. Although these scaling laws were
derived for single-phase flow, numerical simulations
showed them to be reasonably accurate even for cases
where flashing occurs in the wellbore.

{

INTRODUCTION

Drilling of slimholes instead of .iage diameter produc-
tion-sized wells may he econcmically beneficial during
the exploration phase of a geotbermal prospect or during
exploration of an undevelgpec{;;part of a producing reser-
voir. It has been reported that slimholes with diameters
less than or equal to 4" could reduce the cost and time of
drilling significantly (see for example, Entingh and Petty,
1992). Slimholes can also provide continuous cores
which would help identify geological features more
clearly. This report concentrates on the effect of wellbore
diameter on production characteristics. Cost analysis,
drilling practices angdnther relevant topics concerning
slimholes are not discussed.

As fluid flows from the reservoir to the surface through
the wellbore, pressure drawdown occurs both in the reser-
voir and in the wellbore. As pointed out by Pritchett

(1993), it would be helpful to have a scaling law that al-
lows the flowrate of a slimhole to be predicted from the
flowrate of a normal-diameter hole under the same condi-
tions. Following Pritchett, we will attempt to develop
power-law scaling relationships to describe the effect of
wellbore diameter on well output. We first carry out an
analysis for single-phase flow, for which it is possible to
derive some analytical expressions. We then discuss the
case where flashing occurs at some point in the wellbore.

EPRESSURE DRAWDOWN IN THE RESERVOIR

Fluid flow from the reservoir into the wellbore has been
studied by many investigators over the last half century or
so, including processes such as the nature and direction of
flow, transient or steady-state, single or two-phase, lami-
nar or turbulent flow, and permeability reduction (well
damage) or enhancement due to drilling and produc-
tion/injection activities.

In these studies, reasonable simplifications have been
suggested. For instance, the flow from the reservoir into
the wellbore is sometimes assumed to be steady or quasi-
steady, because flow equilibrates faster near the welibore
than in the reservoir as a whole (Pritchett and Garg,
1980). One could consider the direction of flow into the
wellbore as spherical. However, with time it is assumed
to approach horizontal radial flow. Other assumptions can
also be made based on estimates of the amount and type
of fluid, and the near-well reservoir behavior.

Consider the pressure drop that occurs in the reservoir as
the fluid flows toward the wellbore. Imagine a bounded,
circular reservoir, whose outer boundary r = r, is main-
tained at some pressure p,, (see Fig. 1). If the wellbore has
radius rw, and the downhole wellbore pressure is main-
tained at pyb, the steady-state flowrate under Darcy-flow
conditions will be given by (Matthews and Russell, 1967,
p-21)
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where p is the fluid density, kh is the reservoir permeabil-
ity-thickness product, p is the fluid viscosity, and s is the
well skin factor. This relation between pressure drop and
flowrate will also hold during the transient process of
production from a reservoir that is initially at uniform
pressure, excent at extremely small times that are of little
practical relevance (see de Marsily, 1986, pp. 161-167).
Hence, this relaiion is sufficiently general that it can be
used as the basis f our scaling-law analysis. Equation (1)
is often written in terms of the productivity index as

=22 pope) ®

where PI is the productivity index, which can be
expressed as

2ntkh
Pl= ln(r /rw)+s ®
If we compare two wells of different diameters that are
producing under otherwise identical conditions, equations
(1) and (3) predict that their flowrates will be in the ratio
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Fig. 1. Schematic diagram of the problem considered.

This ratio depends on the wellbore diameters, and also on
the outer radius of the reservoir. In order to simplify the
analysis that follows, we will assume that the skin factor
does not depend on diameter, i.e., 81 = s. However, if
there was some knowledge of the variation of s with D,
the method described below could be modified to account
for this. For simplicity, and because power-law equations
(representing different effects) can easily be combined,

we will approxxmate equation (4) with a power-law. If
(PIV/PI3) = (D1/D2)P, then the exponent B would be given
by

dnPl _ D dPL
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In order to fit equation (4) to a power-law equation, we
take its logarithmic derivative as in equation (5), and
evaluate it at some reference diameter Dy. Specifically,
we treat the parameters with subscript 1 as variables, and
hold those with subscript 2 constant, and then set D1 =D,
when evaluating the derivative, to arrive at

g—g Dlsl)z =B= [ln[ ] -0-8] ©)

Hence the ratios of the productivity indices and flowrates,
between two otherwise identical boreholes, each having
the same pressure drawdown in the reservoir, will be
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To estimate the ratio of mass flowrates, the outer radius r,
and the skin factor s have to be determined. The skin fac-
tor may be obtained from well test analyses. For reservoir
modeling exercises r,, is the distance to the nodal point of
the wellblock, the value of which depends on the type of
computational grid selected. Hadgu et al. (1993) recently
presented a method for determining the distance from the
well to the nodal point of the wellblock. Similar studies
have also been reported by Aziz and Settari (1979) and
Pritchett and Garg (1980), among others.

If non-Darcy flow effects are important, equation (2) be-
comes inadequate; an analysis of this situation is given by
Hadgu et al. (1993), Kjaran and Eliasson (1983), Hadgu
(1989), Iglesias and Moya (1990) and Gunn and Freeston
(1991), among others.

PRESSURE DROP IN THE WELLBORE

The pressure drop in the wellbore is a sum of frictional,
gravitational and accelerational components. For conve-
nience, the following analysis ignores the accelerational
pressure drop. For a comparison of output of large and
small diameter wells, the parameters of interest will be
friction factor A, mass flowrate W, and the inside pipe di-
ameter D.

First, consider the flow in the wellbore, temporarily
ignoring the pressure drop in the reservoir itself. Under
the assumption that the dynamic properties and pressure
drop are the same for two wells with diameters D1 and
D3, Pritchett (1993) proposed the following scaling law
based on the ratios of the cross-sectional areas:
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A more accurate scaling equation in the form of a power-
law can be formulated by considering the equations that
govern wellbore flow, including the effect of frictional
losses. The frictional and gravitational components of the
pressure gradient can be expressed as

d d v2
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where A is the Darcy friction factor and v is the mean
fluid velocity, which is equal to W/(rD2/4). If we are
comparing flows in two wellbores that occur under the
same pressure drop, and assuming equivalent fluid
properties, then equation (9) reduces to

2
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The friction factor depends on the Reynolds number,
which is defined by

Re =pvD/p an

as well as on the relative roughness of the wellbore cas-
ing, &/D. One correlation that has been widely used to re-
late these parameters is the Colebrook equation (White,
1974, p. 498):
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In order to find a relationship between flowrate and di-
ameter, we first use equations (11) and (12) to eliminate
explicit reference to Re and A, to find

v=(CD)*5[1.74 - 4.605 In [ff —‘}—%zsl—;]]

= (CD)0.5{(D) (13)
The first part of the right-hand side of the expression is
already in the form of a power-law equation. The brack-

eted term f(D) is not of that form, but can be approxi-
mated by a power-law. If we assume

f(D) = const. D* (14)

the parameter a. would be given by

“=3nD = f D as

We can calculate the derivative df/dD, and then evaluate
. expression (15) at some reference value D = D3, to arrive

at a value for the scaling exponent c. Carrying out this
differentiation, and then expressing the results in terms of
Re and A, we eventually find
18.7 )]
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Equation (16) has a very weak dependence on Re, since
the bracketed term varies only from 1, at high Reynolds
numbers, to 1.5, at low Reynolds numbers. Hence, in or-
der to arrive at a value of a that depends on as few pa-
rameters as possible, we now evaluate equation (16) in
the limit of high Reynolds numbers. In this case, the
bracketed term in equation (16) goes to 1.0, and for real-
istic values of ¢/D, equation (12) can be approximated by

o =4.605V Ay
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Equation (16) then simplifies to

o =- [n]" (18)

which depends only on the relative roughness of the cas-
ing. If we now combine equations (12, 13 and 14), we
find

0.5- [In(2e/D5)} !
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Finally, we note that the flowrate is given by the product
of the mean velocity and the cross-sectional area, so that
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If we assume typical values for the relative roughness in
the range of 10-3 - 10-6, we find that the exponent in
equation (20) depends weakly on roughness, and equals
about 2.62 + 0.05. For example, a relative roughness /D,
= 106 leads to an exponent of 2.58, whereas a value of
&D3 = 103 gives an exponent of 2.66. This variation is
probably less than the error introduced by fitting equation
(13) with a power-law equation. Hence, taking into ac-
count the approximate nature of this analysis, one arrives
at the following scaling law, which does not contain any
reference to the roughness parameter:

w_l_ 9.1. 262
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The exponent 2.62 is close to the value of 2.56 that
Pritchett (1993) found by fitting a power-law curve to nu-
merically-computed values of W and D, assuming a well-
head pressure of 1 bar.




TOTAL PRESSURE DRAWDOWN

Assuming that the reservoir pressure (py) and the depth of
the well (z) are known (Fig. 1), for a selected wellhead
pressure (Pwh), the sum of pressure drops in the reservoir
and in the wellbore, as fluid flows to the surface, can be
written as

Pr - Pwh = APres + APwell (22)

Using the deliverability equation (2), and assuming a lin-
ear drawdown relationship in the reservoir:

W,
Apres = ﬁ,% @23)

Pressure drop in the wellbore is subdivided into its com-
ponents of friction, gravity and acceleration. For single-
phase isothermal flow the acceleration term may be ig-
nored. Thus,

Apwell = Apfric + APgrav (24)

where A pfric and Apgray are the frictional and gravitational
pressure drops in the wellbore, respectively. These com-

ponents are further defined by:

Apv2
Aptic = = 552 @5)
Apgray = -pg2 (26)

Equation (25) can be written in terms of mass flowrate
instead of velocity, using the relationship

W 4W
v PA = anz (27)
Thus:
{AW2
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Substituting for the individual parameters, equation (22)
can be written as:
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Equation (29) indicates that the parameters which mainly
affect pressure drop between the reservoir and the well-
head are discharge rate, productivity index, well depth
and diameter, friction factor and fluid properties. If we
assume isothermal flow both in the reservoir and in the
wellbore, fluid properties will be approximately constant.
For a comparison of output of large and small diameter
casings, well depth can also be assumed to be constant.
Thus, the parameters involved in the comparison of large
and small diameter casings will be discharge rate,
productivity index, friction factor and well diameter.

Equation (29) can now be rewritten in terms of W and D,
with the help of equations for PI and A. Note that 2 is in
fact a function of W, as implicitly shown in equation (12),
which implies that equation (29) is not simply a quadratic
for W. However, we have found that for high Re, A can
be approximated by equation (17), with little loss of
accuracy. With this approximation, we can rearrange
equation (29) as:

BomsW2 4 JEW 4+ (GE-HePw=0 GO

with A given by equation (17). Equation (30) is a
quadratic equation for W which .is easily solved. The
pusitive root in the solution for W must be taken, since W
is by definition a positive quantity. The following is an
example to study the relationship between mass flowrate
and diameter for single-phase isothermal flow.

Example 1: A well completed in a liquid dominated
geothermal reservoir, where the boundary conditions are
chosen so that flashing occurs at the surface. If heat ex-
change with the rock formation is ignored, this is essen-
tially a case cf isothermal liquid flow. The reservoir and
wellbore parameters are given in Table 1.

Table 1: Reservoir and Wellbore data for Examples 1

and 2.
- Example 1 | Example 2

reservoir pressure

p, (bar) 100 90
reservoir temp.

T; (°C) 160 241
wellhead pressure
| Pw (bar) 7 7
outer radius

I (m) 88 88
well depth

z (m) 1000 1000
reference diameter

D, (m) 0.1 0.1
pipe roughness

€ (m) 4.5x10°5 4.5x10-5

Equation (30) was then used to solve for W in terms of D
and kh. Fig. 2 shows the calculated values plotted as a ra-
tio of mass flowrates vs. the ratio of diameters at different
values of permeability-thickness product, using D, = 0.1
m as the reference diameter. The curve for kh = 100 D-m
in Fig. 2, for example, contains straight line sections at
low and high values of D/D,. For small values of Dy, the
pressure drop is dominated by the wellbore, and the curve
follows equation (21). For larger values of Dy, there is
less frictional pressure drop in the wellbore, and the
pressure drop in the reservoir becomes relatively more
important. In this region the curves approach asymptotes
where slopes are given by equation (7). In the present



example, s = 0, Dy = 0.1 m, and r, = 88 m, so that the
exponent in the equation is 0.134.
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Fig. 2. Ratio of mass flowrate against diameter ratio,
for different kh values, for single-phase
isothermal flow (see Example 1).

IWO-PHASE FLOW IN THE WELLBORE

If the heat exchange between the wellbore and the sur-
rounding rock formation is important, or two-phase flow
exists in the reservoir or wellbore, changes in fluid prop-
erties become important. Thus, for non-isothermal single-
phase or two-phase flow, fluid properties in the wellbore
are not constant, and they have to be integrated over the
length of the wellbore. In this case, equation (29) has to
be written in the following form:

W 8W2 |A(e/D.R
Pr-Pwh =5 b8 + m%ﬁdhsk&; 31)

where pr and p are the density and viscosity at reservoir
conditions, { is a variable representing depth increment,
and the integral is taken from { =0 to { = z. Following is
an example for two-phase flow.

Example 2: A well is open to a liquid-dominated geother-
mal reservoir, and flashing occurs in the wellbore. For
this example heat exchange with the rock formation is
ignored. The reservoir and wellbore parameters assumed
are given in Table 1.

The wellbore simulator WFSA (Hadgu and Freeston,
1990) was used to solve for W in equation (31) in terms
of D and kh. An iterative scheme was needed to equate
the flow in the reservoir to that in the wellbore. Fig. 3
shows the calculated ratio of mass flowrates vs. the ratio

of diameters at different values of kh. In this case the
effect of fluid properties is evident, as fluid flashes at
greater depths, longer columns of two-phase flow result.
In Fig. 3, the plots for the higher kh values (i.e. 100, 10
and 1 D-m) show straight line portions for low D{/D,
values. This is similar to that of single phase flow where
wellbore flow dominates.
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Fig.3. Ratio of mass flowrate against diameter ratio for

different kh values, with flashing occurring in
the wellbore (see Example 2).

In this example the wellhead pressure is 7 bars, the undis-
turbed reservoir pressure is 90 bars, and the saturation
pressure at the reservoir temperature of 241°C is 34 bars.
Hence flashing will occur at some point between the
reservoir far-field and the wellhead. As the wellbore di-
ameter increases, the flow resistance in the wellbore de-
creases, and flashing occurs deeper. At some critical di-
ameter D* flashing occurs at the bottom of the wellbore,
when the bottomhole pressure equals the saturation pres-
sure at the reservoir temperature. If the bottomhole pres-
sure is reduced below the saturation temperature, flashing
would occur in the reservoir. Our analysis doe= not
include such cases since equation (31) assumes that fluid
properties are constant in the reservoir. For flashing
occurring both in the reservoir and in the wellbore a
coupled numerical simulation of the flow processes in the
reservoir and in the wellbore will be required. Hence our
analysis, using equation (31), cannot be used to find the
production curve when D is greater than D*.

Density changes also affect the pressure gradients, and
the gravitational pressure gradient, which was constant in
the single phase case, becomes important. At low flows
and large wellbore diameters, the effect of frictional pres-
sure gradient decreases, and the total pressure drop be-
comes dominated by gravity and reservoir drawdown.



The above analysis was made using the total pressure
drawdown. The same parameters were also used to com-
pare the pressure drop in the wellbore (i.e., no reservoir
drawdown) with that of single-phase flow, by using equa-
tion (31) without the reservoir term. In order to evaluate
the integral appearing in equation (31), we need to know
how the density varies as a function of depth. To find the
density profile, we use the wellbore simulator WESA,
which in effect performs the required integrations. The
production rate, shown in Fig. 3 as the curve labeled k =
infinity, is then compared with that produced by equation
(20), which was developed for single-phase flow. The re-
sults are shown in Fig. 3, where it is seen that these two
curves are quite close to each other, suggesting that equa-
tion (20) may also be used for some cases where flashing
occurs in the wellbore.

For reservoir management purposes, it is useful to have
plots of mass flowrate as a function of wellhead pressure,
for given wellbore diameter values. Such production
curves are shown in Fig. 4, for the case described in Ex-
ample 2. In this case the wellhead pressure was not held
constant. Equation (31) was used to compute values of W
and pwh at constant diameter and kh. Fig. 4 shows the
characteristic curves obtained for different diameters at a
constant kh of 100 D-m. Note that the curves are identi-
cally shaped, but are displaced vertically on a semi-log
plot; this can be explained as follows. For the parameters
used in this example, kh is relatively high, and most of
the flow resistance occurs in the wellbore. Hence, we see
from equations (10) and (21) that

W(D) = f(pwh ) (D/D)262 (32)

so that

10g(W(D)) = log(f(pwh )) + 2.62log(D/D7)
= F(pwh ) + 2.62log(D/D2) (33)

Hence each curve should have the same shape, given by
the function F(pwp), but with a vertical offset equal to
2.62log(D/D3). As an example, consider the curve for D
= 0.2 m, for which D/D3 = 0.2/0.1 = 2. The calculated
offset of 2.62log(2) = 0.79 is shown as a vertical line in
Fig. 4, where it is seen to be very nearly equal to the
actual vertical offset between the D = 0.2 m and D = 0.1
m curves. Note that the maximum discharge pressure is
almost constant (about 22 bars in this example). This is
consistent with the findings reported by Grant et al.
(1982, pp. 138-139) and others, to the effect that the
maximum discharge pressure depends only on the
reservoir pressure and discharge enthalpy. Both of these
parameters are constant in our analysis. For reservoirs
with a lower permeability, the pressure drop in the
reservoir becomes important, and a scaling law of the
form given in equations (32) and (33) does not hold. For
these cases, the production curves could be generated by
solving equation (30) numerically for different values of
Pwh.
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Fig.4. Comparison of production of different diameter

wells as a function of wellhead pressure. The
curves are displaced vertically by an amount
equal to 2.62log (D/Dy).

APPLICATION TO FIELD DATA

In this example we use field measurements to test the
scaling law analyses. Production well PW3-3 and
slimhole TH#1 are located in the Steamboat Hills
geothermal field, Nevada, and are about 15 m apart. They
have been drilled to similar total depths, and hence
probably extend through similar geological structure.
Data for both wells (from Goranson, 1993) are shown in
Table 2.

Since both wells are located in a highly permeable reser-
voir, the production rates should be controlled by the
wellbore. Thus, it seems appropriate to use the scaling
law given by equation (20). To use the scaling law, the
production data for both wells have to be similar, except
for diameters and mass flowrates. However, in this case
the wellhead pressures for the two wells are not equal. In
order to apply the scaling laws to these data, we proceed
as follows. Since static and flowing pressure and
temperature profiles are available for TH#1, we first
calculated the productivity index. Using equation (2) and
the data in Table 2, the calculated value was PI = 8.339 x
10-11 m3, Then using the calculated productivity index
the, wellbore simulator WFSA (Hadgu and Freeston,
1990) was used to predict mass flowrate for well TH#1 at
a wellhead pressure of 3.97 bars. Additional input data
for wellbore simulation were obtained from Table 2, and
a roughness value of € = 4.5 x 10-5 m was selected. The
computed values using the wellbore simulator were W =
2.07 kg/s and pwp = 22.78 bars. To predict the mass
flowrate of the production well PW3-3, we used the
scaling law given by equation (20):
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For € =4.5x 103 m, Dy = 0.318 m, D3 = 0.076 m and
W3 = 2.07 kg/s, equation (34) gives Wy = 91.6 kg/s. The
measured flowrate to well PW3-3 was about 84.2 kg/s,
which is 8.8% less than the value predicted by the scaling
law. Although this is not a direct verification of the utility
of the scaling law, this agreement is encouraging,
considering the assumptions made in the analysis, and
the unavoidable inaccuracies in the measured data.

Table 2: Data on wells PW3-3 and TH#1, Steamboat
Hills (from Goranson, 1993).

PW3-3 TH#]
total depth
z(m) 258.2 272.6
casing diameter
D(m) 0.318 0.076
openhole diameter
D(m) 0.311 0.070
wellhead pressure
m(bar abs.) 3.97 3.07
mass flowrate
W (kg/s) ~84.2 3.13
static bottomhole
pressure py (bar abs.) 22.83 -
flowing bottomhole
pressure pyp (bar abs.) 22.76 -
bottomhole temp.
Twb (°C) 166.1 162.8
CONCLUSJONS

Analytical and numerical approaches to the characteriza-
tion of output of different diameter geothermal wells have
been presented. It is shown that flow processes in the
reservoir and wellbore can be characterized by using
scaling laws, The wellbore simulator WFSA (Hadgu and
Freeston, 1990) was also used to provide numerical
results to study flow processes when pressure drop in
both the reservoir and wellbore are important. Future
analysis should also include a study of the effect of
wellbore heat losses to the formation. These studies need
to be augmented with field data on slimholes and produc-
tion size wells. Also, other topics concerning slimholes,
such as well testing methodology, need to be studied to
provide the basis for more effective use of slimholes.
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