PROCEEDINGS

Privacy and Security Research Group

Workshop on
Network and Distributed
System Security

cosponsored
by
The Internet Society February 11-12, 1993
- -'
iy Catamaran Hotel

and San Diego,California
Lawrence Livermore

National Laboratory

X

dISTRIBUTION OF THIS NOCUMENT 1S UNLIMITEH

MASTER

Privacy for Large Networks
NREN Security Issues: Policies and Technologies (Invited Paper), Dennis Branstad (NIST) and

Robert Aiken (DOW) 3

Security & Management in IT2000, Goh Seow Hiong, National Computer Board ‘
of Singapore, Singapore 11

Panel Session - Layer Wars: Options for placement of security in the OSI
Reference Model (Position Paper)

Layer Wars: Protect the Internet with Network Layer Security , Paul Lambert (Motorola)......cceceecrarerenne 31

Electronic Documents

Electronic Commission Management, Vesna Ristic and Dr. Peter Lipp, Technishe Universitiit,
Graz, Austria 41

Workflow 2000 - Electronic Document Authorization in Practice, Addison Fischer,
Fischer Intl Systems Corp., USA 51

Privacy Enhanced Mail

Security Issues of a UNIX PEM Implementation, James Galvin, et. al., Trusted Information
Systems, USA 61

Implementing Privacy Enhanced Mail on VMS, Michael Taylor, Digital Equipment
Corporation, USA 63

Distributed Public Key Certificate Management, Charles Gardiner, Bolt, Beranek and
Newman, USA 69

Protecting the Integrity of Privacy-enhanced Electronic Mail, Stuart Stubblebine (USC-1SI)
and Virgil Gligor (U. Maryland), USA. . 75

Distributed Systems

Practical Authorization in Large Heterogeneous Distributed Systems, John Fletcher and

Dan Nessett, LLNL, USA 83
Extending the OSF DCE Authorization System, Joseph Pato and Marlena E» los,

Hewlett-Packard Co., USA 93
Security Issues in the Truffles File System, Peter Reiher, et. al.,, UCLA and Trusted

INfOrmation SYSIEMS, USA ...iriiomimeccsssirssoriosmsanmmssssssasssssssssenssssrsssnsssnessrsssasssssstossesssssssssssessssssasesssssssns 101

Panel Session - Network Security Using Smart Cards (Position Papers)

Issues surrounding the use of Cryptographic Algorithms and Smart Card Applications,

Jeffrey I SCRIller, MIT, USAiriiiirrcnieesnensisscesassnssessassasassssssssassassrossessssosasesssssossosssosssosssssssassssssssssssssssas 115
Smart Card Augmentation of Kerberos, Marjan Krajewski, Jr., The MITRE
COTPOFAtION, USA ...ucrceniniinenscsninsessseanssissnssssosiansssssssastonsassessssssrssssssssasasssessssenssnsessssossnssssnersssssssnsssssoss 119

An Overview of the Advanced Smart Card Access Control System (ASACS), Jim Dray (NIST)
and David Balenson (TIS, Inc.), USA.....cccvcevennreerconns . . 125

I

Privacy for
Large Networks

NREN Security Issues : Policies and Technologies

Invited Paper

Dennis K. Branstad
Computer Systems Laboratory
National Institute for Standards and Technology
Gaithersburg, Maryland

Robert J. Aiken

Lawrence Livermore National Laboratory and the
Office of Scientific Computing, U.S. Department of Energy
Germantown, Maryland

ABSTRACT

The National Research and Education Network (NREN) is a
part of the federal initiative to significantly improve the
availability and capability of the nations information technol-
ogy. Both the administrative and congressional arms of the
government have identified this as a high priority program.
Security of the NREN is one goal of the program. This paper
discusses several of the security issues that must be addressed
when developing and fielding the physical part of the NREN.,

HISTORY OF THE NREN

The National Research and Education Network (NREN)
component of the High Performance Computing and
Communications (HPCC) Program is composed of two inter-
related and complementary subcomponents: the Interagency
Interim NREN (IINREN) and the Gigabit Research and
Development subcomponent. The IINREN, which is based
primarily on DARPA's internet technology, builds on the
National Science Foundation's NSFNET, DOE's Energy
Sciences network (ESnet), NASA's Science Internet (NSI),
and other networks supporting research and education. These
network backbones interconnect and peer with the au-
tonomous regional networks (¢.g. BARRNET, NEARNET,
CERFNET, etc.) which generally provide the "last mile" of
connectivity to the research and education community.

The Internet comprises these networks in addition to various
international R&E networks and domestic commercial ser-
vice providers. Both the IINREN and the Internet are "net-
works of networks". The IINREN backbones currently peer
and interconnect at two Federal Internet eXchanges (FIXes),
one on the east coast at College Park in Maryland and the
other on the west coast at NASA AMES in California. The
Commercial Internet eXchange (CIX) is the peering point for
U.S. commercial service providers such as Sprintlink, ANS,
CERFnet, ALternet, PSI and others. In addition, CIX mem-
bers interconnect with federal networks at various places for
the purpose of exchanging R&E traffic. The IINREN and the

regional also connect with other international R&E networks
for the purpose of scientific and educational collaborations.

The evolution of the current IINREN, with its peering and
interconnection technologies, into the future gigabit NREN
will be accomplished with the introduction of pre-competitive
advanced network services. The gigabit research subcom-
ponent is responsible for working closely with industry in
identifying and performing the research required to sustain
the advances necessary to achieve widely deployed gigabit
networks and applications by 1997. As these technologies
and services become available for "beta testing," they will be
integrated into the JINREN.

Addressing the broad and diverse requirements of the NREN
constituency requires imaginative technological and admin-
istrative solutions. Many of the HPCC agencies directly sup-
port their own specific computation and research centers.
They also support many Principle Investigators (PI's), stu-
dents and staff throughout academia who access these re-
sources in addition to other non-federally funded resources.
The success of the HPCC will rest on the ability of these ad-
ministratively and operationally distinct entities to collabo-
rate.

The IINREN and the NREN are a truly distributed network
and do not have a centralized management structure. Each
HPCC agency,academic institution, library, network service
provider, local government and state government has its own
sct of rules and regulations for negotiating contracts, deter-
rining budgets and providing operational support to its staff.
In addition, both federal and civilian users of the NREN may
include physicists, chemists, biologists, computational scien-
tists, economists, mathematicians, computer scientists, uni-
versity administrators, librarians, graduate assistants, K-12
teachers, medical professionals, and even politicians; virtu-
ally anyone involved with research and education within the
United States. Thus any management program, including a
security program, is necessary distributed and will rely on
voluntary compliance on the part of the participants.

Coordination of the HPCC and NREN activities is accom-
plished via various mechanisms. Each agency submits its
own HPCC budget to the Office of Management and Budget

(OMB) in line with the coordinated activities agreed to by the
agencies under the guidance of the Office of Science and
Technology Policy (OSTP). Further HPCC coordination is
accomplished through the newly formed HPCC Office of
Coordination, which has evolved from and oversees the High
Performance Computing and Communications and
Information Technology (HPCCIT) task force. NREN spe-
cific coordination is currently performed in the Federal Net-
working Council (FNC) and its working groups, an evolution
of the Federal Research Internet Coordinating Committee
(FRICC), who coordinate the agencies' activities on issues
such as policy, security, education, engineering and operation
of the IINREN. The FNC advisory committee (FNCAC) in-
cludes distinguished members from industry, academia, and
other groups interested in the NREN. They meet with the
ENC at least twice a year to discuss NREN topics. In addi-
tion, the participating NREN federal agencies sponsor and
attend many workshops and public meetings on issues rele-
vant to the NREN and its evolution.

The NREN charter is to support unclassified research and ed-
ucation activities. As such, it is not intended to carry any sen-
sitive or classified traffic. However, Public Law 102-194
and the "Grand Challenges 1993: High Performance
Computing and Communications” both state the need to de-
fine, develop and deploy NREN security policy and mecha-
nisms whenever possible. Keeping in mind that many of the
NREN users will also be working in other physically and
administratively distinct non-NREN domains, any NREN
specific policy and implementation (e.g. security) must be
developed so that all participants can and will both imple-
ment and adhere to it.

NREN SECURITY POLICY

In February, 1992, the National Institute of Standards and
Technology (NIST) published NISTIR 4734 entitled
"Foundations of a Security Policy for Use of the National
Research and Education Network." This document was the
result of a research activity by Dr. Arthur Oldehoeft,
Chairman of the Computer Science Department at Iowa State
University. He was granted a sabbatical leave at NIST and
worked under the direction of Dr. Dennis Branstad, NIST
Fellow. The objective was to establish the f.undations of a
security policy that could be used in developing an opera-
tional policy for use of the NREN.

Dr. Oldehoeft presented a background on the evolution of the
NREN, the foundations for an NREN security policy and a
proposed security policy for use of the NREN. Dr. Branstad
then refined the security policy, coordinated it with security
experts who had developed an INTERNET security policy
and submitted the result to the Federal Networking Council
(FNC). The FNC executive committee and the entire FNC
approved the policy with minor changes. Implementation

procedures for the policy are now being developed by the
FNC security working group and are expected within the next
few months,

The objectives of the security policy include:

1. establishing responsibility for NREN security to the users,
managers, administrators, overseers, developers, vendors
and service providers;

2. encouraging responsible security practices by all NREN
organizations and network participants;

3. establishing guidelines for protecting information, com-
puter systems and telecommunication systems that will:

a. safeguard the rights of individuals with regard to per-
sonal privacy and protect intellectual and industrial
property rights; and

b. be effective and acceptable to both the public and private
sectors.

Copies of the policy are available from the Federal
Networking Council secretariat and the National Institute of
Standards and Technology.

Organizational policy(ies)

From the general Security Policy for Use of the NREN, it is
expected that organizations will establish an organizational
policy for achieving the provisions of the general policy.
Such policies should include assignments of responsibilities
to organizational elements by job title and/or by individual
names. In additional to a policy, each organization should
also establish a security program which includes a security
implementation plan (goals, actions, milestones, time table)
and a security review program to assess if the plan is being
implemented adequately.

Multi-policies

The issue of multiple security policies is raised whenever a
secure distributed network is discussed. The purpose of a
network is to facilitate communications among multiple enti-
ties (organizations, computers, people) whenever desired.
The purpose of security is to facilitate the desired communi-
cation whenever the communication is authorized and then to
protect the communication as desired. This is difficult, but
doable, when both entities follow the same security policy
(e.g., Bell-LaPadula policy, IBM Corporate policy, NIST
computer security policy). However, when the two commu-
nicating entities have different policies, an unsolved problem
is encountered.

Several papers have been written on varying approaches to
solving the problem. The European Computer Manufacturers
Association (ECMA) sponsored a security group that pub-

lished two technical reports on distributed system security.
The first, entitled "Security in Open Systems: A Security
Framework" presented a top down view of security and ad-
dressed security policies, domains, models, services, facilities
and mechanisms. The second, entitled "Security in Open
Systems: Data Elements and Service Definitions" amplified
and elaborated on each of these topics. The topic of mult-
policies in a distributed open system was treated fairly exten-
sively but primarily from the definition viewpoint. Several
requirements for an acceptable solution were stipulated but
no solution was offered.

The approaches to circumventing this problem can be sum-
marized as avoidance or acceptance. Networks which pro-
cess classified information cannot be connected to any other
network and hence the problem is avoided. Closed systems,
rather than open systems, have been used to avoid the prob-
lem in some environments. Acceptance comes in several fla-
vors: communicate and accept the risk; accept the fact that
you cannot communicate with the organization; or request a
level of protection and accept the statement that it will be
provided. The latter is sometimes loosely called a discre-

tionary security policy.

An outline of a good solution exists. If a security policy can
be stated in a formal manner and if a secure computer system
has a way of accepting the formal security policy and auto-
matically building a trusted system that enforces that policy
for a stated process or processing period, then security poli-
cies can be prepended to data and data processing requests
and transferred within a distributed system for remote pro-
cessing. The corollary of transmitting a compiler needed to
translate a program along with the program for remote
compilation and execution was defined nearly 30 years ago
but never achieved acceptance in either theory or use. A
more acceptable corollary is including data descriptions and
definitions along with the data for remote processing.

IMPLEMENTATION PLANS

NREN Security Workshop

The National Science Foundation networking group re-
quested that NIST sponsor a workshop to address the security
of the NSFNET supercomputer centers and the NREN. This
workshop was held at NIST on July 6-7, 1992. A report on
this workshop has been published by, and is available from,
NIST.

Near term solutions

The goal of the workshop was to develop a set of recommen-
dations for near term solutions to security problems in the
NSF network. The focus was on technologies that can be
implemented immediately with specific attention given to

enhancing the security of the NSF supercomputer centers -
recognized as valuable resources on the NSFNET. The
workshop concentrated on four topics: user authentication,
access control, application security and security management,
all in a distributed system environment. The following
summarizes the recommendations that were established in
these four areas.

In formulating recommendations, the participants considered
a number of factors: currently available off-the-shelf tech-
nologies (hardware and software); interoperability; ease of
use; cost; acceptability to the user; and, secondarily, exporta-
bility. The recommendations are intended to complement
each other and should be selected across the areas so that the
effective level of security increases as increased levels of se-
curity mechanisms are implemented.

User Authentication (Priority A)

* Avoid use of static (i.e., reusable) passwords

* Use a challenge/response system until Kerberos is available

* Use a public key based authentication system

» Use a publicly available authentication algorithm

» Use an exportable authentication algorithm

* Allow for user access from multiple sites, including from
across international boundaries

« Allow implementation in software, smart tokens, or special
hardware

Access Control (Priority B)

*» Use Kerberos (Version 4 now with transition to Version 5)

* Review use of DASS as its development proceeds

* Assure conformity with application access control (e.g.,
rlogin, tenet, ftp)

» Support alternative ways of generating/providing Kerberos
keys (e.g., user passwords/passphrases, software,
EEPROM, smart cards)

Application Security (Priority B)

* Implement and use Privacy Enhanced Mail (PEM)

- PEM should be available for users to protect mail
(integrity, confidentiality, signature)

- Initially use existing suite of cryptographic algorithms
(DES/RSA/MD2/MDS5)

- Explore later use of proposed NIST suite of crypto-
graphic algorithm standards (DES/DSS/SHS)

- Support and use the certificate registration authority in-
frastructure

- Initial applications of PEM should include security ad-
ministration/management

Security Management (Priority B)
» Establish security responsibility (e.g. security officers)

- Develop and maintain site security policy and procedures,
including a policy for handling security incidents

- Support comprehensive security education programs for
users
- Establish Forum of Incident Response and Security Team
(FIRST) points of contact
 Establish configuration control for security purposes
(pricrity A)
- Distribute/support use of automated security management
tools (e.g. COPS)
« Establish a security perimeter protection capability (Priority
B)
« Establish security audit information collection and review
capability (Priority B)

Follow-on Activities

« Maintain cognizance of new security technology

= Establish security enhancement specification / implementa-
tion teams

« Establish follow-on activities such as additional workshops
in specific security areas (e.g. signature certificate registra-
tion authority infrastructure)

Proofs of Concepts

Each of these recommendations can be implemented today to
a certain degree. For example, a security management plan
can be established for meeting the basic provisions of the
NREN security policy within a short period of time.
Kerberos is available from several sources and supported on
many different networks. It provides a urnkey authentica-
tion and access control capability for a network but requires
people to manage it. PEM is implemented in prototype sys-
tems but has not been fielded as a supported product.

More effort is needed in demonstrated proofs of concepts in
distributed system security. A true distributed system is one
in which a task cannot be completed at one physical location
but requires resources at more than one location. A secure
distributed system thus requires cooperating security mecha-
nisms in more than one location. A task can be initiated at
various places in the distributed system with the necessary
resources made available when authorized. This requires
several types and levels of standards. Authentication and ac-
cess control standards are types and each can provide various
levels of protection. A level appropriate for the application
needs to be selected by the initiating user or process.

Kerberos is a distributed security system which utilizes cryp-
tographic keys generated in one facility for transmission to
other facilities in order to open logical security locks. The
access control procedures built into Kerberos provide au-
thentication service but not authorization service.
Authorization is a function of each host. Access control is
based on user/process identification information to determine
host access privileges. Local access control must be pro-
vided to protect the local processing and data resources.

Impediments To Adoption
Export control(s)

The issue of export controls on security devices, especially
those based on cryptography, arose several times during the
workshop. Kerberos uses DES for authentication and in-
tegrity assurance but does not use DES for data encryption.
One reason is export control. Security products that imple-
ment DES for data encryption cannot be exported from the
United States except for limited applications (e.g., banking)
in limited geographical areas. For international interoperabil-
ity, especially for remote access by a U. S. user travelling
overseas, it is highly desirable to use exportable algorithms
and security devices. Thus export controls impede the imple-
mentation and use of the DES in security systems.

Conflicting security policies

The problem of multiple security policies was discussed pre-
viously. This problem assumed that the policies were simply
different rather than conflicting. If the policies conflict (i.e.,
are either totally or partially mutually exclusive), the security
mechanisms probably cannot be modified to accept and en-
force a conflicting policy. Hierarchical policies may be able
10 be enforced given that the nomenclature and specification
languages for the policies are unambiguous and universal.
Disjoint policies that neither overlap nor conflict need to be
investigated for implementation and enforcement in a dis-
tributed system.

Distributed management

The NREN is a distributed system with distributed manage-
ment in the extreme. There is no hierarchical management
structure nor any central coordination point (except for the
Federal Networking Council for the federal portion of the
NREN). The Internet has worked because it is in the best in-
terests of all participants to make it work. In the area of se-
curity, managers and users must decide what protection is
reasonable for their resources (data and processing capabil-
ity) and assure that the protection is provided. Some security
services can be provided on a selected basis but other ser-
vices (e.g., assurance of network communication capability -
denial of service prevention) may have to be pervasive in the
network in order to be effective. A flat distributed manage-
ment structure may be an impediment to providing this type
of protection since the cost cannot be allocated easily.

Lack of priorities/resources

The NREN will probably be subject to a shrinking federal
allocation of funds to support long term research. While the
recently elected vice president was a sponsor of the bill
which established the HPCC (and NREN) program in the
Congress, emphasis of funds allocation will probably be on
those areas which demonstrate immediate improvement in
social and economic well being, especially if new job oppor-

tunities can be demonstrated. To date, development projects
in security standards for computer networks have not been
well funded. Resources must be allocated according to some
set of priorities to support the needed efforts. Lack of these
priorities and resources will prevent the development of
needed standards. Lack of these standards will be an imped-
iment to full utilization of the NREN in the highly competi-
tive society anticipated for the future.

SECURITY TECHNOLOGIES

Available Technologies

The workshop dwelt on available technology in several areas.
Privacy Enhanced Mail (PEM) and Kerberos were two of the
areas. Steve Kent, BBN, has been chairman of the Internet
group developing security RFC's for several years and gave
an overview of PEM. Jeff Schiller, MIT, has been involved
with the development of Kerberos for several years and dis-
cussed its present status.

PEM is defined by a set of four documents in draft form but
intended to be published as Request for Comments (RFC's).
PEM is a mail system consisting of several components. An
editor is used to compose a message, the message is pro-
cessed by the PEM program to provide the desired security,
and the resulting privacy enhanced message is transmitted by
the normal mail system. The receiving mail system notifies
the addressee of available mail. The person then requests ac-
cess to the message and requests the PEM component to open
the secure envelope. The receiver then can read and process
the now unprotected received message.

The security features include: data origin authentication,
connectionless integrity and optional confidentiality protec-
tion. A "basis” for nonrepudiation of the sender is provided
but supporting management services are required to provide
the full nonrepudiation service.

PEM is expected to be implemented either as a stand-alone
component that is activated between the operations of com-
posing a message and sending the message or an integrated
component in a mail system that includes a user agent and a
transfer agent. The operations are equivalent in both.
Interoperability among all implementations is a goal of the

program.

Kerberos was developed at MIT as a part of the Athena com-
puting environment. It also consists of several components
implemented in different facilities (protected physically and
logically at different levels). A Key Distribution Center
{KDC) requires the highest protection while client worksta-
tions require less protection. The DES algorithm is imple-
mented in software in all components and used as the basis
for protecting keys and "tickets". The goals addressed by

Kerberos are detection of spurious association initiation
(authenticity), detection of message stream modification
(data integrity) and prevention of disclosure of message con-
tents (confidentiality). Traffic analysis and denial of service
are not addressed in the Kerberos system.

The design criteria for Kerberos include no cleartext pass-
words transmitted over the network, no cleartext passwords
in client servers and minimal exposure of cryptographic keys
(through encryption and minimized key lifetime).

Kerberos is deployed and supported technology. Version 4
of Kerberos is presently distributed (from MIT free of
charge) and Version 5 is in Beta test. DEC supports
Kerberos in its ULTRIX system but has disabled any DES
encryption capability for export control purposes. Kerberos
is reported to operate reliably and to be user friendly. The
ambiguity of naming conventions (actually multiplicity of
conventions) has caused some delay in expanding Kerberos
to new open Systems environments.

Future Technologies

NIST technical staff members gave several presentations on
research topics that may result in technologies useful for en-
hancing security in the future. Jim Dray described the
Advanced Smart Card Access Control System, a crypto-
graphic based authentication system implemented in smart
cards and host computers. Each host supports an interactive
login and each workstation has a smartcard reader/writer
(R/W). The firmware in the smart card implements a set of
commands which initiate and respond to interactions with the
host computer. The smartcard presently is based on DES but
public key cryptography is being added. A chal-
lenge/response protocol is implemented for bidirectional au-
thentication. One card can grant access to up to 100 remote
hosts if the user is so authorized. Smart cards range in cost
from $10 to $100, depending on capability and quantity pur-
chased, while the R/W's range from §275 to $500.

While the goal of the workshop was available technology and
smartcards did not satisfy that goal, the participants con-
cluded that this technology should be developed and sup-
ported as future technology. The widely distributed NREN
will require something that is very flexible, very inexpensive
and very user friendly in order to be accepted. Smart cards
have the necessary potential but costs will continue to be an

impediment.

NIST staff also gave an update on the Digital Signature
Algorithm and its status as a Federal Information Processing
Standard. The DSA is a useful security tool for authentica-
tion and data integrity assurance purposes. A Secure
Hashing Algorithm is also proposed as a FIPS by NIST for
use with the DSA. A digital message, program, data file or

image can be input to the DSA which computes a 160-bit
hash value that depends on the entire input (both contents and
position). The 160-bit hash value is input to the DSA which
computes two 160-bit values (r,s) which constitute the signa-
ture. The signature is stored or transmitted with the data.
When the data are to be verified, they are input to the DSA
along with the (r,s) values. The DSA then determines if the
data or the (r,s) values have been modified. A private signa-
ture generation key is used to compute the signature and the
matching public signature verification key is used to verify
the signature and the data. The workshop participants be-
lieved that while the algorithms were currently specified,
implementations of the algorithms were not commercially
available and hence were not recommended for immediate

deployment.

Trusted systems were discussed a little. While important, it
was felt that their widespread use in multi-security policy
domains was still in the future.

FUTURE GOALS

Designed/Integrated Security

For many years security experts have recommended that se-
curity services, mechanisms and facilities be designed into a
data processing system early and integrated into the basic
structure of the system. This recommendation still holds.
Open distributed systems should have security as a funda-
mental design criteria and users must demand security in the
systems before procurements are compieted. This goal will
then be satisfied to a greater degree than is presently happen-
ing.

High speed security mechanisms

The HPCC program, within which the NREN is being devel-
oped, is intended to field very high performance processing
and communication capability. Security mechanisms always
incur some overhead in computing and communications. In
some cases, the overhead is either so small it is not discern-
able or can be performed in an off line mode with very little
on-line delay. However, there is a need to develop high
speed security mechanisms (e.g., data encryption, access au-
thorization, security policy routing algorithms) that will not
incur unacceptable overhead when the mechanisms must be
installed in-line. Cryptographic devices operating around
100 megabits per second are being designed but will not op-
erate at the gigabits per second range. Cryptographic algo-
rithms generally require significant data manipulation or
arithmetic computation in order to achieve high work factors
against specific security threats. More research and devel-
opment is needed in this area.

Evolution/transition plans

The NREN program anticipates transitions from the existing
networks to the high performance networks desired. The
NREN will evolve from present capability with bits and
pieces upgraded as funds and equipment allow. The security
program for NREN must similarly evolve, going from basi-
cally management based security procedures to technology
based security mechanisms. Existing equipment and operat-
ing procedures will not be abandoned because of security
concerns or desires. Even if the existing network breaks (or
is penetrated much more often than currently exists), it will
not be fixed by a complete replacement of existing resources.
Plans for the inevitable transition must be made now.

Educational pians

The first provision of the security plan is to educate the users,
managers, administrators, vendors and service providers of
the network in the area of security. Assignment of responsi-
bility, and notification of the assignment, are first on the list.
Tutorials on existing security technology that can and should
be used will be next. Most people are aware of potential
problems (viruses, integrity losses, unauthorized disclosures,
theft of computation capacity) but few incidents occur with
respect to the potential. Therefore, people accept the residual
risk at a high level because acceptance is easier than action.
However, this should be an informed decision based on good
facts and good education of the network participants.

Priorities/resources

Improvement of security in the evolving NREN will primar-
ily be a matter of priorities and resources. The federal gov-
ernment will continue to sponsor research in high speed
computing and communications with emphasis on research
and education but resources will be allocated to priority pro-
grams with the highest positive payback. Security is some-
times thought of as preventing negative feedback but rarely
thought of as having positive payback. However, if informa-
tion technology is not utilized on a broader and grander scale,
the lack of security provisions will prevent acceptance in
many applications where great risks are encountered and this
high ticket item will not develop to its full potential. Security
should be considered in each of the exercises in which priori-
ties are set and resource allocated.

ACKNOWLEGEMENTS

The authors wish to thank all the participants of the
Workshop on NSFNET/NREN Security sponsored by the
NSF and hosted by NIST. Specifically, we would like to
thank Dr. Steve Wolff for sponsoring the workshop and Drs.
Vint Cerf, Steve Crocker and Steve Kent for their leadership
roles in the workshop. We would also like to thank Dr.
Arthur Oldehoeft for his work on the NREN security policy
and for his report of the security workshop.

REFERENCES

Grand Challenges 1993: High Performance Computing and
Communications; A Report by the Committee on Physical,
Mathematical and Engineering Sciences; Federal
Coordinating Council for Science, Engineering and
Technology.

High Performance Computing and Communication Act of
1991 (Gore); Public Law 102-194.

Interagency Interim National Research and Education
Network Implementation Plan; Aiken, Braun and Ford;
National Science Foundation.

NISTIR 4734, Foundations of a Security Policy for Use of
the National Research and Education Network; Arthur E.
Oldehoeft, National Institute of Standards and Technology.

Report of the NSF/NIST Workshop on NSFNET/NREN
Security, Arthur E. Oldehoeft, National Institute of Standards
and Technology.

Security in Open Systems: A Security Framework,
European Computer Manufacturers Association, 1988.

Security in Open Systems: Data Elements and Service
Definitions, European Computer Manufacturers Association,
1989. Security Policy for Use of the National Research and
Education Network; Federal Networking Council.

Security Policy for Use of the National Research and
Education Network : Federal Networking Council.

SECURITY AND MANAGEMENT IN IT2000

Seow-Hiong Goh
Yeow Meng Chee
Michael Yap

Planning and Infrastructure Department
National Computer Board
Singapore

ABSTRACT

The IT2000 project aims to use Information Technology in
making Singapore an Intelligent Island by the year 2000.
This paper discusses some issues on Security, Privacy and
Management in the context of an on-going design and
implementation of a National Information Infrastructure
(NII) the vehicle for realising the Intelligent Island vision.
The topics focused in the paper include the problems faced
in the protection, security and privacy of data, the
provision and accessing of services, and the management
of the principals.

INTRODUCTION

Singapore has embarked on a National IT2000 plan, which
aims to set up the country as an Intelligent Island. It
heralds a brave new world in which Information
Technology will play a pervasive role in the lives of the
people. This paper will discuss some technical issues and
experiences concerning security, privacy and management
encountered in our on-going design and prototyping efforts
of the National Information Infrastructure (NII).

BACKGROUND

The National Computer Board (NCB) initiated the IT2000
Study in January 1991 to examine how IT can be
effectively exploited to create national competitive
advantages and to enhance the quality of life. The goal is
to transform Singapore into the Intelligent Island where an
advanced national information infrastructure interconnects
every home, office, school and factory. In our vision, the
computer will evolve into an information appliance,
combining the functions of the telephone, computer and
television. to provide a rich array of communication modes
and access to services. Text, sound, pictures, video,
documents, designs and many other forms of media will be

1

transferred and shared through the infrastructure which
will be fibre optics based reaching all homes and offices,
and with a pervasive wireless network working in tandem.

The approach taken at the onset of the IT2000 has been
very much demand driven. The first stage of the effort
calls for an extensive study of the needs and strategic
application of IT in various sectors of Singapore over the
next decade. 11 sectoral study groups, comprising some
200 knowledgeable and influential senior executives and
academics from both the private and public sectors, were
formed. After months of intensive study, the groups have
surfaced more than 60 major projects that will help bring
the nation to the next phase of its development, and whose
implementation will be facilitated by the availability of the
national information infrastructure. Studying the proposals
of the all the sectoral groups, we recognised a set of
common themes that collectively describe the vision of the
Intelligent Island. The 5 themes include [1]:

@ Developing a Global Hub. The infrastructure will help
turn Singapore into a highly efficient switching centre
for goods, services, capital, information and people,
enhancing its role as the global business, services and
transportation hub. Potential applications that would
support this theme include remote collaborative work,
remote delivery of expertise, integrated transportation
networks and electronic marketplace for information
services.

® Boosting the Economic Engine. The potential benefits
of the infrastructure to the economy are immense,
generating greater productivity and new business
opportunities. It will help to strengthen inter-firm
coordination, both within and across national borders,
and enable flexible and just-in-time business operations.
Applications suggested include integrated networks to
support the exchange of documents, payments and
drawings, and a nation-wide multimedia leisure

information and reservation system.

® Enhancing the Potential of Individuals. By providing
more opportunities and bringing education to the
convenience of the individuals, we hope to facilitate
interactive and self-paced learning. Focus will be to
greatly improve access to cultural digital repositories
in Singapore and around the world, and to provide
extra help for the disabled. Applications suggested
include multimedia training, distance learning and
adaptive computer technology.

® Linking Community Locally and Globally. The
infrastructure can facilitate the creations of various
community-based networks linking people with
common causes or interests. It will help to support
civic and cultural networking, and with overseas
extension, helps to promote international goodwill.

® |mproving the Quality of Life. The emphasis here is to
enrich the lives of the people by increasing
discretionary time and generating more opportunities
and choices in the kinship, social, work and civic
spheres. It will help facilitate living in an increasingly
more congested, vibrant and cosmopolitan Singapore
by shielding some of the complexity. Applications
suggested include one-stop, non-stop government and
business services, cashless transactions, dynamic
transport information, round-the-clock health care
information and telecommuting.

The National Information Infrastructure (NII)

In conceiving the development of the infrastructure, it
might be prudent not to fully entrust the invisible hand to
guide an otherwise uncoordinated evolution. The
information infrastructure is so all-pervasive, and its needs
for communication and computing standards so critical,
that it might not arise spontaneously and optimally. The
high financial investment and the possibility of even higher
costs needed to rectify mistakes lend support to the need
for a disciplined approach in planning and developing the
national information infrastructure, particularly, for a
resource scarce mation-state like Singapore.

For the competitiveness of the nation, the challenge is
therefore to approach the issue in a holistic manner, by
providing a nation-wide information network. It is an
infrastructure consisting of efficient transport mechanism,
information processing and service facilities that combine
both computer and communication technologies. From it
anyone, anywhere, at anytime could easily, quickly, and
inexpensively get and share information services that they

12

want. The needs of business and the people drive the
definition of the infrastructure. Its goal is to increase the
well-being of the people as a whole.

The government would be required to play a leading role
in facilitating the realisation of the Intelligent Island.
However, it must be emphasised that it is not the intention
to centralise and monopolise all information services. The
building of the national information infrastructure is to
promote greater innovative use of information. It is a
concept established to make it easier for individuals and
enterprises to provide information services and exchange
of information, bringing Singapore closer to the enjoyment
of the full benefits of the information age.

What then is the NII? Below (Figure 1) is a reference
model of the NII. It shows the major components of the
NII. Applications are specific end-users systems which are
constructed using common Applicarion Models that are
built over facilities provided by the Common Services. The
layer known as the Distributed Computing Architecture
abstract developers from the complexity of having to
handle heterogeneous systems. Refer to [2] for a more
detailed description of each component.

Model Drivan Approach
(Otysct Orientstion)

Application Models .
Roeusability, integration, Distibution
Portatvlity and Extensitélity Driven
Common Services
Distributed Computing Arci. \acture
| Maching/Network Aichitecture | 89 HalErogeneous Network

Figure 1. NII Reference Model

The NII is a distributed environment supporting a
heterogeneous network of servers. The computing servers
providing various services will be interconnected viaa high
speed network. Users access to the system will be through
the public network system. Wireless connections at a lower
bandwidth will be supported particularly for access by
end-users. Support for user access will include devices
with no processing capability (apart from supporting
display). In the later subsection on Types of Access
Devices, we discuss in greater details the type of access
devices that we would be supporting.

Project Status

Apart from establishing the various organisaticnal
mechanisms to attain strong support and collaboration,
work to examine the technical issues in developing the
infrastructure has begun.

Various groups has now been formed to carry out research
and develep prototypes of the network infrastructure and
the software architecture of the NII. Efforts are now
underway to define the technical reference models and
functional specifications of the NII. To gain further
understanding of the technology requirements and to
assess the implications of upplication demands, prototypes
are being constructed. Together, “he reference models and
psototypes will serve as a common definition and
understanding of the infrastructure.

In evolving the physical infrasiructure, an iterative
approach is being used. It is recognised that the envisioned
national information infrastructure is untested and should
not be built using the "big-bang” approach, instead it needs
to be prototyped and evoived. It is also recognised that
Singapore is behind the technology leaders in various
epabling components of the infrastructure. An importance
thrust of our effort will therefore be to tap into the local
R&D effort and to foster strategic alliances with various
international technolozy sources.

The technology acquisition effort will focus on developing
a national test-bed for experimenting with infrastructure
feasibility and to demonstrate application viability. The
current plan is to develop a fibre-hased network as a
backbone for experimenting with the afrastructure. There
1s also plan to build prototype si.> -case applications on the
backbone to study their demands on the infrastructure and
on how they may be integrated.

Scope of Faper

While there are many issues regarding how distributed
computation is achieved in the NII, this paper will focus
mainly on the Security, Privacy and Management issues
and the mechanisms chosen for the implementation of the
NII. The topics addressed include:

Basic components for Security and Privacy
Providing Services

Accessing of Services

Authentication and Authorization Mechanisms

13

DEFINITIONS

The following definition of Security, Privacy and
Confidentiality is adapted from the definitions of the
National Bureau of Standards and the Association for
Computing Machinery [15]. These definitions will be used
as a basis for our discussion on how we aim to achieve
each of them in the NII.

Security is defined as follows:

Security is the protection of data against accidental or
intentional destruction, disclosure, or modification. It
refers to the technological safeguards and managerial
procedures that can be applied to computer hardware,
programs and data 1o assure that organizational assets
and individual privacy are protected.

Privacy is defined as follows:

Privacy is a concept which applies to an individual. It
is the right of an individual to decide what information
he wishes to share with others and what information he
is willing to accept from others.

There may not be a direct relation between Security and
Privacy. A secure system does not necessarily ensure the
privacy of its users. Information sharing may result in a
conflict with the concept of the privacy of users. We must
therefore achieve a system that provides a balance between
data sharing and privacy.

Confidentiality is defined as follows:

Confidentiality is a concept which applies to data. It is
the status accorded to data thar has been agreed upon
berween the person or organization furnishing the data
and the organization receiving it and which describes
the degree of protection to be provided.

Principal, Group and Role

A Principal is defined to be a person, a group, a machine
or a service. It is an entity that is unique in the NII that
holds certain attributes and resources.

A Group is a collection of Principals with some common
characteristics. A group in itself is also a Principal.

A Role is a given set of authority in which a Principal acts
in. An authority is defined by a set of role certificates. A
role that requires additional attributes and resources is
considered to be a separate Principal. A Principal that has

multiple roles will have to select the role in which he
wishes to act before accessing any services.

Authentication and Authorization

Authentication is the process of verifying the identity of 2
principal. Authorization is the determination of whether a
principal is entitled to use a protected resource {8].

Principal Roles

A given principal may have a number of different roles.
For example, he may be a private citizen and a student, or
he may be an employee of an organization and also the
system administrator of the computers in the organization.
A role allows a principal to do or not do something. Itis
thus represented in terms of a set of role certificates that
the principal has.

Principals are associated with particular roles by obtaining
the relevant role certificates from the Authorization
Grantor. When requests for services are made by the
principal, these certificates are used by the Grantor during
the generation of authorization tickets to determine if a
principal is entitled to use a service.

A person may own a large number of certificates and
tickets due to the many roles that he assumes and the
services he accesses. The principal will have to select the
role in which he wishes to act before he accesses any
services. When a Principal assumes a role, he will have
access only to the certificates and tickets that are valid for
the given role. Therefore, it is not the entire collection of
authorizations that a principal has, but rather the set of
authorizations he has for a specific role that he plays that
determine what services he can access.

Each principal has two levels of "roles” - the private
citizen level role and a specialized level role. An
authorization to access a service that is available to the
principal in general is assigned at the private citizen level.
A role specific authorization is assigned at the specialized
level. When a principal assumes 2 specialized role, he can
use the authorization available to the role as well as the
authorizations available at his private citizen level. The
division into two levels of roles (each level supporting a
pumber of different roles) relieves the principal from the
peed of obtaining separate authorization for some basic
operation for every role that he may assume.

For example, if a person is categorized as under-18, he
may be given an authorization ticket for viewing movies
with this restriction. This ticket is placed at the private

citizen level. If he also has the additional specialized role
of a student, he may be given the authority to use a
library. The library authorization ticket is placed at the
specialized level. When this principal assumes the role of
a student, he may use the library, as well as watch movies
in the under-18 category. When he assumes the role of a
generic private citizen, then he may only watch under-18
movies, but not make use of the library.

Directory Service

Our Directory Service is based on X.500. The Directory
Service in the NII serves several important purposes:

® Principal Directory

The primary purpose of the Directory service is to
allow one principal to locate another principal based on
some other known attributes regarding the principal. It
also allows a principal to locate 2 Service or Role.

® Principal Database

The collection of the principals’ frequently used
information is stored with the database that the
Directory Service uses. The principals’ name-value
attribute pairs and certificates are stored at this
database, though the value of the attribute may not
necessarily be stored at the database for security
reasons. A pointer to the storage location may be used
instead.

® Public Key Directory

The Directory Service in the NII doubles as the Key
Directory in the NII. The Public Key of a principal is
stored as an attribute of the principal.

Directory Service and Roles

As users may prefer associations to roles eg. "librarian”
rather than to the actual name of the person who is the
librarian, the Directory Service must allow for such a
mapping between Roles and principals.

Within the Directory Service, we have a list of Principals,
each with his own mailbox for receiving mail. These
include Groups that contain a list of principals that perform
a role collectively. In the Directory Service, we also have
a list of Role names which users can use as a search key.
A role entry is an alias to a Principal (including groups).

When a principal wishes to contact a particular role

through the Directory Service, there are two possibilities.
The role may refer to a particular person (eg. the General
Manager), or it may refer to a group of people (eg. the
Librarians). In the case where it refers to a particular
principal, the role entry is an alias to the Principal, and
any mail directed to the role is automatically routed to the
Principal’s mailbox.

In the latter case where a role refers to a group of people,
this may have two further possibilities. A message to the
role may be meant for everyone in the group or just any
one in the group. In the former case where the message is
meant for everyone in the group, the role entry is an alias
to all the member principals. If it is meant for anyone in
the group, then the rols entry points to a Group Principal
that has its own mailbox. Members of the group can then
log themselves on as the Group Principal to access the
mailbox.

BASIC SECURITY COMPONENTS

The data available from various organizations that
participate in the NII will require different levels of
security protection. The pature of the transactions
requested by the principal will also need to be secured. At
the onset, the NII is designed to include a basic
communication security mechanism so that all

communication between principals on the network are

protected against various forms of attack. We have a
system based on both Public-Private Key and Single-Key
technologies for providing secure communication.

In the subsections that follow, we will describe how we
protect our data through the use of encryption. The
authentication procedure is described later in the section on
Authentication. ’

There are two basic premises that we base our work on:

® A Service Provider will not trust a client, unless the
client has been authenticated.

® A user generally will not trust a machine. Such a trust
is available normally only to machines personally
owned by the user. The exception is through the use
of Smart Cards. This will be described in greater
detail in the section on Aurhentication.

Public Key Encryption

It is assumed that the reader has some working knowledge
of the Public and Private Key Encryption techniques. This

15

paper will not describe in great detail the Public Key
mechanism or the relative merits of the system over a
Single Key method. Details regarding Public Key systems
can be found in [14,16].

In the NII, each principal is issued with a pair of Public
and Private Keys. The Public Key of a principal is stored
with the Directory Service, while the Private Key is kept
with the principal. There is a central agency that is
responsible for generating new keys and issuing the keys
to principals so that two principals do not end up having
the same set of keys.

Hybrid Encryption System

The main disadvantage of Public Key systems is the slow
speed of encryption. The mechanism chosen for the NII is
thus a hybrid Public-Private Key system and single-key
Secret Key system.

For stream data, the Public Key system is used at start up
time to establish an initial secure channel between the
communicating parties. Once the channel is established, the
communicating parties will agree on a random number to
be used as the session key. Subsequent messages in the

~ session will be encrypted with faster Single Key systems.

For block data, the sender decides on a random number to
use as the session key to encrypt the bulk of the data with
(using Single Key systems). This key is then encrypted
with the receiver’s public key and the encrypted key is sent
to the receiver with the encrypted body.

Encryption Algorithm

For the security system, we are experimenting with various
schemes, inciuding the RSA algorithm [3] (with a 200-digit
key) for encryption with the Public Key System and DES
[4] (with a 56-bit key) for encryption with the Single Key
system.

For Digital Signatures, we are examining MD5 {5] as the
hashing function to generate a 128-bit message digest. This
digest is in turn encrypted with the RSA Cryptosystem 3].
Digital Certificates are also generated with RSA.

We have tried to conform to the Public-Key Cryptography
Standard (PKCS) (6] wherever relevant.

Key Storage
The preferred storage means for the principal’s Private

Key is a smart card. Among other things (see following
subsection), one advantage is that the smart card with its

embedded processing capability can perform encryption
using the Private Key. In this way, the principal can be
certain about the secrecy of his Private Key, since it never
have to leave the card.

In the absence of a smart card, the alternative is to store
the Private Key in an encrypted form on a magnetic card,
or even on a magnetic diskette. The encrypted Private Key
may also be stored on the principal’s personal machine
which he usually uses for access to his sensitive data. The
Private Key is encrypted with a Single Key Encryption
system, protected by a password known only to the
principal. Without a smart card, encryption of data with
the principal’s Private Key will therefore be performed by
the local machine which the principal is logged on at.

Trust of Machine

It is important to note that without the use of a smart card,
the principal must fully trust the machine that he is using.
To prevent any unauthorized principal from easily
retrieving the principal’s Private Key from his magnetic
card, disketie or personal machine, the Private Key is
encrypted and can be obtained only with a password which
the principal must enter during authentication. However,
the Private Key will still be made known to the machine
the principal is using (since the machine has to perform the
encryption on his behalf). To entrust his Private Key to the
machine, the principal must trust the machine sufficiently.

Unforgeable Smart Cards

Creating an unforgeable identification card is important for
many applications in IT2000. We want to make it
impossible for two adversaries to misrepresent themselves
to each other with an unforgeable card. In addition, such
cards are protected against loss and theft.

A smart card has the capacity to process information
intemally and store all transactions in non-erasable
memory. Thus the smart card has a high degree of secunity
and extended performance capabilities. We can use a
protocol devised by Fiat and Shamir [7]. The scheme uses
a trusted agency which issnes the smart cards to principals
after properly checking their physical identify. No further
interaction with the agency is required either to generate or
to verify proofs of identity. Interaction with the smart
cards will not enable verifiers to reproduce them. Even
complete knowledge of the secret contents of all the cards
issued by the agency will not enable adversanies to create
new identities or to modify existing identities. Since no
information whatsoever is leaked during the interaction, the
cards can last a lifetime regardless of how they are used.

16

To protect the card from theft, we can use a biometric
system with which the cardholder’s digitized fingerprint is
stored in the smart card at the time of issue by the trusted
agency. When the card is used for identification, the card
presenter’s fingerprint irnage is automatically compared
with that stored on the card. If the images match, then the
verification protocol by Fiat and Shamir is carried out.
Using this method, even if a card is stolen, an adversary
will not be able to use the card because his fingerprint
image is different from that stored on the card.

However, using a biometric system is not always viable
because of costs. A more practical alternative is to assign
each card owner with.a personal password. This password
can be presented to the smart card in the place of a
fingerprint for verification. In our later discussion on the
use of smart cards for authentication, we will assume the
use of a password system.

Types of Access Devices

With the proliferation of end-user computing and the
increasing "intelligence" of various "household" appliances
(eg TV and HDTYV), the range of access machines to NII
is potentially wide. To protect existing investment and to
lower the cost of entry to users, the goal of NII is to
support as many types of access devices as possible and to

provide the connection in software.

Since there are wide differences in computing capability
among the potential access devices, the functionality
accorded to them will necessarily be different. The
challenge is maximise the inherent power of the access
device in a manner that is transparent to both the end
users and developers. The users should not have to worry
about the how the machines are being optimised. And the
architecture should shield developers from having to
wrestle with the differences among the devices.

To help us manage the wide spectrum of access devices,
we have divided the interoperability capability that an
access device have into various distinctive classes.
However, for the purpose of this paper, we will only
classified them into two classes:

® Display and User Interface only hosts.
e Hosts with additional local computational power.

This distinction between the availability of computational
power at the local site is important as the NII security
model requires encryption of data to be done at the local
machine. At no time is the Private Key or password of the
principal ever transmitted over any communication link.
The principal must trust his local platform to encrypt his

data.

As a resuit of the above criteria, the Display and User
Interface only hosts (eg. a public-access information
terminal) cannot allow the principal to access any sensitive
information, since the terminal has no capability of
authenticating the principal. The only exception to this is
if the public terminal is equipped with a Smart Card
reader. In this case, the card may perform the required
encryption.

The actual authentication procedure is described in greater
detail in a later section on Authentication.

BASIC PRIVACY COMPONENTS

A closely related topic to the security of data is the Privacy
of data. With the NII, information will be readily available
to the users. There is therefore a need for the control of
access of a user’s private and personal information.
Authorization procedures must prevent an unauthorized
access or change to private information. In addition, apart
from ensuring that the principals have the proper authority
to access certain information, the principals themselves
may not wish to receive certain services or information.
The privacy mechanism must be able to provide both types
of protection.

Following from the definition of Privacy described earlier,
there are two things we need to protect:

® what information is shared.
® what information is received.

Protection of Information Shared

The topic on the protection of information sharing involves
the following areas:

® Proper Access Control.

We aim to partly achieve privacy of shared
information through the enforcement of access control.
Proper authorization must be obtained for the access
of any information. The subsequent sections on
Providing Services, Accessing Services and
Authorization will go into greater detail on how the
authorization procedure is used to help provide
Privacy in the NIIL

® Protection of Information Abuse.

17

Authorization and access control alone do not provide
the principal with full privacy of information shared. A
legitimate user of information may still intrude on the
privacy of another principal if the information provided
to him is not used in the manner it was meant for. At
the present time, the most effective way of preventing
such an abuse of information provided to principals is
through legal means.

® Limiting Exposure of Information.

The aim here is to find ways of answering a legitimate
principal’s queries without actually revealing to the
principal too much information. With common access
control, an autherized principal in accessing a service
may gain exposure to the structure of information. He
is then able to manipulate the information, providing
the possibility of abuse. The challenge is to find ways
of providing information in a manner that even if a
principal has the authority to access a service, he can
only get information that he is specifically looking for
and not beyond that. Service Providers will have to be
selective in the types of information they provide.
Zero-knowledge [13] queries is one way of allowing
information sharing without actually revealing any
information.

Protection of Information Received

The protection of information received is to prevent the
principal from receiving undesired services. The NII
solution to this problem is closely tied with the process of
authorization. The mechanism will therefore be discussed
after the discussion on the NII Authorization Mechanism,
in the section of Refusal of Services.

Authorization Components

The main defence against privacy invasion is through the
proper implementation of an authorization mechanism. Qur
system involves the use of role certificates and
authorization tickets.

A Role Centificate is a signed string that proves that a
principal is entitled to the rights associated with the given
role. An Authorization Ticker is a signed string that allows
a principal to access a service. Figure 2 illustrates the
relationship between certificates and tickets. A principal
makes a request to the Directory Service. The Directory
Service presents the principal’s role certificate to the
Authorization Grantor. If authorization is approved, the
Grantor will give the principal an Authorization Ticket.
The principal may then present the ticket to the service for

accessing its services. The subsequent sections on
Providing Services and Accessing Services will explain the
mechanism in greater detail. :

Authorization Ticket /’—\

e

Figure 2. Relationship between role certificates and
authorization tickets.

PROVIDING SERVICES

Different organizations may participate in the NII with
their own systems for providing services. These systems
do not necessarily integrate seamlessly into the NIl in areas
such as providing authentication and .authorization of
principals. Since these systems are autonomously managed,
the task of the NII will be to provide a bridging
mechanism that provides Authentication and Authorization
of principals and allow these organizations to offer their
services to the general public user. The mechanism that we
have adopted is based on a method that is similar to
Kerberos [9].

In addition, there is also a need for a mechanism for
keeping track of the resources consumed by each principal
so that accounting information may be collected and the
principal billed for the usage of the services. We make use
of a system of agents to assist in accounting.

Agents

Since it is not feasible for every host and service provider
in the NII to have a separate account for each individual
principal in the NII (due to the large number of users), we
have a system of agents that will provide the mechanism
for the proxy invocation of services. There are 3 main
categories of agents at the system level:

® Proxy Agent (PA)
® Principal Agent (PrA)
® Public Agent (PuA)

18

The Proxy Agent is used by the service providers to allow
NII principals to use their services. The Principal and the
Public Agents are used by principals when accessing
services in the NII. These Agents are provided by the
NII. Figure 3 illustrates the relationship between the agents
and the corresponding platforms that they run on.

Service Provider | PA ﬂ
7
Access Server &

[P=]/
o=

LN
Display and Ul only Hosts

=]

Host with Computing Power

Figure 3. Types of agents

Providing Continuity

~ Among other things, the NII Agents aim to separate the

technological aspects of the NII from the scheme by which
services are accessed and provided. The Agent has a
standard generic interface that allows the details about
implementation to be hidden from the principal. This
allows components to be replaced and upgraded as
innovations in technology become available, while at the
same time, the general paradigm by which the users and
service providers make use of the NII is not affected.

In addition, authentication and authorization procedure is
largely handled by the Principal Agent. The actual human
users or end-principals are isolated from the security
procedure details.

Proxy Agents (PA)

Each service provider has a Proxy Agent that coordinates
the operations for the host. This agent performs the
following:

® Receives requests to be performed on the local machine
® Performs authentication and authorization required by
the service where appropriate

Performs the necessary logging and auditing functions
Invokes the requested task

Returns results, if required

Reports to the Billing and Accounting Agency
regarding the usage of principals.

A request that is submitted to a Proxy Agent contains the
name of the actual requester and the originating requester.
The need for the distinguishing of the actual and
originating requester arises from the possibility of one
service invoking another to perform its assigned task. The
charging for the request should be billed to the request
originator and not to the intermediate services.

In situations where an intermediate service who needs to
invoke a third service and wishes to bill original principal
itself, it can invoke the third service with itself as the
request originator. In this way, the third service will bill
the intermediate service instead of the principal who made
the request.

The service provider can set up the necessary interfaces
between the services and the Proxy Agent. The agent will
perform all the necessary administrative work such as
authentication and logging on behalf of the service. This
way, the service can concentrate on providing the service
and not worry about checking the principal. The service
provider may still perform its own authentication and
authorization checking on top of what the Proxy Agent
provides if it wishes to. Accounting is done through the
Proxy Agent. This allows the NII to validate and audit the
accounts of the service providers.

Security Issues of Proxy Agents

The use of Proxy Agents raises some additional security
issues. Since the request originator’s name is provided by
the requester, the service provider must be able to verify
the authenticity of the originator’s identity. The request
originator must authorize the intermediate agents when
they perform tasks on behalf of the originator. A ticket
issuing scheme is used for the authorization of Proxy
Agents.

The originator generates an authorization ticket by
encoding the originator’s name and the Proxy Agent’s
name with the originator’s Private Key. The ticket is given
to the Service when the request is made by the originator.
The Service will verify the certificate by decrypting the
certificate with the originator’s Public Key and checking
the contents with the name of the originator and the
requester. For nested invocation of services, the next
authorization ticket is generated by using the previous
ticket as the name of the originator.

Registration of Services
Each service in the NII must register itself with the

Authorization Grantor. At the time of registration, access
restrictions to the service is made known to the Grantor.

19

For example, a service providing the records of a person’s
financial background is not available to the general public.
Only a specially authorized group of principals (eg. banks
and credit agencies) may access the records. Another
example is the provision of materials which may be
restricted by Age. A person under the age of 18 may not
be allowed to access movies rated Restricted. Other
information that needs to be made known to the Grantor
include the credit limit to give to principals for the
particular service. Changes to the access restrictions and
other authorization information may be made to the
Grantor as and when the need arises. Figure 4 illustrates
the Registration of Services.

— L
(' senice2) User2
. / ~—
~—

Figure 4. Registration of services

Authorization Granting is decoupled from the Service so
that some form of policing on the type of services offered
can be done. This requirement of registering services with
the Grantor and the ability of the Grantor to negotiate the
type of service provided will help prevent illegal services
from being made easily available to other principals on the
NII. The implementation policies regarding the provision
of services can be enforced at the Authorization Grantor.
However, this scheme of Service Registration and
Authorization Granting does not prevent the provision of
services through direct mail mechanisms.

Service Acceptance

After the negotiations between the service and the
Authorization Grantor have come to a successful resolution
and agreement, the Grantor will issue a set of Public and
Private Keys to the service principal.

The Authorization Grantor will subsequently update the
Directory Service to include the new service. The
Directory Service will also be informed by the Grantor
whether authorization is required for access to this service.
If the service is available to the general public, the

Directory Service may send out the handles to the service
without any reservations. The Authorization Grantor is
involved only when a separate authorization of the
principal is required. Figure 5 illustrates the Acceptance of
a Service.

}) Update
‘ Authorization Grantor)==e(Directory Service B
\v—"/ . ed
Security Keys /

Service 1 >

T eanioez)
(=2)

Figure 5. Accepiance of service

Security Keys

(Gserd)

The Directory Service also offers an additional service of
informing the principals about new services available. Such
information is compiled in the form of condensed reports.
A principal may request that the Directory Service send
information about new services to him at regular intervals.
Alternatively, if the principal prefers not to be flooded
with such information, the principal may indicate that he
will request for the information only when he desires to do
S0.

Local Autonomy

There is some concern that the requirement of registration
of services may affect the ability of organizations to
maintain their own autonomy. The NII allows the services
to build any additional authorization and accounting
mechanisms to enforce their own autonomy on top of the
NII's mechanism. The NII does not impose any more
restrictions as compared to what is required for setting up
of a business in the real world today.

There needs to be a compromise between freedom and
privacy. The registration mechanism helps to curtail the
provision of illegal services through the NII.

The NII Authorization Grantor and Directory Service are
distributed services. In order to have local autonomy, the
local equivalent of the Grantor and the Directory Service
may be implemented at the local site. These two agencies
will work in conjunction with the global NII agencies to
allow external principals to communicate with them. At the

20

same time, the principals under the domain of these local
agencies may be autonomously managed.

ACCESSING SERVICES

The counterparts of the Proxy Agent in the user world are
the Principal Agents and the Public Agents. This section
will describe these agents, as well as describe how services
are obtained through them.

Principal Agents (PrA)

Each principal is represented by a corresponding Principal
Agent in the system. When a host has successfully
authenticated a human user at the terminal, a Principal
Agent is started at the access terminal to act on the user’s
behalf.

The Principal Agent has access to the principal’s Private
Key. Thus the agent is able to perform tasks such as
answering authentication requests on the behalf of the user.
This Principal Agent is also capable of performing other
authentication and authorization functions such as
generating a signature or obtaining a time stamp.

A Principal Agent is aware of the roles that the principal
may act in. Therefore, at log on time, the Principal Agent
will ask the principal which role he intends to assume for
the session. The set of authorization tickets and billing
information is different for each role that a principal may
play. The selection of the role will thus tell the Principal
Agent which set of attributes to use for the current session.

Public Agents (PuA)

Public Agents is used in place of the Principal Agent in the
situation where the host machine is unable to authenticate
the principal. This situation may arise for example with a
public access terminal. A person may walk up to a
terminal to make a general enquiry about the movies
currently being screened. Such requests do not require the
stringent authentication and authorization procedure. We
thus have a Public Agent to represent the principal and to
perform tasks on behalf of the principal. The basic
difference between the Principal Agent and the Public
Agent is that the latter is never presented with sensitive
information, both from the user and the service provider.

Requesting A Service
A principal that wishes to use a service will contact the

Directory Service to make a request for the service. The
Directory Service will perform the look-up for the service

requested to obtain its handle. If the service is available to
the general public, the handle is returned to the principal.
However, if further authorization is required, the Directory
Service will pass the principal’s role certificates to the
Authorization Grantor to request for an authorization
ticket for the principal (explained further in the section on
Authorization). The ticket may contain additional
information such as the credit limit of the principal.

The Grantor will verify internally whether the principal is
qualified to use the service based on the role that the
principal has assumed and the service access restrictions
determined during the registration of services. If a
principal does not know which of his roles may access a
service, he may make a different request to the Grantor.
The Grantor will present to the principal the list of the
roles and ask the principal to make a choice of which
role(s) he wishes to use to access the service. If there is no
role under which the principal may access the service, the
request for the service is denied. Figure 6 illustrates the
requesting of a service.

/""——'\ Ve /"‘R\
rify
C Authonzanon Grantor 0—/ Dlrectory Semee
"
T T~ Request
(senicet)
____/
— G
{ semvice2 (User2)
Ny 7 N’
N~ —

Figure 6. Requesting a service

Service Request Response

If the Grantor is satisfied that the principal may use the
service, it will generate an authorization authTicker that
contains the principal name, the role name, a time-stamp
and a pointer to the limit information. This is signed by the
Grantor and encrypted with the service’s Public Key. The
inclusion of the principal’s name in the ticket ensures that
only the principal may use the ticket. It is not possible for
the principal to give the ticket to another. The ticket is
signed by the Grantor for non-repudiation of the ticket.
Since the ticket is encrypted with the service’s Public Key,
the ticket is valid only for the specific service that can
decrypt the ticket. The authorization ticket is returned to
the principal via the Directory Service together with the

21

handle to the service. Figure 7 illustrates the response to
the service request.

Directory Service

Figure 7. Request response

It is not necessary for the principal to make a request to
the Directory Service every time he wishes to access the
service. He may store locally the handle (and the ticket
where necessary) for the service for subsequent access. A
new request needs to be made to the Directory Service
only when the ticket for the service has expired (eg. the
credit has been consumed, time-stamp has expired or the
service has been terminated). Thus for services whose
accesses need to be tightly controlled, the time period for
each ticket’s validity can be set to be a short one.

Utilizing a Service

A principal will use the service’s handle to contact the
service and if necessary, present its authorization ticket
authTicket. The service can decrypt the ticket to obtain the
principal name, role, time-stamp and the credit iimit
information pointer. The service will only allow the
principal access if the principal name and role in the ticket
match the name and role of the principal making the
request. The service has to verify through the Billing and
Accounting Agency that the limit for usage (described later
in the section on Authorization) has not been exceeded.
Figure 8 illustrates the utilization of a service.

The following is done by a Service when access is made
available to a principal:

® Verify the limit status of the principal.
® Log the usage and the resources consumed.
® Update the limit status of the principal after usage.

These tasks are generally done by the Proxy Agent on
behalf of the Service. However, Services that wish to

‘\/ Authorization Grantor) (' Directory Service){
? \k—’/ ‘\‘"\--...*__.....--—”"..' |

e ————

s \‘\
Limit Verffication___ (Billing and Accounting)
P

Service 13// /\—_’/

Usage

/ TN
:

Figure 8. Utilizing a service

maintain their own autonomy may perform these functions
themselves as well.

AUTHORIZATION

The preceding sections have described the basic
components for providing security and privacy in the NII,
as well as the mechanism by which services are provided
and accessed. The next few sections will describe in
greater detail the mechanisms for performing authorization
and authentication, as well as how services may be
refused. They form the basis of our thinking of the NII
security and privacy system.

Authorization is the determination of whether a principal
is entitled to use a protected resource [8]. The
Authorization Procedure in the NII involves the use of an
Authorization Grantor, a Directory Service, and the issue
of authorization tickets. The earlier sections on providing
and accessing services have described the authorization
procedure for principals requesting services. The steps
required for the refusal of services is discussed in the next
section.

This system of authorization provides both capability list
and access control list protection. The capability list
protection is offered by the authorization ticket that is
issued by the Authorization Grantor. The Grantor decides
based on the principal’s characteristics and attributes
whether to confer a capability to use a particular service on
the principal. A service provider that requires more
stringent access control list protection may require the
principal to use the authorization ticket as an initial
establishment of a communication channel. The service
provider can subsequently impose more checks against its
own access control list to determine if the principal may

22

use its services.
Service Credit System

The Service Credit System exists to check that principals
do not use services beyond their ability to pay. Each
principal has two types of credit. He has an overall limit
which is the upper bound on his total usage of services,
and a service credit limit, which is the upper limit on the
usage of a particular service. If a service credit has been
totally consumed, the principal will have to request for a
new ticket from the Authorization Grantor through the
Directory Service. Each new ticket from the Grantor has
a new limit pointer. If the total credit has been consumed,
then a ticket for a new overall credit is also obtained from
the Grantor.

We have a number of ways of implementing these limits.
One option for storing the value of the limit is with the
authorization ticket itself. The problem with this scheme is
that updating the ticket requires the principal to store a
new ticket reflecting his new limit each time he accesses a
service. The system may be abused by a principal who
makes a copy of the original ticket and always submits the
original ticket with the full credit to the Service Provider.
Concurrent access of multiple instances of the same service
may also pose a problem as there is only one copy of the
ticket to use. Each instance of the Service will be operating
based on the original credit issued to the principal instead
of concurrently deducting from the credit value. The credit
limit will not serve its purpose in this situation.

Since we cannot rely on the principal to store an updated
ticket, a separate Billing and Accounting Agency is
required. The limit value stored in the authorization ticket
is a pointer that can be used by the Billing and Accounting
Agency to identify a particular credit account associated
with the principal. The first time the ticket is used, the
total credit value is noted by the Accounting Agency. Each
subsequent access of the service with the given pointer will
result in the Accounting Agency decrementing the limit
available to the principal. When the entire limit is
consumed, the service is denied to the principal. It is the
responsibility of the service to contact the Accounting
Agency with the limit pointer to determine the actual
remaining limit of usage before providing a service. The
problem of concurrent access of the same limit is resolved
by having this credit tracking agency.

There are situations where a service may be provided
without requiring the acquisition of an authorization ticket.
Billing however is still required for such a service.
Without the authorization ticket and the corresponding limit
pointer, each time the principal accesses the service, he

will need to digitally sign for the usage. This will prevent
any dispute during the accounting and billing later.

Billing and Accounting Agency

The Billing and Accounting Agency, provides consolidated
accounting of the resources consumed by a principal. The
service provides the capability for the system to bill the
principal for his usage at a later time.

The Proxy Agent submits to the Accounting Service details
concerning the usage of each principal on the service that
the agent represents. Summary information is also
compiled from the logs maintained by the Proxy Agent for
regular auditing.

Security of Credit System

With the use of the Billing and Accounting Agency to keep
track of the credit limit of service usage, another problem
that arises is the security of the credit limit. The system
must not allow any malicious user from being able to
change the credit limit of another principal. This problem
is two-fold. The system must prevent another principal
from pretending to be the Service Provider and making a
request to decrement the credit of the service usage. The
system must also prevent a malicious Service Provider
from decreasing the limit even when the principal is not
using the service.

The solution to prevent a malicious user from pretending
to be a legitimate service provider is to give only the
Service Provider and its corresponding Proxy Agent the
authority to make the change. The Accounting Authority
must therefore authenticate the source of the update
message from the service provider before acting on it.

The second problem of preventing a service provider from
decreasing the credit limit of the principal even when he is
not using the service is achieved through the Proxy
Agents. The Proxy Agents are supplied by the NII and
they act as the auditor for the Service Provider. It is
responsible for keeping logs of the transactions made
through it, as well as reporting transactions to the
Accounting Agency. A service may not charge the
principal for services he did not consume:as the Proxy
Agent can detect a billing to the principal that did not
originate from a corresponding request by the principal.

The credit system must also allow the establishment of a
new credit limit when a new authorization has been
obtained by a principal for a service whose credit limit has
been fully consumed. The Authorization Grantor issues a
new limit pointer for each new authorization. so that the

23

Accounting Agency will never have to increase an existing
limit. The only operations allowed will be decrementing
the limit and establishing of a new limit. Old limit
accounts that have been consumed and accounted for are
purged so that the Authorization Grantor may reuse the
credit limit pointer.

Abuse of the Authorization System

The service is responsible for checking each principal for
his authority to access its services. The verification may be
done by the Proxy Agent on behalf of the service. The
service itself must however establish its own policies for
when to check the principal’s credit limit and when to
deduct from the principal’s limit. Thus it is possible for the
system to be abused if the service is not stringent in its
authorization checking.

Removal of Authorization

Since there is a mechanism for granting authority to use
services, there must be a corresponding mechanism for
removing authority. The removal of authority occurs at
two levels - generation of the role certificate and the
generation of the authorization certificate.

The Granting of Authority requires the principal to have a
role certificate to prove that he has the prerequisite role to
get the authorization ticket for service access. The role
certificate is time-stamp and stored at the Directory Service
or with the principal. The Directory Service presents the
certificate to the Grantor during the process of obtaining a
ticket for the principal. If the role certificate has expired,
the Grantor will determine if the principal may be issued
with a new role cetificate.

Since the role certificate is dated, an authorization to
assume a role can be removed by informing the Grantor
that a particular principal can no longer obtain a role
certificate for that role. Correspondingly, when a principal
wishes to access a service that requires the use of the
expired role, the Grantor will not generate a ticket for the
principal when it knows that the principal is no longer
authorized to act in that role. Effectively, the authorization
of the principal for the service and the role is removed.

For services whose accesses have to be tightly controlled,
we are experimenting with a time-stamp valid for 8 hours
for authorization tickets and 24 hours for role certificates.
This will allow the disenrollment of a principal from the
use of a service to within a day. Other services whose
access restrictions are not as stringent may set a longer
time-stamp period of perhaps a month.

REFUSAL OF SERVICES

As reflected earlier, the system described so far provides
only for the first part of privacy - protection of what
information is shared. The second component of privacy
involves the protection of a principal from receiving
unwanted services. For example of such a situation is
where a parent checking into a hotel may wish to refuse
service to any adult movies if his children are travelling
with him.

The general problem of refusing a service is a difficult
one. However, in the NII, since we have a requirement
that all services register themselves with an Authorization
Grantor, the same Grantor may thus enforce the rejection
or refusal of service.

General Refusal of Services

The above scenario of Refusal of Specific Service works
only in the situation when the principal knows specifically
what services he wishes to refuse. A more complete
solution will be to provide a mechanism whereby a
principal can define the rype of service that he wishes to
refuse. This may help to alleviate the problem where the
principal may not know exactly what services to refuse.

Since all services are registered with the Authorization
Grantor, when each new principal is created, he can be
presented with a list of the services available, and he must
specify for each service one of the following:

® Rejection.

If this was selected, then there is an absolute rejection
of the service. The principal will never be presented
with this service.

® Acceptance.

If this was selected, the service is considered as
acceptable, and the principal will be allowed access if
he is authorized to do so.

® No Decision.

If this was selected, it means the principal cannot
make a decision on whether to accept or reject the
service at the start up time. The service will be
required to prompt the principal at a later time when
the service is being offered to determine whether the
principal wishes to receive the service.

24

Scalability Problem

The above solution gives rise to another problem, and that
is as the number of services increases in number, it is not
feasible for the principal to go through the list of services
exhaustively and make a decision on each service. The
services will therefore have to be broken down into general
wide categories. The principal may make a decision on 2
category as a whole, or he may elect to go into a specific
category to make his selection in greater detail.

After a principal has been created and the general decision
on the acceptance of services has been made, the principal
is informed incrementally of additions to the list of
services provided. This task is done by the Directory
Service. The notification of new services is yet another
service which the principal may choose to refuse.

As the NII grows, the classification of services will
become more detailed and complex. Profiles on the types
of principals may be generated and specific groups of
services that are particular to the type of principals may be
associated with the principal. This will reduce the amount
of information the principal will have to wade through.
The problem of how to divide services into categories is a
separate problem on its own and is beyond the scope of
this paper.

Refusal of Junk Mail

Another scenario where a principal may wish to use
rejection of services is with junk mail. A principal may
want to make a request to reject all correspondence of a
certain type. The principal may also have a black list of all
addressees whom he does not want to hear from, or he
may have some conditions on the type of messages that he
receives. The mail system in the NII is also based on an
access control list and capability list system. A principal
may therefore specify the addressees to reject mail from.
Alternatively, a special mail filter agent may be employed
to pre-process the messages that are received by the
principal and remove the undesired messages.

AUTHENTICATION
Authentication is the process of verifying that a principal
is who he says he is [8]. This section will discuss how a
local access terminal and a remote service provider
authenticates a principal.

Principal Authentication with Smart Card

As mentioned earlier, if a principal has a Smart Card, his

Private Key is stored in an encrypted form on the card. If
a principal uses his smart card at an access terminal, he
will still be required to enter a password (or biometric
identification) as part of the authentication process. This
will prevent someone from using a stolen Smart Card.
The smart card reader obtains the password from the
principal and this is sent to the smart card for the
decryption of the Private Key. The access terminal will
subsequently attempt to determine the authenticity of the
principal by making a series of challenges to the smart
card.

For transactions that follow after the authentication, all
data that require the use of the Private Key will be sent to
the smart card for encryption and decryption. The Private
Key of the principal will not leave the Smart Card at any
time. Figure 9 illustrates authentication with the use of a
Smart Card.

NII
\ T
(Human User)
;X .. -
\\ Password
e Session Key
\ Smart Card
{ E Private Key

Figure 9. Authentication with smart card

There is a potential problem of the Smart Card being the
bottleneck of the prccessing speed. However, this is the
only means of ensuring complete secrecy of the Principal’s
Private Key. To partly rectify this problem, if the local
access terminal has processing power, the smart card can
negotiate the random session key with the remote party,
and pass the task of using the session key on to the access
termunal for encryption with a Single Key System. For an
access terminal without any processing power, the smart
card will have to bear the entire burden of encryption and
decryption if the principal wishes to access sensitive data.

Principal Authentication without Smart Card

In the situation where no Smart Card is available, to access
sensitive data, the principal must make his Private Key
known to the access terminal so that it may perform the
encryption on his behalf. The access terminal will obtain
the password from the principal and use it to decrypt the

25

encrypted Private Key. The criteria of the principal being
able to trust the access terminal fully in this situation is
crucial because the terminal will obtain knowledge of the
Private Key. If the machine is not fully trusted, a Trojan
Horse process that captures Private Keys may be present
in the machine. Security of the system will thus be
compromised. Figure 10 illustrates authentication without
the use of a Smart Card.

NIl

Ty

| —

\Hﬂr;an User

Encrypted Private Key

/ N

Key Storage
Private Key

Figure 10. Authentication without smart card

Remote Requests

Ordinarily, when a principal makes a request, the request
is sent to a service. To process the request, the service
may be downloaded to the local machine, or the request
may be sent to a service sitting somewhere at a remote site
on the network. The latter case is likely to be a common
case where requests are sent via the network to the service
and the responses sent back. In such situations, the remote
service requires a means of authenticating the principal
before providing the service to him. We have designed a
scheme for this authentication process.

Remote Authentication for Online Requests

Remote Authentication allows a remote application to
authenticate a principal that is not at the application’s own
host. The principal’s password or Private Key must never
be transmitted over any link. Thus remote authentication
employs a different scheme from local authentication.

Each machine on the network is also considered a principal
and is assigned with a pair of Public and Private Key.
When an application makes a request to authenticate a
remote human user, the machine which the principal is
logged on at is first authenticated using the standard
Public-Private Key Authentication Protocol. If host A is
trying to authenticate host B, A will first generate a

random number N, and encrypt it with its own Private
Key. A will send the encrypted number to the receiving
host. Host B upon reception of the message will decrypt
the message with A’s Public Key to extract N;. Host B
will then encrypt N; with its own Private Key and send it
back to A. A will verify the identity of B by decrypting
the received number with B’s Public Key and checking that
the oumber is N;. Note that at this point only A has
authenticated B. If B wishes to be certain of A, it may
repeat the above procedure. Figure 11 illustrates the online
remote authentication. :

Remote Host

A
L
L\

Local Host

Figure 11. Online remote authentication

After the two hosts have authenticated each other, the
application program may then complete the remote
authentication by requesting the remote host to authenticate
the principal and return the result. The actual host-to-user
authentication procedure will depend on the host platform
type. The same random number N is now encrypted with
the principal’s Private Key. The encrypted string is then
returned to the application program and the similar
verification procedure (by decrypting with the principal’s
Public Key) is carried out.

The additional step of authenticating the access terminal is
for added security. If an application can ascertain that the
terminal that the principal is using is not to be completely
trusted, it can refuse to send any sensitive information to
the principal. Since the information that principal wishes
to view is available in the clear at access terminal, a
breach of security may still result.

The capability to trust the principal but not the terminal is
an important one. A service provider can trust the requests
made by the principal, but it does not necessarily have to
send any confidential replies to the principal. For example,
a principal may wish to make a ticket reservation at a
public access terminal. In order for the reservation system

26

to accept the principal’s request, it must be able to
authenticate the source of the request. If the service can
authenticate the principal, then it may accept the request
submitted by the principal. Such a reservation would not
be allowed if the system cannot ascertain the identity of the
principal. However, the same principal at the public access
terminal cannot request for the display of confidential
information such as company project information, even if
the terminal was equipped with a smart card reader for
authenticating him. This is because such information will
be displayed in the clear at the public access terminal and
may be intercepted by some other malicious user.

Remote Authentication for Offline Requests

The procedure described in the previous subsection
assumes oniine information access by the principal. If this
is an offline request (ie. the principal is no longer at the
access terminal by the time the request is processed), there
is an additional complication of the service not being to
authenticate the principal, since its Private Key is no
longer available.

A solution to the offline request is possible if the principal
has complete trust in his access terminal. A running
process {eg. the Principal Agent) may be present at the
access terminal to act on behalf of the principal. This
process will respond to the authentication request from the
application. The process may be terminated once the
necessary authentication procedure is completed. Figure 12
illustrates the offline remote authentication.

Remote Host

Figure 12. Offline remote authentication

Alternatively, a signed authentication string may be
included with the principal’s request. The Service may use
the signed string to verify the authenticity of the request.
The string must be based on the request, time-stamped and
include a sequence number. To prevent anyone from

capturing the entire request message and replaying it at a
later time, the Service will not process the request if the
time-stamp bas exceeded some time allowance, or if the
same request (ie. the sequence number is equal or smaller
than the last sequence number received) has been recently
made.

The corresponding problem of the access terminal
intercepting infuimation as it is being displayed is
removed, since the result information is no longer sent to
the access terminal. Resulrs of such offline processing are
usually returned to the principal via electronic mail. The
usual security mechanisies using encryption can be used to
provide security for electronic mail.

FUTURE WORK

The Security and Management Framework for the NII is
still very much at an early stage of development. This
section describes some important areas that need to be
worked on in the near futire.

Secure Proxy Agents

The Proxy Agents that accept requests from principals and
log the requests can perform intruder detection and report
any abnormal bebavior in the principal’s operation.

wmtruder detection involves the determunation of the
presence of ai. uncuthorized principal in the system. Since
requests are generzlly invoked through the Proxy Agent,
it can detect processes running on the machine that are not
authovized. Such processes can be identified as intruders
and they can be suspenced aad reported to the system
cdministrato~. This will actively pr2vent any malicious user
from finding a loophcle in the system and bypassing the
autbentication and authorization procedure enforced by the
Proxy Agent.

Abnormal behavior reporting involves the monitoring of
the normal behavior of the principals of the system over a
period of time. The bzhavioral information is extracted
from the logs maintained by the Proxy Agents. This
behavior is collected as statistics. Any significant deviation
from the normal operating behavior 1s reported to the
system administrator. This is still a relatively unexplored
area of system management. Refer to [10,12] for some
dierussion on techniques of collecting statistics and
analyzing them.

Role Relationships

The role handling mechanism aescribed here does not

(2]
~

provide for relationships between different roies. In
particular, there are likely to be inheritance relationships
between roles. There needs to be a way of representing
relationships such as that between a manager and his
assistant. The assistant may do some routine transactions
on the manager’s behalf, but he would refer important
tasks back to the manager.

When a person assumes a particular role, the charging and
billing mechanisms may differ. For example, the billing
rates for a service to a business user may be higher than to
an ordinary household user. Further work needs to be done
to explore how these additional features of roles can be
integrated into the current design.

Removal of Service Access Authorization

The current solution proposed in this paper of removing
authorizations assigned to principals based on expiring
tickets is incomplete. There is a time window within which
the time-stamp on the ticket is still valid even though the
decision to deny access has been made. There are a
number of ways where this can be corrected (eg. informing
the services of the invalidated tickets), but they are
generally inefficient in large systems. A cleaner solution

~ may be to develop a scheme to create a ticket that cannot

be duplicated, or if duplicated, it can be detected as a
duplicate. If such a scheme were possible, then the
Authorization Grantor may revoke an authorization by
asking the principal to return the ticket issued. Providing
tickets that cannot be drplicated is a difficult issue
(especially since all forms of data communication and
transfer requires some form of copying). It is an area for
possible further investigation.

Copyright Protection

The Digital Signature Mechanism only proves that the
signer has intended the contents of the signed message. It
proves to the receiver that the message did come from the
sender and the sender cannot refute the fact that he sent the
message. However, it does not prove to the receiver that
the sender is the original author of the message. It is
possible for one valid receiver of the signed message to
remove the author’s signature from the message, perhaps
make some changes to the message, attach his own
signature and claim to an unsuspecting third party that he
is the author of the rnessage. This flaw can open the door
to copyright infringement of many kinds. Literary work
copyright infringement is just one fraction of a much larger
implication that one can easily copy what another person
has said or written and claim to be his own.

There does not appear to be any clear solution to this
problem at the present time. This may be an important
consideration in the design of a large information network.

CONCLUSION

This paper describes some of the security, privacy and
management issues that the IT2000 project team is
examining during the ongoing design and implementation
of the NII. The paper reflects some of the technical
problems that we have encountered, the design choices that
we are making and the rationale behind them. It is our aim
to share our current thinking in the domain of managing a
national network.

FOR MORE INFORMATION

Further information regarding the 1T2000 and the NI may
be obtained from the authors at the following address:

Planning and Infrastructure Department
National Computer Board of Singapore
71 Science Park Drive

Singapore 0511

Republic of Singapore

Electronic mail:
shgoh@cs.stanford.edu
yeowmeng@iti.gov.sg
michael@iti.gov.sg

(Seow-Hiong Goh)
(Yeow Meng Chee)
(Michael Yap)

ACKNOWLEDGEMENT

The authors would like to thank the NII Software
Architecture Group, particularly Jin-Ho Tan, Chin-Chau
Low, Richard Tan, Surgatini Widjojo, Kin-Yee Ng and
Siew-Siew Lim for their valuable discussions and review
that help shape our design.

BIBLIOGRAPHY

1 "The IT2000 Report: A Vision of an Intelligent
Island”, SNP Publisher Pte Ltd, March 1992.

[88)

Motiwalla, J., Yap M., "Building The Intelligent
Island”, 12th World Computer Congress, From
Research to Practice, September 7-11, Madnd, Spain.

3 Rivest, R., Shamir, A., Adleman, L., "A Method for

v
0

obtaining Digital Signatures and Public-key
Cryptosystems”, Communications of the ACM 21
(1978) 120-128.

4 National Bureau of Standards, "Data Encryption
Standard”, Federal Information Processing Standards
Publication 81, Washington DC, 25 September 1980.

5 Rivest, R., Dusse, S.R., "The MD5 Message-Digest
Algorithm", preprint.

6 RSA Data Security Inc, "Public-Key Cryptography
Standards”, 3 June 1992.

7 Feige, U., Fiat, A., Shamir, A., "Zero-knowledge
proofs of identity", Journal of Cryptology 1 (1988) 77-
94,

8 Hoffman, L.J., "Moderm Methods for Computer
Security and Privacy,” Prentice Hall, 1977.

9 Steiner, J.G., Neuman, B.C, Schiller, J,1.. "Kerberos,
an Authentication Service for Open Network Systems”,
USENIX Association (February 1988).

10 Javitz, H.S., Valdes, A., “The SRI IDES Statistical
Anomaly Detector”, IEEE Symposium on Research in
Securiry and Privacy, 1991.

11 Diffie, W., Hellman, M.E., "New directions in
cryptograph”, IEEE Transactions on Information
Theory 1T-22 (1976) 644-654.

12 Shieh, S.W., Gilgor, V.D., "A Pattern-Oriented
Intrusion-Detection Model and Its Applications”, IEEE
Symposium on Research in Security and Privacy, 1991.

13 Woll, H., "Zero Knowledge Proofs and Secret Sharing
Problems”, University of Washington, Dept of Comp
Sc, Technical Report 88-10-02 (1988).

14 Needham, R.M., Schroeder, M.D., "Using Encryption
for Authentication in Large Networks of Computers”,
Communications of the ACM 21, No 12, 993-999
(December 1978).

15 National Burcau of Standards and Association for
Computing Machinery, "Executive Guide to Computer
Security,” 1974.

16 Diffie, W., "The first ten years of public-key
cryptography”, Proceedings of the IEEE 76 (1988) 560-
577.

Panel Session

Layer Wars: Options for
Placement of Security

in the OSI Reference Model

Layer Wars:
Protect the Internet with Network Layer Security

Paul A. Lambert

Motorola, Inc.
Secure Telecommunications

ABSTRACT

Rapid advances in communication technology have
accentuated the need for security in distributed processing
systems. The broad interconnectivity provided by these
technologies amplify both the capabilities of a computer
network and the security risks. New developments in
communication protoccis promise to alleviate security
problems by the application of standard security
mechanisms. This paper examines significant work in the
recent development of lower layer security protocols.
Protocols for link, network, and transport layer security are
examined and the architectural tradeoffs inherent in these
mechanisms are contrasted.

INTRODUCTION

The Organization of International Standardization’s (ISO)
Open System Interconnection (OSI) reference model divides
data communication functionality into seven layers.
Communication protocols within these layers describe the
format and sequencing of data transfers.

Security protocols can provide strong cryptographic-based
mechanisms for protection of these communications.

The use of cryptography to protect data communications is
defined by ISO as one of several mechanisms Lo provide
security services. Other mechanisms include physical
isolation, audit trails, and trusted functionality. The various
categories of security services include: confidentiality,
integrity, access control, authentication, and non-repudiation.
Confidentiality service prevents the unauthorized disclosure
of information and is the service most often associated with
encryption. Integrity checks detect the unauthorized
modification of data. Access control provides the means to
grant or deny access to information. Authentication verifies
the identity of an entity. Non-repudiation prevents a sender
from faisely denying that data was sent, or a receiver from
falsely denying that data was received.

The services supported by a security protocol depend on the
protocol’s location in the OSI reference model. The layering
of the security also determines the medias that can be
protected and the extent of the protection in an architecture.
Security protocols placed in or above the Network layer
provide “end-to-end” protection by encrypting the user data

31

and leaving unencrypted the headers that allow the data to be
delivered. In contrast, Link and Physical layer security
protocols are not able to extend protection across
heterogeneous networks.

The “lower layers” of the OS] framework consist of the
Physical, Data Link, Network, and Transport layers. Three
notable proposals for security in the lower {ayers of the OSI
reference model are shown in Figure 1. The Transport layer
(TLSP) and Network layer (NLSP) protocols are currently
the subject of work in ISO subcommittees. The local area
network (LAN) secure data exchange .(SDE) protocol is
being defined by a working group within the Institute of
Electrical and Electronic Engineers (IEEE).

APPLICATION

PRESENTATION

"I SESSION

TRANSPORT

NETWORK

LINK

PHYSICAL

Figure 1. Lower Layer Security Protocols in the OSI
Reference Model

UPPER & LOWER LAYER SECURITY

Security services in the Application or Presentation layers
depend on the utilization of specific applications or
application service elements. This typically means that the
security mechanisms in the upper layers must be built
directly into every application program. The benefits of this
close integration of security include the capability to
selectively protect specific fields of information, and the
ability to provide non-repudiation services. Examples of
upper layer security include secure electronic messaging

(X.400 series), directory security (X.509), authentication
protocols, Privacy Enhanced Mail (PEM - RFCs xxx,
xxx,xxx), and key management.

Lower layer security is relatively independent of the user
application. Existing applications are readily protected by
lower layer security protocols that simply encapsulate the
user traffic. Networking protocols are typically shared by
computer applications allowing a single lower layer security
protocol to provide uniform protection within a computer
system. Some lower layer security protocols are also
amenable to implementations in front end communication
devices, bridges, or routers. These stand-alone embodiments
are an attractive approach for protecting existing computer
systems. The bridge or router configurations can also protect
the communications of multiple collocated computer
systems.

TRANSPORT LAYER SECURITY

The Security Protocol at Layer 4 (TLSP) was initially
developed by the Secure Data Network System (SDNS)
project. The SDNS project developed a security architecture
within the framework of the OSI reference model that
included specifications for network and transport layer
security. This program started in the summer of 1986 and
completed an initial draft of the security protocols in 1987.
These specifications have since been published by the
National Institute of Standards and Technology (NIST), and
have progressed through the American National Standards
Institute (ANSI) into ISO as technical contributions.

The TLSP protocol specifies optional extensions to the ISO
connection-oriented transport service (ISO 8073) and
connectionless mode transport service (ISO 8602). The
security protocol is supported by either connectionless
network service (CLLNS) or connection-oriented network
service (CONS). Figure 2 illustrates the relationship of
TLSP to the Transport and Network layer services. In this
layered model, TLSP is logically at the bottom of the
Transport layer and encapsulates the existing Transport
protocols.

8073 8602 | TRANSPORT
LAYER
./ /////////
WSP7
CONS/CLNS | NETWORK
LAYER

Figure 2, TLSP - Transport Layer Security

Transport service provides transparent and reliable delivery
of data between end systems. The extensions provided by
TLSP add the security services of: peer entity authentication,
data origin authentication, access control, connection-
oriented confidentiality, connectionless confidentiality,
connection-oriented integrity, and connectionless integrity.

The format of the TLSP protocol consists of a “clear header”
followed by protected header information and data. The first
two fields of the TLSP PDU indicate the length (LI) and
PDU type (SE). This format provides compatibility with the
ISO transport protocol (ISO 8073). The next field in the
clear header is the key identifier (KEY-ID). The KEY-ID
establishes the cryptographic key used to protect the
transport protocol dati unit (TPDU). This mechanism
assumes that the cryptographic key has been pre-established.
The KEY-ID also determines the algorithm used to protect
the data, security service options, protocol options, and a set
of acceptable security labels. Within the SDNS security
framework, the establishment of the KEY-ID and its
associated attributes are handled by the SDNS Key
Management Protocol.

The protected portion of the PDU contains a “protected
header”, data, and an optional Integrity Check Value (ICV)
field. The protected header includes an optional label field
and optional final sequence number field (FSN). The ICV
field provides protection from the modification of data. The
ICV is a checksum or hash calculated over the protected
header and data. This effectively provides the basic integrity
security service.

Connection-oriented integrity furnishes the ability to detect
the replay or reordering of PDUs. This service is supported
by sequence numbers in subclass of TLSP called TLSPC (C
for connection-oriented). The basic connectionless integrity
service is supported by the TLSPE subclass (E for
Encapsulation).

The TLSP protocol utilizes the sequence numbers in the ISO
transport protocol (only classes 2, 3, or 4 of ISO 8073).
These sequence numbers are augmented by a Final Sequence
Number (FSN) that is used only when DR, DC, or ER
TPDUs are encapsulated. This allows the deletion of the
final TPDU of a connection to be detected. The TLSPC
protocol also requires that a separate cryptographic key be
used for each end system pair and security level set to
support connection-oriented integrity.

i

APPLICATION)=t===-=====s=======c=-== APPLICATIO
TRANSPORT
LAYER
SNIGP, - R&R , N - - -+ V7 NLsp 7///] NETWORK
a SNI & ///”"iff,ﬁ// LAYER
SNDCR L---{ SNDCP | SNDCR} - = -1 SNDCR,
a
SNACR, L .--1 SNACR, | SNACP}---- SNACP
.- 1 }--- LINK LAYER
.- 1 }---d PHYSICAL
LAYER
END INTERMEDIATE END
SYSTEM SYSTEM SYSTEM

Figure 3. Network Layer Security in Intermediate System and an End System

NETWORK LAYER SECURITY

The Security Protocol at Layer 3 (NLSP) was, like TLSP,
initially developed by the Secure Data Network System
program. The specification for NLSP has been published by
NIST and has progressed through ANSI as a technical
contribution to ISO. NLSP directly provides all of the
security services of TLSP except connection-oriented
confidentiality and connection-oriented integrity.

The NLSP protocol is defined as a “sublayer” of the OSI
network layer. To facilitate interoperation, the OSI network
layer model provides considerable flexibility in the layering
of the network protocols. NLSP is considered to be a
SubNetwork Independeiit Convergence Protocol (SNICP).
This places NLSP at the top of the network layer and allows
NLSP to be installed in either “end systems” or in
“intermediate systems.”

A communication model for NLSP is shown in Figure 3.
This figure illustrates security placed both in an
“intermediate system” and in an “end system.” The
Subnetwork Dependant Convergence Protocol (SNDCP) and
Subnetwork Access Protocols in this figure are intended to
illustrate the flexibility in network media and protocols. The
NLSP security in this model can protect communications
carried over most local area networks or wide area
networking technologies.

33

The NLSP and TLSP protocols are very similar in both
format and services provided. The “clear header” portion of
the NLSP PDU is identical to the header defined for TLSP.
Both contain a length field, a PDU type field, and a key
identifier. The “protected fields” in NLSP provide optional
fields that are not available in TLSP. These fields support
the intermediate system implementations by carrying the
addresses of systems located behind a “router-like” security
device.

The similarity of NLSP and TLSP is due partly to the
positioning of these protocols in the OSI reference model.
NLSP is considered to be at the “top” of the network layer,
and TLSP encapsulates data at the “bottom” of the transport
layer. The protocols actually share a mode of operation
where the protocol formats and services are identical. In this
common mode of operation only the minimum services are
provided. Communication with intermediate systems is not
possible and connection-oriented integrity is not supported.

Currently, NLSP supports only connectionless network layer
services. Several proposals in ISO have recently been
documented that will add “connection-oriented” network
layer services to NLSP. A “connection-oriented” NLSP is
required to protect systems that do not utilize the ISO
Connectionless Network Layer Protocol (CLNP). The
utilization of TPO over X.25 is an example of this scenario.
In addition to supporting many communication
environments, a connection-oriented security protocol would
also provide replay protection (connection oriented

integrity).

802.1

802.2

DATA LINK
LAYER

PHYSICAL
LAYER

Figure 4. Relationship of SDE to Other LAN Standards

IEEE 802.10B (SDE)

In 1988, a LAN Security Working Group was formed under
the auspices of the Institute of Electrical and Electronic
Engineers (IEEE) to develop a Standard for Interoperable
LAN Security (SILS). The LAN Security Working Group is
unique in that it is jointly sponsored by the IEEE Technical
Committee on Security and Privacy and by the IEEE 802
Standards Committee. The joint sponsorship and balloting
should insure that SILS will meet both the security and
communication requirements of LANSs.

The scope of this working group (IEEE 802.10) includes the
standardization of the secure exchange of data at the Data
Link Layer, the management of cryptographic keys at the
Application Layer, and the specification of associated
network management objects. IEEE 802.10 has produced a
stable definition of the Secure Data Exchange (SDE)
protocol that should be balloted as an IEEE standard in 1990.

The SDE is a Layer 2 protocol that provides connectionless
service as a sublayer of the Logical Link Control (LLC).
Figure 4 illustrates the relationship of the SDE to the 802
reference model. The charter of IEEE 802 limited the
protocol layering alternatives for the SDE to the Physical or
Link layers. Physical layer security was not desirable since
it would be specific to each of the many LAN media. The
specification of SDE as a sublayer of LLC allows SDE to
protect any 802 LAN medium, and also supports
implementations of “bridge-like” security devices.

The SDE protocol supports the security services for:
connectionless confidentiality, connectionless integrity, data
origin authentication, and access control. These services are
provided “transparently”. The transparency goal of SDE
assures that systems protected by SDE will not interfere with
the operation of existing unprotected systems. This is a

34

particularly important goal for LANs since many systems
share the same broadcast media.

In the principal mode of SDE operation, the protocol consists
of a “clear header” followed by protected data. The clear
header contains octets that are used to discriminate SDE
PDUs from LLC PDUs and is followed by a Security
Association Identifier (SAID). The security association is an
important aspect of the SDE protocol. The security
association is defined as a cooperative relationship between
communicating entities formed by the sharing of
cryptographic keying information and security management
objects. The SAID indicates how the PDU is protected,
including what algorithm and key to use, what optional fields
are present, and the security attributes of the association.

The utilization of the SAID field requires that some other
secure mechanism has pre-established a security association.
In IEEE 802.10, this is intended to be some form of manual
or automatic key distribution. The security of cryptographic
mechanisms depends largely on the distribution
cryptographic keys. The companion standard to SDE, IEEE
802.10C, will provide an application layer mechanism for
the distribution and management of cryptographic keys.
The keys, security association identifiers, protocol options,
and access control restrictions are all security management
attributes that are established by the key management
protocol and shared among entities to form the security
association.

TRADEOFFS IN SECURITY LAYERING

The protocols described herein (SDE, NLSP, and TLSP) all
provide cryptographic security services in the lower layers of
the OSI reference model. The differences in the capabilities
of these protocols are due primarily to the limitations
imposed at each of these layers. A summary table

comparing the Link, Network, and Transport layer security
protocols is shown below in Figure 5. The table includes the
security services recommended by ISO 74982 for each layer
of the reference model. It should be noted in this
comparison that the services actually provided to the user
depend on the complete protocol profile.

The security protocols have many similar characteristics.
Each protocol has a “clear” and a “protected” header, a clear

designation that distinguishes the protected PDU’s from
other unprotected traffic, and an optional integrity check
field. The protocols are all algorithm-independent and each
relies on a separate key management facility. These basic
mechanisms provide confidentiality, integrity, access
control, and data origin authentication for all three protocols.

ISO 7498/2 Service Lower Layer Security
Recomendations by Protocol
Reference Model Layer

ISO 7498/2 Service 12| 3|4]|5]| 6| 7|Layer2| Layer3| Layer4

SDE | NLSP | TLSP

Peer Entity Authentication sl e | Y|Y|] 0| Y (]| «(1,2) (1
Data Origin Authentication * | |l Y|Y]| | | Y Y Y Y
Access Control Service ol o | Y|Y| o} o] Y Y Y Y
Connectionless Confidentiality Y Y| Y|Y[]lY|Y Y Y Y
Connection Confidentiality Y] Y| Y| |l Y| Y . * (2 Y
Selective Field Confidentiality sl el eiY|e|lY|Y . . .
Traffic Flow Confidentiality Y! <Y Y| |]|Y . »(2) .
Connection Integrity with Recovery sl ol el Y[e sl Y| «(3 (3 Y
Connection Integrity without Recovery ol el YY) o} o] Y . Y Y
Selective Field Connection Integrity o| o o] o] o) el Y . . .
Connectionless Integrity c | 2l Y| Y| |]Y Y Y Y
Selective Field Connectionless Integrity s e s e e oY . . .
Non-repudiation, Origin ol e o] o] o | Y . . .
Non-repudiation, Delivery o | o] o o] o] o} Y) . .

Communication Capabilities
“End-to-End” Security . Y Y
| Intermediate System Security: bridge or router like security systems Y Y .
Labels for Access Control . Y Y
Security for non-ISO Communications (TCP/IP) Y Y .
Protection for Routing Protocols: ES-IS, IDRP, ARP, EGP, etc. Y Y .
Y Capability is provided by the . Capability is not directly
protocol. provided by the protocol.

M

This service is not supported by

the protocol, but can be provided in

conjunction with key management.
()
proposals to upgrade NLSP.

This service is supplied in recent

3) Recovery is not directly part of
the security protocol, but can be provided
by the utilization of TP4.

Figure5. Comparison of ISO 7498/2 Security Service Recommendations and
SDE, NLSP, and TLSP Protocol Services and Capabilities

Discretionary access control in security protocols is largely
based on the address information available to the protocol.
In this context, the granularity of access control for the SDE
protocol is by Media Access Control (MAC) address. NLSP
has Network Service Access Points (NSAPs), and TLSP has
Transport Service Access Points (TSAPs) to support access
control decisions. These mechanisms are not the ideal
granularity for developing security policies. Because of this,

35

each specification implies that “trusted” paths may allow
mapping of the protocol services to attributes of an
application program. To support these additional access
control capabilities, and specifically to provide mandatory
access control, both NLSP and TLSP allow optional security
labels that are carried in the protected header of the PDU.

The only difference in security services between NLSP and
TLSP is TLSP’s support of connection-oriented integrity
with recovery. The TLSP protocol can detect integrity
attacks and the functionality of TP4 will retransmit the
information. The extension of NLSP to include connection-
oriented services provides connection-oriented integrity
without recovery. If recovery is required in a system, TP4
could be utilized above NLSP.

The IEEE 802.10 Secure Data Exchange protocol can protect
communication services only over LANs. The SDE protocol
is not “end-to-end” because it encrypis the network layer
information required to carry the traffic across
heterogeneous networks.

A strong advantage of network layer security is the ability to
install security in intermediate systems. Intermediate system
security allows stand-alone security devices to be placed in
front of one computer, or a network of many computers. Co-
located computers are then readily protected by a single
“router like” security device. The SDE protocol is also able
to protect multiple systems in a “bridge-like” configuration.
An architecture based on SDE bridges would be viable as
long as no routers were used in the backbone network.

The TLLSP protocol is very closely tied to the ISO Transport
Protocol (TP). This limits the applicability of TLSP to ISO
environments. The SDE and NLSP protocol are both able to
protect non-ISO traffic. The SDE protocol encapsulates all
traffic above the MAC layer. The NLSP protocol
encapsulates the transport layer and is independent of the
lower network layer protocol.

Traffic between user applications are not the only
communications that need to be protected. Network routing
protocols exchange information that is sensitive and subject
to attack. The SDE protocol and NLSP both are able to
protect routing protocols.

SUMMARY

No one security mechanism will meet the requirements of all
possible environments. Different perspectives on these
requirements have lead to the development of link (SDE),
network (NLSP), and transport layer (TLSP) security
protocols. Ideally, only one of these mechanisms should be
necessary to protect a data communications system. Three
security protocols in the lower layers of the GSI reference
model may contribute to the security of systems, but not to
their ability to interoperate securely.

The IEEE 802.10 Secure Data Exchange protocol is useful in
protecting environments that utilize proprietary protocols.
The link layer security provided by SDE will readily
encapsulate any data above the MAC layer. This link layer
encapsulation is also the principal disadvantage of this

36

protocol. SDE’s encapsulation of the network layer prevents
protected traffic from being carried across routers.

Transport layer security (TLSP) has been advocated as the
mechanism of choice for embedment in workstations. This
perspective is based on the support of *“‘connection-oriented”
services by TLSP. The readily available transport layer
interfaces in operating systems promise the ability to closely
couple the lower layer security with the application
processes. The advantages of embedded implementations of
TLSP are offset by the difficulties in supporting these
services in front-end implementations. The TLSP services
protect ISO applications that utilize ISO TP4, but provided
reduced services for lower TP classes (TPO, TP2). TLSP
does not protect non-ISO protocols (e.g. TCP/IP) or routing
protocols.

Network layer security promises the capability to protect the
broadest range of systems. NLSP supports end-to-end
security for ISO, non-ISO, and network routing protocols.
The ability to place NLSP in an intermediate system allows
stand-alone security devices to protect collocated groups of
computers. NLSP can also provide services directly
embedded in workstations. The integrated security will
provide improved granularity of access control services to
the user. The services provided by NLSP are identical to
those provided by TLSP only when both use TP4 to support
connection integrity with recovery.

DISCLAIMER

All three of the security protocols described in this paper are
subject to change. While it assumed that the documents used
for this review are stable, none of the protocols has yet been
subjected to national or international balloting.

BIBLIOGRAPHY
1. ISO 7498, Information Processing Systems - Open
Systems Interconnect - Basic Reference Model, 15
October 1984,
2. ISO 7498-2-1988(E), “Information Processing

Systems - Open System Interconnection Reference
Model - Part 2 Security Architecture.”.

IEEE 802.10 LAN Security Working Group,
“Standard for Interoperable LAN Security (SILS),”
P802.10B/D3, May 1990.

NISTIR 90-4250, “Secure Data Network System
(SDNS) Network, Transport and Message Security
Protocols”, U.S. Department of Commerce,
February 1990.

1SO DIS 8648 Information Processing Systems -
Data Communications - Internal Organization of the
Network Layer.

ISO DP 10028.3, Information Processing Systems -
Data Communications - Definition of the Relaying
Functions of a Network Layer Intermediate System,
30 May 1990.

1SO 8072, Information Processing Systems - Open
Systems Interconnection - Transport Service
Definition.

1SO 8072/AD1, Information Processing Systems -
Open Systems Interconnection Transport - Service
Definition Covering Connectionless Mode
Transmission.

1SO 8073, Information Processing Systems - Open
Systems Interconnection - Transport Protocol
Specification.

D. Branstad, R. Housley, K. Kirkpatrick, P.
Lambert, “Shootout at the OSI Security Corral,”
Proc. of the Fifth Annual Computer Security
Applications Conference, December 1989.

W.C. Birnbaum, “SP3 Peer Identification,”
Proceedings, 1990 IEEE Symposium on Research in
Security and Privacy, pp. 41-48.

W.C. Bimbaum, “SP3 Peer Identification,” Masters
Project, New Jersey Institute of Technology,
December 1989.

D. Branstad, J. Dorman, R. Housley, J. Randall,
“SP4: A Transport Encapsulation Security
Protocol,” Proceedings, Third Aerospace Computer
Security Conference, December 1987,

L. K. Barker, "The Impact of Security Service
Selection for LANs", March 12, 1989.

P. Lambert, “SDNS Network Layer Security,”
Proceedings, Fourth Annual Symposium on
PhysicallElectronic Security, August 1988.

G. Tater, E. Kerut, “The Secure Data Network
System: An Overview,” Tenth National Computer
Security Conference, September 1987,

R. Nelson, “SDNS Services and Architecture,”
Tenth National Computer Security Conference,
September 1987.

Trusted Network Interpretation, NCSC-TG-005
Version-1, National Computer Security Center, 31
July 1987.

37

V.L. Voydock and S.T. Kent, Security in Higher
Level Protocols: Approaches, Alternatives and
Recommendations, Report No. ICST/HLNP-81-19,
Nation Bureau of Standards, September 1981.

ELECTRONICAL COMMISSION MANAGEMENT

Vesna Ristic
Peter Lipp
Reinhard Posch

Institut fuer Angewandte Informationsverarbeitung und Kommunikationstechnologie
Technische Universitaet Graz
Graz, Austria

ABSTRACT

In this paper a secure application entitled "Electronic
Commission" is presented. Its purpose is the
automation of formal commission management using
a decentralised organisation. In particular,
commission work from all levels of a university
administration is observed. Though forced to transmit
their votes over an insecure network, participants can
rely on the basic principles of democratic electoral
systems. Special attention is paid to observing
regulations and standing orders available from a local
database. The commission chairperson can, according
to circumstances, select a service from the set of
available security services and, in this way, determine
the commission proceeding. Because the purpose of
this application is to provide an useful tool rather than
to enforce observing specific regulations, it could
easily be modified for use in other fields of
administration and management communications.

INTRODUCTION

Computer applications supporting various kinds of
meetings and working groups is a relatively new and
therefore poorly explored area. Some authors [1] have
previously studied the impact of electronic systems on
the effectiveness, efficiency and satisfaction of
working groups. For this purpose they created a
"meeting environment" intended to make group
meetings more productive. To achieve this goal, they
investigated the mechanisms of group work and
developed tools and techniques for the creation of
information systems. They found that the new
technology could significantiy improve group
processes and outcomes, aithough some effects were
dependent upon the situation.

41

The implementation of security services based on
cryptographic protocols has a significant impact on
the field of computer supported group work. The set of
possible modes of computer supported communication
between two or more parties has grown enabling
many forms of human communication to be
performed over the computer network. Moreover, it is
now possible to implement some new communication
facilities which are not practically or easily
implementable without computer support.

Authentication Standing Orders

Secret ...

Communications " Minutes
Voting Protocols” " Presentation
Key Management Database

Figure 1. The conferencing system's components

Our aim was to create an application enabling the
automation of formal commission management. There
are certain standard procedures which are present in
every commission proceeding; for example, agenda
reviewing, action points processing, voting upon
important decisions, collecting proposals, etc. All of

these procedures are always performed according to
certain rules and therefore can be formally described.

The scenario which we use was made by observing
university commissions meetings. It is now possible
for commission members to be seated in their offices
at their terminals while participating in a meeting
over an insecure computer network. This application
supplies a set of available security services to be used
during the commission execution. This means that the
secrecy of discussions, voting strategies and created
documents as well as authenticity of attendees are
provided. The set of regulations which must be

observed is also available and conformed by
“electronic" rules so that the commission work <an
proceed in concordance with the law. It is
nevertheless possible to change the established
protocol, if all attendees agree.

The primary purpose of the application is to provide
an efficient software toolkit for commission meetings.
It consists of the "working" elements common to all
kinds of similar group works (Fig. 1). Although our
aim was not to study the influence which such kinds
of tools might have on the quality of the group
outputs, we bore in mind the positive influence such
an application could have on the efficiency of
commission work.

atiendee

ISOLLC |

MAC/LLC

Figure 2. The conferencing syster in the network

COMMISSION MEETING

In this section we give a general outline of a
commission meeting. The given description
corresponds to the usual university commission
session.

In order to establish a particular commission, a
constitutive meeting of the commission must first be
held. During this meeting the commission members
and their mandates and rights are to be determined.
After the constitutive meeting, the general
commission meetings can be held. If the commission
has to be dismissed, the closing commission meeting
terminates the commission activity.

42

The general meeting usually begins with a roll call of
the members' presence (i.e. finding out who are the
present attendees). The actual number of the
participants is also important as the commission
meeting cannot be held if the number of the present
commission members is smaller than the required
quorum. The commission member who are not able to
participate may send their deputies to represent thom
at the meeting, i.e. to eventually participate in voting
in the name of the absent member. If the session is not
closed, there may also be some attendees who are not
in fact members of a particular commission but simply
interested in attending the meeting. These attendees
are informants and do not actively participate in the
meeting unless asked for an opinion.

The meeting agenda can be determined beforehand or
the attendees can make proposals for the action
points. The first action point in the agenda is usually
called “Review of Agenda", if the agenda has been
determined in advance, so that the members may vote
upon the approval of the proposed agenda.

The further proceeding of the meeting is based on the
action points, which are processed one by one. The
commission chairperson manages the meeting in
concordance with the standing orders.

During the processing of the particular action points
different situations can occur:

® The chairperson may collect proposals
about some actual topic, giving to every
attendec who is an active member of the
commission an equal opportunity to discuss and
make proposals.

@ The attendees may vote upon some
important decisions or documents.

¢ A group of attendees may hold a short
secret discussion and then return to the
meeting.

The official record of the meeting is written in the
form of minutes. Important documents are signed by
all attendees who have taken part in the creation of
the document.

SECURITY SERVICES

In this section the security requirements are described,
i.e. what is to be secured. We stress some crucial

points to which special attention must be paid as they
require special treatment from a security point of
view. This refers to the security services available to
the commission which may but need not be applied to
a particular meeting.

The proceeding of meeting must be in concordance
with the standing orders. The observation of the
prescribed regulations must be provided and
supported by "electronic" rules (i.c. enforced by
security mechanisms). For example, these
mechanisms can protect fairness in discussions
(distribution: every attendee has equal opportunity to
discuss, timing: every attendee has equal time interval
for discussion), equal information level for the
members of the same security group, etc.. On-line
information about the regulations is also available.

The security services we need are the following:

9 First of all, the commission members must
be identified and authenticated (Authentication
Service). It is also necessary to determine the
scope of their activities before the meeting
actually begins, i.e. to authorise them. There
can be many different group of attendees. A
- particular group is defined according to the
members' permissions/rights. For example, the
commission chairperson may have a greater
scope of activides than a "normal" attendee,
who in turn has more rights than an informant.

@ Although forced to transmit their votes over

an insecure network, attendees can rely on the
basic principles of democratic electoral systems
(Voting Service). The voting security services
enable the voting procedure to be performed in
different modes; which one to apply depends
upon the demanded security level. In some
cases it is not mecessary to keep the voting
strategy secret. The voting can be either public
(the votes and/or voting strategies) or secret.

@ 1t is often necessary that some subgroup of
the attendees hold a short secret mutual
consultation (Secret Discussion Service). They
receive permission from the rest of the members
and conduct the consultations within a given
time interval. The content of this discussion
remains unknown to the other commission
members.

@ Mecting attendees may sometimes want to
exchange some private (and therefore secret)

information without interrupting the meeting
proceeding (Secret Message Service). Only the
sender and the receiver are involved in the
conversation and the other members are not
privy to any information about it.

€ The minutes of the meeting present the
record for the commission proceedings and can
contain some parts which should remain secret
or known only to some closed group of people
(Minutes Service). Therefore it must be stored
in a protected database so that the access czu be
controlled. The attendees decide during the
meeting which parts of the minutes must
remain confidential if it is not already
determined by previous regulations.

SECURITY MECHANISMS

In this section the methods are described by which the
security services in the previous section can be
implemented.

Authentication

Authentication is a two-way process: the application
authenticates the attendees and the attendees
authenticate the commission server. This security
service is called peer-to-peer authentication [2].

The attendee is authenticated by means of histher
Personal Identification Number (PIN). One possible
solution is Personal Secure Environment [13)], which
is a software implementation of the SmartCard.

After the authentication phase the authorisation of the
attendee is performed, in which the set of the
attendee's access rights is determined based on the
information obtained in the authentication phase.
Voting

There are three types of voting protocol: Normal
Voting, Secret Voting and Public Voting.

a) Normal Voting
The following requirements are to be satisfied:

1. Only legitimate voters are allowed to vote and each
of them only once.

43

2. The voting authority can read the votes and publish
them to .ther voters during the voting phase.

3. Only the voter and the voting authority know which
strategy any given voter adopted.

4. After publishing the vote, a voter can check if her
vote has been properly counted.

We have chosen the simple voting scheme proposed in
[4]. The scheme is an application of muitiple key
ciphers and has two useful properties:

@ no interactive behaviour is required between
e voting authority (the voting server) and the
voters

9 no secret key is required from the users.

The voting server issues the voting slips to the voters
encrypted with their public keys. The voters send their
votes back to the voting server encrypted with the
server's public key. The RSA encryption scheme is
applied.

The voting server produces n+1 keys, if n is the

xmmberofpom“blevoungsumegna Thsckeys,ko.
.., kyy must satisfy the condition

k.k,..k»=1mod ¢(m)

¢(m) being the Euler Totient Function [10]. The key
kg is kept secret by the voting server and the other
keys are made public.

The server issues a voting slip / to each voter:

V = (random number, redundancy component) .
Randam numbering is used to ensure that the slip is
not used more than once and the redundancy
component is used to avoid forgery. The redundancy
component can be changed for each voting session so
that the same keys can be used more than once.

The voting slip is issued to the voter as

V* mod m,

additionallv encrypted withh the each voter's RSA
public key. The voter chooses the strategy / and forms:

V= (Vh)(kll:,.‘.k“k,.,mk,,) mod m

and sends 1 (encrypted with the voting server's RSA
public key) to the voting server. The voting server
then validates each vote ¥ by forming and evaluating
if

V'5% modm=V

and checking for the redundancy condition. It is
possible to r~duce processing by sending the claimed
value of the . oting strategy with I (in the worst case
scenario the voting server must check for n values).

b) Secret Voting
The following requirements are to be satisfied:

1. Only legitimate voters may vote, and each of them
only once.

2. Qudy the voier knows her voting strategy.

3. After publishing the outcome of the election, a
voter may check if her vote has been properly
counted. If not, she can complain without jeopardising
the ballot secrecy.

4. (Optionally) €ach voter can change her mind
(cancel and recast her vote), also without jeopardising
the ballot secrecy.

The chosen voting scheme is from [5,6]. We assume
that the voting server (VS) sends to each legitimate
voter her specific identification tag and then destroys
the information whichk could reveal the identity of the
voter having the specific identification tag. After this
information has been made inaccessible, the second
phase of the voting protocol can begin.

Let B be an individual voter with the tag fg and voting
strategy vp. The voting protocol is then as follows:

1. B chooses a cryptographic hash function Ag(x,y)

2. VS acknowledges the receipt by publishing the
value hB(fB,VB)

3 BsendsVSthepmr(tB,hB 1), VS can now compute

4. When the deadline for casting ballots is over, VS
announces the outcome of the election by publishing,
for each voting strategy v, the list of all numbers
hB(tB,vB) such that VBW.

5. If B observes that ber vote is not properly counted,
she protests by sending VS the triple
(1B,hB(IB,VB),hB'l)-

6. If B wants to recast her ballot, she sends VS the
tﬁple (fB,hB(tB,VB),VB'), VB' hing the new VOting
strategy. When the deadline for recasting is over, VS
publishes the modified election results, where the
numbers hp(ty,vg) have been reallocated in the list.
The voter can also now check that her new vote has
been properly counted. In this way the recasting of the
ballot can be done only once.

<) Public Voting
The following requir¢ments are to be satisfied:

1. Only legitimate voters may vote, and each of them
only once.

2. The voting order is determined before the voting
begins.

3. Every voter knows which strategy the other voters,
who have already voted, adopted.

The voting order can be, for example, in alphabetical
order. The voting protocol is as follows:

1. The voting server (VS) publishes the voting
ordering list with » voters and the list of voting
strategies.

2. The following steps are repeated for the each voter i
on the list, in the order determined by the list.

3. VS sends the voting slip V=(random number,
redundancy componer!) encrypted with the RSA
public key of the voter with the position / on the
voting list (voter v;) to v;.

4. The voter v; creates a block (V, voting strategy),
encrypts it with her RSA private key, and sends the
encrypted block to the VS.

5. VS publishes the name and the voting strategy of
the voter v, .

Secret Discussion

The security service of secret discussion is defined in
the following way:

1. The subgroup of attendees wishing to perform a
short secret consultation asks the commission
chairperson for the permission to do so and propose
some duration.

2. The commission chairperson decides (or the
commission members vote upon) whether the group
may hold secret consultations. If yes, the maximal
duration is determined.

The members of the secret consultation group requests
a pew session key (DES key) from the key
management authority. The new session key is sent to
the each secret consultation's participant in the form
of the signed certificate (see [10]):

anate_RsA__KeyA“'ho”-ﬁ, (
Receiver_Name,
Time_Stamp,
Public_RSA_Keyp, civer(
New_Session_Key
)
)

Secret Messages

The mechanism which enables the exchanging of
secret messages between two attendees is based on the
Privacy Enhanced Mail system [9]). The sender sends
the message encrypted with the secret DES key
encrypted with the receiver's public RSA key which
the receiver can decrypt with her private RSA key.
The exchange of the secret messages does not affect
the meeting proceeding.

Minutes

The organisation of the meeting recerd is based on the
meeting agenda, as it is in the case of the proceeding.
Every action point is observed separately.

Everything should be noted: proposals, discussion
contributions, voting results, decisions, breaches of
the standing orders, etc., so that no one (not even the
chairperson) can prevent the recording of some event.
The names of the attendees are also recorded in the

45

o

minutes and it is made impossible to eventually delete
or add a name to the list.

Important documents are signed (digital signature, see
(8]) by all competent attendees, either with agreement
ordisagmcmenLAsonlythepaxﬁcunaranendeecan
generate her digital signature, she cannot later deny
the fact of signing the document (non-repudiation
service, see [2]).

The attendees who have signed a document determine
the accessibility of this document. They decide
whether this document should be kept confidential
and determine the time when the document can be
made public. This is important for the organication of
the database into which the complete record of the
meeting will be stored.

The access to the information in the minutes database
is controlled by capabilities (see, for example 3D.
Whenasxbjecthasamssrightstoanobject
(information), he gets the (object, access) pair, which
ismlledthewpabilityofthembject’!’hewpabﬂiﬁes
are dynamically managed. For example, if a document
D can be made public, every user of the database gets
the capability (D, read).

SOFTWARE ORGANISATION

’I‘hcprincipalsoﬁwareorganimtionisbasedonthe
client-server model (Fig.3). The end users (attendees
of the commission meeting) communicate with the
application via the user interface. The users chooses
one of the memu options and the application
formulates, together with the pecessary parameters,
the task for the commission manager. The
commission manager then performs the task by
assigning various jobs to servers, i.e. sending requests
to servers to perform some actions.

The basic elements of the software organisation are
the following servers:

timing server

key server

access server
voting server
X500 server
regulations server
minutes server.

Timing server

Timing is very important for all security services. The
role of the timing server is to provide the precise time
information for the security protocols.

The rights owned by some subject are valid if certified
by the certification authority. The certificate is always
a temporary assignment of rights: it expires with the
given date.

In the authentication phase it is also necessary to
define the time-out interval (authentication deadline)
so that after this interval has expired the session can
begin.

In voting protocols the precise timing is of crucial
importance. A deadline is determined for the duration
of secret consultations.

Key server

The key generation is performed by the key server.
The distribution of the RSA key pairs is accomplished
priortotbesaﬁon:thasekcysamstoredi.nthe
Personal Secure Environment (a directory, for
example). The key server generates keys for voting
pmtoools,secretsasionkeysfortheserviceofthc
secret (closed group) consultations and similar
purposes.

User Interface
3

Tmhgl(eyAceusVoﬁngxsooRdesMinm

SERVERS

Figure 3. The software components

Access server

46

This server performs the authentication of the
attendees and determines their set of rights, i.e.
authorises them. The access server relies on the
information obtained from the timing server.

If it is necessary to examine somebody's set of access
rights during the meeting execution (after the initial
authentication phase), the request is sent to the access
server. This need may, for example, arise from the
voting protocol, if only the subgroup of the attendees
may vote. Because of this and similar situations, the
authentification is performed on many levels.

Voting server

This server performs the voting protocols. It relies on
the timing server and communicates with the
proceedings server.

X500 server

This server is a Directory User Agent and enables the
application's accessing the Directory Information Base
[11].

Regulations server

The regulations server communicates with the local
regulations database and ensures the validity of the
meeting proceeding, In other words, the regulations
server ensures that every official procedure is in
concordance with the regulations. For every procedure
certain conditions must be satisfied ard the execution
must follow the predetermined order. It is possible to
neglect regulations, if the commission chairperson
decides to do so and the attendees agree, but they are
warned against breaking rules and informed that this
event will be noticed in the minutes and submitted for
arbitration.

Minutes server

The minutes server gets "reports” from all other
servers and create an official report (i.e. stores the
collected information into the minutes database). The
data organisation is based on the time order, so that
every information unit has a time stamp provided by
the timing server.

Example 1: Voting service

The example of the communication between user and
software components is shown in Figure 4.

>

The commission chairperson chooses the option
"Voting" from the Menu with the available security
services. She is then asked for parameters necessary
for the voting procedure, i.e. what is the mode of
voting (normal, secret or public), what is to be voted
upon, who are the voters and what are the possible
voting strategies.

Userlnﬁerface

Menu Choice: Voting
Parameters: mode
context
voters
strategies

Application

{} Tesk (Voting. Parsmeters]

Commission
Manager
T [rewesn
Rutes
]
|Access | conditions?
Legal
X500 | voters?
N
Voting | voters
e
NZ —
Tiening slips
Minates Deadlines
Make
report

Figure 4. The voting service

From these parameters the application formulates the
task and sends it to the session manager who co-
ordinates the work of the servers. The manager sends
the request to the rules server to examine the legal
conditions of the voting. For example, if not all
attendees are members of some very important
commission they are, therefore, not allowed to vote
upon the current subject. The rules server determines

~d

if some further security measures are to be taken - for
example, to examine the access rights of the proposed
voters. This request is accomplished by the access
server.

After all legal conditions have been satisfied, the
voting protocol can begin. The request is sent to the
voting server which in turn requests keys and timing
service from the key server and the timing server,
respectively. After the voting has been completed, the
minutes servers makes a report which is appended to
the meeting minutes.

Example 2: The commission data structure

The following example illustrates a data structure
representing an university commission (Fig. 5).

In the section Commission meeting the types and
ordering of commission meetings are mentioned. The
first meeting to be held is a constitutive meeting and
the last one is the closing meeting. After the
commission has been constituted, the general
meetings can be held. Every general meeting has an
agenda with action points to be processed. The results
of every activity (discussions, voting, important
decisions) are stored into the database according to the
time order.

Commission
CONSTITY Name Members
TIVE e\

meetiag
GENERAL

meeting

CLOSING

AP Action Poit Discussions Y&%‘;ﬁ Documents Conclusions

M: Member

Figure 5. The commission data structure

SUMMARY

In this paper a model of the secure application for the
automation of the commission work is presented. The
purpose of the application is to supply an appropriate
working environment comprising all important
elements of the commission proceeding. This

S
9]

working environment enables collaboration over a
computer network.

Special attention is paid to legal and security aspects.
The commission proceedings consist of prescribed
clements which require a ceriain security level of
processing. These elements are defined as security
services and create a set of tools available to the
attendees. Attendees and commission chairperson may
choose the security service. However, the chosen
service must be in concordance with the legal

regulations.

The mechanisms used to implement the security
services are described. The application is orgamised
based on the client-server model. The client in this
scheme is application which proceeds the wuser's
request to the commission manager. The commission
manager co-ordinates the servers' activities.

The model described has not yet been implemented. It
will be implemented in the Security Development
Environment [13]. Our aim is to make an
experimental system which could assist in the better
understanding of the processes mentioned.

BIBLIOGRAPHY

1. Nunamaker, JF. etal, "Electronic Meeting
Systems to Support Group Work °
Communications of the ACM , Vol. 34, July 1991,
pp.41-61

Muftic, S., Security Mechanisms For Computer
Networks, Chichester: John Wiley & Sons, 1989

3. Denning, D.E., Cryptography and Data Security,
Addison-Wesley, 1982

Boyd, C., "Some Applications of Multiple Key
Ciphers," Lecture Notes in Computer Science ,
V330, 1988, pp.455-467

Salomaa, A., "Verifying and Recasting Secret
Ballots in Computer Networks," EATCS Bulletin,
44, 1991

Nurmi,H., A. Salomaa, and L. Santean, "Secret
Ballot Elections in Computer Networks,"
Computers & Security , 10 (1991), pp.553-560

10.

11

12.

13.

14.

Diffie, W., and M.E. Hellman, "New Directions
in Cryptography," IEEE Trans.nf.Theory , Vol.
IT-22, No.6, November 1976

Rivest, RL., A. Shamir, and L. Adleman, "A
Method for Obtaining Digital Signatures and
Public Key Cryptosystems," Communications of
the ACM , Vol. 21, February 1978, pp.120-1261.

Linn, J., Privacy Enhancement for Internet
Electronic Mail: Part I — Message Encipherment
and Authentication Procedures (RFC 1113),
August 1989

Denning, D.E., "Protecting Public Keys and

Signature Keys," Computer, February 1983, pp.
27-35

CCITT, "Recommendation X.500: The Directory
- Overview of Concepts, Models and Services,"
Melbourne, 1988

Akl, S.G, "Digital Signatures: A Tutorial
Survey," Computer, February 1983, pp. 15-24

Schneider, W., "SecuDE: Overview (Version
3.0)", Institut fuoer TeleKooperationsTechnik,
Darmstadt, March 1992

Desmedt, Y., "Society and Group Oriented
Cryptography," Advances in Cryptology -
CRYPTO ‘87, Lecture Notes in Computer Science
, 293, 1988, pp.120-127

49

WORKFLOW.2000 — ELECTRONIC DOCUMENT AUTHORIZATION IN PRACTICE

ABSTRACT

WorkFlow.2000 is a product designed in conjunction with
the Electronic Document Authorization (EDA) protocol to
enable EDA to be easily and seamlessly exploited in “real-
world” business. Its mandate extends even beyond this — to
providing a feasible vehicle for providing the true “paperless
office.”

This paper describes some of the philosophy behind both
WorkFlow.2000 and EDA, and the technology developed to
implement them as a commercially viable product.

THE MOTIVATION

To unfold the philosophy and direction of both
WorkFlow.2000 and EDA, we start by posing the fundamen-
tal question:

How does one really create the truly “paperless office?”

We use as an underlying premise that “paper” serves three
basic functions: 1) to accept information (writing); 2) to
store information (filing); and 3) to transmit information
(mailing).

A fourth — and equally important — function is served by
paper, namely: 4) To seal a commitment.

This last function is derived from paper’s ability to record an
ink signature which is taken to reflect the signer’s acknowl-
edgement, approval or commitment concerning the other in-
formation recorded on the paper.

Before the advent of electronic media, paper was unques-
tionably the dominant means for performing these functions;
it probably still is. But there are well-recognized business
advantages gained by the eliminating paper business docu-
ments in favor of electronic media.

It is technically possible, especially with the invention of
digital signatures as part of public key cryptography, to per-
form all four of the above functions electronically using
computers.

Some of the important advantages of doing this include:

Addison Fischer
Fischer International Systems Corporation
© Copyright 1992, Addison Fischer, All rights reserved.

51

(@) Greatly improved communication speed. Electronic busi-
ness messages can be sent instantly and cheaply over
telecommunication networks. (FAX, which sends paper im-
ages electronically, while fast, has the disadvantage that it
actually increases the total amount of overall paper con-
sumption, and is generally not suitable for further subsequent
computer analysis.)

It is also possible to send a bulk of messages cheaply by
loading them onto (physically small) magnetic media for
physical transport.

(b) Reduced storage cost. A single half-pound tape cartridge
costing less than three dollars, suffices to archivally hold the
equivalent of over 7,000 pounds of business documents. This
means that a single 20' x 40’ room suffices to archive elec-
tronically the same information that would require 4,000,000
sq ft of paper information. At a cost,say of $10/sq. ft./yr.,
this represents a (real estate) savings of $40,000,000/yr.

(c) Improved searching capability. Searching with computers
is immeasurably faster than searching paper by hand. This is
especially true if the search criteria are not identically the
same criteria under which paper was filed. Electronic records
can be multiply indexed with little additional overhead; and
an exhaustive search, if required, is thousands of times more
efficient than similar exhaustive search through comparable
paper — which may not even be feasibie.

(d) Electronic data can be quickly and easily copied for
backup. A fire, or other disaster can easily wipe out paper
archives. However, a tape cartridge can be easily copied in a
few minutes and stored off-site. Copying the paper equiva-
lent — 700,000 pages — is not so easy.

In the interests of being politically correct, we might note
parenthetically that electronic business should save millions
of acres trees each year.

In approaching full “electronification” of the office, it is im-
portiant 1o appreciate that paper has enormous flexibility:

= Paper is a tangible medium: it is subject to being marked,
transmitted or stored in a variety of ways. New informa-
tion, including signatures, can be added as needed.

» Paper is always processed by human perception (with the
relatively uncommon exception of OCR handling).
Therefore unexpected deviations can be grasped with
human comprehension.

Any electronic replacement must be sufficiently flexible to
handle most exigencies, while compensating with sufficient
additional incentives to make it attractive to both the end-
userand

In addressing these needs, WorkFlow.2000 can be viewed in
several different ways:

« It can be viewed as “Smart paper” where the replace-
ment for a business document is actually a computer ob-
ject that is easily integrated into computer applications,
yet provides flexibility to accommodate the end-users.
“Smart paper” knows its mission and how to accomplish
it. If necessary, part of its mission might be to accept
digital signatures on appropriate information.

* It can be viewed as a “travelling object oriented pro-
gram” (TROOP). This transcends the notion of
“electronic forms” by providing the ability to write ap-
plications that can do anything, even in a “fully dis-
tributed” environment. Each WorkFlow.2000 celi (to be
described in more detail shortly), contains definitions
for user interaction, coupled with a program for han-
dling that data. Each WorkFlow.2000 cell is written in a
high level language and can draw upon libraries of tools.

« It can be viewed as an “EDI vector” in two ways:

« It can build, carry and display EDI information;
« It provides a simple way for an organization to get
started with EDI.

* WorkFlow.2000 can also be viewed as a general purpose
tool for implementing EDA. Electronic Document
Authorization, which can handle authorization for vir-
tually any critical application, such as:

* Business documents — the most obvious and most uni-
versal.

» Design signoff — WorkFlow.2000 can manage any com-
puter object, including CAD/CAM. WorkFlow.2000 is
able to direct and interface with CAD/CAM processes.

* Program validation — In order to protect software
against viruses and worms, especially software de-
ployed acrossmany computers, it is useful to have it
digitally signed by trusted uthorities. WorkFlow.2000
has the ability to move and install new software to any
platform in a secure fashion,

WORKFLOW.2000 AS “SMART PAPER”

Going beyond the simple “electronic forms” paradigm,
WorkFlow.2000 incorporates a number of additional ingre-
dients to allow replacement of paper both within and across
organizational boundaries.

52

WorkFlow.2000 borrows themes emerging from objact-ori-
ented paradigms and combines them with concepts evolved
from “distributed computing” research.

The basic unit of WorkFlow.2000 is the “cell.” Each
WorkFlow.2000 “cell,” which can be thought of, in a manner
of speaking, as a “piece” of “‘smart paper,” is actually instan-
tiated as an “ object” containing data, bound together with
the full instructions with which to process it.

It is a “computer object” that “knows its mission and how to
accomplish it.”

The WorkFlow.2000 cell definition is incorporated into each
“instance” cell from the original “prototype” cell at the time
the instance is first launched. These definitions, the cell in-
structions, are specified in two languages. Logic, computa-
tion, control, and routing instructions are formulated in the
high-level REXX language. This is coupled to the second
language, a TeX derivative, that facilitates easy representa-
tion of the end-user displays. REXX logic has control over
the entire object, including tailoring the TeX displays.

The WorkFlow.2000 driver has its own (built in) compiler
and interpreter to ensure consistent behavior of
WorkFlow.2000 objects regardless of the type of computer
handling a particular piece of * smart paper.”

REXX is sufficiently powerful to allow facile expression and
computation of virtually any logic, including routing. “Smart
paper” can be as rigid or as flexible as appropriate.

Internal Functions

As needed, the REXX control can invoke an assortment of
internal (“built-in”) functions which are supplied as part of
the universalWorkFlow.2000 function suite. In addition to
conventional REXX builtin functions, WorkFlow.2000 also
supplies its own native functions to:

« specify the next destination(s) to which the
WorkFlow.2000cell should be routed after completing
the current execution phase. In general, WorkFlow.2000
can be routed through any electronic mail system.

» facilitate creation and validation of digital signatures.

« facilitate construction and parsing of EDI structures.

» allow creation of simple “spinoff” messages generated
by the WorkFlow.2000 logic. These messages are
(generally) not WorkFlow.2000 cells, but can be, for ex-
ample:

« simple acknowledgements

» inform. tion to a central server that tracks and possibly
coordinates the progress of WorkFlow.2000 cells

» generated EDI transaction sets mailed to external or-
ganizations

« audit information sent to a central location

= functions to access files and databases that may exist
on the current platform.

External Functions

WorkFlow.2000 cells may also invoke “external” routines
which are not inherently part of WorkFlow.2000. Examples
include:

« Word processors

» Spreadsheets

» EDI processors - for specialized custom processing

« Functions accessing specialized types of databases

« CAD/CAM functions

« Custom business applications

« Electronic mail (Although WorkFlow.2000 is generally
packaged with built-in access to electronic mail, it is
possible that specialized or non-standard systems may
require unique interfaces.)

» Batch processing

* Any other necessary function

It is the responsibility of the WorkFlow.2000 cell author to
know (or create logic to determine) whether a particular ex-
ternal application is available on a platform before invoking
it. In fact, since some functions may only exist on certain
platforms, WorkFlow.2000 may sometimes contain logic to
“move itself” to another platform especially in order to to
access a special program. Typically, such programs reflect
unique operations, such as data gathering, that have no user
interaction; for example:

» Access to batch programs (WorkFlow.2000 might need
to move to a “batch driver™)

* Access to programs for using specialized databases

» Access to programs that perform special formatting (e.g.,
graphical manipulation, etc).

Digital Signatures

Another noteworthy ingredient contributing to the “smart
paper” paradigm is provided by its inherent ability to per-
form digital signatures on arbitrary data.

This mimics the flexibility of (real) paper, where anything
can be signed. Through use of built-in functions,
WorkFlow.2000 is able to apply a digital signature on any
material — from an internal “string” to an external file, The
signature is created as a REXX variable — and may be
combined with the data, stored separately— or treated in any
other way as needed, since it is strictly under control of the
cell ’s logic.

As a tangible illustration, consider the flow of the archetypi-
cal Electronic Purchase Order. After starting as a “smart pa-
per” Requisition, it collects enough information to construct
an EDI Purchase Order X12 (“850™) transaction set.

53

Whenever signatures are necessary, WorkFlow.2000 must
apply them to the “850” transaction set itself — since this is
what the EDI recipient will ultimately receive. Thus, through
all stages of approval, WorkFlow.2000 must present the
transaction in “visual” (translated form), but apply signatures
to the “850” format.

The WorkFlow.2000 cell is therefore involved in all stages
of EDI creation:

» coaching the creation of data with helpful displays,

« constructing the actual, final, digital representation of the
corresponding 850 transaction set,

« interfacing with users for approval and digital signatures.

This reveals several important points in the application and
use of digital signatures:

« In performing a digital signature, a user must be aware
of exactly what is being signed.

« Since digital material stored in a computer cannot be di-
rectly perceived, the user must rely on software to ren-
der a faithful representation.

o Signed material must be in “final form” — i.e., it cannot
be translated” in any way — a digital signature is valid
only if the signed data is wholly identical — it cannot
be modified or filtered before verification.

- Similarly, in verifying a digital signature:

« The material cannot have been “translated” since the sig-
nature was applied. .

« Any ‘““conversion” must occur after verification.

» For signatures to have historical or archival significance,
the original data must be stored. In this case, it is usually
pointless to store a “converted” image, since it cannot
participate in a validation, and could presumably be
recreated if needed.

« When verification and processing occur together, the
processing must be able to handle the material — as it
was sent. If conversion is necessary, it must follow sig-
nature validation and precede the processing.

By guiding the flow and process of data WorkFlow.2000 can
internally invoke conversion steps,as needed, to feed other
embedded precesses.

WORKFLOW.2000 AS A SELF-REFERENTIAL
MAIL-ENABLED APPLICATION

A Mail Enabled Application (MEA) is a program which al-
lows a user to electronically mail data while using the pro-
gram.

WorkFlow.2000 goes further — not only is a
WorkFlow.2000 application equipped to mail data, but it
mails itself as well!

In fact, the transmission of itself, together with its latest

generation of data, is an integral step of its distributed nature.

WORKFLOW.2000 AS A “TRAVELING
OBJECT ORIENTED PROGRAM”

The “object” nature of WorkFlow.2000 stems from the fact
that each instance of a cell contains a state; data; and in-
structions for processing the data.

Its “travelling” nature stems, of course, from the fact that it
moves from destination to destination to satisfy whatever
distributed task it is designed to solve. This includes, for ex-
ample, moving to any destination where information must be
collected or desseminated. This certainly includes users, but
also encompasses platforms with special data, mainframe
batch drivers, special servers,factory floor processes, elc.

An object can be programmed with any criteria at all in de-
termining its next destination: from the use of fixed built-in
constants, to being totally obedient to whatever a user sup-
plies, to making a complex decision based on information
collected during its

For applications where it is useful to centrally track a
WorkFlow.2000 cell and know where it has traveled or
presently resides, WorkFlow.2000 logic can dispatch elec-
tronic messages back to a central tracking focus destination.
For example, it might be generated whenever a
WorkFlow.2000 form isused and is ready to transfer to an-
other platform.

If the usefulness of tracking varies, then a cell might gener-
ate it conditionally only under the appropriate conditions.

At the designated focus, anunattended task could automati-
cally receive and digest the information into a log file.

This same technique applies as well to audit or archival in-
formation.

WORKFLOW.2000 AS A “DISTRIBUTED
DATABASE”

Another useful way to view WorkFlow.2000 is as a new type
of distributed database. In the same sense that Sun claims
“the Network is the Computer,” a sufficiently powerful

54

TROOP can be viewed as a paradigm for a new class of dis-
tributed

Under this paradigm, WorkFlow.2000 cells themselves are
viewed as “objects” integral to the amalgamated database.
Each cell “knows” how to produce a desired result, includ-
ing the locations to which it must travel. Concerns about
where specific datum is located are thus “pushed into” the
interior of WorkFlow.2000 cells.

For example, the “database object” may be a WorkFlow
.2000 cell that compiles a monthly report from pieces lying
across a number of personal computers and mainframes.
Some parts of the aggregate database may actually be
knowledge that must be solicited from users.

The data could reside anywhere in the organization.

As long as they can be reached, a WorkFlow.2000 cell can
be designed to gather, assimilate and return the necessary
information.

While the concept of “distributed” database spans a number
of disparate notions, and the WorkFlow paradigm certainly
does not cover all of them; viewing WorkFlow.2000 itself,
the “glue” so to speak, as the “distributed database™ brings a
useful object-oriented flavor to the treatment of certain tasks
— including many business needs that are likely to arise in 2
distributed corporate environment.

WORKFLOW.2000 AS AN “APPLICATION GENER-
ATOR” FOR A DISTRIBUTED ENVIRONMENT

WorkFlow.2000 is an “application generator” which pro-
vides:

+A high level language in which to formulate solutions.
= Tools to converse with end-users.

« Means to interface to a variety of databases.

» Ability to interface with existing applications.

The addition of its “travelling” abilities and object oriented
flavor make WorkFlow.2000 a “distributed application gen-
erator” capable of providing applications executing across a
span of platforms as needed.

In a distributed environment, a TROOP seems ideally suited
for creating applications.

WORKFLOW.2000 AS AN “EDI VECTOR”

To eliminate “paper” flowing between enterprises,
WorkFlow.2000 provides tools to data into standard EDI

formats, and then both mail and receive these. It is suffi-
ciently powerful to exploit any EDI format.

It can be viewed an EDI Vector in two ways:

« In the technical sense, WorkFlow.2000 provides the ve-
hicle by which EDI can be constructed, digitally signed
(as needed), mailed, received, viewed, and (optionally)
transferred 1o other corporate systems for processing.

« In a business sense, WorkFlow.2000 can bring (e vec-
tor”) widespread EDI capability into an organization
immediately.

Even without any other electronic processing by an organi-
zation, WorkFlow.2000 allows full EDI construction and dis-
play on any computer, with no additional software require-
ments.

Consequently one could begin using EDI immediately with-
out committing to, or developing, other processing systems.
Once EDI is being used, migration into future systems can
evolve gradually as business needs are defined.

By supporting the construction and receipt of all defined EDI
formats, WorkFlow.2000 supplies the means for an organiza-
tion to immediately handle all standard inbound EDI — if
only to the extent that they are displayed on a screen, or
printed out. Since no other computer processing is necessary,
an organization does not need to analyze the particular
“subset™ of the standard they are willing to accept — they
may accept them all, Similarly, outbound transactions can be
composed using the full capability of the standard.

This allows immediate EDI capability — transactions that
aren't processed by computer can be viewed through com-
puter displays and acted on just as if they were paper.

Even if an organization never performs any special pro-
grammatic processing, a number of substantial benefits are
still realized:

+ The transmission is electronic, and is therefore usually
faster by several orders of magnitude.

« The volume of (archived) material stored is substantially
less. Electronic documents can be stored, by weight or
volume, approximately three to five orders of magnitude
more efficiently than paper. For example a single half-
pound tape cartridge reflects the same information as
roughly three and a half tons of paper business docu-
ments.

» Paper handling is reduced because EDI is already elec-
tronic, and can be routed electronically.

« Once an EDI document is archived, even if it was not
specially processed on arrival, it can be processed (even
years) later as needed by subsequent programmatic
tools. Digital documents can be electronically audited
and searched — saving magnitudes of time compared

55

with manual paper operations ash as well as being more
accurate and thorough.

« Of course, having EDI in digital format encourages more
automation.

As long as EDI can be processed — even if only by viewing
it on CRT displays as a substitute for paper — it invites the
beginning of automation. The first step is identifying a
“simple ” subset for which automatic processing can be eas-
ily developed. Conforming material can then be program-
matically filtered and handled, leaving the “residue” for
manual handling. As time goes on, an organization will de-
vise better ways to automate more, so that the manual
residue shrinks.

Thus, WorkFlow.2000 allows the substantial benefits of EDI
to be realized without demanding an “all or nothing ap-
proach.”

PROTECTION AND VERIFICATION

WorkFlow.2000 is designed to operate as “intelligent paper”
in a totally distributed manner — operating across multiple
platforms of possible varying degrees of security.

The integrity and trustworthiness of WorkFlow.2000 cells
are critical since they have the ability to

« potentially read and write file data,

« formulate the actual binary data on which digital signa-
tures are applied,

» spin off generated electronic messages.

For these reasons and others, it is therefore crucial to insure

that the WorkFlow.2000 instructions themselves cannot be
corrupted or spoofed. Although WorkFlow 2000 cells repre-
sent “travelling programs” which might originate anywhere;
as a practical matter, the underlying driver must be able to
automatically distinguish (with minimal ongoing user deci-
sion) legitimate cells which conform to each user's accep-
tance criteria; yet automatically reject those that do not.

What is EDA?

EDA — Electronic Documentation Authorization — is a
digital signature protocol designed to provide authority as-
surances within and across organizational boundaries.

One goal of EDA is to provide a framework allowing valid
exercise of authority, such as spending authority, to be
trusted across enterprises in such a way, ideally, that this au-
thority can be verified entirely “electronically” without re-
quiring human attention or decision. The archetypical exam-
ple for this might is an Electronic Data Interchange (EDI)
transaction representing a Purchase Order.

Currently, for example, paper purchase ord..s, which fun-
damentally represent contracts, are generally signed (or cer-
tainly should be). Current EDI is in its infancy, and is typi-
cally confined between trusting partners communicating
across controlled channels.

In the future, as EDI becomes more widespread, one pre-
sumes EDI will be conducted across any and all channels.
Just as paper documents are presently treated as mail, so one
assumes that EDI will also eventually come to use any avail-
able communication medium.

Unlike electronic mail, however, electronic documents re-
flect business commitments, and it takes very little imagina-
tion to understand how their misuse, or forgery, could result
in major losses.

EDA conforms with the PKCS.7 formats which were devel-
oped as an industry standard in 1991 under the auspices of a
group representing a number of influential software organi-
zations including: Apple, DEC, Fischer International, Lotus,
Microsoft, Novell, RSADSI, Sun.

The PKCS specifications themselves are a protocol based on
International standards such as ISO/CCITT X.500 and IS
9796.

EDA uses X.509 certificates for backbone identification to-
gether with standard PKCS structures for carrying authoriza-
tion and enforcement specifications.

EDA provides that a digital signature that indicates the use
of authority, such as the authority to spend a certain amount
of money, is associated with an “Authorizing Certificate”
showing that sufficient authorization has been granted by the
signer’s organization.

A chain of authority delegation can be traced through the
hierarchy of Authorizing Certificates to a common certifier
that is well-known and accepted as trustworthy.

To enforce the proper exercise of authority, EDA allows
each delegator to stipulate that one or more digital co-sign-
ers, from an (indicated) list of possible candidates, must rat-
ify any use of authority by the delegatee.

The use of co-signatures may be stipulated at any or all lev-
els, including the very highest, to minimize the risk of cor-
ruption or misuse.

While the most obvious use of EDA is to control money
transactions, it may also be used to control any other sensi-
tive task for which the controlled exercise of authority is ap-

propriate.

* Money
e CAD/CAM release

56

« Sending instructions to automated remote devices
Electronic Document Authorization:

« Uses standard X.509 certificates to carry identification
specifications.

« Uses standard PKCS.7-compliant digital signature struc-
tures to carry authorization and enforcement specifica-
aons.

« Provides full authentication to all parties.

« Provides full and accountable authorization as part of
digital signatures.

« Protects the issuing organization by insuring that digital
documents are subject to at least as many checks and
balances as currently exist with paper documents.
Because this protection is built-in to a user’s EDA
(Authorization) Certificate, this arguably gives even
stronger assurance.

« Protects the receiving organization by providing a full
(machine-) verifiable authority audit trail. The use of
authority at each level is demonstrated by explicit dele-
gation and explicit associated safeguards.

* Protects all parties, by mitigating the possible damage
that might occur on compromise of someone's (secret)
private key. Co-signature requirements inhibit illegal
use of a compromised key.

» Insures, by providing mandatory co-signatures, that no
single individual (even a “Certification Authority”) can
deliberately (or accidentally) abuse their authority or
corrupt the system.

By increasing the the number of co-signature requirements,
protection can be extended to guard against collusion by any
particular number of multipic parties.

This allows the risks to be reduced to whatever level is
deemed appropriate to the situation. The exercise of greater
authority can be protected with imposition of greater safe-
guards.

EDA facilitates abuse-resistant authorization which can be
verified automatically without human intervention or deci-
sion.

The principal feature of EDA is the “Authorization
Certificate” which defines the authorizations and constraints
attributes associated with a particular public key. Broadly
speaking, the “authorizations” define the powers which an
individual is entitled to authorize through the use of their
digital signature; while “limitations” define constraints.

An important constraint, which mirrors classical business
practice,is that digital signatures performed by the owner of
the public key are not to be considered valid (or “ratified™)
unless accompanied by other digital signatures.

This allows an organization to grant explicit authority to an
individual, while also providing a means to prevent the in-

dividual from exercising the authority in a careless, capri-
cious, or corrupt fashion.

Given that digital signatures are fundamentally exercised by
individuals, one of EDA’s goals is to recognize that authority
is wielded by individuals on behalf of organizations, but that
individuals are unpredictably fallible and cccasionally cor-
rupt.

In assigning authority, organizations are again faced with
the prospect that the individuals within the organization who
manage authority are themselves subject to the same con-
cerns of fallibility and corruptibility. An individual who has
the power to defi ne authority, has the power to assign au-
thority to himself, for example.

Therefore the EDA paradigm — of controlling authority
through explicit specification and co-signature requirements
— is applied through the entire delegation hierarchy. At the
very top, we have a panel of high level certifiers whose re-
sponsibility is to construct high-level Authorization
Centifications for participating (member) organizations.

EDA provides that these high level authorities can (should)
themselves be subject to co-signatures requirements — sc
that no one acting alone has the ability to corrupt the system.

WORKFLOW.2000 USES EDA TO SOLVE THESE
MAJOR SECURITY ISSUES

EDA provides digital signature capability substantially
equivalent, perhaps better, than that of signatures as they are
currently used with paper.

(1) As described earlier, the logic within a WorkFlow.2000
cell can invoke built-in functions that apply EDA digital sig-
natures to data, such as EDI transactions for example which
may be used outside of WorkFlow.2000, for which a future
recipient needs to know:

« that the data/document is unchanged since it was signed.
(a fundamental characteristic of digital signatures).

« who signed the data/document (a characteristic of the
X.509 framework underlying EDA), but also:

» that the data/document is authorized in full conformance
with the rules set forth by the organization for whom the
individual is acting. This important feature of EDA can
be verified anutomatically without user decision.

Conversely, WorkFlow.2000 also has a built-in routines to
verify previously created digital signatures.

» A WorkFlow.2000 cell can verify whether signatures
use EDA, and whether they reflect the proper authoriza-
tion and satisfy the enforcement coistraints (e.g., neces-

57

sary co-signatures are also present). If so,
WorkFlow.2000 is able to take a quick path that does
not require human decision or investigation.

« If a digital signature is present, but conforms only to
basic X.500 or simple PKCS formats, then the
WorkFlow.2000 cell could take an appropriate action —
such as requesting a (human) decision to accept the doc-
ument based on only the X.500 identification informa-
tion.

« If no digital signature is present, then the cell can take
whatever appropriate course of action makes good busi-
ness sense, such as routing it for an “exception review”
to be specially scrutinized, investigated, and evaluated.

(2) EDA insures that WorkFlow.2000 cells themselves can-
ant be corrupted and that “Trojan horse” cells cannot be in-
troduced.

In the final analysis, WorkFlow.2000 cells are themselves
simply data bits. The threat exists of interception and modi-
fication by someone sufficiently clever, who might be able to
change the intended operation of the cell logic to induce er-
roneous results or data damage, or to incorrectly capture and
reveal private data.

A similar “Trojan horse” attack exists where harmful pro-
cessing is subtly embedded in a seemingly innocuous
WorkFlow.2000 cell, or in one which mimics a normal cell.

To protect against such mischief, WorkFFlow.2000 demands
that each prototype cell — i.e., the underlying specification
and logic — be signed with EDA. This is replicated in all
derived “instances. "

Before executing even the first instruction of any cell,
WoarkFlow.2000 insures that the cell logic is properly signed
with EDA, and the EDA authorization hierarchy can be
traced to a EDA signer trusted by the current user (see [1]).
This is done in a few milliseconds, and insures that damaged
or untrusted WorkFlow.2000 cells cannot execute.

When WorkFlow.2000 cells are executed under a batch
driver, the EDA trust root is specified as a parameter as part
of starting the driver.

(3) EDA insures that the data carried by WorkFlow.2000
cells cannot be corrupted.

The first type of validation provides EDA digital signatures
to protect specific data constructs within the
WorkFlow.2000 data set, such as EDI strings, that may have
historic, archival or cross-enterprise significance. This is
carried in a particular instance of a cell and is fundamentally
tied to a particular piece of data.

The second type of validation provides EDA signatures to
protect users against cell logic damage, and against “Trojan
horse” or mischievous cells. This applies to the prototype

cell logic until it is retired and replaced with an enhanced
definition. It is carried by every instance.

The third type of validation provides EDA signatures to the

aggregate of the entire data set associated with a particular
cell between the time it leaves one station and arrives at the
next destination. Such data does not have long-term signifi-
cance, as in the previous cases, but serves to protect against
unexpected execution results that might arise from covert
tampering of internal REXX “variables” between execu-
tions.

Since WorkFlow.2000 variables and state change with each
execution, this protection is re-applied each “hop.” It is
computed as the WorkFlow.2000 cell writes itself for
transmission, and is re-computed by the WorkFlow.2000
driver at the destination as the variables are accepted.

SUMMARY

In describing the genesis of WorkFlow.2000 as a vehicle for
moving toward a truly “paperless office”, we have seen how
it can be interpreted under a variety of paradigms such as
“smart paper” — a new breed of electronic forms; as a
TRavelling Object Oriented Program; as an Application
Generator; as a vector for EDI; and even as a distributed
database.

Although EDA has a significant role in all of these, its spe-
cial utility is most apparent as an authorization tool replacing
hand signatures when WorkFlow.2000 is used to replace pa-
per -- both within the office (“smart paper ”) and across en-
terprises (as an “EDI vector”).

The relationship between WorkFlow.2000 and EDA seems
inherently symbiotic. It is difficult to imagine that EDA (or
any digital signature protocol) could be used as a general
substiitute for autographic signatures without a general-pur-
pose underlying tool such as WorkFlow.2000. Similarly, to
completely fulfill its mission of the paperlesss of-
fice, WorkFlow.2000 requires something with the power of
EDA.

REFERENCES

”

1. Fischer, A., "Electronic Document Authorization,
Proceedings of the 13th National Computer Security
Conference, 1990, also published as:

2. Message Handling Systems and Application Layer
Communication Protocols; P. Schicker, E. Stefferud, eds.;

58

Elsevier Science Publications B.V., 1991, “Electronic
Document Authorization,” p. 75.

3. ECMA, “Security In Open Systems: Data Elements and
Service Definitions,” ECMA-138, Dec. 1989.

4. Gasser, M., and E. McDermott, “An Architecture For
Practical Delegation In a Distributed System,” Proceedings
of the 1990 IEEE Symposium on Security and Privacy.

5. Linn, J., “Practical Autheatication For Distributed
Computing,” Proceedings of the 1990 IEEE Symposium on
Security and Privacy.

6. SDNS Access Control WG, “SDN.802: Access Control
Document,” July 1989.

7. CCITT, “X.509: The Directory: Authentication
Framework, “ 1988.

8. RSA Data Security Inc., “PKCS.1: RSA Encryption
Standard,” 1991.

9. RSA Data Security Inc., “PKCS.7: Cryptographic
Message Syntax,” 1991.

10. RSA Data Security, Inc.. “PKCS.9: Selected Attributes.e
1991.

11. Ankney, R., “Electronic document Authorization Using
Public Key Cryptography,” April 1992.

12. ISO/IEC, “IS 9796: Digital Signatures Scheme Giving
Message Recovery,” 1991.

Security Issues of a UNIX PEM Implementation

James M. Galvin
David M. Balenson
Stephen D. Crocker

Paul C. Clark

Trusted Information Systems, Inc.
3060 Washington Road
Glenwood, MD 21738

Paper not received in time for publication in the Workshop Proceedings

61

Implementing Privacy Enhanced Mail on VMS

Michael Taylor

Digital Equipment Corporation
Littleton, Massachusetts

ABSTRACT

This paper presents the lessons leamed from four years of
building Privacy Enhanced Mail (PEM) prototypes on VMS.
It describes the implementation of four prototypes, the
evolution of the technology building blocks, and the
successful deployment of the resulting technology.

INTRODUCTION

The Digital Equipment Corporation internal computer
network supports more than 80,000 systems and 100,000
users. A significant proportion of the traffic carried by the
network is electronic mail, generated by the VMS Mail
Utility and other mail utilities. The increasing use of
electronic mail for business and personal communication,
together with the vulnerability of communication links, has
resulted in the need for several kinds of security services for
mail:

o Confidentiality protects a message so only the intended
recipient(s) can read it.

o Message integrity assurance allows detection of any
modification to the message.

o Authentication assures that the originator named in the
message is indeed the originator.

o Non-repudiation assures the recipient of the ability to prove

to a third party that the originator named in the message is
indeed the originator.

While the need for secure electronic mail has been
acknowledged for a long time, no such mechanism has
gained widespread use. Since 1988, four prototypes of secure
electronic mail have been built within Digital Equipment
Corporation. Three of these prototypes have been based on a
series of Request For Comments (RFC) released by the
Intemmet Activities Board Intemet Research Task Force's
Privacy and Security Research Group (PSRG) and the
Internet Engineering Task Force (IETF)'s Privacy-Enhanced
Mail (PEM) Working Group. The security services were
provided by the mail user agents, i.e., the software that
interfaces with the users of mail. No special requirements
were imposed at intermediate relay sites or the underlying

63

mail transport protocol. This approach allowed the
prototypes to be deployed on a site-by-site or user-by-user
basis without impact on other mail services.

OVERVIEW OF THE FOUR PROTOTYPES

The following is a brief description of the prototypes. Each
prototype is described in more detail in later sections.

The first prototype of a confidential mail system for users of
the VMS Mail Utility was implemented in the second half i
1988. This prototype provided message confidentiality by
encrypting the mail message using the Data Encryption
Standard (DES). No cryptographic key management was
provided.

In 1989, work was started to develop a Privacy Enhanced
Mail (PEM) prototype for use with the VMS Mail Utility in
conformance with the Internet RFC-1040 written by the
Internet Activities Board Internet Research Task Force's
Privacy and Security Research Group (PSRG). Conformance
to the Internet RFC allowed secure electronic mail across
corporate boundaries and provided a per-user key
distribution mechanism. Interoperability testing with
independent PEM development groups was started to
guarantee correct PEM operation across network boundaries.

User comments from the initial deployment of PEM within
the VMS community indicated that for PEM to gain
widespread use and acceptance, a simplified user interface
and full integration with the existing mail utility were
required. Design of the third prototype to mect these
requirements began in late 1989. Several versions of a
prototype based on extending a VMS text editor to support
mail, encryption, and symmetric and asymmetric key
management, were implemented during 1991. User
acceptance of PEM started to grow with this prototype.

RFC-1040 was made obsolete when it was replaced by a
series of successor versions distributed as Internet-Drafts
and by electronic mail. These versions contained, at different
points in time, incompatible changes to: the ceruiicate data
elements, the PEM header format, and the sender/recipient
identification convention. A fourth prototype was released in
January, 1992 to include these changes.

FIRST PROTOTYPE

During 1988, a series of interviews were conducted to
investigate the current level of security in applications and
the need for security features in future development. The
most important and often the only application mentioned
during these interviews was mail; in particular, the people
interviewed desired the ability to send and store mail
messages such that the messages c< »1d not be read by others.
As a result, the first prototype of a . onfidential mail system
for users of the VMS Mail Utility was created over the next
few months. This prototype was a stand-alone image
integrating the VMS Mail Utility and VAX Encryption. Only
symmetric encryption of the message using the DES
algorithm was supported. Cryptographic key management
was completely manual; the user had to create a DES
encryption key for each message as well as communicate the
key to the message recipients using an out-of-band
communication channel, e.g., the telephone.

To send a confidential message, a user would have to
perform the following steps:

1. Compose the message and store it as a file

2. Invoke the prototype from DCL (Digital Command Line,
the VMS command line interface)

3. Provide the mail address of the recipient
4, Provide the encryption key for the message.

To read the message, the recipient would have to perform the
following steps:

1. Extract the message from the VMS Mail Utility into a file

2. Contact the sender to obtain the encryption key using an
out-of-band communication channel, i.e., not e-mail or
the subject line of the message

3. Invoke the prototype from DCL
4, Provide the encryption key
5. Read the message from the resulting file.

This cumbersome procedure was, as might be expected,
unacceptable to the potential user community. Three serious
problems were identified.

The first problem was using the binary output of the
encryption process as the message; it contained random
bitstrings that were interpreted as characters such as Tab,
Form-Feed, and escape sequences by the mail system. This
could make reading the initial encrypted message an
unpleasant experience for the recipient.

64

The second problem was that the typical user had to exit
mail to use the stand-alone prototype to send or read a
confidential message. A pseudo-editor program was created
1o act as an encryption filter to encrypt or decrypt messages
whenever the VMS Mail Utility invoked an editor to read or
send a message. Since the system manager was required to
"install" this pseudo-editor program as a system-wide trusted
image before it could be used, and some system managers
would not install this image (for legitimate security
reasons), the pseudo-editor was often not available and the
need to frequently exit mail remained.

The third problem was the lack of an automated key
management scheme. The sender was required to create an
encryption key when the message was created, and the
recipient had to remember the key each time the message
was read.

SECOND PROTOTYPE

Having proven the ability to integrate encryption services
with the VMS mail system to provide a form of secure mail,
an advanced development project was started to develop a
Privacy Enhanced Mail (PEM) prototype according to
Intermet RFC-1040. RFC-1040 solved two of the three major
problems in the first prototype. The problem with sending
the binary output of the encryption operation was solved by
the specification of a encoding scheme that converts the
binary output into a universally representable set of
characters, e.g., a 64-character subset of ASCIL This
encoding also allowed the user to send messages containing
8-bit characters through gateways that would modify the
eighth bit. In addition, an automated key management
scheme specified per-message encryption key generation
and a key distribution mechanism. While RFC-1040
specified symmetric and asymmetric key management, only
symmetric key management was supported in this prototype.

The same approach was implemented for this prototype as
was used in the first prototype, i.e., DCL image invocation
and a pseudo-editor encryption-filter program. This approach
would provide the easiest, and therefore fastest, way to
obtain an implementation that could be used to test
interoperability with other PEM implementations. A couple
of months later, during August 1989, PEM messages were
successfully exchanged with another RFC-1040
implementation developed outside of the company.

The pseudo-editor in this prototype, when available, was not
well received by the users. The VMS Mail Utility does not
pass the message header information, i.e., recipient's e~mail
address, when it passes the message body to the called
editor. As a result, the user was required to provide the
recipient's address twice: once to the mail system, and then

again to the pseudo-editor to compose the PEM recipient
identification header. Providing the information twice was
prone to error and users were unhappy having to provide
address information a second time.

During the testing of the message integrity check (MIC) and
encoding processing for this prototype, the developer created
a "MIC-CLEAR" message type. This message type
separated the message authentication and integrity services
from the message body encryption and encoding services,
allowing the sender to send messages which the recipient
could read, even if there were a problem with PEM
compatibility. This message type also allowed the sender to
send the same message to a list of recipients where some
people could process the PEM header information and
encoding and some could not. For the PEM developer, this
message type allowed easier debugging of the MIC
processing without interaction with the message encryption
services. This message type was adopted by the Internet
working committee and added to the subsequent RFC-1113.

While user acceptance was marginally better than the
original prototype, the lack of integration with the mail
system required the use of two separate applications to send
and read messages. Few potential users had sufficient need
to justify learning and using another application.

PROTOTYPE THREE

By late 1989, the development team decided that integration
with the user's mail system was critical to the acceptance and
success of PEM within the VMS community. Two options
were considered.

The first option was to obtain a copy of the VMS Mail
Utility code and modify it to support PEM. This option was
rejected because the code was under active development and
changed with each release of VMS. As there was no
commitment to include any work done by the PEM project in
the released product, each new VMS release would have
required that the PEM project obtain a new copy of the code
and duplicate the changes made to previous releases.
Ultimately, using this approach could mean the PEM
prototype would cease to function with the first release of
VMS after the conclusion of the PEM project.

The second option was to write a new User Interface (UI)
based on the callable interface to the VMS Mail Utility. This
option would require a significant amount of work outside of
the area of PEM support, but would allow development to
centinue across releases of VMS and new versions of the
VMS Mail Utility. This approach would also allow the
maximum flexibility to test alternative user interfaces to the
PEM functions. At this time, a new version of DEC TPU (a
text editor provided with VMS) provided increased support

65

for integration with other products, such as mail and
encryption. While basing the UI on DEC TPU would require
tracking DEC TPU versions, no modification of DEC TPU
code was required.

While writing a new user interface was the best approach
from the developer's point of view, users would need a
reason to overcome the natural resistance to change. The
usual engineer's approach was used: provide the user with
desired features not otherwise available, while maintaining
compatibility with the old way. Visual compatibility with
improvements was achieved by creating an interface similar
to one with which the users were already familiar, i.e., VAX
Notes, while providing users with the often-requested ability
to scroll the message body. The most important
compatibility requirement was determined to be "finger
compatibility,” i.e., the users did not have to teach their
fingers to type new commands or press new keys. As a
result, it was decided to use the same command line
interface and syntax used by the VMS Mail Utility.

To specify PEM processing of the message to be sent, the
SEND, REPLY and FORWARD commands were extended
to support the JENCRYPT qualifier. In response to user
requests, a /SIGN qualifier was added to specify the "MIC-
CLEAR" message type. Initially, the message recipient used
a DECRYPT command to process a PEM message.
However, based on user feedback, this was changed and a
PEM message was automatically decrypted whenever the
message was read.

The "write a new user interface" approach proved workable
to the developers, and acceptable to the users. The prototype
provided full integration of the mail system and PEM
services, and continues in use today. The new UI has proven
to be sufficiently popular that people use the prototype
without using or knowing about the PEM functions.

Who are you?

This was the first prototype that raised the awareness of
names as an issue. A VMS Mail Utility address has the form
<NODE> "::" <USERNAME>. The <NODE> is optional
when the recipient is located on the system or VMS cluster.
This gives a typical VMS user 3 valid mail addresses. For
example, a user SMITH on the system A in the VMS Cluster
Z will receive mail addressed to SMITH, A::SMITH, and
Z::SMITH. In addition, the RFC-1040 format rules required
the use of the Internet mail address format, e.g.,
<USERNAME> "@" <NODE> "." <ORGNAME> "."
<ORGTYPE>.

To confuse matters further, forwarding mail to another
system is common within the VMS community. There were
many instances of people calling for assistance in
decrypting mail sent to A::J_SMITH, which was then
automaticaily forwarded without the sender's knowledge to
Z::SMITH. The lesson learned was that people are very

mobile and frequently change systems, physical locations,
and organizations. When these changes occur, users take
their old mail to their new location and expect to be able to
continue reading old confidential messages.

To solve this name problem for the recipient, the prototype
would construct a table containing the three valid mail
addresses discussed above. While this table could be
extended to include user-defined addresses to accommodate
forwarding, this mechanism was not available through the
user interface. The recipient identifiers in the incoming
messages were compared to the addresses in the table.
Should a match not be found, e.g., in the case of
unanticipated forwarded mail, the user could manually edit
the PEM header in the message to correct the recipient
identifier. A change in the PEM specification of the
recipient identifier eliminated the need to check for multiple
e-mail addresses, but the same mechanism is needed to
check for recipients having multiple certificates. Upon
verification of the MIC, the message originator's
distinguished name was displayed. This display annoyed
some users and a mechanism was created to suppress the
display.

For out-going messages, the recipient's address was entered
in the usual VMS Mail Utility format. A translation table
was kept to map mail addresses to the correct certificate.

Asymmetric key ranagement support

During 1990, a set of procedures for a public-key
cryptographic algorithm and public-key certificates became
available, and support for the asymmetric key management
form of PEM was added. This support required the creation
of a mechanism to create public key pairs, as well as the
mechanisms and procedures to create and distribute
certificates for the public key.

To ensure that the user was the only person with access to
the user’s private key, the design decision was made that the
user's private key would never leave the user's system, The
cormrectness of this decision was never challenged and
remains a fundamental belief. However, this challenged the
developers to make the asymmetric key generation and
asscciated certification process as simple as possible. The
following 5-step, S-minute process was developed to allow
any user of the prototype to successfully create a public key
and obtain a certificate for that key.

1. The user generates a case-insensitive password with a
minimum of 8 characters to limit access to the private
key.

2. The user runs a DCL command file to create a public and
private key pair. A checksum is computed and displayed
to the user. The public key is automatically mailed to the
certificate authority.

66

3. The user contacts the certificate authority to verify the
request for a certificate. The user also provides their
distinguished name, the checksum computed in the
previous step, and their e-mail addresses for the
translation table.

4. The certificate authority returns the public key certificate
by mail and the user saves it in a local file.

5. The certificate authority includes the public key certificate
into the certificate database and the local system
administrator updates the local certificate database.

For purposes of this prototype, a centrally generated
certificate database was copied to the individual systems,
The mail address translation table mentioned above was part
of the certificate database and was updated by the certificate
authority on request by the user.

YET ANOTHER PROTOTYPE

During 1991, a new version of the prototype was developed.
This version included the major changes to the PEM
specifications in the areas of certificate data elements, the
PEM header formats, and the sender /recipient identification
convention. These changes made this prototype
incompatible with the earlier prototype and any messages
created with the earlier prototype could not be read. The
changes in the applicable PEM specifications, progressing
(for the case of the base message processing procedures
specification) from RFC-1040 to RFC-1113, with
subsequent revisions made to the intervening drafts, were a
source of persistent problems to the development effort.
Interoperability testing was also impacted, as the
independent groups would sometimes be using different
versions of the specifications in their implementations.

The last enhancement made to the third prototype was to add
the ability to save confidential messages in cleartext. This
enhancement, combined with early and frequent notification
to the users of the upcoming incompatible change, allowed
the conversion to the new prototype to occur without losing
previous messages. However, approximately half of the user
community did not create new asymmetric key pairs. This
was attributed, by the users, to their lack of need of either
confidentiality or integrity controls for their mail.

DEPLOYMENT

Deployment and use of PEM internally was difficult, even
within the organization funding the project. While the
prototype three version of key management and asymmetric

key pair generation was not as easy to use as had been
hoped, the major stumbling block was a lack of perceived
need. There were many prospects interested in the
technology who were given demonstrations and a few used
the system to send test messages, but they did not install or
use PEM. The following section, LESSONS LEARNED,
provides more details on why PEM was not used by these
groups.

The first tests by an organization to use PEM to solve a
business problem were started during late 1990. The
organization was responsible for sending out a sensitive
monthly report to a large group of managers. To ensure the
confidentiality of the paper report, each copy was double
wrapped before mailing and the recipients would return
receipts to the sender. The decision to use the prototype was
based of several factors. The two most important factors
were: 1) distribution of the report was a one-to-many
operation, and 2) the cost of the existing paper operation
was known. The centralized one-to-many distribution
operation allowed for easy slow incremental growth, i.e.,
users could be added one at a time. Knowing the actual cost
of the paper operation made the cost savings of replacing
the paper with PEM visible, and a cost-benefit analysis
could be made. Several other groups had investigated the use
of PEM, but their applications required a large user base
before significant savings could be achieved.

LLESSONS LEARNED

The last four years have provided several lessons about the
barriers to the adoption of Privacy Enhanced Mail.

Infrastructure

There is an initial cost to set up an asymmetric key
management infrastructure. The first group to use PEM
incurs the largest cost of setting up and operating a
certificate authority. As the early adopters of a new
technology, they also incur part of the development cost of
creating an easy-to-use mechanism for users to create
asymmetric key pairs and creating procedures for updating
certificate databases. Few groups want, or can afford, to
incur the costs and risks of going first.

Corporate culture

Two cultural attributes inhibited widespread adoption of
PEM.

1. Large corporations have a paper bias. Any organization
that has existed for more than 20 years has
institutionalized a set of operational procedures based on
distributing confidential information on paper. That
paper-based process continues to work, and the risk of

67

change is greater than the perceived advantages of speed
and reduced costs.

2. There is a naivete about the threat of mail impersonation
and eavesdropping of network lines. The corporate
culture grew from a small, friendly network with 40
nodes, 800 people, and limited known access points to
80,000 systems supporting 100,000 people with
innumerable points of access. People cannot comprehend
the scale of current networks and therefore underestimate
the threats involved.

Therefore, the paradigm shift from sending confidential
information on paper to using confidential electronic mail
did not occur, not because of active resistance to the
technology, but rather because of a lack of "energy of
activation.” Widespread acceptance will probably not occur
until there is a "Tylenol” incident.

User perceptions of security

For many people, the distinctions between confidentiality
and integrity, or authentication and authorization, are
unknown. Their perception of security in mail is limited to
"secret mail” and preventing someone from reading their
mail. This perception makes "selling” PEM longer and more
difficult, as time must be spent explaining the integrity
benefits of PEM to someone with no need for secret mail.
Few people have the requirement to be able to prove to a
third party, e.g., a judge in a court of law, that an electronic
message was written by the person cited as the author.

Separating authentication from authorization is harder, some
"experts” fail to make the distinction, and it was,
unsurprisingly, difficult to communicate the distinction to
the user community. Proving that someone is the author of a
message does not demonstrate that the person was authorized
to make the claims stated in the message. For example, while
it could be proved that I sent you the message giving you a
free PC from my employer; it is doubtful that you or my
employer would believe I was authorized to give you a PC.
PEM was designed to provide authentication. Administrators
seeking an authorization mechanism sought tighter controls,
e.g., frequent certificate expiration, than was acceptable to
users desiring a pure authentication service.

Easy to use

From the user point of view, security cannot be made too
easy. Security often lacks value in the mind of the general
user community; it is something they are forced to deal with
and to work around to get their job done.

Standards
Tracking standards that are under active development is

hard. Incompatible changes can lead io conversions that are
opportunities for abandonment by the existing user

community. Such changes also increase the difficulty of
interoperability testing, as each development group is often
at different points in the conversion. However,
interoperability testing is critical for a prototype developed
to an Internet standard. Some problems will only be found
by having multiple implementations. For example, shortly
after testing with external sites began, byte-ordering
incompatibilities were discovered that required modification
of the specifications to remove the ambiguity.

Encryption export controls

Encryption products are export controlled by the United
States government, and these controls work for honest
people. However, these controls slow the growth of PEM
for personal use by increasing the difficulty of installing
encryption on systems throughout the network. In the US,
system managers were often slow to install encryption due to
the different distribution procedures used for encryption
products. Expansion of the user base into Europe has been
almost impossible due to the fear of violating export
controls.

Several users, including several managers, liked being able
10 send confidential mail. Unfortunately, there was nothing
in their work that required e-mail messages to be kept
nsecret”. The use of PEM for personal e-mail was restricted
due to the limited number of people with the technology to
read the message. This "chicken and egg" difficulty was
usually traced to problems with getting encryption installed
on the system.

UNFULFILLED EXPECTATIONS

Throughout the development project, prospective users of
PEM have been found to hold expectations of the technology
that went, and will continue to go, unfulfilled. The most
common is the expectation of protection against a message
recipient reading the message when the message was
incorrectly addressed prior to submission for PEM
processing. For example, if a message intended for John
Smith (smith@z) is incorrectly addressed to j_smith@z, then
the message with be processed to allow only j_smith@z to
read the message. When Joan Smith (j_smith@z) receives
the message, she will be, and should be, able to read the mail
message sent to her. One obvious solution to this problem,
entry of separate PEM and e-mail addresses, was used in an
early prototype and proved to be unacceptable to the user
community.

68

CONCLUSION

Development of four prototypes has established that the
technology for implementing privacy enhanced mail to
provide users with confidentiality and integrity controls for
mail messages is available. However, significant barriers
remain before the technology gains widespread acceptance
and use in traditional corporate environments.

ACKNOWLEDGMENTS

The author wishes to acknowledge the contributions of John
Linn, Mary Ellen Zurko, Chris Walsh, August Reinig, and
Walt Soltysik.

The author wishes to acknowledge the contribution of
Richard Pitkin. In addition to developing the asymmetric
encryption routines and certification authority program, his
outstanding commitment to the success of the project was
essential to the development of the prototypes.

VAX, VMS, DEC TPU, VAX Encryption, and VAX Notes
are trademarks of Digital Equipment Corporation.

1]

DISTRIBUTED PUBLIC KEY CERTIFICATE MANAGEMENT

Charles W. Gardiner

Bolt Beranek and Newman Inc.
Cambridge, Massachusetts

ABSTRACT

Distributed environments (such as network systems) require
a high level of assurance in identifying and authenticating
other entities in the system, either for access control or for
general authentication services. Public key cryptography
offers an effective mechanism for solving these problems as
well as for supporting non-repudiation and confidentiality
services. The use of public key cryptography for these
purposes often relies upon certificates, as defined in CCITT
X.509, which serve to bind users' public keys reliably to
their names. Through a hierarchy of signed certificates, the
users' certificates can be managed in a distributed fashion.

Privacy-Enhanced Mail, a secure electronic mail system with
distributed certificate management, raises many of the same
issues as are found in other distributed computer systems.

This paper discusses some of these issues and describes how
the SafeKeyper(TM) Certificate Signing Unit helps to
resolve them.

INTRODUCTION

A distributed certificate management infrastructure must
meet a number of requirements, such as:

- Protection of the keying material of certifying
authorities.

- Provision for invalidating certificates whenever
needed.

- Management of the "name space” in the certificate
hierarchy.

- Audit and authorization management.
- Reliable recovery procedures.

The SafeKeyper Certificate Signing Unit (CSU) has been
developed as an important component of a certificate
management infrastructure designed for Privacy Enhanced
Electronic Mail (PEM). Work on PEM was initiated by the
Privacy and Security Research Group and has been
continued by the Privacy-Enhanced Mail Warking Group of
the Internet Engineering Task Force. The PEM system adds
confidentiality and authentication services to the SMTP mail
system by the use of the public key cryptosystem developed
by RSA Data Security, Inc. [1] and of certificates that

69

conform to the X.509 standard. PEM processing of mail
messages relies on certificates to establish the identity of
message originators and recipients. Validating these
identities involves forming a certification path made up of
certificates from the message itself or already in a local
database. The certification path goes from the sender up to a
certifying authority that can also reached by the receiver's
certification path, what might be called 2 "common
ancestor”. PEM defines a "tree” hierarchy with a single root,
the Internet Society. This single-rooted certification
hierarchy is a critical element of a distributed certification
environment to guarantee that any message recipient can find
a valid certification path back to the originator.

The SafeKeyper CSU is a peripheral which can be connected
to the RS-232 port of a workstation. The workstation
interacts with the peripheral in a sequence of atomic
transactions comprising a request and a response. For
example, the workstation may send a certificate in a request
for signature. The peripheral generates an appropriate
signamre and returns the entire signed certificate in the
response.

KEY PROTECTION

The protection of keying material has three dimensions:
protection from disclosure, protection from unauthorized
use, and protection from loss. All three aspects are desirable
for all users of a public key system, but they are particularly
important for the entities which issue certificates. The
certificates they sign are only as trustworthy as the
protection of the signer's key. Furthermore, the "higher” an
issuer is in the hierarchy, the more critical its key, because
all certificates of "lower" authorities and the cextificates they
have issued are invalidated if the higher key is compromised.

Protection of keys from disclosure

The SafeKeyper CSU protects the private keys of issuing
authorities by keeping them entirely within the unit at all
times. (The terms "private key" and "public key" are used in
this paper to refer to the private and public components of an
RSA key pair in an asymmetric cryptosystem. The term
"DES key" or "secret key" refer to a DES key in a symmetric
cryptosystem.) The unit has a rugged, tamper-resistant, cast
aluminum enclosure approximately 10 x 7 x 3 inches. It has
been designed to meet various international EMI standards
as well as NACSIM 5100A. Inside there is a Motorola
68340 processor, 2 kilobytes of battery-backed RAM, half a
megabyte of ordinary RAM, 32 kilobytes of EEPROM, 128
kilobytes of PROM and a hardware random number

generator. There are also two slots to accommodate
removable storage devices, one for a Datakey DK 1000, the
other for a Datakey PK64KB. The battery-backed RAM is
the only place where cryptographically sensitive information
is ever stored. Such data never leaves the unit. This
memory is immediately erased if the case is opened or
tampered with in any of several ways. This memory
contains a DES key for the unit as well as the private key of
the currently active issuing authority. The private keys of all
issuing authorities (of which there may be more than one in a
unit) are kept in EEPROM, each encrypted with the
authority's DES key.

Protection of keys against misuse

Each authority's DES key is encrypted with the CSU's DES
key and stored in the Datakey DK 1000, which is called the
Cryptographic Ignition Key (CIK). The CIK provides
control of an authority's signing capabilities. The CIK must
be inserted in the unit and the unit must be given a request to
activate that authority. Only then will the contents of the
CIK be decrypted and used to decrypt the anthority's private
key. If the CIK is removed at any time, the hardware notes
the event so that the anthority is de-activated on completion
of the current transaction, even if the CIK is re-inserted.

For additional protection against misuse, an authority's
encrypted secret key can be "split” among several CIKs
using RSA's secret-sharing algorithm [2). By this technique
an authority can be created so that 2 out of 3, or 3out S, or
any other combination of CIKs must be inserted in any order
to activate that authority. (The CSU sends back an interim
response and blinks one of its LEDs when it is ready to
receive another CIK in activating an authority. When the
CIK is removed under these circumstances, the next one
must be inserted within a pre-defined time, usually 30
seconds.)

In some circumstances it may be desirable for two or more
authorities on a CSU to share the same secret key and,
therefore, the same CIKs. The SafeKeyper CSU can be
configured to allow a new authority to use the secret key of
the currently active authority if the request to create the new
authority so specifies.

The physical control of CIKs is essential to the proper
control of access to an authority's capabilities. If this control
were lost and the contents of a CIK (or a sufficient number
of them) were compromised, the private key of the authority
would still be protected from disclosure but not from misuse.
Rather than requiring the authority to get a new key pair
(thus invalidating all the certificates it had signed), the
SafeKeyper CSU has a transaction to change an authority's
DES key. The anthority must first be activated with the old
CIK(s), and then protected with a new DES key (made with
the CSU's random number generator) to be encrypted as
usual and written to new CIKs. The authority's private key
is encrypted with the new DES key and written to EEPROM.

70

By way of protection against accidental overwriting of CIKs,
each CIK is checked to make sure it is empty before writing
takes place. The contents of each CIK are verified after
writing. There is a special transaction to clear a CIK.

Protection of keys from loss

The third type of protection, that against loss, must be
provided in a fashion consistent with the other two types of
protection. It is particularly important for the keying
material of certificate issuers. If an authority's private key
should become corrupted in EEPROM or if the unit should
fail for any reason, there must be a graceful way for the
authority to recover and continue in business with the same
key pair. The design of the SafeKeyper anticipates such
unexpected events by providing that an authority's data,
including its encrypted private key, may either be returned to
the workstation or written to the other removable storage
device, called the fill device. The requests 10 create or
activate an authority have options to ask that the EEPROM
data be returned or written to the fill device or both. The
contents of a fill device are verified by reading after writing,
but the device is not checked for emptiness before writing.

The information thus obtained from EEPROM in whichever
form cannot be used to create a new version of the authority
on the same SafeKeyper CSU because duplicate authority
names are rejected, but it can be used to install the authority
on another CSU (or restore the authority on a repaired or
replacement CSU) which has the same DES key. The
procedure for creating such a unit without compromise is
described below under Factory Procedures.

ISSUING CERTIFICATES

The primary operation of the SafeKeyper is signing, or
issuing, certificates on behalf of an authority. Trusted
certificates require that the use of an authority's private key
be controlled as described above, and that certain parts of
users' certificates be protected from inadvertent corruption
and be checked for format.

In PEM the operator of the workstation receives applications
for certificates, usually in the form of draft certificates sent
by ordinary electronic mail. These drafts contain the issuer's
name, a pair of daies defining the start and end of the
validity interval, and the applicant's name and public key.
An MD?2 hash is appended for an integrity check. The
applicant also sends the hash by some out-of-band means.
The operator verifies the hash, makes whatever other checks
are appropriate to validate the application, e.g. is the
applicant a current employee or student, and then sends a
request to the SafeKeyper CSU. That unit checks the hash
and format of the application, makes sure the issuer name
matches that of the currently active authority, and checks
that the authority is authorized to issue more certificates.
The unit then signs the certificate and returns it to the

workstation. The workstation software usually mails the
certificate back to the applicant and also stores it in a local
database.

Each certificate contains a serial number which is unique for
the issuing authority. The primary function of these serial
numbers is to provide a compact identifier for use in lists of
revoked certificates. The SafeKeyper keeps a count of the
numbers issued to each authority and assigns this as part of
the serial number when each certificate is signed.

REVOKING CERTIFICATES

Any certificate-based security system must have a way to
revoke or otherwise de-activate certificates. X.509-style
certificates include starting and ending dates, but many
things can occur between these times to invalidate a
certificate. The subject's private key may be compromised,
or his/her affiliation with the certifying authority may change
or terminate, to cite two possibilities.

PEM handles these matters with Centificate Revocation Lists
(CRLs), which are ASN.1-encoded lists of revoked serial
numbers and the revocation dates, signed by the authority
that originally certified them. PEM CRLs differ somewhat
from X.509 CRLs in that a PEM CRL includes not only its
own date of issue, but also the date by which the next list
will be issued. A user can thus always tell if a CRL is up to
date. X.509 CRLs also have a signature for for each item in
the list, but a PEM CRL has only one signature over all. A
revoked certificate remains on successive CRLs until the
certificate's expiration date. CRLs are used by PEM
applications as part of validating certification paths.

The role of the SafeKeyper CSU is to check the format of the
CRL and the issuer's name, and then to sign the CRL for the
currently active authority.

MANAGEMENT OF NEW AUTHORITIES

Whenever a new certifying authority is created, it must have
a unique distinguished name to avoid confusion with other
issuers. In PEM this is solved in two parts: For the top three
levels of the certification tree a database is kept containing
the names of all certifying authorities. Requests for new
authorities in the second and third levels are checked against
this list, and conflicts are resolved by mutual agreement
before an authority is created. In levels below the third,
which are expected to contain many more names, such
centralized control might become impractical. Duplicates are
prevented by requiring that authorities at the third level and
below can only sign certificates for subjects (whether users
or other authorities) that have names subordinate to the
signer's name. Subordinate means that the subject's
distinguished name begins with the entire issuer's name,
followed by some distinguishing parts, e.g. the name
“Country=US, Organization=Ajax Corporation,

A

Organizational Unit=Widget Division" is subordinate to the
name "Country=US, Organization=Ajax Corporation”.

The SafeKeyper CSU can be configured to require that each
subject name be subordinate to the issuer name. In addition,
units can be configured to require that a new authority be
sent a special signed message before it can actually sign any
certificates. This is described more fully in the next section.

Some certifying authorities may need to have more than one
instance of the authority in separate CSUs, either for reasons
of geography or work load. The SafeKeyper CSU allows the
transfer of an authority and its private key to another unit by
the use of the fill device, as mentioned above. The new
instance requires the same CIK (or CIKs) at installation time,
but the CIK(s) may be subsequently changed, if needed.
Since the issuer names are the same, the rules for certificate
revocation require that the various instances not use the same
serial numbers. In the SafeKeyper CSU this is guaranteed
by combining the CSU's unique ID number with the
authority's count to form a certificate's serial number, The
least significant three bytes are the authority's count and the
more significant bytes are the unit's ID.

Only one CRL must be issued by an authority. If an
authority exists in more than one CSU, only one should
generate CRLs. This is not enforced by the CSU.

Whenever a new authority is created for the first time, its
name and public key are returned in the response. For added
protection of integrity, these items are in a message signed
by the unit itself. When an authority is transferred from
another unit, a similar signed message is returned but
without the public key. These messages can be used to
notify appropriate entities of the creation of the authority, in
case authorization is needed.

AUTHORIZATION, AUDIT AND CONFIGURATION
MANAGEMENT

The certificate management infrastructure must be able to
manage the relationships between certification authorities
and to track the certificate issuing activity. In any new
system with which there has not been any prior field
experience such a management system should probably offer
as much flexibility as possible to modify features as the
system is used. At the same time such management must be
protected against unauthorized use, lest the key elements in
the system be corrupted.

For the SafeKeyper CSUs these management functions are
performed by the use of "control messages”, which are
special ASN.1-encoded pieces of electronic mail signed by a
special type of authority called a "control authority”.
Control authorities can only sign control messages, not
certificates or CRLs. Conversely other authorities can not
sign control messages. The control authority to which a unit

belongs is assigned at the factory as described below under
Factory Procedures.

Each control message is addressed to an individual
SafeKeyper CSU by its unique distinguished name. (Each
CSU has a distinguished name assigned at the factory, as
described below under Factory Procedures.) The message
may refer to the unit as a whole or to a specific authority
therein. A message can set or clear configuration flags or
can set the value of any configured parameter described
below.

Features that can be configured for a unit include: minimum
and maximum modulus size for public/private key pairs;
maximum validity period for certificates; ability to have only
one authority, or extra authorities that are subordinate to the
first, or any authority; ability to have a control authority;
ability to sign certificates for non-subordinate subjects.

Configurable items for an individual authority include: the
range of authorized serial numbers (within the unit's ID); the
next serial number; ability to sign certificates for non-
subordinate subjects (overriding the unit's configuration).
The ability of a new authority to sign certificates can thus be
managed by the control authority. There is also a control
message to cancel an authority. (Initial plans called for a
transaction by which the active authority could cancel itself,
but it was later realized that a likely reason for canceling an
authority might be the loss of its CIK(s). In that case there
would be no way to activate it for cancelation! Control
messages provide a secure means to do this.)

Each control message contains a timestamp which is checked
by the SafeKeyper CSU to ensure that messages are
submitted in order and that no message is submitted twice.

The response to a control message is always a report on the
current configuration of the unit or the authority, depending
on the type of control message. The response is signed by
the unit with its own private key. In the United States, where
the RSA cryptographic techniques are patented, this
mechanism can be used to determine how many certificates
have been signed by an authority and to charge an

appropriate royalty.

Control messages thus provide a flexible, secure method of
managing SafeKeyper CSUs and their certifying authorities
in either a centralized or distributed fashion, whichever wrns
out in actual use to be more appropriate.

MAINTENANCE PHILOSOPHY

Since the SafeKeyper CSU is tamper-resistant, the basic
maintenance philosophy is complete unit replacement. In
such a circumstance it is clearly desirable to be able to re-
instate in the replacement unit all the authorities that were on
the failed unit, still using the same private keys. The
technique for encrypting private keys demands that the

72

replacement unit have the same DES key. The means for
accomplishing this without revealing these secret keys are
explained in the Fac(«rv Procedures section below. When an
authority is thus instaiied in a new CSU, it requires new
authorization via control messages. Control messages for
the old CSU are of no use with new one because the new one
has a different distinguished name.

FACTORY PROCEDURES

All SafeKeyper CSUs are configured to customer
requirements and assigned to a control authority at the
factory. Each unit initially creates a DES key for itself using
its random number generator. Some units, however, must be
given the same DES key as another unit. For security
reasons such keys should not be revealed to anyore. The
keys must, therefore, be both unknown and reproducible.
Public key cryptography makes this possible.

At the factory there is a specially configured SafeKeyper
CSU containing two authorities. The first is the authority
which simply assigns IDs to all units in much the same way
that a certificate-signing authority assigns sequential serial
numbers; the second is a combined control and certficate-
signing authority -- the only such authority allowed. The
PROM s of all SafeKeyper CSUs contain the public key of
the second authority.

As soon as a SafeKeyper CSU is assembled, it is connected
to a workstation to which the special manufacturing unit is
also connected. The operator gives the workstation the
physical serial number stamped on the new unit. The
workstation obtains the next ID number from the first
authority in the manufacturing CSU and sends both items to
the new unit in an initialization request. The new unit
records its serial number and ID in EEPROM, generates its
random DES key and its key pair, encrypts its private key
with the DES key into EEPROM and prepares a response.
The response contains the new unit's public key and also the
new DES key encrypted with the public key of the second
manufacturing authority. The workstation stores these in a
database along with the serial number and the ID. The new
unit can now be put in inventory with assurance that it
cannot be tampered with. Once a unit has been thus
initialized, it will reject any further attempt to initialize it. A
unit that has not been initialized cannot perform any
certificate-related transactions.

Some time later the new unit may be configured for a
particular customer. It is again attached to the workstation,
but now the second authority is activated. If the new unit is
to have a different DES key, the workstation obtains both of
the encrypted keys from the database and sends them in a
special request to the manufacturing unit. The active
authority there is able to decrypt both DES keys and to
encrypt the desired DES key with the new unit's present key.
The result is put in a control message and signed. When this
is passed back to the workstation and over to the new unit,

that unit can decrypt the DES key and install it. At no time
is any DES key transmitted outside of a SafeKeyper CSU in
cleartext form.

In the third step the workstation prepares a control message
to configure the new unit and to give it the public key of
another contro! authority in accordance with requirements
supplied by the operator. The manufacturing unit's control
authority signs the message, and it is passed to the new unit.
The signed response confirms the configuration, which is
placed in the database. Once a unit has been thus assigned to
a control authority, the unit's DES key can no longer be
changed.

Finally, the workstation prepares a certificate for the new
unit, containing the unit's serial number and ID as part of the
subject name. The manufacturing control authority signs
this, and it is sent to the control authority that now "owns”
the new unit, thus providing that authority with the new
unit's name to use in addressing control messages and the
public key to use in confirming responses.

Whenever a unit is returned for repair, its PROM is replaced
(in case the instructions there have been maliciously altered)
and the entire initialization process is repeated. A single
physical unit with a single physical serial numbér may thus
have several different logical IDs in the course of its life, one
for each time it is initialized.

This procedure allows two levels of protection: The first
step, which takes up to five minutes to generate a key pair,
uses the first authority. The later steps, which are more
sensitive, require the second authority. (For convenience, the
second authority can also execute the first step. It still gets
the next ID from the first authority's counter in EEPROM.
This is the only anthority which is allowed to modify the
counter of another authority.)

CONCLUSIONS

This paper has discussed some of the significant issues to be
considered in creating a distributed certificate management
system to provide identification, authentication,
confidentiality and non-repudiation services. It has described
the role of the SafeKeyper CSU in the Privacy-Enhanced
Mail system and the techniques by which it deals with these
issues.

ACKNOWLEDGEMENTS
I am grateful 10 my colleagues David Solo, Patrick Cain and
John Lowry for their assistance in the SafeKeyper CSU
project and in the preparation of this paper.
REFERENCES

1. Rivest, R. L., Shamir, A., and Adleman, L., "A
Method for Obtaining Digital Signatures and Public-

73

Key Cryptosystems”, Communications of the ACM
Vol. 21, Number 2, February 1978, pp. 120-126

Shamir, Adi, "How to Share a Secret”,
Communications of the ACM Vol. 22, Number 11,
November 1979, pp 612-613.

PROTECTING THE INTEGRITY OF PRIVACY-ENHANCED ELECTRONIC MAIL
WITH DES-BASED AUTHENTICATION CODES

Start G. Smbblebine 1 Virgil D. Gligor

Electrical Engineering Department
University of Maryland
C: llege Park, Maryland

ABSTRACT

The Privacy-enhanced Electronic Mail supports integrity
services with both symmetric and asymmetric keys. An
option of the symmetric-key services is that of protecting
message integrity with DES-based authentication codes. We
discuss a vulnerability of this option to message-integrity
attacks. We present a solution for the removal of this
vulnerability that allows the retention of the DES-based
authentication codes.

INTRODUCTION

The Privacy-enhanced Electronic Mail (PEM) [1,2] supports
confidentiality, integrity, and authentication of electronic
mail in the Internet. These services use end-to-end
cryptography between sender and receiver User Agent
processes, with both symmetric and asymmetric keys, and do
not impose any special processing requirements on the
underlying Mesage Transfer System. An option of the
symmetric-key services is that of protecting message
integrity with Message Authentication Codes (MACs) which
are computed by using the Data Encryption Standard (DES)
in Cipher Block Chaining (CBC) mode.

An early version of the DES-MAC option in PEM {3] was
shown to be vulnerable to integrity attacks against multiple-
receiver messages [4]. When these messages were used, a
receiver could create a bogus message and have it accepted
by other receivers, or by the sender, without detection. The
current version of PEM eliminates this vulnerability (1) by
using a different key for the DES-MAC computation from
that used for the CBC encryption of the user data, and (2) by
recommending that at most a single receiver be named as an
addressee of DES-MAC messages [1,2]. However, another
message-integrity vulnerability of the DES-MAC
checksumed messages remains uncorrected. We present this
vulnerability, and propose a solution for its removal that
allows the retention of the DES-based authentication codes.
(A discussion of whether such authentication codes should
be retained by PEM is beyond the scope of this paper. We
assume that, since the DES-MAC checksum is sufficiently

15, G. Stubblebine's current address is : USC Information
Sciences Institute, 4676 Admirality Way, Marina del Rey, CA
90292-6695. (stubblebine@isi.edu, gligor@eng.umd.edu)

75

strong for most applications, is an international standard
[5,6), and is supported by commercially available hardware
{7, its use is desirable.)

REPRESENTATION OF PFM MESSAGES

PEM services support both single- and multiple-receiver
messages. The representation of a single-receiver, DES-
MAC checksumed message, denoted by message type T1 in

Figure 1, 2 onsists of an Initialization Vector (IV) for data
encryption and decryption, an address field for the sender
and for the receiver, a key field, a MAC field, and a user data
field. Both the key field and the MAC field are encrypted
under an Interchange Key (IK), which is shared between the
sender and receiver.

The key field contains a random Data Encryption Key
(DEK), which is used for the CBC encryption of the user
data with the initialization vector, IV. It is also used for
computing the DES-MAC of the user data in the CBC mode
with a zero initialization vector, IVo. When the DEK is used
for computing the DES-MAC, the constant
FOFOFOFOFOFOFOF0 is added (modulo two) to it. (This
separation of the key used for DES-MAC computation from
the key used to encrypt the user data is necessary to ensure
that a bogus DES-MAC cannot be computed from message
ciphertext.) A different DEK is used for each mess~ge. To
enable detection of header modification, the user-data field
must include the message header. (Since the header contains
random fields, this requirement has the added benefit of
guarding against chosen plaintext attacks.)

The representation of a two-receiver message, denoted by
message type T2 in Figure 2, differs from messages of type
T1 in that (1) separate pairs of DEK and MAC fields are
included for each receiver, and are encrypted in the
interchange key, IK, that is shared between the sender and
each receiver (e.8., IKAB and IKsc in Figure 2); and (2) the
MAC is the result of computing RSA-MDx over the user
data, where RSA-MDx can be RSA-MD2, MD4 or MD5
[8,9]. If communication between pairs of principals includes
both messages of type T1 and T2, the same IK is used.

2The representation of both the single- and multiple-receiver
messages omits details that are irrelevant to the subject of this
note (viz., [1,2].

. cB
{ DEL-MAC
C Vos=0

c
DEK1 €D FO...F0

—

CBC
IKAB

Ivg=0 [

Message Type T1

Sender
[| sesee

l Recgiver J,Z,;/l %ﬁ% 4

Figure 1.

The Representation of PEM I1essages using DES-MAC *

RSA~-MDx

v

G_\,__J_ﬂ

e
RSA-MDx j RSA-MDx
l v2 l*‘,‘f‘" frecewer] pexa| Ehecksum |R°°°‘é°’l DEK2 Checksum l user mu;l

MDx-Bk1 ' MDx-Bk2

1
MDx~Bk1 MDX=BX2 s e’

S
CBC CBC \ /
IKAB-.'T;.% IKAC 91 DES]
IV 5 =0 B Vo=z09f ¢
“}&- CBC P&~ CBC
:_DzE"Lﬁ—I DES M=K A
c I+ IV ol= [} IV gl=0
CBC
p G~ CBC DE e~
| DESP4 IKAB 3 II\!/(ASo
C IV g=0 0
-
CBC <
DEK>9»| DES
> C
Message Type T2 ,_JL_\ ,_}'H

Seader | Receiver:
I e e 7

I /%ww’(/; Recciéer R 2

Figure 2. The Representation of PEM Messages using RSA-MDx*

Throughout this paper, the notation ENC(key, [V; P1,...Pn)
and DEC(key, IV; ClI,...Cn) represents the DES-CBC
encryption of plaintext PJ,....F .: and decryption of ciphertext
Cl,....Cn with the key key and initialization vector /V. The
notation DES-MAC(key, IV; Pl,..Pn) represents the
computation of the Message Authentication Code of P/.....Pn
with the key key and initialization vector IV, using the Data
Encryption Standard (DES) in Cipher Block Chaining mode
{56].

76

ATTACK SCENARIO

Suppose that principal PA sends a type T2 message to
principals PB and PC. Principal PC intends to use this
message to construct a bogus message of type T1 that would
appear to be sent by principal PA 1o PB (or by principal pB
to principal PA), as illustrated in Figure 3.

pA
@ Constructs and
Sends T2 to P P€

T2
PRZEZ

PC
[2] Receives and
Recognizes T2

PC
greates
ogus
Message T1

[5] Receives and
Recognizes
Bogus Message
T1 as Legitimate

PC

[4] Inserts Bogus
Message T1
into the Network

Figure 3. The Attack Scenario for the DES-MAC Option of PEM

The construction of the bogus message of type T1 is
illustrated in Figure 4. To construct this message, principal
PC uses the encrypted key block, ENC(IK AR, IVo; DEK?),
of the received type T2 message in the place of the encrypted
key block, ENCIK AR, IVo; DEK}), of a legitimate type T1
message sent by PA to PB; both blocks are encrypted under
the interchange key shared by principals PA and PB, IKA B,
which remains unknown to PC. Similarly, principal PC uses
the first block of the encrypted RSA-MDx checksum,
ENC(IKAB, IVo; MDx-Bk1), in the place of encrypted
DES-MAC checksum, ENCIKAR, IVo; DES-MAC), of a
legitimate type T1 message sent by PA 1o PB. Since
principal PC knows the plaintext block of the RSA-MDx
checksum, PC chooses the plaintext blocks P1j...P1j for the
bogus user data so that the result of the DES-MAC
computation over these data equals the first plaintext block
of the RSA-MDx checksum, MDx-Bkl; i.e., DES-
MAC(DEK2 @ F0...F0, IVo; P13...P1j) = MDx-BK1

Principal PC's choice of the first i-1 blocks, P17 ... P1j.1, is
unrestricted. However, to ensure that DES-MAC(DEK, ©

F0...F0, IVo; P1j...P1j) = MDx-BK1, principal PC must

77

choose the last block P1; to equal C2ij-1 @ P1j". To obtain
C2j.1 , PC encrypts the first i-1 blocks, P11...P1;.1, of the
bogus user data under the key DEK9 @ F0...FO and IVo=0;
and to obtain P1j', PC decrypts MDx-Bk1 under key DEK2

@ F0...FO and IVo=0. Principal PC can compute C2;.1 and
P1;' because it knows both the key DEK? and the value of
MDx-Bk1; both are decrypted by PC from the type T2
message received from principal PA under the interchange
key IKAc and IVo=0. However, as illustrated in Figure 4,
the plaintext block P1j would appear garbled since it is
defined as C2;.1 © P1j'". A receiver may or may not find this
suspicious, depending upon the placement of that block in
the message. By using similar choices of plaintext and
ciphertext repeatedly, the placement of the garbled block
within the bogus message becomes unrestricted.

The attack would be successful even if (1) a different block-
cipher algorithm would be selected, not just DES, provided
that the CBC mode would be used; (2) an initialization
vector IVo # O would be used; (3) any known plaintext-
ciphertext block pair that is encrypted under the key shared
by principals PA and PB, IKAB would be used to construct
the DES-MAC for the bogus type T1 message - not just the

i

| Receives Message T2

R el T A e O
~ g

N

PcCreates

Bogus Message
and
Sends it to PB

1

T T

| B S Pli-1 Voo
bogus user data | =0
‘ . FO...FO
D CBC ¢
DES &
Nolo C2i-=
C21" * C2i-
CBC ™
ol udl o Dbghslusbsidizal ®3 DES |
. Vo P

* Pli-1 Pli

| Bl

- >
[V1 ISex;der Receiﬁlerlfﬁ% e
Nt N et \911 """" Cili

.

7kt Ata

C1 i

g
!
)
|
|
}
|
|

2~-BE1
[l

t g”a?cz@ FO...F0

Vo= DES}e [{np
P No=0
CeC [_C |
DEK2 *#» .}PB
| vy v
A p=Nm, N ~
‘ o
[™ I 5°2"" IR°°°‘g°’1 pg@pgs-mc[bogus user data nggsﬂ LD-E;&S
m Pl ‘-1 Pl il
g
pB Recognizes Bogus Message T1 DES-MAC
P

[v o =0

Figure 4. Creation and Recognition of a Bogus Message

pair <MDx-Bk1, ENC(IKAB, IVo; MDx-Bk1)>; and (4) a
separate key per receiver would be used to compute a

different DES-MAC value per receiver.

78

CBGo

P
- -DES=MAC g(DEK)} DES-MAC
Vo v u'b C
1]
[Y
Sender |Receiver] DEK |DES-MAC|DES-MAC| Receiverl DEKlDES-MAqDES-MAC >
l vz I A | 113 l I 1 I 2 l [of 2 user data ¢
\—y— = N ——r’
¢ B
IKAB -9 DES
IV g =09»] C
CB A
DESF®~ [KAB T je-
Sl 1V g0 DESF®- 1Khc
C Vp =0
EJi~ CBC
. CBC DES
[DESke- [KAB ...C_.Q- I:/(A(:'
C V=0 0 0
Message Type T2

v
N Tl T 3 s 7 ¥ i NS RS A

Figure 5. The Representation of Multi-receiver PEM Messages Using

REMOVING THE VULNERABILITY OF THE DES-
MAC OPTION IN PEM

We suggest a two part solution for removing the PEM
vulnerabilities posed by the use of DES-MAC checksums:
the first part is proposed for single-receiver, DES-MAC
checksumed messages, whereas the second part is proposed
to allow use of the DES-MAC checksums for multiple-
receiver messages.

In suggesting a solution, we make three desirable
assumptions. First, we assume that the use of the same
interchange key, IK, for both single- and multiple-receiver
messages should be continued. This removes the task of
acquiring an interchange key for each type of message.
Second, we assume that a single data encryption key, DEK,
is retained for each multiple-receiver checksumed message.
This removes the task of re-encrypting a message for each
message receiver. Third, we assume that the same checksum
value (e.g., DES-MAC or RSA-MDXx) is retained for each
receiver of a multiple-receiver checksumed message. This
eliminates the recomputation of a different DES-MAC for
every receiver.

The three assumptions made above suggest that at least two
known plaintext-ciphertext-pairs would be available, namely
<DEK, ENC(IK, IVo; DEK)> and <checksum, ENC(IK,
IVo; checksum)> for every multi-receiver message. Thus,
any solution must either eliminate these known pairs or must

79

Double DES-MAC

ensure that, despite the presence of known pairs such as
those above, an attacker could not construct a bogus message
that is recognizable within a probability threshold [10].

The proposed solution for single-receiver messages has the
effect of eliminating known pairs. This solution requir.s that
a variant of the interchange key, g(IK), be used to encrypt
the DEK and DES-MAC value for type T1 messages. The
function g(key) should be one-to-one, differ from the
identity function, avoid weak or semi-weak keys, maintain
key parity, change half of the key bits on the average, and
neither weaken the cryptosystem nor unduly increase the
probability of determining the secret key. The function
g(key) = key © FO..FO seems to be a reasonable choice for
this purpose.

As illustrated in Figure S, the proposed solution that scales
well for multiple-receiver messages reduces the impact that
the presence of known pairs under IK (from Message Type
T2 from both that shown in Figure 5 and also from Figure 2)
has on the probability that an attacker can construct a bogus
message. This solution takes the approach that the DES-
MAC function is applied to the user data twice, first with the
key DEK and then with the key variant g(DEK), to obtain a
double DES-MAC. The double DES-MAC and the DEK are
then encrypted under the interchange key of each receiver in
the same way the DEK and the checksum are encrypted in
RSA-MDx messages.

This solution scales up well in the sense that its performance
is independent of the number of message receivers. Also if
IVo is set to be equal to the random IV?, then the separate
encryption of the first DES-MAC component (i.e., DES-
MAC 1) is avoided since it is identical to the last encrypted
block of the user data.

The alternate double DES-MAC solution, using the above
basic format with the exception that DES-MAC 2 is obtained
by computing DES-MAC(g(DEK), IVo; Cj,....Cp) (ie., the
second DES-MAC is computed over the ciphertext of the
user data), is also adequate. In contrast, the altemative where
DES-MAC 1 = DES-MAC(DEK, IVo=0; P1,....,Pn) and
DES-MAC 2 = DES-MAC(DEK, IVo=0; Py.....P1) (e,
DES-MAC 2 is computed over the plaintext in the reverse
direction), which is called the bi-directional MAC in an early
version of PEM [11], is somewhat inadequate. This is the
case because bogus messages consisting of plaintext blocks
(i.e., user data) arranged in palindrome format would be
recognized as legitimate by User Agents. Of course, users
will probably find it suspicious that half of the message
would be garbled.

CONCLUSION

We provide yet another example of the need for using
systematic message-integrity analysis and design methods in
two ways. Successful message-integrity attacks are still
possible against protocol options that are only informally
analyzed. We proposed a solution for the removal of a
symmetric-key vulnerability of the DES-MAC option in
PEM that allows the retention of the DES-based
authentication codes for both single- and muiti-receiver
messages. Since the integrity protection provided by any
message type is largely dependent upon other message types
in the protocol [12], we caution that the security of these
solutions must be re-evaluated should existing message types
change or other message types be added.

ACKNOWLEDGEMENT

We thank John Linn and Dan Nessett for their comments on
an earlier version of this paper. The work reported herein
was supported by IBM Corporation under contracts
YC313314 and MHVC2160. We are grateful to Tom
Tamburo, Wen-Der Jiang, Marty Simmons, Curt Symes,
Tom Russell, and Ping Lin for their continued support and
encouragement.

REFERENCES

1. J. Linn, ““Privacy Enhancement for Internet
Electronic Mail: Part I -- Message Encipherment
and Authentication Procedures, Part II --
Certificate-Based Key Management, Part III --
Algorithms, Modes, and Identifiers,” Internet
Working Group, RFC 1113 - 1115, August, 1989.

80

10.

11.

12.

M. Bishop, **Privacy-enhanced Electronic Mail,”
Internetworking: Research and Experience, Vol. 2,
pp. 199-233, (1991).

J. Linn, “Privacy Enhancement for Internet
Electronic Mail: Part I -- Message Encipherment
and Authentication Procedures," Internet Working
Group, RFC-989, February, 1987.

C. Mitchell and M. Walker, ““Solutions to the
Multidestination Secure Electronic Mail Problem,”
Computers & Security, Vol. 7(5), pp. 483-488,
1988.

Federal Information Processing Standards
Publication 113, Computer Data Authentication,
May 1985 (also, see ISO DP 8730).

American National Standard X9.9-1986, American
National Standard for Financial Institution
Message Authentication (Wholesale), American
Bankers Association, Washington (1986).

D. Abraham, G. Dolam, G. Double, J.
Stevens,,"Transaction Security System," IBM
Systems Journal., Vol. 30, No. 2, pp. 206-229,
1991.

R. Rivest, “"The MD4 Message Digest Algorithm,”
Technical Memorandum 434, Laboratory for
Computer Science, M.L.T., October, 1990.

R. Rivest, "The MD5 Message Digest Algorithm,"
Internet Working Group, RFC 1321, April 1992.

S. G. Stubblebine and V. D, Gligor, *On Message
Integrity in Cryptographic Protocols,” IEEE Symp.
on Research on Security and Privacy, Oakland,
Calif., pp. 85 - 104, May 1992, (also technical
report TR - 2843, University of Maryland, College
Park, Maryland 20742, February 1992.)

J. Linn, “‘Privacy Enhancement for Internet
Electronic Mail: Part 1 -- Message Encipherment
and Authentication Procedures," Internet Working
Group, RFC-1040, January, 1988.

S. G. Stubblebine and V. D. Gligor, “*Message
Integrity Design,” Draft.

TR

Practical Authorization in Large Heterogeneous Distributed Systems
1.G. Fletcher and D.M. Nessett

Lawrence Livermore National Laboratory
Livermore, CA

ABSTRACT

Requirements for access control, especially authorization, in
practical computing environments are listed and discussed.
These are used as the basis for a critique of existing access
control mechanisms, which are found to present difficulties.
A new mechanism, free of many of these difficulties, is then
described and critiqued.

INTRODUCTION

Over the past decade and a half, system researchers have
thoroughly investigated distributed computing, analyzing its
important issues and proposing various ways of treating
them. However, the services they have developed sometimes
poorly fit the problems arising in practical computing
environments. We concentrate on how this is so for
distributed access control.

Access control is implemented through two component
services : 1) authentication and 2) authorization. The
problem of authentication has received significant attention
and we believe the mechanisms developed so far are
adequate in most situations. Consequently, we concentrate
here on distributed system authorization, a problem requiring
more attention.

This paper is organized as follows. First, we analyze the
characteristics of certain practical distributed computing
environments and develop requirements for distributed
system access control. We use these requirements to critique
existing distributed system access control mechanisms,
particularly those aspects related to authorization. We
describe an authorization method that meets our criticisms,
pointing out its strengths and weaknesses and providing a
compromise containment analysis for it. We then describe a
production application that uses our authorization scheme.

ACCESS CONTROL IN PRACTICAL COMPUTING
ENVIRONMENTS

Researchers interested in distributed system security have
extensively investigated the issue of access control. For the
most part, they have concentrated on the problem of
authentication, while on the whole limiting their
investigations of authorization to the smaller sub field of
distributed operating systems. With a few exceptions,

83

architects of distributed systems other than distributed
operating systems have relied on the existing non-distributed
mechanisms of hosts to support authorization.

We believe that much of the previous work on distributed
system authorization rests on assumptions that only rarely
exist in practice. To support this claim, we analyze the
characteristics of a typical distributed system supporting
scientific and engineering applications and in section 3
discuss how existing distributed system access control
techniques fail to operate correctly in the presence of these
characteristics. While it would be appropriate to do so, we do
not analyze systems that are used primarily for business
applications, since we have little experience with them.
However, our intuition suggests that many of the
characteristics we describe are relevant for those systems as
well.

The security environment of a distributed system
supporting science and engineering

There are two classes of distributed application that use
security services. The first class supports system level
activity that is generally administered by system
programmers and carried out to supply infrastructure
services to distributed system customers. The second class
involves computational activity initiated by non-privileged
users, generally focused on solving some scientific,
engineering or other customer related problem. These two
classes of application possess contrasting security traits.
Applications in the first class enjoy extraordinary security
privileges, such as root access. Applications in the second
class generally are not granted special security privileges.

Distributed applications supporting scientific or engineering
work are initiated by customers rather than by system
software or system programmers. Thus, they are an example
of the second class of distributed application. They
customarily grow from a central point and expand out into a
distributed system. As with most distributed applications,
their activity is organized around the client/server model.
However, it is rare for the servers of these applications to
exist prior to the initiation of an application run. Instead,
servers are dynamically created when the application grows
and are terminated when the application finishes. This
pattern of behavior strongly influences which access control
mechanisms are snitable for such applications. Generally,
there must be an unprivileged server (see below) that
permanently runs on hosts and that allows the creation of
dynamic servers running in the context of a distributed

application user. It is the permanent server that makes the
appropriate distributed system authorization decisions.

There is a very large investment in programs that analyze
various scientific and engineering research problems. These
programs use linear system solvers, implicit and explicit
difference equation solvers and relaxation methods to solve
partial differential and integral equations. It is far too
expensive to rewrite this software for a particular distributed
application. Instead, a distributed application must be able to
incorporate this software without modification.
Consequently, scientific and engineering distributed
applications are not at liberty to change the way these
programs do file 1/O, terminal I/O or graphics I/O. While it
is possible to write driver routines that call these programs
and handle communications with other distributed
application components, the underlying system service calls
must not be disturbed.

Heterogeneity is an important characteristic of practical
distributed systems [1, 2]. We are amazed at the number of
designs that ignore this pivotal concern. Heterogeneity exists
in the physical security environment of distributed system
equipment, in the behavior of the organizations that
administer this equipment, in the protocois used within a
distributed system, in the level of vulnerability each host
operating system experiences, and in the security

mechanisms supported by hosts].

Previous work has dealt with security heterogeneity by
organizing collections of similarly trusted hosts into pools
known variously as Domains of Trust [3, 4], Authentication
Domains (5], Inter-Organization Networks [6], Realms
[7.8], and Administrative Domains [2]. Within these
domains, security mechanisms may also display a certain
amount of heterogcncityz. For example, a domain may
support the Kerberos authentication mechanism {7, 8] on
some hosts, while others may rely on the normal UNIX
fetc/passwd file mechanism. Even within hosts, some
applications may support Kerberos authentication (e.g.,
rlogin, rcp, rexec), while others may rely on /etc/passwd
(e.g., Telnet, FTP).

Customer initiated distributed applications face considerable
difficulties when run over resources located in multiple
security domains. They do not have special privileges and
therefore must use infrastructure security services provided
by the domains. While there are authentication facilities
available to accommodate multiple security domains [7, 8,
9], existing authorization mechanisms require either

! Some may reject our thesis that a distributed system experiences
heterogeneity in host security mechamsms. since we postulate the
pervasive use of UNIX. However, variants of UNIX do not all support
exacily the same security mechanism, For example, many versions of
UNIX allow any user to obtain the contents of the etc/passwd file, while
others hide its contents from public view.

2 The work described in 2] argues agamst this practice. The defmition of

Administrative Domain given there insists that all constituent hosts use
the same security mechanisms.

84

transmitting a user’s password in the clear over a potentially
hostile network, or the installation of software, such as a
Kerberized or DASS-enhanced rexec daemon, that requires
root privilege. Generally, system administrators are reluctant
to install software provided by customers that require root
access. Consequently, if systems on which the non-
privileged distributed applications execute do not support the
appropriate root privileged software, customers are forced to
use dubious security practices, such as storing their
passwords in files and passing them in the clear through
vulnerable intermediate computing and switching equipment.
A practical distributed system authorization method should
eliminate these security hazards.

Most current distributed computing is what might best be
described as network computing. Generally, hosts in the
distributed system act as independent computing agents that
retain a significant identity from an application’s standpoint.
While distributed operating systems may provide a more
coherent and an ultimately superior performing base for
distributed applications, so far, they have not been highly
successful in the marketplace. Our own distributed operating
system, LINCS [4, 10], failed not for technical reasons, but
rather because we could not afford to support it as a unique
LLNL specific product. Nothing is currently available from
computer system vendors that provides its functionality.

Our experience with LINCS leads us to conclude that
network computing will remain the predominant distributed
computing model for some time to come. This means that
distributed system support must be built on top of existing
host operating systems, which today are largely some
variation of UNIX™,

Given the ubiquity of UNIX, we are forced to consider its
security properties. Most fielded UNIX operating system
implementations contain significant security hazards.
Moreover, there are few if any mainstream UNIX operating
systems for state-of-the-art computing equipment evaluated
according to the Trusted Computer System Evaluation

Criteria [1113. We don’t have much confidence in the idea
that this situation is about to change. Consequently, we
believe any distributed system security mechanism must
operate in an environment in which the constituent hosts
have intrinsic vulnerabilities. To be more precise, we believe
that when a host compromise occurs, the security
mechanisms should be architected to minimize the number
of compromised resources and provide some kind of
compromise containment support. Along these same lines,
when system administrators discover a misbehaving user,
they should be able to quickly and efficiently revoke that
user’s privileges to distributed system resources.

3 Even if there were, we don’t have a high regard for such evaluatios, since
they do not raise our confidence adequately to justify their cost.
Furthermore, once evaluated systems are placed in the field, many of
their handling constraints, such as the prohibition against customer
operating system mod:ﬁcauons are impractical. We have other criticisms
of the whole concept of evaluated systems, but this is a topic for another
paper.

Requirements for distributed system access control
mechanisms

We use the characteristics described above to develop
requirements for distributed system access control.
Specifically :

1) Access control facilities must not require existing
scientific program modules and equations solvers to be
modified. If these programs access stand-alone system
resources, such as files, terminals, graphics equipment,
etc., they must be able to do so in exactly the same way
when they are integrated into a distributed application.

2) The support of customer initiated scientific distributed
applications requires that the access control mechanisms
operate without root privileges.

3) Distributed system access control must operate on
systems running Unix.

4) Distributed system access control must operate in an
environment of vulnerable hosts. When a host is
compromised, the access control software must not allow
the intruder to compromise the complete distributed
system.

5) When system administrators discover a misbehaving
user, the access control mechanisms must allow them
quickly and efficiently to revoke his access to distributed
system resources.

6) Access control facilities must nct encourage users to
engage in unsound practices such as storing unencrypted
passwords in files or transmitting them in the clear over
networks.

7) Access control must operate in a heterogeneous
environment. It must work across multiple domains that
may support different underlying access control methods.

A CRITIQUE OF EXISTING ACCESS CONTROL
MECHANISMS

We investigate some popular distributed system access
control mechanisms either in use or proposed to determine
whether they meet our requirements. While our focus is
authorization, some of our requirements are affected by the
authentication service used for access control, so we briefly
analyze several authentication schemes from this
perspective. We concentrate on Kerberos [7, 8], DASS [9]
and /etc/passwd based authentication.

Most distributed system access control schemes can
incorporate any of the authentication mechanisms named

82
(%,]

above. However, fetc/passwd based authentication requires
the transmission of a password in the clear from the client to
the server, which violates requirement 6. Both Kerberos and
DASS support authentication without transmitting cleartext
passwords, so these authentication strategies are preferable
for our applications.

Existing distributed system authorization mechanisms fall
into one of two categories : 1) access control list based, or 2)
capability based. Most distributed operating systems that
have been developed so far have used capabilities. However,
the majority of distributed system software used in practical
computing environments uses access control lists, so in this
critique we focus on that technology.

Access contro] list systems also fall into two categories : 1)
those that hold the access list information in a file or
database on each machine (per machine database
authorization), or 2) those that hold all or part of this
information on centralized servers (centralized database
authorization). The most common approach to distributed
authorization uses the authorization information maintained
by host operating systems, which is a per machine database
strategy.

Systems that use a centralized database for authorization data
include Moira [8], the proxy-based ticket approach
developed for Kerberos [12] and the DCE authorization
mechanism [13]. The Moira approach, developed for Project
Athena, keeps authorization information on a centralized
server. This information is distributed to individual servers
on a periodic basis. Servers use this data to make
authorization decisions after a user has been authenticated by
Kerberos.

The proxy-based ticket approach is based on the use of
Kerberos tickets that are passed between principals. An
authorization server, to which servers grant fuil access rights,
creates restricted proxy tickets for principals according to
authorization information it retains. Within the ticket may be
information that restricts its use in some way. A principal
proves its has obtained the ticket in a legitimate manner by
carrying out a protocol with a server that uses the session
key the ticket contains. This key is passed between principals
when the ticket is passed.

Systems running DCE software from Open Systems
Foundation authenticate the user using a Kerberos protocol
exchange, the established identity being used for
authorization decisions. DCE also supports a registry service
that maintains the set of groups to which a principal belongs.
This information is sealed in a Privilege Attribute Certificate
and passed from client to server in support of authorization.
Each DCE server is configured with DCE's access control
list software that maintains full access lists for each resource.
These lists contain entries that identify a user, a group and
other information along with permission data for these
identifiers. Since an access control list can contain multiple

entries, more fine grained control is supported than can be
achieved with standard Unix perrnission bits. Moreover, a
proposal to support access rights delegation is currently
being studied as an enhancement to this scheme.

Layered authorization

Independent of where the access control information is
stored, distributed system authorization services may be
implemented in one of two ways. The first approach layers
the distributed authorization mechanism over existing host
authorization services. The second assumes all distributed
system resources are managed and owned by servers, which
multiplex their use among the server’s clients.

Currently, most fielded authorization systems rely on the
access list mechanisms supplied by host software. For
example, a host authenticates a user through a service such
as Kerberos, DASS, or by use of its own /etc/passwd file and
from this obtains a local user identifier (uid). Then the
authorization mechanism changes the security context of the
executing process through the setuid system call, using the
uid as input.

Layering distributed system access control over existing host
authorization services allows program components such as
existing system solvers to access stand-alone system
resources without modifying their code. Thus, a layered
approach satisfies requirement 1,

However, most layered authorization schemes require the
software supplying distributed access control services to run
as root. Thus, requirement 2 is not met by these approaches.
Below we describe a layered authorization technique that
does not use root privileges.

The layered approach meets requirement 3, since it utilizes
distributed system authorization on each machine and we
assume hosts support some variant of Unix. Its resistance to
host compromise rests principally on the resistance of the
authentication mechanism to this threat. Kerberos and DASS
authentication mechanisms are relatively robust in the face
of host compromise. Users that directly enter their Kerberos
or DASS passwords on compromised machines are
themselves compromised. The proxy-based ticket approach
has the additional vulnerability that servers on compromised
hosts possessing forwardable tickets allow them to be
compromised. However, in a large distributed system these
compromises give the intruder access to a small proportion
of the total distributed system resources. Compromise of the
Kerberos authentication and TGT servers compromises the
whole distributed system, but these are special systems that
may be strongly protected using high-grade physical and
operational protection strategies. The use of /etc/passwd
authentication is also fairly robust when a host is
compromised, since users entering their passwords for other
hosts are compromised on those hosts, but generally this

86

does not compromise the whole distributed system.
Consequently, requirement 4 is met by most of the popular
authentication mechanisms.

If the authentication mechanism allows the quick removal of
users from its databases, which is true for Kerberos and
DASS, then requirement 5 is met. However, if the
fetc/passwd mechanism is used, quick revocation is unlikely,
especially in a large distributed system.

As specified above, only layered authorization mechanisms
that rely on Kerberos or DASS satisfy requirement 6. Those
that rely on /etc/passwd authentication fail in this regard.

Requirement 7 generally isn’t met by most layered
authorization schemes, because they do not interoperate with
each other. For example, a user operating under an
fetc/passwd based scheme cannot access resources in other
domains controlied under a Kerberos based scheme. While
there is an effort underway to harmonize Kerberos and
DASS authentication, such a facility still will not
interoperate with an /etc/passwd based facility.

Server-centric authorization

It is possible to design a distributed system authorization
mechanism that does not rely on the authorization
mechanism of hosts. Specifically, resources on the
underlying machine can be owned and managed by a server,
which multiplexes them among its clients (server-centric
authorization).

Server-centric authorization doesn’t meet requirement 1,
since access to distributed system resources occurs not
through system calls, but rather through server requests. This
implies that existing libraries and programs must be
modified to use resources managed by distributed system
servers,

However, server-centric authorization does satisfy
requirement 2. Servers multiplex access to stand-alone
system resources, relying on the host operating system
authorization mechanism to grant them access 1o the
resources they own. This does not require root access
privileges. Furthermore, this approach will operate on any
Unix operating system, so requirement 3 is satisfied.

The compromise of one host may or may not compromise
other distributed system hosts depending on how the
authorization mechanism operates. It is possible to devise a
server-centric authorization method that has good
compromise containment properties. For example, the
LINCS distributed operating system used the server-centric
approach for its Unix guest file server. Since files were
accessed through capabilities, the compromise of one host
only compromised those files with capabilities on that host.

If the server-centric authorization mechanism relies on an
appropriate authentication mechanism, such as Kerberos or
DASS, then system administrators can quickly revoke a
misbehaving user’s access control rights. Consequently,
requirement 5 can be met.

This approach gives the access control architect the
flexibility to create a mechanism that does not encourage the
user to engage in unsound security practices. For example,
LINCS guest file server capabilities can be protected against
both forgery and theft.

Finally, server-centric authorization can easily be made to
work in a heterogeneous environment, since the difference in
access control mechanisms are hidden by the server
implementation. In effect, each server acts as an access
control gateway, translating from the distributed system
access control mechanism into the access control mechanism
used by the host. Of course, if the server-centric mechanism
is to operate between domains that use different
authentication schemes, such as Kerberos or DASS, then
either the servers must be instrumented to handle all such
authentication mechanisms or there must be authentication
gateways that translate from one scheme to another. This last
approach is being taken in the effort to harmonize DASS and
Kerberos.

Critique summary

Both the layered and server-centric approaches to
authorization present difficulties when used in large practical
distributed systems. Server-centric authorization imposes
burdens on existing software, requiring it to be
reimplemented for use in distributed applications. Most
schemes that layer distributed system authorization on host
authorization require servers to run at root and do not
adequately cope with heterogeneity.

In the next section a layered authorization mechanisms is
described that does not require root privileges and that
accommodates heterogeneity by supporting several different
authentication mechanisms concurrently. This is done in
such a way that it also presents good compromise
containment properties,

A PRACTICAL AUTHORIZATION SCHEME

The authorization technique described here is used by
Remoxe, a remote execution service for Unix developed and
in use at the Lawrence Livermore National Laboratory. A
Remoxe server executes as a daemon on each computer
where the service is provided. A client process on any
computer can send to a server (generally on a different
computer) a message asking that it execute some application.
The client and the application may then communicate either
through the server (in which case the application thinks that

87

it is dealing with a controlling terminal) or directly (using
sockets). The executing application has access to a context
chosen by the client, where a contexi consists of the
resources available to a particular user on the service
computer. This choice of what constitutes a context is
dictated by the nature of typical Unix systems; it could
readily be modified for systems with other forms of local
access control (such as capability-based systems). The
access to a context is authorized without a password having

to be typed.

Access lists and capabilities are frequently described as
alternative means for authorizing access to resources.
However, particularly in a distributed environment, the
techniques are often complementary and are used together.
For example, consider conventional remote access using
such facilities as telnet or ftp. Access lists on the service
(remote) computer {typically in the rather coarse-grained
form of owner, group, and world access permissions) are
used in connection with a user name and password provided
from the client (local) computer. The user name and
password together effectively constitute a capability, a coded
record that establishes the client's relationship to the access
lists (by defining and verifying the owner's identity).

Remoxe makes use of a capability we call a xap (execution
access protector, pronounced "zap"). It is a coded record
that is originally generated by the server and sent to the
client 1o be stored until needed. It is sent back to the server
as a parameter in messages requesting remote execution or
other action. It identifies and authorizes access to a context
and includes the following information:

« the TCP/IP address of the Remoxe server for which the xap
is valid,

« the local user name associated with the context on the
service compuyier,

* permission buis,

« authentication information (e.g., a GSSAPI global name),
and

« a DES encryption key for the local password associated
with the user name.

One permission bit enables remote execution; the others
enable various "housekeeping™ actions in regard to the xaps
themselves, such as issuing additional ones or revoking
existing ones.

A xap should be kept in a safe place, such as in a file
accessible only by the user (owner), on a client computer
that has a secure operating system. This last condition
especially is difficult to meet for all too many Unix systems.
So there may be a problem of xaps being stolen, that is,
illicitly copied. The purpose of the authentication
information is essentially to provide a degree of protection
against the theft of a xap by limiting the effectiveness of the
xap to situations in which additional information is also
supplied, authenticating that the client has the right to use the

xap. Each xap employs one of three authentication options
(listed in order of increasing security):

« No authentication is required. So there is no protection
against theft: a purloined xap may be used by the thief (or
anyone else) from any client computer. This option is
provided only as a last resort for situations (we hope that
there are none) where the other options are infeasible or
(would that it were so!) where there is no danger of theft.

« The use of the xap is limited to a particular client computer
(more precisely, a particular client IP address). The thief
cannot hide himself in a distant part of the network while
he misuses the xap. This option is provided for use where
the necessary infrastructure for the next option is not
available.

« The use of the xap is limited to the user with a particular
global name as defined by an anthentication system based
on GSSAPI (namely, Kerberos or DASS). The xap must
be accompanied by the evidence (context token) required
by that system for establishing that the user has that name,
and the degree of protection depends on how secure that
system is. This is the preferred option.

The 64-bit local password encryption key appears in a xap
exclusive-o:'d with a DES cryptographic digest computed
using all the other information in the xap and a master key
that is known only to the server. The xap thereby not only
conceals the encryption key, but also is protected against
forgery. Anyone trying to generate a xap (either out of
whole cloth or by altcring a few bits, such as permission bits,
in a valid xap) has only one chance in 264 of correctly
rendering the encryption key (effectively only one in 256
because of the way DES uses keys). When a user first
establishes himself with the server, at which time he must
supply his local user name and password for the service
computer (but not a xap) in a secure manner, the server
randomly generates an encryption key just for that user. The
key is then used to encrypt the user's local password. The
server stores the encrypted password (in association with the
local user name) in its records with sufficient redundancy
that it can with high confidence recognize an improperly
decrypted password before attempting to use it. The server
remembers neither the unencrypted password ror the
password encryption key, but it includes the latter in a xap
which it issues to the new user (Fig. 1).

Therefore the server can obtain the password only when a
client provides a valid xap. This means that compromise of
a user's password requires "breaking into" both the user's
records on a client computer und the server's records on the
service computer. It is our view that such is an obstacle
sufficient to render Remoxe acceptably secure.

88

E
Pnem:‘ed

Addreas, XORed
authentication info| =

L)

Figure 1. Concealment of password, using xap.

There are "housekeeping” chores in dealing with xaps.
Remoxe provides for establishing a new user with the server
and issuing the initial xap, for issuing additional xaps that
may have reduced permissions and/or differing
authentication information (in particular, allowing access
from a different client computer), for changing the password
on the service computer (both as known to Unix and as
known to the server), for revoking all the user's existing xaps
(by changing the password encryption key) and issuing a
new xap to replace them, and for deleting the user from the
server's records (which of course also effectively revokes all
existing xaps). Note that, since the content of a xap does not
depend on what the password is, changing the password does
not affect the validity of existing xaps.

It is possible for each user to have a Remoxe server of his
own, running on a service computer with its own "well
known" TCP port (that is, a fixed port number that can be
"built into" client programs). However, the user then
assumes the burden of installing his server and assuring that
it is always up and running. Also, there is an inefficiency in
having many separate servers on a computer, all performing
basically the same job. So the intent is that there be only a
few Remoxe servers (often just one) on each service
computer, each installed and maintained by a single user, its
sponsor. This user owns and could access the files in which
the server keeps its records. He therefore must be someone
who can be trusted by the other users not to abuse his
position and invade their privacy by either misusing the
records himself or through carelessness letting them be
accessed by others. That is, each server and its sponsor
corresponds to a community of trust. The sponsor could be
the "superuser”, but we have not required this, because we
want a user to be able to install and begin using Remoxe
without waiting for an administrative bureaucracy to give its
approval and then take action. The server's records are kept
in files in a subdirectory of its sponsor's home directory; this
directory is created when the sponsor installs the Remoxe
server. The records are accessible only by the sponsor, who
is their owner.

When a client requests the running of an application, it sends
the server a xap accompanied by any necessary
authentication information. The server verifies the
authentication information (e.g., by calling the appropriate
GSSAPI procedures) and also decrypts and verifies the
password in the xap (Fig. 2). It then forks a process but does
not directly "exec" the application. Instead, it "execs" the
standard privileged Unix utility su and delivers the user's
name and password to it as input. After su has converted the
forked process into a shell associated with the user's id,
additional input effects the "exec" of the desired application.
In this way the application runs with the environment and
access rights of the user, rather than with those of the
SpOnSsor.

Server Records
En ted
[aster o] Encyete
“""'- XORed AP
e e onty| Pessword Key

5L

Figure 2. Recovery of password, using xap.

This rather roundabout, complex, and no doubt inefficient
technique for establishing the proper context is necessitated
by the peculiarities of Unix. Perhaps the designers of future
operating systems will consider the following suggestions:

» The natural way for a program to interface to the operating
system is through a privileged procedure (system call),
rather than by forking and "exec’ing”. So there should be
a privileged procedure to which one can pass a user name
and password (or other system specific access control
information) and which will then set the user id to that of
the user. Similarly, there should be a privileged procedure
for changing a password.

« In fact, there should be a simple, direct way without
administrative intervention for any user to establish a
service and for other users to be able to grant that service
such access to their resources as they choose. They should
not have to grant this access in an "all or nothing” fashion,
but should be able to adhere to the principle of least
privilege. (A capability-based system would achieve this.)

An analysis of remoxe authorization
We briefly analyze the advantages and disadvantages of the

Remoxe authorization method and then provide a crude
compromise containment analysis. Servers, such as Remoxe,

89

that wtilize our authorization technique can be brought up
immediately on any machine on which the user(s) have
accounts. No system administrator help or approval is
necessary. If the distributed system hosts are configured to
accept a global password for local authentication, such as a
Kerberos or DASS password, users need only remember one.
This reduces the possibility of password compromise and the
inconvenience associated with reissuing passwords that the
user has forgotten. The Remoxe authorization scheme
provides these advantages along with security that is at least
as good, if not better, than other approaches.

One disadvantage of the Remoxe authorization scheme
stems from one of its advantages, the lack of involvement of
a system administrator when bringing up permanent servers.
Without root privilege or system administrator help, keeping
these servers up across system crashes is problematical.
Normally, permanent servers are brought up at reboot based
on an entry in the rc.local file. Since this file is owned by
root, this technique is not available to the unprivileged user.

We are exploring use of the “At” utility to overcome this
problem. In particular, a non-privileged server or a
“persistence daemon” can periodically call “At” to schedule
a check that the appropriate servers are still running. If the
check fails, the server can be restarted. However, this
approach requires that the activity scheduled by “At” survive
across system crashes. This may or may not be true,

- depending on the particular variation of Unix on which the

Server runs.

The Remoxe authorization method has quite good
compromise containment properties. If an intruder gains
access to the files in which the Remoxe server master key
and encrypted passwords are stored, these cannot be used,
since the intruder lacks the Xaps that contain the keys to the
encrypted passwords. If the intruder obtains a Xap, either by
reading it from an improperly protected file on a client
machine or by capturing it as it travels over a network, it
cannot be used (assuming the GSSAPI authentication option
is employed) since the intruder cannot manufacture the
necessary time-limited credentials required by the supporting
authentication technology.

If an intruder obtains root access on the server machine, he
has compromised all resources on it. He need not take
advantage of servers using the Remoxe authorization
scheme. However, if he manages to compromise a sponsor,
he gains access to the resources of all other users that have
entrusted their access rights to the server the sponsor
controls. This is a good reason for supporting several servers
on a machine, one for each community of interest that runs
there,

If an intruder obtains root access on a client machine, he can
wait for its users to type their global (i.e., GSSAPI-based
authentication) passwords and thereby compromise their
resources in the distributed system, This would be true

whether Xaps are stored on the machine or not.
Consequently, the Remoxe authorization scheme does not
introduce any new vulnerabilities for this situation. In fact,
since the intruder may not have access to all the users Xaps,
i.e., those stored on other systems, the Remoxe scheme
potentially can lessen the damage caused by a client machine
compromise.

USE OF REMOXE

The need for Remoxe originally arose from the following
typical situation: A user has a number of source files that he
maintains and edits on his workstation, which offers him
convenience, economy, and high interactivity. However,
many of the sources are intended to be compiled and
executed on a supercomputer, which offers power. After
editing, the user transports the updated sources tu the
supercomputer and there compiles and executes them. He
would like to have the required updating occur automatically
in response to a single, simple typed command, such as
"make".

The standard Unix utility make, used in conjunction with
standard utilities that provide remote access, such as ftp,
telnet, and rsh, would seem to provide the required facility.
That is, make would invoke fip to transfer the sources to the
supercomputers and then invoke telnet or rsh to execute
remotely the compiler, other utilities, and the compiled
applications. However, there are two difficulties:

e Make makes decisions based on the exit status of the
programs that it runs, which is not available for programs
run remotely by telnet or rsh.

« Each time that make invokes a utility providing remote
access, that utility prompts and waits for the input of a
password, severely inconveniencing the user and requiring
his continued attendance at the terminal; it would be
difficult to view the activity as truly automated. Common
means of circumventing this problem, such as identifying
oneself as "anonymous" or "guest”, making appropriate
entries in the .netrc or rhost files, and/or using the
Network File System (NFS), open up privacy or security
loopholes that are often unacceptable. These remarks also
apply to use of the standard utility rdist.

A client utility has been provided for use with Remoxe that
avoids both of these problems. In regard to the first
problem, the protocol between the client and server is such
that status information is returned after each remote
execution; this status is in turn returned as the status of the
client. To effect execution on a supercomputer, make
invokes the client utility, which then (through the remote
server) invokes the remote application. Make will then
correctly interpret the returned status os that of the
application.

90

There is no need for passwords, because authorization is
effected using xaps appropriate to the remote servers. (In
fact, the xaps specify which remote servers — which remote
computers — are to be used.) These xaps are fetched from
files specified in the commands to the client. The client also
carries out any needed GSSAPI-based protocol. In addition,
a file transfer utility has been provided to be run under the
control of the server. Files may be transported between this
utility and the client. A sample commented makefile for
remote execution is displayed in Fig. 3. Note that make
invokes a second, remote make.

This makefile effects the remote compilation and
execution of the application "test", which tests a subroutine

package.

The directory "shadow" contains empty shadow files,
one for each file that is to be sent to the remote computer.
These files "stand in" for their remote counterparts when
"make" tests their ages. After a file is sent, its shadow is
aged by using "touch™”.

The client utility is "clnt"; "-f sc” specifies that the xap
#is to be found in the file "sc", and "-d dir" specifies that
remote execution is to occur in the directory "dir". The
remote commands are "make" and "test", the former

referring to a remote makefile that should effect the

compilation of the three ".c” and ".h" files into the

executable file "test".

update: shadow/test.c shadow/subrs.c shadow/subrs.h
cint -f sc -d dir make
cint -f sc -d dir test

Before the remote "make" fs invoked, any updated ".c”
and ".h" files are transported using the remote utility

"rmx", which interprets "put xxxx" 2s a request to have

the file "xxx.x" sent from the client to the remete computer.

shadow/test.c: test.c
cint -f sc -d dir rmx put test.c
touch shadow/test.c

shadow/subrs.c: subrs.c
clnt -f sc -d dir rmx put subrs.c
touch shadow/subrs.c

shadow/subrs.h: subrsh

cint -f sc -d dir rmx put subrs.h
touch shadow/subrs.h

Figure 3. A sample simple makefile.

ACKNOWLEDGMENTS

"Work performed under the auspices of the U.S. Department
of Encrgy by the Lawrence Livermore National Laboratory
under contract number W-7405-ENG-48."

|.\-A|H

N

-

10.

11.

BIBLIOGRAPHY

D. M. Nessett, “Factors affecting distributed system
security,” IEEE Transactions on Software
Engineering, vol. SE-13, no. 2 Feb., 1987, pp. 233-
248.

D. M. Nessett and G. M. Lee, “Terminal services in
heterogeaeous distributed systems,” Computer
Networks and ISDN Systems, Vo. 19, pp. 105-128,
1990, Elsevier Science Publishers B.V.,
Amsterdam, The Netherlands.

J.G. Fletcher, “Software Protection of Information
Networks,” Infotec State-of-the-Art Report, Future
Network, vol. 2, 1978, pp. 149-164.

R.W. Watson and J.G. Fletcher, “An Architecture
for Support of Network Operating System
Services,” Computer Networks, vol. 4, Feb., 1980,
Elsevier Science Publishers B.V., Amsterdam, The
Netherlands, pp. 33-49.

D.M. Nessett, “The Inter-Authentication Domain
(IAD) logon protocol (Preliminary specification and
implementation guide),” Lawrence Livermore Nat.
Lab. Rep. UCID-30207, 1984.

D. Estrin, “Non-Discretionary Controls for Inter-
Organization Networks,” Proc. IEEE Symposium
on Security and Privacy, IEEE, Los Alamitos, CA.,
April, 1985, pp. 56-61.

J.G. Steiner, C. Neuman and J.I. Schiller,
“Kerberos: An authentication Service for Open
Network Systems,” Proc. Winter Usenix Conf.,
Usenix Association, Berkeley, CA., 1988, pp.191-
202.

S.P. Miller, B.C. Neuman, J.I. Schiller, and J.H.
saltzer, “Kerberos Authentication and
Authorization System,” section E.2.1 of Project
Athena Technical Plan, MIT, Dec. 1987.

J. Linn, “Practical Authentication for Distributed
Computing,” Proc. IEEE Symposium on Research
in Security and Privacy, IEEE, Los Alamitos, CA.,
May, 1990, pp. 31-40.

1.G. Fletcher and R.W. Watson, “Service Support in
a Network Cperatng System,” CcmpCon 80,
Spring, 1980.

“Department of Defense Trusted Compter System
Evaluation Criteria,” DOD 5200.28-STD,
Deparimer. of Defense, Washington, DC,
December, 1985.

ot K | Lk r

12.

13.

B. Clifford Neuman, “Proxy-Based Authorization
and Accounting for Distributed Systems,”
University of Washington Technical Report 91-02-
01, Department of Computer Science and
Engineering, University of Washington, FR-35,
Seattle, Washington.

“OSF DCE 1.0 Application Development Guide;

Revision 1,” Dec. 27, 1991, Open Software
Foundation, Cambridge, MA.

Nt i] ' -

Extending the OSF DCE Authorization System
to Support Practical Delegation

Marlena E. Erdos
Joseph N. Pato

Hewlett-Packard Co.
Chelmsford, MA

ABSTRACT

In a simple client/server distributed environment, two
principals are involved in most transactions - the initiator
and the target of the operation. The target of the operation
can reasonably make authorization decisions based on the
identity of the initiator. This model is insufficient, however,
when the server performs operations on other components on
behalf of the initiator as is common in distributed object
oriented environments. This paper will describe the need for
a delegation facility in distributed object oriented systems
and then present some elements of the delegation system
we've proposed for inclusion in OSF's Distributed
Computing Environment (DCE).

INTRODUCTION
The need for a delegation facility

In a distributed object oriented environment, intermediate
objects hide the details of complex system interactions.
These intermediate objects receive high level requests from
initiating clients and perform some series of low level
operations on a number of other services. Unfortunately the
interposition of the abstracting object prevents the target
services ficm securely determining the identity of the
initiator of the operation. All requests arriving at the target
services appear to be the action of the intermediary rather
than the true initiator.

The inability to determine the true initiator of a request has a
chilling effect on the design of distributed systems. The
designer of an intermediate service is forced into a set of
unsatisfactory design choices. The service may be
implemented as a local process that runs with th~ identity of
the initiator, but loses the benefits of distribution.
Alternatively, it may retain distribution but then it must run
as a privileged principal that has full access to all services it
atstracts. This solution has the disadvantage of forcing the
abstracted services to trust that the privileged intermediary
will make correct access control decisions on their behalf. A
third unsatisfactory approach is the use of an 2lternate set of
target service interfaces that allow an authorized principal to
specify the principal on whose behalf the operation is really
being performed. This solution comes at the cost of

93

redundant interfaces that expose the details of privilege
attributes to the application protocol. Finally, the service
may he implemented in a way that impersonates the initiator
- where the initiator transmits to the intermediary service
the credentials (tickets and keys) necessary to be
indistinguishable from the initiator. This final approach is
much like a non-distributed application - but the mere fact
of distribution (and in the DCE the high degree of location
transparency) makes it so that this greatly increases the risk
to the client of being compromised by a Trojan horse
application.

To solve this problem adequately, some form of delegation is
required. We've have proposed a delegation architecture and
design to OSF for inclusion in the DCE {1]. This system is
described below.

Delegation system

Our delegation architecture has three major components:
First, we allow an intermediary to operate on other objects in
a manner that reflects the initiator's identity as well as its
own. A target server rece. g such a chained request would
see the privilege attributes of each participant in the chain.

Second, we extend the authorization model to allow target
servers to make use of the distinction between initiators and
intermediaries. Target servers may grant rights to principals
acting as intermediaries on behalf of authorized initiators
without granting rights for those prinicipals to act on their
own.

Lastly, we allow clients performing operations to place
restrictions on the uses of their identity in chaned calls. A
client may choose to entirely disallow delegation or to limit
which principals may use the client identity in a delegated
I anner.

The delegation design uses composition of privilege
attributes to realize identity chaining, additions of new ACL
entry types to reflect the initiator/intermediary authorization
distinction, wad extensions to the security API to allow
clients to control Jelegation of their identity. This paper will
further discuss the delegation architecture and design, and
then present some low-level extensions to existing DCE
elements and mechanisms for accomplishing the
implementation.

ASPECTS OF THE EXISTING DCE

In the basic DCE environment [2,3], access to a resource is
managed by an application server which is the reference
monitor for the resource. When a client attempts to perform
an operation on the resource, the reference monitor examines
the client's identity and compares it to control attributes
associated with the resource. The client's identity is
represented by a set of privilege attributes (PAs) and the
control attributes are stored in an access control list (ACL).

Privilege attributes are the collection of information about a
principal that is used by the authorization system when
determining if access to a resource should be granted. These
PAs are limited to the unique identifiers representing the
initiating principal and the set of groups to which the
principal belongs. A trusted system component, the Privilege
Server (PS) [4], produces a tamper-proof privilege attribute
certificate (PAC) that contains the PAs and is suitable for
presentation by a client to a server. By relying on PACs for
the identity of a caller, we place the same degree of trust in
the Privilege Server that we have already placed in the
authentication component of the distributed system. A
compromised Privilege Server will be able to generate PACs
that impersonate any legitimate user.

Collecting privilege attributes into a certificate that can be
presented by the client to a server has the benefit of allowing
servers to make authorization decisions locally without the
need of contacting trusted system services to obtain privilege
attributes for the client principal. In addition this model
allows the client to choose the set of privileges to be used
during a given session.

The emerging next generation of the DCE evoives the PAs
supported to be closer to the capabilities found in ECMA
[5,6]. This change allows for greater flexibility in the
authorization models available to the distributed system, and
of particular interest to this paper - provides a vehicle for
recording delegation information.

ARCHITECTURE & DESIGN OF DELEGATION
Intermediaries and Chained identities

A server acts as an intermediary or delegate when in order to
fulfill an operation a client made on it, it must perform one
or more operations on other objects. We say that these
subsequent operations are performed on behalf of the client
as part of a chained call. Ail chained calls are performed
with a chained ideniity.

We represent chained identities using the conventional
notation [7,8.9]

foo FOR bar

94

This means that principal foo is acting on behalf of principal
bar. When more than one intermediary is involved in the
chained call, the identities of all participants are reflected in
the chained identity. In general,

DelegateN FOR DelegateN-1 FOR ... FOR Initiator

means that principal DelegateN is acting on behalf of
principal DelegateN-1 which is acting on behalf of principal
DelegateN-1 extending back to the initiating client (aka
initiator) which is acting on its own behalf.

Identity is represented by a set of privilege attributes (PAs).
Logically, a chained identity is represented by an ordered
array of PA sets, with the PA set of the initiator
distinguished from those of intermediaries.

Each object acting as a client may choose whether or not it
wishes to allow the immediate target to use its (the client's)
PA set in a call chain. In other words, each client
enables/disables delegation of its identity. However, the
determination that a given call is part of a call chain is up to
the intermediary and is dictated by the semantics of the
situation. We'll discuss the consequences of a mismatch
between what a client allows and what an intermediary needs
to do in when discussing restrictions on the flow of identity
below.

Authorization model at the target

Each server has one or more access control lists (ACLs).
ACLs, as found in Posix or DCE [10], contain entries that
identify the access rights granted to principals bearing
certain PAs. To support delegation, the target server
effectively grants one set of rights to initiators and another
set to intermediaries.

We realize this distinction by extending the standard ACL
entries for principals, groups, etc. with a corresponding set of
entries that apply to principals and groups acting as
intermediaries. These delegate entries grant intermediary
rights i.e., the ability to act as an intermediary for an
operation, but do not grant the ability to operate on the target
object directly.

While authentication of an operation is done automatically
by the security runtime at the server, authorization is only
performed if the server application code explicitly invokes
the authorization facilities. Whether a call is done with a
chained identity or not is transparent to the server application
code, however the authorization facilities go through
additional checks when presented with a chained identity.

For both simple and chained identities the authorization
facilities first determine whether or not the initiator is
authorized to perform the operation. They do this by
examining the standard entries - and only these entries -
on the ACL when calculating the initiator's rights. Initiators

N TR

il

don't - and can't - expand their access through use of
intermediaries; at best, intermediaries won't degrade access
that the initiator has on its own. The initiator of a chained
operation must have rights to perform the operation directly
or the operation will be rejected.

If the initiator passes the authorization check and the call
was chained, then the authorization facilities next check the
PAs of each intermediary in the chain. Each delegate must
have sufficient rights to act as an intermediary for the
operation or the authorization facilities will return an
authorization failure indication to the server application
code. A delegate is deemed to be authorized if its PA set
gives it either initiator rights or delegate rights for the
operation. In other words, any principal that can perform an
operation directly is implicitly authorized to be an
intermediary for the operation. The access control algorithm
is presented in Figure 1.

(i) Check Initiator:
Apply standard algorithm

IF access mode is denied THEN
Deny Access
ENDIF

(ii) Check Each Intermediary:
FOR EACH Privilege Attribute Set IN Extended
PAC DO
Apply standard algorithm (allow delegate
entries)
IF access mode is denied THEN
Deny Access
ENDIF
END

(iii) Grant Access
Figure 1: Access control algorithm for delegation

Note that the order of intermediaries, the topology of the
call-chain, is not relevant in the access control decision.

Client restrictions on f1:'w of identity

Before discussing client restrictions on identity flow we'd
like to clarify some terminology. An object acts as a client
when it sends an RPC to another object. We use the term
target to refer to any object that is downstream in a call
chain from a given client. Immediate target is the object a
client performed an operation on directly. Direct Requester
is the client that directly operates on a given target. As we've
previously mentioned, initiator is the initial client in a call
chain. Final target is the last object in a call chain.

In the absence of delegation it is simple to understand the
flow of identity in the system. The identity of a client is
projected to its immediate target. In this environment the

95

client determines that it wants to perform an operation on the
immediate target and its identity is not subject to further use
by the target. In the presence of delegation, however, the
immediate target gains the ability to project its caller's
identity. In this environment we allow each client to protect
itself by placing limitations on who may project its identity
and to whom its identity may be projected.

As we've mentioned a client may simply allow or disallow
use of its identity in a chained call. We also permit any
object acting as a client, either as initiator or delegate, to
place restrictions on the delegations it allows. The two types
of delegation related restrictions are targe: restrictions and
delegate restrictions .

Target restrictions set by a given client apply to all servers in
a call chain that are down stream from the immediate client-
intermediary pair. For example, in the following call chain

A>B->C->D

target restrictions set by A apply to both C and D, but not to
B. C and D are targets of a delegation through B. Though B
is the immediate target of A's operation, it is not a delegation
target.

Delegate restrictions set by a given client limit who may act
as an intermediary. They apply to all servers that are
downstream from the client that wish to acts as
intermediaries. Again, given the above call chain, delegate
restrictions set by A apply to B and C. The delegate
restrictions are irrelevant to D simply because D is not acting
as an intermediary.

The effect of either type of restriction being violated is the
same. The identity of the party that placed the violated
restriction will be replaced with the anonymous identity.
Other identities already present in the chain are not affected.

If the client doesn't allow its identity to be delegated, then
the server it calls will receive its identity - allowing the
server to make an appropriate authorization decision. Any
subsequent objects called on the client's behalf, however,
will not. see the client's identity These objects wili still see a
chained identity but the security system will substitute the
anonymous identity where the identity of the client would
have appeared.

Here is an example of a chained identity with anonymous
entries:

foo FOR anonymous FOR bar FOR anonymous
This says that principal foo is acting on behalf of an

anonymous interinediary which is acting on behalf of bar
which is acting on behalf of an anonymous initiator,

While it may seem much less important to allow
intermediaries to place delegation restrictions than initiators,
we feel such functionality is important for an extensible
system.,

Extensible client restrictions

Our system has two types of extensible restrictions on
privilege attributes. These restrictions allow applications to
implement a variety of security models and policies beyond
those expressible through the supplied PA/ACL system. An
example of an extensible restriction that an application might
define is a time-of-day restriction,

Required attributes limit the activities that a target server can
perform. A server receiving a required restriction must be
able to understand it. If the application is unable to decode a
required restriction it must reject access.

Optional restrictions differ only from required restrictions in
that applications that are unable to decode a given optional
restriction are free to ignore its presence,

Example of the model

Figure 2 provides a frequently used example of a compound
document. In it a user is accessing a document which
contains a graph that obtains its data from a spreadsheet.
When this document is implemented in a distributed object
environment, each component may run as an independent
process with a distinct principal identity. The document,
graph and spreadsheet are each reference monitors for their
data and grant access based on the contents of their
associated ACL.

User Document

e

Figure 2. Compound Document Components

In this example let the User process run as principal U, the
Document as principal D, the Graph as principal G and the
Spreadsheet as principal S. The User process enables
delegation and performs a view_document operation on the
Document.

96

On receipt of the view_document operation, the Document
consults its ACL and verifies that U has the rights necessary
for the view_document operation. The Document proceeds
to compose a delegated identity of D FOR U with delegation
enabled and performs the view_graph operation on the
Graph.

The Graph process receives the view_graph operation from
the Document object. It consults the ACL shown in figure 3
and verifies that U is authorized to initiate a view_graph
operation and also verifies that D is a legitimate delegate. As
a component of completing the view_graph operation, the
Graph composes the delegated identity G FOR D FOR U
and performs the obtain_range_data operation on the
Spreadsheet.

ACLEntry Type PA Value Permission
User: U view_graph
User_delegate: D view_graph

Figure 3. ACL for Graph Object

Finally the Spreadsheet process receives the
obtain_range_data operation. Applying the ACL shown in
figure 4 it verifies that U is a valid initiator matching the
any_other entry and verifies that G and D are legitimate
intermediaries since they also match the any_other entry in
the ACL.

ACLEntry Type PA Value Permission
Any_other: N/A obtain_range_data

Figure 4. ACL for Spreadsheet Object
MECHANISM

The DCE provides strong mechanisms for trustworthy
transmission of identity between client and server.
Delegation introduces changes in these identity transmission
mechanisms. We discuss the existing mechanisms for
projecting identity prior to considering the changes for
supporting delegation.

Note that the DCE is designed to allow a number of different
authentication and key distribution protocols o be used.
DCE 1.0, however, only includes a concrete specification
and implementation using the Kerberos V5 [11] protocol
suite. Consequently, we will restrict the following discussion
to the mechanisms used for identity flow that are used by the
DCE in conjunction with the Kerberos V5 protocols.

Overview of existing DCE system

Of the features of the DCE security protocols, two are
fundamental - the ability to provide integrity and
confidentiality protections to a communication session
between a client and a server and the ability for the
communicating agents to determine the identity of their

partner. Kerberos V5 protocnls provide the mechanisms for
accomplishing both tasks. Conventionally, however, the
notion of identity in a Kerberos environment is limited to the
name of a given principal. As described above, a DCE
identity is a set of privilege attributes that are active for a
given principal during a given session. The DCE leverages
the authorization data field of a Kerberos V5 ticket to carry
the additional privilege attributes.

When a user session is created, normally through some
variant of the local system login sequence, the DCE security
runtime acquires the principal's ticket granting ticket (TGT).
The TGT may then be used to obtain tickets to other server
principals. These new tickets may then be used to exchange
keys with those targets and establish protected
communication. These tickets, however, are not suitable
carriers for privilege attributes since the client is free to
request any data in a ticket's authorization data field.

For the security runtime code at a server to trust a given set
of privilege attributes it must believe that an authorized
system service has constructed (certified) the data. In the
DCE, the trusted component is the cell's! Privilege Server.
The server will trust a ticket bearing PAs and treat it as a
PAC if the ticket is issued in the well-known name of the
Privilege Server.

To get such a ticket, the DCE login code actually obtains two
TGTs. The first TGT obtained in the client principal's name
is generally only used to obtain a ticket to the cell's Privilege
Server. Once this is obtained the runtime commuanicates with
the Privilege Server to obtain a second TGT. The second
TGT is issued in the name of the Privilege Server and
contains the privilege attributes requested by and valid for
the client principal in the ticket's authorization data area.
This second TGT is referred to as the privilege TGT
(PTGT). 1t is the PTGT that is thien used by the client when
obtaining tickets to target servers. The Kerberos V5 KDC
will automatically transfer the PAs identifying the actual
client from the PTGT into the authorization data field of the
ticket for a given target server,

The Extended PAC

Our delegation model requires extensions to ine contents of
PACs. The content change is due to extending the notion of
identity to include chained identities. In addition we have
added delegation and extensible restrictions to the extended
PAC.

Two other concerns have contributed to change in the DCFE
1.0 PAC: performance and legal issues. The authorization
field of a Kerberos V5 ticket is encrypted in the key of the
target principal. This raises performance concerns as the

1 The DCE's notion of an administrative domain, roughly

comparable to a Kerberos realm.

number of privilege attributes is increased. In addition legal
issues are raised with respect to the encryption of data. The
extensible restrictions allow applications to provide arbitrary
uncontrolled data in the EPAC. Encrypting this data may
violate laws governing the export of encryption technology
- and in some countries may violate laws controlling the
transmission of encrypted data over public carriers.

The solution we have chosen to address these various issues
was proposed by the European Sesame project {12]. The
contents of a EPAC need not be confidential - therefore
we have removed them from the authorization data field of
the VS ticket and simply placed a cryptographic hash of the
EPAC in the PTGT. This seal? serves to connect the EPAC
to the ticket and provides the same guarantees of authenticity
of the EPAC to the target server,

Becoming a Delegate

When a server needs to perform an operation on another
target on behalf of its client, it must become a delegate for
that client. The security runtime at the server possesses the
EPAC for its caller and it has a PAC representing itself, but
these two PACs are not directly usable to represent the new
chained identity. The server must obtain a new EPAC (and
PTGT) that represents the chained identity from the Privilege
Server.

The mechanism described so far does not provide the
delegate with the necessary data to submit to the Privilege
Server to acquire the new EPAC representing the chained
identity. The delegate does not possess proof can be
presented to a third party that the incoming EPAC is
legitimate. It needs some form of delegation token [13] that
may be submitted to the Privilege Server when requesting a
new chained EPAC.

The extended PAC, obtained from the caller, contains all of
the information needed by the Privilege Server to determine if
a given principal should be allowed to chain its identity to that
of the caller. The only missing data is a seal protecting the
integrity and authenticity of the extended PAC. We have,
therefore, added a signature field to the extended PAC
allowing it to become a true certificate and thus serve as the
delegation token. The signature field supports both a seal -

using a key known to the Privilege Server - and a signature
using public key technology. This allows the same certificate
to be used by the DCE's existing Kerberos environment and
by public key based facilities.

Compatibility with existing servers

Whenever there is the introduction of a new revision of
system, interactions with the prior revisions must be

2 We use the ISO definition for seal indicating a cryptographic
checksum using symmetric keys. This should not be confused with
other uses of the term that indicated confidentiality of the data.

considered. In our case, it is possibly that a new intermediary
will send an extended PAC to an old server that only
understands the simple PAC format. To deal with this
situation we provide three compatibility modes. We call refer
to them as initiator, direct requester and reject.

When the intermediary requests initiator compatibility mode,
the Privilege Server arranges the associated ticket so that it
includes the PA set of the call chain's initiator in the
authorization data field. Appended to this is the hash of the
EPAC. In other words, the PA set of the initiator is placed
where an old (DCE 1.0) server already expects a single PA
set. The security runtime at old servers is set up to ignore
extra bytes in a PAC, so the presence of EPAC hash does not
have any untoward effect. With this compatibility mode, the
current intermediary appears to the target server to actually
have the identity of the initiator.

When the client requests direct requester mode, the PS
arranges the ticket so that the intermediary's identity is in the
authorization data field Again, the EPAC hash is ignored as
extra bytes by old servers. In this mode, in order for a DCE
1.0 server to authorize the operation, the intermediary must
have appropriate rights.

In reject mode, the intermediary effectively asks the PS to
set up the ticket so that an old server will know that it is
dealing with a new client and will reject the call.

The current intermediary requests a particular compatibility
mode when it requests a new login context that reflects a
chained identity. Likewise the initiator has specified
whether or not it will permit initiator compatibility mode in
the course of obtaining a login context appropriate for an
initiator. If the intermediary requests initiator compatibility
mode but the initiator has not allowed it, the intermediary
will receive an error indication immediately. Because of the
possibility of this conflict, we allow the intermediary to
effectively say T want initiator mode, but if it isn't perr itted
I'll take direct requester mode'. This form of request will
generally not fail,

Impersonation, aka Full Identity Forwarding

While many of today's distributed systems (such as the DCE)
lack a delegatior. facility, the need for delegation has existed
for some time. Often, to accomplish a delegation, a server
acting as an intermediary assumes the client's identity when
performing operations on the client’s behalf. In other words,
the intermediary impersonates the client.

We feel that impersonation is dangerous, and that most uses
of impersonation are better modeled as true delegations with
chained identities. However, we acknowledge that
impersonation is necessary for compatibility with existing
administrative setups and particular application sets; hence
our delegation facility includes a means for clients to permit
servers to impersonate them (and a means for a server to act

98

as an impersonator). This facility is part of the client
programming model and will be discussed in that section.

PROGRAMMING MODEL

The programming model decouples the manipulation of
identity from the details of the security protocols. The
interface is logically divided into a portion of interest to
clients and a portion used by servers.

Clients are primarily concerned with establishing their
identity and the necessary controls on how that identity is
used. The model provides a login context as an abstraction of
the client's identity. A login context is an application level
opague handle to the data, including the EPAC and tickets,
needed by the underlying protocols. The security protocols
are enabled in the RPC communication system by
associating a particular login context with a communication
session between a client and a server.

The details of how login contexts are shared by application
processes are dependent on the operating system on which
the application is running. For most DCE environments,
however, a default login context for a given principal is
created when a process is created for that user through the
OS greeting function. Applications will inherit this default
login context, but they are also free to create new contexts
that reflect a different set of allowable privileges and/or
controls. An application may also create new contexts for a
different principal if the application has access to that
principal's key.

Servers are the reference monitors for the data they manage.
In general they are concerned with extracting the privilege
attributes associated with a given remote request. These
attributes are then generally passed on to the standard access
control algorithm to determine if the client is authorized to
perform the requested operation. The caller's piivilege
attributes may also be used for auditing the operation or
otherwise recording information about the participants in the
call chain.

Client Programming Model

A client must decide for each remote call that it makes
whether it is performing the operation on its own behalf or
on behalf of a caller. This ought to be obvious from program
context. Additionally, a client that acts on behalf of a caller
must decide on whether to chain its identity with that of its
caller (i.e. be a delegate), or (try to) assume the identity of
the caller (i.e. be an impersonator).

Operationally, the client must setup (or reuse) a login context
that is appropriate for its role as either initiator, delegate, or
impersonator, and perform the operation under that login
context.

We provide three calls that setup login contexts:
become_initiator, become_delegate, become_impersonater.
All three calls allow the setting of delegation-related
restrictions, extensible restrictions etc. Each creates a new
login context as a return value. The calls differ only with
regard to the identity information passed in.
Become_initiator takes an existing login context as in input
parameter. Become_delegate takes an existing login context
(i.e. the delegates identity) plus a reference to the identity to
chain with. Become_impersonater takes only the identity to
impersonate, but needs no existing login context)

new_login_context = become_initiator (
my_login_context,
delegation_type_permitted,
delegate_restrictions,
target_restrictions,
optional_restrictions,
required_restrictions,
permit_initiator_compat_mode,
error_status);

The optional_restrictions and required_restrictions are lists
of the respective additional restrictions to be applied to this
call.

The new_login_context is an output argument that is the
new login context that effectively refers to a new PTGT and
EPAC that contains composite principal information plus the
all the other relevant security attributes (e.g. delegation
restrictions etc.)

The delegation_type_permitted parameter is an enumeration.
The value no delegation means that this caller's identity may
not be used in a call chain. With this value specified, the
delegate_restrictions parameter is ignored. The value
delegate means that the initiator allows its identity to be
delegated but not impersonated. The delegation_restrictions
do apply here. The value impersonation means that
delegation or impersonation are permitted. It is up to the
immediate target to choose which form of identity projection
it wants (if any).

The permit_initiator_compat_mode comes into play if the
initiator's identity is delegated in the call chain (as opposed
to a chain of impersonations). The initiator may either permit
or deny the use of initiator_coripat_mode.

new_login_context = become_delegate (
callers_identity,
my_login_context,
delegation_type_permitted,
delegate_restrictions,
target_restrictions,
optional_restrictions,
required_restrictions,

929

compatibility_mode,
error_status);

Note that when you use an existing login context in the
become_delegate call only the base identity from the login
context is used. The restrictions that were present in the
login context are replaced by those explicitly passed as
parameters.

The callers_identity argument refers to a caller's extended
PAC. A value of NULL means ‘use the caller information
associated with this thread of execution'.

The compatibility_mode parameter is an enumeration with
the following values: initiator, direct_requester,
initiator_if possible, none .

new_login_context =become_impersonater (
callers_identity,
delegation_type_permitted,
delegate_restrictions,
target_restrictions,
optional_restrictions,
required_restrictions,
error_status);

Note that there is no compatibility mode argument. If the
direct requester's identity was actually a chained identity,
whatever compatibility mode was used there is retained.

Server Programming Model

The server-side API is extended to allow applications to
extract the privilege attribute set for each participant in a
chained identity. We include calls to extract the PAs of the
initiator of the operation the PAs of each delegate the
operation the delegation and extensible restrictions placed by
each participant

COMPARISON OF MODEL AND MECHANISM
WITH OTHER WORK

The model for delegation proposed here has been developed
independently of, but bears a striking resemblance to, the
model proposed by Gasser and McDermott [7]. In both
models composition the privilege attributes for all principals
involved in an operation is combined with extensions to the
authorization model to allow the expression of the role of
intermediaries in that operation. Significant differences exist
in the details of the design given that the DCE uses shared
secret key authentication and uses the Privilege Server [4] as
a delegation server [14] while the Gasser and McDermott
model uses public key authentication methods.

Other workers have concerned themselves with mechanisms
for trustworthy transmission of delegated identities.
Varadharajan et. al. [15] proposes a method for chaining
certificates in a shared-secret key environment as well as a

mechanism for nesting delegation tokens in a public key
environment. Karen Sollins [13] provides a mechanism for
nesting shared-secret key delegation tokens. Both of these
mechanisms for shared-secret key delegation tokens require
target servers to contact the authentication service. This is
inconsistent with the design goals of the DCE (as argued in
[4]) which strive to reduce total system overhead by moving
to a push model for privileges - thereby moving the
collection of authorization data away from servers and to
clients. Consequently we have developed our pushed token
mechanism for nesting delegation information.

SUMMARY

We've presented a model and design for delegation in a
distributed object-oriented environment. We were strongly
motivated by the notions of protection of resources and
protection of flow of identity:

We believe that each object in the system should have as
much knowledge as is practically possible when making an
access control decision in order to best protect its resources.
Thus our delegation system permits a server to know all the
participants in a chained call and to distinguish the rights
granted to intermediaries from those granted to an
operation's initiator.

We also believe that all principals in the system should have
the ability to control the uses of their identities by objects
that are not under their control. To that end, our system
allows clients to place restrictions on the use of their identity
in chained calls.

Our delegation system capitalizes on existing DCE trust
mechanisms and is compatible with existing DCE
applications. It is implementable with only modest changes
to the DCE security system.

BIBLIOGRAPHY

1. Pato, J. "Extending the DCE Authorization Model
to Support Practical Delegation,” OSF DCE SIG
RFC 3, June 1992.

2. , "OSF DCE 1.0 Application Development
Guide,” Open Software Foundation, Cambridge,
MA,, 1992,

3 , "OSF DCE 1.0 Introduction to DCE," Open
Software Foundation, Cambridge, MA., 1992,
Volume 2,

4, Pato, J., "DCE Authorization Services -- Privilege
Server,” OSF DCE Specifications, 1990.

5. , "Security in Open Systems: Security
Frameworks for the Application Layer of Open
Systems,” ECMA TR/46.

100

10.

11.

12.

13.

14,

15.

, "Security in Open Systems: Data Elements
and Service Definitions,” ECMA-138.

Gasser, M. and E. McDermott, "An Architecture for
Practical Delegation in a Distributed System,"
Proceedings of the 1990 IEEE Symposium on
Security and Privacy, IEEE Computer Society,
1990.

Abadi M., M. Burrows, B. Lampson and G. Plotkin,
"A Calculus for Access Control in Distributed
Systems," Digital Equipment Corporation Systems
Research Center report No. 70, February 1991.

Lampson, B., M. Abadi, M. Burrows, and E.
Wobber, "Authentication in Distributed Systems:
Theory and Practice,” Proceedings of the 13'th
ACM Symposium on Operating System Principles,
October 1991.

Pato, J., "DCE Access Control Lists (ACL's),” OSF
DCE Specifications, 1990.

Kohl, J. and B. C. Neuman, "The Kerberos Network
Authentication Service,” INTERNET-DRAFT
RFC, revision 5, 17 April 1992.

Project SESAME (Bull, ICL and SNI), "Proposed
Security Enhancements for DCE," OSF DCE SIG, 4
July 1992.

Sollins, K., "Cascaded Authentication,”
Proceedings of the 1988 IEEE Symposium on
Security and Privacy, IEEE Computer Society,
1988.

Neuman, B. C., "Proxy-Based Authorization and
Accounting for Distributed Systems," Technical
Report 91-02-01, Department of Computer Science
and Engineering, University of Washington, 1991.

Varadharajan, V., P Allen, S. Black, "An
Analysis of the Proxy Problem in Distributed
Systems," Proceedings of the 1991 IEEE
Symposium on Security and Privacy, IEEE
Computer Society, 1991.

v

TRUFFLES — A SECURE SERVICE FOR WIDESPREAD FILE SHARING

Peter Reiher
Thomas Page, Jr.
Gerald Popek

UCLA
Los Angeles, CA

Jeff Cook

Trusted Information Systems
Los Angeles, CA

Stephen Crocker

Trusted Information Systems
Glenwood, MD

ABSTRACT

Truffles is a system meant to address some of the major
issues that still make it difficult to share files between users
at different sites. In particular, it addresses the problems
associated with secure file sharing, and the problems of high
administrative overhead. Truffles will combine facilities of
the Ficus file system and TIS/PEM, a privacy enhanced mail
system, to make file sharing considerably easier. Truffles
must deal with several important security problems,
including secure transport of data, authentication of the users
sharing files, handling of different administrative domains,
and permitting system administrators to control, flexibly,
yet easily, what sorts of sharing are done. This paper
describes these problems and the solutions Truffles will use.

INTRODUCTION

Users who share a single machine, or who share a single
administrative domain over a local area network, are able to
share files with each other very easily. Users can share
source code for programs they are developing, work
together on papers and other documents, and use common
shared libraries and programs. Users who are not so closely
connected physically currently canno share files with the
same ease. Although the complicated nature of the
networks connecting such users used to be the primary
impediment to sharing, today the lack of a common
administrative domain and security concerns are the major
unsolved problems.

Truffles (TRUsted Ficus FiLE System) is a system ttat
attempts to make file sharing between users in
different domains both simple and secure. The motivation
for Truffles is the question: Why is it harder to share a file
with an arbitrary remote user than it is t0 send him

101

electronic mail? Sending electronic mail to another user is
a relatively simple operation in today’s networks. The
sender need merely know the address of the receiver and have
reasonable network connectivity. By invoking a
single program, giving it only the receiver’s address and the
message, the sender can be reasonably certain that his mail
will reach its destination, if possible. The sender need not
worry about the path it takes, whether machines along that
path fail, the hardware types involved, or any of the other
complexities of the worldwide network of computers. It is
really no harder than sending electronic mail to a user on the
same machine, despite the fact that the operations that have
to be performed to deliver the mail are much more
complicated.

Sharing files between users on different machines, on the
other hand, is not nearly as easy as sharing them with a
local user. One can use electronic mail to ship text files
back and forth, but many electronic mail systems do not
handle non-text files well, propagating changes in the files
must be done by hand, electronic mail will not coordinate
access to the files, and, unless a secure form of mail is used,
electronic mail offers little protection.

Some tools more specialized for file handling exist, such as
ftp, telnet, and NFS [1]. Generally, however, these tools
have significant disadvantages. None of them handle
security issues well. Telnet and ftp also do not use the
same user interface that normal locul operations use, and do
not easily permit users to mix local and remote operations.
NFS and other network file system services do a bette: job
of unifying the local and remote cases, but they require
substantial setup service by the participating sites’ system
administrators, and they generally have poor avail#ility in
the face of failures. Further, since all operations have to

fetch their data across the network, these systems can be
slow and/or expensive.

The Ficus file system has solved the problems of poor
availability and performance by replicating files for users
[2]. Since users at different sites have local versions of their
shared files, they are not as affected by failures, and they get
substantially the performance of local access. But Ficus
only works well in shared administrative domains, and does
nothing to address the security concerns.

Truffles is an attempt to solve the problem of permitting
controlled file sharing between users in different
administrative domains. Only those users and sites that are
pemitted to participate should be able to do so. Those who
are not permitted to participate should not be able to
eavesdrop on data belonging to the relationship, nor should
their requests for data or updates be honored. Another
important security aspect of the problem is that the
sharing should be limited strictly to what the participants
intend to share. A participant who only meant to share a
few files should not be forced to grant access to his entire
machine.

A file sharing service of this kind cannot be successful if it
relies on constant system administrator intervention. Just
as users do not typically ask their administrator if they can
change the access permissions on their files to make them
available to other local users, they should not necessarily
have to consult their administrator before sharing them with
remote users. If setting up every sharing relationship with
an outside user requires positive action on the part of the
system administrators of the machines involved, few
relationships will be set up. On the other hand, system
administrators must be able to exert some form of
control on what their users can make available to the
outside world.

Finally, Truffles must make the sharing easy and painless,
both in the initialization phase and during ongoing
operations. The operations to establish the relationships
should be simple and straightforward. Truffles should require
little or no human intervention to keep a
sharing relationship going. Only when the relationship is
being changed, such as adding or dropping participants,
should any of the users be reminded that the shared files are
any different than any of their other files. Even then, the
reminder should be painless and easy to deal with.

This paper describes the Truffles approach to solving this
problem, with particular emphasis on the security issues.
The next section describes the general approach. The
following two sections describe two major software compo-
nents that will be used in building Truffles. The section
after those describes the overall Truffles architecture,
particularly details touching on security. The following
section briefly surveys some related work. The final section

describes the current state of Truffles, its future, and gives
some conclusions,

THE TRUFFLES APPROACH

The Truffles approach to this file sharing problem is to
provide a secure file sharing service usable over normal
network connections. Setup will be done through an
electronic mail interface, File sharing has normal Unix file
semantics, once the relationship has been established.
Because the connections between sites using Truffles may
have high delay, and the networks or sites may fail, Truffles
automatically supports keeping multiple copies of a file on
different machines.

Truffles is meant to Tun in a UNIX environment, on sites
running standard UNIX operating systems with minor
modifications and some additional software. The security
goals of the Truffles system are not to improve the existing
security features of 1JNIX systems, but to extend the
existing level of UNIX security to files that are shared
across administrative boundaries over insecure networks.

TIS

—

UCLA

A

<

Internet

DARPA ISI

KEY:

Volume shared between UCLA, TIS and DARPA

& Volume shared between UCLA and ISI

é Volume shared betvseen TIS and DARPA

Figure 1. Sites sharing volumes via Truffles

N

e oo

Truffles file sharing

Truffles can provide file sharing either through replication
or transparent remote access. Truffles provides file
replication on a per-volume basis, rather than a per-file
basis. A volume is similar to the concept of a Unix file
system. It consists of a connected tree-like structure of
directories and files, all stored on a single physical device.
Any files that are to be replicated must be collected into a
volume or set of volumes. Any files in those volumes will
be shared, with normal Unix permission controls dealing
with access to them. Truffles permits multiple sites to store
replicas of a volume, and other sites to participate without
storing a replica (at the cost of some performance degra-
dation and inferior availability when sites fail).

Figure 1 shows how several sites might share Truffles
volumes among themselves. In this example, four sites
(UCLA, TIS, DARPA, and ISI)share three volumes
(represented as triangles) among themselves, using the
Internet to provide transport services. UCLA shares a
volume with DARPA and TIS, TIS and DARPA share
another volume, and UCLA and ISI share a
volume, Different users might have set up and used each
relationship. Each relationship is separate from the others,
and does not depend upon them. Depending on how
permissions are set and name spaces are organized, users at
the four sites might or might not be able to access files
whose volumes are not locally replicated.

Non-Truffles UCLA

Files Truffles Files
Files

Figure 2. File hierarchies using Truffles

Non-Truffles

Figure 2 shows another view of how Truffles volume
sharing works. This figure shows the top levels of the file
hierarchies on two sites, UCLA and TIS. Part of each site’s
file hierarchy contains files that are stored with normal
UNIX file systems, such as the files under /usr and /etc.
Another part of each site’s hierarchy contains Truffles files.
Only files in the Truffles parts of the hierarchies can be
shared. Files in the non-Truffles parts of the hierarchies are
completely inaccessible via Truffles. This design has an
important security implication — any files not stored in the
Truffles part of a site’s namespace are completely shut off
from sharing via Truffles, and are inaccessible to remote
sites using Truffles.

Within the Truffles portion of the file hierarchy shown in
figure 2, files are organized into volumes. The triangular
shaded areas of the hierarchy show volume delimitations.
The two sites do not necessarily share a common
namespace. In this example, the root of the UCLA Truffles
file system is called /global, while the root of the TIS
Truffles file system is called /g. Some portions of the
namespace are shared, though, The Truffles volume rooted
at /global/us/edu/ucla/reiher/shared in the
UCLA hierarchy has a replica at
/g/us/com/tis/cook/shared. Despite the two
replicas being stored at different places in the hierarchies,
Truffles will keep all files in the two replicas consistent.
Alternately, sites are permitted to completely share identical
Truffles namespaces.

TIS

Truffles

103

If another machine at TIS stored all of the TIS-local Truffles
namespace up to, but not including, the volume shared
between TIS and UCLA, users on that machine would be
able to use Truffles to remotely access the shared volume, to
the extent that normal access permission mechanisms
allowed. Truffles provides not only replication services, but
transparent remote access. However, the portion of the
namespace not shared between TIS and UCLA is not
accessible to remote sites through Truffles. For example,
users at TIS are not able to see the volume
/global/us/edu/ucla/page, and cannot use Truffles
to get at that volume in any way, short of setting up an
explicit relationship to share that volume. In fact, if the
single shared volume shown in the diagram were the only
volume shared between TIS and UCLA, only those files
would be jointly accessible by both sites. UCLA could not
use Truffies to examine any other TIS files, and TIS could
not use Truffles to examine any other UCLA files.

Constructing Truffles

Truffles is being built from two existing pieces of software.
The Ficus file system will provide file sharing and
replication. The TIS implementation of Privacy Enhanced
Mail (TIS/PEM) will provide a secure channel for the setup
traffic and distributes the keys used for authentication and
encryption. The full Truffles system will require a merging
of these two components, with minor modifications, plus a
reasonable amount of additional software. The components
not directly provided by Ficus or TIS/PEM include

« the protocol for setting up a relationship

- daemons to handle most of the setup work without user
intervention

« secure transport of data in an established relationship

» handling user identifiers between different administrative
domains

» mechanisms and policies to control file sharing

Broadly, the Truffles approach is to use TIS/PEM, which
can both authenticate and encrypt electronic mail, to send
the messages between users to determine that a relationship
is desired, and to authenticate each other. The use of
electronic mail to establish the connection has certain
advantages over other alternatives. The cooperating users
need only know each other’s electronic mail addresses.
There is no need to request direct intervention of a system
administrator to set up the connection via some other
mechanism, like NFS. Electronic mail is able to handle
issues like temporary failure of the destination site
gracefully.

TIS/PEM is also used to establish what encryption keys
will be used for this sharing relationship. Truffles daemons
then take over the rest of the protocol to set up a shared set
of files. This protocol consists of trading electronic mail
messages between daemons that run Ficus utility
programs in response to the messages. Since these utility

programs permit remote users to gain access to local files,
all messages in the protocol must be authenticated.

Once the relationship is established, all users involved in it
will see the volume at the appropriate places in their file
hierarchies. Ficus will ensure that all updates are seen by
all replicas. Ficus will also deal with any problems arising
from failures, recoveries, and partitions, From the users’
points of view, the situation is little different than if they
shared the files with each other on a single machine.

Truffles design problems

Truffles must deal with some other problems related to
establishing and maintaining the sharing relationship.
First, there are policy questions concerning which users can
share which files with which cites. The answers to such
questions are likely to vary greatly from site tosite,
depending on the importance of the data, the trust in the
users, and the caution of the system administrator, among
other factors. Therefore, Truffles will provide a mechanism
for validating each request to set up afile sharing
relationship, but will keep the policy well separated from
the mechanism. Depending on circumstances, relationships
might be permitted without any checking, or only between
approved sites and users, or only for cer:ain volumes, or
only if the system administrator has previously granted
permission, or only if the system administrator actually re-
views and approves the request. The mechanism will be
sufficiently flexible to permit these, and many other,
policies to govern sharing. Policy will be under the control
of local system administrators.

Another problem is that different sites have different low
level names for their users. In the Unix world, each user on
a site has a unique identification number, called a UID. But
this UID is unique only to that site, or to that site and
others sharing the same name assignments. In general, this
UID might be used for a different user on different sites.
But Truffles must not permit one of those other users to be
mistaken for the local user, simply because they share a
UID. Truffles must be careful to map remote users’ UIDs
without mistakes.

Truffles must also provide secure transport of the data.
Ficus itself does not depend on secure data transport, as it
was originally built to run on a trusted network. In the
world of the Internet, however, Truffles messages could
easily be read by eavesdroppers, or improper messages
could be injected into the network. Truffles must protect its
users from these dangers.

Another security concern is that Truffles must ensure that
only data that is explicitly shared be made available to other
sites. The non-Truffles portion of each site’s file hierarchy
must be unavailable to remote sites, and the Truffles
portion of the file hierarchy must limit sharing to only
those volumes that were meant to be shared.

104

of a certification hierarchy in the form of a tree, where each
node is certified by a node above it, and the leaves of the
tree are users, mailing lists, etc. The Internet Policy
Registration Authority (IPRA) is at the highest level of this
hierarchy. This authority will be managed by the Internet
Society.

TIS/PEM is a reference implementation of the PEM
standard, developed by Trusted Information Systems [7]. It
is UNIX based, and runs on a variety of platforms. Figure 4
shows a view of TIS/PEM. The PEM library serves as the
primary entry point to the system by electronic mail or
other services. That library, certain PEM utilities, and key
management programs communicate with the local key
manager (LKM), which handles key management,
independent of the particular application requesting its
services. The LKM maintains a local database for
certificates and private keys, enforces access conirol, and
provides cryptographic services employing private keys.
One of the private libraries attached to TIS/PEM is the
crypto library, which has an algorithm independent interface,
and handles key generation, message digest computation,
encryption and decryption, and signature computation and
verification for a variety of encryption schemes.

TIS/PEM’s role in Truffles is to provide secure electronic
mail services, which will be used to perform the setup of
file sharing relationships. Also, TIS/PEM’s key manager
services are used to handle encryption keys related to
the secure transport of data between sites sharing files
through Truffles.

TIS/PEM is currently in use at a variety of sites, including
three TIS sites spanning the country, UCLA, and others.

THE FICUS FILE SYSTEM

Ficus is a distributed file system designed to run on
networks of Unix systems, ranging from portable units and
workstations to large file servers [2]. Ficus provides high
availability for read and update, utilizing an optimistic “one
copy availability” policy. “One copy availability” permits
access to a file even if a majority, quorum, or token are
unavailable, as long as a single copy can be accessed. This
policy maximizes availability, at the cost of permitting
copies of a file to become conflicted, when different copies
are updated simultaneously while not in communication.
Ficus handles such conflicts by reliably detecting them.
Many conflicts are automatically resolved by Ficus.

Ficus supports very high availability for both read and write,
allowing uncoordinated updates when at least one replica of
the file is available. No-lost-update semantics are
guaranteed. Asynchronous update propagation is provided
to accessible copies on a "best efforts” basis, but is
not relied upon for correct operations. Rather, periodic
reconciliation ensures that, over time, all replicas converge
to a common state, This policy is more appropriate than
serializability for the scale and failure modes of a very large
distributed system.

E-Mail and Other
Interfaces
Key Mgmt. PEM PEM
Programs Utilities Library

-

v v

LKM Utilities

Local Key Manager (LKM)

Private Libraries

General Libraries

Figure 4. TIS/IPEM architecture

106

of a certification hierarchy in the form of a tree, where each
node is certified by a node above it, and the leaves of the
tree are users, mailing lists, etc. The Internet Policy
Registration Authority (IPRA) is at the highest level of this
hierarchy. This authority will be managed by the Internet
Society.

TIS/PEM is a reference implementation of the PEM
standard, developed by Trusted Information Systems [7]. It
is UNIX based, and runs on a variety of platforms. Figure 4
shows a view of TIS/PEM. The PEM library serves as the
primary entry point to the system by electronic mail or
other services. That library, certain PEM utilities, and key
management programs communicate with the local key
manager (LKM), which handles key management,
independent of the particular application requesting its
services. The LKM maintains a local database for
certificates and private keys, enforces access control, and
provides cryptographic services employing private keys.
One of the private libraries attached to TIS/PEM is the
crypto library, which has an algorithm independent interface,
and handles key generation, message digest computation,
encryption and decryption, and signature computation and
verification for a variety of encryption schemes.

TIS/PEM’s role in Truffles is to provide secure electronic
mail services, which will be used to perform the setup of
file sharing relationships. Also, TIS/PEM’s key manager
services are used to handle encryption keys related to
the secure transport of data between sites sharing files
through Truffles.

TIS/PEM is currently in use at a variety of sites, including
three TIS sites spanning the country, UCLA, and others.

THE FICUS FILE SYSTEM

Ficus is a distributed file system designed to run on
networks of Unix systems, ranging from portable units and
workstations to large file servers [2]. Ficus provides high
availability for read and update, utilizing an optimistic “‘one
copy availability” policy. “One copy availability” permits
access to a file even if a majority, quorum, or token are
unavailable, as long as a single copy can be accessed. This
policy maximizes availability, at the cost of permitting
copies of a file to become conflicted, when different copies
are updated simultaneously while not in communication.
Ficus handles such conflicts by reliably detecting them.
Many conflicts are automatically resolved by Ficus.

Ficus supports very high availability for both read and write,
allowing uncoordinated updates when at least one replica of
the file is available. No-lost-update semantics are
guaranteed. Asynchronous update propagation is provided
to accessible copies on a "best efforts” basis, but is
not relied upon for correct operations. Rather, periodic
reconciliation ensures that, over time, all replicas converge
to a common state. This policy is more appropriate than
serializability for the scale and failure modes of a very large
distributed system.

E-Mail and Other
Interfaces
Key Mgmt. PEM PEM
Programs Utilities Library

v

v v

LKM Utilities

Local Key Manager (LKM)

Private Libraries

General Libraries

Figure 4. TIS/IPEM architecture

105

Both because of the asynchronous update strategy and the
one copy availability policy, different replicas of Ficus files
can become in conflict. Conflicts occur when two or more
replicas all receive updates without successfully propagating
their updates to the other replicas. Conflicts are reliably
detected and directory update conflicts automatically
reconciled. Many other iypes of file conflicts are also
automatically reconciled. Those conflicts that cannot be
resolved automatically are brought to the attention of the
owning user for resolution. Ficus provides tools for users to
reconcile such conflicts by hand. Experience with Ficus has
shown that conflicts are relatively rare events, and are
generally easy for users to reconcile.

Ficus is built to run in a single administrative domain. It
assumes that all sites and the connecting network are all
trusted, so no special security is necessary. Moreover, it is
not prepared to deal with sites that have different sets of
users with conflicting user identifiers. With some effort,
Ficus can work in this environment, but it
requires substantial work by the various installations’
system administrators, and is less than perfect in many
other ways.

Ficus and stackable file systems

The replication service of Ficus is packaged so that it may
be inserted above the base Unix filesystem on any machine
running a stackable file system interface. This modular
architecture permits replication to co-exist with other
independently implemented extended filing features.

In addition to running on top of stackable file systems,
Ficus is built using stackable layers [8]. The stackable
layers approach to file system design permits adding
functionality to an existing file system merely by writing
the new functionality into a new layer of code. This code is
placed on top of the existing layers, providing a compatible
interface to users, while simultaneously making the new
functionality available. The stackable layers approach does
not require any changes to the existing code, so adding
functionality is relatively easy.

Ficus itself consists of two layers that sit on top of the
Unix file system (UFS) and the network file system
(NFS). The Ficus Physical layer supports operations that
deal with a single replica of a file. The Ficus Logical Layer
supports operations that deal with all replicas of a file. The
UFS provides actual storage of data on disk, and NFS is
used as a transport layer to move Ficus requests from one
site to another. Figure 5 shows a typical stack of Ficus
layers on two sites.

A great advantage of the stackable layers technology is that
other filing services can be used in conjunction with Ficus,
merely by inserting another layer into the appropriate place.
Encryption and compression of files are two examples of
services that could be combined with Ficus via layers.

107

Ficus was built at UCLA, and is in daily use there, as the
system on which further Ficus development work is done.
Ficus has also been installed at several other sites, including
TIS and ISI.

OS Kernel
Ficus
Logical
Layer
Transport
\ \
Transport
v v
Ficus Ficus
Physical Physical
Layer Layer
Storage Storage
(UFS) (UFS)
Site 1 Site 2

Figure 5. A Ficus stack
HANDLING SECURITY PROBLEMS

Truffles faces several security problems:

« Security of the setup procedures

« Security of the ongoing sharing relationship

* Proper handling of different administrative domains
« Enforcement of policies governing sharing

Secure setup of Truffles sharing relationships

There are several security problems relating to setting up
sharing relationships. The users participating in the
relationship want to be sure that the others are who they
claim to be. Otherwise, an intruder could masquerade as
another user to gain improper access to files he otherwise
wouldn’t be permitted to share. The protocol’s various
messages must each be authenticated, both to ensure that an
intruder is not inserting protocol messages for his own
purpose, and to ensure that the participants are
not improperly trying to gain access to more than the files
that were agreed upon.

When two users decide to share a file volume via Truffles,
they must first authenticate their identities. They will do
so with electronic mail messages sent under TIS/PEM
containing their certificates. Each user will check the iden-
tity of the other by authenticating the certificate. The user
who already has access to the volume (the originator) will
then invoke a program to start up the protocol. This
program will accept information about which volume is to
be shared with which user on which site, to ensure that not
only are protocol messages coming in from the proper
sender, but that they refer to the proper volume.

The protocol could take any of several forms. One possible
protocol would request a session key from TIS/PEM’s key
management facilities. This session key will be used to
authenticate messages in this volume’s setup protocol.
The Truffles program will then encrypts this session key
using the new user’s public key, obtained from TIS/PEM’s
key management facility and send the result to a daemon at
the new user’s site.

The daemon at the new user’s site will receive the message
and start the process of creating the volume replica. After
extracting the session key and authenticating the message, it
will invoke a Ficus program that creates a volume replica.
After this Ficus program runs, the replica is empty, and is
not logically connected to the original replica, so
further work is necessary. The Truffles daemon will get the
replica ID of the new replica and send it to the originating
site’s Truffles daemon, appropriately authenticated.

The originating site’s Truffles daemon will check the
authentication, and check to see that the request concerns-a
volume that was supposed to be shared. It will then run a
Truffles program to tell the originating site’s replica of the
existence of a new replica. Once this program completes,
the originating site’s daemon will send another message to
the new site’s Truffles daemon.

After checking authentication on this second message, the
new site will run a Truffles reconciliation program that
pulls the contents of the volume’s files from the
original replica to the new replica. This Truffles program
will also add a line to a Ficus system file to ensure that this
site will periodically run the reconciliation program on the
new volume replica, to ensure that the replica remains up to
date.

Later, other siles may join the relationship. The process of
adding them will be substantially the same as adding the
first site. A single existing member of the relationship
will exchange messages with the new site using a protocol
similar to that described above. The standard Ficus
update propagation and reconciliation mechanisms will
ensure that all other sites participating in the relationship
are quickly informed of the presence of the new site.

108

The protocol to establish the relationship will probably use
electronic mail and TIS/PEM for all its messages.
TIS/PEM provides authentication and encryption, making it
unnecessary to introduce another secure transport mechanism
for these purposes. The ongoing activities of sites sharing
files via Truffles will be handled largely by another secure
transport mechanisn:, built into Ficus, since these activities
are not suitable for electronic mail. They will continue to
use TIS/PEM’s key management facilities, however.

Security of the ongoing relationship

Once a Truffles relationship has been set up, the major
security concern is that only legitimate participants be
permitted to read or write data. The two sites involved in
the relationship can use standard Unix and Ficus access
control mechanisms to ensure that only the local users who
have proper permissions can gain access to this data. But,
since the data handled by Truffles might pass over an
insecure medium, more is necessary.

Encryption of the data that Truffles sends from site to site is
all that is really required. The sites participating in a
sharing relationship must encrypt any Ficus requests they
send to each other, using a key particular to
the relationship. This key will be generated and distributed
during the creation of the relationship. A separate key is
used for each relationship to ensure that sites participating
in one relationship with other sites cannot improperly
eavesdrop on conversations about volumes they do
not share.

Encryption between the sites in a relationship is done with
DES. A unique initialization vector is attached to each
message and encrypted, ensuring that two otherwise identi-
cal messages do not encrypt to the same value.

Optionally, for situations in which privacy is not a concern,
but authentication is, Truffles allows a volume’s traffic to
be merely authenticated, rather than encrypted, thereby
saving the cost of encryption.

Handling different administrative domains

In a Unix system, users are known by several names, two of
which are of importance to Truffles. For login
purposes, they are identified by a character string name. For
purposes of saving file and process ownership information,
they are assigned an integer identifier, commonly called the
user identifier, or UID. The system maps between the
character string login name and the numerical UID whenever
necessary, using information stored in the password file or
the NIS.

The mapping of login names to UIDs is only unique to a
given administrative domain, which is made up of one or
more machines closely connected together. Generally,

machines that wish to set up Truffles relationships are
notin the same adminisuctive domain. Different users
might have the same login name and/or UID in the two
domains. Since file ownership and access requests are
tagged with the UID, and access permission is
checked using the UID, there is a security risk in this
situation. Unless Truffles can handle this problem, a user
on one site might improperly be given access to files on
another site simply because another user on that site has the
same UID. The situation is intolerable, even when security
isn’ta concern, as the potential for user confusion is
considerable. There is a similar problem when the system
maps from a UID to a login name, as it does when a user
wants to display the ownership of a file.

This problem has been recognized before in other distributed
file services, such as RFS [9]. Their solution was to map
UIDs from remote machines to UIDs on local machines.
This method worked reasonably well in RFS, since an RFS
file was stored on a single machine, and the
ownership information for that file could be stored as the
local version of the UID for the owning user on that
machine. In a replicated file system like Truffles, replicas
of the file might be stored at different sites with different
UlIDs for the owning user. This situation causes a certain
complexity in replication control, as the ownership
information from one replica must not be propagated to
another under normal circumstances, yet must be propagated
upon change of ownership. Also, this situation makes
it difficult to move the physical storage for a replica from
one site to another, since the UlIDs associated with the
replica’s files might be map to different UIDs on the new
site.

Truffles will handle this problem by mapping a user’s UID
to a globally unique identifier. Truffles will save file
ownership information using this globally unique identifier,
storing it as one of the file’s attributes. Truffles will map
from the UID to the giobally unique identifier whenever a
user process tries to access a file. The requesting user’s
globally unique identifier can then be compared to the file
owner’s identifier to determine if access should be granted.
When the system needs to perform the reverse mapping, to
display the ownership of a file, Truffles will map from
globally unique identifier to login name. Since the file has a
single globally unique owner at all replicas, it will be easy
to handle update propagation, and the physical storage can
be easily moved from one site to another without losing
ownership information.

Many forms of globally unique identifiers could be used for
this purpose. Truffles will initially use X.500 distinguished
names (dnames). When a user makes a request for a
file stored under Truffles, his local UID will be mapped to a
dname, which is used to determine whether he can access the
file. Should the request require remote access at the other
site, the dname must be passed with the request across the
net. On the opposite end, Truffles will compare the dname

to the owner of the file in question, in the same manner as
the local case.

This mapping of UIDs to dnames and access permission
checking will be done via 2 Truffles file system layer that
sits above the Ficus logical layer. All requests for Truffles
volumes will go through this layer, and access permissions
will be checked before the request is submitted to the lower
layers of the file system. Those lower layers will never
reject a request that has been approved by the Truffles layer,
since access checking has already been done. Because Ficus
has a layered file system available, no existing system or
application code will need to be changed to make access
checking via dnames work. All the new code will exist in a
self contained layer and associated new utility programs.

Certain UIDs in Unix systems have special meanings,
especially the root user ID. The root user on a system is
permitted to perform many operations that could have
disastrous consequences if done improperly. Also, the root
user can effectively gain access to any files on the
site. Generally, no remote user should ever be permitted to
map to the root user on a site through Truffles mechanisms.
In particular, the root user on site A should not be able to
use a Truffles sharing relationship to gain root privileges on
site B. Truffles will not permit any remote dname to be
mapped to the local root user. Attempts to do so, even by
privileged users, will be rejected by the Truffles software.

An analogous problem exists with group access
permissions. Unix systems permit users to belong to
several groups, and group membership can also allow access
to files. Like UIDs, group IDs (GIDs) are numerical,

‘and are not coordinated between different administrative

domains, so a given GID in one domain might refer to an
entirely different group in another domain. The Truffles
solution to this problem will be similar to its solution for
UIDs. Users will be permitted to establish groups in one
domain, and users in other domains can map that foreign
group to a local one. A common case is expected to be two
newly cooperating users setting up a special group strictly
to permit them to jointly access their shared files, while
using Unix access control to lock others out. Truffles will
include tools that make this common case simple to set up.

Truffles has not, as yet, dealt substantially with the issue of
revocation of access. In the simplest, probably most
common, case, a temporary sharing relationship will come
to an end, and must be cleanly torn down. Less frequently,
users who are currently able to use files in a sharing
relationship must be prevented from doing so in the future.
The former case will be adequately dealt with by standard
Truffles methods of destroying volumes. The latter case is a
subject of further study for Truffles.

108

Enforcement of policies governing Truffles
sharing

The purpose of Truffles is to permit users at different sites
to share files with each other without undue burden on
system administrators. However, system administrators still
need to exercise some control over which of their sites’ files
can be shared, by whom, with whom, Certain files may be
sufficiently sensitive that no one should be permitted
to share them outside the site. Others might only be
sharable by certain trusted users, with other local users
unable to set up sharing relatonships on them. Yet others
might be sufficiently insensitive that any user who can
access them should be permitted to share them.

Generally, the sharing policies that different system
administrators may want to enforce could be quite varied,
ranging from freely permitting any sharing relationships to
requiring explicit permission for all relationships. Truffles
must be able to support the whole spectrum of possible
policy decisions.

Truffles will support this spectrum of policies by separating
the policy from the mechanism. When a user wants to
share a volume with another site via Truffles, he will
invoke a command to start up the relationship, as described
in section 5.1. This command will consult a system file
to determine which policy module should be run to
determine if the system will permit the relationship to go
forward. This system file will be set up by the system
administrator, and will indicate what program should be run
to determine whether to let the user proceed. Truffles will
be distributed with a small set of programs for this purpose,
and with instructions on how to write other programs for
policies the distribution set does not support. The various
programs will require different input information, including
user identities, volume identifier, identity of the new site,
and possibly certificates of various sorts.

The new user’s site must also validate the sharing request,
and will do so in a similar manner.

Part of the ongoing Truffles research is to examine what
sharing policies are most important, and the best way of
implementing them.

RELATED WORK

Truffles is basically a system for sharing files across
machine boundaries. The primary related work is other file
services with the same goal. One obvious effort is NFS
(10]. In fact, the early version of Truffles uses 2 modified
version of NFS as a transport layer. However, NFS has
cerain limitations that Truffles does not have. Setting up
an NFS relationship is a heavyweight operation, requiring
substantial system administrator intervention on both sides.
Also, NFS currently provides little security (though its
security will be improved in the near future). In its original

110

version, NFS did not provide any form of replication
service. A subsequent version has provided a form of
replication through automounting, but this replication
method does not automatically propagate updates [11],
making it more suitable for read-only files (like manual
pages) than more general file usage. NFS lacks a protocol
for automatically setting up the sharing relationship, as
well.

Other related systems include the Andrew File System and
RFS. The Andrew File System [12] is meant to werk in a
rather different environment than Truffles. The Andrew
File System consists of a distributed collection of servers
(known as Vice) servicing a much larger numbers of
workstations, each of which runs software known as
Virtue. The files are stored permanently by the Vice servers,
with extensive caching done by the Virtue clients. The
Andrew File System authenticates a workstation and the
Vice servers to each other, when they first communicate.
Subsequent communications can be encrypted or merely
authenticated. Since local copies of the file are cached
only, the issue of replication at the client sites does not
arise. A given Andrew installation uses a global name
space for its users’ identifiers, thus avoiding the problem of
mapping disjoint identifier spaces. Only workstations that
are members of the Andrew File System installation can
share files. Thus, the Andrew File System cannot be used
to assist arbitrary users at arbitrary sites to share files.

RFS offers a similar service to NFS, with the primary
difference being that RFS maintains state for file
operations, while NFS does not [9]. RFS has the same
general set of limitations as does NFS, for the purpose of
solving the Truffles problem. Setting up RFS remote
mounts is an administratively heavyweight operation, RFS
does not support replication, and RFS does not include a
protocol to set up the relationship. RFS has addressed some
security concerns that NFS does not, including allowing
only specified users to mount file systems, and mapping
user and group IDs from other administrative domains.

The Locus Operating System supported replicated files with
autoimatic update and recovery mechanisms [13]. However,
Locus ran in a single administrative domain, with all sites
in close cooperation. While possible for a relatively small
set of machines, this solution cannot apply to the broader
case of sharing files with arbitrary users at other sites.
Also, since Locus typically ran within a local area
network, rather than across long haul lines, and since a
single administrative authority controlled the entire system,
the security issues that Truffles deals with were not
considerations in the Locus system.

Kerberos [14] offers an authentication service that has some
overlap with TIS/PEM. Kerberos is specifically designed
authenticate various entities to each other securely. In a
Kerberos system, a Kerberos server stores a database of
authentication information. Each entity that can be

authenticated (referred to as a principal) has a secret key
known only to itself and the Kerberos server. Principals
authenticate each other through the Kerberos server, which
then assigns them a session key to use for encryption
during that session. Kerberos names entities using a
combination of a primary name, an instance, and a realm;
for example, name.instance@realm. Kerberos currently
uses its own form of names for principals, rather
than X.500 distinguished names. Also, Kerberos itself does
not provide for the secure transmission of electronic mail,
though its services clearly could be used in a secure mail
system. The secure connections provided by Kerberos could
also be used t perform setup of Truffles volumes. Kerberos
only provides services for authentication. It is not a file
sharing or replication facility.

Project Athena makes use of Kerberos as part of its
distributed services [15]. Unlike Kerberos itself, Athena isa
distributed filing service. Athena uses a workstation/server
model for its system, unlike Truffles, in which all sites are
viewed as peers. Athena workstations are regarded
as dataless nodes, which use their local hard disks to cache
data to reduce network traffic. Users log into workstations,
are authenticated via Kerberos, and get access to their files
through file servers. Athena uses NFS to make remote files
available to users. Replication is only supported for read-
only system and library software. Athena is intended for
use in a single (though possibly very large) administrative
environment, like a university. It is not meant to support
the more general sharing patterns Truffles supports.

CONCLUSIONS

The resources of the Internet are not well coordinated, largely
because of the difficulty of cooperation between its users.
The only relatively simple, robust service available is elec-
tronic mail. If the Internet, and all other world computer
newworks, are to reach their full potential, much work is
necessary to make cooperation over the networks
trivially easy for the average user.

Truffles is intended as a significant step in that direction. It
makes one of the primary resources of the network’s sites,
their file systems, quite easy to share. Users will be able to
share files with little more effort than is necessary to send
each other electronic mail. The optimistic replication ser-
vice offered by Truffles’ Ficus component will give them
high availability, excellent performance, automatic update
propagation, and automatic recovery of many conflicts
arising from the network environment.

A service like Truffles will never achieve any real
popularity, however, unless it is secure. The world network
is a dangerous place, and users are rightfully wary about
putting too much trust in other sites or the interconnection
media. Truffles will use TIS/PEM to reduce the number of
entities that must be trusted to a reasonable number —
Jjust the certification authorities and the participating sites.

111

By using encryption of data passed via Truffles, privacy of
the ongoing relationship will be preserved.

The schedule for building Truffles is relatively short. The
plan is dependent almost entirely on reuse of major software
components, Ficus and TIS/PEM. While these two system
seem entirely unrelated, they can be used together to provide
most services required by Truffles. Some time and effort
will be spent, of course, in customizing the components for
the Truffles environment, and in merging them, but the
amount of time saved by not having to re-implement their
services is expected far outweigh any time lost merging
them. One important result of the Truffles research will be
to demonstrate how judicious reuse of existing software
components can speed research.

Truffles is currently in an intermediate state of development.
Much of the necessary software has been written, and much
of the unwritten software has been designed. The major
incomplete components are the daemons necessary to run
the protocol and the layer of software to perform UID
mapping. The basic system should be complete by late in
1993. Further research into the use of Truffles to facilitate
sharing between remote users will continue, from that

point.
ACKNOWLEDGEMENTS

This work is being performed under DARPA contract
number N00174-92-C-0128, under the supervision of Brian
Boesch.

REFERENCES

1. Satyanarayanan, M. “A Survey of Distributed File
Systems”, Annual Review of Computer Science, 1990.

2. Guy, R., Heidemann, J., Mak, W_, Page, T., Popek, G.,
and Rothmeier, D., “Implementation of the Ficus
Replicated File System”, Proceedings of the Summer
USENIX Conference, 1990.

3. Linn, J. “Privacy Enhancement for Intemet Electronic
Mail: Part I — Message Encryption and Authentication”,
DEC Technical Report, 1992,

4. Kent, S. “Privacy Enhancement for Intemnet Electronic
Mail: Part II— Certificate-Based Key Management”, BBN
Communications Technical Report, 1992.

S. Balenson, D. “Privacy Enhancement for Intemnet
Electronic Mail: Part III — Algorithms, Modes, and
Identifiers”, Trusted Information Systems Technical Report,
1992.

6. Kaliski, B. “Privacy Enhancement for Intemet Electronic
Mazil: Part IV — Key Certification and Related Services”,
RSA Data Security, Inc. Technical Report, 1992.

7. Galvin, J. and Balenson, D. “Security Aspects of a
UNIX PEM Implemenatation”, Proceedings of the UNIX
Security Symposium ITI, 1992,

8. Page, T., Popek, G., and Guy, R., “Stackable Layers:
An Object-Oriented Approach to Distributed File System
Architecture”, IEEE Workshop on Object Orientation in
Operating Systems, 1990.

9. Rifkin, A., Forbes, M., Hamilton, R., Sabrio, M.,
Suryakanta, S. and Yueh, K. “RFS Architectural
Overview”, Proceedings of the Summer
USENIX Conference, 1986.

10. Sandberg, R., Goldberg, D., Kleiman, S., Walsh, D.,
and Lyon, B., “Design and Implementation of the Sun
Network Filesystem”, Usenix Conference Proceedings,
Summer 1985.

11. Callaghan, B. and Lyon, T. “The Automounter”,
Proceedings of the Winter Usenix Conference, 1989.

12, Satyanarayanan, M., “Integrating Security In a Large
Distributed System”, ACM Transactions on Computer
Systems, Vol. 7, No. 3, August 1989,

13. Popek, G. and Walker, B., “The LOCUS Distributed
System Architecture”, The MIT Press, Cambridge,
Massachusetts, 1985.

14. Steiner, J., Neuman, C., and Schiller, J., “Kerberos:
An Authentication Service for Open Network Systems”,
Usenix Conference Proceedings, Winter 1988.

15. Champine, G., Geer, D., and Ruh, W. “Project
Athena as a Distributed Computer System”, IEEE
Computer, Sept. 1990,

112

Panel Session
Network Security Using
Smart Cards

(position papers)

Issues surrounding the use of Cryptographic Algorithms and
Smart Card Applications

Jeffrey I. Schiller
Massachusetts Institute of Technology
Cambridge, MA

Introduction

One of the primary applications for Smart Card technology
is to provide authentication of users in electronic transaction
systems. By using cryptographic algorithms it is possible for
users to identify themselves to electronic systems without
revealing information that would enable an observer of the
authentication process to subvert subsequent authentication
transactions (e.g., take over the identity of the Smart Card
user).

We will use the NIST developed Smart Card as an example
of a typical Smart Card implementation.

NIST has been working on a Smart Card that can be used for
various applications, including personal identification. This
card is the size of a standard credit card and can be carried as
easily as a credit card.

According to NIST, this card has been programmed to use at
least three different cryptographic algorithms and protocols
(not at once, i.e., the card can be downloaded with software
to use one of the algorithms).

This paper will describe the NIST smart card and then
discuss some issues that arise when it is used with particular
cryptographic algorithms. We will spcifically cover its use
with DES, RSA and the proposed U.S. Federal Digital
Signature Standard (DSS).

Background

The NIST smart card is a credit card sized processing system
that uses a Hitachi H8/310 processor. It has 10K bytes of
ROM, 256 bytes of RAM and 8K bytes of EEPROM as well
as the necessary 1/O hardware to allow it to be electronically
queried. The card does not include a battery, instead it is
only "on" when it is inserted in an appropriate reader, from
which it draws its power.1

It is quite a challenge to fit processing power and memory
into the form factor of a credit card. Significant effort must
also be expended to ensure that the card wiil remain viable
given its potentially hostile use and storage environment.

1This description is based on public presentations that have
been made by members of the NIST technical staff. The author
did not work directly on the NIST smart card project.

115

The card must be able to get wet, withstand physical stress in
various dimensions (i.e., bending). It must also be able to
survive in the static rich environment of a wallet or pocket
book. It is therefore quite impressive by itself that the card
contains the processing power and memory described above.

However it is also important to mention what the card does
NOT contain. The card does not contain either a battery nor
(as a result) battery backed up memory. The card also does
not contain a hardware random number generator. The lack
of these facilities will become important to the discussion
below.

General use of a Smart Card for Identification
The traditional approach to using a smart card for
identification involves the storage of a secret quantity,

typically an encryption key, within the smart card.

The user proves their identity by inserting the smart card into

" areader. The reader challenges the card by providing a value

and expecting the card to perform a calculation that only the
possessor of the secret wonld be able to perform.

In many systems a Personal Identification Number (PIN) is
supplied by the card user (through a keyboard which is part
of the reader system) to the card as a means of authenticating
the request to the card. In other words the user supplies the
PIN to the reader, which forwards it to the card. In this
fashion the user is authenticated to the card. The card then
will use knowledge of its secret to prove identity to the
challenging system.

Symmetric Encryption Use (DES)

The NIST smart card was originally programmed to use the
U.S. Federal Data Encryption Standard (DES). DES is a
typical symmetric cipher system. It enciphers and deciphers
data using one key.

Using the DES both the smart card and the card’s challenger
have possession of the same DES key. The challenger
provides a challenge value to the card and expects the card to
encrypt (or decrypt) the challenge using the stored secret
DES key. The challenger then performs the same
computation and expects the results to compare successfully.

The primary disadvantage to using the DES in this fashion is
that both the card and the card's challenger need to have
access to the secret DES key used by the card. The

challenger is therefore in a position to forge additional cards
with the same DES key and therefore can illegitimately
claim to be the possessor of the original card to other
challengers.

If smart cards are used by consumers for electronic business,
this risk is significant as many banks and or merchants will
need to have access to the DES key for each user's card. Of
course in practice what will have to evolve is some
centralized identification clearing center. However as this
center will have access to all user's cards DES keys, it will
represent a significant target for parties wishing to subvert
the identity system.

These disadvantages can be bypassed by using Public Key
Encryption

Public Key Encryption Use

Public Key Encryption systems use two keys, one for
encryption and one for decryption. Keys are generated in
pairs, one public and one private. If one key is used to
perform an operation (either encryption or decryption) then
the other can be used to perform the opposite function.
Importantly, knowledge of the public key does not give away
the private key.

In smart card systems a key pair is generated for each card.
The private, confidential, key is loaded onto the card (or the
key generation is performed on the card and the private key
never leaves it) and the public key is used by challengers of
the card.

When a user goes to use the smart card, the challenger sends
the card a challenge which the card "signs" using its private
key. The challenger then verifies the "signature” by using the
public key. The challenger has access to the public key for
the card and can challenge it. However because the
challenger does not have the private key (which is on the
card) the challenger cannot illegitimately forge additional
cards.

Of course in order for this to work it MUST be impossible
for the challenger to get the smart card to divulge the private
key.

NIST has implemented two different public key algorithms
on the smart card, RSA and the proposed DSS.

Using the Smart Card with RSA

NIST has ported the RSA algorithm suite to the card. With
RSA the card can generate "signatures” as well as verify
signatures of other cards (or other entities which have a key
pair). However the NIST smart card as yet has not been
programmed to generate key pairs. Key pair generation with
RSA is a complex process which would consume significant

116

memory resources on the card, but in normal use is
performed but once.

When using RSA, the NIST smart card must have a "trusted”
external agent generate the key pair and load it onto the card.
The "trusted” agent must be trusted to NOT keep a copy of
the generated private key. No legitimate interest should
require it.

Using the Smart Card with DSS

The DSS has also been implemented on the NIST smart
card. In addition to the sign and verify operations, with the
DSS the card can also generate the private key locally
because very little memory overhead is required to generate
key pairs with the DSS.

However there are some significant issues and risks when
using the DSS with a smart card, including the NIST smart
card. For the most part they boil down to the requirement for
a unique random value (k' from the NIST specification) for
each signature. Where this value comes from and how it is
guaranteed to be unique is the problem.

Using RSA with the NIST smart card does not require the
storage of any dynamic state on the card. The card need only
hold its operating software and the public/private key pair.

However using DSS requires a random value 'k'. To get this
value the card will need either a hardware random number
generator (which it doesn't have and probably cannot have)
or a cryptographically strong software pseudo-random
number generator. The later is the most likely scenario.

However introducing a software pseudo random number
generator to the card will require dynamic state (the state
associated with the generator) which will change on every
signature but which is kept between signatures, including
during those periods when the card is not in a reader and
therefore not powered.

The problem with this dynamic state is that NVRAMs
typically have a limited re-write lifetime, and NVRAM is the
only location that the card can store state between usages.
This will result in the card being able to sign only a limited
(though this value may be in the thousands) number of
signatures before the card must be discarded. The software
on the card must also be careful to ensure that the NVRAM
has not failed, where failure in this context is defined as
failing to store a new value into a memory location or
otherwise having memory read a constant value. Cne
approach might be to define a limit on the number of
signatures, and therefore the number of writes to NVRAM,
before the card administratively shuts down (hopefully with
some warning to its user).

Bad alternatives

Below I itemize some "bad" alternatives to having dynamic
state on the card.

Bad alternative 1: Have the reader provide the value of K.
This is bad because if the challenger can provide the value of
"K", then the challenger can derive the card's private key.
This is a mathematical property of the DSS algorithm, if an
attacker has a signature (and the message it signs) and the K
value used to compute that signature, then the attacker can

easily derive the private key.2

Bad alternative 2: Have the reader provide a seed for a
software pseudo-random generator on the card. This
generator will involve a secret value known only to the card
so that knowledge of the generator's seed will not result in
the knowledge of the computed K.

Turns out that this method is also weak. The reason is that an
attacker can determine the card's private key if the attacker
has access to two signatures (and their corresponding text)
that were computed with the same value of K. Again, this is

a result of the mathematical properties of the Dss.3

It would be a simple matter for a crooked challenger to issue
two challenges and then provide the same random number
seed for them. In fact the challenger could even drop power
to the card between the challenges to assure that the card
isn't keeping state in RAM memory.

A word on DSS vs. RSA timing

One of NISTs claimed reasons for preferring the DSS over
the RSA system has to do with the speed of computing
signatures. Often quoted are signature times of about 25
seconds for RSA and 0.05 seconds for the DSS. On the
surface it appears that the DSS wins hands down. However
closer examination of the DSS numbers shows that to
achieve this 0.05 second signing time requires a pre-
computation which requires about 25 seconds, or a time
comparable to the time required to generate an RSA
signature. What makes it pre-computation is that it can be
performed before the receipt of a challenge, whereas the
signature time itself is measure from the time of receipt of a
challenge. However whether or not most of the overhead of
DSS can be written off as pre-computation, it is computation
that has to occur nonetheless. Under any circumstance the
card will need to be inserted into a powered on reader for the
time necessary for a pre-computation as well as the actual
signature computation.

ZAppendix A goes into the details of this attack.
3Appendix B goes into the details of this attack.

117

If the card has dynamic state which is saved in NVRAM
across power down times, then precomputation can occur
whenever the card has power. Multiple pre-computations can
be performed (until memory for the results in full) and stored
for later use. However if the card maintains no state across
power downs, then pre-computation MUST occur between
the time the card is inserted in the reader and the time it is
removed (after a signature is issued). So regardless of how
you account for the necessary 25 seconds of computation,
the card needs to be in the reader for at least 25 seconds.

A word on Trust

One of the features of using the DSS with the NIST smart
card is that the card can generate the private key. RSA
implementations require that the key pair be generated off
the card and then downloaded. This naturally leads to an
argument that a private key chosen using the DSS is more
secure because off card components do not need to be
trusted.

However this argument is fallacious. With the DSS a private
key is generated simply by choosing a random number of the
appropriate length (the public key is then computed based on
this random choice). However this again brings up the issue
of where "random” numbers come from. Even in the case of
a card which maintains state in NVRAM, the pseudo-random
number generator needs to be initially seeded. This seeding
needs to be from a trusted off card entity. If you have to trust
an off card entity to initialize the random number generator,
then you can 2iso trust it to generate an RSA key pair.

Of course this argument hasn't even touched on the trust
required of the system that initially downloads the operating
software into the card.

Conclusion

Smart card technology may be used to engage in several
different cryptographic authentication protocols, based both
on symmetric (private) and asymmetric (public)
cryptography. Asymmetric cryptography offers some
decided advantages over symmetric systems because
challengers (banks and merchants in a commercial system)
need not be completely trusted.

Several asymmetric algorithms exist. The two most
discussed being the RSA and proposed NIST DSS
algorithms.

Given a choice between the NIST proposed DSS algorithm
and the RSA algorithm, the RSA algorithm appears to offer
less risk to the end user because its implementation is less
complex. Without discussing the relative cryptographic
strengths of the two algorithms, the DSS has the
disadvantage that it requires cryptographically unique
random numbers for each signature. Generating or acquiring

these values is a subtle process which may easily be mis-
implemented, exposing the end user to the risk of private key
disclosure. A secure implementation requires the continual
re-write of the on-card NVRAM memory, something that
NVRAM isn't well suited for.

Appendix A - Compromise of DSS with knowledge of
"K"

Using the NIST DSS a signature is computed by the
following equations:

r=(gkmod p) modq
s=(! (H+xr)mod q

M
@)

r and s together comprise a signature. p, q, and g are public
parameters used for both signature computation and
verification. H is the hash that is being signed. k is the
random value needed to compute a signature and k1lisits
multiplicative inverse mod q. Finally x is the private key
being used to compute the signature.

k and x must only be known to the signer. Although x is the
same for multiple signatures (it's the user's private key), k is
unique to a particular signature.

To verify a signature one needs to know q, p, &, T, s, H and
the public key y. y is equal to g* mod p. To compute x given
y requires solving the discrete log problem. However this
requires an intractable amount of computation and is the
strength of the DSS algorithm.

Typically q, p, and g are publicly known and shared by a
community of users. y is obtained from a directory and H is
computed from the document whose signature is being
verified. r and s comprise the signature itself.

Lets rewrite equation (2) above to solve for x, the private
key.

s-k'1H
k1r

3 X= mod q

The only unknown that prevents this equation from being

solved for x is k. If k is known then k-1 is trivially computed
and x can be determined.

Appendix B - Compromise given two signatures using the
same k

Appendix A demonstrated that if the k used to compute a
signature is known to an adversary, then the private key x
can be simply computed. In this section we consider the case
where k is not known, but where two different signatures
were computed with the same k.

118

From equation (1) if two signatures are generated with the
same k, then r will also be the same. This implies that it is
trivial to determine if two signatures were computed with the
same k, for the same r will appear in each. Let's rewrite
equation (2) below:
@ s=& 1 H+x)modq
Now for a second signature (using H' to represent the second
hash and s' to represent the second s value from the

signature) we get:
@ §'=(k1(H +x1) modq
Solving for k1 we get:

S

From(2) kl= Heomodg
From (4) kl= H‘i xrmod q
So:
s s'
) H+xr H+xr mod q
Solving for x yields:
sH-sH
©® *=ts-s) ™4

As can be seen, all the necessary values to make this
computation are present and x is easily computed.

SMART CARD AUGMENTATION OF KERBEROS

Marjan Krajewsk, Jr.
The MITRE Corporation
Bedford, MA

ABSTRACT

This paper addresses security issues associated with
authenticating users to system services in distributed
information systems. Its focus is the presentation of the
need for and an approach toward augmenting the Kerberos
distributed system identification and authentication
protocol via the integration of cmerging smart card
technology.

INTRODUCTION

Two critical aspects of information system security are
the application of access controls basexd on a user's
authorizations and the creation of an audit trail based on a
user’s actions [1]. Both ar¢ dependent upcn the accurate
authentication of users to guard against the threat of
intruders masquerading as valid users. Traditionally, a
user is authenticated to a host upon presentation of a
valid combination of userid and password. In a
distributed processing environmient, a user often needs to
access resources located at multiple servers from multiple
workstations interconnected via a communications
network. Authentication to each host accessed is crucial,
but presenting separate userid/password pairs can be both
unwieldy and unsecure. What is needed is a mechanism
which reguires users to identify and authenticate
themselves once to a trusted agent which then performs
the necessary user identification and aut” entication to
each accessed resource transparently (ur sary login).

While much work has and is being done in this area, a
solution suitable for a truly hostile environment (i.e.,
one subject to active attacks against both
workstation-'~ervers and the network) does not yet exist.
Some unitary login protocols, designed for use in
military environments where the network is physically
protected from intruders and the users are trusted, do not
use any form of encryption and can be easily defeated by
any one of a number of commercially available network
protocol analyzers capable of intercepting network
transmissions. Other protocols protect against the threat
of network eavesdropping through the use of various
forms of encryption but still assume that workstations
and servers are physically protected (e.g., by individual
user ownership/control). The covert introduction of a
Trojan Horse program into these workstations can easily
"break” the authentication mechanism. Both
Govemment and non-Government organizations could
greatly ease the many problems associated with password
management and the threat from masquerading on their
increasingly distributed information systems with a

-
-
W

unitary login capability which was secure from both a
workstation/server and a network perspective.

The Kerberos protocol possesses many advantages as a
basis for this capability [2]. Originally developed to
provide user authentication for the distributed open
computing environment of MIT's Project Athena,
Kerberos is growing significantly in popularity (it has
beer adopted by the Open Software Foundation and Unix
International as well as being offered in several
commercial products). It also uses algorithm-independent
conventional (private) key encryption to protect against
network eavesdropping. This latter feature is especially
important for military/intelligence applications in that
the current Data Encryption Standard (DES) algorithm
might be inadequate for certain environments. If so, it
can easily be replaced with a stronger algorithm.

KERBEROS

Kerberos utilizes a trusted central authentication server,
the Kerberos Authentication Server (KAS). The KAS
contains a database oi system eatities (registered users
and services) and their private cryptographic keys. These
private keys, known only to the respective entity and the
KAS, allow the KAS to communicate privately with the
Kerberos agent of each system service (server Kerberos)
and with the Kerberos agent of each registered user who
wishes to be logged in (client Kerberos). The KAS also
contains a ticket granting service to provide a trusted
means for logged in users to prove their identity to
system services. Finally, it contains a key generation
service which supplies authorized pairs of entities with
temporary cryptographic keys (session keys).

The Kerberos protocol is based on the concept of tickets
and authenticators. A ticket is issued by the KAS for a
single user and a specified service. It contains the
serviceid, the userid, the user's (workstation) address, a
timestamp, the ticket's lifetime and a randomly chosen
session key to be used by this user and this service. This
information is protected by encryption under the service's
private key. Since this key is known only to the service
and the KAS, the service is assured of the authenticity of
the ticket. Once a ticket is issued, it can be used many
mn&sbythenamedusertogamaocesstothcmdwaxed)
service until the ticket expires.

Unlike the ticket, the authenticator is built by client
Kerberos. A new one must be generated every time the
user wishes to use a ticket. An authenticator contains
the user's id, the user's (workstation) address, and a

timestamp. The authenticator is encrypted with the
session key which is associated with the ticket.
Encryption of the authenticator provides integrity of the
authenticator and assures the service that the user is the
system entity who received the original ticket. The
further agreement of the user id in the authenticator with
the one in the ticket and the address with the one from
which the ticket arrived provides further assurance.
Agreement of the timestamp with the current time
assures the service that this is a fresh ticket/authenticator
pair and not a replay os an old pair.

Security within Kerberos is enforced through the
protection of session keys during transmission. The
initial response from the KAS to the client, upon
presentation of a userid, consists of a ticket to the ticket
granting service and its associated session key. The
ticket granting service ticket is encrypted with the ticket
granting service's private key. The ticket granting
service session key is encrypted with the client's private
key (derived from a password). Any additional session
keys associated with tickets to system services requested

Borrowed?

Stolen? Kerberos
Authentication
Server (KAS)

login requesy [TGS ticket,

by that particular client are henceforth encrypted in the
ticket granting service session key.

Kerberos has been analyzed from a general security
perspective [3]. A number of vulnerabilities are
associated with the initial login process. A significant
vulnerability involves its manipulation of the user’s
Kerberos password and other sensitive authentication
information (i.e., session keys) within the workstation,
thereby making it vulnerable to Trojon Horse threats
which could capture such data for later use by an intruder.
Another vulnerability involves the threat of repeated
attacks at the intruder’s leisure following interception of
the initial message from the central authentication server.
This message contains the ticket granting service ticket
and associated session key and is encrypted by a relatively
weak password-derived key. A third vulnerability
involves the inherent weakness of depending solely upon
a single factor (i.c., a password) for the initial user
authentication. Passwords can be easily borrowed or
stolen (Figure 1).

§ Eavesdropper
/ 2

TGS session keyluser's key

y Clientws)

Server
| Server Kerberos |

password

| TGS ticket

"~ TGS session key
gerver ticket

\ server session key

~/

Figure 1. Kerberos login vulnerabilities

AUGMENTATION CONCEPT

Advances in smart card technology have reached the point
where significant amounts of information can be stored
and significant processing can be performed entirely
within the isolated environment of the card itself [4].
When this technology is combined with user-unique
information (e.g., a password) that is useless except
when processed by the appropriate smart card, a
significantly stronger authentication mechanism can be
constructed than is available with "standard” (i.e.,
software-only) Kerberos. Kerberos itself has evolved to
accommodate such augmentations [5].

The Kerberos augmentation concept advocated here is

workstation into a user-unique smart card and storing the
user’s private key in encrypted form on the smart card.

The user’s private key would be encrypted in a key
derived from a password. In this way, neither possession
of the card alone nor knowledge of the password alone
would be sufficient to authenticate a user. Encryption
and decryption operations and the storage of unencrypted
authentication information would occur only within a
trusted processing environment (i.e., that of the smart
card). The initial concept is detailed in [6].

In addition to enhancing security, it is imporiant to
maintain interoperability with existing Kerberos
implementations in order to allow augmented Kerberos

based upon moving all cryptographic processing from the components to be gradually introduced into an

120

L

operational environment as time and resources permit.
This constraint mandates that neither the Kerberos
Authentication Server nor the server Kerberos
implementations be affected in any way. It also
mandates that the client Kerberos software be modified in
a way that results in the least impact to the existing
code. The approach selected was to replace the
cryptographic routines in client Kerberos with a smart
card driver that, together with the attached smart card,
emulated the original code with one difference -- all

session keys presented to the smart card driver were
returned to the calling routine in encrypted form rather
than unencrypted form. By doing this, the client Kerberos
software is tricked into "believing” that it is handling red
(unencrypted) session keys when in fact it is handling
only black (encrypted) session keys. As stated in the
previous paragraph, key decryption and unencrypted key
handling occurs only within the smart card itself (Figure
2).

Kerberos
\SmancaraY | Authentication

Server

Server Kerberos

Cryptographic
processing
Client WS
Client Kerberos
N

Figure 2. Kerberos augmentation concept

Issues that quickly arise in attempting to realize this
concept include those related to feasibility, security, and
performance. Regarding feasibility, it is not clear how
well current smart card technology will support the
required functional partitioning between inboard and
outboard elements. Regarding security, the movement of
all sensitive processing into a smart card mandates that
the smart card provide a trusted environment which is
incorruptible from the workstation and contains no
sensitive data when not in use. Itis not clear how well
current smart card technology can provide the needed
isolation. Regarding performance, the use of an outboard
mi will undoubtedly impact response time,
but how severely is unknown. Implementation of a
proof-of-concept prototype is necessary to definitively
answer these questions. The details of this prototype are
the focus of the remainder of this paper.

SMART CARD SELECTION

Card technology is advancing rapidly to support a vast
number of applications in the financial, medical,
telecommunications, and mass transit arenas. It is
estimated that, by 1996, several hundred million cards
will be sold worldwide. Of the three basic card types,
magnetic stripe (the familiar credit card), optical, and
integrated circuit, only the integrated circuit or "smart”
card contains the required on-card data processing
capabilities.

A typical smart card is approximately the size of a credit
card and contains a microcontroller with a limited amount
of on-chip volatile random access memory (RAM), a
substantially larger amount of electrically erasable
programmable read only memory (EEPROM), and an
"operating system" residing in masked read only memory
(ROM). Numerous vendors are currently producing such
cards, each with slightly different RAM, EEPROM and
programming characteristics and with varying levels of
security (i.e., card protection).

For the proof-of-concept implementation, a minimum of
8 kilobytes of EEPROM and a highly flexible software
development environment were paramount. At the time
the implementation decision was made (mid-1991), the
OmegaCard by Sota Electronics, Inc. appeared to best
meet these criteria. The OmegaCard contains a custom
processor configuration based upon the Intel 8051 family
of microcontrollers, 8 kilobytes of EEPROM, and a mini
operating system which manages the resources of the
card. The EEPROM can be partitioned into program
segments and data segments as required by the application
and can readily be reprogrammed. Applications are
developed in C using standard Intel 8051 software
development tools. The card communicates via a
standard RS-232C interface.

121

SMART CARD IMPLEMENTATION OmegaCard described above. Sun Microsystems
workstations (a Sun IPC and a Sun 3/50) served as the
The Kerberos augmentation concept was implemented KAS/server and client hosts. The overall process flow is
using MIT Kerberos version 5 and the Sota Electronics as follows (Figure 3).

Kerberos Authentication Server Server
(unchanged) (unchanged)
tiont id 4 TGS ticket, TGS ticket, 8 5) S ticket,
i Trrcs k) chiont key v auth, T [s‘fu';.r'cs sk L auth. T
sid
client id Client WS
——'M’ {Smart Card driver module replaces Kerberos cryptographic module)
hashed password, |[TGS sk}7GS sk A auth. contents, .wh* auth. contents, | auth.
[TGS sklclient key [TGS sk] TGS sk 1S sk} TGS sk
—_ Smart Card Interface
| Smart Card |
[cliont koy) hashod password
cryptographic routine
Figure 3. Process flow
Initial State: Client Kerberos holds no user-unique the TGS session key itself and transfers the encrypted
information. The smart card holds the user’s private key TGS session key back to client Kerberos. (The purpose
encrypted in a key derived from a password. of this last step is to ensure that all future data transfers

to the smart card contain a session key encrypted in the
Step 1: The user inserts his/her smart card into the card TGS session key and data to be encrypted in the
reader attached to the workstation and initiates the login accompanying session key.)
process. Client Kerberos requests a userid.
Step 6: To access a system service, client Kerberos first
Step 2: Client Kerberos sends the userid to the KAS. determines if a ticket to that service is needed (one may
have been obtained earlier and, if so, the process jumps
Step 3: The KAS generates the user's ticket granting to step 10). If a ticket is needed, client Kerberos transfers
service (TGS) ticket and associated TGS session key, the encrypted TGS session key and the relevant
encrypts the TGS session key in the user's private key, authenticalor data to the smart card.
and sends them to client Kerberos.
Step 7: The smart card first decrypts the transferred
Step 4: Client Kerberos requests a password and derives session key using the TGS session key previously stored
akey from it. It then transfers this key and the encrypted in volatile memory and then creates an authenticator by
TGS session key to the smart card. encrypting the transferred data with the decrypted session
key. It then transfers the newly created authenticator to
Step 5: The smart card uses the key derived from the client Kerberos.
user's password to decrypt and obtain the user’s private
key. The smart card then uses the user's private key to ~ Step 8: Client Kerberos sends the service request,
decrypt the encrypted TGS session key. The smartcard together with the TGS ticket and authenticator, to the
then stores the TGS session key in its volatile memory ~ KAS.
and destroys both the key derived from the user's
password and the decrypted copy of the user's private key. Step 9: The KAS generates the appropriate server ticket
Finally, it encrypts a copy of the TGS session key using and associated server session key, encrypts the session

122

Iik

key in the user's TGS session key, and sends them to
client Kerberos.

Step 10: Client Kerberos transfers the encrypted session
key and relevant authenticator data to the smart card.

Step 11: The smart card first decrypts the transferred
session key using the previously stored TGS session key
and then creates an authenticator by encrypting the
transferred data with the decrypted session key. It then
transfers the newly created authenticator to client
Kerberos. (The client Kerberos smart card driver returns
the unchanged encrypted session key back to the calling
routine when required to return a "decrypted” key.)

Step 12: Client Kerberos sends the server ticket and
authenticator to the requested service.

CONCLUSIONS

The smart card Kerberos augmentation concept improves
system security in three significant ways. It n:quires a
user to provide both something he/she possesses (i.e., a
smart card) as well as something he/she knows (i.e., a
password). Either item alone is useless. This
significantly reduces the risk from password
borrowing/theft. It allows the initial message from the
central authentication server 1o be encrypted in a truly
random key rather than a password-derived key. A
cryptographic attack on this message must therefore
assume that the entire keyspace is available for use. This
significantly reduces the risk from network
eavesdropping. Finally, it ensures that only encrypted
data is processed by a user's workstation. Software
residing on a workstation can view only the same data a
network eavesdropper can view (and a password tied to a
specific smart card). This significantly reduces the risk
from Trojan Horse programs.

The prototype implementation described in this paper has
proven that the concept is feasible. The primary Iessons
learned indicate that performance and security are major
factors in the selection of a suitable smart card.
Regarding performance, the smart card used in the proof-
of-concept prototype contained 8 kilobytes of EEPROM
and 128 bytes of RAM. This amount of memory was
found to be marginal for the application. In particular,
there was not sufficient memory to store common
cryptographic computational results and previously
decrypted session keys, thereby forcing significant
amounts of recomputation and increasing response time.
In addition, some intermediate results that should, for
security reasons, be stored in RAM, had to be stored in
EEPROM. A minimum of 256 bytes of RAM appears
necessary. Regarding security, it was found that the
selected smart card must have protected areas that cannot
be viewed or altered from the workstation. The smart
card used in the prototype is potentially vulnerable to an

attack whereby EEPROM-resident applications software
is overwritten with malicious software.

Future work in this area will be directed toward porting
the client Kerberos smart card driver software to the Open
Software Foundation (OSF) Distributed Computing
Environment (DCE) and porting the smart card
cryptographic software to the DataKey Signature Card. It
is hoped that this will provide a robust, high performance
implementation directly applicable to tomorrow's
distributed information systerns.

REFERENCES

{1] National Computer Security Center, "Department of
Defense Trusted Computer System Evaluation Criteria,”
DoD Standard 5200.28-STD, December 1985.

[2] Steiner, J., Neuman, C., and Schiller, J., "Kerberos:
An Authentication Service for Open Network Systems,”
USENIX Conference, 1988.

[3] Beliovin, S. M. and Merritt, M., "Limitations of the
Kerberos Authentication Systeia," Computer
Communications Review, October 1990.

{4] Smart Card Industry Association, and Personal
Identification Newsletter, CardTech Conference
Proceedings, April 7-9 1992.

[5] Kohl, John T., "The Evolution of the Kerberos
Authentication Service," Spring EurOpen Conference,
1991.

[6) Krajewski, M., "Concept For a Smart Card
Kerberos,” 15th National Computer Security Conference,
October 1992.

123

AN OVERVIEW OF THE
ADVANCED SMARTCARD ACCESS CONTROL SYSTEM (ASACS)

Jim Dray <dray@stl.ncsl.nist.gov>
Computer Security Division / Computer Systems Laboratory
Nationnl Institute of Standards and Technology
Gaithersburg, MD 20899

David Balenson <balenson@tis.com>
Trusted Information Systems, Inc.
Glenwood, MD 21738

ABSTRACT

The Advanced Smartcard Access Control System
(ASACS) was developed by the National Institute of
Standards and Technology in conjunction with
Datakey and Trusted Information Systems. The
system includes a smertcard with public key
capabilities and a portable reader/writer with
computational capabilities, including a
microprocessor, programmable memory, a keypad,
and an LCD display. Through the use of a layered
interface, ASACS was integrated into several
demonstration programs and into the TIS Privacy
Enhanced Mail (TIS/PEM) system. This paper
provides a brief overview of the ASACS.

INTRODUCTION

Computer access control systems which rely solely on
password-based authentication have proven to be
inadequate in many environments, particularly where
network systems are involved. The security of access
control systems can be significantly strengthened if
the authentication process is based on something the
user possesses, such as a smartcard, in addition to a
memorized password or Personal Identification
Number (PIN). Modem smartcards have the ability
to process as well as store information, and this
capability has significant advantages over passive
memory card technology for security applications.
Smartcards can implement secure cryptographic
authentication and automated key distribution
protocols, provide secure data storage, and perform a
variety of other functions which increase the security
of an access control system. This increase in security

can be realized while maintaining or even enhancing
the level of convenience for the system user.

The Advanced Smartcard Access Control System
(ASACS) has been developed by the National
Institute of Standards and Technolegy in conjunction
with Datakey and Trusted Information Systems. The
primary goal of the project was to develop an
advanced smartcard system which exploits recent
advances in semiconductor aund cryptographic
technology for secure login authentication. ASACS
also provides secure data storage, automated key
management, and digital signature capabilities. The
services supported by the ASACS implementation are
designed for use within networking environments,
including both local area networks and wide area
networks such as the Intemet.

The ASACS smartcard provides cryptographic
capabilities based on standard cryptographic
algorithms and techniques, in combination with
software running on a host computer. Many of the
underlying concepts applied to the design of ASACS
bave been successfully demonstrated in the
NIST/Datakey Token Based Access Control System
(TBACS) [1] as well as the Secure Access Control
System (SACS) [2] projects. Each of these systems
provides token-based secure access to a host computer
through a cryptographic handshake protocol based on
the Data Encryption Standard (DES) algorithm.
However, the ASACS project involves the
development of a smartcard with greater capabilities
through the addition of public key cryptographic
functions. A new smartcard reader/writer with
significantly greater capabilities bas also been
developed for ASACS. The ASACS reader/writer has

This work partially sponsored by the U.S. Government Defease Advanced Research Projects Ageayc (DARPA) under contract number 8139 MOD
01 to the National Bureau of Standards and under contract number F30602-89-C-0125 to Trusted Iuformation Systems.

I

computational capabilities, and includes a
microprocessor, programmable memory, a keypad,
and an LCD display. These features support the
needs of mobile users who require a portable
reader/writer for authentication from remote sites. To
demonstrate the capabilities of ASACS, several
applications have been developed, most notably a
system maintenance program and several other useful
demonstration programs. In addition, ASACS has
been integrated with the TIS Privacy Enhanced Mail
(TIS/PEM) system.

SYSTEM OYERVIEW

Figure 1 depicts the ASACS system components. A
user possessing a smartcard inserts the card into the
reader/writer which is attached to a local workstation.
The workstation is connected to a local area network
(LAN), which in turn may be connected to other
networks. The smartcard may be used to control the
user’s access to both the local workstation as well as
to other workstations and host computers on the
attached networks.

HOST
COMPUTERS /‘\
OTHER
NETWORKS
LAN
LOCAL
WORK — READER/
STATION WRITER
Bt
@®
SMART
CARD

Figure 1: ASACS system components.

From an architectural standpoint, ASACS is divided
into several different functional layers, comprising
both the hardware and software components of the
system (see Figure 2). The lowest layer consists of
the ASACS hardware, including the public key

126

smartcard and either the SACS reader/writer or the
ASACS portable reader/writer. The next layer of
ASACS is comprised cf host system software, which
is functionally divided into four layers. This software
is used to provide to provide a convenient and
standard method for integrating the ASACS public
key smartcard into a wide variety of host system
application software. The top layer is a Smartcard
Application Program Interface (SCAPI) which is
directly accessed by applications software to interface
with the ASACS system. The other layers provide
command set interfaces for the smartcard commands
and the reader/writer commands, a smartcard
communications protocol, and hardware-level /O
support.

Finally, the top layer of ASACS represents the
various applications with which the ASACS system
can be integrated. ASACS can be integrated into
these applications using either the SCAPI or the
command set interfaces. A security officer
maintenance program and several demonstration
programs, including a signature utility program and a
login manager were developed as a part of the
ASACS project. In addition, using the SCAPI, the
ASACS system has been integrated into the TIS
Privacy Enhanced Mail (TIS/PEM) system.

PUBLIC KEY SMARTCARD

The ASACS smartcard is based on the Smartcard-
based Access Control System (SACS) developed by
NIST under a previous DARPA sponsored contract.
The SACS and ASACS smart cards contain a Hitachi
HB8/310 integrated circuit, designed specifically for
smart card applications {3]. The HS8 is configured
with 256 bytes of RAM, 10K bytes of ROM, and 8K
bytes of EEPROM. In order to meet ISO
requirements for contact spacing and arrangement, the
H8 die has pads for power (+5V), ground, clock
(10MHz), reset, and serial /O [4]. An ISO-standard
micromodule is bonded to the H8 die, and this
assembly is then mounted in a plastic card with the
same dimensions as a standard credit card.

Smartcard Firmware

The ASACS public key smartcard firmware
implements a set of commands which support card
maintenance, key management, user authentication,

4 e TIS/PEM Privacy Enhanced Mail System
HO
APPL!C{\TIONS o Other Applications
¥ APPLICATION PROGRAMMING INTERFACE
SMARTCARD READER/WRITER
COMMAND SET COMMAND SET
INTERFACE INTERFACE
LAYERED
INTERFACE
SMARTCARD
COMMUNICATIONS PROTOCOL.
HARDWARE INPUT/OUTPUT INTERFACE
\
} [PORTABLE] READER/WRITER
HARDWARE
l SMARTCARD

Figure 2: ASACS functional layers.

data storage, and data encryption and authentication.
Access control software running on a host computer
issues commands to the smartcard through the
reader/writer interface. The firmware of the card then
executes the requested function and returns the
appropriate response to the host computer. It is the
respopsibility of the host access control software to
mediate the authentications between the user, the
user’s smartcard, and the host computer.

The ASACS command set is the successor to the
smartcard command set developed for the Smartcard-
based Access Control System (SACS). The cost and
time constraints of the ASACS project did not allow
for the production of a new ROM mask. Therefore,
the ROM mask developed for the SACS project was
also used for the ASACS smartcard. ASACS retains
the symmetric key capabilities of the original SACS
system, since the authentication protocol is based on
the Data Encryption Standard (DES) algorithm. This
challenge-response authentication protocol provides a
rapid and secure method for two parties to perform
mutual identity verification based upon the possession
of a shared secret key and the use of that key to
encrypt randomly generated cryptographic challenges.

127

This protocol is described in detail in NIST Special
Publication 500-157 [5]. The ASACS smartcard is
capable of accepting or generating the initial
cryptographic challenge, and therefore complies with

the requirements of ANSI X9.26 [6] for secure sign-
on.

The principal difference between the ASACS and
SACS command sets is the addition of public key
cryptographic capabilities. There are ' certain
arithmetic operations, such as modular exponentiation
and modular multiplication, which are common to a
variety of public key algorithms. These operations
have been implemented in the ASACS firmware as
distinct routines which can be used to support most of
the currently available public key algorithms. The
development and optimization of firmware which
performs these modular operations is the most
difficult aspect of implementing -public key
cryptography on a smartcard. A variety of public key
algorithms can be realized in the ASACS smartcard
firmware by calling the low-level arithmetic routines
in the required sequence. Both the Digital Signature
Algorithm (DSA), which has been proposed by NIST
as a Digital Signature Standard (DSS) [7], and the

FOM (10K bytes) E2PROM (8K bytes)
BOOTSTRAP CODE (1K) COMMAND NTERPRETER
<
PUBLICPRIVATE
KEY STORAGE
PRIMIT]\{ES%NCTIONS SECRET KEY STORAGE
ASACS COMMANDS (2K
SACS COMKANDS PUBLIC KEY PRIMITIVES
: , o

Figure 3: ASACS smartcard memory layous.

Rivest-Shamir-Adleman (RSA) [8] cryptographic
algorithm have been implemented in the ASACS
smartcard firmware.

Figure 3 depicts the layout of the ASACS smartcard
memory from a high level perspective. The majority
of the firmware is stored in ROM, including a
bootstrap routine and code for the cormmands from the
SACS smartcard. The Data Encryption Standard
(DES) [9] algorithm is also located in ROM. The
EEPROM contains the firmware for the public key
algorithms, a command interpreter, and a jump table
which points to the firmware routines associated with
each command. Since the addresses in the jump table
can be modified, new firmware routines can be loaded
into EEPROM to replace existing routines and to add
new functions. Specific locations in EEPROM are
reserved for the storage of symimetric and asymmetric
key components. In addition, a number of general
purpose data storage zones are available in EEPROM.

See [10] for a more detailed description of the
ASACS public key smartcard.

SMARTCARD READER/WRITER

The ASACS public key smartcard can be interfaced
to a workstation using either the SACS reader/writer
or the new ASACS portable reader/writer. Both the
SACS and the ASACS reader/writers provide an

128

RS-232 serial communications connection between the
smartcard and the host computer. RS-232 was chosen
because a serial port is standard equipment on the
majority of computers. Therefore, the reader/writer
can be connected to most computers without the need
for a custom interface or hardware modifications.

SACS Reader/Writer

The SACS reader/writer is a relatively unsophisticated
device which simply serves as a direct I/O interface
between the smartcard and a host. It cannot perform
any processing itself since it does not contain a
microprocessor. Its main purpose is to provide
power, ground, clock and I/O signals to a SACS or an
ASACS smartcard. To interface the smartcard to the
host, the reader/writer performs level conversion
between the 12V RS-232 I/O signals used by the host
and the 5V VO signals used by the card. See [11] for
a more detailed description of the SACS reader/writer.

The SACS reader/writer features an ISO standard
smartcard receptacle, external power and data
indicator lights, and an RS-232 port for connecting to
a host. In addition, the SACS reader/writer’s card
receptacle features a locking mechanism which holds
the card internally after insertion into the
reader/writer, and an automatic ejection mechanism to
remove the card from the reader/writer.

An RS-232 cable is required to attach the SACS
reader/writer to a host, whereupon it functions as data
communications equipment (DCE). Signals are sent
by the reader/writer to the host which indicate that the
reader/writer is powered-up and that a card is
inserted. The SACS reader/writer is a rectangular box
approximately 2 1/2 inches high, 5 inches deep, and
S inches wide. An ISO smartcard receptacle and
indicator lights are located on the front of the
reader/writer, and the power cord and RS-232 jacks in

the rear. The power supply for the SACS
reader/writer is internal.

The SACS reader/writer is designed to accept a
smartcard whose physical characteristics, dimensions
and contact locations adhere: to ISO International
Standard 7816, Parts 1 and 2 [4,12]. The electrical
signals that the SACS reader/writer supplies to the
smartcard also meet most of the requirements
specified in ISO International Standard 7816, Part 3
[13], with the exception of the initial clock.(CLK)

frequency, which is 10MHz as opposed to 3.5795.

ASACS Portable Reader/Writer

The ASACS portable reader writer was built to
provide functionality not offered by the earlier SACS
reader/writer. As a portable device, it ailows users
the option to authenticate themselves using hosts not
equipped with a smartcard reader/writer. Several
significant improvements have been made to the
design of the reader/writer. The overall size has been
reduced to less than half that of the SACS
reader/writer, so that the device can easily be carried
for use at remote sites. The new reader/writer is
powered by rechargeable batteries, and includes a
transformer for use with 110V line power. The front
panel has a keypad and liquid crystal display which
allow the user to interact directly with the smartcard.
This feature is useful in situations where the
reader/writer cannot be connected to the user’s
workstation. A protocol has been developed which
allows the user to perform authentications manually
via the keypad and display. A remote host computer
can then require manual ASACS authentication even
if the user’s workstation is a dumb terminal. In this
case, all interactions with the card are through the
keypad and display. After the user personal
identification number (PIN) has been submitted to the
card, the remote host will generate a random
challenge and send this to the user’s workstation.
The user reads this challenge from the screen and
types it on the reader/writer keypad. The smartcard
encrypts the challenge and displays the encrypted
result, so that the user can submit it to the remote
host. When a serial connection to the workstation is
available, the user still has the option of entering the
PIN through the keypad on the reader/ writer. Since
the user’s PIN does not travel through the
workstation, system security is enhanced.

The ASACS reader/writer has an 8-bit microprocessor
with 256 bytes of internal RAM. In addition, the
reader/writer has 256 bytes of EEPROM used for data
and setup parameter storage, 32K bytes of RAM used
for scratch pad and data buffering, and an industry
standard 32K byte EPROM chip which holds
firmware implementing the internal logic and extemal
commands. The EPROM chip can be easily removed
for custom firmware development. See [14] for
detailed specifications for the ASACS portable
reader/writer and firmware.

129

The reader/writer supports a set of commands that are
executed directly on the reader/writer, as opposed to
on the smartcard. These commands use the same
protocol that is used for smartcard commands.
Several of the reader/writer commands allow the host
to load the default parameters into the reader/writer’s
non-volatile memory to control such things as baud
rate, and the date/time. These same default values can
also be specified manually from the keypad by
pressing the F1 key to access the reader/writer’s set-
up menu. Another command can be used by the host
to determine if a smartcard is inserted into the
reader/writer. Two commands can be used to
temporarily put the reader/writer in manual keypad
entry mode. The first of these two commands, as
discussed above, is used by the host to allow the user
to enter their PIN to the smartcard via the
reader/writer’s keypad. The latter command can be
called to allow the user to perform a manual
challenge/response with a remote host. The
remaining reader/writer commands can be used by the
bhost to utilize the ASACS reader/writer’s
communications buffer for more efficient DES
encryption, DES decryption or MAC calculation with
the smartcard.

SMARTCARD LAYERED INTERFACE

The ASACS host system software is comprised of a
set of four interface layers. Each layer corresponds to
a specific set of functions needed to integrate the
ASACS system into a software application on a host
system (see Figure 2).

Smartcard Applications Program Interface

The Smartcard Application Program Interface
(SCAPI) [15] was developed to provide a consistent,
but robust interface designed to ease the integration
of smartcard technology into applications. The
SCAPI is intended to insulate applications from the
differences among the various smartcards, as well as
differences likely to appear as smartcard technology
evolves. The SCAPI is not tied to specific
smartcards or to specific capabilities (e.g., memory
capacity) of smartcards. In fact, the SCAPI can be,
and has been, completely implemented in software,
thus providing a simple, but useful tool for integrating
smartcard technology into applications. The
functional capabilities of a particular smartcard

determines how much of the SCAPI functionality is
implemented in software on the host computer and
how much is performed on the smartcard. Thus, as
technology advances, more of the SCAPI functionality
may be directly implemented on the card or on the
reader/writer while leaving applications unaffected.

The SCAPI currently defines four types of functions:

. Initialization Functions,

. Account Functions,

. Cryptographic Functions, and

° File and Directory Functions.

The SCAPI is intended to be consistent with the
ANSI C standard. The file functions are designed to
map directly upon those defined by Kernighan and
Ritchie {16]. Since C is known for its portability, it
makes sense to extend this platform independence to
smartcard systems, Further, this flexibility and
consistent feel for C programmers is likely to promote
the use of the SCAPI. The directory functions reflect
widely used operating system calls. Unfortunately,
ANSI C does not address the cryptographic
functionality to which smartcard technology is so
well-suited. Therefore, the SCAPI defines a set of
cryptographic functions which provide an algorithm-
independent interface for cryptographic operations
which may be implemented on a smartcard.

Smartcard and Reader/Writer Command Set
Interfaces

The Command Set Interface Layer consists of C
language object module libraries. The libraries each
provide a set of C function calls, each directly
corresponding to a command from the firmware
command sets for the public key smartcard [17] and
the portable reader/writer [18]. The function which
represents a particular command is called with the
appropriate input data for that command as
arguments. The function returns the output data from
the command and a status code. Status codes are
mapped onto a set of error messages defined in a
header file. This layer is called indirectly through the
SCAPI, thus making the choice of reader/writer
invisible to the application.

130

Communications Protocol and Hardware /O
Interface

The Smartcard Communications Protocol Layer
transmits the data assembled by the Command Set
Interface Layer to the ASACS portable reader/writer
and the public key smartcard. The data is transmitted
according to the communications protocol used by
both the reader/writer and the smartcard. The
Communications Protocol Layer interacts with the
Hardware 1/O Interface in order to send and receive
each byte of the

data.

The Hardware I/O layer consists of a software driver
which provides low-level input/output routines for
communicating with the smartcards. Currently, the
Hardware /O Layer consists of a serial interface,
since both the SACS and ASACS reader/writers
employ serial interfaces. This layer can support other
types of hardware interfaces for reader/writers that do
not employ an RS-232 interface.

The Serial /O Interface is written to be as portable as
possible across a broad range of hardware/software
platforms, such as SUNOS (Sun’s UNIX Operating
System) and MSDOS. However, some systems may
require that this layer be customized. The interface
to this layer is clearly defined, and can be modified
with minimal effort.

APPLICATIONS SOFTWARE
Security Officer ~ “aintenance Program

The Security Officer Maintenance (SOMAINT)
Program [19] provides functions which are used by a
security officer or system manager. These functions
include the initialization of cards for mew users,
synchronization and maintenance of key databases
stored on the cards and host computers, deactivation
of cards, and reactivation of cards which have been
inadvertently deactivated or corrupted. The programs
which support the system management functions are
restricted to use by authosized security managers
through the standard UNIX operating system file
protections.

Signature Utility Program

The DSS Signature Utility Program [20] was
developed to demonstrate the generation and
verification of digital signatures using the ASACS
public key smartcard. The program utilizes the
algorithm proposed by the Standard Hash Standard
(SHS) [21] to calculate a hash value on a file of
arbitrary size. The hash value is transmitted by the
host computer to the smartcard, which applies the
Digital Signature Algorithm (DSA) to this value to
generate a digital signature with the cardholder’s
private key. The signature can then be verified by the
host computer or the smartcard using the cardholder’s
public key.

Login Manager

The ASACS Login Manager [22] is a collection of
programs which control login access to host
computers. These programs manage the series of
authentications between the user, the smartcard, and
a host computer. When a user requests access to the
host, the login manager establishes communications
with the user’s card through the reader/writer. The
login manager prompts the user for the user PIN, and
transmits it to the card in order to authenticate the
user to the card. The card and host will then
authenticate to each other using a random challenge-
response protocol based on the Data Encryption
Standard (DES). This protocol provides a means for
rapid authentication of two parties with protection
from wiretapping and playback attacks. If the
authentications are successful, the user is granted a
session on the host.

The login demonstration software also supports login
authentication to remote host computers. When a
system user wishes to access a remote computer, the
user executes a program which communicates with
the user’s card to obtain a list of host computers with
which the card shares authentication keys. This list
of host computer names is displayed in a menu, so
that the user can select the particular host to access.
The software establishes a connection with the
ASACS authentication server process running on the
remote host selected by the user. The remote host

-then performs the challenge-response authentication
with the user’s card in order to verify the identity of
the user.

131

Privacy Enhanced Mail

The Internet Privacy Enhanced Mail (PEM) protocols
are an extension to the existing Intemet electronic
mail protocol (RFC 822) which provide simple end-
to-end security services including optional message
confidentiality, message integrity, and source
authentication with non-repudiation. The protocols
are specified in a 4 part series of specifications
[23,24,25,26] which are cumrently published as
Internet Drafts, and are targeted to be published as
Internet Request For Comments (RFCs) with
Proposed Standard status.

The PEM security services are provided through the
use of standard cryptographic techniques, including
message encryption using the DES in the Cipher
Block Chaining (CBC) mode of operation to protect
message text and the RSA algorithm to provide for
distribution of DES keys, digital signatures using
RSA algorithm in conjunction with either Message
Authentication Code (MAC), Message Digest
Algorithm MD2 [27], or the Message Digest
Algorithm MDS5 [28]. RSA public keys are managed
as public key certificates using a distributed
certification hierarchy based on CCITT X.509 [29].

The TIS Privacy Enhanced Mail (TIS/PEM) System
is a UNIX-based implementation of PEM. At the
core of the TIS/PEM system is the Local Key
Manager (LKM), which, as its name implies, is
responsible for all the local key management activities
on a multi-user host system. This includes (1)
maintaining a database for local users’ private keys,
(2) controlling the use of private keys to compute
digital signatures and decrypt message tokens
(encrypted message encryption keys), (3) maintaining
a database for local and remote users’ public key
certificates, and (4) providing access to validated
public key certificates. In addition, the LKM shares
the responsibility for the registration of a local user,
that is, the generation of a public/private key pair and
the construction and digital signing of a certificate
embodying the public key.

The ASACS system was integrated with the TIS/PEM
system by integrating it with the LKM. In particular,
a user’s private key is generated by the LKM and
then stored on the smartcard, where it remains in the
protected confines of the smartcard. When called
upon to perform the cryptographic operations
involving the user’s private key, the LKM, instead of

performing those operations directly, now invokes the
functions of the smartcard via the SCAPL The
smartcard then performs the necessary computation of
a digital signature or decryption of a message token,
using the private key stored on the smartcard.

The storage of a user’s private key provides added
protection that cannot be achieved in a shared
database. The inherent security features of the smart
card allow for limiting access to the private key to the
user, who must be authenticated to the card before the
private key can be used.

ACKNOWLEDGEMENTS

Lots of people at NIST, Datakey, and TIS have
contributed to the design and development of ASACS.
Some of the developers deserving special thanks
include Tom Cain, Paul Clark, Steve Crocker, Mike
Indovina, Gary Ostrem, Miles Smid, and Robert
Warnar.

REFERENCES

1. Dray, James F., Miles E. Smid and Robert
B. J. Warnar, Implementing an Access
Control System with Smart Token
Technology, National Institute of Standards
and Technology, U.S. Department of
Commerce, Washington, D.C., April 12,

1989.

2. NIST SACS Smartcard Specification,
Datakey, Inc., Report #065-0097-000, July
11, 1991,

3. Hitachi H8/310 {ingle-Chip Microcomputer,

Hitachi, Ltd.. Tokyo, Japan, 1989.

4. International Standard 7816-2, Identification
Cards - Integrated Circuit(s) Cards with
Contacts -- Part 2: Dimensions and Location
of the Contacts, International Organization
for Standardization, 1988.

5. Haykin, Martha E., and Robert B. J. Wamnar,
Smart Card Technology: New Methods for
Computer Access Control, NIST Special
Publication 500-157, National Institute of
Standards and Technology, U.S. Department

132

10.

11.

12.

13.

14.

of Commerce, Washington, D.C., September
1988.

American National Standard X9.26-1990,
Financial Institution Sign-on Authentication
for Wholesale Financial Systems, American
Bankers Association, Washington, D.C,,
1990.

Proposed Digital Signature Standard (DSS),
National Institute of Standards and
Technology, U.S. Department of Commerce,
Washington, D.C., August 30, 1991.

Ronald L. Rivest and Adi Shamir and
Leonard M. Adleman, A Method for
Obtaining Digital Signatures and Public Key
Cryptosystems, Communications of the
ACM, Volume 21, Number 2, February
1978, pp. 120-126.

Federal Information Processing Standard
Publication (FIPS PUB) 46-1, Data
Encryption Standard, National Institute of
Standards and Technology, U.S. Department
of Commerce, Washington, D.C., Reaffirmed
January 22, 1988 (Supersedes FIPS PUB 46,
January 15, 1977).

ASACS Smartcard Specification, Datakey,
Inc., Report #065-0130-000, April 24, 1992.

NIST SACS Reader/Writer Specification,
Datakey, Inc., Report #065-0098-000, July
11, 1991.

International Standard 7816-1, Identification
Cards - Integrated Circuit(s) Cards with
Contacts — Part 1: Physical Characteristics,
International Organization for
Standardization, 1987.

International Standard 7816-3, Identification
Cards - Integrated Circuit(s) Cards with
Contacts - Part 3: Electronic Signals and
Transmission Protocols, International
Organization for Standardization, 1989.

ASACS Portable Reader/Writer
Specification, Datakey, Inc., Report
#065-0131-000, April 24, 1992.

15.

16.

17.

18.

19.

20.

21.

22

23.

Smaricard Application Program Interface for
the Advanced Smartcard Access Control
System (ASACS), Trusted Information
Systems, Inc.,, Glenwood, MD, October
1992

Kemnigan, B. and D. Ritchie, The C
Programming Language, 2nd Edition,
Prentice Hall, 1988.

Advanced Smartcard Access Control System
(ASACS): Smartcard Command Set
Interface, National Institute of Standards and
Technology, U.S. Department of Comraerce,
Washington, D.C., 1992.

Advanced Smartcard Access Control System
(ASACS): Reader/Writer Command Set
Interface, National Institute of Standards and
Technology, U.S. Department of Commerce,
Washington, D.C., 1992.

Security Officer Maintenance (SOMAINT)
Program User’s Manual, National Institute of
Standards and Technology, U.S. Department
of Commerce, Washington, D.C., 1992.

Advanced Smartcard Access Control System
(ASACS): The DSS Signature Utility
Program Manual, National Institute of
Standards and Technology, U.S. Department
of Commerce, Washington, D.C., 1992.

Proposed Secure Hash Standard (SHS),
National Instimte of Standards and
Technology, U.S. Department of Commerce,
Washington, D.C., January 22, 1992.

Advanced Smartcard Access Control System
(ASACS): UNIX Access Control Software
Manual, National Institute of Standards and
Technology, U.S. Department of Commerce,
Washington, D.C., 1992.

John Linn, Privacy Enhancement for Internet
Electronic Mail: Pat I - Message
Encipherment and Authentication Procedures,
I ntermne-Ht Draft
(draft-ietf-pem-msgproc-02.txt), Digital
Equipment Corporation, July 23, 1992, (RFC
in progress; will obsolete RFC 1113).

133

25.

26.

27.

29.

Stephen Kent, Privacy Enhancement for
Internet Electronic Mail: Part II --
Certificate-Based Key Management, Internet
Draft (draft-ietf-pem- keymgmt-01.txt), BBN
Communications, August 6, 1992, (RFC in
progress; will obsolete RFC 1114).

David Balenson, Privacy Enhancement for
Internet Electronic Mail: Part OI --
Algorithms, Modes, and Identifiers, Internet
Draft (draft-ietf-pem- algorithms-01.txt),
Trusted Information Systems, September 3,
1992, (RFC in progress; will obsolete RFC
1115).

Burt Kaliski, Privacy Enhancement for
Internet Electronic Mail: Part IV - Key
certification and Related Services, Internet
Draft (draft-ietf-pem- forms-01.txt), RSA
Laboratories, September 1, 1992,

Kaliski, B., The MD2 Message-Digest
Algorithm, Internet Request for Comments
(RFC) 1319, April 1992.

Rivest, R., The MD5 Message-Digest
Algorithm, Internet Request for Comments
(RFC) 1321, April 1992.

CCITT Recommendation X.509, The
Directory - Authentication ¥Framework, The
International Telegraph and Telephone
Consultative Committee, November 1988.

