
Centimeter
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 mm

__'_''_`1''''_'''`1'`''1'''_1'`''_''''_''_'_`_'1''''_'''_'_''_'_''1''''_'`'_1''''_''''1'''_''_t'`''_'_''_'_''_''''1'''_'''_1''''_
1 2 3 4 5

Inches ii111,.o
._ t1111_

,_,,oii_.oLliliI.i
11111"----8

iUlINliili_11111',_

)'0 _ HIqNUFPlCTUREDTO RITH STANDARDS

BY _PPLTED THI:::II3E.1,13. _,_ __!_

t

o_ SSCL-659
tt_

_, January 1994,a
Distribution Category: 400

N. Malitsky
, A. Reshetov

Y. Yan

" ZLIB++: Object-Oriented
Numerical Library for
Differential Algebra

Superconducting Super Collider
Laboratory

OtSTRtBUTION OF THIS DOCUMENT 18 UNLIMITED

DisclaimerNotice

This reportwas preparedas an account of work sponsored by an agency of the United States

Government.Neither the United States Government or any agency thereof, nor any of their

employees, makesanywarranty,expressor implied,or assumesany legal liabilityor responsibility
forthe accuracy,completeness,or usefulnessofany information,apparatus,product,or process

disclosed,or represerttsthat its use wouldnot infringeprivatelyownedrights. Referenceherein to

anyspecificcommercialproduct,process,or service by trade name, trademark, manufacturer,or

otherwise,doesnot necessarilyconstituteor implyits endorsement, recommendation,or favoring

by the United States Government or any agency thereof. The views and opinionsof authors

expressedhereindo notnecessarilystateor reflectthose ofthe UnitedStates Governmentor any

agencythereof.

Superconducting Super Collider Laboratory is an equal opportunity employer.

SSCL-659

ZLIB++: Object-Oriented Numerical Library
for Differential Algebra

N. Malitsky and A. Reshetov

Superconducting Super Collider Laboratory*
2550 Beckleymeade Avenue

Dallas, TX 75237
and

Y. Yan

Stanford Linear Accelerator Center
Stanford, CA 94309

January 1994

* Operated by the UniversitiesResearchAssociation,Inc., for the U.S. Departmentof Energy under Contract
No. DE-AC35-89ER40486.

_,j___ ..

DISTRIBUTIONOF THIS DOCUMENT ISUNLIMITED _t-.,

1.0 INTRODUCTION

New software engineering tools and object-oriented design have a great impact on the

software development process. But in high energy physics all major packages were imple-

mented in FORTRAN and porting of these codes to another language is rather complicated,

primarily because of their huge size and heavy use of FORTRAN mathematical libraries.

' But some intrinsic accelerator concepts, such as nested structure of modern accelerators,

look very pretty when implemented with the object-oriented approach. In this paper we

present the object-oriented version of ZLIB, 1 numerical library for differential algebra, 2 and

show how the modern approaches can simplify the development and support of accelerator

codes, decrease code size, and allow description of complex mathematical transformations

by simple language.

2.0 TRUNCATED POWER SERIES

The truncated power series (TPS) expansion of the arbitrary function U(_) is defined

as: 1
n

U(_) = _ u(l_)_ _ , (1)
k=0

where
_.T _. [Zl, z2, ..., zn] ,

kl k2 ..znk._,1__ Zl Z2 .

n

k=_k{, for0<ki<
i=l

In the new object-oriented version of ZLIB, TPS is considered as C-t-+ class ZSeries,

which includes overloaded assignment, additive, multiplicative operators and two addi-

tional functions dif and poisson (Appendix A). To simplify the form of the TPS trans-

formation equations we include the additional private member order [order _ of TPS

expansion in Eq. (1)] and several rules for its usage. Below we describe the main elements

of class ZSeries and their relationship with the subroutines of the previous FORTRAN

version of ZLIB. Full description of fundamental TPS operations may be found in a users

guide for ZLIB 1.0.1

2.1 Definitions
q

In expressions and examples in this report we will use the following notation:

U, V, W are the instances of class ZSeries;

c is constant or variable of the double type;

ZLIB_ORDER is global variable, which determines

the maximum TPS order;

ZLIB..DIM is global variable, which determines

the phase-space dimension.

The parameters ZLIB_ORDER and ZLIB_DIM must be defined by user before all

assignment operators, because they determine memory allocation for members of class

ZSeries.

2.2 Assignment Operators

An assignment operator is used to set a ZSeries variable to constant or another ZSeries

value. This operator returns void and so a vague statement (a = b) = c will result in a

syntax error. Here is the summary of different cases of assignment operator:

2.2.1 Operator =
1. W=c;

w(17¢)= c for 0 _<k <_W.order

W.order = 0 .

2. W=U;

w(k) = u(k) for 0 < k < U.order

W.order = U.order.

2.2.2 Operators += and -=

1. W +=c;

w(k)=w +c for k=0,

w(l_) = w(l_) for 0 < k _<W.order .

2. W+=U;
W.order U.order

k=O k=O

W.order = max(W.order, U.order) .

3. W-= c;andW-=U;

These subtraction operators are determined similar to addition (Section 2.2.2).

2.2.3 Operator *=
0

1. W*=c;

w(k) = w(k), c for 0 _<k < W.order .
8

2. W*-U;

W.order U .order

• k=O k=O

W.order = min(W.order + U.order.ZLIB_ORDER) .

2.2.4 Operator /=

1 W/=c;

w(k) = w(l_)/c for 0 < k ___W.order .

2. W/--- U ;

The implementation of this operator is based on two functions: multiplication (Sec-

tion 2.2.3) and inversion 1/U (Section 2.4) and defined as:

w, = (l/u).

2.3 Additive and Multiplicative Operators

Additive (4- and -) and multiplicative (* and/) operators are similar to corresponding

assignment operators (Sections 2.2.2, 2.2.3 and 2.2.4), but unlike assignment operators they

return reference to tmpZSeries, temporary instance of class ZSeries, which is created as

a result of the expression. This allows user to write usual mathematical expressions as:

w, = (u- c)/v, c +...

2.4 Inverse Operator

Inversion of the object U is expressed as a Taylor expansion of 1/(1 + V), where V =

(U -u(O))/u(O):

1
w= 1./u=

U.tmpOder

(= u-_=0 u(O) "

' The implementation of this expression is based on ZSeries multiplicative and additive

operators (Appendix B).

2.5 Functions

This object-oriented version of ZLIB supports two functions dif and poisson. As in

the case of additive and multiplicative operators (Section 2.3), these functions return ref-

erence to temporary object tmpZSeries and may be combined with other operators in

the complex expression.

2.5.1 Derivative

The function dif(U, iv) returns the partial derivative (O/Oz,v)U(_).

2.5.2 Polsson Bracket

Poisson bracket is the main operator of differential algebra. It associated with a Lie

operator ' U(_) • as in Reference 2'

poisson(U, V) -: U(£)" V(g) _=[U(g), V(_')] = - \ 0z S 0_ '

where S is the symplectic identity.

2.6 Access Operators

Access operators may be used to change directly the private members of class ZSeries

(coefficients of the TPS and its order order) and some specific rules of the transformation

of order, described in Section 2.3. These rules may be generalized and expressed as the

following:*

Rule 1 The order of the object W, created by constructor ZSeries :: ZSeries(), is equal

to zero, i.e., for the new object W.order = 0;

Rule 2 The order of the object W in the left side of an assignment operator W -" U is

determined by the order of U, i.e., W.order : U.order.

Rule 3 The order of the object W, which i._ obtained as a result of additive operations

(+=,-=, + and -) is equal to the maximum order of items U and V, i.e., W.order =

max(U.order, V.order).

Rule 4 The order of the object W, which is obtained as a result of multiplicative opera-

tions (.=,/=,, and/) or binary functions (poisson(U,V)) is equal to min(V.order +

V.order, ZLIB_ORDER).

t

* These rules are valid also for the expressions with the constant c, regarding its order to be zero.

2.6.10perator()(int)

This operator (round brackets) allows user to temporarily change the order W.order
I

of the object W in the intermediate expression. To assign new order newOrder "perma-

' nently" user could use the following construction:

U = U(newOrder) .

2.6.20perator()(int, int)

The second parameter in operator() allows user to bypass Rule 4 for multiplicative

operators (Section 2.6) inaccordance wit_ the following definition:

W = U • V(V.order, V.mltOrder)

W.order = min(V.mltOrder, W.mltOrder(from Rule 4)) .

We used operator() in the implementation of the inverse operator for the order of 1/U

not to exceed the order of U (Section 2.4 and Appendix B).

2.6.3 Operator[]

The subscripting operator[](int i) of the object U returns the reference to its private

member U.z[i], which represents the i-th coefficient u(i) of the TPS expansion in Eq. (1).

3.0 MAPS
-qt

Map U(_) is the development of concept of the truncated power series (TPS) and defined

as the m-dimensional vector of TPS expansions, Eq. (1):

n

= Z (2)
k--O

where

II(k) T -- [ul(k), u2(l_),..., um(k)] ,

n

k=_ki, for0<ki<_f_.
i=l

In the object-oriented version of ZLIB the map is considered as an object of C-t-+ class

ZMap, which naturally was derived from the class ZSeries (Appendix C). Moreover, all

• arithmetical operators of class Zmap follow the same Rules (Section 2.6) and are based

on ZSeries multiplicative and additive operators. This leads to similar implementation of

member functions for these two classes. For example, compare inverse operator for ZMap

(Appendix D) and ZSeries (Appendix B). Below we describe only the essential distinction

between these classes and the additional ZMap functions.

3.1 Unit Map

Unlike the truncated power series the unit map I is defined as a vector:

1. I =1;

=

I.order = 1 .

3.2 Operator[]

The subscripting operator[](int i) of the object M (the instance of class ZMap) returns

the reference to its private member M.z[i] the instance of class ZSeries) which represents

the i-th member us of the m-dimensional vector ff in Eq. (2).

3.3 Function Poisson (ZSeries&:_ ZMap&:)

Function poisson(V, M) returns the Poisson bracket: V(_') ' 1VI(_) -_ [V(_), 1VI(f)].2

Its implementation is based on the similar ZSeries function as:

ZMap&: poisson(ZSeries& V, ZMap& M)

{
• • 0

for(inti = 1;i <= ZLIB_.DIM; i + +)

bracket[i] = poisson(V, M[i]);

return(bracket);

}

where bracket is the temporary instance of class ZMap.

4.O TRACKING

Tracking is one of the most important procedures in accelerator codes. In our "language"

it is defined simply and naturally:

y = M • x; (3)

where M is the ZMap object, and x and y, the instances of class Particle (Appendix D),

consist of the particle coordinates correspondingly before and after one turn. For multi-

particle tracking user may use usual C+-b operators:

main()

(
4

ZMap M;

Particle • • x;

for(int i -- 1; i <= numberParticles; i + +)

for(int j = 0; j < numberTurns; j + +)

x[i][j + 1] = M • x[i][j];

it.

}

5.0 CONCLUSION

In this report we have described a new object-oriented version of the ZLIB package.

ZLIB++ defines two classes (ZSeries and ZMap) to represent specific accelerator objects.

We argued that simple C operators (such as =, +,-,/, •) axe naturally suited to implement

different mathematical algorithms with these objects. It enables one to write simple, self-

documented programs for applications of numerical methods of differential algebra in high

energy physics.

ZLIB.+ was designed to be a foundation for further developments. New classes could

be naturally derived from the base ones, enabling expansion of the package in the open

architecture style.

ACKNOWLEDGEMENTS

We would like to thank Dr. G. Bourianoff for his strong support and for various helpful

• discussions.

REFERENCES

1. Y. Yah and Chiung-Ying Yan, "ZLIB--A Numerical Library for Differential Algebra,"

. SSC Laboratory Report SSCL-300, (1990).

2. Y. Yah, "Applications of Differential Algebra to Single-Particle Dynamics in Storage

• Rings," SSC Laboratory Report SSCL-500, (1991).

11

APPENDIX A

// File : ZSertes.Ah

//Descrip_n : ThiJ flle contai_ the definition o/ ZSerie: daJa (TPS .

// truncated powr series).
// Created : F#bruary 1,1994

//Aulhars : Nikolay MalttrJ_ (_ory.tr_.fov)

• // Alexander R esh#mv(ruhetot_v,rnon.uc.gov)
//

//

// (C) Copyright

/I SSC l.abomwry
//2550 B¢ckleym, ad# Ave.
II DalloJ, _, 75237
I!

Ud._.ZSERIES_H
#d,/h,ZSERIES_H

#_l._. "Zdef.hh "

classZSedes
{
public'

ZSedes(ZSeries& V);

II Ace,u opmUors &fuw.tb,

ZSeries& operatorO(int iI);
ZSeries& operatorO(Infil, in! i2);
double& operatorD(Infnumber);

void operator= (double c);
voidoperator= (ZSedes& V);
void operator+=(ZSeries&V);
voidoperator+=(double c);
void operator---(ZSeries&V);
voidoperator-=(double c);
voldoperat_3r*=(ZSexies& V);
void operator*=(double c);

• voidoperator/=(ZSeries& V);
void opcrator/=(double c);

• II Additive & Mul@licatlve Operator:

ZScries& operator+(ZSeries& V);

13

ZSe,ries& operator-(ZSeries& V);
ZSeries& operator*(ZSeries& V);
ZSeries& operator/(ZSeries& V);

IIFriendoperators

_end ZSeries& operator-(ZSeries& V);
friend ZSeries& operator+(ZSeries& V, double e);
friend ZSeries& operator+(double c, ZSeries& V);
ftlencl ZSeries& operator-(ZSeries& V, double e);
friend ZSeries& operator-(clouble c, ZSeries& V);
taend ZSeries& operator*(ZSeries& V, double c);
friend ZSeries& operator*(double c, ZSeries& V);
friend ZSeries& operator/(ZSeries& V, dota_ e);
_end ZSeries& operator/(double c, ZSeries& V);
friend intZSerle_ize(ZSeries& V);
friend ostream& operator<<(ostream& out, ZSeries& V);

IIFunctions

friendZSeries& dit(ZSeries& V, int iv);
ttien¢l ZSeries& _is_n(ZSeries& Vl, ZSeries& V2);

k

-zsoaN();
private:

1;

#dn,A¢"

14

APPENDIX B

//File : gSerlas.cc

//Description : Thts file containsImplementationo[ZSerics thus

//CreatGd :February 1,1994

//Authors : NOcolayMaIitsky(maliJs_vory.$sc.lov) "

// Alexander R oshetov(resh#tov_vernon.ssc.gov)
//

• //

/I(C)Copyright

II 55C Laboratory

// 2550 Beckl_ymaad# Avo.
// Dallas, TX, 75237
/I

ZScrics& opcrator/(clouble c, ZScrics& V)
{
ZSeries El;
ZSeries sum;

El= V;

InttN= El.pmparoTmpZ_dosO;

(fabs(F_J[1]) < ZTINY)
{
ccrr << "Error::ZSeries:Bblary operator c/V : fabs(V[1]) = ";
cerr << fabsfEl[1]) << °'< "<< ZTINY<< "_";
exit(l);

}

double linearlnv = 1/El[1];
sum = l.inearlnv;

El -= El[1];
El *=-1;

int now = Z_desOrder(E1);
(int i=l; i <= now; i++)

{
sum *= El(i, i);
sum += 1;
sum *= linearlnv;

}

• sum *= c;

*sum.tmpZSeries[tN] = sum;

15

return (*sum.tmpZSeries[tN]);

16

APPENDIX C

//File : ZMap.hh

//Description : Thb filecontainsthed#.Rni_anofZMap class

r // (one.turnMaps)

//Created : FebruaryI,1994

//Authors : Ni/colayMal_ky (malitsk3C_ivory.uc.gov)

• // AlexanderReshetoKrnheto_vornon.ss_gov)
//

//

// (C) Copyrllht

/I 5$C Laboratory

/I 2550 BeckleymGade Ave.
II Dallas, TX, 75237
II

#_ldefZMAP_H
#d#ZaeZMAP_H

#_cl.d, "ZSerics.hh "
#_=lu_,"Partic,_e.hh "

class ZMap: public ZSeries
{
public'

ZMapO;
-ZMap(ZMap&M);

IIArce. operators& fustian

ZMap& operatorO(Intin1);
ZMap& operatorO(Intin1, intin2);
ZSeries& operator_(int number);

II Aulgnment operators

void operator= (double c);
void operator= (ZMap& M);
void operstor+=(ZMap& M);
void operstor+=(double c);
void operator-=(ZMap& M);
void operator-=(double c);
void operator*=(ZMap& M);
void opcrator*=(double c);
void operator/=(ZMap& M);
void operator/=(double c);

q

/I Additive & Multiplicative Operators

17

ZMap& operator+(ZMap& M);
ZMap& operator-(ZMap& M);
ZMap& operator*(ZMap& M);
ZMap& operator/(ZMap& M);

//Friendoperators&function

friendZMap& operator-(ZMap& M);
friend ZMap& operator+(ZMap& M, double c);
friendZMap& operator+(double c, ZMap& M);
friendZMap& operator-(ZMap& M, double e);
friend ZMap& operator-(double e, ZMap& M);
Mend ZMap& operator*(ZMap& M, double e);
friendZMap& operator*(double e, ZMap& M);
friendZMap& operator/(ZMap& M, double e);
friend ZMap& operator/(double e, ZMap& M);
friend int ZMapSIze(ZMap&M);
friend ostream& operator<<(ostream& out, ZMap& M);

II Trackin8

Particle& operator* (Particle& P);
.i

/Ileunctlonz

friendZMap& poisson(ZSeries& V, ZMap& M);

-ZMapO;
private:

);

#end/f

18

APPENDIX D

//File : ZMap.cc

//Description : This flit containsImplemen_on ofZMap daJs
¢ // Created : February I, 1994

//Authors : NOcolayMali_ky (ma_s_vory.ssc.&ov)

// AlexanderReshetov(reshetov@vernon.ssc.gov)
. //

//

//(C)Copyrllht

II $5C Laboratory
/I 3S50 Beckleymeade A re.
II DoLla.t, TX, 75237
/I

ZMap& operator/(double c, ZMap& M)
{
ZMap El;
ZMap sum;

El = M;

int LN= El.prepamTmpZMaPO;

(Inti=1; i <=ZUB_t_M;i++)
{

(fabs(E,1[i][I])> ZTINY)
{
cerr << "Error: ZMap:Bbmry operator c/M : ";
cerr << "fabs(M.z[" <<: i << "1[11: ";

t1_1 n It,cerr << fabs(M.z[i][l]) << "> " << ZTINY<< .. ,
exit(l);

}
}

ZMap linearhv;
linearlnv.linMrlmemion(E1);
sum = linearInv;

El-=B(1);
E1*=-1;

, intnow = ZMapOrder(El);
(i=2; i <= now; i++)

{
' sum *= El(i, i);

sum += I;
sum *= linearlnv;

19

}
t

sum *= c;

*sum.tmpZMap[tN] = sum;
(*sum. trnpZMap[tN'J);

)
• o ,

2O

APPENDIX E

//F//t : Par_/_J_k

// Descrip_on : Thi_ F_ con_ns _ definition of P_t_ class

// (ZLIB_DD4_imen_onal parttcla coordinmas.)
II Crmattd : Februa_. 1,1994

/I Authors : Ntkoloy Mali_ky (mo_its.k3_)ivory.ss_gov)
t // Al_xandGr R#shetov(r#shttov_wtrnon.uc.gov)

//

//

// (C) Copyright

II SSC Labora_ry
//3550 Beekltymtade Ave.
II Dcd_, TX, 75337

/I

#Or'_rof PARTICLE_H
#d,y_,PAFfflCLE_H

"7.,def.hh'°

classParticle

public" . .

_rticle(Pan:icle&P);

UAccost optrators

double& operator['](intnumber);

fl Astisnmnt operator_

void operator= (Pe__cle& P);

H Prlz.d opmr_ur_m

friendostream& opcrator<<(ostrcam& out, Particle& P);

-PartlcleO;

pdvate:

double* Z; //ZLIB_DIM.dim¢nslon_particl,co(wdinmms.

};

" #end!f

21

