K r ///0

e \‘ “:% Q’ Association for Information and Image Management (/ ; //0\§
MR\ ¢ oo Manes N ¥
N\ . ////9\ Wt 4
/Z
5 \\// \ //\\/‘9

Centimeter
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 mm

Inches 10 =l
= 2 &
e
= |
I s e
\
R4 N, /\\\//@k\\
) B 2
“ A K

5 \ MANUFACTURED TO AIIM STANDARDS //0-1\\ o,

//{\\\\ LQJ//b\‘\\\\\'{@@

BY APPLIED IMAGE, INC.
24 o

SSCL-659

[=\]
E January 1994
Q Distribution Category: 400
2]
N. Malitsky
A. Reshetov
Y. Yan

ZLIB++: Object-Oriented

Numerical Library for
Differential Algebra

Superconducting Super Collider
Laboratory

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Disclaimer Notice

This report was prepared as an account of work sponsored by an agency of the United States
Govemment. Neither the United States Government or any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefuiness of any information, apparatus, product, or process
disciosed, of represants that its use would not infringe privately owned rights. Reference herein to
any specific commaercial product, process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States Government or any
agency thereof.

Superconducting Super Collider Laboratory is an equal opportunity employer.

SSCL-659

ZLIB++: Object-Oriented Numerical Library
for Differential Algebra

N. Malitsky and A. Reshetov

Superconducting Super Collider Laboratory*
2550 Beckleymeade Avenue
Dallas, TX 75237

and
Y. Yan

Stanford Linear Accelerator Center

Stanford, CA 94309

January 1994

* Operated by the Universities Research Association, Inc., for the U.S. Department of Energy under Contract

No. DE-AC35-89ERA40486.
Wg A Tlﬂ

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

i

1.0 INTRODUCTION

New software engineering tools and object-oriented design have a great impact on the
software development process. But in high energy physics all major packages were imple-
mented in FORTRAN and porting of these codes to another language is rather complicated,
primarily because of their huge size and heavy use of FORTRAN mathematical libraries.
But some intrinsic accelerator concepts, such as nested structure of modern accelerators,
look very pretty when implemented with the object-oriented approach. In this paper we
present the object-oriented version of ZLIB,! numerical library for differential algebra,? and
show how the modern approaches can simplify the development and support of accelerator
codes, decrease code size, and allow description of complex mathematical transformations
by simple language.

2.0 TRUNCATED POWER SERIES

The truncated power series (TPS) expansion of the arbitrary function U(Z) is defined

as:l

Q
U@ =Y w3, (1)
k=0
where T
' = [21,22, azn])

n
k=) ki, for0<k<Q.

=1
In the new object-oriented version of ZLIB, TPS is considered as C++ class ZSeries,
which includes overloaded assignment, additive, multiplicative operators and two addi-
tional functions dif and poisson (Appendix A). To simplify the form of the TPS trans-
formation equations we include the additional private member order [order) of TPS
expansion in Eq. (1)] and several rules for its usage. Below we describe the main elements
of class ZSeries and their relationship with the subroutines of the previous FORTRAN

version of ZLIB. Full description of fundamental TPS operations may be found in a users
guide for ZLIB 1.0.

2.1 Definitions
In expressions and examples in this report we will use the following notation:
UV, W are the instances of class ZSeries;

c is constant or variable of the double type;

ZLIB_ORDER s global variable, which determines
the maximum TPS order;
ZLIB_DIM is global variable, which determines
the phase-space dimension.
The parameters ZLIB_.ORDER and ZLIB_DIM must be defined by user before all
assignment operators, because they determine memory allocation for members of class
ZSeries.

2.2 Assignment Operators
An assignment operator is used to set a ZSeries variable to constant or another ZSeries
value. This operator returns void and so a vague statement (a = b) = ¢ will result in a

syntax error. Here is the summary of different cases of assignment operator:

2.2.1 Operator =

1. W=c,;
w(E) =c for 0 < k < W.order
W.order =0 .
2. W=U;
w(lz) = u(E) for 0 £ k£ < U.order

W.order = U.order .

1. W4=c¢c;
w(k) = w(k) + ¢ for k=0,
w(E) = w(E) for 0 < k < W.order .
2. W+4+=U;
W .order . o Uorder
W@ = > wk+ Y uki*,
k=0 k=0

W .order = max(W.order, U.order) .
3 W-=c;and W —=U;

These subtraction operators are determined similar to addition (Section 2.2.2).

2.2.3 Operator *=
1. W*=c¢;

w(l?) == w(E) * C for 0 < k £ W.order .

Worder ~ Uorder
W@ = Y wkzkx Y uk)z*,
k=0 k=0

W.order = min(W.order + U.order.ZLIB_ORDER) .

2.2.4 Operator /=

1. W /=¢;
w(k) = w(k)/c for 0 < k < W.order .
2. W /=U,;

The implementation of this operator is based on two functions: multiplication (Sec-
tion 2.2.3) and inversion 1/U (Section 2.4) and defined as:

Wi = (1/U).

2.3 Additive and Multiplicative Operators

Additive (+ and —) and multiplicative (* and /) operators are similar to corresponding
assignment operators (Sections 2.2.2, 2.2.3 and 2.2.4), but unlike assignment operators they
return reference to tmpZSeries, temporary instance of class ZSeries, which is created as

a result of the expression. This allows user to write usual mathematical expressions as:

Wi=(U-c)/Vxc+...

2.4 Inverse Operator
Inversion of the object U is expressed as a Taylor expansion of 1/(1 + V), where V =

(U - u(())) Ju(0):

1

Y co =0y

~ 1 U.tmpOder . U-—u(O) n
oM 0 (Sm)

The implementation of this expression is based on ZSeries multiplicative and additive
operators (Appendix B).

2.5 Functions

This object-oriented version of ZLIB supports two functions dif and poisson. As in
the case of additive and multiplicative operators (Section 2.3), these functions return ref-
erence to temporary object tmpZSeries and may be combined with other operators in
the complex expression.

2.5.1 Derivative
The function dif(U,iv) returns the partial derivative (9/0z,)U(Z).

2.5.2 Poisson Bracket
Poisson bracket is the main operator of differential algebra. It associated with a Lie
operator : U(Z) : as in Reference 2:

-\ T =
poisson(U, V) =: U(Z) : V(Z) = [U(2), V(Z)] = - (Qg{:_)) S(aV(ZZ))’

where S is the symplectic identity.

2.6 Access Operators

Access operators may be used to change directly the private members of class ZSeries
(coefficients of the TPS and its order order) and some specific rules of the transformation
of order, described in Section 2.3. These rules may be generalized and expressed as the
following:*
Rule 1 The order of the object W, created by constructor ZSeries :: ZSeries(), is equal
to zero, i.e., for the new object W.order = 0;

Rule 2 The order of the object W in the left side of an assignment operator W = U 1s
determined by the order of U, i.e., W.order = U.order.

Rule 3 The order of the object W, which is obtained as a result of additive operations

(+=,—-=,+ and -) is equal to the mazimum order of items U and V, i.e., W.order =
max(U.order, V.order).

Rule 4 The order of the object W, which 1s obtained as a result of multiplicative opera-
tions (¥=, /=,* and /) or binary functions (poisson(U,V)) is equal to min(U.order +
V.order,ZLIB_ORDER).

* These rules are valid also for the expressions with the constant c, regarding its order to be zero.

2.6.1 Operator()(int)

This operator (round brackets) allows user to temporarily change the order W.order
of the object W in the intermediate expression. To assign new order newOrder “perma-
nently” user could use the following construction:

U = U(newOrder) .

2.6.2 Operator()(int, int)
The second parameter in operator() allows user to bypass Rule 4 for multiplicative
operators (Section 2.6) in accordance witu the following definition:

W = U % V(V.order, V.mltOrder)
W .order = min(V.mltOrder, W.mltOrder(from Rule 4)) .

We used operator() in the implementation of the inverse operator for the order of 1/U
not to exceed the order of U (Section 2.4 and Appendix B).

2.6.3 Operator|]
The subscripting operator| |(int 1) of the object U returns the reference to its private
member U.z[i}, which represents the i-th coefficient u(7) of the TPS expansion in Eq. (1).

3.0 MAPS

Map ﬁ(i) is the development of concept of the truncated power series (TPS) and defined
as the m-dimensional vector of TPS expansions, Eq. (1):

0@@) =) uk)z*, (2)

where

n
k=) ki for0<ki<Q.

1=1
In the object-oriented version of ZLIB the map is considered as an object of C++ class
ZMap, which naturally was derived from the class ZSeries (Appendix C). Moreover, all
arithmetical operators of class Zmap follow the same Rules (Section 2.6) and are based
on ZSeries multiplicative and additive operators. This leads to similar implementation of
member functions for these two classes. For example, compare inverse operator for ZMap
(Appendix D) and ZSeries (Appendix B). Below we describe only the essential distinction
between these classes and the additional ZMap functions.

3.1 Unit Map
Unlike the truncated power series the unit map I is defined as a vector:
1.I =1,

-

I(Z) = Z,
Iorder =1.

3.2 Operator| |

The subscripting operator|](int i) of the object M (the instance of class ZMap) returns
the reference to its private member M.z[i] the instance of class ZSeries) which represents
the i-th member u; of the m-dimensional vector i in Eq. (2).

3.3 Function Poisson (ZSeries&, ZMap&)
Function poisson(V, M) returns the Poisson bracket: V(Z) : M(z) = [V(Z), M(Z)).2
Its implementation is based on the similar ZSeries function as:

ZMap& poisson(ZSeries& V, ZMap& M)
{

for(inti = 1; ¢ <= ZLIB_DIM; i + +)
bracket[i] = poisson(V, M[i]);
return(bracket);

}

where bracket is the temporary instance of class ZMap.

4.0 TRACKING
Tracking is one of the most important procedures in accelerator codes. In our “language”
it is defined simply and naturally:
y=M=x*x; (3)

where M is the ZMap object, and x and y, the instances of class Particle (Appendix D),
consist of the particle coordinates correspondingly before and after one turn. For multi-
particle tracking user may use usual C-++ operators:

main()
{
ZMap M;

Particle * x x;

for(intt = 1; ¢« <= numberParticles; 1 + +)
for(int j = 0; j < numberTurns; j + +)
x[i][j + 1] = M *x[][j];

}

5.0 CONCLUSION

In this report we have described a new object-oriented version of the ZLIB package.
ZLIB++ defines two classes (ZSeries and ZMap) to represent specific accelerator objects.
We argued that simple C operators (such as =, +, —, /, *) are naturally suited to implement
different mathematical algorithms with these objects. It enables one to write simple, self-
documented programs for applications of numerical methods of differential algebra in high
energy physics.

ZLIB++ was designed to be a foundation for further developments. New classes could

be naturally derived from the base ones, enabling expansion of the package in the open
architecture style.

ACKNOWLEDGEMENTS

We would like to thank Dr. G. Bourianoff for his strong support and for various helpful

discussions.

REFERENCES

1. Y. Yan and Chiung-Ying Yan, “ZLIB—A Numerical Library for Differential Algebra,”
SSC Laboratory Report SSCL-300, (1990).

2. Y. Yan, “Applications of Differential Algebra to Single-Particle Dynamics in Storage
Rings,” SSC Laboratory Report SSCL-500, (1991).

11

APPENDIX A

/I File : ZSerles.hh

/1 Description : This file contains the definition of ZSeries class (TPS -
" truncated power series).

/I Created : February 1, 1994

Il Authors : Nikolay Malitsky (malitsky@ivory.ssc.gov)

" Alexander Reshetov(reshotov@vernon.ssc.gov)

"

"

Il (C) Copyright

/! SSC Laboratory

/! 2550 Beckleymeade Ave.
/! Dallas, TX, 75237

"

#define ZSERIES H
#define CSERIES H

winciude "'Zdef hh"

class ZSeries
{public :
ZSeries();
ZSeries(ZSeries& V);
Il Access operators & function

ZSeries& operator()(Int i1);
ZSeries& operator()(int i1, int i2);
double& operator[](int number);

/l Assignment operators

void operator= (double c);
void operator= (ZSeries& V),
vold operator+=(ZSeries& V),
void operator+=(double c);
void operator-=(ZSeries& V);
void operator-=(double c);
vold operator*=(ZSeries& V),
vold operator*=(double c);
void operator/=(ZSeries& V);
void operator/=(double c);

v /t Additive & Multiplicative Operators

ZSeries& operator+(ZSeries& V);

13

/! Friend operators

/! Functions

ZSeries& operator-(ZSeries& V),
ZSeries& operator*(ZSeries& V);
ZSeries& operator/(ZSeries& V),

friend ZSeries& operator-(ZSeries& V);

triend ZSeries& operator+(ZSeries& V, double c);
friend ZSeries& operator+(double ¢, ZSeries& V);
friend ZSeries& operator-(ZSeries& V, double c);
triend ZSeries& operator-(double ¢, ZSeries& V);
friend ZSeries& operator*(ZSeries& V, double c¢);
fiend ZSeries& operator*(double c, ZSeries& V);
friend ZSeries& operator/(ZSeries& V, double c);
friend ZSeries& operator/(double c, ZSeries& V);
friend int ZSerlesSize(ZSeries& V),

friend ostream& operator<<(ostream& out, ZSeries& V);

fiend ZSeries& dif(ZSeries& V, int iv);
tiend ZSeries& poisson(ZSeries& V1, ZSeries& V2);

~ZSerles();

14

APPENDIX B

/! File : ZSeries.cc

/! Description : This file contains implementation of ZSeries class
/! Created : February 1, 1994

!l Authors : Nikolay Malitsky (malitsky@ivory.ssc.gov) -

" Alexander Reshetov(reshetov@vernon.ssc.gov)

"

/"

/ (C) Copyright

/! SSC Laboratory

/! 2550 Beckieymeade Ave.
/I Dallas, TX, 75237

"

ZSeries& operator/(double c, ZSeries& V)

{
ZSeries El;

ZSeries sum;

El=V;
int tN = El.prepareTmpZSeries();

if (fabs(El[1]) < ZTINY)
{ .
cerr << "Error: ZSeries:Binary operator ¢/V : fabs(V[1]) =",
cerr << fabs(Elf1]) << " <« " << ZTINY << "\n";

exit(1);

}

double linearInv = 1/El[1];
sum = linearlnv;

El-=EIl[1];
El *=-1;

int now = ZSeriesOrder(El);
forx (inti=1; i <= now; i++)
{

sum *= Ei(i, i);

sum +=1; ,

sum *= linearInv;

}
sum *=c;

*sum.tmpZSeries[tN] = sum;

15

}

return (*sum.tmpZSeries[tN]);

16

APPENDIX C

/| File : ZMap.hh

/| Description : This file contains the definition of ZMap class
" (one-turn Maps)

/! Created ¢ February 1, 1994

/I Authors : Nikolay Malitsky (malitsky@ivory.ssc.gov)

" Alexander Reshetov(reshetov@vernon.ssc.gov)

"

"

!l (C) Copyright

/I SSC Laboratory

// 2550 Beckleymeade Ave.
/l Dallas, TX, 75237

"

sinder ZTMAP_H
#define ZMAP H

tinclude ""ZSeries.hh’’
#include " Particle.hh"

class ZMap: public ZSeries

{
public :

ZMap();
" ZMap(ZMap& M);

// Access oparators & function

ZMap& operator()(int inl);
ZMap& operator()(Int in1, int in2);
ZSeries& operator[](int number);

// Assignment operators

void operator= {(double c);
void operator= (ZMap& M);
void operator+=(ZMap& M),
vold operator+=(double c);
void operator-=(ZMap& M);
void operator-=(double c);
vold operator*=(ZMap& M);
void operator*=(double c);
void operator/=(ZMap& M);
void operator/=(double c);

// Additive & Multiplicative Operators

17

ZMap& operator+(ZMap& M),
ZMap& operator-(ZMap& M);
ZMap& operator*(ZMap& M);
ZMap& operator/(ZMap& M);

// Friend operators & function

// Tracking

/! Functions

private:
IF

#endif

friend ZMap& operator-(ZMap& M),

friend ZMap& operator+(ZMap& M, double c),
triend ZMap& operator+(double ¢, ZMap& M),
friend ZMap& operator-(ZMap& M, double c);
friend ZMap& operator-(double ¢, ZMap& M),
fiend ZMap& operator*(ZMap& M, double c);
fiend ZMap& operator*(double ¢, ZMap& M);
friend ZMap& operator/(ZMap& M, double c);
fiend ZMap& operator/(double ¢, ZMap& M);
friend int ZMapSize(ZMap& M);

friend ostreamé& operator<<(ostreamé& out, ZMap& M);

Particle& operator*(Particle& P);

.

friend ZMap& poisson(ZSeries& V, ZMap& M);

~ZMap();

18

APPENDIX D

/I File : ZMap.cc

/! Description : This file contains implementation of ZMap class
/! Created : February 1, 1994

// Authors : Nikolay Malitsky (malitsky@ivory.ssc.gov)

" Alexander Reshetov(reshetov@vernon.sse.gov)

H
"

1/ (C) Copyright

/! SSC Laboratory

/I 2550 Beckleymeade Ave.
!l Dallas, TX, 75237

"

ZMap& operator/(double ¢, ZMap& M)
{

ZMap El;

ZMap sum,;

El=M,;
int tN = El.prepareTmpZMap();

for (inti=1; i <= ZUB_DIM; i++)
{ .
i£ (fabs(El[i][1]) > ZTINY)
{
cerr << "Error: ZMap:Binary operator ¢/M : "',
cerr << "abs(MLz[" << i<<"J{1] = ",;
cerr << fabs(M.z[i][1]) << " > " << ZTINY << "\n";
exit(1);
}
}

ZMap linearInv;
linearInv.linearinversion(El);
sum = linearInv;

El -= El(1);
El *=-1;

int now = ZMapOrder(El);
Lor (i=2; i <= now; i++)
{

sum *= El(i, 1);

sum += 1; '

sum *= linearInv;

19

}
sum *=g¢;

*sum.tmpZMap([tN] = sum;
return (*sum.tmpZMap[tN]);

20

APPENDIX E

/I File : Particle.hh

/I Description : This file contains the definition of Particle class
" (ZLIB_DIM-dimensional particle coordinates.)
/I Created : February 1, 1994

/I Authors : Nikolay Malitsky (malitsky@ivory.ssc.gov)

" Alexander Reshetov(reshetov@vernon.ssc.gov)

/"

"

/I (C) Copyright

/{ SSC Laboratory

// 3550 Becklaymeade Ave.
/I Dalias, TX, 75237

/"
#ifnder PARTICLE H
$dsfine PAR“CLE_”

tinclude "' Zdef.hh"
class Particle
{publ.ic :
Particis();
Particle(Particle& P);
1/ Access operators

double& operator[j(int number);
/! Assignment operators

void operator= (Particle& P),
! Friend operators

friend ostreamé& operator<<(ostreamé& out, Particle& P);

~Particle();
private:

double* z; I ZLIB_DIM-dimensional particls coordinases.
I
#endif

21

DATE
FILMED
©/17/94

ENL

