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DIRECT SOLUTION OF THE MATHEMATICAL ADJOINT EQUATIONS
FOR AN INTERFACE CURRENT NODAL FORMULATION

T. A. Taiwo, W. S. Yang, H. S. Khalil
Reactor Analysis Division
Argonne National Laboratory
Argonne, Illinois 60439, U.S.A.

ABSTRACT

A numerical method for directly computing the mathematical adjoint flux moments and par-
tial currents for the hexagonal-Z geometry interface current nodal formulation in the DIF3D code
is described. The new scheme is developed as an alternative to an existing scheme that employs a
similarity transformation of the physical adjoint solution to compute the mathematical adjoint.
Whereas the existing scheme is rigorous only when the flat transverse-leakage approximation is
employed, this new scheme is exact for all leakage approximations in the DIF3D nodal method.
In the new scheme, adjoint nodal equations whose form is very similar to that of the forward
nodal equations are derived by employing linear combinations of the adjoint partial currents as
computational unknowns in the adjoint equations. This enables the use of the forward solution
algorithm with only minor modifications for solving the mathematical adjoint equations. By using
the new scheme as a reference method, it is shown numerically that while the results computed
with the existing scheme are approximate, they are sufficiently accurate for calculations of global
and local reactivity changes resulting from coolant voiding in a liquid metal reactor.

INTRODUCTION

The application of advanced nodal methods in perturbation theory calculations and kinetics
calculations based on space-nme factorization schemes requires the solution of the mathematical
adjoint nodal equations. 14 For each nodal scheme, the mathematical adjoint equations are
obtained by transposing the global matrix associated with the nodal unknowns.

The direct solution of the mathematical adjoint equations for the analytical nodal method
embodied in the QUANDRY code was described in reference 5. For the interface current scheme
used in the nodal option of the DIF3D code, 6an approximate solution of the mathematical adjoint
equations, obtained via an intermediate solution (the so called physical adjomt) and a similarity
transformation, has been given by Lawrence! and more recently by Yang The physical adjoint is
obtained by applying the nodal differencing approach to the equation adjoint to the spatially con-
tinuous multigroup diffusion equation and is generally different from the mathematical adjoint.



The similarity transformation approach has been in routine use for obtaining the DIF3D-
nodal adjoint. This approach is exact for two-dimensional hexagonal geometry problems as a con-
sequence of the particular approximation made in representing the spatial shape of the leakage
transverse to each of the hex-plane coordinate directions. For three-dimensional hexagonal-Z
problems, however, the transformation is exact only when the flat transverse-leakage approxima-
tion is used. When the quadratic transverse-leakage approximation is employed, the similarity
transformation approach gives the exact mathematical adjoint only in the limit of zero axial mesh

spaung1 (in which case the approximation is equivalent to the flat transverse-leakage approxi-
mation).

In this paper, we describe a direct and thus rigorous scheme for the solution of the DIF3D-
nodal mathematical adjoint equations. We first derive the mathematical adjoint nodal equations
and show how these equations can be cast in a form very similar to that of the forward nodal equa-
tions. We then describe the iterative numerical approach used to solve the adjoint equations.
Finally, we present numerical results illustrating the differences in perturbation theory predictions
of local and global reactivity changes obtained using the new (direct) solution approach and the
previous, approximate scheme involving a similarity transformation.

DERIVATION AND SOLUTION OF THE MATHEMATICAL ADJOINT EQUATIONS

DIF3D Nodai Formulation and Notation

The DIF3D-nodal scheme employs a nodal expansion method (NEM) and the interface cur-
rent formulation for solving the multigroup neutron diffusion equation. In the forward solution
approach, equations for the nodal unknowns are derived and solved along with spemﬁed external
boundary conditions and the requirement that the interface partial currents be continuous. 6 In hex-
agonal-Z geometry problems, the nodal unknowns are five flux moments and eight interface par-
tial currents. For a given neutron energy group g, the nodal equations for these unknowns are
written simultaneously for all nodes as follows:

VIS0, + Ton =Y I+ W Ug, =) ] = v0y M
v, [S,0,,+ Ugdo, =Vl + Hy (Jg, =I5 1 = v,0,, )
n[=Byo,,+J2,-CJu]l =0, . 3)
n [~ Ngo,,—~Myo, +Jg, - gJ;’;] =0, (45
n[-TS,+Jn] =0, (5)
n,[-TJ2,+J] =0, (6)



where

O is a vector containing the node-averaged flux (zeroth flux moment) and
hexagonal-plane flux moments for all nodes,

is a vector containing the axial-direction flux moments for all nodes,
gz g

gh and ;;';: are vectors containing the hex-plane outgoing and incoming interface par-
tial currents, respectively, for all nodes,

J° and J™ are vectors containing the axial-direction outgoing and incoming interface
gz gz g .
partial currents, respectively, for all nodes,

Q h is a vector containing the node-averaged and hex-plane source moments,
is a vector containing the axial-direction source moments,
gz g

v is a block-diagonal matrix containing the nodal volumes, with each (4x4)
diagonal block having only diagonal elements equal to the nodal volume

( ,,[37 h2AZF 2 , where A = lattice pitch, and Az* =node-k axial dimension),

v, isa diagonal matrix containing nodal volumes,

n is a block-diagonal matrix, with each (6x6) diagonal block having only

diagonal elements equal to the nodal surface area (hAZY/ ﬁ) normal to a
hex-plane coordinate direction,

n, 1sadiagonal matrix containing the nodal surface area (ﬁ h2/2) normal to
the Z-direction.

The elements of the matrices S g and S ¢, depend on the removal cross sections, diffusion

coefficients, and the lattice pitch. The matrices Tg, Yg, Wg; U 2 Vg, H o Bg, C g’ N g M 2 and F 2
are coupling coefficient matrices defined in terms of the diffusion coefficients, the lattice pitch,

and axial mesh sizes. All these matrices are block-diagonal with the exception of H ¢ Which is
block-tridiagonal. The H p matrix, which arises in the nodal equations because of the quadratic fit
used to represent the leakage transverse to the axial direction, couples the fluxes of a node to the
partial currents of the node and the neighboring axial nodes. The matrices I1 and I1, are symmet-
ric; they contain a single non-zero element in each row with a value of either one (expressing con-
tinuity of partial currents across internal surfaces), or an albedo constant (expressing the fixed
ratio specified by conditions at an outer boundary). The nodal volume and surface matrices v, v,,

n, and n, are retained in Egs. (1) to (6) to express neutron balance in the same form typically
applied in nodal perturbation theory expressions.

For group g, the response matrix equation solved iteratively by the DIF3D code is obtained
by using Egs. (1) and (2) to eliminate the flux moments from Eqs. (3) and (4). The resulting



response matrix equation can be written in the form

JZ =P, {Qg—Lg} +Rg.l"' , @)
where
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ﬁg = col [0, L,], (15)
and where the transverse leakage L, is given by
L, = H,(Jg, = Jg) - (16)

Because the matrices i’g and R ¢ are block-diagonal, Eq. (7) relates the eight outgoing partial cur-
rents from each node to the eight incoming partial currents, and to the source and transverse leak-
age terms for the node. The transverse leakage term, which appears only in the axial direction
partial current equations, depends on the hex-plane (incoming and outgoing) partial currents for
the node in question and the two adjacent axial nodes.

In DIF3D-nodal, Eq. (7) is solved numerically (inner iteration) along with Egs. (1) and (2)
during each outer (fission source) iteration. The outer iteration is accelerated by asymptotic source
extrapolation and coarse-mesh rebalance (CMR).



Mathematical Adjoint Formulation
The mathematical adjoint is defined by the requirement that its use as the weight function in
the nodal perturbation theory expression for reactivity eliminates first-order terms involving the

perturbation in thc vector of nodal unknowns. This requirement is satisfied if the mathematical
adjoint vector F is the solution of the equation

KT, =0, (17)
where h, is the global matrix obtained by combining Egs. (1) to (6) for all groups into the form
hol'y, =0, (18)

and T'; is a vector containing nodal flux moments and node-surface partial currents for.all groups.

The group-g component of the mathematical adjoint equation (Eq. (17)) can be written as the
following set of equations:

Sev0y,—Bindo, —Nin Jo, = vQy, (19)
S Min o =v 0 20
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wive® +UTv o* + ~TLnJ"™ =0 22
qu)gh gv2¢gz nz‘]gz Mz gz — Yo (22)
nJ;';: —ngq;;h-Hgvch;Z—CT J",z =0, 23)
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where, for node k,

G
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G
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The vectors q>g o O g2 J;’Z , J;’;l , .I"Z , and Ji';* are the mathematical adjoint counterparts of the
vectors appearing in Egs. (1) to (6). In writing Egs. (19) to (24), we have used the fact that the




matrices Sg, ng, v, v,, n,and n, are symmetric.

Overview of Existing Solution Approach

The direct solution of Egs. (19) to (24) is complicated by the unusual coupling between the
mathematical adjoint unknowns. As an alternative to solving these equations directly, Lawrence

formulated a similarity transformation proccdure” and applied it to the determination of the

~ % ~ %
required mathematical adjoint flux moments from the physical adjoint flux moments ¢ on and & gz

The physical adjoint flux moments are computed by solving the spatially-continuous multigroup
adjoint diffusion equations using the DIF3D-nodal approach. This is readily accomplished by
appropriately redefining macroscopic cross section parameters (similar to the approach employed
by finite difference codcss) and using the new parameters in the forward solution scheme. The
matrix similarity transformation can be written as

* ~% -:*
o = [’ff f()} o= x| @)
q)gz z q)gz q)gz

where X is the similarity transformation matrix.!"” This similarity transformation approach is
approximate for the general hexagonal-Z geometry case with the quadratic transverse-leakage
approximation; it is exact only if the flat transverse-leakage approximation is employed or in the

limit of zero axial mesh spacing.l’7 This generally approximate scheme for computing the mathe-
matical adjoint flux moments is the existing scheme in the DIF3D code.®

Following the calculation of the mathematical adjoint fluxes in the existing scheme, the
mathematical adjoint partial currents are determined by solving the equations

* - * T T *
nig, = TICgnJS, — (Ty~NY) vy, — (I-T) Hyv,0, 28)
and

nJdg, = 0 FenJo, — (I-TL) Weves, — (UL -TLV) v 0., (29)
where I is the identity matrix. These equations are obtained by using Eqgs. (23) and (24) to elimi-
nate the adjoint incoming partial currents from Egs. (21) and (22). By reordering the unknown
adjoint partial currents in Eqgs. (28) and (29), these equations can be solved using the same itera-
tive scheme employed for solving the forward response matrix equation (Eq. (7)) at each outer
iteration. Finally, we note that if the flat transverse-leakage approximation is made, it is possible
to derive simple expressions relating the mathematical adjoint partial currents to the physical

adjoint partial currents and flux moments, thereby eliminating the need for iteration in solving
Eqgs. (28) and (29).



New Direct Solution Approach

Equations (19), (20), (28) and (29) constitute a rigorous set of equations for the unknown
mathematical adjoint flux moments and partial currents. It would appear on the surface that these
unknowns can be computed via a global solution strategy in which Eqgs. (28) and (29) are solved
(using the scheme described above with no further modifications) along with Egs. (19) and (20).
This approach would, however, result in an unconventional outer iteration of the form

*o) o ___K(nl_l)pw* (n=1) 4 gg* (*= 1 (30)
1, *(n)
A = )"(n-l)a( ‘l’(n_1>)> , (31)
» ¥

where y* is the adjoint fission source vector and, D and E are global matrices whose precise
form need not be described here. Because Eqgs. (30) and (31) differ from the conventional fission
source iteration, their solution would require the development of a new global iteration strategy.

An alternative direct solution approach, requiring no major changes to the DIF3D nodal iter-
ation strategy, was developed. This approach consisted of deriving response matrix equations for
the adjoint partial currents in terms of the adjoint source moments; these equations are analogous
to the corresponding response matrix equations in the forward scheme. This was accomplished by
eliminating the adjoint flux moments from Egs. (28) and (29) using Egs. (19) and (20) to obtain

e
A

o* _ ~ AT 0¥ a* * *
A = 116 +B,0) -2,J7" (32)
where
J§* = col [nJZZ , "sz:] , (33)
Q, = col [vQ;h , sz;z] , | (34)
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) 35)



Tg-1 aqT
Zg - l:O [I-11] HgngMg} , (37)
0 0

and where the matrices A g and C'g are defined by Eqs. (10) and (12), respectively.

In Eq. (32), the coupling between the adjoint unknowns is more complicated than that
between the unknowns in the forward equation (Eq. (7)).-Consider the coupling between partial
currents. In the forward equation the outgoing partial currents for a node are coupled with eight
partial currents coming into the node from the surrounding eight nodes, and with transverse leak-
age terms involving contributions from the hex-plane partial currents in the node and the twenty
surrounding nodes. However, in the adjoint equation (Eq. (32) premultiplied with the inverse of

-

AZ), the outgoing partial currents are coupled to all the outgoing partial currents of the eight
neighboring nodes (i.e. 64 outgoing partial currents), as well as to adjoint transverse-leakage
terms (last term in Eq. (32)) with contributions from the Z-direction partial currents in the node
and the twenty surrounding nodes. These adjoint transverse-leakage terms arise because of the
quadratic fit used to approximate the transverse leakage in deriving the forward nodal equation.
Furthermore, whereas the transverse leakage terms appear only in the Z-direction partial current
equation in the forward equation (Eq. (7)), they appear only in the hex-plane partial current equa-
tion in the adjoint equation (as is evident from the structure of Z g in Eq. (32)).

The added complexity of the coupling between the outgoing partial currents (relative to that
in the forward equations) can be eliminated by linearly combining the partial currents into inter-
face quantities (which we call “combined partial currents”) whose coupling is the same as that of
the partial currents in the forward equations. Defining the combined partial currents as

~ % Ko* N
K =| ek =", (38)
0¥
K2,

and the corresponding combined incoming partial currents as

~in* ~ ~o¥%

K, =IK, , (39)
we can write Eq. (32) as
—1 ~ %

AT AT —1=o* ~in* Ay AT
Ag(Cg) Kg :Kg +BgQg—Zg(Cg) Kg . (40)

~ T -1 ~T
Premultiplying Eq. (40) by the matrix Cz: (Ag) (= Ry , the transpose of the response matrix
appearing in the forward equation (Eq. (7)), we obtain



~o* AT ~in* A% % A

K¢ =ReK, +P,0 -L,, (41)
where

K AT

P, = R.B, , 42)
and

¥ ~T AT =1 ~p%

Ly = Rz, (Cp) K . (43)

The importance of the linear combination specified by Egs. (38) and (39) is that while
Eqgs. (21) and (22) indicate that the adjoint nodal partial currents are not continuous (compare
these equations to the continuity relations, Egs. (5) and (6) of the forward scheme), the combined
partial currents are continuous. As a result, it becomes possible to apply the solution scheme of
the forward response matrix equations6 to Eq. (41) with minimal modification. In particular, the
coupling between the combined partial currents now has the same structure as that between the
partial currents in the forward equation, and only the formulation of the source terms is funda-
mentally different. For a given node, Eq. (41) reflects the fact that the outgoing partial currents
from the node are coupled to the adjoint (fission, and scattering) sources in the node and the sur-
rounding twenty nodes; this differs from the coupling in the forward equation (Eq. (7)) in which
the coupling is limited to the sources for the node in question. Although additional code logic is
required to compute the adjoint source and leakage terms, the new structure of these source terms
causes no difficulty in applying the existing solution algorithm.

In the direct mathematical adjoint algorithm, Eq. (41) is used to compute the combined par-
tial currents during each outer iteration, and Egs. (19) and (20) are used to compute the flux
moments. When these latter equations are written for the adjoint flux moments in terms of the
combined partial currents, we obtain

*

—1 A% - T T *
ol _ |Sg Lon +|:(ng) : 0 }Bg Nel ey~ Ksn

* —1 A% -1 T (Cg) o*l °
<[)gz ngng 0 (Sglvl) 0 M ng

(44)

The formulation of Egs. (41) and (44) permits their solution using essentially the same inner
and oute: iteration strategy employed for the forward solution in DIF3D-nodal. Although the
asymptotic source extrapolation scheme used to accelerate the outer iterations could be retained,
the existing coarse mesh rebalance (CMR) scheme had to be bypassed because the flux moment
equation (Eq. (44)) depends only on the cutgoing partial currents and not on the incoming partial

currents. Alternatives to the CMR acceleration scheme are currently being explored for the
mathematical adjoint calculation.

Following the convergence of the adjoint solution, the adjoint outgoing partial currents at
internal interfaces are recovered from the combined partial currents by using Eq. (38), i.e.
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Once the adjoint fluxes and outgoing partial currents have been determined, the adjoint incoming
partial currents can be obtained from Eqs. (23) and (24) via

Jnt = n Y ver, + Hiv,0) +Condg,] (46)
It = [Woves, + Vev,0r +FenJo] . @7
NUMERICAL RESULTS

The solution method presented above has been verified by demonstrating that calculated
results match those obtained with the existing similarity transformation approach for problems in
which that approach is exact. For example, the new solution scheme was shown to produce the
same eigenvalues and mathematical adjoint flux moments and partial currents as the existing
approach for several two-dimensional test cases, as well as for degenerate three-dimensional
cases (axially uniform problems modeled with zero net current conditions at axial boundaries).
Some three-dimensional test cases for which the existing similarity transformation scheme pro-
vided very accurate results have also been analyzed, specifically problems in which the flat trans-
verse-leakage approximation is adequate. The results obtained for these problems verified
conclusively that the direct solution method indeed produces the exact mathematical adjoint solu-
tion.

The availability of the new adjoint solution scheme provides a convenient means for deter-
mining the adequacy of the existing approximate mathematical adjoint solution scheme. Of par-

ticular interest are the perturbation theory results (obtained here with the VARI3D code’) using
the computed adjoint solution.

The 600 MWe, low sodium-void-worth liquid metal reactor (LMR) 10 design shown in Fig. 1
was used to test the accuracy of the existing mathematical adjoint scheme. This design employs a
“pancaked”, annular core geometry, with an active core height of 45 cm and a four-row non-
fueled central region. Axially, the active core is surrounded by a lower reflector region and an
upper plenum region. The core is surrounded radially by one row of steel reflector assemblies, fol-
lowed by two rows of shield assemblies. Sodium void reactivity results for this reactor design are
presented in Table 1. These results can be summarized as follows:

(1) The exact reactivity values (determined by eigenvalue difference) are reproduced when
the new adjoint solution flux moments and partial currents are used in exact perturbation
theory calculations.

(2) For this reactor configuration, in which the quadratic transverse leakage approximation is
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more accurate than the flat leakage approximation, the physical adjoint eigeqvalue dif-
fers noticeably from the mathematical adjoint eigenvalue, with the difference increasing
with axial mesh size.

(3) Although the existing approximate mathematical adjoint method (which employs a simi-
larity matrix transformation in obtaining the mathematical adjoint solution from the
physical adjoint fluxes) is only rigorous in the limit of zero axial mesh size when the
quadratic transverse leakage approximation is used, the differences between reactivity
values computed with the existing and new mathematical adjoint solutions are negligible
even when conventional axial mesh spacings (approximately 15-20 cm in the active
core) are employed.

Table 2 contains a summary of the groupwise maximum errors in the adjoint nodal quantities
determined with the existing scheme for the unperturbed state of the above LMR model. The
nodal calculation employs axial node sizes of 15.0, 14.3, and 15.0 cm in the active core, top ple-
num, and bottera reflector, respectively. Table 2 excludes errors in very small adjoint quantities,
specificaily those less than 1 % of the largest adjoint node-average flux for each group. The maxi-
mur.: errors in the adjoint node-averaged fluxes (zeroth flux moments) and hex-plane partial cur-
rents occur primarily in the upper plenum region, while the maximum errors in the flux moments
and Z-direction adjoint partial currents occur in the upper plenum region or on nodal interfaces
with control assemblies. As shown in Table 2, the maximum errors in the node-averaged fluxes
are consistently lower than those in the other flux moments and partial currents. This fact,
together with the location of the errors, accounts for the remarkable accuracy of the reactivity val-
ues obtained using the existing, approximate scheme for computing the adjoint. However, the
rigor of the new, direct adjoint scheme is likely to be of practical importance in certain applica-
tions (e.g. generalized perturbation theory11 for local response functionals) requiring accurate
local predictions of adjoint flux moments and partial currents.

SUMMARY

A new, direct scheme has been developed for rigorously computing the mathematical adjoint
for the DIF3D-nodal equations in hexagonal-Z geometry. The unknowns in the mathematical
adjoint equations were redefined in a way that permitted the application of the same basic algo-
rithm currently in use for computing the real flux, with only minor changes to the DIF3D-nodal
code being required.

Differences between the local or global reactivities computed with the direct mathematical
adjoint scheme and the existing approximate scheme (based on a similarity transformation) were
found to be small. However, larger differences were observed in the mathematical adjoint flux
moments and partial currents, and thus more significant differences may be obtained in future
generalized perturbation theory applications, where localized responses are often of interest.



10.

11.

12

REFERENCES

R. D. Lawrence, “Perturbation Theory Within the Framework of a Higher Order Nodal
Method,” Trans. Am. Nucl. Soc., 46, 402 (1984).

T. A. Taiwo and A. E Henry, “Perturbation Theory Based on a Nodal Model,” Nucl. Sci.
Eng., 92, 34 (1986).

P. Kao and A. E Henry, “Supernodal Analysis of PWR Transients,” Proceedings of the Top-
ical Meeting on Advances in Nuclear Engineering Computation and Radiation Shielding,
Santa Fe, New Mexico, p. 63, Vol. 2, American Nuclear Society, April 1989.

T. A. Taiwo and H. S. Khalil, “An Improved Quasistatic Option for the DIF3D Nodal Kinet-

ics Code,” Proceedings of the Topical Meeting on Advances in Reactor Physics, Charleston,
South Caroling, p. 2-469, March 1992.

T. A. Taiwo, “Mathematical Adjoint Solution to the Nodal Code QUANDRY,” Trans. Am.
Nucl. Soc., 55, 580 (1987).

R. D. Lawrence, “The DIF3D Nodal Neutronics Option for Two- and Three-Dimensicnal

Diffusion Theory Calculations in Hexagonal Geometry,” ANL-83-1, Argonne National Lab-
oratory, March 1983.

W. S. Yang, “Similarity Transformation Procedure for Nodal Adjoint Calculations.” Trans.
Am. Nucl. Soc., 66, 270 (1992).

K. L. Derstine, “DIF3D: A Code to Solve One-, Two-, and Three-Dimensional Finite Differ-
ence Diffusion Theory Problems,” ANL-82-64, Argonne National Laboratory, April 1984.

P. J. Finck, private communication, Argonne National Lahoratory, June 1992.

Y. I. Chang, et al., “Core Concepts for Zero-Sodium-Void-Worth Core in Metal Fuelled Fast
Reactors,” Proc. Intl. Conf. on Fast Reactors and Related Fuel Cycles, Kyoto, Japan, Octo-
ber 1991.

M. L. Williams, “Perturbation Theory For Nuclear Reactor Analysis,” CRC Handbook of
Nuclear Reactors Calculations, Vol. I11, p. 63, CRC Press, Inc. 1986.



13

Table 1. Comparison of Perturbation Results Obtained with the New and Existing
Adjoint Schemes for a LMR Test Case

Existing Approximate Scheme New Solution Scheme
Mesh 1 Mesh 2 Mesh 3 Mesh 1 Mesh 2 Mesh 3
Axial Mesh, cm
Active Core 9.0 15.0 22.5 9.0 15.0 22.5
Top Plenum a1 14.3 333 9.1 143 333
Bottom Reflector 9.0 15.0 30.0 9.0 15.0 30.0
‘i’jel’é"“fbed 10145319 | 10149454 | 1.0172300 || 1.0145319 | 1.0149454 | 1.0172300

Dnperturbed - - 10149454 | 1
keeff (Adjoint)* 1.0148294 10145319 | 1.014945 0172300

Sodium Void Rt:activity, 100% Voiding" - Exact Perturbation Theory

Perturbed 10180597 | 1.0183938 | 10199742 || 1.0180920 | 10184963 | 1.0205010

k-eff (Adjoint)

Reactivity 3.456E-03 3.455E-03 3.136E-03 3.447E-03 3.435E-03 3.151E-03

Sodium Void Reactivity, 2% Voidingb - Exact Perturbation Theory

Perturbed 10145048 | 1.0149292 | 1.0167545 || 10146319 | 10150451 | 1.0173243

k-eff (Adjoint)

Reactivity 9.716E-05 9.698E-05 9.049E-05 9.706E-05 9.673E-05 9.169E-05

Sodium Void Reactivity, 2% Voidingb - First Order Perturbation Theory

Reactivity
Total - 9.627E-05 - - 9.599E-05 -
Core - 2.083E-04 - - 2.086E-04 -
Plenum - -1.120E-04 - - -1.126E-04 -
Node 1° - 7.097E-06 - - 7.089E-06 -
Node 2° - -2.028E-07 - - -2.035E-07 -

3For the existing scheme this is the k-eff of the physical adjoint solution, whereas in the new
scheme it is the k-eff of the mathematical adjoint solution.

b100% voiding denotes complete voiding of flowing sodium.

“Nodes 1 and 2 are individual nodes in the core and plenum, respectively.
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Table 2. Errors in Adjoint Solution Computed with the Existing Scheme

Maximum Errors in Adjoint Nodal Quantities? (%)

EGanrfg Flux Moments Partial Currents
Average Flux
Hex-plane Z-direction Hex-plane Z-direction
1 0.87 7.79 12.18 69.19 86.27
2 0.82 8.45 10.10 55.52 75.11
3 0.87 8.31 9.51 42.49 82.99
4 0.93 8.30 9.26 58.65 75.79
5 0.94 6.29 6.47 41.64 64.05
6 1.07 5.10 6.84 32.76 53.96
7 1.36 6.48 11.80 28.69 55.56
8 1.42 5.59 16.53 25.41 61.20
9 1.60 5.60 21.06 37.59 65.51
10 1.39 5.25 26.86 32.93 71.06
11 1.15 5.32 32.43 40.38 75.65
12 1.41 5.90 40.29 50.50 76.66
13 1.39 4.98 42.56 45.01 78.62
14 1.66 6.07 53.01 39.58 81.89
15 3.47 8.05 62.66 32.74 37.83
16 4.26 8.32 63.71 29.93 37.12
17 2.52 5.92 23.23 28.85 38.65
18 2.45 6.21 70.87 28.38 43.24
19 243 11.11 26.25 23.66 49.44
20 2.52 11.09 31.15 49.26 52.37
21 7.31 16.34 73.42 89.40 64.86

40nly quantities exceeding 1 % of the largest adjoint node-average flux are considered for each

group.
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Figure 1. Low Sodium-Void-Worth LMR Core Layout
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