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1.0 Introduction

The primary difficulty of computing the vibration of spinning inflated membranes arises
from the low natural frequencies of such systems. When such systems are rotated near
their own natural frequencies the dynamics equations must account for higher order kine-
matics than is necessary for more rigid structures. These complications results from the
membrane loads that develop within the bodies in reaction to the accelerations of the over-

all body. When second order kinematics act against these membrane loads, the resulting
energies become of the same order as the potential and kinetic energies of the vibrations
that would be calculated by first order kinematics.

These complications apply to the problem addressed here. Here we consider a spin-stabi-
lized, inflated membrane, spinning around its minor axis. This structure is very flexible
and somewhat viscoelastic, so vibrations excited by the overall motion of the structure

will dissipate energy of the system, thus reducing the kinetic energy. A reduction in kinetic
energy consistent with a conservation of angular momentum results in coning and, eventu-
ally, tumbling. Here we must address the excitation of vibration by the rigid-body motion
and then we must address the retarding effect of the energy dissipation on the rigid-body
motion.

The difficulties o,_the dynamics of flexible systems rotating near their first natural frequen-
cies has been addressed frequently in the literature recently. The literature is too large to
reference fully, but several much discussed monographs are References [1],[2], and [3].
One traditional approach to addressing these difficulties is to uncouple the vibratory
motion of the structure flt)m the "rigid-body" motion except tor an a-posteriori addition of
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"spin-stiffening". Though this approach is very often successful, it cannot result in the
desired prediction _f the secular effect of vibratory dissipation on the overall motion.
An_theJ, though brute-force, approach involves the recalculation _f the stiffness matrix
and inertial loads at each time step. Though theoretically acceptable, that approach proved
t{_be prohibitively slow and prohibitively expensive.

2.0 Analysis Technique

Here we rep_wt the application of one method that was developed for addressing flexible
rotating systems tc_the calculation of the dynamics t_fan inflated membrane. This method,
presented in Reference 14], involves the use of a space of accessible configurati{ms that are
consistent with the nonlinem static properties of the structure up to second order in the
applied force.

Beginning with kinematics, a particle originally at location Z will occupy a position
x (Z, t) at time t:

x(Z,t) = p(t) +R(t) * [z+U(z,t)] (EQI)

where the rotation tensor R (t) accounts for rigid-body rotation and the vector p (t)
accounts for rigid-body translation. All remaining displacement is absorbed in to the
U (Z, t) term. There is some ambiguity in the distribution of displacements among R (t),
p (t), and U (Z, t) until one adds two more vector constraints. We have chosen to require
that p (t) move as the instantaneous center of gravity of the deforming structure and that
R (t) rotate along with the instantaneous moment of inertia tensor.

A representati m for the deformation field, U (g, t), is obtained in a manner described
below. One devises an expansion for the nonlineaa" static response of the structure that is
correct up to second order in the imposed forces for a basis of force fields"

V (Z, t) = Zsm (t)f" (X) (EQ21
m

U (Z, t) = Zs,,, (t) u" (Z) + Zs,,, (t)s n (t) g,,,, n (X) (EQ3)
m m, Pl

The imposed force field F (Z, t) has been expressed as a series of basis fields f" (Z) and
the displacement field has been expressed as a series of linear and quadratic terms, the
identity of each must be deduced from the solution of the nonlinear statics. Note that the
linear and quadratic fields, u'" (Z) and gm. ,, (Z), are each derived from the force basis.

• ) 'These kinematics c_fEquation 1 and Equation 3 are employed with Hamdt_in s principle in
the derivation c_fthe governing equations of the system. Even after the governing equa-
tions are deri red and linearized with respect to the deformation parameter sm(t), there
exist terms Iii:ear in the fields g'"' n (X), reflecting the work d{me against the second order
det'_wmati_ms.
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The deriwttion and governing equations are given in Refelence [41. Also in that reference
me several very simple illustrations of the method. The g{weming equations involve sev-
eral matrices of c()nstant integrals taken over the body, akin to mass and stifthess matrices,
that must be calculated prior to performing time integration. For the simple problems of
Reference [4], those integrals were calculated in a direct manner. For the complex struc-
tul'e presented here, it was necessary to develop extensive computer code to peril)rra the
integrals accounting for the kinematics of the full structure. The cJevelopment and nature
of that code will be a topic of another paper and will be discussed in only a curscwy man-
ner here.

When Hamilton's principle is used with the above kinematics, after an integration by
parts, and after numerous tensor identities have been exploited, the following governing
equations result for the linear acceleration, ti (t), for the angulai" acceleration f_, and for
the second derivative, _:m(t), of the deformation coordinate:

0 = S [- p (Z) )_(Z, t) +Fx(_,t)]dV (EQ4)
volume

V01 lt t?t., L m _J

and

volume n

(EQ6)

where 9 (Z) is local mass density; Fx (%, t) is the field of externally applied forces; and

Fs (Z, t) : ZSk (t)f (Z) (EQ7)
k

is tke field of reaction forces associated with the linear deformation field _s,,,u'"
m

The acceleration terms )_(Z, t) in Equation 4, Equation 5, and Equation 6 must be
expressed in te_ms of its parts:

I z 1 z_'(Z,t) =P+ (ft+E22) * Z+ Smum +2E2- ,_,,u'"+L_mu (EQ_)
m d IIi t?l

One notes that the quantities sm (t), p (t), and R (t), and their derivatives can be fac-
tored out of the volume integrals. Ali remaining terms in the integrals with the exception
()f Fx (Z, t) are independent of time. With the exception of the terms involving Fx (Z, t),
ali integrals can be evaluated once, and stored for use in the time integration problem.
(Tho(lgh there are methods of circumventing the difficulties of the external force terms,
such terms do not t)ccur in this problem and are not discussed further.) At each time step,
t_ne needs solve ()nly the small system of equations for p (t), f_, and 3,, (t), without ref-
eFence t() many n(_daldegrees ()f freed()m.
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The w_lume integrals of Equation 4, Equation 5, and Equation 6 are evaluated through an
unconventional use of a finite element code. One uses a nonlineaa statics code in the man-

ner suggested in Reference 1411,to find expressions for f'" (Z), gm, n (_Z) , and u m (X) in

terms of nodal displacements. A dynamics code is used to extract the necessary inertial
terms.

lt should be noted that the total number of scalar equations in the above system is 6+N,
where N is the number of deformation modes considered. Therefore, calculation at each

time step inwqves only a small number of degrees of fi'eedom and does not require any

additional spatial integrals at that st,ep.

Examination of Equation 6 provides some insight as to the rigid body motions that will
excite vibrational response. Inner products of the sort

r •Ivolunle lt

represent loadings on the vibration modes by acceleration terms including those involving
and its derivatives. When the rotational rate is on the order of a natural frequency, one

would expect some excitement of resonance.

3.0 The Inflated Membrane

The mesh used to model the su'ucture addressed here is shown in Figure 1 and Figure 2.

.' i,'I(;URE 1. A side view o1"the mesh of the modelled structure.
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HGURE2. A rotatedviewof the meshof the modelledstructure.

The sla'ucture is approximately conical in shape and approximately 60 inches long with a
nearly spherical cap of approximately 5 inch diameter on the front and a nearly spherical
cap of approximately 20 inch diameter on the back. There are also small masses affixed to
the front and rear of the structure. The properties of the membrane material are listed in
Table 1, "Membrane Material Properties," on page 5.

Two cases were run, involving:

• an initial spin rate of 0.5 Hz

• an initial spill rate of 41 Hz.

In each case the membrane was inflated to 0.3 psi so that the first frequency was 39 Hz;
there was an initial coning angle of approximately 6°; and Euler backward integration was
performed every 2.5 milliseconds. Though the exact meaning of "coning angle" in a
deforming structure is unclear, the initial conditions were specified in terms of the orienta-
tion of the instantaneous principle axis vectors.

The analysis was performed using basis fields _'" ()_) corresponding to the first five eigen
modes of the s?'.,;tem.(These were evaluated formally by contracting the eigenmodes with
the mass matrix.) The linear deformations, u" ()_), are the eigen modes, and the coeffi-
cients, g"" n (X), of the quadratic terms are calculated from the nonlinear statics in the
manner _mtlined above.

Table 1" Membrane Material Properties

Material Property Value
i i

Density 0.0335 lb/in 3

Elastic M_dulus ().05 Mpsi

Prcdiciin_ lhc Vibratilm._ ill a Sl_innin 7 lnllalcd Mcml_ranc 4



Table 1" Membrane Material Properties
I Ill

Material Property Value
umm

Poisson's Ratio 0.3
i

Thickness ().0045 in

%Critical Damping 2.0

The deformatio;1 m(_des are illustrated in Figure 3, Figure 4, and Figure 5. These were

selected on the reasoning that the overall defl)rmation only introduces significant excita-

tion forces to the system whose frequencies are at or below the spin rate of the system, so

the m_)des associated with frequencies at and below that value should be sufficient.

FIGURE 3. The firstand seconddeformational modes involve
primarily a rockingof the mass at the base of the balloon. These occur
at 31.2 Hz.

I:i_;URI,_4. The third mode is an in-and-out motion of the rear mass.
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FIGURE 5. The fourth and fifth modes are bending modes of the
overall structure. These occur at 38.0 Hz.

4.0 Results

As expected, since the spin rate of the first problem was well below the first natural fre-
quency of the structure, there was very little coupling between the rigid-body part of the
motion and the vibratory motion. An examination of Figure 6 shows that, as expected, the
magnitude of the angular momentum vector is conserved. Though not show here, the ori-
entation of that vector is also conserved. It is in Figure 7 where the physics of this problem
becomes interesting. A deformation introduced as an initial condition to this problem dies
out with a log-decrement consistent with 2% damping. The small decline in total vehicle
energy is evidenced in Figure 8. The spin rate and cone angle are shown to be nearly con-
stant in Figure 9 and Figure 10, as expected. (Despite the absence of resonance there may
still be a very slow energy leakage due to forced, nom'esonant vibration.)

The situation is somewhat different for the case of an initial spin rate of 41 Hz. Though the
momentum is c,:,nserved, as evidenced in Figure 11, there is substantial interaction
between the vibrational modes and the rigid-body motion. Figure 12 shows the coefficient
of the first bending mode. At first there is a beating-like phenomena reflecting the interac-
tion between several modes. (Note the gin, n (Z) terms in Equation 6 destroy orthogonality
of modes). Eventually there is a steady growth in the vibration magnitude, indicating a
flow of energy ft'ore the rigid-body rotation.

The energy dissipation associated with the growing vibrations results in a decay of system
energy, as shown in Figure 14. This lost energy comes primarily from the spin rate, as
shown in Figure 15. Conservation of angular momentum in the presence of decreasing
spin rate requires an increased moment of inertia bout the axis parallel to the coning axis -
a condition satisfied by an increasing coning angle. The evolution of the cone angle is
show in Figure 16.

lt sh_mld be n_ted that the early-time oscillations in tc_talenergy are of very small ampli-
tude (-(). lC__f the mean value) and that these oscillati_ms dissappear when the early-time
caiculati_ns are rerun with much ,_;mallertime step.

lhetlicting lhc Vibrati_n.s _f a .";pinning Inflated Membrane 7
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FIGURE 6.3'he magnitude ot' the momentum vector as a function of
time for an initial spin rate of 0.5 Hz.

Linear Coefficient of First Mode
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H(;URE 7. The coel'ficient of the first hending mode I'or the case o1"an
initial sl)in rate ot' 0.5 Hz. The initial deformation quickly decays to zero,
without apparent excitation t'rom the rigid body motion.
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FIGURE 8. Total kinetic and potential energy tor the case of an initial 0.5

Hz spin rate.
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I:I(;URE 9. Spin-rate history for the case of an initial 0.5 Hz spin rate. Note
that this behavior is consistent with that of a rigid body.
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Cone Angle
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FIGURE 10. 3"he magnitude of the cone angle as a function of time
for an initial spin rate of 0.5 Hz.
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I"i(]URE II. The magnitude of the angular momentum vector l'or the case
-l' an initial spin rate o1'41 Hz. This plot demonstrates the conservation oi"
a n_ular momentu m.
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Linear Coefficient of First Mode
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FIGURE 12. The coeflicient of the first bending mode for that case of an
initial spin rate of 41 Hz.Vibratory dissipation removes kinetic energy from
the system.

¢

' Linear Coefficient of First Mode

41 Hz Spin Rate
40.0 . _, , - • , ......... , • t ....... , ......

20.0

i , t
_ 0.0
._

0

= -20.0
-i

-40.0

-60.0 _ ' '
oo 1.0 210 310 4.0 s.o

Time (seconds)

I"I(;IJRE 13. The c,el'licienl _ff'the first bending mode l'_)rthat case_)l'_,n
initial sl)in rale _ff'41 llz - a ma_nilied view al early times.
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FIGURE14.Thetotalenergyforthecaseof an initialspinrateof 41Hz.
Vibratorydissipationremoveskineticenergyfromthesystem.
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FIGURE 15. Spin rate history for the case of an initial spin rate of 41 Hz.

Vibratory dissipation removes kinetic energy from the system.
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Cone Angle
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FIGURE 16. The cone angle for the case of an initial spin rate of 41 Hz. Note
that the cone angle increases with time as energy leaves the system.
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5.0 Conclusions

Though orthogonality of the linear modes is lost in vibration probl,_ms involving high
speed rotation - that is high-speed relative to the c_gen frequencies - such problems can
still be addressed in a manner involving just a few degrees of treedom so long as ali the
necessary physics is accommodated.

The calculations show for this case, as argued heuristically above, that rigid body rotation
will not excite vibrational modes associated with frequencies much higher than the magni-
tude of the spin tensor.

Most importantly, the method of quadratic modes has been demonstrated to give reason-
able predictions for problems of the sort presented here. Further, since such "soft" struc-
tures as inflated membranes are especially numerically difficult, we expect this method to
be similarly successful in other problems of rotation of flexible bodies.
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