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SUMMARY

In the previous report the governing equations for the flow of granular materials

down an inclined plane, modeled by the consitutive theory proposed by Boyle and

Massoudi (1990) were derived. These equations are solved numerically subject to the

appropriate boundary conditions. The effect of various non-dimensional parameters on

the volume fraction and velocity are presented in the form of graphs. In this report we

derive the governing equations for the flow of granular materials down an inclined plane

using the continuum model proposed by Rajagopal and Massoudi [el. Goodman and

Cowin (1971, 1972), Rajagopal and Massoudi (1990)]. Here, we study the effect of the

various forms of the materials parameters (13's) as discussed in Case I, II, and III in the

following sections. The numerical solutions for case I and case II were presented in the

earlier reports and case III are presented in the form of graphs for various non-

dimensional parameters. Also, the solutions from Case I, II, and III are compared to see

how the structure of the material parameters affect the velocity, volume fraction and

temperature fields.



INTRODUCTION

Granular materials have both the properties of a solid and a fluid, as they can take the

shape of the vessel c,_,-:aining them, thereby exhibiting fluid like characteristics, or they

can be heaped, thereby behaving like a solid. Also, granular materials can sustain shear

stresses in the absence of any deformation, and the critcal stress at which shearing begins

depends on the normal stress. Also it is very difficult to characterize bulk solids, which

are composed of a variety of materials, i.e. mainly due to the fact that small variations in

some of the primary properties of the bulk solids such as the size, shape, hardness particle

density and surface roughness can result in very different behavior. Furthermore,

secondary factors such as the presence or absence of moisture, the severity of prior

compaction, the ambient temperature etc., which are not directly associated with the

particles, can have significant effect on the behavior of the bulk solids.

Due to their complexity, the modeling of granular materials would require a fusion of

the ideas from solid, fluid and soil mechanics. Also granular materials, like non-

Newtonian fluids and non-linearly elastic solids exhibit normal-stress differences in

simple shear flow. Thus modeling granular materials and slurries is very complex, and

has to draw upon experiences from non-linear fluid and solid theories. One approach

used in modeling the mechanics of granular materials is the continuum approach and

the other is the kinetic theory approach. Several models have been proposed by various

investigators using ideas of kinetic theory [of. Ogawa et al. (1980), Jenkins and Savage

(1983), Lun et al. (1984), Jenkins and Richman (1985), Boyle and Massoudi (1989)],

similarly based on the continuum theory approach [cf. Goodman and Cowin (1971,

1972), Cowin (1974a, b), Massoudi and Boyle (1987), Passman et al. (1980), Ahmadi

(1982a, b) and Rajagopal and Massoudi (1990)].

GOVERNING EQUATIONS

A constitutive model that predicts the possibilty of both of the normal stress-

differences and that is properly flame invariant is given by [cf. Rajagopal and Massoudi

(1990)]:

T = { 130(v)+ 131(v)Vv • Vv + 132(v)trD } 1

4" _4(V) VV _) VV 4" _3(V) D, (1)



where 130(v)is similar to pressure in a compressible fluid and is given by an equation of

state, 132(v)is like the second coefficient of viscosity in a compressible fluid, 13t(v) and

I$a(V)are the material parameters connected with the distribution of the granular materials

and 133(v)is the viscosity of the granular material. The above model allows for normal-

stress differences, a feature observed in granular materials. In general, the material

properties _0 through [34are functions of the density (or volume fraction v), temperature,

and the principal invariants of the stretching tensor D, given by

1
D = _ [ (Vu) + (Vu) r 1,

where u is the velocity of the particles. In equation (1), 1 is the identity tensor, V the

gradient operator, ® indicates the outer (dyadic) product of two vectors, and tr

designates the trace of a tensor.

Consider the flow of granular materials down an inclined plane modeled by the

continuum model proposed by Rajagopal and Massoudi (1990) (of. Figure 1) due to the

action of gravity. The flow of granular materials down an inclined plane has been studied

by several authors [cf. Goodman & Cowin (1971), Savage(1979), Hutter, Szidarovszky,

and Yakowitz (1986a, b), Johnson and Jackson (1987)]. In this problem, we consider

steady one-dimensional flow of incompressible granular materials (i.e., y = constant)

down an inclined plane, where the angle of inclination is o_.Here, we assume the flow is

a fully developed steady flow. Let us further suppose that the inclined plane is

maintained at a constant temperature O,,,, which is at a higher temperature than the

temperature of the surrounding environment O**,and, as a result, there is transfer of heat.

The heat flux vector q satisfies Fourier's law with constant thermal conductivity, i.e.,

q=-KVO, (2)

where (9 is the temperature and K is the thermal conductivity, which in general is a

function of volume fraction and ®. At this juncture it would be appropriate to point out

that in theories for granular materials based on a kinetic theory approach, the fluctuations

in the velocity field give rise to the notion of granular temperature. The convective heat

transport, within the context of such theories, is determined by the fluctuations in the

velocity field. It is also the conventional wisdom that this mechanism is important for the

heat transfer process. In this approach, we have ignored the fluctuations in the velocity

field as the theory does not allow for such velocity fluctuations, and moreover within the

context of the continuum theory, the phenomena of heat transfer is incorporated in the



energy equation. To include in addition to the energy equation, the notion of granular

temperature would be inconsistent with this approach. We feel that this approach is

applicable when the packing of the material is reasonably compact and the fluctuation

from the mean are not significant. For a fully developed flow, within the context of a

continuum theory, wherein the flow is unidirectional as in this case, fluctuations of the

velocity normal to the flow direction cannot be incorporated. While this may be a

shortcoming of this approach we see that even with the neglect of such fluctuations, heat

transfer within the context of the continuum model has a pronounced effect on the nature

of the solution [of. Schl_inder (1980, 1982), Wunschmann and Schl_inder (1980),

Buggisch and L6ffelmann (1989)].

For the problem under consideration, the following assumptions are made:

• Steady motion

• Incompressible granular materials, i.e., T = constant

• Negligible radiant heating, i.e., r = 0

• The constitutive equation for the stress tensor is given by equation (1), and
density, velocity, and temperature fields are assumed to be of the form

v =vty)
u = Uty) (3)
O =e(y)

We shall consider three cases. The first is the case that _1 through _4 and the thermal

conductivity K are assumed to be constants. In the second case, it was assumed that _1

and 134to be constant, 132and 133have a quadratic variation in volume fraction and the

thermal conductivity K to be linear in volume fration. In the third case, we consider

purely a mechanical problem and assume 131through 134have a quadratic variation in
volume fraction.

Case I: 13t Through 134 and Thermal Conductivity K are Constant

Here, we assume 131through _4 and the thermal conductivity K to be constant, with 130

given by equation (4).

130=kv (4)
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With the above assumptions, the conservation of mass is identically satisfied and the

balance of linear momentum and energy in the non-dimensionalized form reduces to

RtdV dv d2v-- + R2 "7_"-2" = V costX (5)
d_ dydy2

u

R3 d2U-'7"_= -v sintx (6)
ay2

m

a-t°-R4{du-dy-2
and the boundary conditions become

m

U=0

0 = 1 at y = 0 (on the inclined plane) (8)

-N = v dy (9)

and,
dU
----=0

dy

R2 dv }2=0 ate= 1 (atthefree surface) (10)

®=0

- y - U _ O---O**

with, y = -_; u = --uo ; @ = O_--@**'_ (11 )

where h is a characteristic length and u0 is a reference velocity. The non-dimensional

parameters R 1,R,2, R3, and R4 are given by
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k 2 (131+ 134)

- R2-
2

Uo IS3Uo
= _. R4 = (12)

R3 2 h2_/g' 2 K (O_,--O..)

These dimensionless parameters have the following physical interpretations. R I could

be thought of as the ratio of the pressure force to the gravity force. R2 is the ratio of

volume distribution force to the gravity force. R3 is the ratio of the viscous force to the

gravity force (related to Reynolds number) and R4 is the product of the Prandtl number

and the Eckert number. Since k < 0, R 1can only have negative values, and since [33> 0,

R3 and R 4 are only given positive values.

Numerical Results

The system of equations (5), (6), and (7) with the boundary conditions (8), (9), and

(10) and subject to the restriction k < 0 are solved numerically using a collocation code

COLSYS [cf. Ascher et al. (1981)]. The numerical results for the above case was

presented in the earlier reports.

Case H: 133Varies Quadractically in v and Thermal Conductivity K Varies Linearly

in v with 131,132and 1_4 Being Constant

Here the viscosity of the granular material and its thermal conductivity is allowed to

vary with the volume fraction in a manner that is consistent with the physics of the

problem. The equations for the conservation of mass, momentum, and energy are solved

numerically and explicitly demonstrate the possibility of non-unique solutions,

corresponding to the same flow rate of the granular materials. Further, it is assumed that

[31,132and 134are constant. However, the viscosity 133is assumed to be of the form [cf.

Johnson et al. (1991a, b)]:

133= _ (v + v2), where, _ is a constant (13)

The numerical simulations of Walton and Braun (1986) suggest a quadratic variation

in volume fraction. However, their analysis allows for the viscosity to vary with the shear

rate, a feature that is not present in this work. Even so, at fixed shear rate, their simulation
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suggests a quadratic variation in the volume fraction. For K, it is assumed as [cf. Bashir

and Goddard (1990) and Batchelor and O'Brien (1977)]"

K = K,,, (1 + 3 _ v), (14)

(V1- 1)
where, _ --- (15)

(V1 + 2)

Here, Vt = ratio of conductivity of the particle to that of the matrix, and Km =

conductivity of the matrix.

With the above assumptions and the flow field given by equation (3), the

conservation of mass is identically satisfied and the balance of linear momentum and

energy in the non-dimensional form reduces to

dv dv d2v
R t "z + R2 "7 "=" = v cosct (16)

ay dy dy2

u m

A3v (1+v)a_U + A3(I+2v)dvdU.--- -----=- v sina (17)
ely2 ayely

m u

(1+3 _ v) a_O dv dO dU--=--_+ 3 _--=--= =-A4 v (l+v) {--} 2, (18)
dy 2 dy dy dy

and the boundary conditions become

m

U= 0 at y - 0 (onthe inclinedplane) (19)

m

O = 1 at y = 0 (on the inclined plane) (20)

_ _0

N= v dy (21)

and,
m

dU
m-- 0m

ay

R2 dv }2= 0 at y = 1 (at the free surface) (22)
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0=0

and,

dO A5
-- = - at y = 1 (at the free surface) (23)
d_ (1 +3_v)

The non-dimensional parameters A3, A4, and A5 are given by

Uo q:h
= ; A4 = A5 = (24)

A3 2h2yg 2Km(@_"@**) K m (ew- O**)

These dimensionless parameters have the following physical interpretations: A3 is the

ratio of the viscous forces to gravity and A4 is the product of the Prandtl number and the

Eckert number.

Numerical Results

The system of equations (16), (17), and (18) with the boundary conditions (19), (20),

(21), (22)1.2 and (223) or (23) and subject to the restriction k < 0 are solved numerically

using a collocation code COLSYS [cf. Ascher et al. (1981)]. The numerical results for the

above governing equations was presented in the earlier reports.

Case III: [51Through [34 Vary Quadratically in v

It is assumed that _o and 133are given by equations (4) and (13) with 1_1,[32and 134to

be quadratic in volume fraction are given by

13t= _t (1 + v + v2), where, _t is a constant (25)

_2 = _ (1 + v + v2), where, _ is a constant

[34= _4 (1 + v + v2), where, _4 is a constant (26)

In this case, we consider a purely mechanical problem. With the above assumptions

and the flow field given by (3)1,2, the conservation of mass is identically satisfied and the
balance of linear momentum reduces to
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The equations (27) and (28) are to be solved subject to the following boundary

conditions

U = 0 at y = 0 (on the inclined plane) (29)

and,

dU
_=0
ay

dvA A_

k v + (1_ + [34){_ }2= 0 at y = h (at the_ee surface) (30)

and the constraint that

;0'Qo : v dy, Qo being given. (3 I)

Also, notice that equations (30)t; " are the stress free conditions, equation (29) 1

indicates the no-slip condition (rough wall) assumption. Now, the system of equations

(27) and (28) subject to the boundary conditions (29), (30), and (31) are non-

dimensionalized using equation (11). Now, the above system of equations reduces to

_.....__ A2 dv }3RIdv + A2 (1 + V+ V2) dv d2v + (1 + 2 v) : v cosO_ (32)
d; T {2:

m

A3 v (1+v) d2U dv dU+ A3 (1+2 v) -- w = _ v sinc_ (33)
dr 2 d; d;

and the boundary conditions become

"u= 0 at y = 0 (on theinclinedplane) (34)

_ _0 m

N = v dy (35)
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and,
dU
_=0

dy

A2 dv
}2= 0 at _ = 1 (at the free surface) (36)

Rt v +'_-" {_--_

The non-dimensional parameter A2 is given by

24
A2= h3),g (37)

The dimensionless parameter has the following physical interpretations, A2 is the

ratio of forces developed in the material due to the distribution of the voids to the force of

gravity.

Numerical Results

The system of equations (32) and (33) with the boundary conditions (34), (35) and

(36) and subject to the restriction k < 0 are solved numerically using a collocation code

COLSYS [cf. Ascher et al. (1981)]. It follows from Rajagopal and Massoudi (1990) that

R_ must always be less than zero for the solution to exist and all the other non-

dimensional parameters, i.e. A2, and A3 must be greater than zero. A parametric study of

the equations is carded out to see how the various non-dimensional paramters affect the

volume fraction and velocity profiles.

The manner in which the volume fraction and velocity profiles change with R1 is

shown in Figures 2 and 3. respectively. Notice, that the volume fraction profile decreases

from the surface of the plane to the free surface, which is to be expected. Increasing the

magnitude of R1, with the other constants being held fixed, results in a decrease of

velocity. Increasing values of A2 results in a decrease of volume fraction and increase in

velocity (cf. Figures 4 and 5). Figure 6 shows the effect of A3 on velocity profile.
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Comparision of Case I, II and III Results

The volume fraction,velocity and temperature proftles are compared for case I, H and

IH. In Figure 7, the volume fracdon profiles are shown for case I and III for the same

valuesofnon-dimensionalpararntersand forcaseH itissame asCase I.The velocity

profilesareshown forCaseI,IIand HI inFigure8.Nodce,thatthevelocitydepends

upontheformassumedfor_Ithrough[34.Finally,inFigure9 thetemperatureprofilesare

shown forcaseIand H.We noticethatsignificantchangesinthetemperatureprofilecan

be effectcddependingupon theform assumedforthethermalconductivityof the

particles.
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Figure 1. Flow Down An Inclined Plane
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Figure 2. Effect of R l on the Volume Fraction
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Figure4. EffectofA_ontheVolumeFraction
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