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SUMMARY

In the previous report the governing equadons for the flow of granular materials
down an inclined plane, modeled by the consitutive theory proposed by Boyle and
Massoudi (1990) were derived. These equations are solved numerically subject to the
appropriate boundary conditions. The effect of various non-dimensional parameters on
the volume fraction and velocity are presented in the form of graphs. In this report we
derive the governing equations for the flow of granular materials down an inclined plane
using the continuum model proposed by Rajagopal and Massoudi [cf. Goodman and
Cowin (1971, 1972), Rajagopal and Massoudi (1990)]. Here, we study the effect of the
various forms of the materials parameters (B’s) as discussed in Case I, II, and III in the
following sections. The numerical solutions for case I and case II were presented in the
earlier reports and case III are presented in the form of graphs for various non-
dimensional parameters. Also, the solutions from Case I, II, and III are compared to see
how the structure of the material parameters affect the velocity, volume fraction and
temperature fields.



INTRODUCTION

Granular materials have both the properties of a solid and a fluid, as they can take the
shape of the vessel crrtaining them, thereby exhibiting fluid like characteristics, or they
can be heaped, thereby behaving like a solid. Also, granular materials can sustain shear
stresses in the absence of any deformation, and the critcal stress at which shearing begins
depends on the normal stress. Also it is very difficult to characterize bulk solids, which
are composed of a variety of materials, i.e. mainly due to the fact that small variations in
some of the primary properties of the bulk solids such as the size, shape, hardness particle
density and surface roughness can result in very different behavior. Furthermore,
secondary factors such as the presence or absence of moisture, the severity of prior
compaction, the ambient temperature etc., which are not directly associated with the
particles, can have significant effect on the behavior of the bulk solids.

Due to their complexity, the modeling of granular materials would require a fusion of
the ideas from solid, fluid and soil mechanics. Also granular materials, like non-
Newtonian fluids and non-linearly elastic solids exhibit normal-stress differences in
simple shear flow. Thus modeling granular materials and slurries is very complex, and
has to draw upon experiences from non-linear fluid and solid theories. One approach
used in modeling the mechanics of granular materials is the continuum approach and
the other is the kinetic theory approach. Several models have been proposed by various
investigators using ideas of kinetic theory [cf. Ogawa et al. (1980), Jenkins and Savage
(1983), Lun et al. (1984), Jenkins and Richman (1985), Boyle and Massoudi (1989)],
similarly based on the continuum theory approach [cf. Goodman and Cowin (1971,
1972), Cowin (1974a, b), Massoudi and Boyle (1987), Passman et al. (1980), Ahmadi
(1982a, b) and Rajagopal and Massoudi (1990)].

GOVERNING EQUATIONS

A constitutive model that predicts the possibilty of both of the normal stress-
differences and that is properly frame invariant is given by [cf. Rajagopal and Massoudi
(1990)]:

T={BMW+B WV Vv+B,v)erD}1

+B,(v) Vv ® Vv +B,(v) D, (1)



where By(v) is similar to pressure in a compressible fluid and is given by an equation of
state, B,(v) is like the second coefficient of viscosity in a compressible fluid, B,(v) and
B4(v) are the material parameters connected with the distribution of the granular materials
and B,(v) is the viscosity of the granular material. The above model allows for normal-
stress differences, a feature observed in granular materials. In general, the material
properties B, through B, are functions of the density (or volume fraction v), temperature,
and the principal invariants of the stretching tensor D, given by

D =3[ (V) + (VuyT ),

where u is the velocity of the particles. In equation (1), 1 is the identity tensor, V the
gradient operator, ® indicates the outer (dyadic) product of two vectors, and tr
designates the trace of a tensor.

Consider the flow of granular materials down an inclined plane modeled by the
continuum model proposed by Rajagopal and Massoudi (1990) (cf. Figure 1) due to the
action of gravity. The flow of granular materials down an inclined plane has been studied
by several authors [cf. Goodman & Cowin (1971), Savage(1979), Hutter, Szidarovszky,
and Yakowitz (1986a, b), Johnson and Jackson (1987)]. In this problem, we consider
steady one-dimensional flow of incompressible granular materials (i.e., Y = constant)
down an inclined plane, where the angle of inclination is .. Here, we assume the flow is
a fully developed steady flow. Let us further suppose that the inclined plane is
maintained at a constant temperature ®,, which is at a higher temperature than the
temperature of the surrounding environment ©_, and, as a result, there is transfer of heat.
The heat flux vector q satisfies Fourier’s law with constant thermal conductivity, i.e.,

q=-KVe, )
where © is the temperature and K is the thermal conductivity, which in general is a
function of volume fraction and ©. At this juncture it would be appropriate to point out
that in theories for granular materials based on a kinetic theory approach, the fluctuations
in the velocity field give rise to the notion of granular temperature. The convective heat
transport, within the context of such theories, is determined by the fluctuations in the
velocity field. It is also the conventional wisdom that this mechanism is important for the
heat transfer process. In this approach, we have ignored the fluctuations in the velocity
field as the theory does not allow for such velocity fluctuations, and moreover within the
context of the continuum theory, the phenomena of heat transfer is incorporated in the



energy equation. To include in addition to the energy equation, the notion of granular
temperature would be inconsistent with this approach. We feel that this approach is
applicable when the packing of the material is reasonably compact and the fluctuation
from the mean are not significant. For a fully developed flow, within the context of a
continuum theory, wherein the flow is unidirectional as in this case, fluctuations of the
velocity normmal to the flow direction cannot be incorporated. While this may be a
shortcoming of this approach we see that even with the neglect of such fluctuations, heat
transfer within the context of the continuum model has a pronounced effect on the nature
of the solution [cf. Schlunder (1980, 1982), Wunschmann and Schlunder (1980),
Buggisch and Loffelmann (1989)].

For the problem under consideration, the following assumptions are made:

e Steady motion
¢ Incompressible granular materials, i.e., Y = constant
¢ Negligible radiant heating, i.e., r =0

¢ The constitutive equation for the stress tensor is given by equation (1), and
density, velocity, and temperature fields are assumed to be of the form

v=v(@y)
u=U0) (€)
0 =6()

We shall consider three cases. The first is the case that B, through B, and the thermal
conductivity K are assumed to be constants. In the second case, it was assumed that B,
and B, to be constant, B, and B, have a quadratic variation in volume fraction and the
thermal conductivity K to be linear in volume fration. In the third case, we consider
purely a mechanical problem and assume B, through B, have a quadratic variation in
volume fraction.

Case I: B, Through B, and Thermal Conductivity K are Constant

Here, we assume P, through B, and the thermal conductivity X to be constant, with f3,
given by equation (4).

Bo=kvV 4



With the above assumptions, the conservation of mass is identically satisfied and the
balance of linear momentum and energy in the non-dimensionalized form reduces to

R,Q+R2Q_iﬂ_—v=vcasa &)
dy dy dy?

R, j‘i_‘{ ==V sino. 6)
dy?

40 dUu

—=-R, { —p @

dy? dy

U=0
0=1 at}' = 0 (on the inclined plane) ®8)
l —
N= fo v dy )]
and, _
Lo
dy
Ry, av ) -
R,v +—-—{-—_;} =0 aty =1 (at the free surface) (10
2 'dy
©=0
- 5= w2l 5.
with, y=% = @‘@,@; (11)

where A is a characteristic length and u, is a reference velocity. The non-dimensional
parameters R, R,, R,, and R, are given by



_ k ) R _2(51+B4)
'“hye 2" kg
By uy 33“3
Ry= 3 Ry= 52 o5 O (12)

These dimensionless parameters have the following physical interpretations. R, could
be thought of as the ratio of the pressure force to the gravity force. R, is the ratio of
volume distribution force to the gravity force. R, is the ratio of the viscous force to the
gravity force (related to Reynolds number) and R, is the product of the Prandtl number
and the Eckert number. Since & < 0, R, can only have negative values, and since 3; > 0,
R, and R, are only given positive values.

Numerical Results

The system of equations (5), (6), and (7) with the boundary conditions (8), (9), and
(10) and subject to the restriction £k < 0 are solved numerically using a collocation code
COLSYS [cf. Ascher et al. (1981)]. The numerical results for the above case was
presented in the earlier reports.

Case II: B, Varies Quadractically in v and Thermal Conductivity K Varies Linearly
in v with B,, B, and B, Being Constant

Here the viscosity of the granular material and its thermal conductivity is allowed to
vary with the volume fraction in a manner that is consistent with the physics of the
problem. The equations for the conservation of mass, momentum, and energy are solved
numerically and explicitly demonstrate the possibility of non-unique solutions,
corresponding to the same flow rate of the granular materials. Further, it is assumed that
B,, B, and B, are constant. However, the viscosity B, is assumed to be of the form [cf.
Johnson et al. (19914, b)}:

B, = ﬁj (v +Vv2), where, ﬁ, is a constant (13)

The numerical simulations of Walton and Braun (1986) suggest a quadratic variation
in volume fraction. However, their analysis allows for the viscosity to vary with the shear
rate, a feature that is not present in this work. Even so, at fixed shear rate, their simulation



suggests a quadratic variation in the volume fraction. For K, it is assumed as [cf. Bashir

and Goddard (1990) and Batchelor and O’Brien (1977)]:
K=K,(1+3§w),

_(‘l’x"l)
Ty +2)

where, €

(14)

(15)

Here, y, = ratio of conductivity of the particle to that of the matrix, and K =

conductivity of the matrix.

With the above assumptions and the flow field given by equation (3), the

conservation of mass is identically satisfied and the balance of linear momentum and

energy in the non-dimensional form reduces to

Rli\_,-+R2-4—\;’--‘f:Y=vcosa
dy  dyay
Asv(l-*-v)-qrf;q+A3 (1+2 v)gég:—v sino.
? dy dy
(143 cv)‘_”:‘"’.+3gi":€€_‘_’=_,a4v<1+v>{é¥}z,
dy? dy dy dy

and the boundary conditions become

U=0 aty =0 (on the inclined plane)
0=1 at§ =0 (on the inclined plane)
l ——
N= f v dy
0
and, _
Yoo
dy
R, av ) -
R,v+—2~{——_—_} =0 aty = 1 (at the free surface)
dy

(16)

17)

(18)

19

(20)

21)

(2)
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and,

de As -
==y aty = 1 (at the free surface) (23)
dy

The non-dimensional parameters A,, A,, and A, are given by

ﬁs“o . ﬁ:“g qeh

Y=3Hye MTIR.®0) =g ® -0, (24)

These dimensionless parameters have the following physical interpretations: A, is the
ratio of the viscous forces to gravity and A, is the product of the Prandtl number and the
Eckert number.

Numerical Results

The system of equations (16), (17), and (18) with the boundary conditions (19), (20),
(21), (22),, and (22,) or (23) and subject to the restriction £ < O are solved numerically
using a collocation code COLSYS [cf. Ascher et al. (1981)]. The numerical results for the
above governing equations was presented in the earlier reports.

Case III: B, Through 3, Vary Quadratically in v

It is assumed that B, and B, are given by equations (4) and (13) with B,, B, and B, to
be quadratic in volume fraction are given by

B, = ﬁl (1+v+v?, where, ﬁl is a constant (25)
B, = ﬁz (1+v+vY), where, ﬁz is a constant
By = ﬁ4 (1+v+v2), where, 34 is a constant (26)

In this case, we consider a purely mechanical problem. With the above assumptions
and the flow field given by (3), ,, the conservation of mass is identically satisfied and the
balance of linear momentum reduces to




k%+2 (ﬁ,+ﬁ4)(l +v+v2)%§y%+(ﬁ,+ﬁ4)(l +2v){zy—!}3=7gvcosa, 27
d*u avdu ,
ﬁ,(v+v2)-(;y7+ﬁ,(l+2v)Ey-E=—2~{gvsma. (28)

The equations (27) and (28) are to be solved subject to the following boundary
conditions

U=0 aty =0 (on the inclined plane) (29)
and,
du _
dy
kv+ (ﬁx + 64) { % =0 aty = h (at the free surface) (30)

and the constraint that

h
0, = J.o v dy, Q, being given. €2y

Also, notice that equations (30),, are the stress free conditions, equation (29),
indicates the no-slip condition (rough wall) assumption. Now, the system of equations
(27) and (28) subject to the boundary conditions (29), (30), and (31) are non-
dimensionalized using equation (11). Now, the above system of equations reduces to

A
R,id-Z-+A2(l+v+v2)fi-v:5‘-2:\i+-2—2(l+2v){gv_-_}3=vcosa (32)
dy dy dy dy
A3v(1+v)i‘2:q+A3(l+2v)fd-v;ﬂ-_{=—vsina (33)
dy? dy dy
and the boundary conditions becorne
U=0 aty =0 (on the inclined plane) (34)

l —
N= fo vdy (35)
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and, _
oo
dy
A -
R v+ i { gV: }2 =0 aty =1 (at the free surface) (36)
2 dy

The non-dimensional parameter A, is given by

20+ By
2" h3 »Y g (37)

The dimensionless parameter has the following physical interpretations, A, is the
ratio of forces developed in the material due to the distribution of the voids to the force of

gravity.

Numerical Results

The system of equations (32) and (33) with the boundary conditions (34), (35) and
(36) and subject to the restriction k¥ < 0 are solved numerically using a collocation code
COLSYS [cf. Ascher et al. (1981)]. It follows from Rajagopal and Massoudi (1990) that
R, must always be less than zero for the solution to exist and all the other non-
dimensional parameters, i.e. A,, and A, must be greater than zero. A parametric study of
the equations is carried out to see how the various non-dimensional paramters affect the
volume fraction and velocity profiles.

The manner in which the volume fraction and velocity profiles change with R, is
shown in Figures 2 and 3. respectively. Notice, that the volume fraction profile decreases
from the surface of the plane to the free surface, which is to be expected. Increasing the
magnitude of R, with the other constants being held fixed, results in a decrease of
velocity. Increasing values of A, results in a decrease of volume fraction and increase in
velocity (cf. Figures 4 and 5). Figure 6 shows the effect of A, on velocity profile.
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Comparision of Case I, II and III Results

The volume fraction,velocity and temperature profiles are compared for case I, II and
IO. In Figure 7, the volume fraction profiles are shown for case I and III for the same
values of non-dimensional paramters and for case II it is same as Case 1. The velocity
profiles are shown for Case I, II and IIT in Figure 8. Notice, that the velocity depends
upon the form assumed for B, through B,. Finally, in Figure 9 the temperature profiles are
shown for case I and II. We notice that significant changes in the temperature profile can
be effected depending upon the form assumed for the thermal conductivity of the
particles.
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Figure 1. Flow Down An Inclined Plane
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