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A classical lattice model for closed-loop temperature-composition phase diagrams
has been developed. It considers the effect of specific interactions, such as
hydrogen bonding, between dissimilar components. This van Laar-type model
includes a Flory-Huggins term for the excess entropy of mixing. It is applied to
several liquid-liquid equilibria of nonelectrolytes, where the molecules of the two
components differ in size.

The model is able to represent the observed data semi-quantitatively, but in most
cases it is not flexible enough to predict all parts of the closed loop quantitatively.
The ability of the model to represent different binary systems is discussed.
Finally, attention is given to a correction term, concerning the effect of
concentration fluctuations near the upper critical solution temperature.

Introduction

Partially miscible binary liquid systems occur frequently in nature. In most cases
mutual miscibility rises with temperature; at some upper critical solution
temperature, partial immiscibility disappears and the binary system becomes
completely miscible for all compositions. In some cases, however, immiscibility
rises with temperature; these systems exhibit a lower critical solution temperature
such that complete miscibility is observed below that temperature. Finally, there
are some binary systems which exhibit both upper and lower critical solution
temperatures. Here we must distinguish between two cases: in the first case, the

lower critical solution temperature lies above the upper critical solution
temperature while in the second case, the lower critical solution temperature lies
below the upper critical solution temperature. It is this second case which gives
closed-loop diagrams as shown in Figure 1.

A simple classical model, discussed here, can be used to describe a closed-loop .
diagram. This model is classical in the sense that it is not based on the modem

theory of fluids very close to the critical region. Because of this classical feature,



the model is able to give only a reasonable but not totally satisfactory fit of
experimental data.

Before presenting the model, it is useful to consider the physical factors which
determine the binary phase diagram, i.e. a plot of temperature versus
composition at an ordinary constant pressure.

Binary mixtures of typical nonpolar liquids show positive deviations from
Raoult's law due to an endothermic enthalpy of mixing. When that enthalpy is
appreciably larger than the thermal energy (RT), the liquid mixture is unstable or
metastable for a range of compositions, giving two liquid phases. As the
temperature rises, stability is favored such that there is no tendency to split into
two phases at temperatures exeeding the upper critical solution temperature.

When a binary liquid mixture contains components that can interact strongly with
one another, deviations from Raoult's law are negative or weakly positive. In
that event, there is no instability and no tendency to form two liquid phases.
However, the effect of the strong interaction between unlike components is often
temperature-dependent such that the effect of strong interaction becomes weaker
as the temperature rises; a common example is provided by hydrogen bonding
where the strength of the hydrogen bond is (nearly) independent of temperature
but where the number of hydrogen-bonded pairs falls as the temperature rises.

Hydrogen bonding is exothermic. As the temperature rises and as hydrogen
bonds between dissimilar molecules are broken, the enthalpy o; mixing becomes
increasingly endothermic. At a sufficiently high temperature, when the
endothermic enthalpy has become so large that it is significantly in excess of the
thermal energy RT, the liquid mixture becomes unstable for a range of
compositions and two liquid phases form. Further increases in temperature make
the enthalpy of mixing more endothermic, raising the range of unstable
compositions up to some maximum. At some temperature, further increase_ in

, temperature no longer change the enthalpy of mixing, and therefore increases in
temperature lower the ratio of enthalpy of mixing to kinetic energy. The range of
immiscibility decreases until, at some high temperature, the system becomes
completely miscible in all proportions.



We must now briefly consider the other case, when the phase diagram contains
both a lower critical solution temperature and an upper critical solution
temperature, such that the lower critical solution temperature is above the upper
critical solution temperature. The physical reason for the lower critical solution
temperature now follows not from considerations of strong exothermic
interactions between unlike molecules but, instead, from free-volume effects: if

liquid component 1 is near its (vapor-liquid) critical temperature while liquid
component 2 is not, mixing at constant temperature and pressure produces an
appreciable negative volume change. This negative change affects the entropy of
mixing such that the liquid mixture becomes unstable for a range of compositions
which rises as the temperature increases. In this work, we do not consider such
mixtures.

When we mix two fluids 1 and 2, whose molecules can form a strong 1-2

interaction, there is a competition between the "normal" endothermic enthalpy of
interaction between two different molecules and the "oriented" (or specific)
interaction that produces an exothermic enthalpy of interaction. This competition
is temperature dependent; it depends on the Boltzmann factor as discussed by ten
Brinke and Karasz [1] and as indicated in the next section.

2.1 Closed-Loop Systems: Symmetric Mixtu.res

Consider a binary mixture containing N1 molecules of component 1 and N2

molecules of component 2 where the molecular size and shape of 1 are nearly the
same as those of 2. We place these molecules on a three-dimensional lattice where
each molecule occupies one lattice point. There are no holes in this lattice; the
total number of lattice points is N1 + N2.

Assuming that U, the total potential energy of this system, is pair-wise additive o

!

U -- -_-z(Y 1 +Y2 )[x12E1 1 +x22c22 +2xlx 2 (1-f)_:12 +2x 1x2fE,12 ] (2.1) "
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where the mole fraction Xi - Ni/(NI+N2)

and z is the coordination number. The characteristic energy for a 1-1 pair is Ell
and that for a 2-2 pair is e22. For 1-2 pairs, we distinguish between "normal"
interactions characterized by el2 and "oriented" interactions characterized by e'12.
Here "normal' refers to nonpolar dispersion-force interactions while "oriented"
refers to specific interactions such as hydrogen bonds or charge-transfer
interactions. The fraction of 1-2 interactions which is "normal" is designated by
1-f and that which is "oriented" is f.

The energy of mixing (here designated as the excess energy UE) is given by

Z(N (2.Z)u_=u- _

The ratio (1Off is given by Boltzmann statistics:

1, E ]= og.exp _ (2.3)f Kl

where _E12 = E'12- E12 and 03 is an entropic degeneracy factor, the ratio of the

degeneracy of "normal" interactions to that of "oriented" interactions. Eq. (2.3)
is rewritten in the form

I 1-1V _E12 14" 1 (2.4)
f = c°expL kT J

Substitution in Eq. (2.2) gives

= z(N +N 2 )XlX 2 AE12 +_E12 coexpL kT +I (2.5)
U 1

1

where AE12 = El2 -- -_ (Ell +E?, 2 )



For a "normal" liquid mixture of nonelectrolytes, there is no orientation if=0;

to=l; 8e12=0) and A812 is positive.because, typically IE12I< 1(E11822)1/21.

E UE

The molar excess energy is u = N1 +N2 " NAyr

where NAy is Avogrado's number.

The molar excess Helmholtz energy ar_is related to uE by the Gibbs-Helmholtz
equation

1/T V,x

Integrating Eq. (2.6), between the limits l/T=0 and l/T, at constant volume V
and composition x, gives:

B la lR-"T = ZXlX2 "R-T + _ _-o (2.7)
T

where

B = zlel2 + d_e12- RT. 1nlC°exp(Se12/RT)+1]co+1 (2.8)

where the energies AE12 and _E12 are now in molar units•

At very high temperature, the kinetic energy becomes much larger than the
potential energy and therefore the ratio uE/RT goes to zero. That reduces the

excess Helmholtz energy to an entropic term, -sE/R, the excess entropy of mixing:

(a l __1_o- R (2.9)
T



In the present work we use a Flory - Huggins term for the athermal excess
entropy of mixing

Q

R = x I In_--_-l+x2 In_2 (2.10)
• X I

where ¢Pi is the volume fraction of component i. For a symmetric system
(equisized molecules), ¢_i.--Xi and therefore sE = 0.

As shown by Scott [2], at low pressure, we can use the excellent approximation

(aE)T,V = (gE)T,p (2.11)

where g_-is the excess molar Gibbs energy.

For mixtures of equisized molecules, Eqs. (2.7) to (2.1 1) give:

gE B
= (2.12)R"T ZXlX2 " R-'-T

The activity coefficients T are found from

-g )l3 (n t • (2.13)
RT'lnTi = 03ni T,P,nj_i

where ni is the number of moles of component i and nt = nl + n2.

__ Liquid-liquid equilibria are calculated from

. ,, (2.14)

i ' and



(X 1 + X2)'- 1 and (xl + x2)" = 1 (2.15)

where 0' and 0" designate the two liquid phases at equilibrium.

2.2 Closed-Loop Systems: Unsymmetric Mixtures

When the size and shape of molecule 1 are significantly different from those of
molecule 2, we generalize the lattice model using the method of van Laar as
discussed by Wohl [3]. We then obtain

gE ZXlX2qlq 2 B q_l q_2 i

R-'T = (xlq 1+x2q2)" R'-'T + x 1 ln_xl + x 2 ln_x2 (2.16)

where qi is a size pararn.eter for molecule i and tpi is again the volume fraction.
B, as before, is given by Eq. (2.8).

By introducing the van Laar method we require an additional parameter q2,
where 2 designates the larger molecule. Without loss of generality, we set ql = 1.
Further, we assume the ratio of the size parameters to be approximately the same
as the ratio of the molar volumes. Therefore, _i can be defined as

Xl q2 "x2
= and tp2 = (2.17)tPl xl +q2"x2 Xl +q2 "x2

As before, activity coefficients are found from Eq. (2.13).

xl- _-i Xl "

x2q2



zq2B
In Y2 X2---q-2 ¢-1 k'X2 "j X2 'jI

xl J

Liquid-liquid equilibria are again found from Equations (2.14) and (2.15).

Equations (2.18) are the well-known van Laar equations with a Flory-Huggins
correction for size asymmetry. The important new feature of Eqs (2.18) is the
temperature dependence for constant B, given by Equation (2.8).

3. Resqlts

To fit experimental data to the van Laar-Flory-Huggins model, we first estimate
size parameter q2 from the ratio the UNIQUAC pure-component parameters (R
and Q). To optimize agreement with experiment, q2 is allowed to be slightly
adjusted. Table l shows parameters q2 for the systems chosen in this work,

compared to the two UNIQUAC parameters. In general q2 lies close to the ratio
of the UNIQUAC surface-parameters Qz/Q1, or between this value and the ratio
of the UNIQUAC volume- parameters R2/R1.

Having selected q2, we must then find parameters Ae12, _5e12and co from binary
data. From experience we know that Ae12 is positive; a reasonable value for Ae12
(in molar units) is in the region RT, perhaps 100 - 1000 cal/m01. Parameter _ie12
is negative and in the region 1000 - 10,000 cal/mol. For systems where molecule
1 can hydrogen bond with molecule 2, co is a positive number much larger than
unity.

. Figures 2 to 9 show comparisons of calculated and observed phase diagrams.
Figures 4,5 and 6 show the influence of parameters q2, Ae12 and _5e12of the
model. Figure 3, for Glycerol/Benzyl-Ethylamine, gives two sets of Ae12/5e12,

t

which change the UCST. Figure 4 shows the influence of q2; by increasing q2, the
closed loop shifts in the direction of pure component 1 (x2=0) and decreases in

l
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width at constant critical solution temperatures. Further, a rise in co increases the
width of the closed loop.

i

These examples indicate that Eq. (2.16) can give a fair representation of the
experimental data but, in typical cases, when the loop is forced to go thro,_gh the
two observed critical solution temperatures, it is too narrow. Clearly, the simple
model presented here has some deficiencies.

In the region near the LCST, the fit is much better than that in the region near
the UCST. This resuk is not surprising because this model is based on specific
interactions. These specific interactions are important for the LCST, but at higher
temperature, in the region of the UCST, the specific interactio.-.s, such as
hydrogen bonding, are not important. In other words, intermolecular forces
responsible for UCST are different from those that cause the LCST; they are not
seriously considered in the present lattice model. For example, at fixed
composition, the number of 1-2 pairs, N12, is assumed to be constant, over the
temperature range of the closed loops. Other investigations [4] have been made,
where N12 is given as a function of temperature. Those models include a
nonrandomness factor.

Figure 8 compares results of a nonrandom model, as discussed by T. Hino et.al.
[4], with those obtained by using the model discused in this work. The nonrandom
model is able to provide a closed loop, wider in composition range (at fixed
critical Temperatures, UCST and LCST) than that obtained from the random-
mixing model.

If we compare the results of the different systems, it appears that the systems
where UCST and LCST are close together allow the better fit, especially near the
UCST. A good example is provided by the system Water/1-Propoxy-2-Propanol,
where the difference between UCST and LCST is less then 140 K; for the system
Glycerol/Benzyl-Ethylamine, immiscibility extends over 220K. The larger the
temperature difference between UCST and LCST, the more important become
factors not considered in the model presented here.

Finally, consider the effect of concentration fluctuations in the critical region. J.J.
de Pablo and J.M. Prausnitz [5] discuss a correction term considering fluctuations
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near, or at the UCST. The idea of this correction term is to introduce fluctuations

through appropriate composition averages. The instantaneous mole fraction xi is
related to the time-average mole fraction Xi throughQ

. x. = _. + 8x. (3.1)
1 1 1

where 8xi is a fluctuation. To take into account the effect of fluctuation on the
excess Gibbs energy; i.e. for a simple two suffix Margules equation, we now
write

E

g = B.XlX 2 = B. (XI_ 2+SxlSx2) (3.2)

where the overbars "denote time average. Note that whereas 8x 1 = 0 and

8 x 2 = 0, the product 8 x18 x2 # 0.

To introduce the effect of fluctuation on the excess Gibbs energy, de Pablo

proposed a reasonable but essentially empirical fluctuation-correction term. This
fluctuation-correction is significient in the critical region, but it becomes
negligible remote from the critical region. The fluctuation term depends on the
distance from the critical point. This method does not require any additional
adjustable parameters, but it does require knoweledge of the coordinates of the
critical point (To = UCST and critical composition xle).

Combining the fluctuation term from de Pablo with the van Laar-model discussed
in this work, the excess Gibbs energy (Eq.2.16) can be written as

zxxx2qlq2B( 1)----= .... +x ln_ (3.2)
RT (xlq 1+x2q 2) RT 1-K.exp a.D b + x 1 In _lx1 2 _2x2

where K can be calculated from To, Xlc and B. In contrast to de Pablo's work, K,

" in Eq. (3.2), depends on the temperature, as B is a function of the temperature. D
is the distance of the temperature T to the critical temperature Te = UCST.

• Parameters a and b are determined from critical exponents c_and 13as discussed
by de Pablo[5]. These critical exponents are part of the equations that describe the
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shape of the coexistence curve close to the critical point, as discussed by Greer
and Moldover [6], and more recently by Ewing et.al. [7]. To show the effect of
the fluctuation term, the van Laar-fluctuation model (Eq. 3.2) is applied to the
system Glycerol / Benzyl-Ethylamine, shown in Figure 9. Parameters a and b are
found to be a = -18 and b = 0.36. ,r

The main effect of the fluctuation term is to flatten the coexistence loop in the
region of UCST. The van Laar-fluctuation model (Eq. 3.2) provides a better
fitting ability than the 'normal' van Laar-model. Although, the fluctuation term
only requires knowledge of the critical coordinates, the van Laar-fluctuation
model provides an excellent fit of the experimental closed-loop data.

Conclusion

To calculate closed-loop phase diagrams, a classical lattice mode! for binary
liquid-liquid mixtures has been discussed. It is a model based on the van Laar
equation for the excess Gibbs energy, including a temperature-dependent term to
take into account specific interactions between dissimilar molecules.

The model is able to give fair results for most of the systems but, particularly
near the UCST, it has its limits. By adding a fluctuation correction term, as
discussed by de Pablo for systems with an UCST, the ability of the model to
represent the data improves significiantly, without requiring any additional
adjustable parameters.
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Tables

. System optimized q2 UNIQUAC UNIQUAC

qz/q
W ater/1-Propoxy-2-Propanol 4.20 3.12 ........5,.48
Water/2-Propoxy- 1-Propanol 4.20 3.12 5.48
Water/Nicotine 5.00 3.30 7.05

,,|,, ,, ,,, ,

Glycerol/Benzyl-Ethylamine 1.40 1.45 1.62
Glycerol/m-Toluidine 1.11 1.11 1.24

Table 1" Comparison of parameter q2chosen in this work, and the UNIQUAC
parameters

I

System Ael 2 _E1 2 CO

[cal/mol] [cal/mol]

Water/1-Propoxy-2-Propanol 177 -4230 6000

Water/2-Prop oxy- 1-Propanol 178 -4010 6000
Water/Nicotine 185 -4150 5000

Glycerol/Benzyl-Ethylamine 332 .... -5000 10000
Glycerol/m-Toluidine 275 -3900 5000

ii I

Table 2: Parameters for the calculated closed loops



14

Figures

380- ' -

UCST
360-

•-, pha
_ 340- one
I--

t_.
_.= 320-
t....

(D
Q.
E
__ 300-

280-

LCST
260 - I I I I I

0.2 0.3 0.4 0.5 0.6 0.7 0.8
mole fractionx

Figure 1" General Closed-Loop Diagram
(UCST = upper critical solution temperature, LCST = lower critical solution

temperature)



200 -

• D
150- o

o° loo-
I.--

[]

50-

[] S_rensen , Arlt (1979)
0--

I I I
0.0 0.1 0.2 0.3 0.4

. X2

Figure 2: Closed-LoopDiagramfor Water (1) / 1-Propoxy-2-Propanol(2)
Parameter:Ae12= 177 [cal/mol],_5e12= -4230 [cal/mol],03= 6000, q2 = 4.2

ii

200 -

150- 0Do

[] []

°_ lOO-=..-_=

I--

50-

[] S_rensen, Arlt (1979)
0-

I I I
0.0 0.1 0.2 0.3 0.4

X2

Figure 3" Closed-LoopDiagramfor Water(1) / 2-Propoxy-lPropanol(2)
Parameter:Ael2 = 178 [cal/mol],5e12 = -4010 [cal/mol],03= 6000, q2 = 4.2

,_ i II



16

i i|

II

250-

200-
I-1

15o =5.o B
I--

" o
100

50-
D Serensen, Arlt (1979)

' I I J'

0.0 0.1 0.2 0.3 0.4

mole fraction x2

Figure 4: Closed-Loop Diagram for Water (1) /Nicotine (2)
Parameter: Ae12 = 185 [cal/mol], 8e12 = -4150 [cal/mol], o_= 5000

250 -
I-1[

[]
200 - D

n

0o15o- 0=_oooo
l--

El or=5000 []
1oo-

r-1 []
50-

D S_rensen, Arlt (1979)

I I I
0.0 0.1 0.2 0.3 0.4

mole fraction x2

'r _11



17

Figure 5: Closed-Loop Diagram for Water ('1) / Nicotine (2)
" Parameter: Ae12 = 185 [cal/mol], 8e12 = -4150 [cal/mol], q2 = 5.0
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Figure 6: C_losed-Loop Diagram for Glycerol (1) / Benzyl-Ethylamine (27

Parameter: 03= 10000, (]2 = 1.4,
(solid line) Ae12= 332 [cal/mol], _5e12= -5000 [cal/mol]
(dashed line) Ae12= 355 [cal/mol], _5E12= -5100 [cal/mol]



18

i ,, i

140-

120- n

100-
O DD ,

,--, 80-
0o D

60-

40- O

20- D O

0-

121 Serensen, Arlt (1979)
-20-

I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

mole fraction x2

Figure 7: Cl,_sed-Loop Diagram for Glycerol (1_ / m-Toluidine (2)
Parameter: z_e12= 275 [cal/mol], _ie12= -3900 [cal/mol], co= 5000, q2 = 1.1



19

i illlll i i ii i i

25 0 - -- this work
D --- with nonrandomnesfactor

200- . [] o$

! "_-,.

oo:,4 o[]
!_1 I , []

4 / tloo _ ,.,j.

50-

[] S_rensen, Arlt (1979)

I i I ....... i "'

0.0 0.1 0.2 0.3 0.4
mole fractionx2

Figure 8: Closed-Loop Diagram for Water (1) / Nicotine (2)
Closed loop predicted by a nonrandom model [4] compared to a closed loop

predicted by the
model, discussed in this work



20

• 350- '.........................

300-

250- ,"
%%

" 200 - I ',
oO ,I
w !

!
150-

I
I

100- oI

50- _ .... __,,_ am ,ms m _ Im o _ '_v

[] S_rensen, Arlt (1973)

O--,. ' I I " I ' '1 '1
0.0 0.2 0.4 0.6 0.8 1.0

mole fraction x2

Figure 9: Closed-Loop Diagram for Glycerol (1) / Benzyl-Ethyl_ine (2)

broken line: van Laar-Flory Huggins model
solid line: including fluctuation corection term
Parameter: Ae12 = 385 [cal/mol], _e12 = -4700 [cal/mol]0o = 4200, q2 = 1.4,
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Notation

aE excess Helmhotz energyu

B binary (temperature dependent) parameter; Eq. (2.8)
f fraction of specific 1-2 interactions; Eq. (2.4)

J

gE excess Gibbs energy
k Boltzmann constant

ni number of moles of component i
Ni number of molecules of component i
NAy Avogrado's number
P pressure
qi size parameter of component i
Qi UNIQUAC surface parameter of component i
Ri UNIQUAC volume parameter of component i
R general gas constant
sE excess entropy
T absolute temperature
u_ molar excess energy
US excess energy
vi molar volume of component i
V volume

xi mole fraction of component i .
z coordination number of the lattice

_, 13 critical exponents (to describe the shape of the UCST)
y activity coefficient
e interaction energy

e' specific interaction energy
AE12 - El2- 0.5(Ell -4- E22)

., _E12 = Elf - El2

co degeneracy ratio of the Boltzmann Eq.
, ' q)i volume fraction of component i
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Q

VIX1 V2 'X2

_oI = ..... and _o2 =
VlX I+V2"X 2 VIX 1+V2"X 2
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