LBL-35432
UC-401

A Classical Model for Closed-Loop Diagrams
of Binary Liquid Mixtures

J. v. Schnitzler and J. M. Prausnitz

Department of Chemical Engineering
University of California
and
Chemical Sciences Division

Lawrence Berkeley Laboratory

University of California
Berkeley, CA 94720, U.S.A.

March 1994

This work was supported by the Director, Office of Energy Research, Office of Basic
Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under
Contract Number DE-AC03-76SF00098.

MASTER
| S

QISTRIBUTION OF THIS DOCUMENT IS UNLIMITED



A Classical Model for Closed-Loop Diagrams
of Binary Liquid Mixtures

J. v. Schnitzler and J.M. Prausnitz

Department of Chemical Engineering
University of California
Berkeley

March 1994



Abstract

A classical lattice model for closed-loop temperature-composition phase diagrams
has been developed. It considers the effect of specific interactions, such as
hydrogen bonding, between dissimilar components. This van Laar-type model
includes a Flory-Huggins term for the excess entropy of mixing. It is applied to
several liquid-liquid equilibria of nonelectrolytes, where the molecules of the two
components differ in size.

The model is able to represent the observed data semi-quantitatively, but in most
cases it is not flexible enough to predict all parts of the closed loop quantitatively.
The ability of the model to represent different binary systems is discussed.
Finally, attention is given to a correction term, concerning the effect of
concentration fluctuations near the upper critical solution temperature.

Intr ction

Partially miscible binary liquid systems occur frequently in nature. In most cases
mutual miscibility rises with temperature; at some upper critical solution
temperature, partial immiscibility disappears and the binary system becomes
completely miscible for all compositions. In some cases, however, immiscibility
rises with temperature; these systems exhibit a lower critical solution temperature
such that complete miscibility is observed below that temperature. Finally, there
are some binary systems which exhibit both upper and lower critical solution
temperatures. Here we must distinguish between two cases: in the first case, the
lower critical solution temperature lies above the upper critical solution
temperature while in the second case, the lower critical solution temperature lies
below the upper critical solution temperature. It is this second case which gives
closed-loop diagrams as shown in Figure 1.

A simple classical model, discussed here, can be used to describe a closed-loop
diagram. This model is classical in the sense that it is not based on the modem
theory of fluids very close to the critical region. Because of this classical feature,



the model is able to give only a reasonable but not totally satisfactory fit of
experimental data.

Before presenting the model, it is useful to consider the physical factors which
determine the binary phase diagram, i.e. a plot of temperature versus
composition at an ordinary constant pressure.

Binary mixtures of typical nonpolar liquids show positive deviations from
Raoult's law due to an endothermic enthalpy of mixing. When that enthalpy is
appreciably larger than the thermal energy (RT), the liquid mixture is unstable or
metastable for a range of compositions, giving two liquid phases. As the
temperature rises, stability is favored such that there is no tendency to split into
two phases at temperatures exeeding the upper critical solution temperature.

When a binary liquid mixture contains components that can interact strongly with
one another, deviations from Raoult's law are negative or weakly positive. In
that event, there is no instability and no tendency to form two liquid phases.
However, the effect of the strong interaction between unlike components is often
temperature-dependent such that the effect of strong interaction becomes weaker
as the temperature rises; a common example is provided by hydrogen bonding
where the strength of the hydrogen bond is (nearly) independent of temperature
but where the number of hydrogen-bonded pairs falls as the temperature rises.

Hydrogen bonding is exothermic. As the temperature rises and as hydrogen
bonds between dissimilar molecules are broken, the enthalpy oi mixing becomes
increasingly endothermic. At a sufficiently high temperature, when the
endothermic enthalpy has become so large that it is significantly in excess of the
thermal energy RT, the liquid mixture becomes unstable for a range of
compositions and two liquid phases form. Further increases in temperature make
the enthalpy of mixing more endothermic, raising the range of unstable
compositions up to some maximum. At some temperature, further increasec in
temperature no longer change the enthalpy of mixing, and therefore increases in
temperature lower the ratio of enthalpy of mixing to kinetic energy. The range of
immiscibility decreases until, at some high temperature, the system becomes
completely miscible in all proportions.



We must now briefly consider the other case, when the phase diagram contains
both a lower critical solution temperature and an upper critical solution
temperature, such that the lower critical solution temperature is above the upper
critical solution temperature. The physical reason for the lower critical solution
temperature now follows not from considerations of strong exothermic
interactions between unlike molecules but, instead, from free-volume effects: if
liquid component 1 is near its (vapor-liquid) critical temperature while liquid
component 2 is not, mixing at constant temperature and pressure produces an
appreciable negative volume change. This negative change affects the entropy of
mixing such that the liquid mixture becomes unstable for a range of compositions
which rises as the temperature increases. In this work, we do not consider such
mixtures.

When we mix two fluids 1 and 2, whose molecules can form a strong 1-2
interaction, there is a competition between the "normal" endothermic enthalpy of
interaction between two different molecules and the "oriented" (or specific)
interaction that produces an exothermic enthalpy of interaction. This competition
is temperature dependent; it depends on the Boltzmann factor as discussed by ten
Brinke and Karasz [1] and as indicated in the next section.

2.1 Closed-Loo stems: mmetric_Mixtures

Consider a binary mixture containing N; molecules of component 1 and N,
molecules of component 2 where the molecular size and shape of 1 are nearly the
same as those of 2. We place these molecules on a three-dimensional lattice where
each molecule occupies one lattice point. There are no holes in this lattice; the
total number of lattice points is N; + Nj.

Assuming that U, the total potential energy of this system, is pair-wise additive

RN AP,
U= 5 N1+N2 X1811+X2822+2XIXZ(1 f)812+ Xlx2f812 (2.1)



where the mole fraction  x; = Nj/ (N1+N3)

and z is the coordination number. The characteristic energy for a 1-1 pair is €13
and that for a 2-2 pair is €;,. For 1-2 pairs, we distinguish between "normal”
interactions characterized by €, and "oriented" interactions characterized by €';5.
Here "normal' refers to nonpolar dispersion-force interactions while "oriented"
refers to specific interactions such as hydrogen bonds or charge-transfer
interactions. The fraction of 1-2 interactions which is "normal" is designated by
1-f and that which is "oriented" is f.

The energy of mixing (here designated as the excess energy UE) is given by
UE=U - %(N1 +N, )(x2 ey, +xdey, ) (2.2)

The ratio (1-f)/f is given by Boltzmann statistics:

— = W-exp| —= 2.3
f E 23
where 8g;, = €'12- €12 2nd ® is an entropic degeneracy factor, the ratio of the

degeneracy of "normal” interactions to that of "oriented" interactions. Eq. (2.3)
is rewritten in the form

-1
f = [a) exp[%z—}ﬂj (2.4)

Substitution in Eq. (2.2) gives

E o -1
U = z(N1+N2)xlx2[A£12 +5812(mexp[%]+1) } (2.5)
where A£12 = 812 - —1‘(811'{‘8‘12)
)



For a "normal" liquid mixture of nonelectrolytes, there is no orientation (f=0;
w=1; 8€12=0) and Ag; is positive because, typically le1ol < I(€11€22)12I.

E UE
The molar excess energyis 1 = ———— -+ N
&Y N, +N,  Av

where Ny is Avogrado's number.

The molar excess Helmholtz energy aE is related to uE by the Gibbs-Helmholtz
equation

E
Ja /TJ = uE (2.6)
IUT)y,

Integrating Eq. (2.6), between the limits 1/T=0 and 1/T, at constant volume V
and composition x , gives:

aE B (aE) 27
R - X2’ ¢ (R, @7
T
where
_ o exp(8e;,/RT)+1
B = de, + 0, - RT.m[ — (2.8)

where the energies Ag;; and 8¢;, are now in molar units.
At very high temperature, the kinetic energy becomes much larger than the

potential energy and therefore the ratio uE/RT goes to zero. That reduces the
excess Helmholtz energy to an entropic term, -sE/R, the excess entropy of mixing:

ak —s"
ﬁ l.._,o = —R— (29)
T
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In the present work we use a Flory - Huggins term for the athermal excess
entropy of mixing

E

-8
w = (xl ln—(0—1+x2 lnio-z—] (2.10)
X1 X2

where @; is the volume fraction of component i. For a symmetric system
(equisized molecules), ¢; = x; and therefore sE = (.

As shown by Scott [2], at low pressure, we can use the excellent approximation

(a*‘i)T,V = (gE)T,P (2.11)

where gE is the excess molar Gibbs energy.
For mixtures of equisized molecules, Egs. (2.7) to (2.11) give:

gE B ,
== = ZX X, @ == (2.12)

The activity coefficients y are found from

d (n, gt
RT -lny, = (——(a—;i—)] (2.13)
i T.P.njy

where n; is the number of moles of component i and n,=n; + n,.
Liquid-liquid equilibria are calculated from

(lel ) = (7’17‘1)"
(7’2X2 ) = (7’2X2 )

(2.14)

and



(x;+%)' =1 and (x;+%)" =1 (2.15)

where ()' and ()" designate the two liquid phases at equilibrium.

- : Un ri i

When the size and shape of molecule 1 are significantly different from those of
molecule 2, we generalize the lattice model using the method of van Laar as
discussed by Wohl [3]. We then obtain

EF:_ _ ZX092 B e xm
RT = (x,q;+Xq2) RT 1% TR

In ?3 (2.16)
X2

where q; is a size parameter for molecule i and @; is again the volume fraction.
B, as before, is given by Eq. (2.8).

By introducing the van Laar method we require an additional parameter q,
where 2 designates the larger molecule. Without loss of generality, we set q; = 1.
Further, we assume the ratio of the size parameters to be approximately the same
as the ratio of the molar volumes. Therefore, ¢; can be defined as

S| q2-X2
o = X1+q2 Xy and @, = X1+q; X, 2.17)

As before, activity coefficients are found from Eq. (2.13).

z B
Iny, = oo+ D1 -2 (2.18a)
: ( Xy J RT X, X1
2
X292




z B
Iny, = . . m(fﬁj +( - 22-) (2.18b)
%292 4 X2 X2
X

Liquid-liquid equilibria are again found from Equations (2.14) and (2.15).

Equations (2.18) are the well-known van Laar equations with a Flory-Huggins
correction for size asymmetry. The important new feature of Eqs (2.18) is the
temperature dependence for constant B, given by Equation (2.8).

3._Results

To fit experimental data to the van Laar-Flory-Huggins model, we first estimate
size parameter gz from the ratio the UNIQUAC pure-component parameters (R
and Q). To optimize agreement with experiment, q, is allowed to be slightly
adjusted. Tablel shows parameters qa for the systems chosen in this work,
compared to the two UNIQUAC parameters. In general q; lies close to the ratio
of the UNIQUAC surface-parameters Q2/Q;, or between this value and the ratio
of the UNIQUAC volume- parameters Ry/R;.

Having selected qz, we must then find parameters Ag,,, 8€,5 and ® from binary
data. From experience we know that Ag;, is positive; a reasonable value for Ag;,
(in molar units) is in the region RT, perhaps 100 - 1000 cal/mol. Parameter 3¢,
is negative and in the region 1000 - 10,000 cal/mol. For systems where molecule
1 can hydrogen bond with molecule 2, ® is a positive number much larger than
unity.

Figures 2 to 9 show comparisons of calculated and observed phase diagrams.
Figures 4,5 and 6 show the influence of parameters q,, Ag;, and 8¢, of the
model. Figure 3, for Glycerol/Benzyl-Ethylamine, gives two sets of Ag;, / 8gy,,
which change the UCST. Figure 4 shows the influence of qp; by increasing qa, the
closed loop shifts in the direction of pure component 1 (x,=0) and decreases in
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width at constant critical solution temperatures. Further, a rise in ® increases the
width of the closed loop.

These examples indicate that Eq. (2.16) can give a fair representation of the
experimental data but, in typical cases, when the loop is forced to go throngh the
two observed critical solution temperatures, it is too narrow. Clearly, the simple
model presented here has some deficiencies.

In the region near the LCST, the fit is much better than that in the region near
the UCST. This result is not surprising because this model is based on specific
interactions. These specific interactions are important for the LCST, but at higher
temperature, in the region of the UCST, the specific interactions, such as
hydrogen bonding, are not important. In other words, intermolecular forces
responsible for UCST are different from those that cause the LCST; they are not
seriously considered in the present lattice model. For example, at fixed
composition, the number of 1-2 pairs, Nj3, is assumed to be constant, over the
temperature range of the closed loops. Other investigations [4] have been made,
where Nj; is given as a function of temperature. Those models include a
nonrandomness factor.

Figure 8 compares results of a nonrandom model, as discussed by T. Hino et.al.
[4], with those obtained by using the model discused in this work. The nonrandom
model is able to provide a closed loop, wider in composition range (at fixed
critical Temperatures, UCST and LCST) than that obtained from the random-
mixing model.

If we compare the results of the different systems, it appears that the systems
where UCST and LCST are close together allow the better fit, especially near the
UCST. A good example is provided by the system Water/1-Propoxy-2-Propanol,
where the difference between UCST and LCST is less then 140 K; for the system
Glycerol/Benzyl-Ethylamine, immiscibility extends over 220K. The larger the
temperature difference between UCST and LCST, the more important become
factors not considered in the model presented here.

Finally, consider the effect of concentration fluctuations in the critical region. J.J.
de Pablo and J.M. Prausnitz [5] discuss a correction term considering fluctuations




11

near, or at the UCST. The idea of this correction term is to introduce fluctuations
through appropriate composition averages. The instantaneous mole fraction x; is
related to the time-average mole fraction X; through

X, =X, + <‘5xi (3.1)

where 8x; is a fluctuation. To take into account the effect of fluctuation on the
excess Gibbs energy; i.e. for a simple two suffix Margules equation , we now
write

E — —e
g = B- X1Xp, = B (X-I-X_Z +6X16X2) (3'2)

where the overbars ‘denote time average. Note that whereas 8x; = 0 and
0%, = 0, the product 6x,6x, # 0.

To introduce the effect of fluctuation on the excess Gibbs energy, de Pablo
proposed a reasonable but essentially empirical fluctuation-correction term. This
fluctuation-correction is significient in the critical region, but it becomes
negligible remote from the critical region. The fluctuation term depends on the
distance from the critical point. This method does not require any additional
adjustable parameters, but it does require knoweledge of the coordinates of the
critical point (T, = UCST and critical composition xic).

Combining the fluctuation term from de Pablo with the van Laar-model discussed
in this work, the excess Gibbs energy (Eq.2.16) can be written as

gE ZX1X241492

RT ~ (%191 +%292) 'RT

2! ®3
b
-(1-K.exp[a-D ]) +xni-+x, = (32)

where K can be calculated from T, xic and B. In contrast to de Pablo's work, K,
in Eq. (3.2), depends on the temperature, as B is a function of the temperature. D
is the distance of the temperature T to the critical temperature T, = UCST.
Parameters a and b are determined from critical exponents o and B as discussed
by de Pablo[5]. These critical exponents are part of the equations that describe the
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shape of the coexistence curve close to the critical point, as discussed by Greer
and Moldover [6], and more recently by Ewing et.al. [7]. To show the effect of
the fluctuation term, the van Laar-fluctuation model (Eq. 3.2) is applied to the
system Glycerol / Benzyl-Ethylamine, shown in Figure 9. Parameters a and b are
foundtobe a =-18 and b = 0.36 .

The main effect of the fluctuation term is to flatten the coexistence loop in the
region of UCST. The van Laar-fluctuation model (Eq. 3.2) provides a better
fitting ability than the 'mormal' van Laar-model. Although, the fluctuation term
only requires knowledge of the critical coordinates, the van Laar-fluctuation
model provides an excellent fit of the experimental closed-loop data.

Conclusion

To calculate closed-loop phase diagrams, a classical lattice mode! for binary
liquid-liquid mixtures has been discussed. It is a model based on the van Laar
equation for the excess Gibbs energy, including a temperature-dependent term to
take into account specific interactions between dissimilar molecules.

The model is able to give fair results for most of the systems but, particularly
near the UCST, it has its limits. By adding a fluctuation correction term, as
discussed by de Pablo for systems with an UCST, the ability of the model to
represent the data improves significiantly, without requiring any additional
adjustable parameters.



System optimized q2 [UNIQUAC |UNIQUAC
Q/Q1 Ro/R,
Water/1-Propoxy-2-Propanol 4.20 3.12 5.48
Water/2-Propoxy-1-Propanol 4.20 3.12 5.48
Water/Nicotine 5.00 3.30 7.05
Glycerol/Benzyl-Ethylamine 1.40 1.45 1.62
Glycerol/m-Toluidine 1.11 1.11 1.24

Table 1: Comparison of parameter q; chosen in this work, and the UNIQUAC

parameters
System Ag; o de1 2 ®
[cal/mol] [cal/mol]
Water/1-Propoxy-2-Propanol 177 -4230 6000
Water/2-Propoxy-1-Propanol 178 -4010 6000
Water/Nicotine 185 -4150 5000
Glycerol/Benzyl-Ethylamine 332 -5000 10000
Glycerol/m-Toluidine 275 -3900 5000

Table 2: Parameters for the calculated closed loops
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Figure 1: General Closed-Loop Diagram

(UCST = upper critical solution temperature, LCST = lower critical solution
temperature)



15

200 -

150 -
(&)

° 100
-

50—

0 O Serensen , Arlt (1979)
| [ 1 [ T
0.0 0.1 0.2 0.3 0.4

X2

Figure 2: Closed-Loop Diagram for Water (1) / 1-Propoxy-2-Propanol (2)
Parameter: Ac12 = 177 [cal/mol], 812 = -4230 [cal/mol], ® = 6000, q2 = 4.2
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Figure 3: Closed-Loop Diagram for Water (1) / 2-Propoxy-1Propanol (2)
Parameter: Ac12 = 178 [cal/mol], de12 = -4010 [cal/mol], w = 6000, q2 = 4.2
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Figure 4: Closed-Loop Diagram for Water (1) / Nicotine (2)
Parameter: Agj; = 185 [cal/mol], d€12 = -4150 [cal/mol], ® = 5000
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Figure 5: Closed-Loop Diagram for Water (1) / Nicotine (2)
Parameter: Agjz = 185 [cal/mol], dg12 = -4150 [cal/mol], g2 = 5.0
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Figure 6: Closed-Loop Diagram for Glycerol (1) / Benzyvl-Ethylamine (2

Parameter: o = 10000, q; = 1.4,
(solid line) Agyp = 332 [cal/mol], g1, = -5000 [cal/mol]
(dashed line) Agqp = 355 [cal/mol], 8e12 = -5100 [cal/mol]
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Figure 7: Clysed-Loop Diagram for Glycerol (1) / m-Toluidine (2)
Parameter: Agj; = 275 [cal/mol], dg;12 = -3900 [cal/mol], ® = 5000, gz = 1.1
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Figure 9: Closed-Loop Diagram for Glycerol (1) / Benzyl-Ethylamine (2)

broken line: van Laar-Flory Huggins model
solid line: including fluctuation corection term
Parameter: A€z = 385 [cal/mol], 8€;2 = -4700 [cal/mol]® = 4200, q; = 1.4,
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Notation

aE  excess Helmhotz energy

B binary (temperature dependent) parameter; Eq. (2.8)
f fraction of specific 1-2 interactions; Eq. (2.4)
gE  excess Gibbs energy

k Boltzmann constant

n; number of moles of component i

N; number of molecules of component i

Nav Avogrado's number

P pressure

Qi  size parameter of component i

Qi UNIQUAC surface parameter of component i
R; UNIQUAC volume parameter of component i
R general gas constant

sE  excess entropy

T absolute temperature

uE  molar excess energy

UE  excess energy

vi  molar volume of component i

V  volume

Xi mole fraction of component i

z coordination number of the lattice

o, P critical exponents (to describe the shape of the UCST)
Y activity coefficient

€ interaction energy

g' specific interaction energy

Agy =€12-0.5(€11 + €22)

de1; =¢€12'- €12

®  degeneracy ratio of the Boltzmann Eq.

volume fraction of component i

21
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ViX, d Va:Xg
= an =
V1X1+V2'X2 ¢2 ViX, +V2'X2
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