

16-929501

PNL-8086
UC-602

International Research into Chlorofluorocarbon (CFC) Alternatives

**T. J. Marseille
D. L. Shankle
A. G. Thurman**

May 1992

**Prepared for the U.S. Department of Energy
International Research Monitoring Program
under Contract DE-AC06-76RLO 1830**

**Pacific Northwest Laboratory
Operated for the U.S. Department of Energy
by Battelle Memorial Institute**

PNL-8086

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes **any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.** Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST LABORATORY
operated by
BATTELLE MEMORIAL INSTITUTE
for the
UNITED STATES DEPARTMENT OF ENERGY
under Contract DE-AC06-76RLO 1830

Printed in the United States of America

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831;
prices available from (615) 576-8401. FTS 626-8401.

Available to the public from the National Technical Information Service,
U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161.

PNL--8086

DE92 014241

INTERNATIONAL RESEARCH INTO
CHLOROFLUOROCARBON (CFC) ALTERNATIVES

T. J. Marseille
D. L. Shankle
A. G. Thurman

May 1992

Prepared for
the U.S. Department of Energy
International Research Monitoring Program
under Contract DE-AC06-76RL0 1830

Pacific Northwest Laboratory
Richland, Washington 99352

MASTER

EB

EXECUTIVE SUMMARY

Because of an international awareness of the potentially destructive impact that chlorofluorocarbons (CFCs) and other halocarbons have on stratospheric ozone, industrial nations have agreed to a timetable for the phaseout of CFCs, halons, and related components. This timetable, included as part of the international treaty called the Montreal Protocol (Marseille and Baechler 1990), has acted as a driving force in instigating worldwide research activities into CFC alternatives. To explore the scope and direction of these activities, Pacific Northwest Laboratory conducted a survey for the U.S. Department of Energy on international research into alternatives for CFCs.^(a)

Selected researchers from 21 countries were queried through questionnaires about their current and planned research activities. The results of the survey show that the majority of research being conducted by the respondents is devoted to investigating the hydrogenated fluorocarbon HFC-134a as a replacement for CFC-12 in refrigeration applications. The main issue with this alternative is identifying compatible lubricants that do not reduce its effectiveness.

Although researchers in different countries are often investigating similar alternatives, they appear to be at different stages of research. For example, some researchers are at more advanced development stages, conducting laboratory and field tests of alternatives in end-use applications, while others are still conducting more basic research, such as analyzing the thermal and chemical properties of a specific alternative. Improved international communication could help bridge this discontinuity in research progress. Moreover, the survey results indicate there is a strong interest in learning about the status and results of the research efforts of other researchers.

(a) This report was prepared through the International Research Monitoring Program (IRM), which was established in 1985 to monitor and evaluate the current status and future directions of international research and development activities of interest to the U.S. Department of Energy's Conservation and Renewable Energy Program (DOE/CE). The IRM Program is managed by the DOE/CE Office of Technical Affairs with technical assistance from Pacific Northwest Laboratory.

CONTENTS

EXECUTIVE SUMMARY	iii
1.0 INTRODUCTION	1.1
2.0 METHODOLOGY	2.1
3.0 RESULTS OF THE SURVEY	3.1
3.1 LENGTH OF RESEARCH	3.1
3.2 IDENTIFICATION OF ALTERNATIVES	3.1
3.3 PURPOSE OF THE RESEARCH	3.4
3.3.1 HFC-134a	3.5
3.3.2 HCFC-22	3.5
3.3.3 Other Compounds	3.6
3.4 ISSUES	3.11
3.4.1 HFC-134a	3.12
3.4.2 HCFC-22	3.12
3.5 RESEARCH PLANS	3.13
3.6 RESEARCH THAT SHOULD BE PURSUED	3.14
3.7 FUNDING	3.15
3.7.1 Funding Levels	3.16
3.7.2 Funding Sources	3.16
3.8 RESEARCH DISSEMINATION	3.16
4.0 CONCLUSIONS AND RECOMMENDATIONS	4.1
4.1 CONCLUSIONS	4.1
4.2 RECOMMENDATIONS	4.2
5.0 REFERENCES	5.1

APPENDIX A - QUESTIONNAIRE	A.1
APPENDIX B - COVER LETTER	B.1
APPENDIX C - QUESTIONNAIRE DISTRIBUTION LIST	C.1

TABLES

1.1 Environmental Effects of CFCs and Possible Alternatives	1.3
1.2 Phaseout Schedules Adopted at the June 1990 United Nations Environmental Program (UNEP) Meeting in London	1.5
2.1 Number of Researchers Contacted and the Number that Responded by Country	2.2
3.1 Length of Time that Respondents Have Been Conducting Research . .	3.1
3.2 Specific Alternative Compounds that Respondents Believe Offer the Most Potential for Alleviating the CFC Problem	3.2
3.3 Specific Alternative Compounds that Respondents in Each Country Believe Offer the Most Potential for Alleviating the CFC Problem	3.3
3.4 Purpose of the Research	3.4
3.5 Specified Problems/Issues Identified with the Research	3.11
3.6 Other Groups/Organizations Conducting CFC Research	3.15
3.7 Exchange Rates, January 2, 1990	3.17
3.8 Research Budgets by Country	3.18
3.9 Funding Sources	3.18

1.0 INTRODUCTION

Chlorofluorocarbons (CFCs) are chemically stable members of the halocarbon family that are derived from common hydrocarbons such as methane, ethane, and propane. The halocarbons also include hydrogenated chlorofluorocarbons (HCFCs), hydrogenated fluorocarbons (HFCs), brominated hydrocarbons (or halons), as well as miscellaneous chlorinated hydrocarbons such as carbon tetrachloride and methyl chloroform. Of all the halocarbons, CFCs are of greatest concern with regard to stratospheric ozone damage.

About 30% of CFCs produced worldwide are used as the refrigerant working fluids in vapor-compression cycle air conditioning and refrigeration systems and as blowing agents (28%) in the production of insulating foams and packaging. They are also used for aerosols (19%), as solvents for electronics cleaning (19%), and for other miscellaneous uses (4%). Primary industries that use CFCs include commercial and residential construction, food processing, transportation, electronics, and plastics. Altogether, worldwide annual production of CFCs reached approximately 2 billion pounds in 1986 in non-centrally planned economies (Moore 1989).

CFCs have life expectancies on the order of 100 years. It is theorized that over time individual CFC molecules that have been released on the earth's surface diffuse into the stratosphere where they will break down under ultra-violet (UV) bombardment from the sun (Rowland and Molina 1975). Once broken down, the halogen chlorine, found in all CFCs, disrupts normal stratospheric chemistry, causing ozone destruction. It has been estimated that every free atom of chlorine can participate in the destruction of 100,000 ozone molecules (Rowland and Molina 1975). This destruction is environmentally significant because the "ozone-layer" in the stratosphere normally acts as a protective shield to the earth, effectively blocking the sun's harmful UV rays from reaching the surface. The U.S. Environmental Protection Agency (EPA) has predicted that every 1% decrease in ozone will result in a 1% to 2% increase in the incidence of melanoma skin cancer (EPA 1987). Other expected effects of ozone depletion include crop damage, increased incidence of cataracts,

increased formation of tropospherical ozone (smog), and increased degradation of manmade materials such as polymers (EPA 1987). The term *ozone depletion potential* (ODP) has been developed to provide a relative measure of the detrimental effect that different chemicals have on the ozone layer.

The second threat caused by the release of CFCs into the atmosphere is global warming, also known as the greenhouse effect. Concentrations of various gases found in the atmosphere, known collectively as greenhouse gases, are increasing because of human activities. Among these gases are CFCs and carbon dioxide (CO_2). Because of these larger concentrations, a larger portion of the long-wave radiation emitted from the earth's surface that previously escaped into space is absorbed by these gases, producing additional heat that warms the atmosphere. The term *global warming potential* (GWP) have been developed as a relative measure of the potential of various greenhouse gases to absorb long-wave radiation. The GWP of CFCs is as much as 10,000 times as large as that of CO_2 , which is by far the most prevalent greenhouse gas. Thus, though much smaller concentrations of CFCs than CO_2 are present in the atmosphere, it is estimated that CFCs contribute approximately 10% to 15% to the greenhouse effect (WMO 1985). The ODPs, GWPs, and atmospheric life expectancies of each of the major halocarbons are summarized in Table 1.1.

In CFCs, all of the hydrogen atoms surrounding the carbon atoms in the original hydrocarbons are replaced by either fluorine or chlorine, which are two halogen elements. The HCFCs are similar to CFCs except that some of the original hydrogen atoms remain. These compounds generally contain less chlorine and break down sooner in the atmosphere than CFCs. Thus, HCFCs have lower ODPs, which means that they have less of an impact on the ozone layer. Their shorter atmospheric lifetimes also result in lower GWPs, which reduces global warming as well. In addition, many HCFCs have thermodynamic and physical properties similar to those of CFCs. These lower ODP and GWP CFCs, at least in the near term, appear to be attractive potential candidates for replacing CFCs in many applications.

The HFCs are fluorine compounds that are similar to HCFCs and CFCs except they contain no chlorine. Consequently, they have ODPs of zero. They also have shorter atmospheric lifetimes than CFCs and, thus, lower GWPs.

TABLE 1.1. Environmental Effects of CFCs and Possible Alternatives

Fluid Number Name	Formula	ODP ^(a)	GWP ^(b)		Atmospheric Life ^(c) (year)
			100 year	500 year	
HFC-23	CHF ₃	0		12,000 ^(d)	310 ^(d)
HFC-32	CH ₂ F ₂	0		220 ^(d)	6 ^(d)
HFC-125	CF ₃ CHF ₂	0	2,500	860	28
HFC-143a	CF ₃ CH ₃	0	2,900	1,000	41
Propane	CH ₃ CH ₂ CH ₃	0	3 ^(e)	3 ^(e)	<1
HCFC-22	CHClF ₂	0.05	1,500	510	15
Ammonia	NH ₃	0			<1
HFC-134a	CF ₃ CH ₂ F	0	1,200	420	16
HFC-152a	CHF ₂ CH ₃	0	140	47	2
HFC-134	CHF ₂ CHF ₂	0			12 ^(d)
HFC-227ea	CF ₃ CHFCF ₃	0			
HCFC-124	CHClFCF ₃	0.02	430	150	7
Isobutane	CH(CH ₃) ₃	0	3 ^(e)	3 ^(e)	<1
HCFC-142b	CClF ₂ CH ₃	0.06	1,600	540	19
n-butane	CH ₃ (CH ₂) ₂ CH ₃	0	3 ^(e)	3 ^(e)	<1
E-134	CHF ₂ OCHF ₂	0			<12
HCC-160	CH ₂ ClCH ₃	0.02	3	3	<1
HCFC-123	CHCl ₂ CF ₃	0.02	85	29	2
E-245	CF ₃ CH ₂ OCHF ₂	0			
HCFC-141b	CCl ₂ FCH ₃	0.10	440	150	8
Carbon Dioxide	CO ₂	0	1	1	120
CFC-13	CClF ₃				400
CFC-115	CClF ₂ CF ₃	0.35	6,900	7,400	400
CFC-12	CCl ₂ F ₂	0.9	7,300	4,500	130
CFC-114	CClF ₂ CClF ₂	0.7	6,900	5,500	200
CFC-11	CCl ₃ F	1	3,500	1,500	60
CFC-113	CClF ₂ CCl ₂ F	0.8	4,200	2,100	90

- (a) ODP values are relative to R11 and are averages of the 2-dimensional model results presented in WMO Report No. 20, Vol. 11 (1989).
- (b) Global warming potentials are from the IPCC Scientific Assessment (1990), except as noted; values are relative to CO₂ and are given for 100 and 500 year integration time horizons.
- (c) Atmospheric lifetimes are from WMO Report No. 20, Vol II (1989), except as noted.
- (d) Estimates based on limited data, GWP is steady-state value (McFarland, personal communication).
- (e) GWP of the hydrocarbons is due almost entirely to GWP of the CO₂ resulting from decomposition.

Therefore, the use of these substances in applications that currently employ CFCs is environmentally highly desirable.

Halons differ from CFCs in that they include bromine, the heaviest halogen element. Bromine has a higher potential for ozone damage than chlorine; thus, halons are usually included in environmental discussions about CFCs for completeness. Halons are used primarily as a fire-extinguishing agent in total flooding systems for critical civilian electronics installations and military applications. Researchers queried for this study were exclusively looking at alternatives for CFCs; therefore, halons will not be discussed further in this report.

In response to the recognized threat CFCs pose to the ozone layer, over 60 nations, including major world economies that produce and use CFCs, participated in drafting an international treaty known as the Montreal Protocol on Substances that Deplete the Ozone Layer. The treaty originally committed signatory nations to reduce the production of CFCs, halon gases, carbon tetrachloride, and methyl chloroform by 50% by the year 1998.

More recent scientific evidence has indicated an even higher ozone-depleting potential for chlorine and bromine compounds than originally suspected, prompting further international research. A March 1989 meeting of the European Economic Community (EEC) called for a complete CFC phaseout in production by 2000 and a complete phaseout in production of HCFCs by 2005. The signatory parties to the Montreal Protocol met in Helsinki, Finland, in May 1989 and approved a declaration that stated a similar intent to phaseout consumption of CFCs by the year 2000 (assuming acceptable alternatives are available) and to refrain from using other halons except for essential applications. In London in June 1990 the Second Meeting of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer resulted in the adoption of these more stringent amendments, summarized in Table 1.2. In addition, it was resolved at the London meeting that guidelines would be applied to facilitate the use of HCFCs in place of CFCs where necessary. These guidelines would include the regular review of alternative products to HCFCs, with a view to replace HCFCs no later than 2040 and, if possible, no later than 2020.

TABLE 1.2. Phaseout Schedules Adopted at the June 1990 United Nations Environmental Program (UNEP) Meeting in London

<u>Compound</u>	<u>Goal</u>
CFCs	Production phaseout by year 2000 if environmentally acceptable alternatives are available
Halons	Phaseout by 2000, unless satisfactory substitutes are identified for essential applications
Carbon tetrachloride	Production phaseout by year 2000 if environmentally acceptable alternatives are available
Methyl chloroform	Production phaseout by year 2005.

Clearly, the progress toward the development of alternative compounds will have a significant impact on the effectiveness of the treaty. To assess this progress, Pacific Northwest Laboratory (PNL)^(a) conducted a study for the U.S. Department of Energy (DOE) International Research Monitoring Program to obtain a global perspective on and document foreign research activities into CFC alternative chemical compounds.

Section 2.0 of the report describes the methodology used to survey scientists. The results of the survey are then described in Section 3.0, with conclusions presented in Section 4.0. A copy of the questionnaire is contained in Appendix A. Appendix B contains the cover letter, and Appendix C contains a list of who was sent the questionnaires.

(a) Pacific Northwest Laboratory is operated for the U.S. Department of Energy by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830.

2.0 METHODOLOGY

The goal of this study is to document international research activities being conducted to find replacements for CFCs. Although this information is widely available from conference proceedings and other published references, frequently the information is out-of-date because of the length of time from submittal to publication. Therefore, a mail questionnaire was developed to provide the most current information on international research activities and to gather more detailed information than normally provided in research articles.

The questionnaire asked researchers to provide information about their specific research projects regarding CFC replacements, the results of the research to-date, problems encountered and how these were overcome, current and projected funding levels for their research as well as their sources for funding, and potential research projects in the near future. A copy of the questionnaire is in Appendix A.

The list of international researchers was generated from a literature review of all recently published international research on CFC replacements. Some of the sources include the June 1991 issue of the International Energy Agency (IEA) Heat Pump Centre Newsletter, the proceedings from the 1990 International Conference on CFC and Halon Alternatives, and the 1990 U.S. National Committee for the International Institute of Refrigeration (USNC/IIR) Purdue Conference.

The questionnaire was sent to all international researchers that published within the last 5 years. In addition to the literature review, contacts were made with U.S. researchers and staff at DOE to identify other international researchers. Due to sensitivity issues, several countries who are known to be conducting research into CFC replacements (e.g., USSR) were not sent questionnaires; therefore, their current research is not included in the report.

The questionnaire and a cover letter (see Appendix B) explaining the purpose of the questionnaire were sent to 131 individuals in 21 countries. A list of those sent the questionnaire is contained in Appendix C. The

questionnaire was sent during March 1991. As of June 1991, 81 questionnaires (62%) were returned. A listing of the number of researchers who returned the questionnaire by country is provided in Table 2.1.

Although an attempt was made to identify all international researchers studying replacements to CFCs, unfortunately some will have been overlooked. The results of this study should be viewed as providing an overview of current international research activities on CFC replacements; not a complete documentation of all research efforts.

TABLE 2.1. Number of Researchers Contacted and the Number that Responded by Country

<u>Country</u>	<u>Number of Contacts</u>	<u>Number of Respondents</u>
Australia	2	2
Austria	2	2
Brazil	5	3
Canada	17	6
China	3	1
Denmark	4	4
France	3	3
Germany	14	10
India	4	3
Italy	2	1
Japan	35	23
Kenya	1	1
Korea	1	1
Mexico	3	1
New Zealand	1	1
Norway	6	4
Sweden	5	3
Switzerland	3	2
Taiwan	1	1
The Netherlands	3	2
United Kingdom	15	8

3.0 RESULTS OF THE SURVEY

This section describes the results of the survey. Some of the answers provided on the questionnaire were difficult to decipher, primarily due to the language barrier. Also, some of the respondents offered little detail in their answers.

3.1 LENGTH OF RESEARCH

Most of the respondents indicated that they began research into CFC-related issues 3-5 years ago. Most also expected to continue research activities for 3 or more years. These results indicate that the CFC issue is recognized as a serious international issue, and that identifying and then developing alternatives are requiring an intensive, ongoing research effort. Table 3.1 contains the respondents' answers to the questions about the length of time of their research.

3.2 IDENTIFICATION OF ALTERNATIVES

Although many CFC alternatives are being studied, various HCFCs, HFCs, and mixtures of the two are by far the most widely researched. The most prevalent alternatives being studied by the respondents were HFC-134a and, to a lesser extent, HCFC-22. Table 3.2 lists (by percent) what CFC alternatives were identified in the surveys as having a high potential for alleviating the

TABLE 3.1. Length of Time that Respondents Have Been Conducting Research
(Percent of Respondents)

	<u>How Long Research Has Been Conducted</u>	<u>How Long Research Will Continue</u>
More than 5 years	16%	35%
3 - 5 years	47%	31%
1 - 2 years	17%	11%
Less than 1 year	4%	7%
Missing	16%	16%

TABLE 3.2. Specific Alternative Compounds that Respondents Believe Offer the Most Potential for Alleviating the CFC Problem

<u>Alternative Compound</u>	<u>Respondents</u>
HFC-134a	36%
HCFC-22	9%
HFC-152a	5%
Ammonia	4%
Other	20%
Missing	26%

CFC problem. Specifically, over one-third of the respondents reported the alternative HFC-134a as having the most potential for alleviating the CFC problem.^(a) About 9% of the respondents listed HCFC-22 as the most promising alternative, and a few of the respondents mentioned either HFC-152a or ammonia (NH₃).

Most of the respondents from Japan, Germany, and the United Kingdom are analyzing HFC-134a. However, a large number of Japanese and United Kingdom respondents did not identify the specific alternative(s) they were researching. Table 3.3 lists specific CFC alternatives respondents from individual countries chose as providing the most potential for alleviating the CFC problem. Only those countries with three or more responses are listed.

(a) Interestingly, though HCFCs were often cited by researchers as alternatives, these chemicals offer at best only a temporary solution because they still contain some chlorine. Because of this, their eventual production phaseout is also expected by 2020-2030.

TABLE 3.3. Specific Alternative Compounds that Respondents in Each Country Believe Offer the Most Potential for Alleviating the CFC Problem

<u>Country</u>	<u>Percent</u>	<u>Alternative Compound</u>
Japan	48	HFC-134a
	9	HCFC-22
	4	Aqueous Cleaning
	4	HCFC-123
	35	Missing
Germany	50	HFC-134a
	20	HFC-152a
	10	R718
	10	Hydrogen
	10	Missing
United Kingdom	25	HFC-134a
	13	HFC-152a
	13	ISCEON 69S
	13	Ammonia
	38	Missing
Canada	33	HCFC & HFC
	33	HFC-134a
	17	HFC-152a
	17	Missing
Denmark	50	HFC-134a
	50	Missing
Norway	50	HCFC-22
	25	Ammonia
	25	Missing
Brazil	67	HFC-134a
	33	Missing
India	33	Azeotrope
	33	HCFC-22
	33	HFC-134a
Sweden	33	HFC-134a
	33	NARMs
	33	Ammonia

3.3 PURPOSE OF THE RESEARCH

Most of the respondents indicated they are currently investigating the application of one or more CFC alternatives to vapor-compression cycle refrigeration/air-conditioning equipment. Of these respondents, about half are looking at HFC-134a. Over one-third of the respondents are conducting theoretical performance analyses of the vapor-compression cycle. Of these, almost half are studying HFC-134a and a smaller percentage are studying HCFC-22. About one-third of respondents reported analyzing thermodynamic properties of alternatives, and one-third are studying the compatibility of the various alternatives with materials used in air-conditioning and refrigeration equipment. Again HFC-134a is the dominant compound being analyzed for both purposes. Table 3.4 lists the different purposes of the research. Because of the high frequencies of HFC-134a and HCFC-22 on the surveys, additional information is presented here.

TABLE 3.4. Purpose of the Research

Purpose	All Respondents	HFC-134a Respondents	HCFC-22 Respondents
Test Applications	57%	69%	57%
Refrigeration/Air-Conditioning	64%	86%	86%
Insulation/Blowing Agent	10%	3%	14%
Electronics Cleaner	6%	0%	0%
Fire Extinguisher	1%	0%	0%
Other Applications	12%	3%	14%
Test Properties	36%	41%	29%
Thermodynamic Properties	32%	38%	43%
Vapor Compression Cycles	38%	45%	57%
Materials Compatibility	32%	45%	0%
Reactivity	12%	14%	0%
Environmental Impact	5%	0%	0%
Other Properties	15%	17%	14

3.3.1 HFC-134a

The compound HFC-134a was frequently cited as a replacement for CFC-12, which is currently used extensively in refrigeration, water chilling, and car air-conditioning applications. Therefore, it was not surprising that of those investigating HFC-134a, almost 90% are interested in refrigeration and air-conditioning applications. Just under half of these respondents are involved in optimization studies of the vapor-compression cycle when using HFC-134a. About half of the researchers are also involved in examining materials compatibility issues, and half are involved in testing to establish thermodynamic and chemical properties of HFC-134a. Table 3.4 lists the purposes of the research into this specific compound.

The specific materials compatibility research issue cited most frequently by researchers was finding appropriate lubricants for HFC-134a vapor-compression cycle equipment. One respondent is also conducting compatibility tests with metals. Another respondent is reportedly developing a test apparatus to measure thermodynamic properties (presumably, also applicable to testing of other alternatives). However, because most researchers reported looking at applications and materials compatibility issues, the majority seem to have either concluded thermodynamic property testing or have access to thermodynamic data collected by others.

Other HFC-134a research areas that were mentioned by at least two respondents also relate to vapor-compression refrigeration cycle applications, and include 1) testing the suitability of desiccants, 2) optimizing refrigeration compressor designs, and 3) conducting heat transfer tests to establish heat exchanger performance and transport properties. Finally, one respondent is looking at the feasibility of retrofitting CFC-12 systems for use with HFC-134a, and another is conducting long-term aging tests of vapor-compression cycle equipment that uses HFC-134a.

3.3.2 HCFC-22

Of those respondents who indicated HCFC-22 as the main compound they are studying, most are studying vapor-compression equipment applications. Perhaps because this compound is already widely used in residential and

commercial applications the respondents seemed to be in relatively advanced stages of research. One respondent indicated that a CFC-12 system had been converted to HCFC-22 "at a reasonable cost," and one had conducted experimental tests of a HCFC-22/HCFC-142b binary mixtures in refrigerators, yielding results that are "very satisfactory." Other respondents are conducting thermodynamic calculations of ternary blends. Table 3.4 lists the purposes of the research into this specific compound.

3.3.3 Other Compounds

A number of specific alternatives were mentioned by either one or very few respondents. Listed below are those alternatives, the country conducting the research, the purpose of the research, and any problems with the alternative.

Aqueous Cleaning. A respondent from Japan and one from Switzerland are looking at using an aqueous cleaning solution to replace CFC-113 as an electronics cleaner. Specifically, the Japanese respondent has

replaced CFC-dependent draining and drying technology with a dipping and drying device that used distilled water, and...[he is] investigating the use of spin drying and other existing technologies.... [The respondent is] studying the use of washing technology that uses water-based solvents instead of CFCs...[and is] developing substitutes for CFCs used for dilution purposes in surface treatment processes.

The Swiss respondent is looking at the environmental impact of aqueous methods for electronics cleaning. One challenge he noted with this application was the cost for waste water treatment because water cleaning requires "different equipment, dryers, and waste water treatment."

Azeotropic Mixture. A respondent from India is investigating an azeotropic mixture to replace CFC-12 in refrigeration equipment. The respondent is analyzing thermodynamic properties, vapor compression cycles, and material compatibility issues. In the respondent's opinion, the cost and lack of the potential azeotropic compounds he is studying are minor problems.

Ethylchloride. A respondent from Austria is investigating ethylchloride as a replacement for CFC-22 in heat pumps for refrigeration applications. The respondent is studying the thermodynamic properties, vapor compression cycle

analyses, materials compatibility, and reactivity issues. Problems include technology modifications to address compatibility problems with aluminum, environmental issues, and limited applications.

H2O-LiBr. A respondent from France is analyzing a water/lithium/bromide mixture as a replacement for CFC-12. He is currently in the "first year of study of a 4-year development plan." Specifically, he is investigating the potential of using a water/lithium bromide mixture as a refrigerant by studying the materials compatibility issues and its potential for what he referred to as a "hybrid cycle" that combines both the absorption and vapor-compression refrigerant cycles. A simulation program and bench study have been completed. Some problems he cited include the many technology modifications required to develop the hybrid cycle, its high expected first cost, and its limited applicability.

Binary Mixtures. Three respondents from Canada are working together to analyze various two-component mixtures of HFCs and HCFCs for applications in refrigeration systems. They are analyzing both the thermodynamic properties and the vapor-compression cycle efficiency of the binary mixtures. They hope to develop compounds that require little or no modifications to existing air-conditioning equipment (i.e., a "drop-in" substitute).

HCFC-123. A respondent from Japan is looking at HCFC-123 as a replacement for CFC-11 as a foaming agent for insulation in refrigerators. His goal is to make refrigeration insulation with the same insulating value and cost as CFC-11, but he is finding it "very difficult." The insulation he has tested, which is made using HCFC-123, lacks "high quality."

A respondent from Italy reported testing the use of HCFC-123 in geothermal power cycles. The respondent has "measured the vapor pressure and performed some preliminary test[s] on thermal stability up to 200°C." The respondent notes that "in [the] system (a hot-water power cycle), changing from CFC-11 to HFC-123 should not pose real problems, except...some compatibility problems with materials [may] arise."

HCFC-141b. Two respondents, one from Korea and one from Taiwan, are investigating HCFC-141b as a replacement for CFC-11. The respondent from

Korea is also studying how to manufacture HCFC-141b in large quantities (i.e., an "industrial manufacturing process of HCFC-141b"). The Taiwanese respondent is testing the application of the compound as an electronics cleaner and insulation/blowing agent. Some of the problems with using HCFC-141b that were cited by these respondents include its higher cost, flammability, required technology modifications, limited applications, and legal issues. The respondent is planning to study how to manufacture the alternative.

HFC-152a. Individual respondents from Canada, Germany, and the United Kingdom are looking at HFC-152a as an alternative to CFC-12. All three respondents are studying the applications of the compound in vapor-compression cycle refrigeration systems. The respondent from Canada is also testing its applicability as a foaming agent for insulation. All respondents mentioned that the major problems with the compound are its flammability and the associated product liability issues.

The respondent from Canada noted, "We believe that the alternate will be viable, assuming materials compatibility (as it effects long-term reliability) doesn't become an issue." Future plans include completing long-term life cycle testing and field trials.

The primary goal of the German respondent's research is to test thermodynamic properties, analyze HFC-152a vapor-compression refrigeration cycles, and identify and resolve materials compatibility issues. The German respondent noted that because the alternative still has 1% GWP (however, no ozone depleting potential), environmental issues are still a concern. He further stated that lubricity, lack of supply (the compound is a byproduct of an oil cracking process), and the limited applications of HFC-152a are issues, but of secondary importance. Research funding in Germany, in his opinion, is a moderately serious problem at this time. The respondent noted that "several projects funded by the German government will end during this year. The money from the German government will be spent mainly for projects in East Germany."

Mixture of HFC-152a and HFC-134a. One of the respondents from Germany is looking at a mixture of HFC-152a and HFC-134a to replace CFC-12. The

primary goal of his research is to investigate the thermodynamic properties. He noted that lubricity is a moderately serious problem.

Hydrogen. A respondent from Germany is investigating hydrogen as a propellant that is stored in a metal-hydride compound as a replacement for CFCs in aerosol spray cans. Specific activities include tests to determine "dependence of aerosol quality on propellant pressure...and leakage of propellant out of commercially available spray cans." Technology issues needed to further this application include "higher [working] pressures, modified [spray] nozzles, and the need for additional metal-hydride storage, manufacturing, and recycling (reclaiming)."

Isobutano. A respondent from Mexico is examining the use of "Isobutano" as a replacement for CFC-11 in aerosols. He indicated that technology modifications are a moderately serious problem and flammability is a very serious problem. "Aerosol filling technology must be modified to take into account flammable substitutes."

Nonazeotropic refrigerant mixtures (NARMs). The use of NARMs (e.g., HFC-22/HFC-142b) as potential replacements for CFC-12 is being studied by a Swedish respondent. The primary goal of the research is to test the application of the NARM in heat pumps by conducting vapor compression cycle analyses and testing heat transfer properties. A significant technical challenge is to develop a suitable evaporator design for the two temperature evaporative process that are characteristic of a NARM. Future plans include "testing full-sized heat pumps [and] the evaporative heat transfer process, modeling [NARMs] with oil, and [then] refining cycle calculations."

Ammonia. Ammonia, long used in industrial refrigeration processes worldwide, is currently being studied in Norway, Sweden, and the United Kingdom for wider commercial air-conditioning and refrigeration applications.

The Norwegian respondent is studying the compound as an alternative for both CFC-12 and CFC-502. The primary goal of his research is to analyze vapor compression cycles at temperatures and pressures typical for commercial refrigeration equipment. "A prototype of a compact ammonia refrigeration unit...is under construction." Because ammonia is not compatible with

copper, the most common heat transfer material used in refrigerant heat exchangers, selection of new construction materials will be necessary. Other needed technical modifications include implementation of a method to prevent ammonia gas from escaping into occupied spaces. Finally, a basic problem hindering the use of ammonia is the "lack of ammonia tradition and experience in some countries."

The respondent from Sweden is studying "ammonia in mechanical refrigeration combined with liquid nitrogen and carbon dioxide" for industrial food freezing.

The United Kingdom respondent has made an assessment of necessary plant changes and provided guidance on the safe use of ammonia. The main issue associated with current ammonia-based technologies "is providing [adequate] safety systems when [they are] used for building air-conditioning applications." The most serious obstacle in his view is "lack of industry skills in using [ammonia] and an aversion of [the air-conditioning] industry and users."

Water. A respondent from Germany is studying using water at applications above 0°C as a replacement vapor-compression cycle refrigerant for CFC-11, CFC-12, and CFC-114. Though the specific uses for which a water-based system could be applied were unclear from the survey answers, the respondent indicated that a large-scale plant that uses water as the refrigerant has been completed, and is now a commercially available technology. He did indicate he will continue to improve the components of the system.

Ternary Blend (HCFC-22, HFC-124 and HFC-152a). A respondent from The Netherlands is investigating the DuPont "ternary blend" as a replacement for CFC-12 in refrigeration equipment. He noted that flammability is a possible problem.

ISCEON 69S. A respondent from the United Kingdom has developed a non-CFC refrigerant that is now on the market called "ISCEON 69S," a blend that includes HCFC-22, propane, HFC-218, and is marketed as a replacement for CFC-502 in refrigeration equipment. The respondent indicated that no technology modifications are necessary to existing CFC-502 equipment, which would make this one of the few potential "drop-in" alternatives.

3.4 ISSUES

About half of the respondents reported that modifications to technologies currently using CFCs would be required to use the alternative compounds they were studying. That is, there is no direct "drop-in" non-CFC alternative refrigerants. The most frequently cited issue associated with the transition to CFC alternatives was "technology modifications." One third of these respondents qualitatively rated technology modifications as a moderately serious issue.

Cost of the alternatives and of their implementation was the second most frequently mentioned issue from the list, with most of the respondents indicating it to be either a moderately serious or minor problem. Finally, just under half of all respondents said lubricity is a problem, with most claiming it to be a moderately serious problem. Table 3.5 lists the problems associated with the alternative research.

TABLE 3.5. Specified Problems/Issues Identified With the Research

<u>Problem/Issue</u>	<u>All Respondents</u>	<u>HFC-134a Respondents</u>	<u>HCFC-22 Respondents</u>
Cost	61%	93%	86%
Environmental Issues	33%	48%	43%
Technology Modifications	63%	86%	72%
Limited Applications	38%	45%	57%
Lack of Supply	37%	52%	43%
Lubricity	48%	79%	43%
Efficiency	37%	62%	43%
Legal Issues	28%	35%	29%
Funding	31%	38%	43%
Other	21%	10%	14%
None	1%	0%	0%

3.4.1 HFC-134a

Three quarters of the respondents studying HFC-134a specifically indicated that technology modifications to existing CFC vapor-compression cycle equipment would be required in order to use HFC-134a as an alternative refrigerant.

As can be expected given the large number of respondents researching HFC-134a/oil mixtures, over half of the respondents replied that oil compatibility was an issue. Several other respondents mentioned that the heat transfer equipment used in vapor-compression cycle equipment would need modification to account for the heat transport properties of HFC-134a. Other issues related to using this alternative in current CFC vapor-compression cycle equipment include refrigerant desiccant effectiveness; design of components such as tubes, seals, and hoses; and use of materials such as plastics, metal and copper. Individual respondents also mentioned (but did not elaborate upon) problems with compressor-motor insulation compatibility in hermetic systems, energy efficiency, reliability, electrical resistivity, and leaking.

As shown in Table 3.5, the most frequently cited issues associated with the use of HFC-134a were its cost, technology modifications, and lubricity. Of these three, most of the respondents indicated the severity of these problems was "moderate." About half of the respondents indicated as problems the lower operational efficiency of HFC-134a relative to (presumably) CFC-12, its lack of supply, environmental issues, and its limited application. Less frequently mentioned problems include legal issues and difficulty in obtaining research funding.

3.4.2 HCFC-22

Increased cost was the most frequently mentioned problem indicated by the respondents who are researching HCFC-22. This finding seems at first surprising, for HCFC-22 is commonly used in many refrigeration and air-conditioning applications, and thus would be expected to be relatively inexpensive to adapt to similar applications where CFCs are currently used. It is, however, about twice as expensive to manufacture as, for example, CFC-12 or CFC-11. In addition, a vapor-compression HCFC-22 cycle operates at higher

pressures for the same temperatures than a similar CFC-12 cycle, which would increase the production cost of system components. The cycle efficiency of HCFC-22 is also lower than CFC-12 or CFC-11, resulting in higher energy usage for the same capacity. Finally, its different refrigeration effect and operating pressures clearly would require redesign of compressors and heat exchangers in refrigeration applications that use CFCs, as well as extensive retooling of manufacturing facilities. However, because operation of HCFC-22 in air-conditioning and refrigeration is, as already stated, well understood, more innovative technology modifications to adapt it to applications as a replacement for CFCs do not appear to be necessary. As one survey respondent said "design modifications are necessary but on the same technology base."

"Limited applications for HCFC-22" was also mentioned as a problem. However, no details were given in the surveys

3.5 RESEARCH PLANS

The responses varied to the question inquiring about future research studies. Several respondents plan to study heat transfer in the condensation and evaporation of refrigerant mixtures. Other studies include studying alternative refrigeration cycles to the vapor-compression cycle (e.g., Brayton cycle), redesigning centrifugal chillers, and developing compressors that are optimized for use with alternative refrigerants. Other general research plans include the following: studying ways to improve CFC containment to minimize losses to the environment, recycling existing CFC supplies to extend their useful life, determining the suitability of alternatives as "drop-in" substitutes in existing CFC-using refrigeration systems, studying flammability issues relating to alternatives, improving energy efficiency in air-conditioning equipment, studying foam blowing, and researching the condensation and evaporation of NARMs. One respondent is also beginning tests using a new type of CFC recovery/recycling machine. The overall objective of current and future research being conducted by one respondent from the United Kingdom is "to assess the implications of the CFC phaseout for the U.K. building

industry, with particular emphasis [on] providing guidance on new [alternative] refrigerants, changes to performance, and costs, including equipment conversion."

It is interesting to note that of those respondents who indicated that HFC-134a offers the most potential for alleviating the CFC problem, almost all of the respondents said that their future plans entail studying other alternatives. This finding suggests that HFC-134a may not be an appropriate alternative to CFCs in some applications. Of these respondents, most indicated that they will be investigating alternatives to HCFC-22. A few expect to be evaluating alternatives to R-502 (an approximately 50/50 blend of HCFC-22 and CFC-115) and other alternatives to CFC-11. Some promising alternative fluids these researchers expect to be studying include ammonia (NH_3) and HFC-152a.

3.6 RESEARCH THAT SHOULD BE PURSUED

Table 3.6 lists other groups and organizations, specified by the respondents, that are conducting research into CFC alternatives. When asked what type of research should be pursued by these groups, several respondents indicated additional theoretical vapor-compression cycle analyses should be performed. Several respondents also felt that the flammability issues with some of the alternatives needed to be addressed. A few mentioned the need for further study of the potential environmental effects of CFCs including global warming and ozone depletion. Retrofitting the existing CFC systems for alternatives, developing drop-in alternatives, and conducting long-term reliability tests of systems using the alternatives were also mentioned. One respondent mentioned the need for looking at low-cost production methods. Finally, a few respondents also mentioned the need for increased international cooperation and "intentional" collaboration in the study of CFC alternatives.^(a) This final suggestion could be quite advantageous given that the research progress between various countries appears to differ significantly.

(a) One example of an international on-going collaborative research activity is the "Alternative Fluorocarbons Environmental Acceptability Study" (AFEAS) (1991). This work is co-funded by 12 of the world's chemical companies.

TABLE 3.6. Other Groups/Organizations Conducting CFC Research

Country	Groups/Organizations
Austria	Forschungszentrum Seiersdorf Aubeninstitut, Techn Univ., Vienna
Brazil	All big refrigerator companies under ABINEE (Industry association)
Germany	DKV (German Refrigeration and AC Society - Deutscher Kalte- UND Klimatechnischer Verein, Pfaffenwaldring 10, D-7000 Stuttgart fax 0711/685.3242) Various companies (Hoechst, Basf, Kali Chemie, Huls Ag etc.) Universities of Hannover, Narls Ruhe, Nunchen, Dresden
Japan	Keio University Kobe University National Chemical Laboratory for Industry Freon Companies (Asahi Glass, Daikin, Showa Denko) Japanese Association of Refrigeration
Mexico	IMACC (Mexican Aerosol Institute)
The Netherlands	Heat pump Center - Sittard, NL TNO- Apeldoorn - NL University of Delft - Delft, NL (absorption processes)
United Kingdom	ICI Phone Pooling Dupont ICI C&P, The Heath, Runan, England National Engineering Laboratory, East Kilbride

Most of the HFC-134a respondents wanted to see more research into the thermodynamic and transport properties of other alternatives and more testing of HFC-134a/lubricant mixtures for vapor compression cycle equipment. Another material compatibility issue cited by one researcher regarded reactivity of alternatives.

3.7 FUNDING

Over half of the respondents did not answer the research budget questions, perhaps indicating that funding is a sensitive issue.

3.7.1 Funding Levels

Those that answered the funding question reported a wide range of funding levels, ranging from \$1,000 to \$4 million U.S. dollars. Because the question asked for the research budget for 1990, the exchange rates for the first working day of 1990 were used for this analysis. Table 3.7 lists the exchange rates for each country. West Germany's rate was used for Germany's exchange rate. Table 3.8 shows the total dollar amount (in U.S. dollars), the median amount, the range of reported budgets, and the number of respondents for each country. Japan, Germany, Canada, and the United Kingdom had the greatest number of respondents answering the question. However, the range and the median amounts widely varied. Norway and Austria each had one respondent who answered the question, yet they had relatively large budgets.

3.7.2 Funding Sources

As shown in Table 3.9, about half of the respondents receive their funding from industry, followed by government, other sources, and universities. A few said funding would decrease, while most said funding would remain stable over the next year. With a few exceptions, similar trends were found when the data were analyzed by specific compound and by country. The German responses to the stability of the funding level were mixed: 40% thought that funding would decrease in the next year; however, 30% felt that it would remain stable. Over one-third of the United Kingdom respondents felt funding would decrease. Of the five Canadian respondents that answered the funding source question, four indicated they receive funding from the government, while two indicated industry.

3.8 RESEARCH DISSEMINATION

Presentations at technical conferences were the most common method cited by respondents for learning the research results of others. Journals were the second most common method. In Canada, professional organizations are the most common method for learning of research by others.

TABLE 3.7. Exchange Rates, January 2, 1990
(Wall Street Journal 1990)

<u>Country</u>	<u>Exchange Rate</u>
Australia	0.784
Austria	0.8294
Brazil	0.11495
Canada	0.8613
China	0.211774
Denmark	0.15
France	0.1707
Germany (West)	0.5834
India	0.05952
Italy	0.0007777
Japan	0.006825
Korea	0.0014684
Mexico	0.0003735
New Zealand	0.593
Norway	0.1506
Sweden	0.1605
Switzerland	0.6315
Taiwan	0.038505
The Netherlands	0.5166
United Kingdom	1.605

TABLE 3.8. Research Budgets by Country

<u>Country</u>	<u>Total Budget</u>	<u>In U.S. \$</u>	<u>Median</u>	<u>Range</u>	<u>Respondents</u>
Australia	414,700	414,700	414,700		1
Austria	78,400	78,400	78,400		1
Brazil	300,000	300,000	300,000		1
Canada	568,458	142,115	68,000-215,325		4
China	1,000	1,000	1,000		1
Denmark	320,000	160,000	20,000-300,000		2
France	341,400	170,000	85,350-341,400		2
Germany	1,502,255	116,680	14,585-1,166,800		5
India	5,952	5,952	5,952		1
Italy	40,000	40,000	40,000		1
Japan	6,590,225	568,250	20,475-4,000,000		6
Korea (South)	300,000	300,000	300,000		1
Mexico	0	0	0		0
New Zealand	0	0	0		0
Norway	753,000	753,000	753,000		1
Sweden	530,000	265,000	200,000-330,000		2
Switzerland	63,150	63,150	63,150		1
Taiwan	0	0	0		0
The Netherlands	250,000	250,000	250,000		1
United Kingdom	170,130	36,915	16,050-80,250		4

TABLE 3.9. Funding Sources

<u>Funding Source</u>	<u>Respondents</u>
Government	30%
University	6%
Industry	48%
Other	15%

4.0 CONCLUSIONS AND RECOMMENDATIONS

The results of the survey provide a current overview of international research activities into alternatives for CFCs.

4.1 CONCLUSIONS

The following conclusions can be drawn from the data:

- Length of Research. Most of the international research has been ongoing for more than 3 years, and the respondents expect to continue their research for at least another 3 years.
- Identification of Alternatives. The most prevalent alternatives being studied by the respondents were HFC-134a and, to a lesser extent, HCFC-22. Over one-third of the respondents reported the alternative HFC-134a as having the most potential for alleviating the CFC problem.
- Purpose of the Research. Most of the respondents indicated that they are currently investigating the application of one or more CFC alternatives to vapor-compression cycle refrigeration/air-conditioning equipment.

The compound HFC-134a was frequently cited as a replacement for CFC-12, which is currently used extensively in refrigeration, water chilling, and car air-conditioning applications.

Of those respondents who indicated HCFC-22 as the main compound they are studying, most are studying vapor-compression equipment applications.

- Issues. Three quarters of the respondents studying HFC-134a specifically indicated that technology modifications to existing CFC vapor-compression cycle equipment would be required in order to use HFC-134a as an alternative refrigerant. In addition, over half of the respondents replied that oil compatibility was an issue. Increased cost is the most frequently mentioned problem indicated by the respondents who are researching HCFC-22.
- Research Plans. Future research plans were quite varied. Several respondents plan to study heat transfer in the condensation and evaporation of refrigerant mixtures. Of those respondents who indicated that HFC-134a offers the most potential for alleviating the CFC problem, almost all said that their future plans entail studying other alternatives. The finding suggests that HFC-134a

may not be an appropriate alternative to CFCs in some applications. Of these respondents, most indicated that they will be investigating alternatives to HCFC-22.

- Research That Should Be Pursued. Several respondents indicated that additional theoretical vapor-compression cycle analyses should be performed. Several respondents also indicated that the flammability issues with some of the alternatives needed to be addressed.
- Funding. The respondents reported a wide range of funding levels, ranging from \$1,000 to \$4 million U.S. dollars. About half of the respondents receive their funding from industry, followed by government, other sources, and universities. A few said funding would decrease, while most said funding would remain stable over the next year.
- Research Dissemination. Presentations at technical conferences were the most common method cited by respondents for learning about the research results of others.

4.2 RECOMMENDATIONS

The Montreal Protocol represents an unprecedented example of the ability of nations to cooperate and collaborate on issues of international concern. Much could be done to foster this expressed desire to cooperate on the CFC issue. Moreover, considerable interest in the results of this study was expressed by the respondents as evidenced by affirmatively answering the question whether they would like a copy of this report and by the relatively high response rate for an international survey written in English. The research community would probably welcome an expanded cooperative effort such as an international network or organization devoted solely to CFC alternatives developments. This network could be as simple as a newsletter describing current research efforts and results or as elaborate as an organization. Both types of networks would improve communication among the international CFC research community.

An issue needing further study is the development of technologies that are compatible with the new alternatives. Although this survey touched upon this issue, a more in-depth study would illuminate the entire range of technology developments, their purpose and problems, and chance of wide-spread use. Such a study could also help to identify opportunities for technology

development. International collaboration in this effort could open many opportunities for applications of current or planned technology development or modification.

5.0 REFERENCES

Marseille, T. J., and M. C. Baechler. 1990. Chlorofluorocarbon Environmental Issues Related to Conservation Acquisition in Commercial Buildings. PNL-7503, Pacific Northwest Laboratory, Richland, Washington.

Moore, T. 1989. "The Challenge of Doing Without CFCs." EPRI Journal 14:4-13.

Rowland, F. S., and M. J. Molina. 1975. "Chlorofluoromethanes in the Environment." Review of Geophysical Space Physics 13:1-36.

The Wall Street Journal. January 3, 1990. CCXV(2):C12.

U.S. Environmental Protection Agency. 1987. Impact on Ozone Attainment of CFC Controls Used to Prevent Future Depletion of Stratospheric Ozone. EPA-600D88074, EPA Research, Triangle Park, North Carolina.

World Meteorological Organization (WMO). 1985. Atmospheric Ozone 1985: Assessment of Our Understanding of the Process Controlling its Present Distribution and Change. Report No. 16, Vol. III, Global Ozone Research and Monitoring Project.

APPENDIX A

QUESTIONNAIRE

1. Do you or your organization conduct (or have you conducted) research into alternatives to chlorofluorocarbons (CFCs)?

Yes (Please go to Question 4.)
 No

2. If no, can you provide names and addresses of researchers involved in this area of study in your country?

Name: _____

Title: _____

Institution/Agency: _____

Address: _____

3. In other countries?

Name: _____

Title: _____

Institution/Agency: _____

Address: _____

4. When did you begin conducting this research?

More than 5 years ago
 3 to 5 years ago
 1 to 2 years ago
 this year (1991)

5. How long will you be continuing with this research?

More than 5 years
 3 to 5 years
 1 to 2 years
 complete this year (1991)

6. What alternative chemical compounds have you studied and what CFCs are they supposed to replace?

CFC/Halon

Alternative

For questions 7 through 10, please select the one CFC alternative you have been studying that you feel has the most potential for alleviating the CFC problem. The alternative you will be referring to is:

7. What are the primary goals of this research? Please check all those that apply.

To test applications of the compound

refrigeration/air conditioning
 insulation/blowing agent
 electronics cleaner
 fire extinguisher
 other _____

To test properties of the compound itself

thermodynamic properties
 vapor compression cycle analyses
 materials compatibility
 reactivity
 environmental impact
 other (please specify) _____

8. What is the status of your research to date? (Please include any results to date.)

9. If your research is application specific, will it be necessary to modify existing CFC technologies in order to use the alternative compound?

Yes
 No

Please explain:

10. What are the disadvantages or problems, if any, of using this alternative compound instead of using CFCs? Please indicate the extent of the problem:

1 = Very serious problem

2 = Moderately serious problem

3 = Minor problem

cost

environmental (please specify) _____

technology modifications

limited application

lack of supply

lubricity

efficiency (please specify) _____

legal

funding

other (please specify) _____

none

11. What was your research budget for CFC alternatives for 1990?
(Please indicate the currency)

11a) From what sources does your funding come? Please specify the name of the organization.

- Government _____
- University _____
- Industry _____
- Other _____

11b) In the next year, do you expect this funding to (please check one)

- increase
- decrease or
- remain stable?

Please explain:

12. What are your plans for future studies for alternatives to CFCs?

13. *What other groups or organizations are involved with CFC research in your country?*

13a) *What other groups or organizations are involved with CFC research in the international community?*

14. *In your opinion, what type of research should these groups pursue?*

15. *How do you hear about the research results in CFC alternatives of other researchers? Please rank from the most common (1) to the least common (4) method.*

- presentations/conferences
- journals (please name) _____
- organizations (please name) _____
- other _____

16. *We expect our report will be completed by September 1991. Would you like to receive a copy of this report?*

- Yes
- No

Thank you for completing this survey. Please return in the enclosed envelope by April 30, 1991.

APPENDIX B

COVER LETTER

Pacific Northwest Laboratories
Battelle Boulevard
P.O. Box 999
Richland, Washington 99352
Telephone (509)

March 20, 1991

Dear :

The Pacific Northwest Laboratory is conducting a study to document foreign research activities on chemical compounds that present alternatives to chlorofluorcarbons (CFCs). The study is being done for the United States Department of Energy as part of their International Research Monitoring program. The Department of Energy plans to use this information to gain a global perspective on CFC research. Our initial research efforts identified you as a possible contact for our study.

The enclosed questionnaire was designed to gather general information about foreign research on CFC alternatives. We are interested in the types of research being conducted; the results of the research; problems encountered; and future studies that are planned. If you would like a copy of our final report please indicate as such on the space provided on the questionnaire and we will be happy to send you a copy.

We would greatly appreciate your input to this questionnaire. We would also like to receive copies of any reports you have on your CFC research, and we would like the names of other researchers we should contact. Please contact Alison Thurman at 509-376-4118 (phone) or 509-376-5484 (fax) with any questions or comments you may have about the questionnaire. Please return the questionnaire in the enclosed envelope by April 30, 1991. Thank you for your time and effort.

Sincerely,

Sean C. McDonald
Senior Research Economist

SCM:agt:mrp
Enclosure

APPENDIX C

QUESTIONNAIRE DISTRIBUTION LIST

AUSTRALIA:

Chris Baker, Manager, Ozone Unit
EPA
477 Collins
Melbourne, Victoria
3000
AUSTRALIA

Robert L. Muston, President
Environmental Products
Amalgamated Pty. Ltd
5-25 Calaster Street.
P.O. Box 191
Shepparton, Victoria
AUSTRALIA

AUSTRIA:

M. Narodoslawsky, PhD
Institute of Chemical Engineering
Graz University of Technology
8010 Graz
AUSTRIA

Mark Schneeberger
Dl. Dr. techn./member of the board
Kraftwerke AG, (OKA)
4020 Linz Boehmerwaldstrasse 3
AUSTRIA

BRAZIL:

Alberto Carrizo, Director
Climax Development Technological
Av. Jose Pereira Lopes 250
13560 Sao Carlos-SP
BRAZIL

Ernesto Heinzelmann, R&D Director
Embraco SA
Rua Rui Barbosa, 1020
89200 Joinville
BRAZIL

Milton Edson Lubraico
Ford Motor Company
Az. Orlando
Bergamo, 1000-1200
Cepo 7220, Guorulhoe, SP
BRAZIL

Paulo Vieira
Du Pont
Al Itapecuru 506-Alfazil
Cepo 6400 CP 26
BRAZIL

Paulo Vodanitskala, Manager
Systems Engineering
Consul SA
Caixa Postal 267/269, CEP89200
89200 Joinville SC
BRAZIL

CANADA:

Michael R. Ascough
Du Pont Canada
Box 2200, Streetsville
Mississauga, Ontario L5M2H3
CANADA

Mark T. Bomberg
National Research Council of Canada
DuPont Canada
Box 2200, Streetsville
Mississauga, Ontario L2M2H3
CANADA

Colleen M. Brydon
DuPont Canada
Box 2200, Streetsville
Mississauga, Ontario, L5M
CANADA

Victor Buxton, Chief
Chemicals Controls Branch
Environment Canada
351 St. Joseph Blvd.
Hull, Quebec, Ontario K2H5N9
CANADA

Art Fitzgerald
Northern Telecom
3 Robert Speck Parkway
Mississauga, Ontario L4Z3C8
CANADA

Stephen R. Griffin, Mgr.
Product Engineering
W. C. Wood Co., I td.
P.O. Box 750
5 Arthur Street S.
Guelph N1H 6L9
CANADA

Vilvan Gunasingham
Ford Electronics Mfg. Corp.
7455 Birchmount
Markham, Ontario L3R5C2
CANADA

Margaret Kerr, Vice President
Environment, Health and Safety
Northern Telecom
3 Robert Speck Parkway
Mississauga, Ontario L4Z3C8
CANADA

Paul A. LaRue
CRIQ
P.O. Box 9038
Ste-Foy, Quebec G1V4C7
CANADA

Timothy Leah, Head
Use Pattern Section
Commercial Chemicals Branch
Environment Canada
351 St. Joseph Blvd.
Hull Quebec, Ontario K2H5N9
CANADA

Adrien J. LeBlanc
Manufacturing Process Technology
Northern Telecom
3 Robert Speck Parkway
Mississauga, Ontario L4Z3C8
CANADA

Peter Lensch
OCS-SMT Automation
121 Montee Be Liesse
St. Laurent, Quebec H4T1S6
CANADA

Jeffrey Linton, Research Officer
Natl. Res. Council Canada
M17, Montreal Rd.
Ottawa, Ontario K1A0R6
CANADA

Zal Portnoy
Carrier Canada Ltd.
101 Claireville Dr.
Rexdale, Ontario M9W 6K9
CANADA

Pierre Renaud
CRIQ
333 Franquet
Post Office Box 9038
Ste-Foy, Quebec G1V4C7
CANADA

Keith Snelson, Research Officer
Natl. Res. Council Canada
M17 Montreal Rd.
Ottawa, Ontario K1A0R6
CANADA

Art Stelzig, Chief
Chemical Industries Division
Environment Canada
351 St. Joseph Blvd.
Hull Quebec, Ontario K2H5N9
CANADA

CHINA:

Cao Desheng, Sr. Engineer
Chinese Ass. Refrigeration
Department Leader of Office
11, Fu Cheng Road
100037 Beijing
CHINA

Yu Bing Feng, PhD
Assistant Professor
AC Group, Department Power Mach
Zi'an Jiaotong University
Xi'an (Shaanxi)
CHINA

Ren Jin Lu, Senior Engineer
Refrigeration Group
General Mach. Research Institute
Shushan Road, P.O. 230031
HFei
CHINA

DENMARK:

H.C. Aagaard
Danish Technological Institute
Gregersenszej, P.O. Box 141
2630 Taastrup
DENMARK

Per O. Danig, Associate Professor
Refrigeration Laboratory
Technical University, Bldg. 402B
2800 Lyngby
DENMARK

Hans Knudsen, Managing Editor
A'Gramkow
Augustenborg Landej 19
6400 Soenderborg
DENMARK

Erik Korfitsen, Manager R&D
Development Department
Industry Division
Sabroe Refrigeration A/S
P.O. Box 1810
8270 Hojbjerg
DENMARK

FRANCE:

Claude Brian
European Development Manager
Dehon Group
Refrigeration Department
26 Ave. duPetit Parc
94683 Vincennes
FRANCE

Denis Clodic, Project Leader
Centre D'Energetique Ecole Des
Mines de Paris
60, BD St. Michel
75272 Paris, Cedex 06
FRANCE

Brian Ellis, Director
Protonique SA
P.O. Box 78
Romanel-Sur-Luasanne CH-1032
FRANCE

GERMANY:

H.D. Bachr, PhD, hc
Institute of Thermodynamics
University of Hannover
Callinstrasse 36
3000 Hannover 1
GERMANY

Ingrid Hanhoff-Stemping
Umweltbundesamt
Bismark Platz 1
1 Berlin 33
GERMANY

Paul Erik Hansen, PhD, Manager
Danfoss GmbH
Reliability and Labs
Mads Clausenstrasse 7
D2390 Flensburg
GERMANY

Ulrich Hesse
University of Hannover
Wei Fen Garten 1A
Hannover, FR 3000
GERMANY

Werner Jensen
Consultant
Integral Technologie GmbH
Lise-Meitner Str.2
Leberstrasse 3
D-2390 Flensburg
GERMANY

Juergen Pocklington
Shell
Deutsche Shellag
Pae-Laboratory
2000 Hamburg 93
GERMANY

Michael Kauffeld
University of Hannover
Institute Fuer Kaelteumk
Welfangarten 1A
D-3000 Hannover
GERMANY

Horst Kruse, PhD, Professor
Inst. Kaeltetechnik
University of Hannover
3000 Hannover 1
GERMANY

Gunter Langer
Battelle Europe
Am Romerhof 35, D-6000
Frankfurt Main
GERMANY

Klaus W. Menze, Manager
Heat Transfer Eng.
Wieland-Werke AG
Post Office Box 4240
D-7900 ULM
GERMANY

J. F. Nonnenmann, PhD
Sudd Kuehlerfabr Behr GmbH
Mauserstrasse 3
D-7000 Stuttgart 30
GERMANY

Wolfgang Scholten
Hoechst AG
Postbox 800320
D-6230 Frankfurt
GERMANY

Rolan Burk
Behr GmbH & Co.
Mauserstrasse 3
7000 Stuttgart 30
GERMANY

INDIA:

R. S. Agarwal, PhD, Professor
Department of Mechanical
Engineering
Indian Institute of Technology Delhi
Hauz-Khas
New Delhi 110 016
INDIA

S. C. Bhaduri, PhD
Assistant Professor
Institute of Mechanical Engineering
Indian Institute of Technology
Powai
Bombay 400 076
INDIA

Sukumar Devotta, PhD, Director
Chemical Engineering Division
National Chemical Laboratory
Pune 411 008
INDIA

Mr. K Madhava Sarma
Additional Secretary
Ministry of Environment and Forests
Government of India
CGO Complex, Lodi Road
New Delhi 110 003
INDIA

ITALY:

Gianfranco Angelino, PhD
DIP. Professor Energetic
Politecnico
Piazza Leonardo da Vinci, 32
Milano 20133
ITALY

Giovanni Giuffrida
Necchi Compressori S.R.L.
Viale Della Repub. 10
Pavia 27100
ITALY

Mario Segagni
Necchi Compressori S.R.L.
Viale Della Repub. 10
Pavia 27100
ITALY

JAPAN:

Akari Aguri, Director
Food Proc. Affairs
Daikin Plant Ltd.
3-5-11, Nihonbashi-Honcho
Chuo-Ku
Tokyo 103
JAPAN

Tadatoshi Banse, Manager
Engineering & Planning Department
60335
Air Condition & Appliance Group
Toshiba Corp., Consumer Products
2-1, Shibaura 1-Chome
Minato-Ku
Tokyo 105
JAPAN

Yoshiyuki Ishii
Sr. Engineer of Env'l Center
Hitachi, Ltd.
New Marunouchi Bld.
Maranouchi
1-Chome Chiyodaku
Tokyo
JAPAN

Masakazu Fujimoto
Ebara Corporation
4-2-1 Honfujisawa
Fujisawa-Shi
Kanagawa 251
JAPAN

Tadaaki Gocho, General Manager
Seiko Epson Corp.
1-17-1 Tsukahara
Chino-shi
Nagano, 391
JAPAN

Hiroaki Hata, Sr. Engineer
Compressor Design Dept.
Hitachi Tochigi Works
800 Tsumita
Ohira-machi, Shimo-tsuma-gu
Tochigi 329-44
JAPAN

Katsumi Inamura
Sec. Man., AC Plant Department
Toshiba Co.
1-1-1 Shibaura, Minato-Ku
Tokyo 105-01
JAPAN

Nobuo Ishikawa, PhD
Professor Emeritus of Tokyo Inst.
of Tech.
Tokyo Institute of Technology
F&E Research Center
2-9-3 Akasaka, Minato-Ku
Tokyo 107
JAPAN

Nobuhisa Ito
Matsushita Elec. Ind. Co.
2275-3 Noji-Cho
Kusatsu-Shi
Shiga 525
JAPAN

Atsuo Kishi, Chief Engineer
Hitachi
2520 Oaza-Takaba, Katsuta-Shi
Ibaragi-Ken 312
JAPAN

Shunji Komatsu
Sanden Co., Ltd.
Yatohilma-Cho, Isezaki-Shi
Gunma 372
JAPAN

Takeo Komatsubara
Principal Engineer
Sanyo Electric Co., Ltd.
180 Sakata,
Oizumi-machi, Ora-gun
Gumma 370-05
JAPAN

Shigeaki Komatsu
Senior Researcher
Hitachi Research Lab, Hitachi Ltd.
402 Kuji-Cho Hitachi-Shi
Ibaraki 319-12
JAPAN

Katsumi Matsubara, Dept. Manager
6th Dept.
Hitachi, Ltd.
502 Kandatsumachi
Tsuchiurashi
Ibaraki-Ken 300
JAPAN

Dr. Yuji Yoshida, Manager
Living Environmental
Systems Research Lab
3-15 Yagumo Nakamachi
Morigushi
Osaka 570
JAPAN

Kenji Matsuki, General Manager
Energy Conversion Lab.
Sharp Corp.
Shinjo-Cho 282-1 Hajikami
Kitakatsuragi-Gun
Nara 639-21
JAPAN

Masahiro Noguchi Daikin Industries, Ltd. 1-1 Nishi-Hitotsuya, Settsu-Shi Osaka 566 JAPAN	Masataka Suzuki Mitsubishi Elec. Corp. 2-2-3 Maranouchi Chiyoda-Ku Tokyo 100 JAPAN	Chikku Yoshikawa Mayekawa Mfg. Co., Ltd. Okubo, Azu, Moriya-machi, Kitasoma-gun Ibaraki 302-01 JAPAN
Yoshiyuki Morikawa, Manager Public Relations of Technology Air-Conditioner Division Air-Conditioner Sector Matsushita Elec. Ind. Co 2275-3 Noji-Cho, Kusatsu Shiga-Ken 525 JAPAN	Kenichi Iiguchi Daikin Industries, Ltd. 1304 Kanaoka-cho, Sakai-shi Osaka 591 JAPAN	Masaharu Yoshikawa Sharp Corp. 282-1 Hajikami, Shinjo-Cho Nara 639-21 JAPAN
Hisao Nunokawa Calsonic Corp. 7-3 Sakae-cho, Sano-shi Tochigi 327 JAPAN	Yoshikazu Takamatsu Calsonic Corp. Sakae-Cho 8, Sano-Shi Tochigi 327 JAPAN	KENYA:
Yasuhiro Onishi Shin Meiwa Ind. Co., Ltd. 6-104 Tajikano-cho, Nishinomiya Hyogo 663 JAPAN	Kazumi Tsukahara AC/Refrigeration Works Mitsubishi Heavy Industry, Ltd 3-1 Asahimachi, Nishibiwajima-Cho, Nishikasugai-Gun Aichi-Ken 452 JAPAN	James F. Kanyun, PhD Dept. of Mechanical Engineering University of Nairobi P.O. Box 30197 Nairobi KENYA
Hirotoshi Sagawa Japan Refrig/Air Industry 3-5-8 Shibakoen, Minato-Ku Tokyo 105 JAPAN	Shigehiro Uemura Mechanical Engineering Lab Chief Researcher Daikin Ind., Ltd. 1304 Kanaoka-cho, Sakai Osaka 591 JAPAN	KOREA:
Hisao Sagara Sanyo Electric Co., Ltd. 180 Sakata Oizumi-Cho Oura-Gum Cumma 370-05 JAPAN	Minoru Wada, Manager Design Department Fukushima Industries Co. 2-13-16, Mitejima Nislyodogawa-Ku Osaka 555 JAPAN	Youm Yong Lee Principal Investigator CFC Alternatives Technical Center Korea Inst. Science & Technology 130-650 P.O. Box 131 Cheongryang Seoul KOREA
Kazuo Sahara, Manager Co-ordinate Sec. Air-Conditioning, Manufacturing Div. Daikin Industries, Inc. 1304 Kanaoka-Cho, Sakai-Shi Osaka 591 JAPAN	Koichi Watanabe, PhD, Professor Department of Mechanical Eng. Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku Yokohama 223 JAPAN	MEXICO:
Kousuke Shimmamura Mitsubishi Elec. Corp. 3-18-1 Oshika Shizuoka 422 JAPAN	Nobohiko Yokota, Director Engineering Department Japan Refrigeration & AC Ind. Ass. Kikal Shinko, Bldg. 201 3-5-8, Shibakoen, Minato-Ku Tokyo 105 JAPAN	Rene Altimirano Direccion General de la Prevencion y Control de la Contaminacion Ambiental Subsecretaria de Ecologia SEDUE Rio Elba No. 20 Piso 16 Colonia Cuauhtemoc 06500 Mexico D.F. MEXICO
Seiji Sumikawa, Dept. Mgr. Design Engineering Department 1 Zexel Corp. Konn-machi, Osato-gun Saitama 360-01 JAPAN	Jorge Corona de la Vega Astral Internacional Col. Popotla DF 11410 MEXICO	Geno Nardini, Marketing Director NAYASA Calzada Coltongo, #272 Col. Industrial Zallejo, BS 02300 MEXICO

Valvulus De Precision, SA
Azafan 313
Col. Grnnjas Mexico
Del. Iztacalco
08400
MEXICO, D.F.

THE NETHERLANDS:

Lambert Kuijpers, PhD
Transport Phenomena Research
Philips Research Labs
P.O. Box 80
Eindhoven 5600 JA
THE NETHERLANDS

Gert Schouten
Soldering Process Engineer
Soltec B.V.
P.O. Box 143, 4900 AC Oosterhout
Karolusstraat 20
THE NETHERLANDS

Paul Vermeulen
TNO Div. of Tech. for Soc.
P.O. Box 342
Apeldoorn, 7300 AH
THE NETHERLANDS

NEW ZEALAND:

Lindsey Roke
Fisher & Paykel, Refrigeration Div.
78 Springs Road
Greenmount
Auckland
NEW ZEALAND

NORWAY:

Rune Aarlien
SINTEF, Div. Refr. Eng.
Norwegian Inst. Technology
Kjolborn Vejes
7034 Trondheim
NORWAY

Per-Erling Frivik, PhD
SINTEF, Div. Refr. Eng.
Norwegian Inst. Technology
Kjolborn Vejes
7034 Trondheim
NORWAY

Hans T. Haakas, PhD
Associate Professor
NTH-SINTEF Kildeteknikk
N-7034 Trondheim
NORWAY

Peter Neksa, Research Engineer
Refrigeration Engineering
NTH-Sinref
7034 Trondheim
NORWAY

Per R. Samuelsen, President
Finsam Int. Ltd.
P. O. Box 3064 EL
N-0207 Oslo 2
NORWAY

Erik Schau, Marketing Manager
Unitor Ships Service AS
Marine Refrigeration Products
& Services
Mastemyr Ind. Estate
P.O. Box 600
N-1411 Kolbotn
NORWAY

SWEDEN:

Thore Berntsson, PhD, Professor
Inst. for Heat Technology
Chalmers University
41296 Gothenborg
SWEDEN

Anders Lindborg
Frigoscandia AB
Technical Center, Box 912
25109 Helsingborg
SWEDEN

Bjorn E. Palm, Research Assistant
Royal Inst. of Technology
Dept. of Appl. T/R
Dept. Applied Thermodynamics
& Refrigeration
S-100 44 Stockholm
SWEDEN

Rolf Segerstrom
Dept. MK KKR
Electrolux Major Appl.
Luxbacken 1
105 45 Stockholm
SWEDEN

Lennart Vamling
Chalmers Univ. of Tech.
Dept. of Heat & Power Techn.
S-412 96 Gothenburg
SWEDEN

SWITZERLAND:

Thomas H. Christie
Refrigeration Consultant
1 chemin du Barry
1295 Mlles
Le Grand-Saconnex 1218
SWITZERLAND

Peter Moser, Manager
Refrigeration Technology
Sulzer Bros. Ltd.
UB Sulzer Infra, Refr. Techn.
CH-8401 Winterthur
SWITZERLAND

Maurice Perenovd
DuPont International
2 Chemin Du Pavillon
1218 Grand-Saconnex
SWITZERLAND

TAIWAN:

Mingda Chu
Formosa Plastics Corp.
100 Swei-Kuan Rd.
Jen-Wu
Kaohsiung
TAIWAN

Tzong-Deng Young
Plastics Division
Formosa Plastics Corp.
100 Swei-Kuan Rd.
Jen-wu
Kaohsiung Hsien
TAIWAN

UNITED KINGDOM:

Russell Benstead
Technology Group Leader
Electricity Research and
Development Centre
Capenhurst CH11 6ES
ENGLAND, U.K.

Peter Cooper
Sainsbury's Plc, Stamford House
Stamford Street
London SE1 9LL
ENGLAND, U.K.

Robert D. Heap, Technical Director
SRCRA
140 Newmarket Road
Cambridge CB5 8HE
ENGLAND, U.K.

David Hey
ICI Chemicals & Polymers Ltd.
P.O. Box 19
Runcorn
Cheshire WA7 4LW
ENGLAND, U.K.

David Butler, Higher Science Officer
Building Research Establishment
Carston, Watford
Herts WD2 7JR
ENGLAND, U.K.

Peter Johnson, Product Manager
Solvents Marketing Department
ICI Chemicals and Polymers Ltd.
P.O. Box 19
Runcorn
Cheshire WA7 4LW
ENGLAND, U.K.

Terence Jones
SEA Containers
20 Upper Ground
London SE1 9PF
ENGLAND, U.K.

S. E. Pearson, PhD
Technical Director
Star Refrigeration Ltd.
Thornliebank Industrial Estate
Glasgow G46 8JW
SCOTLAND, U.K.

Richard Powell
ICI Chem. & Polymers Ltd.
P.O. Box 8, The Heath
Runcorn
Cheshire WA7 4QD
ENGLAND, U.K.

Peter Rathbone
ICI Chem. & Polymers Ltd.
P.O. Box 8
Runcorn
Cheshire WA7 4QD
ENGLAND, U.K.

J.T.R. Watson
National Engineering Laboratory
Heat Transfer and Properties of
Fluids Division
East Kilbride
Glasgow G75 0QU
SCOTLAND, U.K.

Fiona Welt
Air Pollution Campaigner
Friends of the Earth
26-28 Underwood Street
London N17JQ
ENGLAND, U.K.

Geoffrey Weomes
ICI Chemicals and Polymers Ltd.
P.O. Box 19
Runcorn
Cheshire WA7 4LW
ENGLAND, U.K.

A. Wilson
Lloyd's Register of Shipping
Lloyd's Register House
29 Wellesley Road
Croydon CR0 2AJ
ENGLAND, U.K.

Nell Winterton
ICI Chemicals and Polymers Ltd.
P.O. Box 19
Runcorn
Cheshire WA7 4LW
ENGLAND, U.K.

DISTRIBUTION

No. of
Copies

OFFSITE

12 DOE/Office of Scientific and
Technical Information

L. R. Anderson
CE-422
U.S. Department of Energy
1000 Independence Avenue SW
Washington, DC 20585

D. B. Bivens
Dupont Company
Rt. 130 Canal Road
Trailer K-37
Deepwater, NY 08023

R. Bradley
S-1
U.S. Department of Energy
1000 Independence Avenue SW
Washington, DC 20585

F. A. Creswick
Martin Marietta Energy Systems
Oak Ridge National Laboratory
Energy Division
X-10 Plant, Building 3147
Oak Ridge, TN 37831-6070

J. J. Cuttica
Gas Research Institute
8600 W. Bryn Mar Avenue
Suite 1100
Chicago, IL 60631

K. D. Devine
CE-44
U.S. Department of Energy
1000 Independence Avenue SW
Washington, DC 20585

No. of
Copies

J. J. Eberhardt
CE-34
U.S. Department of Energy
1000 Independence Avenue SW
Washington, DC 20585

P. D. Fairchild
Martin Marietta Energy Systems
Oak Ridge National Laboratory
Energy Division
X-10 Plant, Building 3147
Oak Ridge, TN 37831-6076

A. P. Fickett
EPRI
3412 Hillview Ave.
Palo Alto, CA 94304

S. E. Fischer
Martin Marietta Energy Systems
Oak Ridge National Laboratory
Engineering Technology
Y-12 Plant, Building 1104-1
Oak Ridge, TN 37831-8057

K. M. Friedman
CE-20
U.S. Department of Energy
1000 Independence Avenue SW
Washington, DC 20585

M. Ginsberg
CE-44
U.S. Department of Energy
1000 Independence Avenue SW
Washington, DC 20585

P. A. Joyner
EPRI
3412 Hillview Ave.
Palo Alto, CA 94304

<u>No. of Copies</u>	<u>No. of Copies</u>
T. E. Kapus CE-42 U.S. Department of Energy 1000 Independence Avenue SW Washington, DC 20585	K. Ushimaru Energy International, Inc. 301 - 116th Ave. S.E. Suite 200 Bellevue, WA 98004
E. R. Kweller CE-422 U.S. Department of Energy 1000 Independence Avenue SW Washington, DC 20585	D. K. Walter CE-222 U.S. Department of Energy 1000 Independence Avenue SW Washington, DC 20585
J. P. Lupinachi U.S. EPA Headquarters, ANR 445 401 M. Street SW, Room M-3202 Washington, DC 20460	E. R. Williams PE-70 U. S. Department of Energy 1000 Independence Avenue Sw Washington, DC 20585
M. McFarland Dupont Company 1007 Market Street B S13230 Willmington, DE 19898	<u>FOREIGN</u>
M. S. Mesnzer VP Research and Technology APRI 1501 Wilson Belivard Sixth fl. Arlington, VA 22209-2403	Chris Baker Manager, Ozone Unit EPA 477 Collins Melbourne, Victoria 3000 AUSTRALIA
J. P. Milhone CE-40 U.S. Department of Energy 1000 Independence Avenue SW Washington, DC 20585	Robert L. Muston Environmental Products Amalgamated Pty. Ltd 5-25 Calaster Street. P.O. Box 191 Shepparton, Victoria AUSTRALIA
J. D. Ryan CE-422 U.S. Department of Energy 1000 Independence Avenue SW Washington, DC 20585	M. Narodoslawsky, PhD Institute of Chemical Engineering Graz University of Technology 8010 Graz AUSTRIA
T. Statt CE-422 U.S. Department of Energy 1000 Independence Avenue SW Washington, DC 20585	M. Schneeberger Vorst. Oberoesterrische Kraftwerke AG, OKA Boehmerwaldstrasse 3 4020 Linz AUSTRIA

No. of
Copies

Alberto Carrizo
Climax Industries
Av. Jose Pereira Lopes 250
13560 Sao Carlos
BRAZIL

Ernesto Heinzelmann
Embraco SA
Rua Rui Barbosa, 1020
89200 Joinville
BRAZIL

Paulo Vieira
Dupont
A1 Itapecuru 506-Alfazil
Cepo 6400 CP 26
BRAZIL

Paulo Vodianitskaia
Systems Engineering
Consul SA
Caixa Postal 267/269, CEP89200
89200 Joinville
BRAZIL

Michael R. Ascough
Du Pont Canada
Box 2200, Streetsville
Mississauga,
Ontario L5M2H3
CANADA

Stephen Griffin
W. C. Wood Co., Ltd.
P.O. Box 750
5 Arthur Street S.
Guelph N1H 6L9
CANADA

Paul A. LaRue
CRIQ
Post Office Box 9038
Ste-Foy, Quebec G1V 4C7
CANADA

No. of
Copies

Jeffrey Linton
Nat'l. Res. Council Canada
Bldg. M17, Montreal Rd.
Ottawa, Ontario K1A0R6
CANADA

Keith Snelson
Nat'l. Res. Council, Canada
Bldg. M17, Montreal Rd.
Ottawa, Ontario K1A 0R6
CANADA

Art Stelzig
Environment Canada
351 St. Joseph Blvd.
Hull Quebec, Ontario K2H5N9
CANADA

Yu Bing Feng, PhD
Assistant Professor
AC Group, Department Power
Mach
Zi'an Jiaotong University
Xi'an (Shaanxi)
CHINA

Ren Jinlu
Refrigeration Group
General Mach. Research
Institute GMRI
Shushan Road, P.O. 230031
Hefei
CHINA

H. C. Aagaard
Danish Technological Institute
Gregersenszej, P.O. Box 141
Taastrup, DK
2630 DENMARK

Per O. Danig
Refrigeration Laboratory
Technical University,
Bldg. 402B
2800 Lyngby
DENMARK

<u>No. of Copies</u>	<u>No. of Copies</u>
Asger Gramkow A'Gramkow Augustenborg Landezej 19 Sonderborg, DK DENMARK 6400	P. E. Hansen, PhD Danfoss GmbH Reliability and Labs Mads Clausenstrasse 7 2390 Flensburg GERMANY
Erik Korfitsen Development Department Industry Division Sabroe Refrigeration A/A P.O. Box 1810 8270 Højbjerg DENMARK	Ullrich Hesse University of Hannover Wel Fen Garten 1A Hannover, FR 3000 GERMANY
C. Brian Dehon Service 26 Ave. duPetit Parc Vincennes 94683 FRANCE	Warner Jensen Leberstrasse 3 2390 Flensburg GERMANY
Denis Clodic Armines 60, Bd St. Michel 75272 Paris 75006 FRANCE	Michael Kauffeld University of Hannover Isti. fur kaltetech Welfangarten 1A D-3000 Hannover 1, GERMANY
Brian Ellis Protonique P.O. Box 78 Romanel-Sur-Luasanne CH-1032 FRANCE	Michael Kauffeld University of Hannover Isti. fur kaltetech Welfangarten 1A D-3000 Hannover 1, GERMANY
H. D. Baehr, PhD, hc Institute of Thermodynamics University of Hannover Callinstrasse 36 3000 Hannover 1 GERMANY	Horst Kruse, PhD Inst. Kaeltetechnik University of Hannover 3000 Hannover 1 GERMANY
Ingrid Hanhoff-Stemping Umweltbundesamt Bismarck Platz 1 1 Berlin 33 GERMANY	Gunter Langer Battelle Europe Am Romerhof 35 6000 Frankfurt - Main 90 Frankfurt GERMANY

<u>No. of Copies</u>	<u>No. of Copies</u>
Klaus W. Menze Wieland-Werke AG Post Office Box 4240 Ulm, D-7900 GERMANY	S. F. Pearson, PhD Star Refrigeration Ltd. Thornlie Bank, Ind. Estate Glasgow G46 8JW Scotland UNITED KINGDOM
J. F. Nonenmacher, PhD Sudd Kuehlerfabr Behr GmbH Mauserstrasse 3 7000 Stuttgart 30 GERMANY	Richard Powell ICI Chems. & Polymers Ltd. P.O. Box 8, The Heath Runcorn, Cheshire WA7 4QD England UNITED KINGDOM
Rolf Wallner, PhD Dept. Head Predevelopment Sudd Kuehlerfabr Behr GmbH Mauserstrasse 3 7000 Stuttgart 30 GERMANY	Dr. James T.R. Watson National Engineering Laboratory Heat Transfer and Properties of Fluids Division East Kilbride Glasgow G75 0QU Scotland UNITED KINGDOM
Russell Benstead Electricity Research and Development Centre Capenhurst CH1 6ES England UNITED KINGDOM	Fiona Weir Friends of the Earth 26-28 Underwood Street London N17JQ England UNITED KINGDOM
Peter Cooper Sainsbury's Place Wakefield House Stanford Street London SE1 9EL England UNITED KINGDOM	A. Wilson Lloyds Register of Shipping Lloyds Register House 29 Wellesley Road Croydon CR0 2AJ England UNITED KINGDOM
Robert Heap SRCRA 140 Newmarket Road Cambridge CB5 8HE England UNITED KINGDOM	R. S. Agarwal, PhD Department of Mechanical Engineering Indian Institute of Technology Hauz-Khas New Delhi 110016 INDIA
David Butler Higher Science Officer Bldg. Research Establishment Garston, Watford Herts WD27JR England UNITED KINGDOM	

No. of
Copies

S. C. Bhaduri, PhD
Institute of Mechanical
Engineering
Indian Institute of Technology
Powai
Bombay 400 076
INDIA

Sukumar Devotta, PhD
Assistant Director
Chemical Engineering Division
National Chemical Laboratory
Pune 411 008
INDIA

Gianfranco Angelino, PhD
Energy Department
Politecnico di Milano
Piazza Leonardo da Vinci, 32
20133 Milano
ITALY

Tadatoshi Banse
Manager, Engineering
Department 60335
Toshiba Co., Consumer Products
1-1-1 Shibaura, Minato-Ku
105-01 Tokyo
JAPAN

Yoshiyuki Ishii
Hitachi, Ltd.
New Marunouchi Bld.
Marunouchi
I-Chome Chiyodaku
Tokyo
JAPAN

Tadaaki Gicho
Seiko Epson Corp.
1-17-1 Tsukahara
Chino-shi, Nagano 391
JAPAN

No. of
Copies

Hiroaki Hata
Nitachi, Ltd.
800 Tomita
Ohira-machi
Shimotsuka-gun, Tochi 329-44
JAPAN

Nobuo Ishikawa, PhD
Tokyo Institute of Technology
Director, F&T Research Center
2-9-3 Akaska, Minato-Ku
Tokyo 107
JAPAN

Atsuo Kishi
Hitachi
2520 Oaza-Takaba Katsuta-Shi
Ibaraki-Ken 312
JAPAN

Takeo Komatsubara
Sanyo Electric Co., Ltd.
180 Sakata,
Oizumi-machi
Ora-gun, Gumma 370-05
JAPAN

Shifeiki Komatusuzaki
Hitachi
4026 Kuji-Cao Hitachi-Shi
Ibaraki-Ken 319-12
JAPAN

Katsumi Matsubara
Hitachi, Ltd.
502 Kandatsu-cho
Tsuchiura, Ibaraki 300
JAPAN

Tooru Matsui
Matsushita Elec. Inc. Co.
Electrochem. Matls.
Research Lab.
Moriguchi, Osaka 570
JAPAN

<u>No. of Copies</u>	<u>No. of Copies</u>
Kenji Matsuki Man. Energy Conversion Lab. Engineering Center Sharp Co., 282-1 Hajikami, Shinjo-Cho, Kitakatsuragi-Gun Nara 639-21 JAPAN	Seiji Sumikawa Man. Comp. Engineering Department Deisel Kiki Ltd., Co. 39, Sendai, Konon-machi Osato-gun Saimata-Ken 360-01 JAPAN
Masahiro Moguchi Daikin Industries, Ltd. 1-1 Nishi-Tsuya Settsu-Shi Osaka 566 JAPAN	Kazumi Tsukuhara AC/Refrigeration Works Mitsubishi Heavy Industry 3-1 Asahimachi, Mishiwajima-Cho, Nishikasugai-Gun Aichi-Ken 452 JAPAN
Yoshiyuki Morikawa Matsushita Elec. Ind. Co 2275-3 Noji-Cho Kusatsu-Shi Shiga 525 JAPAN	Shigehiro Uemura Daikin Ind., Ltd. 1304 Kanaoka-cho Sakai-shi, Osaka 591 JAPAN
Hisao Nunokawa Calsonic Corp. 7-3 Sakae-cho Sano-shi, Tochigi 327 JAPAN	Koichi Watanabe, PhD Professor Department of Mechanical Engineering Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohok-Ku Yokohama 223 JAPAN
Hisao Sagara Sanyo Electric Co., Ltd. 180 Sakata Oizumi-Cho Ora-Gun Gumma 370-05 JAPAN	Nobohiko Yokota Director Engineering Department Japan Refrigeration & AC Ind. Ass. Kikai Shinko, Bldg. 201 3-5-8, Shibakoen, Minato-Ku Tokyo 105 JAPAN
Kazuo Sahara Daikin Industries, Inc. 1304 Kanaoka-Cho Sakai-Shi Osaka 591 JAPAN	

<u>No. of Copies</u>	<u>No. of Copies</u>
Masaharu Yoshikawa Sharp Corp. 282-1 Hajikami Shinjo-Cho Nara 639-21 JAPAN	Paul Vermeulen TNO Div. of Tech. for Soc. P.O. Box 342 Apeldoorn, 7300 AH NETHERLANDS
James F. Kanyua, PhD Department of Mechanical Engineering University of Nairobi P.O. Box 30197 Nairobi KENYA	Gert Schouten Soltec Manufacturing P.O. Box 143, 4900 AC Ooster Hout Karolusstraat 20 NETHERLANDS
Youn Yong Lee Director CFC Alternatives Technical Center Korea Inst. Science & Technology 130-650 P.O. Box 131 Cheongryang, Seoul KOREA	Lindsey Roke Fisher & Paykel, Refrigeration Division 78 Springs Road Greenmount, Auckland NEW ZEALAND
Rene Altimirano Direccion General de la Prevencion y Control de la Contaminacion Ambiental Subsecretaria de Ecologia SEDUE Rio Elba No. 20 Piso 16, Colonia Cuauhtemoc 06500 Mexico D.F. MEXICO	Hans Haukas, PhD Refrigeration Inst. NTH University Kjolborn Vejes 7034 Trondheim NORWAY
Geno Nardini NAYASA Calzada Coltongo, #272 Col. Industrial Zallejo, BS 02300 MEXICO	Peter Neksaa Sintef/NTH Div. of Refrig. Eng. N-7034 Trondheim NORWAY
Lambert Kuijpers, PhD Transport Phenomena Research Philips Research Labs Eindhoven 5600 JA NETHERLANDS	Per Samuelsen Finsam Int. Ltd. P.O. Box 3065 EI Oslo 0207 NORWAY
	Erik Schau Unitor Ships Service P.O. Box 600 Kolbotn 1411 NORWAY

No. of
Copies

Thore Berntsson, PhD
Inst. for Heat Technology
Chalmers University
41296 Gothenborg
SWEDEN

Anders Lindborg
Frigoscandia AB
Technical Center, Box 917
25109 Helsingborg
SWEDEN

Bjorn E. Palm
Royal Inst. of Technology
Dept. of Appl. T/R
Stockholm, S-100 44
SWEDEN

Lennart Vamling
Chalmers Univ. of Tech.
Dept. of Heat/Power
Gothenburg, S-412 96
SWEDEN

Thomas H. Christie
DuPont De Nemours Inter.
Post Office Box 50
2, Chemin Du Pavillon.
Le Grand-Saconnex, 1218
SWITZERLAND

Peter Moser
Sulzer Bros. Ltd.
UB Sulzer Infra, Refr. Techn.
8401 Winterthur
SWITZERLAND

Tzong-Deng Young
Plastics Division
Formosa Plastics Corp
100, Swei-Kuan Rd.
Jen-wu Kaohsiung Hsien
TAIWAN

ONSITE

DOE Richland Field Office

D. R. Segna

23 Pacific Northwest Laboratory

W. B. Ashton (5)

R. S. Butner

L. D. Kannberg

T. J. Marseille

S. C. McDonald

D. L. Shankle (5)

A. G. Thurman

S. A. Weakley

J. K. Young

Publishing Coordination

Technical Report Files (5)

END

**DATE
FILMED**

7/7/92

