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ABSTRACT

I discuss a number of interrelated hadronic spin effects which test funda-
mental features of perturbative and non-perturbative QCD. For example,
the anomalous magnetic moment of the proton and the axial coupling g4
on the nucleon are shown to be related to each other for fixed proton
radius, independent of the form of the underlying three-quark relativistic
quark wavefunction. The renormalization scale and scheme ambiguities
for the radiative corrections to the Bjorken sum rule for the polarized
structure functions can be eliminated by using commensurate scale rela-
tions with other observables. Other examples include (a) new constraints
on the shape and normalization of the polarized quark and gluon struc-
ture functions of the proton at large and small zpj; (b) consequences of the
principle of hadron helicity retention in high zp inclusive reactions; (c)
applications of hadron helicity conservation to high momentum transfer
exclusive reactions; and {d) the dependence of nuclear structure functions
and shadowing on virtual photon polarization. I also discuss the impli-
cations of a number of measurements which cre in striking conflict with
leading-twist perturbative QCD predictions, such as the extraordinarily
large spin correlation Axy observed in large angle proton-proton scatter-
ing, the anomalously large pr branching ratio of the J/, and the rapidly
changing polarization dependence of both J/4¢ and continuum lepton pair
hadroproduction observed at large zp. The azimuthal angular dependence
of the Drell-Yan process is shown to be highly sensitive to the projectile
distribution amplitude, the fundamental valence light-cone wavefunction
of the hadron.
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1 Introduction and Overview

A central goal in the study of quantum chromodynamics is to understand the
non-perturbative structure of hadrons in terms of their quark and gluon degrees
of freedom. The polarization properties of the nucleons are described globally
in terms of their magnetic moments and axial coupling constants. Additional
constraints on nucleon spin structure are obtained from e:.clusive processes, par-
ticularly the ratio of helicity-changing (Pauli) and helicity-conserving (Dirac) form
factors.
~ The most direct tool and sensitive test for probing the quark and gluon sub-
structure of the proton is polarized-lepton polarized-target deep inelastic scat-
tering. By using a combination of polarized light nuclear targets, experimen-
talists are now able to extract detailed information on the shape and magni-
tude of the helicity-dependent nucleon structure functions for each quark flavor:
Au(z, Q?), Ad(z, Q%), As(z,Q?). A combined analysis of recent SMC deuteron
target data from CERN and *He data from the SLAC E142 experiment by Ellis

and Karliner' gives the value
AT = Au+ Ad + As = 0.27 £ 0.11 (1)

for the percentage of proton helicity carried by the sum of all quarks (and anti-

quarks) in the nucleon, and the individual integrated values
Au=0.82+0.04, Ad=—-0.44+0.04, As=-0.111£0.04. (2)

Thus the helicities of the up quarks in the proton are highly correlated with that
of the proton, whereas the down and strange quarks are anti-aligned.

In a naive non-relativistic three quark model of the proton, one would expect
AY = 1. As I will discuss below and in Section 10, relativistic binding of the quarks
reduces the prediction of a three-quark model for A by 25%. In contrast, in the
Skyrme model, in which the nucleon emerges as a spin—% topological soliton of
an effective chiral Lagrangian, one predicts AL ~ 0(1/N.) due to the decoupling
of the SU(3) flavor-singlet axial current’ In more conventional descriptions, one
can obtain a small value for AY if the gluon polarization in the nucleon is large
and positive. The negative value for the strange quark helicity As can then be

generated through perturbative QCD radiative corrections; i.e. the gluon anomaly.
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However it should be emphasized that the extracted values for AY and As
are somewhat uncertain because of higher twist corrections, Regge extrapolations,
QCD radiative corrections, and other uncertainties which I will discuss in Sections
6-9. 1 will report results from the most recent experiments, including a new and
preliminary analysis from the SMC experiment using polarized muons scattering
on polarized proton targets in Section 5. The SLAC-Yale, EMC, and recent SLAC
E142 measurements are reviewed in detail in this volume by Emlyn Hughes.3

Theory predicts that the polarization-dependent measures of the nucleons are
interrelated in subtle ways; for example, the first moment of the nucleon structure
functions are related to the nucleon axial couplings through the Bjorken and
Ellis-Jaffe sum rules, and the anomalous magnetic moments are related through
the Drell-Hearn-Gerasimov sum rule to logarithmic integrals of spin-dependent
photoabsorption cross sections. In fact, as emphasized by loffe et al.:i the DHG
sum rule is the analytic extension of the Bjorken sum rule evaluated at zero photon
virtuality. This relation provides important constraints on the magnitude of the
coherent higher-twist contributions to the Bjorken and Ellis-Jaffe sum rules at low
Q2. 1 review the DHG constraint in Section 7.

Polarization-sensitive scattering experiments can also test dynamical princi-
ples such as perturbative QCD factorization and hadron helicity conservation by
tracing the flow of particle helicities through the reactions and measuring spin cor-
relations. Although much of the observed phenomena can be understood within
standard QCD mechanisms, there are a number of extraordinary experimental
anomalies, such as the large and sudcen jump in the spin-spin correlation Ayn
observed in large angle elastic proton-proton scattering, the violation of hadron
- helicity conservation observed in vector-pseudoscalar decays of the J/1, and the
striking pattern of polarizations seen in massive lepton hadroproduction, both in
the continuum, and at the J/%. In Section 17 I discuss recent work with Branden-
burg, Khoze and Miiller which shows how azimuthal correlations in the Drell-Yan

process can provide direct information on hadron structure at the amplitude level.

A simple language for encoding the helicity structure of relativistic composite
hadrons is given by the light-cone Fock expansion. In this framework, the hadron
eigenstate is written as a sum over free quark and gluon Fock states with the

same global quantum numbers. The projection on the n-particle Fock state is the

3

light-cone wavefunction

Yn(Tis ki, Ai) - (3)

Here
K KV +

PT P+ Pr “)

T; =

is the longitudinal light-cone fraction, the k| ; are the relative transverse momenta,
and the ); are the quark and gluon helicities. The wavefunction ¥p{z;, ki, Ai)
is the probability amplitude for the hadron to be in this n-particle Fock state
at fixed light-cone time 7 = t — z/c with particle momenta pt = z;P* and
pri=ziPy + ki

The central advantage of the light-cone description is that it allows a wavefunc-
tion interpretation of hadrons as composite systems of a relativistic quantum field
theory. One is not restricted to states of fixed particle number; all quantum fluctu-
ations consistent with conservation laws and global symmetries are allowed” The
description of the hadron is boost invariant, since the wavefunction ¥n(zi. k1, Ai)
is independent of the hadron four-momentum. Form factors are simple convolu-
tions of the light-cone wavefunctions. More generally the light-cone wavefunctions
act as the interpolators between hadron matrix amplitudes and quark and gluon
scattering amplitudes. A more complete discussion is given in the Appendix.

Thus given the light-cone Fock wavefunctions, one can compute form factors,
polarized and unpolarized structure functions, decay constants, exclusive ampli-
tudes, higher twist matrix element coefficients, etc. In principle, one can deter-
mine the light-cone wavefunctions for both bound states and continuum scattering
states in QCD by diagonalizing the light-cone Hamiltonian as an eigenvalue prob-

lem on the free light-cone Fock basis:

Hic|¥) = M*|¥) (5)

(m|Hrcln) {n]¥) = M? (m|¥) . (6)

In fact this has been done on a discrete basis assuming periodic boundary con-
ditions for a number of simpler quantum field theories such as QCD(1+1) and
QED(1+1). Recently, Klebanov and Dalley6 have used the discretized light-

cone quantization (DLCQ) method to solve more complicated theories such as
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QCD(1+1) with adjoint matter representations. There also has been strong
progress in solving field theories displaying spontaneous symmetry breaking. The
complications of the equal-time vacuum is replaced by constraint equations for
the non-dynamical zero modes of the theory.

The use of light-cone wavefunctions also allows one to study relations between
the magnetic moment and the axial coupling of the nucleon which follow from its
underlying relativistic quark substructure. For example, Schlumpf and I" have
found that the relationship between y, and g4 is controlled by the kinematics of
the Melosh transformation connecting the rest frame wavefunction to the light-
cone, and it is essentially independent of the dynamical form of the light-cone wave
function. At large proton radius, p, and g4 are given by the usual nonrelativistic
formulae. At small radius, g, becomes equal to the Dirac moment, as demanded
by the Drell-Hearn-Gerasimov sum rule. In addition, as R;—0, the constituent
quark helicities become completely disoriented and g4—0. At the physical radius
R; = 0.76 fm, one obtains the experimental values for both u, and g4, and
the helicity carried by the valence u and d quarks are each reduced by a factor
~ 0.75 relative to their non-relativistic values. Thus for the proton’s empirical
size MpR; = 3.63, the three-quark model predicts Au = 1, Ad = —1/4, and
AL = Au + Ad = 0.75. Although the gluon contribution AG = 0 in this model,

the general sum rule’

1
%AE+AG+ L=3 1)

is still satisfied, since the Melosh transformation effectively contributes to L.
It should be emphasized that deep inelastic polarized structure function and
g1(z,Q?) and its sum rules actually measure the quark helicity content of the
nucleon, not the rest frame quark spin projection S3.

Although the Q? evolution of deep inelastic structure functions is well un-
derstood from perturbative QCD, we only have general constraints on the per-
turbative and nonperturbative dynamics which control the shape of the helicity-
dependent quark and gluon distributions. For example, in order to insure posi-
tivity of fragmentation functions, the distribution functions G,/s(x) must behave
as an odd or even power of (1 — z) at z—1 according to the relative statistics
of a and b° Thus the gluon distribution of a nucleon must have the behavior:

Ggn(z) ~ (1 - z)2k at z—1 to ensure correct crossing to the fragmentation

function Dpyj¢(2). On the other hand, in the z—1 limit, a constituent of the
proton is far off-shell and the leading behavior in the hadron wavefunctions is
dominated by perturbative QCD contributions to the interaction kernel. We thus
may use the minimally connected tree-graphs to characterize the threshold de-
pendence of the structure functions. The gluon distribution of a hadron is often
assumed to be radiatively generated from the QCD evolution of the quark struc-
ture functions beginning at an initial scale Q3. The evolution is incoherent; i.e.
each quark in the hadron radiates gluons independently. However, as can be seen
in the light—cone Hamiltonian approach, the higher Fock components of a bound
state in QCD contain gluons at any resolution scale. Furthermore, the exchange
of gluon quanta between the bound-state constituents provides an interaction
potential whose energy-dependent part generates a non-trivial non-additive con-
tribution to the full gluon distribution Gy/H(I,Qg). In Sections 11 and 12 T will
discuss recent work by Burkardt and Schmidt and myself9 which develops an-
alytic representations of polarized quark and gluon distributions in the nucleon.
The analysis incorporates general constraints obtained from the requirements of
color coherence of gluon couplings at  ~ 0 and the helicity retention properties
of perturbative QCD couplings at  ~ 1.

One of the most important tests of QCD is the Bjorken sum rule. An essential
part of the QCD analysis is the evaluation of the perturbative radiative corrections
to structure function moments. However, there is considerable uncertainty in
the radiative corrections, particularly at low momentum transfer due to scale
ambiguities, scheme dependence, and higher twist corrections. In these lectures I
will discuss a new approach based on work with Hung Jung Lu'® in which the
scale and scheme dependence of perturbative QCD predictions can be eliminated
by relating observables to each other. For example we show in Section 15 that
perturbatively calculable observables in QCD, including the annihilation ratio
R.+.-, the heavy quark potential, and radiative corrections to structure function
sum rules, are related to each other at fixed relative scales. QCD can thus be tested
in a new and precise way by checking that the radiative corrections to the Bjorken
sum rule and the radiative corrections to the annihilation cross section track both
in their relative normalization and in their commensurate scale dependence.

Although the net correlation of the quark helicity with the proton belicity in

inclusive reactions is apparently small, the spin correlations of large angle elastic



pp scattering nevertheless display a dramatic structure at the highest measured en-
ergies /s ~ 5 GeV ! These measurements are in strong conflict with the expecta-
tions of perturbative QCD which predicts a smooth power-law fall-off for exclusive
helicity amplitude with increasing momentum transfer? The strong polarization
correlations observed in pp scattering are clearly of fundamental interest, since
the microscopic QCD mechanisms that underlie the spin correlations between the
incident and final hadrons must involve the coherent transfer of helicity informa-
tion through their common quark and gluon constituents. The implications of the
spin correlation measurements will be discussed in Section 18.

A basic but non-trivial property of the gauge couplings of PQCD is “hadron
helicity retention”: a projectile hadron tends to transfer its helicity to its leading
particle fragments. A particularly interesting consequence is the prediction that
the J/v¢ and the continuum lepton pairs produced in pion-nucleus collisions will
be longitudinally polarized at large z r. Helicity retention also provides important
constraints on the shape of the gluon and quark helicity distributions. In the large
zr domain, with Q?(1 — r) fixed, leading twist and multi-parton higher twist
processes can be of equal importance.33 In the case of large momentum transfer
exclusive reactions, the underlying chiral structure of perturbative QCD predicts
that sum of hadron helicities in the initial state must equal that of the final
state.* Although hadron helicity conservation appears to be empirically satisfied
in most reactions, the most interesting cases are its dramatic failures such as the
large branching ratio for J/¢»—pn. 1 will discuss the implications of this failure of
perturbative QCD predictions in Section 17.

In these lectures I will give a survey of just a few of the many areas of polariza-
tion studies possible in hadron physics. Although most of the topics discussed in
these lectures are concerned with quark or gluon helicity, there are also interesting
linear polarization predicted by the theory, such as in T decays, or in the planar
correlations of four-jet events in e*e™ annihilation. In addition, the oblateness >
of a gluon jet can be used to determine its axis of linear polarization. One of the
most promising areas in the future of polarization studies will be the analysis of
spin transfer from the initial electron to the final state hadrons and jets in ete™

annihilation.

2 Helicity Structure Functions of the Nucleon

The distributions of quark helicities in a polarized nucleon are directly de-
termined from measurements of deep inelastic polarized-lepton-polarized nucleon
scattering. The key measure is the cross section asymmetry for parallel versus

antiparallel lepton and nucleon longitudinal polarizations:

o a;:”m) - a}_"(m' ®)

a3 P(11) + o7 P(1T)
One can then identify the leading-twist helicity structure function

Ax(z,Q%) Fa(z, Q*
g1(z, Q%) = Az, Q) Fi(z,Q) = 211(.?1 3 ;Z(::(IQS] : ®)

where R = az.p/a}.p. As usual Q2 = —¢% and 2Mv = 2p-g. and 7 = Tpj =
Q*/2p-q.
The ¢) structure function has a simple probabilistic interpretation in the par-

ton model. In the Bjorken limit with fixed zy;,
91(2,Q%) = § Zyella(z. Q%) — (2. Q%) (10)

where q1(z,Q?) = Gy, 1p (25 Q% + G';h/m(:z:, Q?) is the number distribution of
quarks (plus antiquarks) with helicity aligned with that of the proton. The deep
inelastic kinematics sets the light-cone momentum fraction r = k*/p* of the
struck quark in the hadron wavefunction equal to the Bjorken variable rp;. The
individual up and down quark helicity distributions in the proton u(z, Q%) and
d(z,Q?) can then be obtained, modulo small nuclear and isospin-symmetry cor-
rections, by combining proton target and deuteron or 3He data.

1t is also apparent from the light-cone Fock-space description of the proton
(see Appendix) that the integral of the quark helicity distributions can be obtained

at low Q2 from forward matrix elements of the axial current:
(plAllp) = (plgrursalp) = Ag Su(p). (11)

where S, is the proton spin vector. The notation Aq sums both the quark and

antiquark contributions in the proton.



The axial current of the quarks can also be written

TYu¥5q = TRVuqR — TLVRILs (12)

where R,L = %(l + v5) projects the right- and left-handed chiral components
of the quark fields. For massless quarks, chirality coincides with helicity. If we
choose the Drell-Yan light-cone frame with Q% = 0 and the ¢ = + component of
the axial current, then its matrix element in the light-cone Fock space is diagonal
in particle number. The axial current matrix element thus measures the first

moment of the quark helicity distributions:

1
Ag= / dafgr(z.Q%) — a1(z, Q%) (13)
0

Note that this moment has zero anomalous dimensions. The axial coupling of
the nucleon measured in 3-decay n—pe~ 7, together with isospin symmetry, thus

determines

Au— Ad = g4 = 1.2573 £ 0.0002. (14)

Similarly hyperon decay plus SU(3) symmetry determines the combination
Au+ Ad — 2As = 0.59 £ 0.02. (15)

A discussion of the uncertainties in these values due to the assumption of isospin
. .
and SU(3)-flavor symmetry has been discussed by Lipkin.~ The neutron values

are obtained from isospin symmetry.

3 The Bjorken Sum Rule

Much of our understanding of the helicity structure of hadrons comes from
rigorous constraints, such as the Bjorken sum rule for the integral of the spin
dependent structure functions, and the Drell-Hearn-Gerasimov sum rule, which
relates the anomalous magnetic moment of a composite system to an integral over
the photoabsorption cross section. In fact, as we will discuss below, the DHG and

Bjorken sum rules can be regarded as low and high Q? limits of one fundamental

measure.

The most celebrated application of current algebra is the Bjorken sum rule 7 for
polarized lepton-polarized nucleon scattering. The sum rule is based on the fact
that the matrix element of the commutator of the electromagnetic currents for
polarized protons is given by the proton matrix element of the axial current. For

the isospin-changing proton-neutron difference, this gives
1 (@
1 «a
/dz[gf(z,Qz) — Mz, QY] = G 94 [1 - —3—7r-——) + .. ] . (16)
0

The Bjorken sum rule has the remarkable feature of relating the first moment of
the helicity-dependent structure functions of the nucleons, which are measured
at high Q?, to a nearly static quantity, the axial coupling constant g4 which is
measured at Q2 ~ 0 in the 8 decay of the neutron: This sum rule has played
an historic role in high energy physics, providing the first hint that the structure
functions must become essentially Q?—independent at fixed z = 2—%%. Bjorken’s
derivation was based on current algebra, with the essential ansatz that the current
commutators have the same structure as the currents of free quarks. However, as
in the case of the Bjorken scaling of the parton model, the Bjorken sum rule is
only a first approximation; radiative corrections of leading twist (powers of as)
and higher twist {powers of 1 /Q?) also appear. In practice, there are a host of
important theoretical issues that must be understood to actually test the Bjorken
sum rule. In the following I will make a brief survey of some of the underlying
physics.

The radiative corrections to the Bjorken sum rule reflect the fact that gluon
radiation induced by the scattering process eg—eq depolarize the quark helicity.
According to perturbative QCD, deep inelastic lepton-nucleon scattering at high
©? can be identified with lepton scattering on effectively free quark currents of the
target. A crucial assumption is that the large distance effects of confinement of the
quarks in the final state can be neglected—the important invariant length scales
which are probed in the forward virtual Compton amplitude are of order 1/Q.
The Bjorken-scaling of the structure functious is then equivalent to the impulse
approximation; i.e. the absence of final-state interactions of the outgoing quark
with the spectators of the target nucleon. In light-cone gauge A* = 0 the final

state gluon interactions between the active and spectator system give corrections
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of order ¢4 /Q?, since the exchanged gluon momenta #% are finite. However, the
contributions from gluons associated with vertex corrections and gluons emitted
from the struck quark with momenta £2 ~ Q? are only logarithmically suppressed.
Thus one obtains a perturbative series in powers of a,(Q) from the leading order
corrections. The leading twist corrections are universal since they are the same
whether the target is a quark or a hadron. The lowest order correction in o, was
first obtained by Kodaira!® The perturbative QCD corrections have now been
evaluated by Larin, Tkachev, and Vermaseran 19 through order o3(Q) in M35
scheme.

The numerical value of the perturbative corrections to any finite order de-
pends on the choice of renormalization scheme e.g., MS and on the choice of
renormalization scale. In Section 15 I will discuss recent work done with Hung
Jung Lu'® in which we show that the scale ambiguity can be consistently resolved
for any choice of scheme through the first two orders of perturbation theory by us-
ing the methods of Ref. 20. We also show that the scale and scheme ambiguity of
the leading twist PQCD radiative corrections can be eliminated by relating these
corrections to the radiative corrections for other observables. These “commen-
surate scale relations” greatly diminish the uncertainty in the perturbative QCD
corrections. In addition, we note that the radiative corrections to the Bjorken sum
rule are identical to those of the Gross-Llewellyn Smith sum rule—up to small
corrections of order a3(Q?).

Thus a basic test of QCD can be made by considering the ratio of the Gross-

Llewellyn Smith, and Bjorken sum rules: !

_3[ e [FP(,0) - AP Q)
= y% f(] dr [g’l’(z, QZ) _g;,(x’ Q2)] .

Rorrs ;i (@ ¢) (17)

Since the Regge behavior of the two sum rules is similar, the empirical extrapo-

lation to € — 0 should be relatively free of systematic error. Moreover, PQCD

predicts
2 AZQCD
Rgrispi(@°,e-0)=1+0 (a3(@) +0 (—_Qg ) ) (18)

i.e. hard relativistic corrections to the ratio of the sum rules only enter at three

loops. Thus measurements of the ratio of the sum rules could provide a remarkably
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complication-free test of QCD-—any significant deviation from
RGLLS/B,’(Q27 ¢—0) = 1 must be due to higher twist effects which should vanish
rapidly with increasing Q2.

4 The Ellis-Jaffe Sum Rule

The Bjorken sum rule applies to the isospin-non-singlet proton-neutron dif-
ference, and it is thus insensitive to the helicity carried by strange quarks in the

proton. We can also apply the same analysis to the proton alone:

/dzg"(a- Q) =1 —A += Ad+ A] [1+0a‘(Q) g (19)

The radiative corrections to this sum rule are only known to order 05.22 If one
assumes that the strange quark contribution As in the proton is small, then the
above result gives the original Ellis-Jaffe sum rule”

One also obtains a non-zero contribution to the sea quark helicities if the
gluons in the nucleon are polarized.2 * This contribution arises from the quark loop
contribution to g*y*—g¢*y* in the forward virtual Compton amplitude; i.e. from

the scattering of the leptons on the quarks arising from the gluon’s substructure:

Ag= QS(Q )

Ag(Q%). (20)
The result is independent of the scale @ since the product as(QH)Ag(Q?) is a
renormalization-group invariant. However, the actual value for Ag(Q?) depends
on the internal non-perturbative structure of the proton. Since it is isospin-
invariant, the gluon anomaly contribution cancels in the evaluation of the Bjorken
sum rule.

The “gluon anomaly” contribution adds to any “intrinsic” sea-quark polar-
ization inherent to higher Fock states in the bound state wavefunction’> The
anomaly contribution only arises if the gluon virtuality is large compared to the
mass of the sea quark; thus the analysis requires the introduction of a minimum
transverse momentum cutoff for the gluons, which is a gauge-dependent separation

of scales”® As noted by Carlitz, Collins, and Muel]er,27 it is possible in principle
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to physically isolate the anomaly contribution by demanding a coincident high pr
jet in the nucleon fragmentation regime.
In the next section I will discuss theoretical constraints on the shape of the

quark and gluon helicity distributions which follow from general QCD principles.

5 Comparison of Experiment and Theory for the
QCD Helicity Sum Rules

A complete discussion of the SLAC-Yale, EMC, and the most recent SLAC
E142 and CERN SMC measurements of the polarized structure functions of the
nucleons can be found in Emlyn Hughes’ contribution to this volume and in a
recent presentation of the SMC data by Vernon Hughes.28 I will only summarize

. 29
the main results here.
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Figure 1. Experimental values for the integrals I} and I'? of the helicity-dependent struc-
ture functions, compared with the Bjorken sum rule prediction at Q2 = 5 GeV2. From Ref.
28.
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The experimental values for the sum rule integrals from the original EMC/SLAC
measurements, together with the recent results from the E142 and SMC experi-
ments are summarized in Fig. 1. The predicted value for the Bjorken sum rule
is T} — T} = £& = 0.209(1) without radiative corrections. Taking a, = 0.26(2)
in MS scheme at Q% = 5 GeV?2, the leading twist radiative corrections through
order a? reduce the predicted value to I'? — T =0.185(4) at Q% = 5 GeV?. This
prediction for the Bjorken sum rule at Q% = 5 GeV? appears as a diagonal band
in the plot of I'} versus I'". The recent results from E142 for the neutron asym-
metry extracted from a 3He target are represented as a band for I’ 1. The recent
SMC deuteron target measurement appears as a constraint on the sum F’l’ +T7.
Within errors of order 15%, the experiments do not appear to be in conflict with
the Bjorken sum rule.

However, there is an possible conflict with the leading-twist Ellis-Jaffe predic-
tion. The preliminary value from the recent measurement of the Spin Muon Col-
laboration for proton targets gives I} (SMCQ? = 10.5 Ge\’z) = 0.152+0.015(stat )+
0.018(syst), where the systematic error includes uncertainties from the Regge ex-
trapolation to 2—+0. The predicted value, including the leading order correction,
but neglecting strange quarks, is I} = 0.17740.010 at Q2 = 10.5 GeV?. The com-
bined data from all of the experiments gives I (World) = 0.145 + 0.01 £ 0.012.
This discrepancy with the predicted value I? =0.172+0.010 at Q% = 5 GeV? can
be taken as evidence for a polarized strange quark contribution in the nucleon.
However, as emphasized by Burkert and Ioffe, higher-twist corrections could sig-

nificantly reduce the predicted value.

Figure 2 presents another representation of the data, assuming the validity of
the Bjorken sum rule, as well as the constraint from hyperon decay Au + Ad —
2As = ¥ — 3As = 0.59(2). The figure shows that the E142 measurement of the
neutron asymmetry is consistent with a small strange quark polarization and a
large value for the total quark polarization £ = Au+ Ad+ As ~ 0.6, of the same
order as the quark momentum fraction. (The non-relativistic three quark model
predicts ¥ = 1.) However, the asymmetry measured by the SMC on polarized
deuteron targets implies a large and negative strange quark polarization in the
nucleon: As ~ —0.2 and correspondingly, a small value for the total quark helicity

E. The recent (preliminary) analysis from the SMC experiment using polarized
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Figure 2. Experimental values for the total quark helicity T and the strange quark helicity
As in the nucleon. The hyperon beta decay constraint is assumed. From Ref. 28.

muons scattering on polarized proton targets gives28 AY = 0.36 £ 0.21, and
As = —0.07£0.06 . (21)

The overall average from the SMC experiments is & = 028 £ 0.11, and As =
—0.0940.04. Any apparent discrepancy between the E142 and SMC measurements
could be due to different low-z extrapolations or large higher-twist corrections,
corrections which would most strongly affect the lower energy data. The new
HERMES gas jet target measurements planned at DESY and the higher energy
Plab = 50 GeV/c E142 experiment now underway at SLAC will hopefully be able
to clarify these issues. In addition, deep inelastic neutrino scattering can also

provide direct information on the polarization of strange quarks in the nucleon.
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6 Higher-Twist Corrections to Deep Inelastic
Scattering

Power-law-suppressed 1/Q" corrections to the Bjorken sum rule, as well as the
structure functions themselves, are an inevitable complication to the physics of
inelastic lepton-proton scattering. For example, at small values of Q% comparable
to 1/R? where R is the separation of quarks in the nucleon, the interference of am-
plitudes where two different quarks are struck must be taken into account. These
contributions give corrections to the Bjorken sum rule of order No(Ng—1)/ Q*R®.
where N is the number of quark constituents in the nucleon > These corrections
can be labelled as intrinsic higher-twist effects corrections since they depend on
the detailed structure of the nucleon itself. The intrinsic higher order contribu-
tions to structure functions give corrections of relative order AZQCI)/(I - )Q%
i.e. they become very large at z—1, since the lepton can scatter on a coher-
ent multi-quark system carryir ; a large fraction of the nucleon momentum. In
particular, the scattering of the lepton on the two valence gunark system gives
a large higher twist contribution to the longitudinal structure function at large
z. Such contributions hLave in fact been observed in the SLAC and NMC deep
inelastic scattering measurements, and are taken into account in the aralysis of
structure function evolution’! Higher twist corrections are also caused by finite
mass effects, finite intrinsic transverse momentum smearing. and insertions due to
vacuum condensates. QCD condensate corrections to the quark and gluon prop-
agators give eztrinsic power-law suppressed corrections, since they are essentially
target-independent. However, as empbhasized by Muel]er,32 such terms are difficult
to distinguish from the Borel sum of perturbative higher order contributions in
as(@?%). Thus it is difficult to identify the condensate corrections unless one first
has control over the leading-twist corrections of very high order.

There is however, a reliable way to estimate the intrinsic higher-twist correc-

tions to QCD sum rules. As shown by loffe et al®. the integrals over the structure

functions
. @] v, ) )
rp,n(Q )— 2‘\'!3" / ';_Glp,n(VvQ ) (22)
Q2 2Mpn

that appear in the Bjorken and Ellis-Jaffe sum rules are—up to a factor of Q*—

precisely the same integrals Ipn = (2515?"/622) Fp,n(Qz) which appear in the
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Drell-Hearn Gerasimov sum rule for the proton and neutron anomalous magnetic

moments: (See Section 7.)
1
Ipn(0) =~ Kpn- (23)
The G, structure function is equal to the polarized photoabsorption cross section

at QQ =0 and
I”,;Gl(x,Q%g](z,Q?) (24)

in the Bjorken limit. The sum rule integrals [p,n(@?) must thus each change sign
as Q? decreases. This identification provides a powerful constraint on the path of
the Bjorken integral [p(Q?) — T 2(Q?) as @ is decreased to the photoabsorption
point. Figure 3, which is taken from a recent analysis by Burkert and Ioﬂ'e‘, shows
that resonance contributions to the Bjorken integral are likely to give significant
corrections to the leading-twist predictions at momentum transfers Q% <2 GeVZ.
It would clearly be interesting to measure the sum rule integrals in the low Q?
domain to see this transition. Note the effect of the resonances and moment
constraints at low Q2 has a very strong effect for the Ellis-Jaffe sum rule for
I'p(@?). It would also be interesting to find similar low Q? constraints for the
Gross-Llewellyn Smith sum rule for the charged-current structure functions.
Recently, Ji and Unrau®® have noted that, technically, the Bjorken sum rule
integral, as defined from the saturation of a current commutator, includes the
elastic nucleon pole contribution at z = 1, whereas the DHG sum rule does not
include this contribution; the DHG integration starts at the inelastic threshold
Sthresh = (Mp+m«)?. However, since experimentalists always define the measured

sum rule integral excluding the nucleon pole contribution, this complication does

. . . 34
not actually occur in practice.

7 The Drell-Hearn-Gerasimov Sum Rule

One of the most important constraints on the spin structure of both elemen-
tary particles and composite systems is the Drell-Hearn-Gerasimov sum rule’>*
The DHG sum rule was originally derived as a constraint on the anomalous mag-
netic moment of spin-1/2 systems by writing an unsubtracted dispersion relation
for the forward helicity-flip Compton amplitude and the low-energy theorem”’

The generalization to arbitrary spin has been made in Refs. 36 and 38.
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Figure 3. Connection between the Bjorken and DHG sum rule integrals I(Q?) for the pro-

ton, neutron and proton-neutron difference. At Q? = 0 the integrals are constrained by the
nucleon anomalous magnetic moments. The curves include an estimate of resonance contribu-
tions up to mass 1.8 GeV. From Burkert and loffe, Ref. 4.

The DHG sum rule for spin-1/2 and spin-1 systems takes the form

w2=t / & p(w) — o4, (25)
hig w

where pq = g1 — 537 and pa = p1 — 47 are by definition the anomalous magnetic
moment for the spin-1/2 and spin-1 systems, respectively, ap (o 4) is the total cross
section for absorption of a photon with spin parallel (antiparallel) to the spin of
the target, and w is the photon energy, with wyy, the threshold energy. The result
is totally general, applying to both elementary fields such as leptons, quarks, W's
and Z’s, as well as composite systems such as baryons, vector mesons, and nuclei.
Although an experimental verification of the DHG sum rule for nucleons has been
carried out,3 9 it would also be interesting to verify this result for deuterons.
The extension of the DHG sum rule analysis to include the quadrupole moment
of a spin-one system requires a low-energy theorem to second-order in the photon

energy. At this order, the polarizability enters the Compton amplitude in addition
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to the quadrupole moment. Hiller and 1*® have shown how one can use a dispersion
. 41 . . .
relation due to Tung  in order to obtain the following sum rule for the non-

forward Compton amplitude:

2

, 2 M\ T
B+ 2 (#a + 7Q,,) = Zl?/@_—qn?(zm fp(s,t) —Im fa(s,t)) (26)

2
Vin

where M is the mass, Qo = Q1 + 57z defines the anomalous quadrupole moment,
v is (s — u)/4, and fp (f4) is the helicity amplitude for parallel (antiparallel)
photon and target spins. The standard Mandelstam variables s, t and u are used.

The optical theorem takes the form
Im fpa=2vopa. (27

Thus in the forward direction, this extended sum rule reduces to the DHG Sum
Rule, with the use of w = v/M. A sum rule that relates @, to total cross sections
does not exist’

One of the most interesting consequences of the DHG sum rule occurs if we
take a point-like limit such that the threshold for inelastic excitation becomes
infinite while the mass of the system is kept finite. In such a case the photoab-
sorption cross section and the integrals that appear in the RHS of the sum rules
vanish as the size R — 0 or the excitation energy vy, — co. Thus in the point-like
limit, the magnetic moment of a spin-half system must approach the Dirac value
p—pp = e/2M up to structure corrections of order M/A, [or (M/A)? if the un-

derlying theory is chiral].4 2

We can apply a similar limit for spin-one composite
systems: Qq — 0 and g — 0. Therefore u; = §7 and Q1 = — g7 are the canoni-
cal moments of a spin-one system. Note that this analysis is non-perturbative. In
the case of the standard model, the integrals in are higher order ~ O(a®); thus
again pw = 3y and Qw = — 37z, up to Schwinger-like radiative corrections of or-
der a/x. Thus in the point-like limit, both the magnetic moment and quadrupole
moment of any spin-one system must approach the canonical values predicted by
electroweak theory for the wi

Note that any spin-half or spin-one system is required to satisfy the extended

DHG sum rule. Thus one cannot distinguish an elementary lepton, quark, W,
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or Z from a compact composite system simply on the basis that its magnetic
moment and quadrupole moment are close to those predicted by the standard
model, since such behavior is also automatically attained for any composite system
with size small compared to its Compton scale, i.e. RM < 1. Specific models for
compositeness of leptons and intermediate vector bosons are discussed by Brodsky
and Drell;‘2 Abbott and Farhi,43 and Claudson, Farhi, and Jaﬁre.44 The DHG sum
rule has also been used to place constraints on quark and lepton compositeness
and excited states in the strong-coupling standard model *® by Jaffe and Ryzakf15

However, the case of the axial coupling of a composite system is more subtle.
As we shall show in the following section, the natural limit of g4 for a composite
spin—% system is limpp—0ga = Anot g4 =1 as required for leptons and quarks
in the standard model. Thus it would be necessary to enforce strict chiral sym-
metry if one wishes to use composite systems simulate the chiral properties of the
elementary fields of the standard model.

Hiller and 1*® have also shown that the ratios of the three electromagnetic
form factors G¢ : Gy : Gg = (1 — %1]) -2 —1 are identical for elementary spin-
one W's and for composite spin-one hadrons in QCD at large momentum transfer
since the leading helicity-conserving amplitude is dominant. Thus at large Q°.
perturbative QCD predicts that the ratio of form factors for deuterons, p*. etc.,
become identical to those of the point-like spin-one fields of the standard model.

One of the most remarkable consequences of natural magnetic moments is
the prediction of null zones in exclusive radiative processes. For example the

tree-graph contributions to the differential cross section

%(uaq‘,f-m =0 (28)
at the special angle cos8 = egfew = 1/3 provided that the W and the quarks
have natural magnetic and quadrupole moments as defined by the DHG Sum
rule and its extensions.® More generally, the Born contribution to any radiative
cross section with an arbitrary number of incident and outgoing charged lines will
vanish at the photon emission angle which satisfies the null zone condition that
all ratios €;/p; - k are equal. Again this occurs only if provided y, = 0 and Q, = 0.
Thus all helicity amplitudes for the subprocess ud— W ¥~ simultaneously vanish

at cos 0 = eqfew provided that the W7 and the quarks have natural moments.
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The occurrence of null zones requires not only the destructive interference of
radiation from all of the convection currents p! + p',-” of all of the incident and
final particles, but in addition, the radiation from all of the spin currents must
also cancel among themselves. This fact follows from the same reason that the
precession and Larmor frequencies of a Spin-% particle in an external magnetic
field are identical when there is no anomalous moment and the gyromagnetic
ratio ¢ = 2; in such a case the spin currents can be generated by a pseudo-Lorentz
transformation and the spin-current contributions vanish at the same angle as the
convection contributions. Thus the moments defined by the DHG sum rule and
its extension in the point-like limit also are the moments that preserve null zones.
A discussion of bounds on the W anomalous moment that can be obtained from
present pp—W+X data is presented in Ref. 47.

The Drell-Hearn sum rule also has important consequences for the computa-
tion of the magnetic moments of baryons in QCD. Magnetic moments are often
computed using the quark model formula i = Z?:l iZ; . This formula is correct
in the case of atoms where the mass of the nucleus can be taken as infinite. How-
ever, magnetic moment additivity cannot be correct in general: the DHG sum
rule shows that in the limit of strong binding where the constituents become very
massive and the hadron becomes point-like, its magnetic moment must equal the
Dirac value. not zero as predicted by quark moment additivity. The flaw in the
conventional quark model formula is that it does not take into account the fact
that the moment of a system H is derived from the electron scattering amplitude
eH—e'H' at non-zero momentum transfer g. The Dirac value in the point-like
limit actually arises from the Wigner boost of the wavefunction from p to p+¢. A
detailed discussion of this and the resulting relativistic corrections to the moment
are given Ref. 48. On the other hand, the overiap of light-cone Fock wavefunctions
does provide a general method for the evaluation of hadronic magnetic moments

42
and form factors.

8 Regge Behavior of Deep Inelastic Structure
Functions

The high energy behavior s > Q? behavior of the virtual photoabsorption
cross sections ai’-‘iw(s., Q?) which underlay the deep inelastic structure functions is

dictated by Regge theory. In general, analyticity predicts that an hadronic ampli-
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tude at high energy s > —t has the form of a sum of terms {1:i:exp(i‘rrag(t)][i(t)s“"(‘)
where the + sign is determined by crossing symmetry. Each Reggeon corresponds
to systems of exchanged particles with specific global quantum numbers. The
longitudinal virtual photoabsorption cross sections O’T'L(S,Ql‘)) are related by the
optical theorem to the forward virtual Compton amplitude illustrated in Fig. 4(c);
thus Regge theory predicts o[ ~ > p s@R(0)=1Cp((?). The above form provides
an empirical method for extrapolating data into the Regge regime. One should
first analyze the Regge behavior of the virtual photoabsorption cross section at
fixed Q2, just as one does for hadronic cross sections such as o(xtp)—o(x"p) in or-
der to set the domain where the Regge parameterization is applicable. The critical
issue is what happens in the Bjorken scaling limit. Do the Pomeron and Reggeon
contributions observed at fixed Q? lead to Regge behavior of structure functions
(2, Q%) =Yg Crz!—2”% at small z as a scaling function of z = Q%/2Mv, or
do such terms decouple as Q? increases?

The Regge behavior of structure functions can be analysed most simply within
the format of the “covariant parton model” developed by Landshoff. Polkinghorne
and Short.49 The virtual photoabsorption cross section has the space-time struc-
ture shown in Fig. 4(a).

The structure function Fy(z,Q?) = Eq_qengq/N(z,Qz) can be thus written

. . . . 49
as an integration over quark- and antiquark-nucleon cross sections:

2 .
Gynte, @)y [ &5 [y S opls k), (29)

where 5 = (k + p)? is the subprocess energy squared and K= = (5= ki) +

M? - k_zL is the interacting quark or antiquark virtuality.

The physics of the parton model corresponds to “aligned jet” regime where ki
and k2 are of order of hadronic scales. For this domain of kinematics 5 ~ —k*/x
for small z. Thus if ogp(3, k%) ~ $2n~1 then the structure functions will Bjorken-
1

scale and have the Regge behavior Fp(z.Q?) ~ z!7®" at small z. Additional

contributions to the structure functions also arise from the symmetric pair regime
where k2 ~ O(Q?). For example, the leading twist contribution to Fif-. Q%)

which violates the Callan-Gross relation comes from this domain. However, in

this case

l—-agp
Fi(z.Q%) ~ Y Cra(Q®) (55) (30)
R
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Figure 4. Space-time picture of deep inelastic scattering in the target rest-frame. (a) Con-
tribution to the leading twist structure function from gp interactions. (b) Two-step scattering
process contributing to shadowing of nuclear structure functions. (c) Regge contributions to the
forward virtual Compton amplitude.

so that the Regge contributions to Fi evidently do not scale if ag < 1. Thus
aside from the Pomeron contribution, the non-leading Reggeons decouple from
the structure function contributions which arise from the k2 ~ O(Q?) symmetric
jet regime.

It seems paradoxical that Regge behavior, which reflects soft hadron physics
and hadron exchange processes, could be compatible with the charge and mo-
mentum sum rules of the parton model. In fact if one considers the difference of

scattering of leptons on a proton and a gedanken “null” proton which consists of
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charge-less valence quarks, the Pomeron and Reggeon contributions to the deep
inelastic structure functions cancel. An analysis of this problem is discussed in

Ref. 50.

9 Polarization-Dependent Nuclear Shadowing

The space-time picture of deep inelastic scattering shown in Fig. 4(a) which
leads to Regge behavior of structure functions also provides the physical basis for
understanding the shadowing of deep inelastic lepton-nucleus scattering cross sec-
tions.’ In the small z domain, the ¢g pair with mass M? has an effective lifetime
T = Oq-i—"ﬂr =0 (:_PI;I;) in the nuclear target rest frame. Thus at small z, the
nuclear dependence of the virtual photoabsorption cross section will simply reflect
the nuclear dependence of the o74(3) cross section at 5= —k*/z. As in ordinary
Glauber theory, one must take into account “two-step” and higher multi-scattering
processes in a nuclear target, such as those shown in Fig. 4(b) where the quark
scatters coherently on an upstream nucleon Ny before interacting inelastically on
a nucleon N, further inside the nucleus. Hung Jung Lu and I have shown®' that
the Pomeron contributions to 5(g/N) lead to destructive interference of the nne-
step and multi-step scattering amplitudes, so that only the front nucleons in the
nucleus see the full hadronic structure of the incoming virtual photon, thus pro-
ducing shadowing of the nuclear structure functions: af.A(s, QY < Aa,,T.N(s, Q%.
Conversely, the phase of the coherent Reggeon contributions to o(gN) leads to
constructive interference of the one-step and multiple step amplitudes and hence
“antishadowing”: ag‘.A(s, Q%) > Aaz:N(s, Q?) at moderate values of z ~ 0.13, as
originally predicted by Nikolaev and Zakharov>> The ratio of antishadowing to
shadowing contributions is fixed from the observed Pomeron and Reggeon behav-
jor of the isospin singlet and non-singlet nucleon structure functions themselves.

Another interesting spin effect in QCD is the prediction that nuclear shad-
owing depends on the virtual photon polarizatior. In models where shadowing is
due to the deformation of nucleon structure functions in the nucleus, one would
not expect such any dependence on photon polarization. As noted above, nuclear
shadowing (in the target rest frame) arises from the destructive interference of
the multiple scattering of a quark (or antiquark) in the nucleus. The ¢g pair is
formed at a formation time (coherence length) 7 o 1/z1,; M before the target. In

order to get significant multiple scattering and interference one needs a coherence
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length comparable to the nuclear size. However, Hoyer, Del Duca, and I found >
that the coherence length is significantly shorter (by a factor of 1/ V/3) for the
longitudinally polarized photon than the transverse case. The reason for this is
that the internal transverse momentum and hence the virtual mass and energy
of the ¢g pair is larger by a nearly constant factor in the longitudinal case, thus
shortening its lifetime. Thus the nuclear attenuation is delayed to smaller values
of zp; in the longitudinal compared to the transverse cross section. Nikolaev™
has also recently discussed the possibility of smaller nuclear shadowing of o on
the grounds that the ¢g system has a smaller transverse size in the case of a lon-
gitudinally polarized photon, and it is thus more color transparent. In this case

diminished longitudinal shadowing would persist for all zy;.

10 Connections between Global Spin Measures®

Light-cone quantization has a number of unique features that make it appeal-
ing for solving relativistic bound-state problems in the strong coupling regime.,
most notably, the ground state of the free theory is also a ground state of the
full theory, and the Fock expansion constructed on this vacuum state provides a
complete relativistic many-particle basis for diagonalizing the full theory.5 ® The
method seems therefore to be well-suited to solving quantum chromodynamics.
For practical calculations one approximates the field theory by truncating the Fock
spa.ce.5 " The assumption is that a few excitations describe the essential physics,
and that adding more excitations only refines this initial approximation. This is
quite different from the instant formulation of QCD where an infinite number of
gluons is essential for formulating even the vacuum. In this paper we restrict our-
selves to an effective three-quark Fock description of the nucleon. In this effective
theory, all additional degrees of freedom (including zero modes) are parameterized
in an effective potentiaJ.5 ® In such a theory the constituent quarks will also acquire
effective masses and form factors.

After truncation, one could in principle obtain the mass M and light-cone
wavefunction |¥) of the three-quark bound-states (see the Introduction) by solving

the Hamiltonian eigenvalue problem
HESS" ) = M29). (31)
Given the eigensolutions {¥) one could then compute the form factors and other
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properties of the baryons. Even without explicit solutions, one knows that the
helicity and flavor structure of the baryon eigenfunctions must reflect the assumed
global SU(6) symmetry and Lorentz invariance of the theory. However, since we do
have an explicit representation for the effective potential in the light-cone Hamil-
tonian HE’S"“‘" for three-quarks, we shall have to proceed by making an ansatz
for the momentum space structure of the wavefunction W. This may seem quite
arbitrary, but as we will show below, for a given size of the proton, the predictions
and interrelations between observables at Q2 = 0, such as the proton magnetic
moment pp, and its axial coupling g4, turn out to be essentially independent of
the shape of the wavefunction.

The light-cone model given in Ref. 59 provides a framework for representing
the general structure of the effective three-quark wavefunctions for baryons. The
wavefunction ¥ is constructed as the product of a momentum wavefunction, which
is spherically symmetric and invariant under permutations, and a spin-isospin
wave function, which is uniquely determined by SU(6)-symmetry requirements. A
Wigner60 (Meloshm) rotation is applied to the spinors, so that the wavefunction
of the proton is an eigenfunction of J and J, in its rest frame®>® To represent
the range of uncertainty in the possible form of the momentum wavefunction we

choose two simple functions of the invariant mass M of the quark:

¥H.0.(M?) = Np.o. exp(—M?[25%),
(32)

wPower(Mz) = NPower(l + /Mz/ﬂz)-p

where f sets the scale of the nucleon size. Perturbative QCD predicts a nominal
. 5 . .
power-law fall off at large k) corresponding to p = 3.5. ® The invariant mass M
can be written as
3 =
K+ m?
MZ - L
3 e =
=1
where we used the longitudinal light-cone momentum fractions z; = pF/PY (P
and p; are the nucleon and quark momenta, respectively, with P* = Py + P;).
The internal momentum variables I;h are given by l;l,' = pi;— x,'IS_L with the

constraints Y Ei; = 0 and 3 z; = 1. The Melosh rotation has the matrix repre-
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. 61
sentation

m+ oM —iG - (7 x ki)
\/(m + ziM)? + l_c‘_zh-

with 7 = (0,0,1), and it becomes the unit matrix if the quarks are collinear

Ry (zi kpiym) = (34)

Ry (zi,0,m) = L. (35)

Thus the internal transverse momentum dependence of the light-cone wavefunc-
tions also affects its helicity structure.
The Dirac and Pauli form factors Fy(Q?) and F2(Q?) of the nucleons are

given by the spin-conserving and the spin-flip vector current J"ﬁ matrix elements

(@ =-)"

F(QY) ={p+a.115IpT)
(36)

(Q1 — iQ2)F2(Q®) = —2M(p + ¢, T |J¢fIp, )-

We then can calculate the anomalous magnetic moment ¢ = limgz_.o F2(Q?). [The
total proton magnetic moment is pp = (¢/2M)(1 + ap).] The same parameters as
in Ref. 59 are chosen; namely, m = 0.263 GeV (0.26 GeV) for the up- and down-
quark masses, and § = 0.607 GeV (0.55 GeV) for Ppower (¥H.0.) and p = 3.5. The
quark currents are taken as elementary currents with Dirac moments eq [2mg. All
of the baryon moments are well-fit if one takes the strange quark mass as 0.38 GeV.
With the above values, the proton magnetic moment is 2.81 nuclear magnetons,
the neutron magnetic moment is —1.66 nuclear magnetons* and the radius of the
proton is 0.76 fm; i.e. MRy = 3.63%

In Fig. 5 we show the functional relationship between the anomalous moment
ap and its Dirac radius predicted by the three-quark light-cone model. The value
of R? = —6dF1(Q?)/dQ?|g2=o is varied by changing 8 in the light-cone wave-
function while keeping the quark mass m fixed. The prediction for the power-law
wavefunction ¥power 15 given by the continuous line; the broken line represents

¥n.o.. Figure 5 shows that when one plots the dimensionless observable a,, against

+ The neutron value can be improved by relaxing the assumption of isospin symmetry.
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Figure 5. The anomalous magnetic moment @ = F2(0) of the proton as a function of My R;:
continuous line, pole type wavefunction; broken line, gaussian wavefunction. The experimental
value ¢ = 1.79 at M, R; = 3.63 is shown by the dotted lines. The model predictions are
essentially independent of the shape of the light-cone wavefunction.

the dimensionless observable MR, the prediction is essentially independent of
the assumed power-law or Gaussian form of the three-quark light-cone wavefunc-
tion. Different values of p > 2 do also not affect the functional dependence of
ap(MpRy) shown in Fig. 5. In this sense the predictions of the three-quark light-
cone model relating the Q?—0 observables are essentially model-independent. The
only parameter controlling the relation between the dimensionless observables in
the light-cone three-quark model is m/M, which is set to 0.28. For the phys-
ical proton radius MpR; = 3.63 one obtains the empirical value for ap = 1.79
(indicated by the dotted lines in Fig. 5).

The prediction for the anomalous moment @ can be written analytically as
a = (yv)a R, where aNR = 2M, /3m is the non-relativistic (R—00) value and v

A 64
is given as

3m (1 = z3)M(m + 23M) — k§,/2

Ii,k () = 27 = 37
wlenkiom) = 7 (m+z3M)? + ki, 3D

The expectation value {yv) is evaluated as'

t [d3k] = dl?,dlzgdl‘c'gé(l.c‘l 4k + ;3) The third component of £ is defined as k3; = %(::.'M -
(m? + E3;/z;M)). This measure differs from the usual one used in Ref. 58 by the Jacobian
[1dkyi/dz;, which can be absorbed into the wavefunction.

28



43k ]2
(w)= %3—%"’%. (38)

We now take a closer look at the two limits R—oo and R—0. In the non-
relativistic limit we let 8—0 and keep the quark mass m and the proton mass
M, fixed. In this limit the proton radius R1—oo and a,—2M,/3m = 2.38 sirce
('yy)——»lx. Thus the physical value of the anomalous magnetic moment at the
empirical proton radius MyR; = 3.63 is reduced by 25% from its non-relativistic
value due to relativistic recoil and nonzero k_]_s.

To obtain the ultra-relativistic limit we let #—oo while keeping m fixed. In
this limit the proton becomes pointlike M, R1—0 and the internal transverse mo-
menta k| —o0o. The anomalous magnetic momentum of the proton goes linearly to
zero as a = 0.43M, Ry since (yv')—0. Indeed, the Drell-Hearn-Gerasimov (DHG)
sum rule®>*® demands that the proton magnetic moment becomes equal to the

Dirac moment at small radius. For a spin-% system

2 M2

a =

[ Ztost)-aatal, (39)

Sth

2rla

where o p(4) is the total photoabsorption cross section with parallel (antiparallel)
photon and target spins. If we take the point-like limit, such that the thresh-
old for inelastic excitation becomes infinite while the mass of the system is kept
finite, the integral over the photoabsorption cross section vanishes and a = 0¥
In contrast. the anomalous magnetic moment of the proton does not vanish in
the non-relativistic quark model as R—0. The non-relativistic quark model does
not reflect the fact that the magnetic moment of a baryon is derived from lepton
scattering at mon-zero momentum transfer’; i.e. the calculation of a magnetic
moment requires knowledge of the boosted wavefunction. The Melosh transfor-
mation is also essential for deriving the DHG sum rule and low energy theorems

{LET) of composite systems‘48

1 This differs slightly from the usual non-relativistic formulal+a= Z’(e' /e)(Mp/m,) due to

the non-vanishing binding energy which results in Mp # 3m,.
§ The non-relativistic value of the neutron magnetic moment is reduced by 31%.
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A similar analysis can be performed for the axial-vector coupling measured in
neutron decay. The coupling g4 is given by the spin-conserving axial current J;

matrix element

94(0) = (p, T 15 Ip. 1)- (40)

The value for g4 can be written as g4 = (—yA)gﬁR with gﬂR being the non-
. . 64,65
relativistic value of g4 and with y4 as

(m + z3M)? — Eis.
(m+z3M)? + k3,

ya(ziskyii,m) = (41)

In Fig. 6 the axial-vector coupling is plotted against the proton radius MpR;.
The same parameters and the same line representation as in Fig. 5 are used.
The functional dependence of ga(MyR)) is also found to be independent of the
assumed wavefunction. At the physical proton radius M,R; = 3.63 one predicts
the value g4 = 1.25 (indicated by the dotted lines in Fig. 6) since {va4) = 0.75.
The measured value is g4 = 1.2573 £ 0.0028°° This is a 25% reduction compared
to the non-relativistic SU(6) value g4 = 5/3, which is only valid for a proton large
radius Ry 3> 1/M,. As shown by Ma and Zhang65 the Melosh rotation generated
by the internal transverse momentum spoils the usual identification of the v 7s
quark current matrix element with the total rest-frame spin projection s, thus
resulting in a reduction of g4.

Thus given the empirical values for the proton’s anomalous moment a, and
radius MRy, its axial-vector coupling is automatically fixed at the value g4 =
1.25. This prediction is an essentially model-independent prediction of the three-
quark structure of the proton in QCD. The Melosh rotation of the light-cone
wavefunction is crucial for reducing the value of the axial coupling from its non-
relativistic value 5/3 to its empirical value. In Fig. 7 we plot ga/ga(R1—)
versus ap/ay(R1—oc) by varying the proton radius R;. The near equality of these
ratios reflects the relativistic spinor structure of the nucleon bound state, which is
essentially independent of the detailed shape of the momentum-space dependence
of the light-cone wavefunction.

We emphasize that at small proton radius the light-cone model predicts not
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F iggre 6. The .xial vector coupling g4 of the neutron to proton decay as a function of
My R;: line code as in Fig. 5. The experimental values g4 = 1.26 and M, R; = 3.63 are shown
by the dotted lines.
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Figure 7. .The ratio ga/ga(R;—oc) versus the ratio a,/a,(R;—00) obtained by varying
the proton radius R;. The experimental values are indicated by the dotted lines.

only a vanishing anomalous moment but also
Jim ga(MpRy) = 0. (42)

One can understand this physically: in the zero radius limit the internal transverse

momenta become infinite and the quark helicities become completely disoriented.
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This is in contradiction with chiral models which suggest that for a zero radius
composite baryon one should obtain the chiral symmetry result g4 = 1.

The helicity measures Au and Ad of the nucleon each experience the same
reduction as g4 due to the Melosh effect. Indeed, the quantity Agq is defined by

the axial current matrix element
Ag= (p,1 gy salp. 1) (43)

and the value for Ag can be written analytically as Aq = (7A)AqNR with AgNR
being the non-relativistic or naive value of Aq and with 74 given in Eq. (41).
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Figure 8. The quantity AT = Au+ Ad of the proton as a function of MpR;. The experi-
mental value M, R; = 3.63 is indicated by the dotted lines.

Figure 8 shows the prediction of the light-cone model for the quark helicity
sum AY = Au+ Ad as a function of the proton radius R;. The same parameters
and the same line representation as in Fig. 5 are used. This figure shows that the
helicity sum AX defined from the light-cone wavefunction depends on the proton
size, and thus it cannot be identified as the vector sum of the re.t-frame con-
stituent spins. As emphasized by Ma,6 % the rest-frame spin sum is not a Lorentz
invariant for a composite system. Empirically, one can measures Aq from the first
moment of the leading twist polarized structure function g1(z,@). In the light-
cone and parton model descriptions, Agq = fol dz[q'(z) — ¢}(z)], where q'{x) and
¢*(z) can be interpreted as the probability for finding a quark or antiquark with
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longitudinal momentum fraction z and polarization para]lel or antiparallel to the
proton helicity in the proton’s infinite momentum frame’ [In the infinite momen-
tum there is no distinction between the quark helicity and its spin- projection s,.]
Thus Aq refers to the difference of helicities at fixed light-cone time or at infinite
momentum; it cannot be identified with ¢(s: = +l) —q(s; = -—l) the spin carried
by each quark flavor in the proton rest frame in the equal time formalism.

One sees from Fig. 8 that the usual SU(6) values AuNR = 4/3 and AdNR =
—~1/3 are only valid predictions for the proton at large MR;. At the physical
radius the quark helicities are reduced by the same ratio 0.75 as _q,i/gAR due
to the Melosh rotation. Thus for MpR; = 3.63, the three-quark model predicts
Au=1,Ad = —1/4, and AY = Au+Ad = 0.75. Although the gluon contribution

. 7
AG = 0 in our model, the general sum rule®

%AE+AG+L, =% (44)
is still satisfied, since the Melosh transformation effectively contributes to L.

Suppose one adds polarized gluons to the three-quark light-cone model. The
flavor-singlet quark-loop radiative corrections to the gluon propagator will then
give an anomalous contribution §(Ag) = —£2AG to each light quark hel:cnty
The predicted value of g4 = Au — Ad is of course unchanged. For illustration
we shall choose §2AG = 0.20. The gluon-enhanced quark model then gives the
values in Table 1, which agree well with the present experimental values. Note
that the gluon anomaly contribution to As has probably been overestimated here
due to the large strange quark mass.

In summary, we have shown that relativistic effects are important for under-
standing the spin structure of the nucleons. By plotting dimensionless observables
against dimensionless observables we obtain model-independent relations indepen-
dent of the momentum-space form of the three-quark light-cone wavefunctions.
For example, the value of g4 >~ 1.25 is correctly predicted from the empirical value
of the proton's anomalous moment. For the physical proton radius My R; = 3.63
the inclusion of the Wigner (Melosh) rotation due to the finite relative transverse
momenta of the three quarks results in a ~ 25% reduction of the non-relativistic
predictions for the anomalous magnetic moment, the axial vector coupling, and

the quark helicity content of the proton.
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Table 1
Comparison of the quark content of the proton in the non-relativistic quark model
(NR), in our three-quark model (3q), in a gluon enhanced three-quark model
(3q+g), and with experiment.29

Quantity NR 3q 3q+g Expt.

Au 4 1 080 0.80+0.04

3
Ad -} - 045 -0.46£0.04
As 0 0 -020 —0.13+0.04
AT 1 3 015 0224010

In the next section I will discuss theoretical constraints on the shape of the

quark and gluon helicity distributions which follow from general QCD principles.

11 Perturbative QCD Constraints on the Shape
of Polarized Quark and Gluon Distributions’

The measurements of polarization correlations in high momentum transier re-
actions provide highly sensitive tests of the underlying structure and dynamics
of hadrons. The most direct information on the light-cone momentum distribu-
tions of helicity-aligned and helicity-anti-aligned quarks in nucleons is obtained
from deep inelastic scattering of polarized leptons on polarized targets. The re-
cent fixed-target measurements, the SMC muon-deuteron and muon-proton ex-
periments at CERN,GQ’28 and the electron-He® experiments E142 and E143 at
SLAC'™ are now providing important new constraints on the proton and neutron
helicity-dependent structure functions.

Although the Q%-evolution of structure functions is well-predicted by pertur-
bative QCD, the initial shape of these distributions reflects the non-perturbative
quark and gluon dynamics of the bound-state solutions of QCD. Nevertheless,
it is possible to accurately predict some aspects of the shape of the nucleon
structure functions from perturbative arguments alone. In fact as Burkardt and
Schmidt9 and [ have recently shown, one can derive an analytic parameterization

of the polarized quark and gluon distributions in the nucleons which incorporates
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general constraints obtained from the requirements of color coherence of gluon
couplings at z ~ 0 and the helicity structure of perturbative QCD couplings at
z ~ 1. The predicted forms provide useful guides to the expected shapes of the
polarized structure functions.

As discussed in the introduction and appendix, the polarized quark and gluon
distributions Gy, g (z, A, Q) and G,y (z, A, Q) of a hadron are probability distribu-
tions determined by the light--cae wavefunctions g (z;, k4, Ai), where E;;] T =
1, and Y/, k1, = 0. The square of the invariant mass of an n-particle Fock
State configuration in the wavefunction is M2 = 3°»_ (k2. + m?)/z,. Thus the
kinematical regime where one quark has nearly all of the light-cone momentum
z ~ 1, and the remaining constituents have z; ~ 0, represents a very far off-shell
configuration of a bound state wavefunction. In the limit z—1, the Feynman vir-
tuality of the struck parton in a bound state becomes far off-shell and space-like:
k3 —m? = (M} — M*)— — p%/(1 — z), where p is the invariant mass of the
system of stopped constituents. If one assumes that the bound state wavefunction
of the hadron is dominated by the lowest invariant mass partonic states, then the
constituents can attain far off-shell configurations only by exchanging hard gluons;
thus the leading behavior at large virtuality can be computed simply by iterating

172,58 1y .
This conforms to the usual ansatz

the gluon exchange interaction kernel
of perturbative QCD that hard perturbative contributions dominate amplitudes
involving high momentum transfer compared to the contributions arising from
non-perturbative sources.

Thus. because of asymptotic freedom, the leading order contributions in a,(k%-)
to the quark and gluon distributions at z—1 can be computed in perturbative
QCD from minimally connected tree graphs. For example, in the case of the nu-
cleon structure functions, the dominant amplitude is derived from graphs where
the three valence quarks exchange two hard gluons. The tree amplitude is then
convoluted with the nucleon distribution amplitude ¢(z,, k%) which is obtained
by integrating the valence three-quark nucleon wavefunction ¥3(x,, k1, A}, over
transverse momenta up to the scale k}s ® The dk 1 d¢ azimuthal loop integrations
project out only the L, = 0 component of the three-quark nucleon w: refunction.
Thus, in amplitudes controlled by the short distance structure of the hadron’s

valence wavefunction, orbital angular momentum can be ignored, and the valence

quark helicities sum to the hadron helicity.
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The limiting power-law behavior at z—1 of the helicity-dependent distribu-

tions derived from the minimally connected graphs is
Gyn ~ (1 -2, (45)

where

p=2n—-1+ 2AS,. (46)

Here n is the minimal number of spectator quark lines, and AS; = |S7 - SHi =0
or 1 for parallel or anti-parallel quark and proton helicities, respectively.-' ! This
counting rule reflects the fact that the valence Fock states with the minimum num-
ber of constituents give the leading contribution to structure functions when one
quark carries nearly all of the light-cone momentum; just on phase-space grounds
alone, Fock states with a higher number of partons must give structure functions
which fall off faster at z—1. The helicity dependence of the counting rule also re-
flects the helicity retention properties of the gauge couplings: a quark with a large
momentum fraction of the hadron also tends to carry its helicity. The antiparallel
helicity quark is suppressed by a relative factor (1 — z)2. Similarly, in the case of
a splitting function such as g—gg or g—7gq, the sign of the helicity of the parent
parton is transferred to the constituent with the largest momentum fraction.”
The counting rule for valence quarks can be combined with the splitting functions
to predict the z—1 behavior of gluon and non-valence quark distributions. In
particular, the gluon distribution of non-exotic hadrons must fall by at least one
power faster than the respective quark distributions.

The counting rules for the end-point-behavior of quark and gluon helicity dis-
tributions can also be derived from duality, i.e. continuity between the physics
of exclusive and inclusive channels at fixed invariant mass.* As shown by Drell
and Yan,75 a quark structure function Ggry ~ (1 — 7)1 at z—1 if the cor-
responding form factor F(Q?) ~ (1/Q%)" at large Q?. Recent measurements of
elastic electron-proton scattering at SLAC™ are compatible with the perturbative
QCD predictions]?' for both the helicity-conserving Fi(@?) and helicity-changing
F3(Q?) form factors: Q*F1(Q?) and Q°F3(Q?) become approximately constant at
large Q2. The power-law fall-off of the form factors corresponds to the helicity-

parallel and helicity-antiparallel quark distributions behaving at z—1 as (1—1z)}
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and (1 — z)%, respectively, in agreement with the counting rules. The leading ex-
ponent for quark distributions is odd in the case of baryons and even for mesons
in ag-eement with the Gribov-Lipatov crossing rule’

The counting rule predictions for the quark and gluon distributions are rele-
vant at low momentum transfer scales Qo ~ Agcp in which the controlling physics
is that of the hadronic bound state rather than the radiative corrections associated
with structure function evolution. At the hadronic scale one can normalize the
non-singlet quark helicity content of the proton and neutron using the constraint
from g decay:66

Au—Ad =72 = 1.2573 £ 0.0028 . (47)
gv

where Agi(z) = ¢f(z) — ¢/ (z) with 1 = u,d, s is the difference of the helicity-
aligned and helicity-anti-aligned quark distributions in the proton, and Ag; =
ful drq;(z) is the integrated moment. {In the standard notation q¥(z,Q) =
GoplTAg = Xp.Q) + Gap(T,Ag = Ap, Q) 50 that both quark and anti-quark
contributions are included.] In addition, if one assumes SU(3) flavor symmetry,
hyperon decay also implies a polarized strange quark component in the proton

wavefunctionﬂ' ®
Au+ Ad — 2As

7 =0.39. (48)

Thus onlv one normalization is left undetermined.

The presence of polarized gluons in the nucleon wavefunction implies that
polarized strange quarks contribute to the nucleon helicity-dependent structure
functions at some level. There is also evidence from neutrino-proton elastic scat-
tering that the proton has a significant polarized strange quark content.”

The helicity-dependent structure function gi(z, Q?) measured in deep inelas-
tic polarized-lepton polarized-proton scattering can be identified in the Bjorken
scaling region with the quark helicity asymmetry:

a(z.Q) =3 ) Ada.QY. (49)

The first moment of the proton-neutron difference has zero anomalous dimension

and satisfies the Bjorken sum rule” (Eq. (16)), including radiative corrections
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from hard gluon interactions in the electron-quark scattering process.7 ¥ Thus the
QCD radiative corrections80 to the helicity-dependent structure functions can
modify the shape of the distributions, within the global constraint of the Bjorken
sum rule.

At high Q?, the radiation from the struck quark line increases the effective
power law fall-off (1 — z)P of structure functions relative to the underlying quark
distributions: Ap = (4Cr/B1)log(log Q*/A?)/(log Q2/A?) where Cp = 4/3 and
B1 = 11 — (2/3)ny. The counting rule predictions for the power p thus provide
a lower bound for the effective exponent of quark structure functions at high
Q2 > Qg However, in the end-point region z ~ 1, the struck quark is far off-
shell and the radiation is quenched since one cannot evolve Q% below Qi ~ k} =
—(u2/(1 — z)), the Feynman virtuality of the struck part.on.m Furthermore, the
integral of the g1 structure function is only affected by QCD radiative corrections
of order ay(Q%)/x.

Thus PQCD can give useful predictions for the power law fall-off of helicity-
aligned and anti-aligned structure functions at z ~ 1. Higher order contributions
involving additional hard gluon exchange are suppressed by powers of a,(k%).
Further iterations of the interaction kernel will give factors of fractional powers of
log(1 — z) analogous to the anomalous dimensions log™ Q?* which appear in the
PQCD treatment of form factors at large momentum transfer.

to super-renormalizable theories such as QCD(1+1) where the power-law behavior

2y - s
This is in contrast

in the endpoint region is modified by all-order contributions.s :

The fact that one has a definite prediction for the z ~ 1 behavior of leading
twist structure functions is a powerful tool in QCD phenomenology. since any
contribution that does not decrease sufficiently fast at large z is most likely due
to coherent multi-quark correlations. As discussed in Ref. 13, such contributions
are higher twist, but they arise naturally in QCD and are significant at fixed
(1 — )Q?. Such coherent contributions are in fact needed in order to explain the
anomalous change in polarization seen in pion-induced continuum lepton-pair and
hadronic J/v production experiments at high zp.83

At large z the perturbative QCD analysis predicts “helicity retention™ —
i.e. the helicity of a valence quark with z ~ 1 will matches that of the parent
nucleon. This result is in agreement with the original prediction of Farrar and

szckson72 that the helicity asymmetry Ag(z) approaches 1 at z—1. We also
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predict, in agreement with Ref. 72, that the ratio of unpolarized neutron to
proton structure functions approaches the value 3/7 for r—1.

In the following sections we will analyze the shape of the polarized gluon and
quark distributions in the proton. First we will study the behavior of the gluon
asymmetry AG(z)/G(x) (polarized over unpolarized distributions) at small values
of =, where it turns out to be proportional to z with a coefficient approximately
independent of the details of the bound-state wavefunction. We then write down
a simple model for the gluon distributions which incorporates the counting rule
constraints at z—1. The same is done for the up, down and strange quark distribu-
tions. The extrinsic and intrinsic strange quark distributions are also discussed,
paying special attention to the inclusive-exclusive connection with the strange

quark contribution to the proton form factors.

12 Helicity-Dependent Gluon Distributions

The angular momentum of a fast-moving proton has three sources, the angular
momentum carried by the quarks, the angular momentum carried by the gluons,
and the orbital angular momentum carried by any of the constituents. Angular

. . NPT 2,67
momentum conservation for J; at a fixed light-cone time implies the sum rule

L(Aut Ad+ A5)+ AG +(Li) = % (50)

Here AG = fol drAG(z) is the helicity carried by the gluons, where AG(z) is
the difference between the helicity-aligned and anti-aligned gluon distributions
G*+(x) and G~ (z); the unpolarized gluon distribution G(z) is the sum of these
two functions, G(z) = G¥(z) + G~(z). The corresponding definitions for the
quark distributions Ag(z) = ¢*(z) — ¢7(z) and ¢(z) = ¢*(z) + ¢7(z) with ¢ =
u.d, s. By definition, the antiquark contributions are included in Ag(z) and g(z).
As emphasized in Section 10 and by Ma,ﬁs the helicity distributions measured
on the light-cone are related by a Wigner rotation (Melosh transformation) to
the ordinary spins S7 of the quarks in an equal-time rest-frame wavefunction
description. Thus. due to the non-colinearity of the quarks, one cannot expect
that the quark helicities will sum simply to the proton spin.

In this section 1 shall discuss model forms for the gluon distribution functions

AG(z) and G(z) for nucleons which incorporate the known large-r counting-rule
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constraints:

GHz)—=C —2)*  (z-1), (51)

G~ (z)-C(1 - 1)° (z—1); (52)

We shall also implement a basic constraint on the behavior of the gluon asymmetry

ratio AG(z)/G(z) for small z :

(E)ri) o

This last theoretical constraint will be demonstrated below. Here (1/y) stands for

the first inverse moment of the quark light-cone momentum fraction distribution

in the proton lowest Fock state. For this state we expect {1/y) >~ 3.
A simple form for baryon gluon distributions, which incorporates the limiting

behaviors presented above, is

a6 =X p-a-e -y,
A’ (54)
G =N -2 0ot

In this model the momentum fraction carried by the gluons in the proton is (z,) =
[} dzzG(z) = 2N, and the helicity carried by the gluons is AG = [ dzAG(z) =
(11/30)N. Taking the momentum fraction {z4) to be 1/2, we predict AG = 0.54.

Such large values for the gluon momentum fraction are inconsistent with the
assumption that the proton has a dominant three-quark Fock state probability;
a self-consistent approach thus requires taking into account gluon radiation from
the full quark and gluon light-cone Fock basis of the nucleon. Our main emphasis
here is to predict the characteristic shapes of the polarized quark and gluon dis-
tributions. The large z regime is clearly dominated by the lowest particle-number
Fock states. We thus expect that the qualitative features of the model to survive
in a more rigorous approach; in particular, it is apparent from the structure of the
model, that the gluon helicity fraction will be of the same order of magnitude as

the gluon momentum fraction.
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The prediction that AG ~ 0.5 is phenomenologically interesting. If one also
accepts the experimental suggestion from EMC that the quark helicity sum Au +
Ad is small, then this implies that gluons could carry a large part of the proton
helicity J. = 1/2. However, one then also expects significant orbital angular
momentum L, which arises, for example, from the finite transverse momentum
associated with the g—qg gluon emission matrix element.

We now proceed to prove Eq. (53) for the low-z behavior of the asymmetry
AG(z)/G(z). In this region the quarks in the hadron radiate coherently, and we
must consider interference between amplitudes in which gluons are emitted from
different quark lines. An analysis of this type was first presented in Ref. 84, and
in this note we extend and correct some of the results of that paper.

As an example, we first analyze the helicity content of positronium, where we
can ignore internal transverse momenta and non-collinearity. Consider the ortho-
positronium two-fermion J, = 1 Fock state in which the particles have helicities

+ +. Following the calculation of Ref. 84, we obtain

(A(JC(;S))MW,=+H = <5> =2 (e20). (55)

In the case of para-positronium (and also for J; = 0 ortho-positronium), in which
we start with a Fock state with helicities + —, the result is AG(z) = 0. This is

because for every diagram in G*(z) there is a corresponding diagram in G™(z),

but with the helicities of all the particles reversed.

We now apply a similar analysis to the gluon distribution in the nucleon. We
start with a three-quark Fock state in which the quarks have helicities + + + as
would be appropriate for the helicity content of an isobar state A with J, = 3/2.
Then the result found in Ref. 84, 1.e.

(G s =) &

In the nucleon case, however, we start with a three-quark Fock state with

follows.

helicities + + —. Thus clearly there is a cancellation between the squared terms

in which the gluon is emitted from one of the positive helicity quarks versus
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the contributions in which the gluon is emitted by a negative helicity quark.
The interference terms work similarly, ensuring a finite result for both G(z) and
AG(z) at zero k , just as in the case of photon distributions in positronium. Then
the positive helicity quarks have a dominant G*(z) and contribute positively to
AG(z); similarly, the negative helicity quarks contribute negatively to AG(z). To
see this more clearly, consider the photon emitted by a single electron with J, =
+1/2. Then G:e(.’t) =1/z and G_, (z) = (1 - z)*/z. Thus AG(z)/G(z) =z
at z—0 with unit coefficient in this case. The sign reverses for an electron with
J, =-1/2.

The generated gluon asymmetry distribution in the nucleon at low z is then
given by Eq. (53). The extra factor of 1/3 is due to the fact that all the quarks
contribute positively to G(z), but they give contributions proportional to the
sign of their helicity in AG(z). The main assumption setting the value of the
gluon asymmetry at z—0 is the estimated value of the inverse moment (1/y).
For realistic wavefunctions this expectation value may receive very large (posst-
bly divergent) contributions from near ¥ = 0. However, one must be careful at
this point because in deriving Eq. (53) we assumed that £ < y. In order to be
consistent with this assumption we will perturb around a constituent quark wave-
function which is strongly peaked around y = (y) = 1/3. We have furthermore
assumed for simplicity that (y) is the same for all valence quarks, although this is
inconsistent with results from QC D sum rules®® (One could improve the estimate
for (1/y) by allowing for different momentum fractions for the helicity-up and
helicity-down quarks. This would evidently reduce AG, since it is known that (y)
is larger for helicity parallel quarks. Furthermore, in QCD we expect that higher
Fock states will contribute to reduce the value of (y) away from 1/3, which would

be the expected value if only the three-quark valence Fock state was present.)

13 The Shape of Helicity-Dependent Quark Dis-
tributions

As I have discussed in the previous sections, at z ~ 1 PQCD predicts that
the helicity-parallel quark distribution g*(z) is enhanced relative to the helicity-
antiparallel quark distribution ¢~ (z) by two powers of (1 — r). The property of
helicity retention at large z is a direct consequence of the gauge theory couplings

between quarks and gluons. For the valence quarks in a nucleon the counting rules
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predict
gHz)~ (-2 (z=1) (57)

and

¢ (&)~ -2 (z—1) (58)

The case of the non-valence strange quarks is somewhat more complex and will

be discussed in detail in the next section. The result is

str)~ (1 -2  (z-1), (59)

sy~ (1-2)"  (z-1) (60)

For  ~ 0 the helicity correlation disappears since the constituent has infinite
rapidity Ay = log z relative to the nucleon’s rapidity.

The strange quark distribution in a nucleon can arise from both intrinsic and
extrinsic contributions. The intrinsic contribution is associated with the multipar-
ticle Fock state decomposition of the hadronic wavefunction, and it is essentially
of non-perturbative origin. This is in contrast to the extrinsic component, which
arises from s3 pair production from a gluon emitted by a valence quark, and is
associated with the self-field of a single quark in the proton. From evolution and

gluon splitting, the extrinsic strange contributions are known to behave as

sH@)~(1-2)°  (z=1) (61)

ss(m)~(1-2)7  (z-1). (62)

The Drell-Yan inclusive-exclusive connection relates the high Q? behavior of
the hadronic form factors to the large r limit of the quark distribution functions;
te.

G {j (1- I)?ﬂ—l-{»?AS.’ (63)

F(Q?%) Mo o/p

1
("
where AS, = 0 or 1 for parallel or antiparallel quark and proton helicities, re-

spectively. If we naively apply this prescription to the extrinsic strange quark
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component, we would predict that the strange quark contribution to the electro-
magnetic proton form factor should fall as 1 /@8, since in this case n = 3. But
a direct calculation of the strange quark contribution to either the axial or vec-
tor form factor of the nucleon gives only a nominal 1 /@* behavior, which is the
same power-law fall-off as the valence quark contribution. In the leading order
calculations the loop integrals connecting a hard s3 loop to a valence quark all
have momenta £ = O(Q), thus producing radiative corrections of order a(Q), to
the exclusive amplitude with N = 2 (axial) or N = 3 (vector), rather than extra
powers of 1/ Q25 ® The solution to this apparent contradiction is that we should
apply the inclusive-exclusive connection for the strange quark contributions to a
transition form factor connecting an initial state with three quarks (uud) to a final
state in which a strange pair has been created (uuds3), as in the transition form
factor p—AK, at fized final state mass. Since the internal hard-scattering matrix
element Ty for (uud) + v*—sudus has three off-shell fermion legs, this transition
form factor falls off as (1/Q?)3, and it correctly satisfies the inclusive-exclusive
connection (n = 3).

One can also consider the case where Q% and the final state mass are both
large, but there is a2 K and A in the final state. This again corresponds to a
- {1 — z)® structure function. In the case of the transition p—pg, there is a color
mismatch in Ty at lowest order. Thus this amplitude should be suppressed (Zweig
rule) by an extra power of as(Q?). Of course all of this holds for the analogous
charm systems as well.

The intrinsic strange components are associated with Fock states having at

least five particles; the distributions thus have the behavior

sta)~(1-2)"  (z=]) (64)

sT(z)~(1-1)° (z-1), (65)

1

which corresponds to n = 4 in the spectator quark counting rules. It also satisfies

the inclusive-exclusive connection, since the intrinsic contribution to the form

factor falls as (1/Q?)*.
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For the complete parameterization we shall adopt the canonical forms:

wtz) = o (41 -2 + Ba(1 - 2)'], (66)
dH(z) = % [Ad(1 - 2)* + Ba(1 - 2)*], (67)
w(z) = Tia [Cu(l - 2)° + Du(1 - 2)7] , (68)
d ()= ria [Ca(1 — 2)° + Da(1 — 2)°], (69)
) = ;1; [Ad1 - 2)° + By(1 - 2)¥], (70)
s(z) = :—a [Cs(1 = 2)" + D.(1 - 2)°], (1)
where we require
Ag+ By =Cy+ Dy (72)

to ensure the convergence of the helicity-dependent sum rules. Thus in our model,
the Regge behavior of the asymmeiry Ag(z) ~ z7%R is automatically one unit less
than the unpolarized intercept: ag = a— 1. Isospin symmetry at low z (Pomeron

dominance) also requires
Ay +Bu+Cy+Dy=Ag+Ba+Ca+ Dy . (73)

We emphasize that these distributions include both the quark and antiquark con-
tributions.

Our parameterization of the helicity-dependent quark distributions is close in
spirit to the parameterization D}y for the unpolarized quark and gluon distribu-
tions given by Martin, Roberts and St‘.irling.8 ® The MRS parameterization is a
good match to our unpolarized forms ¢(z) = g% (z) + ¢~ () since the MRS forms
combine counting-rule constraints with a good fit to a wide range of perturbative

QCD phenomenology. We find that choosing the effective QCD Pomeron intercept
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a = 1.12 allows good match to the unpolarized quark distributions given by the
MRS parameterization Dy at Q? = 4 GeV? over the range 0.001 < z < 1. It also
predicts an increasing structure function F2{z, Q?) at small z = < 1072, as sug-
gested the recent data from HERA.*” Thus we predict ag = 0.12 for the helicity-
changing Reggeon intercept. The momentum fraction carried by the quarks (and
antiquarks), (z4) = j;)l drzq(z), where ¢(z) = ¢*(z) + ¢~ (z), is assumed to be

~ 0.5.
The analysis by Ellis and Karliner "** combining the SLAC®, EMC*® and

nmc® polarized electron-proton data provides the constraint:
/d:rgf(z) =0.128 £ 0.013 (stat) = 0.019 (syst.) (74)

at (Q%) = 10.7 GeV?. As discussed in Section 1, this value together with the
constraints from nucleon and hyperon decay leads to the following values for the

proton helicity carried by the different quarks:29

-1
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Au=082+004, Ad=-044+004, As=-011£004. (

The relatively small value for the total quark helicity AY = Au+ Ad + As =
0.27 + 0.10 is consistent with large N¢ predictions in QCD.2 As discussed in
Section 10, the prediction of a three quark relativistic model is A =~ 0.75. Thus
the empirical values also implies a significant contribution of the proton’s helicity
is carried by gluon and.orbital angular momentum. For the purposes of this
section I shall assume these three values as initial phenomenological inputs for
the proton; the neutron distributions then follow from isospin symmetry.

It is straightforward to find parameters for the polynomial forms which are

consistent with the above inputs as well as the MRS Dj parameterization

A, =3.361, Ag=0672, A, =0.001 (76)

B, = —3.188, By=—0499, B, =0.073, (77)

C, =157, Cq=3286. C,=0.787. (78)
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D, = —1.401, Dy=-3113, D,=-0.T13. (19)

With these set of parameters, the quark helicities in the proton are:

Au=0.82, Ad=-044, As=-011, (80)
and the respective quark momentum fractions are:

(z4) = 0.322, {(z4) =0214, (z,)=004. (81)

Thus the helicity carried by the quarks with this parameterization is Agq = 0.27,
and the momentum carried by the quarks is then X4 (zy) = 0.57. The model
predicts that the helicity carried by the strange quark is quite large and negative
relative to the nucleon helicit_v.gl

Note that Ad(r) = d+(zr) —d~(z) is positive at large r, and negative at small
to moderate values of z. One thus expects that Ad(z) will change sign and go
through zero at some physical value for z. With the above parameterization the
zero of Ad(z) occurs at r = 0.507.

We can also find a parameterization for the polarized gluon distributions which

are consistent with the r—0 and r—1 helicity constraints, as well as the MRS

unpolarized gluon distribution:

GHz) = ;—i— [A5(1 - 2)* + By(1 — 2)7] | (82)
G (z) = ,17 [Ag(1 — 2) + By(1 —2)7] , (83)

with ag = 1, Ag = 0.2381 and By = 1.1739. This form incorporates the coherence
constraint, Eq. (53). as well as momentum conservation: (zg) = 1 — X4 (zq) =
0.43. The result for the unpolarized distribution G(z) = G*(z) + G (z) is in-
distinguishable from the phenomenological Dj gluon distribution given by MRS.
With these values the helicity carried by the gluon in the nucleon is AG = 0.45.

If we require the same Pomeron intercept ay = a = 1.12, for the gluon and
quark distributions at z—0, then a fit to the MRS Dy, form gives parameters Ay =
2 and By = —1.25. The result for the helicity carried by the gluon, AG = 0.46,
is essentially unchanged from the a, = 1 case. However, the agreement with the

shape of the MRS unpolarized parameterization is somewhat worse.
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14 Predictions for Polarized Structure Functions

In the following we will use the model forms for Ag(z) and ¢(z) to calculate

the polarized helicity structure functions of nucleons:
6?(2) = 2 (2 Au(z) + 2 ad(z) + EAS(:)) (84)
! 2\9 9 9

and

6"() = 5 (gAd(z) + 5hu(a)+ éAs(:)) , (85)
and compare the results to the recent experiments. (Note that Ag{z) refers to
the combined asymmetries from both quarks and antiquarks in the proton.) In
the final predictions we will, as in Ref. 77, include the normalization factor
Ngcp =1—(a,/%) = 0.92 arising from QC D radiative corrections. The Bjorken
sum rule for the difference of proton and neutron quark helicities is automatically
satisfied. The Ellis-Jaffe sum rule for the nucleon quark helicity is violated by the
model due to the presence of the strange quark contributions As.

We have emphasized that the dynamics of QCD implies helicity retention:
the quark with z close to 1 has the same helicity as the oroton. Thus all of
the structure functions asymmetries become maximal at z—1, and the ratio of
unpolarized proton and neutron structure functions can be predicted.

According to the standard SU(6) flavor and helicity symmetry. the proba-
bilities to find v and d quarks of different helicities in the proton’s three-quark
wavefunction are: P(ut) =5/9. P(d*)=1/9,P(x”"}=1/9.P(d7) = 2/9.92 Thus
the usual expectation from SU(6) symmetry is Fa(n)/Fa(p) = 2/3 for all z. As
Farrar and Jackson pointed out.-’2
local helicity distributions since the helicity aligned and helicity anti-aligned dis-

this naive SU(6) result cannot apply to the

tributions have different momentum distributions. At large r u~ and d~ can be
neglected relative to «* and d*, and thus SU(6) is broken to SU(3)™ x SU(3)~.
Our model retains the SU(6) ratio P(u*)): P(d%)) = Ay: Ag=5:1, at large =
so that we predict Fa(n)/Fa(p)—3/T as z—1. The physical picture that emerges
is that the struck quark carries all the helicity of the nucleon. and the specta-
tors have S, = 0, although their total helicity is 2 combination of 0 and 1. This

wavefunction is just a piece of the full SU(6) wavefunction, but since it is the
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Figure 9. (a) Model prediction for the polarized helicity structure function of the proton
(4.1) compared with experiment. Full line: sum of all flavors; dashed: ouly up quarks; dotted:
only down quarks; dash-dotted: only strange quarks. The data is from the combined SLAC-

EMC®® analysis. (b) same as (a) but for the neutron. The data are from the SLAC E142

. TC
experiment.

piece that contains the u* and d*, and this part remains unchanged, the ratio
P(ut)/P(d*) is still 5/1.

Notice that the only empirical input into our model is the integrated values of
the various flavors obtained from the proton data. Only the shape is determined
by perturbative QC D arguments. The agreement with the shape of the SLAC and
EMC experimental data for the proton is quite good. (See Fig. 9.) For the neutron
we predict two new effects which are not present for the proton. First g§" tends
to fall faster than g; for large x. This is because as in the Carlitz-Kaur™® and
Farrar-Jackson - models. the helicity aligned up-quark dominates the proton
distribution and the helicity down quark dominates the neutron structure function
at large . A related effect is that g{®(z) changes sign as a function of x. This
is due to the fact that except for large r (where the helicity aligned down quark

dominates) gf" is dominated by the anti-aligned up quark distribution. Since
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fol dzAug(z) = fol dzAdy(r) < 0" it is clear that g5™(z) must be negative at

small z.
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Figure 10. Polarized helicity structure function of the deuteron. The data are from Ref.
69. The prediction for the sum of proton and reutron contributions is multiplied by a D-
state depolarization factor 1 — (3/2)wp with wp = 0.058 and the PQCD correction factor

1—(a,/x) =092

A comparison of our model with the recent SMC data for the polarized
deuteron structure function gld(z) is shown in Fig. 10. The shape of the data
appears to be consistent with our predictions, except possibly at the largest z
point where the SMC data shows too little asymmetry. To make this prediction
we have, as in Ref. 69, assumed that the deuteron structure function is half of
the sum of the neutron and proton structure functions and included the D-state

depolarization factor with D-state probabiiity 0.058. The model then predicts the

normalization

/ dzgd(z) = } / dz(g}(z) + 9} (x))
{86)

5 1 as 3 _ .
= [3*—6‘(Au + Ad) + ‘l—gAS} (1 - -;) (1 - §w0) =0.038
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compared to the SMC result
/dzgf(x) = 0.023 + 0.020(stat.) & 0.015(syst.) . (87)

We can also compare our model with the polarized neutron structure function
extracted by the E142 from its polarized electron polarized He® measurements.
(See Fig. 9(b).) The predicted normalization assumes an 8% radiative leading
twist correction: (1—as/7) ~ (1—0.08), whereas the commensurate scale relation
analysis presented in the next section predicts a reduction of approximately 14% at
Q? = 2 GeVZ. In addition, according to the DHG-constrained analysis of Burkert
and Ioffe, higher twist corrections give a further 93% reduction to the prediction
for I'?(Q?). The net overall reduction of 29% gives a good agreement of theory
and experiment for Fig. 9(b).

The distributions presented here have applicability to any PQCD leading-
twist processes which require polarized quark and gluon distributions as input.
The input parameters have been adjusted to be compatible with global parame-
ters available current experiments. The values can be refined as further and more
precise polarization experiments become available. A more precise parameteriza-
tion should also take into account corrections from QCD evolution, although this
effect is relatively unimportant for helicity-dependent distributions. Our central
observation is that the shape of the distributions is then predicted when one em-
ploys the constraints obtained from general QCD arguments at large = and small
z.

A remarkable prediction of this formalism is the very strong correlations be-
tween the parent hadron helicity and each of its valence-quark, sea-quark, and
gluon constituents at large light-cone momentum fraction z. Although the to-
tal quark helicity content of the proton is small, we predict a strong positive
correlation of the proton’s helicity with the helicity of its u quarks and gluon con-
stituents. The model is also consistent with the assumption that the strange (and
anti-strange) quarks carry 4% of the proton’s momentum and —11% of its helicity.
We also note that completely independent predictions based on QCD sum rules
also imply that the three-valence-quark light-cone distribution amplitude has a

very strong positive correlation at large = when the u—quark and proton helicities

are parallel 8
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15 Commensurate Scale Relations: Relating Ob-
servables in QCD without Renormalization Scale
or Scheme Ambiguity™

One of the most serious difficulties preventing precise tests of QCD is the scale
ambiguity of its perturbative predictions. Consider a measurable quantity such
as p = Re+.-(3) — 3263 or the integral over structure functions contributing to

the Bjorken sum rule: I?~" — (g4/6). The PQCD prediction is of the form

as a?(n?
p = roas) [ 147100 2 g ST (59)

Here a,(p) = g2/4~ is the renormalized coupling defined in a specific renormal-
ization scheme such as MS, and u is a particular choice of renormalization scale.
Since p is a physical quantity, its value must be independent of the choice of p
as well as the choice of renormalization scheme. Nevertheless, since we only have
truncated PQCD predictions to a given order in a¥, the predictions do depend
on p. In the specific case of R +.-, where we have predictio}ns%'g6 through order
o, the sensitivity to p has been shown to be less than 10% over a large range
of lnp.g 6 However, in the case of the hadronic beauty production cross section
(do/&pr)(Fp — B + X), which has been computed to next-to-leading order in
as, the 1:-1"ediction97 for the normalization of the heavy quark pr distribution at
hadron colliders ranges over a factor of 4 if one chooses one “physical value” such
as p = % ,/m% + p% rather than an equally well motivated choice u = 4 /mQB + p%

There is, in fact, no consensus on how to estimate the theoretical error due
to the scale ambiguity, what constitutes a reasonable range of physical values, or
indeed how to identify what the central value should be. Even worse, if we consider
the renormalization scale g as totally arbitrary, the next-to-leading coefficient
r1(1) in the perturbative expansion can take on the value zero or any other value.
Thus it is difficult to assess the convergence of the truncated series, and finite-order
analyses cannot be meaningfully compared to experiment.

The u dependence of the truncated prediction py is often used as a guide
to assess the accuracy of the perturbative prediction, since this dependence re-
flects the presence of the uncalculated terms. However, the scale dependence

of py only reflects one aspect of the total series. For example, consider the
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ortho-positronium J¥¢ =1~ decay rate computed in quantum electrodynam-
ics: T(ete™) = Io[l —10.3 (a/m)+---]. The large next-to-leading coefficient,
ry = 10.3 shows that there is important new physics beyond Born approximation.
The magnitude of the higher order terms in the decay rate is not related to the
renormalization scale since the QED coupling a does not run appreciable at the
momentum transfers associated with positronium decay.

Thus we have a difficult dilemma: If we take g as an unset parameter in
PQCD predictions, then we have no reliable way to assess the accuracy of the
truncated series or the parameters extracted from comparison with experiment.
If we guess a value for y and its range, we are left with a prediction without an
objective guide to its theoretical precision. The problem of the scale ambiguity is
compounded in multi-scale problems where several plausible physical scales enter.

In fact three quite distinct methods to set the renormalization scale in PQCD
have been proposed in the literature:

98

1. Fastest Apparent Convergence (FAC) This method chooses the renor-

malization scale p so that the next-to-leading order coefficient vanishes:
ri{p) = 0.

9. The Principle of Minimum Sensitivity (PMS).99 In this procedure, one
argues that the best scale is the one that minimizes the scale dependence of
the truncated prediction Ry, since that is a characteristic property of the
entire series. Thus in this method one chooses y at the stationary point
dRx/dp = 0.

3. Brodskv-Lepage-Mackenzie (BLM). 100 1, the BLM scale-fixing method, the
scale is chosen such that the coefficients C; are independent of the number of
quark flavors renormalizing the gluon propagators. In practice, one chooses
the scale so that Ny does not appear in the next-to-leading order coefficient.
That is. if () = rie(g) + r1(p)Ny, where rio(p) and r11(p) are Ny
independent, then one chooses the scale y given by the condition ry;(p) =
0. This prescription ensures that, as in quantum electrodynamics, vacuum
polarization contributions due to fermion pairs are all incorporated into the
coupling constant a{u) rather than the coefficients.

These scale-setting methods can give strikingly different results in practical
applications. For example, Kramer and Lampe have amalyzedlm the application

of the FAC. PMS and BLM methods for the prediction of jet production fractions
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in ete— annihilation in PQCD. Jets are defined by clustering particles with in-
variant mass less than \/ys, where y is the resolution parameter and /3 is the
total center-of-mass energy. Physically, one expects the renormalization scale u
to reflect the invariant mass of jets, that is, u should be of order \¥s. For exam-
ple, in the analogous problem in QED, the maximum virtuality of the photon jet
which sets the argument of the running coupling a(Q) cannot be larger than \/ys.
Thus one expects g to decrease as the resolution parameter y—0. However, the
scales chosen by the FAC and PMS methods both do not reproduce this behavior
(see Fig. 11): The predicted scale u rises without bound at low values for the jet
fraction y. On the other hand, the BLM scale has the correct physical behavior
as y—0. Since the argument of the QCD running coupling constant becomes very
small, the BLM method indicates that perturbation theory QCD results are not
likely to be reliable in the y < 0.02 domain. However, the scales chosen by PMS
and FAC give no sign that the perturbative expressions break down in the soft

region.

Figure 11. The scale p/+/s according to the BLM (dashed-dotted), PMS (dashed), FAC
(full) and /¥ (dotted) procedures for the three-jet rate in e*e™ annihilation, as computed by

Kramer and Lampe.lm Notice the strikingly different behavior of the BLM scale from the PMS
and FAC scales at low y. In particular, the latter two methods predict increasing values of p as

the jet invariant mass M < \/(ys) decreases.

In this section we shall use the BLM method to show that all perturbatively
calculable observables in QCD, including the annihilation ratio Re+e-(Q?), the
heavy quark potential, and the radiative corrections to the Bjorken sum rule can

be related to each other at fixed relative scales. The “commensurate scale relation”
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for observables A and B in terms of their effective charges has the form
a
a4(Qa) = ap(@B) (1 + rA/B";B' +-- ) . (89)

The ratio of the scales Ay/p = Q4/Qp is chosen so that the coefficient r4p
is independent of the number of flavors nfp contributing to coupling constant
renormalization, which guarantees that the observables A and B pass through
new quark thresholds at the same physical scale. The value of A4/ p is unique at
leading order. We also find that the relative scales satisfy the transitivity rule'”?

Aa/B = dajc AcyB - (90)

This is equivalent to the group property defined by Peterman and Stﬁckelbergms
which ensures that predictions in PQCD are independent of the choice of an inter-
mediate renormalization scheme c™ In particular, scale-fixed predictions can
be made without reference to theoretically constructed renormalization schemes
such as MS; QCD can thus be tested by checking that the observables track both
in their relative normalization and commensurate scale dependence.

It is interesting that the task of setting the renormalization scale has never
been considered a problem or ambiguity in perturbative QED. For example, the

leading-order parallel-helicity amplitude electron-electron scattering has the form

8 8
Meeceltt5+4) = == a(t) + = a(u) - (o1)

Here o(Q) = a{Qo)/(1 — 1[Q?, Q3, a(Qo)]) is the QED running coupling which
sums all vacuum polarization insertions II into the renormalized photon prop-
agator. The value a(0) is conventionally normalized by Coulomb scattering at
t = —Q? = 0. Notice that both physical scales ¢ and u appear in the argument
of the running coupling constant in the cross-section; if one chooses any other
scale for the running coupling constant, in either the direct or crossed graph am-
plitude, then one generates a spurious geometric series in ny (af7)tn(-t/ u?) or
ng (a/7)€n(—u/ %) where ny represents the number of fermions contributing to

the vacuum polarization of the photon propagator.
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In general, the “skeleton” expansion of Feynman amplitudes in QED guaran-
tees that all dependence of an observable on the variable ny is summed into the
running coupling constant; the coefficients in QED perturbation series are thus
always ny-independent once the proper scale in a has been set. Note that the
variable ny is defined to count only vacuum polarization insertions, not light-by-
light loops, since such contributions do not contribute to the coupling constant
renormalization.

The use of the running coupling constant a(Q) in QED allows one to sum in
closed form all proper and improper vacuum polarization insertions to all orders,
thus going well beyond ordinary perturbation theory. For example, consider the

perturbative series for the lepton magnetic anomalous moment:

(@) Q™) (@) ’
=a2x 42 e L T + - (92)

at

the values Q* = e~5/4m,, etc., can be determined either by the explicit inser-
tion of the running coupling into integrand of the Feynman amplitude and the
mean value theorem, or equivalently, by simply requiring that the coefficients Cp
be independent of ns. (Light-by-light scattering contributions are not related to
coupling constant renormalization and thus enter explicitly in the order a® coef-
ficient.) Thus the formula for the anomalous moment using the running coupling
is form invariant, identical for each lepton e, y, 7, since the dependence on lepton
vacuum polarization insertions is implicitly contained in the dependence of the
running coupling constant. These examples are illustrations of the general prin-
ciple that observables such as the anomalous moments can be related tc other
observables such as the heavy lepton potential V(Q?) = —47a(Q?)/Q? which can
be taken as the empirical definition of the on-shell scheme usually used to define
a(Q?).

The same procedure can easily be adopted to non-Abelian theories such as
QCD.100 One of the most useful observables in QCD is the heavy quark potential
since it can be computed in lattice gauge theory from a Wilson loop, and it can
be extracted phenomenologically from the heavy quarkonium spectrum. If the
interacting quarks have infinite mass, then all radiative correction are associated
with the exchange diagrams, rather than the vertex corrections. It is convenient
to write the heavy quark potential as V(Q?) = —47xCray(Q)/Q?. This defines
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the “effective charge” ayv(Q?)/Q? where by definition the “self-scale” Q=—tis
the momentum transfer squared. The subscript V indicates that the coupling is
defined through the potential.

In fact, any perturbatively calculable physical quantity can be used to define
an effective cha.rge98 by incorporating the entire radiative correction into its

definition; for example
Rer (@) = R (@) |1+ 28] (99)

where R is the Born result and Q% = s = E2,, is the annihilation energy squared.
An important result is that all the effective charges a4(Q) satisfy the Gell-Mann-
Low renormalization group equation with the same By and f;; different schemes
or effective charges thus only differ through the third and higher coefficients of
the 8 function. Thus, any effective charge can be used as a reference running cou-
pling constant in QCD to define the renormalization procedure. More generally,
each effective charge or renormalization scheme including MS is a special case of
the universal coupling function'® o(Q, Br). Peterman and St\"xckelberg103 have
shown that all effective charges are related to each other through a set of evolu-
tion equations in the scheme parameters B,. Physical results relating observables
must of course be independent of the choice of any intermediate renormalization
scheme.

Let us now consider expanding any observable or effective charge a4(Q4) in

terms of ay :
0a(@a) = avip) [1+ (Avp np + B Lo ] (94)

Since ay sums all vacuum polarization contributions by definition, no coefficient
in the series expansion in ay can depend on nf; i.e. all vacuum polarization
contributions are already incorporated into the definition of ay. Thus we must
shift the scale u in the argument of ay to the scale'® Qv = e3Avrm)y:

A av

a4(@a) = av(@v) 1+ ] (95)

where rf/v = B+(33/2) Ay p is the next-to-leading coefficient in the expansion of

the observable A in scheme V. Thus the relative scales between the two observables
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Aayv =Qa /Qv is fixed by the requirement that the coefficients in the expansion
in ay scheme are independent of vacuum polarization corrections. Alternatively,
one can derive the same result by explicitly integrating the one loop integrals in
the calculation of the observable A using ay(£?) in the integrand, where €2 is the
four-momentum transferred squared carried by the gluon. (In practice one only
needs to compute the mean-value of nf? = an%,.i c'6) One can eliminate the np
vacuum polarization dependence that appears in the higher order coefficients by
allowing a new scale to appear in each order of perturbation theory. However,
usually only the leading order commensurate scale is required in order to test
PQCD to good precision.

We can compute other observables B and even effective charges such as ayg

. . 107
as an expansion in ay scheme:
v B/V @
an(Qs) = av(Qu) 147" Lt ] | (96)

where Qv = yqj-; and again rf/ Y must be independent of vacuum polarization

contributions. We can now substitute and eliminate ay(Qv) :

ap(@s) = aa(@n) L4774 2Lt ] (97)

where Q4/Qp = Apja = Apjv/Aayv, and r‘f’/A = rflv - r‘f/V. Note also the
symmetry property Ag/arap = 1. Alternatively, we can compute the commen-
surate scale Q4 = ﬁ% directly by requiring rf/ 4 to be np-independent. The
result is in agreement with the transitivity rule: the BLM procedure for fixing the
commensurate scale ratio between two observables is independent of the interme-
diate renormalization scheme. The scale-fixed relation between the heavy quark
potential and oggg s’ av(Q) = ags(e75/°Q)[1 — 2(ogs/7) +- ).

The transitivity and symmetry properties of the commensurate scales are the
scale transformations of the renormalization “group”, as originally defined by
Peterman and Stﬁckelberg.103 The predicted relation between observables must
be independent of the order one makes substitutions; i.e. the algebraic path one
takes to relate the observables. It is important to note that the PMS method,
which fixes the renormalization scale by finding the point of minimal sensitivity to

4, does not satisfy these group properties. The results are chaotic in the sense that
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the final scale depends on the path of applying the PMS procedure. Furthermore,
any method which fixes the scale in QCD must also be applicable to Abelian
theories such as QED, since in the limit Nc—0 the perturbative coefficients in
QCD coincide with the perturbative coefficients of an Abelian analog of QCD.]08

The commensurate scale relations provide a new way to test QCD: One can
compare two observables by checking that their effective charges agree both in
normalization and in their scale dependence. The ratio of commensurate scales
A4y is fixed uniquely: it ensures that both observables A and B pass through
heavy quark thresholds at precisely the same physical point. Theoretical calcula-
tions are often performed most advantageously in MS scheme, but all reference to
such constructed schemes may be eliminated when comparisons are made between
observables. This also avoids the problem that one need not expand observables

in terms of couplings which have singular or ill-defined functional dependence.

Table 2

Leading Order Commensurate Scale Relations

oy5(0-435Q)

an(1.67Q) ar(2.77Q)
ar(1.36Q) ay(Q) agr(0.614Q)
acrs(1.18Q) ay, (1.18Q)
a,(0.904Q))

The physical value of the commensurate scale in ay scheme reflects the mean
virtuality of the exchanged gluon. However, in other schemes, including MS,
the argument of the effective charge is displaced from its physical value. The
relative scale for a number of observables is indicated in Table 2. For example,
the physical scale for the branching ratio T—~X when expanded in terms of ay
is (1/2.77)My ~ (1/3)M~. which reflects the fact that the final state phase space
is divided among three vector systems. (When one expands in MS scheme, the
corresponding scale is 0.157Mry.) Similarly, the physicai scale appropriate to the
hadronic decays of the 7 is (1/1.67)My, ~ (1/2)M,,.

After scale-fixing,the ratio of hadronic to leptonic decay rates for the T has
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the form 100

[(T—hadrons) _ 10(x* —9) a%;s-(ﬂ-ISTMT)
T(T—utp~) 8lwel ehep

[1—14.0(5)a¥+---]. (98)

Thus as is the case of positronium decay, the next to leading coefficient is very
large, and perturbation theory is not likely to be reliable for this observable.
On the other hand, the commensurate scales for the second moment of the non-
singlet structure function M, and the effective charges in the Bjorken sum rule
(and the Gross-Llewellyn Smith sum rule) are not far from the physical value
Q when expressed in ay scheme. At large n the commensurate scale for M,
is proportional to 1//n at large n, reflecting the fact that the available phase-
space for parton emission decreases as n increases. In multiple-scale problems, the
commensurate scale can depend on all of the physical invariants. For example,
the scale controlling the evolution equation for the non-singlet structure function
depends on z}; as well as Q.m9

A number of examples of commensurate scale relations between various single-
scale observables based on published three-loop MS calculations are given in Table
3. For simplicity we have used the leading order scale determined by eliminating
the ny dependence from the next-to-leading coefficient. We take ny = 3 to fix
the higher order term. We can improve these relations by requiring that all co-
efficients must be nj-independent in ay scheme. As in the example of the muon
anomalous moment, the commensurate scale appearing in argument of the higher
order contributions differs from the scale of the next-to-leading order term. The

three-loop results’’® have a remarkable simple form: For example for N¢ = 3

00, (@) _ arl@) _er(Q)® ar@’ (99)

T T s s

The extension of the BLM procedure to higher orders has also been discussed

recently by Grunberg and Kataev''' and by Samuel and Sm"guladze.9 ¢
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Table 3

Commensurate Scale Relations For Effective Charges to Order a?

ar(Q) = ays(0.70759Q) [1 + (1/12) (aygs/7) — 15.7331 (ags/x) + -]

0y, (Q) = ay=(0.36788Q) [1 = (11/12) (aggs/7) + 0.21527 (o /x) + -- ]
ap(Q) = ag,(1.92344Q) [1 + (ag, /) — 14.115 (e, /x?) + -]
ag,(Q) = ap(0.519903Q) [1 — (ap/7) + 16.115 (ak/72) + - -]
ar(Q) = ar(2.20707Q) [1 + 0(ar/7) — 5.94141 (a?/x?) + - -]
ar(Q) = ap(0.45309Q) [1 + 0(ar/x) + 5.94141 (o} /%) + - -]
g, (Q) = ar(1.14746Q) [1 — (ar/x) + 10.1736 (a? /x?) + -]
a-(Q) = 0,,(0.87149Q) [1 + (ay, /7) ~ 8.17363 (a2, /x%) + -]

An interesting illustration of commensurate scale relations is the connection
between the effective charge for the Bjorken sum rule for the first moment of the
isospin non-singlet helicity-dependent structure functions: I'’™® = (ga/6) [l —

(g, (@)/x)] and the effective charge for the annihilation cross section:
g, (Q) = p(0.52Q) [1 -2 ] . (100)

Mattingly and Stevenson M2 have recently obtained an empirical form for ag(Q)
by smearing the annihilation cross section data and fitting to the three loop form
using the PMS scale. Since the PMS and BLM scale are nearly coincident in
this case. we can use their determination for ag(@) to predict the Bjorken sum
rule corrections’”®  For example, at the scale appropriate to the E142 spin-
dependent structure function measurements at SLAC, Q% = 2 GeV?, one finds
ap(0.52Q)/% ~ 0.16 and hence ay(1.4GeV)/n ~ 0.14 which corresponds to
I'’~" = 0.180. The predictions for the Bjorken sum rule at EMC and SMC momen-
tum transfers Q% = 10.7 GeV? and Q? = 4.6 GeV? are ag,(3.27 GeV)/x ~ 0.09
and a4,{2.14 GeV)/n ~ 0.11. corresponding to ['?™* = (.190 and I'?™" = 0.186,

respectively. Alternatively, for the E142 data, we can use the commensurate scale
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relation

a,,(Q) = ar(1.145Q)[1 — %1 +--1, (101)

and the empirical determination ar(m,) = 0.19 to find a consistent determination
ag, (1.55 GeV)/x ~ 0.15. The uncertainty in the PQCD radiative corrections is
thus considerable smalier than usually assumed ™

The commensurate scale relations between observables can be tested at quite
low momentum transfers, even where PQCD relationships would be expected to
break down. It is likely that some of the higher twist contributions common to the
two observables are also correctly represented by the commensurate scale relations.
In contrast, expansions of any observable in agg(Q) must break down at low
momentum transfer since ayg (Q) becomes singular at Q = Aggs- (For example,
in the 't Hooft scheme where the higher order 8, = 0 for n = 2,3, ..., ayz(Q) has
a simple pole at Q = Ays.) The commensurate scale relations allow tests of QCD
without explicit reference to schemes such as MS. It is thus reasonable to expect
that the series expansions are more convergent when one relates finite observables
to each other.

The BLM scale has also recently been used by Lepage and Mackenzie'®® and
their co-workers to improve lattice perturbation theory. By using the BLM method
one can eliminate apauice in favor of ay thus avoiding an expansion with arti-
ficialiy large coefficients. The lattice determination, together with the empiri-
cal constraints from the heavy quarkonium spectra, promises to provide a well-
determined effective charge ay(Q) which could be adopted as the QCD standard.

After one fixes the renormalization scale u to the BLM value, it is still useful
to compute the logarithmic derivative of the observable dfn Ry /dény at the BLM-
determined point. If this derivative is large, or equivalently, if the BLM and PMS
scales strongly differ, then one knows that the truncated perturbative expansion
cannot be numerically reliable, since the entire series is independent of p. Note that
this is a necessary condition for a reliable series, not a sufficient one, as evidenced
by the large coefficients in the positronium and quarkonium decay widths which
appear when the scales are set correctly. In the case of the three and four-jet
decay fractions, the BLM and PMS scales strongly diverge at low values of the jet
discriminant y. Thus, by using this criterion, we establish that the leading-order
perturbation theory must fail in the small y regime, requiring careful resummation

of the asfny series.
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However, if we restrict the analysis to jets with invariant mass M < ,/ys,
with 0.14 > y > 0.05 we have an ideal situation, since both the PMS and FAC
scales nearly coincide with the BLM scale when one computes jet ratios at in the
MS scherne. (See Fig. 11.) the renormalization scale dependence in this case is
minimal at the BLM scale, and the computed NLO coefficient is nearly zero. In
fact, Kramer and Lampe find that the BLM scale and the NLO PQCD predictions
give a consistent description of the LEP 2-jet and 3-jet data for 0.14 > y >
0.05. This allows a determination of a, with remarkably small theoretical error:
ags(M:) = 0.107 £ 0.003, which corresponds to AL = 100 % 20 MeV.

The BLM method and the commensurate scale relations presented in this
section can be applied tc the whole range of QCD and standard model processes,
making the tests of theory much more sensitive. The method should also improve

precision tests of electroweak, supersymmetry and other non-Abelian theories.

16 Quark Helicity Distributions and Hadron He-
licity Retention in Inclusive Reactions at Large

Xp

Consider a general inclusive reaction AB—C X at large 7 where the helicities
Ac and A4 are measured. To be precise, we shall use the boost-invariant light-
cone momentum fraction rc = k& /k} = (k* + k*)c/(k® + k%) 4. Hadron helicity
retention implies that the difference between Ac and A4 tends to a minimum at
r¢—1. Hadron helicity retention follows from the helicity structure of the gauge
theory interactions, and it is applicable to hadrons, quarks, gluons, leptons, or
photons. For example. in QED the radiation of a photon in lepton scattering has
the well-known distribution dN/dz o« [1 4 (1 — z)?]/z. The first term corresponds
to the case where the photon helicity has the same sign as the lepton helicity; the
opposite-sign helicity production is suppressed by a factor (1 — Y atr — 1.7
the projectile helicity tends to be transferred by the leading fragment at each step
in perturbation theory.

One of the most important testing grounds for hadron helicity retention is J /v
production in = — N collisions. The helicity of the J/¢' can be measured from the
angular distribution 1 + A cos? 8, of one of the muons in the leptonic decay of the
J/. At low to medium values of r  the Chicago-lowa-Princeton Collaboration'"®
finds that A ~ 0. However, at large zr > 0.9 the angular distribution changes
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markedly to sin? 8.; i.e. the J/¢ is produced with longitudinal polarization. The
sudden change to longitudinal polarization must mean that a new heavy quark
production mechanism is present at large xp.na In fact, it is easy to guess the
relevant process which can produce high momentum charm quark pairs. [See Fig.
12(a).] Since nearly all of the pion’s momentum is transferred to the charmonium
system, one needs to consider diagrams where each valence quark in the incoming
pion emits a fast gluon. The two gluons then fuse to make a fast c¢ pair. At large
momentum fraction z, each gluon’s helicity tends to be parallel to the helicity of
its parent quark. Thus the angular momentum J, of the gluon pair is transferred
to the ¢z pair. The angular momentum tends to be preserved by any subsequent
gluon radiation or gluon interaction from the heavy quarks. The J /v then tends

to have the same helicity as the projectile at high light-cone momentum fraction.
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Figure 12. The zr dependence of the polarization parameter A for (a) Jie production”s

. . .17, - .
and (b) continuum lepton pair production”  in ¥ — N collisions as a function of rp.

Thus there is a natural mechanism in QCD which produces the J/t* in the
same helicity as the incoming beam hadron: the essential feature is the involve-
ment of all of the valence quarks of the incoming hadron directly in the heavy
quark production subprocess. Since such diagrams involve the correlation between

the partons of the hadron, it can be classified as a higher-twist “intrinsic charm”™
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amplitude; the production cross section is suppressed by powers of f'/Moﬁ rel-
ative to conventional fusion processes. Although nominally higher twist, such
diagrams provide an efficient way to transfer the beam momentum to the heavy
quark system while stopping the valence quarks.

The intrinsic charm mechanism also can explain other features of the JIy
hadroproduction.“s'ug'lm The observed cross section persists to high xr in excess
of what is predicted from gluon fusion or quark anti-quark annihilation subpro-
cesses: furthermore the cross section at high zr has a strongly suppressed nuclear
dependence, A%*¥) ~ 0.7. The nuclear dependence actually depends on zr not
r5 which rules out leading twist mechanisms. The higher-twist intrinsic charm
e.g. luudce) Fock state wavefunctions have maximum probability when all of the
quarks have equal velocities, i.e. when z; ‘/m"' + kﬁ_'_. This implies that the
charm and anti-charm quarks have the majority of the momentum of the proton
when they are present in the hadronic wavefunction. In a high energy proton-
nucleus collision, the small transverse size, high-z intrinsic ¢¢ system can penetrate
the nucleus, with minimal absorption and can coalesce to produce a charmonium
state at large z r. Since the soft gnarks expand rapidly in impact space, the main
interaction in the target of the intrinsic charm Fock state is with the slow valence
quarks rather than the compact c¢ system.1 * Thus at large z 5 the interaction in
the nucleus should have the A-dependence of normal hadron nucleus cross sec-
tions: ~ A%7. Note that at high energies, the formation of the charmonium state
occurs far outside the nucleus. Thus one predicts similar A°(zF)_dependence of
the J/¢ and ¥ cross sections. These predictions are in agreement with the results

reported by the E-772 experiment at Fermilab.“9

17 Anomalous Polarization of Massive Lepton
Pairs in Hadronic Collisions

One of the most surprising polarization anomalies violating perturbative QCD
expectations is the strong and rapidly changing angular correlations observed in
massive lepton pair hadroproduction by both the NA-10 experiment at CERN and
the CIP experiment at Fermilab''" Both experiments measured aN—utu~N

in nuclear targets.

The angular distribution of the g% in
T4 Ny + X—pt +p” + X (102)

may be parameterized in general as follows:

;l;:—;,’l~1+Ac0520+ysin20cosd>+—;s'mzﬂcosab. (103)
Here 8 and ¢ are angles defined in the muon pair rest frame and A, p and v are
angle-independent coefficients. The parton model (Drell-Yan pictureul) views
the production of the virtual photon 7* in Eq. (102) as originating from the
annihilation of two uncorrelated constituent quarks, resulting in an angular dis-
tribution of the form 1 + cos?®; i.e. A = 1 and v = g = 0. This result foliows
simply from the fact that the virtual photon is produced transversely polarized in
the annihilation of two on-shell fermions.

In order to describe the lepton pair transverse momentum distribution do/dQ%
in QCD one has to take into account radiative corrections to the Drell-Yan model.
The Q7-distribution has been calculated in the QCD-improved parton model to
the order of O(a,) with resummation of the soft gluons at the leading double log-
arithmic accuracy (see Ref. 122 and references therein). This approach was used
in Ref. 123 to compute the angular distribution at fixed transverse momentum.
The deviations from the 1 + cos® & behavior were found to be less than 5% in the
range 0 < Qr <3 Gev.'?

However. the NA-10 and CIP measurements show a quite different behavior.
In the limit where the momentum fraction r of one of the pion constituents is very
close to 1 and for moderate transverse momenta of the muon pair. the value of A
turns strongly negative Ref. 117, consistent with a sin® @ distribution. This im-
plies that in this kinematic limit the virtual photon is produced with longitudinal

117,124,125 .
1s observed

polarization, rather than transverse. Fi urthermore, the data
to have a strong azimuthal modulation (nonzero and v in (2)). an effect which
is missing in standard QCD. The Lam -Tung sum rule®® 1 — A — 2u = 0. which
follows from the approach used in Ref. 123 is also badly violated by the experi-
mental data. Moreover, the inclusion of hard O(a?) corrections does not resolve
the pmblem.127 Thus the standard QCD parton model approach cannot explain

the observed angular distribution.




In fact. in the large r; region, the off-shell nature of the annihilating quark
from the projectile becomes crucial, and thus the operative subprocess must in-
volve the correlated multi-parton structure of the projectile. In effect the domi-
nant subprocess in the off-shell domain is Afq—£fg. Berger and I have showr: that
this five particle amplitude gives a dominant A = —1 longitudinal contribution at
large zp and fixed QQ.IZS In the higher-twist subprocess diagram, Fig. 13(b), the
lepton pair tends to have the same helicity as the beam hadron at large rp. For
example. consider s~ N —p*tu~ X at high rg. The valence d quark emits a fast
gluon which in turn makes a fast-u, slow-u pair. Because of the QCD couplings,
the fast u then carries the helicity of the d. The valence % then annihilates with
the fast u to make the lepton pair at ¢ ~ 1. The lepton pair thus tends to have
the helicity (J. = 0) of the pion, in agreement with hadron helicity retention. A
detailed calculation shows that the subprocess amplitude can be normalized to
the same integral over the pion distribution amplitude [dzé(z,Q)/(1 — z) that
controls the pion form factor” Thus the normalization of these processes can

be interrelated.

e {a) (b)

Figure 13. Higher twist mechanisms for producing (a) J/¢ and (b) massive lepton pairs at
high zF in meson-nucleon collisions.

The data from both NA-10 and CIP also show that the coefficient v grows to
values as large as 0.3 at large p = Qr/Q; i.e. the azimuthal correlation cos 2¢ be-
comes sizeable at large lepton pair transverse momentum in strong contrast to the
predictions of leading-twist PQCD. Brandenburg, Mirkes, and Nachtmann 7 have
suggested an intriguing non-perturbative explanation for this anomaly. In their
model the annihilating quark and antiquark interact through the chromomagnetic
QCD gluon condensate and become polarized transverse to the scattering plane

in much the same way that electrons become transversely polarized relative to the
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plane of a storage ring. The model leads to a parameterization:

Q1
= vy 104
v=u Fimt (104)

with 1y = 0.34 and m1 = 1.5 GeV which gives a good fit to the observed depen-
dence of v found by the NA-10 experiment for x "W —pu¥ 4~ X data at pjap = 194
GeV/c, and @ = 8 GeV.

However, it is also interesting to check the effect of the higher twist contribu-
tions. Recently, Arnd Brandenburg, Valya Khoze, Dieter Miller, and 1" have
found that large values for the azimuthal coefficients p and v—with the correct
sign—are predicted from the xq—{fq subprocess. assuming that the pion distri-
bution amplitude has the broad two-humped shape predicted by QCD sum rules.
In contrast, a very narrow pion distribution amplitude, characteristic of weak
hadronic binding, predicts the wrong sign for the observed azimuthal angular
coefficients u and v. | will briefly review this analysis here.

In order to go bevond the standard treatment we need to take into account the

28,129,131 .
To treat the bound state problem perturbatively.

pion bound state effects”
we will restrict ourselves to a specific kinematic region in which the momentum
fraction r of one of the pion constituents is large, r > 0.3. In fact. in the large
r region the off-shell nature of the annihilating quark from the projectile is cru-
cial, and thus the operative subprocess must involve the correlated multi-parton
structure of the projectile. The domirant subprocess in the off-shell domain is
thus x~g—u+u~g. We resolve the pion by a single hard gluon exchange.s'a The
main contribution to reaction Eq. (102) then comes from the diagrams of Fig.
14(a.b)v128"29']31

shell. p2 = —Q%-/ {1 — rg). The second diagram is required by gauge invariance.

We see from diagram 1a that the @ quark propagator is far off-

(In a physical gauge the contribution of the second diagram is purely higher twist.}

The leading contribution to the amplitude M for the reaction
u+r =+ Xopt 47+ X {105)

. .58 . . . -
is obtained” by convoluting the partonic amplitude T{u+td—~"+d—p* +p~ +d)
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Figure 14. Diagrams (a) and (b) give the leading contribution to the amplitude of reaction
(4). The cut of diagram (c) gives a typical (one out of four) contribution to the cross section "

with the pion distribution amplitude q’>(‘z,C§2),12
1
M= /dz 6(z.Q3) T, (106)
0

where Q* ~ Q%/(1 — 1) is the cutoff for the integration over soft momenta in the

definition of ¢. For the hadronic differential cross section we have

1

d.'l'. - " ;’———-———-——— 2
Gunla )o/dr resaeanall

1
Q¥o(r " N—ptp~X) 1 1
dQ?dQidr dY  (27)*64 /

0
Sz —Tg+Tou— QT‘ (1—25)" ") 8(Q% — szuza+ Q%1 —x3) 1) + {u—d,T—d} .
(107)
Here Q* is the four-momentum of 7* in the hadronic center of mass system, z4()

is the light-cone momentum fraction of the u(%) quark and G, n is the parton
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distribution function of the nucleon. The longitudinal momentum fraction of ihe
photon is defined as z; = 2Q1/\/s and it should be noted that its maximum
value, 7 =1 - sTHQ? + Q%) is slightly less than 1. The second term on
the right hand side of Eq. (107) is the same as the first one with quark flavors
interchanged. This term gives the contribution from the nucleon sea. In Fig.
14(c) we show a typical contribution to the hadronic cross section.

We note that no primordial or intrinsic transverse momenta have been intro-
duced. The single gluon exchange is the source of Qr in the model discussed. We
have also neglected the quark masses and the mass of the projectile which are

small compared to Q.
In analogy to Eq. (103) we parameterize the angular distribution as follows,

Q%do ( Q%do )" ~
dQ2dQdr d0 \dQ2dQ}dr, -

—3———(1+Acos 6+ psin20cos ¢ + ism 2@cos20) . (108)

4x A +3
where the angular distribution coefficients A, u and v are now functions of the
kinematic variables z 1, Q}/Q? and Q?/s.
We work in the Gottfried-Jackson frame where the 3 axis is taken to be the
pion direction in the muon pair rest frame and the § axis is orthogonal to the

x~ N plane. Using Eqs. (106)-(108), we arrive at an expression of the form,

1 ~ 1 .
Nl / & #(z1.Q%) d &(22.Q%)

o lzl(zl+i'—1+ic) :222(:21\-5-—1—:':)
o
L b lo
azn|mi+(z+n)|m j+] mo . {109)
n n ng
where
- (22, @
. ¢(z1, ¢(22,Q°)
N= dzy ——m8m————~ dzg———————— {1 2m2-H 1T 2 + .
_/ 2;(7l+x—l+t€) zzzg(:;»«{»:t—l——:c){ 12Tk ) ro}
(110}
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and

Is

_ 171+ /73 +4571(Q% + QF)
TEIY QIR 2 T+ Q3/Q? ‘

The variable ¥ acts to resolve the distribution amplitude much like the Bjorken

(111)

variable resolves the structure functions. The coefficients I, m;, n, and r; (1 =
0,1,2) depend enly on T and Q2T/Q2 Their explicit forms are given in Ref. 130.
The factors 1/z in Eq. (109) come from the gluon propagators and the factors
1/(z+F— L £i¢) arise from the quark propagator of Fig. 14(b). In contrast to Refs.
131 and 132 we did not omit terms O(Q%/Q*(1 — z)) and O( Q4/Q*(1 —zx)™")
and of higher orders.

We note that the internal quark line of Fig. 14(b) can go on-shell. The
amplitude M of Eq. (106). however, is always regular due to the z-integrationln
for realistic choices of &{z. (}") This also can be read off from Eq. (109). The fact
that the internal line goes on-shell does not cause a Sudakov suppression since our
diagrams are the lowest order contribution of an ineclusive process. In other words
gluon emission to the final state will occur in the higher order corrections. Only
when g approaches unity. where gluon emission is prohibited by kinematics, the
Sudakov suppression will arise.

Our model is not to be considered as a correction to the parton model result.
The diagrams of Fig. 14(a.b) give the whole leading order contribution in the
specific kinematic region of large enough g, 73 > 0.5!%" This is so because the
gluon exchange is the resolution of the pion bound state and not a radiative
correction.

In Fig. 15 we plot the predictions of the higher twist model for A, u, v and
20 —(1-A) versus ry for 4 [Q3%/Q* = 0.25 for different choices of ¢(z. Q?) together
with the data of Ref. 125. The dotted line corresponds to the delta function
distribution amplitude, ¢(z) = é(z — 1/2), the dashed-dotted line corresponds to
the asymptotic one, 6{z) = 6z(1 — z) and the dashed line shows the results for a
two-humped distribution a.mplit.ude.'35 é(z) = 262(1 — z)(1 — 50/13 =(1 — z)). For
the two-humped distribution amplitude we have chosen the evolution parameter
Q? to be effectively ~ 4 GeV?,

In Fig. 16 the same quantities are shown versus \/a?[ for g = 0.6 and
\/ Q? = 6 GeV. The data points in this case are averaged over intervals 4.05 <
\/_(F < 8.55 GeV and 0.2 < zz < 1 and taken from Ref. 125. We would rather
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Figure i5. The angular distribution coefficients A, 4 and v and the Lam-Tung combination.
21 — (1 — A), in the Gotifried-Jackson frame, versus zg for VQ37/Q? = 0.25. The dotted line
corresponds to ¢(z) = 6(z — 1/2), the dashed-dotted line corresponds to ¢(z) = 6z(1 — z) and
the dashed line shows the results for the two humped distribution amplitude. o(z) = 26z{1 - =}
(1 —50/13 z(1 — z)). The solid line is the result for the two-humped o(z) where powers of
(Q’-;./Qz)"l'2 were dropped for n > 3. We note that corrections to our model may induce
such terms: thus the difference between the dashed and the solid lines should be viewed as
the uncertainty of our predictions. We also show the data points of Ref 125 averaged in the

intervals 4.05 < /Q? < 8.55 GeV and 0 < \/Qrz < 5 GeV.

prefer to use the unaveraged data which are not available. The use of the averaged-
over-rz data in Fig. 16 required us to fix the value zz = 0.6 for our theoretical
prediction which is rather low for our model and pushes it to the limits of its
applicability.

In principle, bound state effects require a non-perturbative analysis. The
perturbative approximation makes sense only at large enough r. The contribution
of soft gluons to the pion bound state is taken into account in the evolution of the
distribution amplitude. The contribution of more than one hard gluon exchange
will be suppressed by powers of a,. The contribution of the higher Fock states of
the pion is expected to be suppressed when z is large enough.ss

Thus detailed measurements of the angular distribution of lepton pair in
hadron-hadron collisions provides a microscope to probe the structure of hadrons

at the amplitude level. It is clearly important to have detailed measurements of

72




12

Figure 16. The same quantities as in Fig. 15 are shown. versus \/QT! for zz = 0.6 and

V@7 = 6 GeV.

the lepton pair coefficient functions A(zy,pr), p(zL,PT), and v(z,pr) at large
z; > 0.6 for the reactions H p—{€X for the whole range of projectiles H =
7, K,p,p. and n. In each case the deviations from the parton model predictions
provide a unique sensitivity to the fundamental non-perturbative structure of the
projectile wavefunction. In the case of 7* p—fEX, one could identify the “point-
like” and “resolved” components of the distribution amplitude for both real and
virtual photons.

The above analysis shows that the coeficient functions A, g, and v at large
z > 0.5 in the Drell-Yan process are very sensitive to the shape of the projectile’s
distribution amplitude ¢(z, Q?), the basic hadron wavefunction which describes
the distribution of light-cone momentum fractions in the lowest-particle number
valence Fock state. Measurements of meson form factors %8 and other exclusive and
semni-exclusive proc:esses133 at large momentum transfer can only provide global
constraints on the shape of #(z,Q%); in contrast, the angular dependence of the
lepton pair distributions can be used to provide local measurements of the shapes
of these hadron wavefunctions. Detailed measurements of the angular distribution

of leptons in hadron-hadron collisions will open up a new window on the structure
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of hadrons at the amplitude level.

Our analysis shows that the broad, two-humped. distribution amplitude for
the pion which was predicted from QCD sum rules® can account for the main
features of the Drell-Yan data. In contrast, narrow momentum distributions,
characteristic of weak hadronic binding, predicts the wrong sign for the observed
azimuthal angular coefficients g and ».

It is clearly important to have detailed measurements of the lepton pair distri-
butions as a function of both r and Qr for the reactions Hp—{* £~ X for the whole
range of fixed target beams H = x,K,p,p, and n. In each case, the deviations
from the parton model predictions will provide a unique sensitivity to the fun-
damental non-perturbative structure of the projectile wavefunction. In the case
of yv*p—£+{~ X, one can also in principle identify the “point-like” and “resolved”
components of the distribution amplitude for both real and virtual photons.

We also note that if either the higher twist explanation or a more exotic non-
perturbative explanationlm of the azimuthal correlations are correct, then one
expects the same type of anomalous cos 2¢ azimuthal correlation will be seen in

other QCD processes such as ete”—=H*H™ X, ép—EH X, and pp— Hy H2X.

18 Hadron Helicity Conservation in Hard Exclu-
sive Reactions

There are also strong helicity constraints on form factors and other exclusive
amplitudes which follow from perturbative QCD12 At large momentum transfer,
each helicity amplitude contributing to an exclusive process at large momentum
transfer can be written as a convolution of a hard quark-gluon scattering ampli-
tude Ty which conserves quark helicity with the hadron distribution amplitudes
(i, Q), which arethe L, =0 projection of the hadron’s valence Fock state wave-
function: $(z:, M, Q) = Jld2ks] ¥(zi. kL M)O(K], < Q) where el by N is
the valence wavefunction. Since ¢ only depends logarithmically on Q?, the main
dynamical dependence of F '8(Q?) is the power behavior {Q*)~*? derived from the
scaling behavior of the elementary propagators in Ty.

As shown by Botts, Li, and Sterman,l“ the virtual Sudakov form factor sup-
presses long distance contributions from Landshoff multiple scattering and r ~ 1
integration regions, so that the leading high momentum transfer behavior of hard

exclusive amplitudes are generally controlled by short-distance physics. Thus
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quark helicity conservation of the basic QCD interactions leads to a general rule
concerning the spin structure of exclusive amplitudes: "o leading order in 1/@Q,
the total helicity of hadrons in the initial state must equal the total helicity of
hadrons in the final state. This selection rule is independent of any photon or
lepton spin appearing in the process. The result follows from (a) neglecting quark
mass terms, (b) the vector coupling of gauge particles, and (c) the dominance of
valence Fock states with zero angular momentum projection. The result is true
in each order of perturbation theory in a,.

For example, PQCD predicts that the Pauli Form factor F>(Q?) of a baryon is
suppressed relative to the helicity-conserving Dirac form factor F; 1(Q?). A recent
experiment at SLAC carried out by the American-University/SLAC collaboration
is in fact consistent with the prediction Q2F>(Q?)/F1(Q?%)— const. Helicity
conservation holds for any baryon to baryon vector or axial vector transition am-
plitude at large spacelike or timelike momentum. Helicity non-conserving form
factors should fall as an additional power of 1 /QZ.H Measurements ' of the tran-
sition form factor to the J = 3/2 N(1520) nucleon resonance are consistent with
J: = £1/2 dominance, as predicted by the helicity conservation rule!* One of the
most beautiful tests of perturbative QCD is in proton Compton scattering, where
there are now detailed predictions available for each hadron helicity-conserving
amplitude for both the spacelike and timelike processes.l 5" In the case of spin-one
systems such as the p or the deuteron, PQCD predicts that the ratio of the three
form factors have the same behavior at large momentum transfer as that of the
W in the electroweak theory.‘o

Another interesting application of helicity retention in exclusive processes is
the exclusive production of vector mesons in high energy electroproduction.!“At
large photon virtuality Q? the longitudinal couplings of the virtual photon domi-
nate. This polarization is then retained in the diffractive production of the vector
meson. The amplitude for this process can be factorized as a convolution of (a)
the photon wavefunction. (b) the scattering amplitude for the quark and anti-
quark system to scatter through the exchange of two gluons to the target system,
and (c) the vector meson distribution amplitude. Thus measurements of forward
high energy diffractive leptoproduction can lead to fundamental checks on the
normalization of the gluon structure function at low r, as well as moments of the

vector meson wavefunction. Further details and references are given in Ref. 138.

75

Hadron helicity conservation in large momentum transfer exclusive reactions
is a general principle of leading twist QCD. In fact, in several outstanding cases,
it does not work at all, particularly in single spin asymmetries such as Ax in pp
scattering, and most spectacularly in the two-body hadronic decays of the J/v.
The inference from these failures is that non-perturbative or higher twist effects
must be playing a crucial role in the kinematic range of these experiments.

The J/¢ decays into isospin-zero final states through the intermediate three-
gluon channel. If PQCD is applicable, then the leading contributions to the
decay amplitudes preserve hadron helicity. In the case of e¥e” annihilation into
vector plus pseudoscalar mesons, Lorentz invariance requires that the vector meson
will be produced transversely polarized. Since this amplitude does not conserve
hadron helicity, PQCD predicts that it will be dynamically suppressed at high
momentum transfer. Hadron helicity conservation appears to be severely violated
if one compares the exclusive decays J/v and ¥ — pr, K*K and other vector-
pseudoscalar combinations. The predominant two-body hadronic decays of the

J/+ have the measured branching ratios

BR(J/v—K*K™)=237+031 x 107*
BR(J/v—pr) =128 £0.10 x 1077 (112)
BR(J/u—K¥*K™*)=50+01x107%.

Thus the vector-pseudoscalar decays are not suppressed, in striking contrast to

the PQCD predictions. On the other hand. for the v

BR(“'—R*K~)=10+07x107*
BR(v'—pr) < 83 x 107° (90% CL) (113)
BR(v'—=KYK™") < 1.8 x 107® (90% CL) .

From the standpoint of perturbative QCD. the observed suppression of ¢' to
vector-pseudoscalar mesons is expected; it is the J/v that is anomalous. >’ What
can account for the apparently strong violation of hadron helicity conservation’
One possibility is that the overlap of the @ system with the wavefunctions of the p
and 7 is an extremely steep function of the pair mass. as discussed by Chaichian
and Tornqvist.“o However. this seems unnatural in view of the similar size of

the J/v> and ¥' branching ratios to K*A ™. Pinsk_vHI has suggested that the
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' decays predominantly to final states with excited vector mesons such as p'w,
in analogy to the absence of configuration mixing in nuclear decays. However,
this long-distance decay mechanism would not be expected to be important if the
charmonium state decays through c annihilation at the Compton scale 1/m..
Another way in which hadron helicity conservation might fail for Jjp —
gluons — mp is if the intermediate gluons resonate to form a gluonium state O.
If such a state exists, has a mass near that of the J/y, and is relatively stable,
then the subprocess for J/i — wp occurs over large distances and the helicity
conservation theorem need no longer apply. This would also explain why the
J/ ¥ decays into 7p and not the ¥'. Tuan, Lepage, and 1" have thus proposed,
foliowing Hou and Soni,]42 that the enhancement of J/¢ — K*K and J/¢ — px
decay modes is caused by a quantum mechanical mixing of the J/y with a JPC =
17~ vector gluonium state O which causes the breakdown of the QCD helicity
theorem. The decay width for J/¢ — pr via the sequence J/yp — O — pr
must be substantially larger than the decay width for the (non-pole) continuum
process J/¢ — 3 gluons — pr. In the other channels the branching ratios of
the © must be so small that the continuum contribution governed by the QCD
theorem dominates over that of the O pole. A gluonium state of this type was
first postulated by Freund and Nambu 3 based on 0Z1 dynamics soon after the
discovery of the Jf¢ and ¢’ mesons. The most direct way to search for the O is
to scan pp or e*e~ annihilation at /s within ~ 100 MeV of the J/y, triggering
on vector/pseudoscalar decays such as wp or KK* and look for enhancements

relative to K*K~. Such a search has recently been proposed for the BEPC.

19 Anomalous Spin Correlations and Color Trans-
parency Effects in Proton-Proton Scattering

The perturbative QCD analysis of exclusive amplitudes assumes that large
momentum transfer exclusive scattering reactions are controlled by short distance
quark-gluon subprocesses, and that corrections from quark masses and intrinsic
transverse momenta can be ignored. Since hard scattering exclusive processes
are dominated by valence Fock state wavefunctions of the hadrons with small
impact separation and small color dipole moments, one predicts that initial and
final state interactions are generally suppressed at high momentum transfer. In

particular, since the formation time is long at high energies, one predicts that

7

the attenuation of quasi-elastic processes due to Glauber inelastic scattering in a
nucleus will be reduced. This is the color transparency prediction of perturbative
144
QCD.
scattering at fcm = /2 has been carried out at BNL using several nuclear targets
(C, Al, Pb)M*°
was observed to be in fact much less than that predicted by traditional Glauber

theory. The expectation from perturbative QCD is that the transparency effect

A test of color transparency in large momentum transfer quasielastic pp

The attenuation at pjp = 10 GeV/c in the various nuclear targets

should become even more apparent as the momentum transfer rises. However, the
data at pyp, = 12 GeV/c shows normal nuclear attenuation and thus a violation
of color transparency.

An even more serious challenge to the PQCD predictions for exclusive scat-
tering is the observed behavior of the normal spin-spin correlation asymmetry
Ann = [do(11) — do(11)}/[do(1T) + de(1])] measured in large momentum trans-
fer pp elastic scattering. At pp = 11.75 GeV/c and Ocm = % /2, AynN Tises to
~ 60%, corresponding to four times more probability for protons to scatter with
their incident spins both normal to the scattering plane and parallel, rather than
normal and opposite.l 'In contrast, the unpolarized data is to first approximation
consistent with the fixed angle scaling law s'%da /dt(pp — pp) = f(Bcas) expected
from the perturbative analysis. The onset of new structure at s ~ 23 GeV?
suggests new degrees of freedom in the two-baryon system.

Guy De Teramond and 1" have noted that the onset of strong spin-spin
correlations, as well as the breakdown of color transparency, can be explained as
the consequence of a strong threshold enhancement at the open-charm threshold
for pp—Ac.Dp at /s = 5.08 GeV or plp ~ 12 GeV/c. At this energy the charm
quarks are produced at rest in the center of mass. Since all eight quarks have zero
relative velocity, they can resonate to give a strong threshold eflect in the J =
L = § =1 partial wave. (The orbital angular momentum of the pp state must be
odd since the charm and anti—charm quarks have opposite parity.) The J = L =
S =1 partial wave has maximal spin correlation Ayy = 1. A charm production
cross section of the order of 1 b in the threshold region can have. by unitarity.
a large effect on the large angle elastic pp—pp amplitude since the competing
perturbative QCD hard-scattering amplitude at large momentum transfer is very
small at /5 = 5 GeV. In fact as recently shown by Manohar. Luke. and Savage,“T

the QCD trace anomaly predicts that the scalar charmonium-nucleus interaction 1s

78



Piap (GeV/c)

T3I5A8

3

Figure 17. Axy as a function of piap at 8cm = 7/2. The dat.a11 are from Crosbie
et al. (solid dots), Lin et al. (open squares) and Bhatia et al. (open triangles). The peak
at piab = 1.26 GeV/c corresponds to the pA threshold. The data are well reproduced
by the interference of the broad resonant structures at the strange (p1ab = 2.35 GeV/c)
and charm (p1ab = 12.8 GeV /c) thresholds, interfering with a PQCD background. The
value of Axyn from PQCD alone is 1/3.

strongly amplified at low velocities and can lead to nuclear-bound charmonium*®

An analytic model which contains all of these features is givenin Ref. 146. The
background component of the model is the perturbative QCD amplitude with st
scaling of the pp — pp amplitude at fixed Ocm and the dominance of those am-
plitudes that conserve hadron helicit.y.1 ‘A comparison "9 of the magnitude of
cross sections for different exclusive two-body scattering channels indicate that
quark interchange a.mplitudms150 dominate quark annihilation or gluon exchange
contributions. The most striking test of the model is its prediction for the spin
correlation Ay y shown in Fig. 17. The rise of Ayny to > 60% at prap = 11.75
GeV/c is correctly reproduced by the high energy J=1 resonance interfering with
#(PQCD). The narrow peak which appears in the data of Fig. 17 corresponds to
the onset of the pp — pA(1232) channel which can be interpreted as a uvuuuddqg
3 F3 resonance. The heavy quark threshold model also provides a good description
of the s and t dependence of the differential cross section, including its “oscilla-
tory” dependencelsl in s at fixed Ocm, and the broadening of the angular distri-
bution near the resonances. Most important, it gives a consistent explanation for
the striking behavior of both the spin-spin correlations and the anomalous energy

dependence of the attenuation of quasielastic pp scattering in nuclei. A threshold
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enhancement or resonance couples to hadrons of conventional size. Unlike the
perturbative amplitude, the protons coupling to the resonant amplitude will have
normal absorption in the nucleus. Thus the nucleus acts as a filter, absorbing the
non-perturbative contribution to elastic pp scattering, while allowing the hard-
scattering perturbative QCD processes to occur additively throughout the nuclear
volume*? Conversely, in the momentum range piap = 5 to 10 GeV /c one predicts
that the perturbative hard-scattering amplitude will be dominant at large angles.
It is thus predicted that color transparency should reappear at higher encrgies
(P1ab > 16 GeV/c), and also at smaller angles (fcm = 60°) at plap = 12 GeV/c
where the perturbative QCD amplitude dominates. If the resonance structures in
Ay are indeed associated with heavy quark degrees of freedom, then the model
predicts inelastic pp cross sections of the order of 1 mb and 1ub for the produc-
tion of strange and charmed hadrons near their respective thresholds. In fact,
the neutral strange inclusive pp cross section measured at pj,p, = 5.5 GeV/c is
0.45+0.04 mb” 53 Thus the crucial test of the heavy quark hypothesis for explain-
ing ANy is the observation of significant charm hadron production at pjp > 12
GeV/ec.

Ralston and Pire'>” have suggested that the oscillations of the pp elastic cross
section and the apparent breakdown of color transparency are associated with the
dominance of the Landshoff pinch contributions at \/s ~ 5 GeV. The oscillat-
ing behavior of do/dt is then due to the energy dependence of the relative phase
between the pinch and hard-scattering contributions. They assume color trans-
parency will disappear whenever the pinch contributions are dominant since such
contributions could couple to wavefunctions of large transverse size. However, the
large spin correlation in Ay is not readily explained in the Ralston-Pire model

unless the Landshoff diagram itself has Ayy ~ 1.

20 Conclusions

In these lectures I have emphasized polarization phenomena which can provide
new insights into hadron dynamics and structure. Spin physics has benefited
from a remarkably close interplay between theory and experiment. A number of
experiments have reported unexpectedly strong spin correlations that challenge a
straightforward interpretation in quantum chromodynamics:

1. Two experiments, NA-10 at CERN and Chicago-lowa-Princeton (CIP) at
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FermiLab,1 " have reported strong deviations from leading twist pertur-
bative QCD predictions for the polarization of the virtual photon in the
Drell-Yan process 7 N—putu~X. The strong azimuthal and polar angular
correlations observed in these experiments require the consideration of dy-
namical higher twist subprocesses in which the multi-quark structure of the
projectile enters. Thus these measurements can provide new constraints on
the structure of the pion at the amplitude level

2. The CIP collaboration' ™ has also reported that the J/v¢ produced in =
nucleon collisions becomes strongly longitudinally polarized at large mo-
mentum fraction z;. The result is consistent with the general principle of
hadron-helicity retention and leads to new constraints on the multi-quark
Fock state structure of the pion.116

3. The measured branching ratio for the decay of the J/¢ into pr and other
psuedoscalar-vector two-body exclusive decays strongly violate perturbative
QCD predictions for hadron helicity conservation. No such anomaly is ob-
served for the ¢'. The result could signal the mixing of the J/¢ with a
nearby 17~ tri-gluonic bound state121%° However, as yet there is no clear
evidence for any gluonium state in this mass range.

4. A remarkably <trong spin-spin correlation has been observed in wide-angle
elastic polarized proton polarized proton scattering at ANL and BNL. The
sudden increase in the spin correlation Ay y at new quark thresholds and the
observed breakdown of color transparency at /s ~ 5 GeV in quasi-elastic
pp scattering may reflect the strong attraction at the charm production
threshold '° predicted from the QCD trace anomaly.’47 The large values
observed for the single spin asymmetry Ay may be due to higher twist
corrections.

The new measurements of the polarized structure functions in deep inelastic
lepton scattering from SLAC and CERN are now providing fundamental checks on
QCD sum rules, as well as a detailed look at the underlying spin structure of the
nucleon. The integral of the non-singlet polarized structure function g "(z, Q)
appears compatible with the Bjorken sum rule, although a number of uncertainties
due to higher twist and Regge extrapolations still remain. In these lectures I have
discussed several theoretical advances which will allow more definitive tests of the

QCD sum rules:
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1. QCD provides important constraints on the z-dependence of the quark dis-

tributions which reflect the helicity retention properties of the underlying
gauge couplings at large z and the decorrelation of helicities at small z.

Measurements appear to be consistent with these constraints.

. The leading twist perturbative QCD corrections to the Bjorken and Gross-

Llewellyn Smith sum rules are identical, up to “light-by-light” scattering
contributions of order [as(Q?)7]3. Thus measurements the ratio of the sum
rules can provide a highly precise test of QCD.m The extrapolation of the
ratio of the truncated sum rule integrals to Tmin—0 should greatly eliminate
uncertainties due to Regge behavior.

. The leading twist perturbative QCD corrections to the Bjorken sum rule can
be directly related to measurements of the annihilation cross section ratio
R,+.- and other observables such as the 7 hadronic width using commen-
surate scale relations’® These relations are convention independent; they
have no ambiguity due to the choice of renormalization scale or scheme. The
relation between the effective charges for the Bjorken sum rule and the an-
nihilation cross section is now known to third order in a,(Q?), thus allowing
precise tests of the gauge theory predictions by tracking both the relative
normalization and dependence in momentum transfer.

. Higher twist-corrections to the Bjorken and Ellis-Jaffe sum rules due to the
intrinsic composite structure of the nucleons are constrained at small Q% by
a corresponding Drell-Hearn Gerasimov sum rule?

. The relativistic corrections to the quark model are highly non-trivial and
lead to a number of unexpected results. The values of the magnetic moment
and axial coupling g of the proton are strongly correlated, independent of
the actual shape of the three-quark wavefunction. An important physical
effect is that the Melosh transformation {Wigner rotation) of the constituent
spinors to the light-cone causes a net misorientation of the quark helicities
relative to their rest frame spin projection S,. In the zero-radius limit the
anomalous moment and the axial coupling of the nucleon vanish. For the
physical size of the proton, relativistic binding leads to a 25% reduction of
the quark helicities Ag and g4 from their naive values.

Polarization measurements thus provide some of the most stringent tests of

quantum chromodynamics. An entire new class of polarization transfer measure-
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ments can be carried out at the SLC using polarized electron-positron collisions.
In addition to the fixed target experiments now being done at SLAC and CERN,
the new polarization facilities such as HERMES at DESY, the proposed polar-
ized proton collider at RHIC, and the highly polarized 50 GeV electron beam
facility at SLAC will allow a wide range of exclusive and inclusive spin physics
studies. There is also a critical need for measurements of the polarized gluon
distributions in the nucleon from experiments such as direct photon production
in polarized proton collisions and J/ production in polarized photon-polarized

proton interactions.

21 Appendix A: Light-Cone Wave-Functions

A simple way to encode the properties of hadrons in terms of their quark
and gluon degrees of freedom is the light-cone Fock expansion.m4 For example,
a proton with momentum P = (P, P 1) is described by expansion over color-

singlet eigenstates of the free QCD light-cone Hamiltonian:

7 d ,-a("ic',-
w2 =3 [T s

n:oiPt o P+ E_Li’Ai> Ynfx(Tis kL, Ni)
n,A,

(114)
where the sum is over all Fock states and helicities starting with the valence

three-quark state, and where

ﬁdz,‘Ede.‘ﬁ I—Z:L‘j
1 i 7

(115)

[I2%.i = [] PRui6n®6® [ 3k,
1 3 7

The wavefunction ¥ /. (zi, 14, ) is the amplitude for finding partons in a specific
light-cone Fock state n with momenta (z; P, I,’?_L'*‘E_L.’) in the proton. The Fock
state is off the light-cone energy shell: 3~k > P~. The light-cone momentum
coordinates z;, with 3. z; and ELi, with S Eii= -(T_L, are actually relative

coordinates; i.e. they are independent of the total momentum P* and P, of the
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bound state. The light-cone wavefunctions do not depend on the total momentum
since z; is the longitudinal momentum fraction carried by the ith_parton (0 < z; <
1), and E i is its momentum “transverse” to the direction of the meson. Both
of these are frame-independent quantities. The ability to specify wavefunctions
simultaneously in any frame is a special feature of light-cone quantization.

The coefficients in the light-cone Fock state expansion thus are the parton
wavefunctions ¥,/ (i, k 1. Ai) which describe the decomposition of each hadron
in terms of its fundamental quark and gluon degrees of freedom. The light-cone
variable 0 < z; < 1 is often identified with the constituent’s longitudinal mo-
mentum fraction z; = k7/P,, in a frame where the total momentum P*—inf.
However, in light-cone Hamiltonian formulation of QCD, z; is the boost-invariant
light-cone fraction,

K R

T=pr = pry pr (116)
independent of the choice of Lorentz frame.

Given the light-cone wavefunctions, y’),,/H(r,', I_c'_L,-, Ai), one can compute virtu-
ally any hadronic quantity by convolution with the appropriate quark and gluon
matrix elements. For example, the leading-twist structure functions measured in
deep inelastic lepton scattering are immediately related to the light-cone proba-

bility distributions:

oM Fi(z,Q) = fz(z’—Q)zZeﬁ Gaypl2:Q) (117)
where
T d ,dzl-c. i -
Gt @) = Y [T S We¥teas ) Ll =) (19
n,A, 1 —=a

is the number density of partons of type a with longitudinal momentum fraction
z in the proton. This follows from the observation that deep inelastic lepton
scattering in the Bjorken-scaling limit occurs if zp; matches the light-cone fraction
of the struck quark. (The 3, is over all partons of type a in state n.) However,
the light-cone wavefunctions contain much more information for the final state of
deep inelastic scattering, such as the multi-parton distributions, spin and flavor

correlations, and the spectator jet composition.
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The spacelike form factor is the sum of overlap integrals analogous to the
corresponding nonrelativistic formula:
= dz; &’k i P -
F@)= Y e / 1'[ S Y i, L1 ) 9 B M) (119)

nA o

Here e, is the charge of the struck quark, AZ> é‘}, and

7= {C‘_Li — z;§L + ¢ for the struck quark (120)
kii— 241 for all other partons.

The general rule for calculating an amplitude involving wavefunction 1/)5./\),
describing Fock state n in a hadron with P = (PT, P 1), has the form 58

Z /ﬁ ———%g;; z,b,(.A)(a:g, Eii Ai) T,(.A)(x;P'*’,x,‘?_L + k14 A) (121)
A i !
where T,gA) is the irreducible scattering amplitude in LCPTh with the hadron
replaced by Fock state n. The light-cone Fock expansion thus allows a definition
of the parton model and wavefunctions. By using the light-cone gauge, At =0,
only physical non-ghost degrees of freedom appear in the Fock expansion even
for non-Abelian theories. Furthermore in this gauge, the numerator couplings
of soft gluons inserted into hard scattering expansions remain finite in the high
momentum transfer limit. Thus this formalism is ideal for proving factorization

theorems, i.e. the isolation of hard and soft contributions at high momentum

transfer.
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