
SAND--92-1724C

DE93 009828

The d-Edge Shortest-Path Problem for a Monge Grapll

(extended abstract)

Wolfgang W. Bein * Lawrence L. Larmore t James K. Park *

July 14, 1992

Abstract

A completeedge-weighteddirectedgraphon vertices1,2,...,nthatassignscostc[i,j]to
the edge (i, j) is called Monge if its edge costs form a Monge array, i.e., for ali i < k and j < _,
c[i, j]+c[k, _] <_c[i, g]+c[k, j]. One reason Monge graphs are interesting is that shortest paths can

be computed quite quickly in such graphs. In particular, Wilber (1988) showed that the shortest
path from vertex 1 to vertex n of a Monge graph can be computed in O(n) time, and Aggarwal,
Klawe, Moran, Shot, and Wilber (1987) showed that the shortest d-edge 1-to-n path (i.e., the
shortest path among ali 1-to-n paths with exactly d edges) can be computed in O(dn) time.
This paper's contribution is a new algorithm for the latter problem. Assuming 0 < cii, j] < U
and c[i,j + 1] + c[i + 1,j] -c[i,j] -c[i + 1,j + 1] > L > 0 for all i and j, our algorithm runs in
O(n(1 + lg(V/L))) time. Thus, when d >> 1 + lg(U/L), our algorithm represents a significant
improvement over Aggarwal et al.'s O(dn)-time algorithm. We also present several applications
of our algorithm; they include length-limited Ituffman coding, finding the maxinmm-perimeter
d-gon inscribed in a given convex n-gon, and a digital-signal-compression problem.

1 Introduction

Given an edge-weighted directed graph G = (V, E) and two distinguished vertices s and t, the

problem of computing the shortest (i.e., minimum-cost) path front s to t is a fundamental problem in

combinatorial optimization. Assuming the edge costs are nonnegative, the best general algorithms

known for this problem, due to Fredman and Tarjan [7], Johnson [11], and Ahuja, Melhorn, Orlin,

and Tar ian [4], run in O(m -4- n lgn), O(m lglg U), and O(m + nx/[-_) time, respectively, where

m = lEI, n = IVI, and U is the maximum edge cost. If the path between s and t is restricted to

have exactly d odges, then the shortest-path problem seems to become somewhat more difficult;

the best Mgorithms (that we know of) for this problem run in O(dm) and O(n 2 lg d) time.

In this paper, we focus on a special case of the d-edge shortest-path problem defined above.

Specifically, we consider the problem of finding the shortest d-edge path from vertex 1 to vertex

n of an n-vertex Monge graph. A complete edge-weighted directed graph on vertices 1,2,..., n

fhat assigns cost c[i, j] to the edge (i,j) is called Monge if its edge costs form a Monge array. An

u, x n array C = {c[i,j]} is called Monge if for ali rows i and columns j satisfying 1 _< i < m and
1 <j<n, wehave

c[i,j]+ c[i + l,j + l] <_ c[i,j + l] + c[i + l,j] .

*Dcl,artment of Computer Science, University of New Mexico, Albuquerque, NM 87131.
tDepa'tment of Computer Science, University of California, Riverside, CA 92521.
tAlgorithms and Discrete Mathematics Department (Org. 1423), Sandia National Laboratories, P. O. Box 58(1{11,

Albuquerque, NM 87185. This work was supported by the U.S. Department of Energy tinder Contract DE-ACI}4-
76DP00789.

I DISTRIBUTIONI)F THIS DOCUMENTIS UHLIMtTi_..



t 1

"Vl'.qm alently, C is Monge if for ali i < k and j < e,

c[i,jl+c[k,e] <_ c[i,e]+c[k,j],

as it is not hard to show that this latter property follows from the former. The nam¢, of lille l"rc,nch

mathematician Gaspard Monge (1746-1818) is associated with such arra.ys because of work _lon¢,

by Hoffman [9] on easily-solved special cases of the transportation problem. (Iloffman showed that,
if the cost array associated with a transportation problem is an m x n Monge array, then _tsinlple

greedy algorithm solves the transportation problem in O(m + n) time.)
The structure of Monge arrays greatly facilitates the computation of shortest paths in Monge

graphs. One immediate consequence of this structure is that only monotonic paths need be c¢_n-
sidered in computing a shortest unrestricted 1-to-n path or a shortest d-edge 1-to-n path. (A pa,rh

((il,i2),(i2, i3),...,(ik-l,ik)) is called monotonic if il < i2 < ... < ik.) In other words, setting
c[i,j] = +oo for all i >_ j does not change the solution of either shortest-path problem. (This
property is also useful when solving the traveling-salesman problem for a Monge graph; see J. Park
[16].)

A second, more important consequence of Mongit_ is that only a fraction of a Monge graph's

n 2 edge costs need be examined in computing shortest paths. This property allows Monge-gra, ph
shortest-path algorithms to run significantly faster than the corresponding algorithms for general

graphs. In particular, Wilber [17] has shown that a shortest path from vertex 1 to vertex , of
a IvIonge graph can be computed in O(n) time, and Eppstein [6], Klawe [12], Galil a.nd K. Park
[8], and Larmore and Schieber [15] have extended Wilber's result to more general settings. ('l'hi._
unrestricted version of the Monge-array 1-to-n shortest-path problem is also known as the co_tca_;_:
least-weight-subsequence problem.) Furthermore, Aggarwal, Klawe, Moran, Shor, and \Vill)_r [2]
have shown that a shortest d-edge 1-to-n path can be computed in O(dn) time.

The main result of this paper is a new algorithm for the Monge-graph d-edge shortest-patl_

problem. If 0 _<c[i,j] <_ U and c[i,j + 1] + c[i + 1,j]- cii,j]- cii + 1,j + 1] >_ L > 0 for all i
and j, then our algorithm runs in O(n(1 + lg(U/L))) time. (Our algorithm can also be used when

c[i,j+ 1]+c[i+ 1,j]-c[i,j]-c[i+ 1,j+ 1] = 0 for some i and j, but its running time in this case is
harder to state; see Section 2 for more information.) Thus, when d >> 1 + lg(U/L), our algorith_

represents a significant improvement over Aggarwal et al.'s O(dn)-time algorithm. For exa.nll)te, ii"

the edge costs are nonnegative integers bounded by some polynomial in n and d = a.'(lgn), tl,c_,l
our algorithm is asymptotically faster.

We also present several applications of our algorithm. These applications include lengtJl-lilnit_'xl
Ituffman coding, finding the maximum-perimeter d-gon inscribed in a given convex n-gon, and

a digital-signal-compression problem. Though none of these applications is new -- they were
developed by Larmore and Przytycka [14], Aggarwal et al. [2], and Wu [18], respectively we
must examine each rather closely in order to show that our algorithm's running time is (weakly)

polynomial in the size of the application's input.
The remainder of this paper is organized as follows. In Section 2, we describe our new algorithm

for computing a shortest d-edge 1-to-n path in a Monge graph. Then, in Section 3, we present the

three applications of our algorithm. Finally, in Section 4, we conclude with _ few open l)roblelns.

2 The Algorithm

In this section, we present our new algorithm for computing the shortest It-edge path t'rolll v(?rl, t!x

1 to vertex n of a Monge graph. As we mentioned in the introduction, the key observation behind
this algorithm is the following: for every k in the range 1 _<k < n, there exists a constant )_l_sucl_

2

1



r

tha_t some unrestricted 1-to-n shortest path in the complete directed graph assigning cosl, c[i, j]-.-h/.
to tile edge (i,j) is a k-edge 1-to-n shortest path in the original graph.

To see why this claim is true, we first need a few definitions. Given any t)a.th P, let _(1')

denote its cost, and for 1 < k < n, let P_ denote a shortest k-edge 1-to-n pa.th. Furthermore, lo1'

1 < k < n, let _k = c(P__l)- c(P_). (For notational convenience, we also define c_1 = +oc. a,ld
crn = -oo.) Finally, let G(A) denote the complete directed graph assigning cost c[i,j] + ,\ to the

edge (i,j).
Now consider the following series of lemmas.

Lemma 2.1 For anyr, s, and t satisfying 1 < s < r < t _<n, let Ps and Pt denote paths from
vertex 1 to vertex n of a Monge graph containing s and t edges, respectively. Then there exist:

1-to-n paths Pr and Ps+t-,. containing r and s + t - r edges, respectively, such that

c(P,.) + c(P,+t_,.) < c(P,) + c(e,) .

Proof Let (io, il),(il,i2),...,(i,-1,i,) and (jo,jl),(jl,j=),...,(jt-l,jt) denote the edges of I>_
and I_, respectively, where by definition, i0 = j0 = 1 and. i, = jt = n. By a simple pigeon-hole
argument, there must exist an x in the range 0 _< x < s such that i_ < j_:+__, < j_:+,.-,+l <_
i_+1, since 1 = i0 < j_-, and n = i, > j_. Let Pr denote the r-edge 1-to-n path with edges

(j0,jl),..., (j_+_-,, ix+l),...,(i,_l,i,), and let P,+t-_ denote the (s + t- r)-edge 1-to-n path wil,h
edges (io,i_),...,(ia:,j,:+,.-,+l),...,(jt-l,jt). Since the Mongit5 of C implies

c[i=,j,_+,.._,+_]+ c[j=+__,,i_+_] < c[ix,i=+_]+ c[j=+,.-,,jx+,._,+_] ,

we must have

c(P_) + c(P,+,__) <_ c(P,) + c(et) .

Lemnaa 2.2 The ak are nonincreasing in k, i.e., c_2>__3 _>"'" _>_n-1.

Proof Suppose c_k < _k+l for some k in the range 2 <_ k < n - 1. This assumption implies

c(t_*_,)- c(P_,) < c(P;)- c(P;+,)or c(P;_l)+ c(P;+,)< 2c(P;). However, by Lemma 2.1, there
exist two k-edge 1-to-n paths P_. and P_.' such that c(P_.)+ c(P_.) < c(P__,) + c(1_+1). Thus, at
least one of P_ and P_' is strictly shorter than P_, which contradicts our assumption that l_'_ is a
shortest k-edge 1-to-n path. •

Lemma 2.3 For anykin the range2_<k_<n-1,

1. A > _k implies every shortest unrestricted 1-to-n path in G(A) has at most k - 1 edges,

2. A < _k implies every shortest unrestricted 1-to-n path in G(A) has at least k edges, and

3. A = _k implies at least one shortest unrestricted 1-to-n path in G(A) has k edges and at lea.st
one such path has k - 1 edges.

Proof To prove the first part of the lemma, suppose some unrestricted shortest path P in ("(,\)

uses g > k edges. Since the cost of an g-edge path in G(A) is always exactly gA more than its cost

in {,he original graph G, P must be a shortest g-edge path in G, i.e., we must have c(P) = c(1'17).
Furthc:rmore, since P is an unrestricted shortest path in G(A), its cost in G(A) must be at lll,,sl

3

i



t

the cost of t_-a in G(A), i.e., we must have c(Pg) + gA <_cCP[:_,) + Ck - 1),_ or Ce- lc + I)A _<
c([i'.__ ) - c(Pe'). Finally, by I,emma 2.2, we must have

g
)* +) =

r=k

< (g- k+ 1)hk .

Combining these ]ast two inequalities, we find )_< hk.

The proof for the second part of the lemma is similar: if we assume some shortest path uses

g < k edges, we find c(Pe*) - c(P_) _<(k - e),_, which implies A _>C_k.

For the final part of the lemma, first observe that P_ and P_-I must have the same cost in
G(_), since _ = c(P_,_a) - c(P_). Furthermore, if we assume c(P_) + g._ < c(P__x) + (lc - 1),\ for
some g > k, we obtain the contradiction _ < hk, and if we assume c(Pe*) + g.)_< c(P_) + k,\ for
some e < k - 1, we obtain the contradiction A > hk. II

If ad > ag+l, then Lemmas 2.2 and 2.3 suggest a natural algorithm for the d-edge shortest-path
problem. The algorithm locates a A in the range ad+l < A < ad by performing a binary search on

an interval containing [a,__l,..., a2]. To test a particular )_,we use Wilber's O(n)-time algorithm
to obtain a shortest unrestricted 1-to-n path P in G()_). If P uses exactly d edges, then P must
be a shortest d-edge path in the original graph G, i.e., we are done. If P uses fewer than d edges,

then by Lemma 2.3, we know that )_>_hd. Finally, if P uses more than d edges, then ,k _<_d+l.
To bound the running time of this algorithm, we must first specify the interval to be searched. If

we assume 0 _<c[i,j] <_U for all/and j, then clearly c(P_) <_U, c(P_) >_O, and c(P__I)-C(I___) <_
U, which implies [an-x,...,a2] C_[-U,..., U]. Thus, if we perform the binary search on this last
interval, our algorithm runs in O(n(1 + lg(U/(ad - hd+,))) time.

Note that if we assume c[i,j + 1] + c[i + 1,j]- c[i,j]- cii + 1,j + 1] ;2_L > 0 for all i and j
s,_tisfying 2 _< i + 1 < j < n - 1, then c_k- ak+l >_ L for all k in the range 2 _< k < n - "2, since
the proof of Lemma 2.1 actually shows c(P_) + c(Pt) - c(P,.) - c(P_+t_,.) >_L. Thus, if such an L

exists, the running time of our algorithm is O(n(1 + lg(V/L))).
Now suppose ad = OZd+l. To handle this case, we need a lower bound L_ on the minimum

nonzero value of ak - ak+l over all k in range 2 _<k _<n - 1. Given such a bound, we can solve the
d-edge shortest-path problem in O(n(1 + lg(U/L'))) time. Our approach is quite similar to th_tt

used for the Ced > O_d._1 case. We again perform a binary search on the interval I-U, .., U], but
here we stop the binary search once we find a )_ such that

1. the shortest 1-to-n path Ps*that we find in the graph G()_) contains s _>d edges, and

2. the shortest 1-to-n path Pr" that we find in the graph G(_ + L'/2) contains _ < d edges.

If s = d or t = d, we are done. Otherwise, note that Lemma 2.3 implies )_ _<a_ and ,_+ L'/2 >_a't+l.
By the definition of L _, these inequalities imply at+l = c_t+2 = "" = a_ = ,V for some ,V in the

range _ < A' < _ + L_/2. Furthermore, c(P_) + kA_ must be the same for all k in the range
t + 1 _<k < s. In particular, we must have

c(P:) + c(P;) = c(P;) + c(P:+t_d) . (1)

With this equality in mind, recall the construction used in the proof of Lemma 2.1. It pro(ltlcc._

paths Pd and P_+t-d containing d and s + t - d edges, respectively, such that c(Pd) + c(l_+t._a)

c(I_*) + c(P_). By definiti*)n, we must have c(P;) < c(Pd) and c(Pj*+t_d) <_c(f'_+t-d). 'l.'l_u._,(I)

4

I
U



b

implies C(Pd) - c(I_"i) and c(I_+t-d)- c([_+t_d). In other words, Pd is a shortest d-edge 1-to-?t
path. Since the construction of Lemma 2.1 is easily converted into a,n O(n)-time algorithnl for
computing Pd, we have our O(n(t + lg(U/L')))-time algorithm for the c_d= ad+_ ca,se.

3 Applications

In this section, we present three applications of our new algorithm for computing the shortest
+ d-edge 1-to-n shortest path in a Monge graph.

3.1 Length-Limited Huffman Codes

Our first application is a restricted version of the ttuffman-coding problem. Given nn alphabet
of size 7z and a frequency ¢i for each symbol ai E _, the usual Huffman-coding problem is that
of constructing a prefix-free code for E minimizing the expected length of an encoded symbol. In

his classic paper [10], Huffman showed that this problem can be solved in O(nlg n) time (or O(n)
time, if the ¢i are sorted) using a simple greedy algorithm.

This subsection focuses on the length-limited version of Huffman's problem. For this version, we

add the restriction that no symbol's code may have length greater than L, where L is an input to the
problem. The best Mgorithm previously known for this problem, due to Larmore and Hirschberg

[13], run in O(nL) time.
In order to apply our shortest-path algorithm to the length-limited Huffman-coding problem,

we require a very nice reduction developed by Larmore and Przytycka [14]. They showed that the

unrestricted Huffman-coding problem is equivalent to the unrestricted 1-to-n shortest-path problem
for the Monge graph whose edge-cost array C = {c[i,j]} is given by

2j-i

c[i,j] = _ ¢_ ifi<j<_ (n+i)/2,r=l

+o¢ otherwise,

where we assume the ¢i have been sorted so that Ca _<¢2 < "'" _<Cn. (This assumption insures C is

Monge.) Furthermore, a closer examination of their reduction reveals that the depth of the coding
tree corresponding to a particular path is precisely the number of edges in this path. Thus, the

length-limited Huffman-coding problem is equivalent to the L-edge 1-to-n shortest-path problem
for the Monge graph defined above.

Combining Larmore and Przytycka's reduction with Wilber's O(n)-time algoiqthm for the un-

restricted Monge-graph shortest-path problem yields an alternate O(n)-time algorithm for the
unrestricted ttuffman-coding problem (provided, of course, that we assume the frequencies ¢i a,re

given in sorted order). Similarly, we can use Aggarwal et al.'s algorithm for the d-edge Monge-
graph shortest-path problem to obtain an alternate O(nL)-time algorithm for the length-limited
Ituffman-coding problem. Furthermore, if we instead use our algorithm for the d-edge Monge-

graph shortest-path problem, we obtain nn algorithm for length-limited Iluffman coding tha.t is
potentiMly even faster; assuming for simplicity that the ¢i are integers from the interval [1,..., q,],

our algorithm solves the problem in O(n(1 + lg_)) time, since the minimum non-zero differenco
between the lengths of any two paths in the Monge graph defined above is 1.

3.2 Inscribing and Circumscribing Convex Polygons

One of the original applications of Aggarwal et al.'s O(dn)-time Mgorithm for the Monge-gral)h

d-edge shortest-path problem was the maximum-perimeter-inscribed-d-gon problem from conlputa.-



tional geometry: given a convex polygon P in ttle plane with vertices Pl,..., p,_ in clockwise ()r(ier,
find tile maximum-perimeter d-vertex convex polygon Q.

It is not hard to see that the vertices of a maximum-perimeter polygon Q must be vertices o["

P. "lo select d vertices of P defining a maximum-perimeter Q, Agg_rwal et al. used a two-l)llas(,
approach (first suggested by Boyce, Dobkin, Drysdale, and Guibas [5]). In the first phase, they find
a d-gon Q1 that contains the vertex pl and whose perimeter is maximal among all d-gons containing
Pl. Then, in the second phase, they use Q1 to locate a d-gon Q whose perimeter is maximal among
all inscribed d-gons.

The problem of computing Q1 is an instance of the Monge-graph d-edge shortest path problem.

To see why, consider the (n + 1) × (n + 1) edge-cost array C = {c[i,j]} given by

I d(pi,P((j-a)modn)+X ifi < j,c[i, j] = +00 otherwise.

A d-edge path from vertex 1 to vertex n + 1 of the graph defined by C clearly corresponds to a
convex d-gon contain Pl along with d - 1 other vertices of P, and the path's cost is just the d-gon's

perimeter. Moreover, as Aggarwal et al. observed, C is Monge. (Roughly speaking, this claim
follows from the quadrangle inequality, which says that for any convex quadrilateral in the plane,

the sum of the lengths of the quadrilateral's diagonals is at least the sum of the lengths of any pair
of opposite sides.) Since any c[i,j] can be computed in constant time, these observations imply
that Q1 can be computed in O(dn) time using Aggarwal et al.'s d-edge shortest-path algorithm.

Once a suitable Q1 has been located, Aggarwal et al. showed that a globally optimal inscribed d-

gon Q can be computed in O(n lg n) additional time. Thus, Aggarwal et al.'s O(dn)-time algorithm
for the Monge-graph d-edge shortest-path problem yields an O(dn + n lg n)-time algorithm for the
maximum-perimeter-inscribed-d-gon problem.

Given the preceding discussion, it should be clear that we can also use our algorithm to solve tlm
maximum-perimeter-inscribed-d-gon problem. However, in order to bound our algorithm's running
time in terms of the problem's input size, we need the following lemma. (We will a.ssullle for
simplicity that each vertex pi in P is given by its Cartesian coordinates xi and yi and that both

xi and Yi are integers from the interval [1,..., D]. We will also assume no tlm;e vertices of P are
collinear.)

Lemma3.1 For l<i+l<j <n-l,c[i,j+l]+c[i+l,/]-c[i,j]-c[i+l,j+l]is_t least
1lD "v,for some constant 3'.

Proof Omitted.

This lemma implies that our algorithm for the Monge-graph d-edge shortest-path problem can
be used to obtain an O(n(1 + lg nD))-time algorithm for the maximum-perimeter-inscribed-d-gon
problem.

As a final note, we remark that the maximum-perimeter-inscribed-d-gon problem is closely

related to another problem from computational geometry, the minimum-areacircumscribingd-g°n
problem. This problem may be defined as follows' given a convex polygon P in the plane with

vertices Pl,-.. ,Ph in clockwise order, find the minimum-area d-vertex convex polygon Q COlltaillillg
P. hggarwal and J. Park [3] showed that this problem can be solved in O(dn + nlgn) time usiHg

Aggarwal et al.'s algorithm for the d-edge shortest-path problem. In fact, it is not hard to show tll,_t
our d-edge shortest-path _lgorithm m_y be substituted for Aggarwal et al.'s algorithm to ol)taixl

an O(n(1 + lg nD))-time algorithm for the minimum-area-circumscribing-d-gon problem, where the
polygon's vertices are assumed to have integer coordinates and D is the maximum coordinate.

6



t t

3.3 d'n Quantization

Consider tile prol)lern of converting a digital signal of n discrete levels into another digital signal
of d < n levels. Of course such a signal compression necessarily results iii tlm loss of informatioll,

and a natural question to ask is how to minimize the error introduced by tile compression. Wu [18]
formalized this problem (which he called the optimal d" n quantization problem) as follows: girt;l,
an increasing sequence of n levels x'l,..., xn, together with n weights wl,..., w,,, find an increasing

sequence of d levels Yl,...,Yd and a mapping f • {1,...,n} + {1,...,d} such that the weighted
SU iii

n

vj.(i))2
i=1

is minimized.

Wu argued that the minimum-error mapping f must be a partition of the xi into d nonoverlap-
ping intervals and that the minimum-error yk for a particular interval (i, j] of the original signal's
levels must be the weighted average of xi+x through xi. Thus, Wu's d'n quantization probleln
is just an instance of the d-edge shortest-path problem with the (n + 1) x (n + 1) edge-cost array

C = {c[i,j]} given by

{Jw,.(x,. - /t(i,j))2 ifO<i<j_<n,
cii, j] = r=i+l

+ oc otherwise,

where
J

Z qj)r X r
r--i+l

#(i,j) = j

r=i+l

Wu also showed that (1) C is Monge, and (2) given O(n)-time preprocessing, any entry of C
can be computed in consta,nt time. Thus, AggarwM et al.'s O(dn)-time Mgorithm for the d-edge

shortest-path problem yields an O(dn)-time algorithm for Wu's d'n quantization problem.
Of course, our algorithm can also be used to solve the d:n quantization problem. To bound its

running time, we recall that Wu showed

c[i,j + 1] + c[i + 1,j]- c[i,j] - c[i + 1,j + 1]

= (#(i + 1,j + 1)- #(i,j + 1))(2xj+l - #(i + 1,j + 1)-/z(i,j + 1))Wj+l

for 1 _<i + 1 < j <_n - 1. Thus, if we assume for simplicity that the xi are distinct integers and the
wi are positive integers, the minimum value attained by c[i,j+ 1]+c[i + 1,j]-c[i,j]-c[i + 1,j + 1]
must be at least

J_" _3rZr IOiTIXi+I-_ E WrXr WiT lXi+l "_- _ _t)rXr _ WrXr
r=i+2 r=i+2 r=i+2 r=i+2

j+l -- j+l 2Xn+l -- j+l -- j+l _lJJ+l

r=i+2 r=i+2 r---i+2 r=i+2



/ / j
wi+, (2 wr

/ r=i+2

> j+l ] 57V- wj+1
r=i+2 \ r=i+2

where W = maxr wr. Furthermore, no cii,ii can be larger than WX 2, where X = maxr xr. These

bounds together imply that our algorithm solves Wu's d : n quantization problem in O(n(l +

lg(nWX))) time.

4 Concluding Remarks

We conclude with the following open questions:

1. What is the true time complexity of the Monge-graph d-edge shortest-path problem? in

particular, is it possible to obtain an algorithm whose running time is both o(dn) and stroJ_gly
polynomial (i.e., independent of the sizes of the edge costs)?

2. Is it possible to extend the techniques developed in this paper and obtain improved algorithms
for other related problems, such as the minimum-cost matching problem for a bipartite Monge

graph and the Hamiltonian-path problem for a convex polygon? For the former problem,
we are given a complete bipartite graph G = (A U B,A × B), where A = {u_,...,u,,,},

B = {vx,...,v,_}, and m _<n, together with an m x n Monge edge-cost array C = {cii,j]}
assigning cost eli,j] to edge (ui,vj), and we want to find a minimum-cost maximum (i.e.,
cardinality m) matching. (If m = n, this problem is trivial, and for m < n, it can be solved in
O(m(n- m)) time using a straightforward dynamic-programming algorithm. Furthermore,
Aggarwal, Bar-Noy, Khuller, Kravets, and Schieber [1] have very recently obtained faster

algorithms for several interesting special cases.) For the latter problem, we are give J, a
convex polygon P in the plane with vertices pl,...,p,, in clockwise order, together with two

distinguished vertices Pi and pi, and we want to find a minimum-cost path from Pi to pj that
visits every vertex of P exactly once. (The best algorithm currently known for this problem

takes O(m(n-rh)) time, where m is the number of vertices between p_ and pj in the _lockwise
ordering of P's vertices.) Each of these problems can be formulated as a generalized Monge-

graph d-edge shortest-path problem where the cost of traversing an edge may vary with its
location in the path. Specifically, the problem has a three-dimensional Monge edge-cost array

C = {c[i,j,k]}, where c[i,j,k] is the cost of traversing the edge (i,j) as the kth edge in a
path.

Acknowledgements

The third author would like to thank David Greenberg and Bruce I-Iendrickson (Sandia, Nal, iulJ_l

Laboratories) for several helpful technical discussions.



References

[1] A. Aggarwal, A. Bar-Noy, S. Khuller, D. Kr_vets, and B. Schieber. Ef[iciel_t nlilliI_llllll (:OSl,

matching using quadrangle irtequality. In Proceedings of the 33td Annual IEEE Symposi,r,, o,

Foundations of Computer Science, 1992. To appear.

[2] A. Aggarwal, M. M. Klawe, S. Moran, P. W. Shor, and 1L Wilber. Geometric _tl)plications oi"

a matrix-searching algorithm. Algorithmica, 2(2):195-208, 1987.

[3] A. Aggarwal and J. K. Park. Sequential searching in multidimensional monotone arrays. Re-

search Report t'_C 15128, IBM T. J. Watson Research Center, Yorktown Heights, NY, Novem-

ber 1989. Submitted to Journal of Algorithms. Portions of this paper appear in Proceedings oi'

the 29th Annual IEEE Symposium on Foundations of Computer Science, pages 497-512, 1988.

[4] It. K. Ahuja, K. Melhorn, J. B. Orlin, and R. E. Tarjan. Faster algorithms for the shortest

path problem. Journal of the ACM, 37(2):213-223, 1990.

[5] J. E. Boyce, D. P. Dobkin, l_. L. Drysdale, and L. J. Guibas. Finding extremM polygons.

SIAM Journal on Computing, 14(1):134-147, 1985.

[6] D. Eppstein. Sequence comparison with mixed convex and concave costs. Journal of Algo-

rithms, 11(1):85-101, 1990.

[7] M. L. Fredman and R. E. Ta.fian. Fibonacci heaps and their uses in improved network opti-

mization algorithms. Journal of the ACM, 34(3):596-615, 1987.

[8] Z. Galil and K. Park. A linear-time algorithm for concave one-dimensional dynamic prograln-

ruing. Information Processing Letters, 33(6):309-311, 1990.

[9] A. J. IIoffman. On simple linear programming problems. In V. Klee, editor, Convexity:
Proceedings of the Seventh Symposium in Pure Mathematics of the A MS, volume 7 o[' P.Iv-

ceedings of Symposia in Pure Mathematics, pages 317-327. American Mathematical Society,

Providence, Iri, 1963.

[10] D. A. ttuffman. A method for the construction of minimum-redundancy codes. PTvceedings oJ"

the IRE, 40(9):1098-1101, 1952.

[11] D. B. Johnson. A priority queue in which initialization and queue operations t_ke O(iog log D)

time. Mathematical Systems Theory, 15(4):295-309, 1982.

[12] M. M. Klawe. A simple linear time Mgorithm for concave one-dimensional dynamic pro-

gramming. Technical Report 89-16, Department of Computer Science, University of British

Columbia, Vancouver, Canada, 1989.

[13] L. L. Larmore and D. S. Hirschberg. A fast algorithm for optimal length-limited ]lufl'm,_ll

codes. Journal of the ACM, 37(3):464-473, 1990.

[14] L. L. Larmore _md T. M. Przytycka. Parallel construction of trees with optimal weighted

path length. In Proceedings of the 3td Annual ACM Symposium on Parallel Algorithm._ a lzd

Architectures, pages 71-80, 1991.

[15] L. L. Larmore and B. Schiel)er. On-line dynamic programming with al)plica.tions to tilt, l)l'(,-
diction of RNA secondary structure. Journal of Algorithms, 12(3):490-515, 1991.



[16] J. K. P_rk. A specia.l case of the n-vertex traveling-sa,lesma.ll prol)leln th_Lt c:;tn be, solve¢l iii

O(,z) time. Information P,'ocessinfl Letters, 40(5):2,t7-2,54, 1991.

[17] R. Wilber. The conca,ve lea.st-weight subsequence problmn revisited. Journal of Alr.lo'rithrns,

9(3):418-425, 1988.

[18] X. Wu. Optimal qua, ntiza_tion by matrix searching. Journal of Algorithms, 12(4):663-(i73,
1991.

DISCLAIMER

This report was prepared as an account of work sponsoredby an agency of the United States
Government. Neither the United States Governmentnor any agency thereof, norany of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product,or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
enc¢ herein to any spocific commercial product,process, or service by trade name, trademark,
manufacturer, or otherwise dots not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not ne,ccssarily state or reflect those of the
United States Government or any agency thereof.

10






