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Technical Sessions

Factors Influencing the
Parameterization of Anvil Clouds within GCMs

John M. Leone, Jr. and Hung-Neng(Steve) Chin
LawrenceLivermoreNationalLaboratory

Livermore,Califomia

. Introduction framework is similar to that of the Klemp and
Wilhelmson (1978). Model physics modules include:

• The overall goal of this project is to improve the turbulence, a planetary boundary layer (Blackadar,
representationof cloudsandtheireffectswithinglobal 1979), a two categoryliquidwater scheme (Soongand
climate models (GCMs). We have concentratedon a Ogura, 1973), a three-categoryice phasescheme (Lin
small portion of the overall goal, the evolution of et al., 1983) and long and shortwave radiative
convectivelygenerated cirrusclouds and theireffects transfer(Harshvardhanet al., 1987).
on the large-scale environment.Because of the large
range of time and length scales involved we have The ice microphystcs, which was developed for
been using a multi-scale attack. For the early time convective clouds, have been modified to better
generation and developmentof the cirrusanvilwe are replicate widely spreading anvil clouds. The
usinga cloud-scalemodelwith horizontal resolutionof Harshvardhanet al. radiative transfer scheme in the
1-2 kilometers;for the larger scale transport by the cloud and mesoscaie models was simplified in the
largerscale flowwe are using a mesoscale modelwith Iongwave and shortwave calculations by ignoring
a horizontal resolution of 20-60 kilometers. The partial cloudiness and assuming each grid cell was
eventualgoal is to use the informationobtainedfrom either completely cloudy or clear. The cloud optical
thesesimulations,togetherwithavailableobservations, propertieswere also modifiedto distinguishice clouds
to derive improvedcloudparameterizationsfor use in fromwatercloudsusing theparameterizationschemes
GCMs. This paper presents results from our cloud- of Start and Cox (1985) and Stephens (1978)
scale studies and describes a new tool, a cirrus respectively.Mixed-phasecloudswere alsoconsidered
generator, that we have developed to aid in our inthe cloud opticalproperties. Cloudopticalproperties
mesoscalestudies.C'_ are thus functions of model-predicted hydrometeor

concentrations.

Cloud-Scale Study For this study we conducted a sedes of simulations
using six different combinations of radiation and

We chose a rrddlatitudebroken-linesquallsystemfor microphysicscomplexity,ranging fromno radiationand
our study, because it is the predominant springtime only liquid microphysics to both Iongwave and
convection in Oklahoma, the locationof the firstARM shortwave radiation with full liquid and ice
(Atmospheric Radiation Measurement Program) site microphysics.To validateourresults,we comparedthe
and because it can be represented as a two- simulationsto published observations. The general

" dimensional system, which is less computatlonally patterns of the dynamic structure,velocity fieldsand
demanding. In order to facilitate comparison with pressure deviations, bore strong similaritiesto the
publishedobservations,we used a modificationof the featuresreported by Ogura and Liou(1980) and Smull
composite sounding of Bluestein and Jain (1985) to and Houze (1987). The heating (Q1) and drying (Q2)
drive our simulations, profiles were similarto those reported in Ogura and

Chen (1977) and Gallus and Johnson (1991). Further,

The cloudmodel is an extensionof Chin and Ogura's the simulations including both ice and longwave
(1989) two-dimensional model which was used to radiation produced a simulated radar reflectivityin
study a tropical convective rainband. The model is which both a melting bright band and a realistic
nonhydrostaticand fully compressible; its dynamic transition zone were present.
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Results
1

An examinationof the various runs leadsto a number

of interesting observations. The first is that the iu L:_E'._=,=__,-

inclusion of ice phase and radiation has very little r_._ ,..=,=_,w,• IT _ ==w tmL
influence on the thermodynamics of the cloud [-r- ,,., ,,,, ,,,=.
ensemble as evidenced by the similarity of their
respective Q1 and Q= profiles.On the other hand, a
comparisonof simulationswith and withoutice shows _-__.-. ....• .....• .....J
that the ice phase has a strong influence on the _ -:;:::::1... .. .. .. _ = = ,_,
precipitatingwaterdistribution.When ice ispresentthe , ,, . =, ,, ,, ,= m ,,
dominanttotalwatermaximummovesupward.Further,
ice doublesthe precipitatingwater mass in the storm
and redistributesthe precipitatingwater between the
convective and stratiform portion of the storm as Figure 1. Visible cloudopticalpropertiesof
illustratedin Table I. temporallyand spatiallyaveraged water and ice

anvilsclouds.
When we examined the simulationswhich included
radiation,we found the Iongwave radiationincreases
precipitatingwater in boththe convectiveand stratified
portions of the storms. The addition of shortwave
radiationfurtherincreasesthe precipitatingwaterinthe
ice anvil;however,it reducesthe precipitatingwater in Thus the incident radiation on the surface under the
the convective region and in the water anvil, water anvilwas 1/10 of that under the ice anvil.

In preparationfor developinga GCM parameterization
Table I. Total precipitatingwater distribution, for convectively generated cirrus, we completed a

detailed water budget analysisfor the mature stageof
the storm. From this analysis, we found that the

Radiation None mechanismssupportingthe leading anvil were quite
different from those for the larger rear anvil. For the

Microphysics Ice-free Ice
rear anvil, local microphysics, supported by the

Convective 87.7=/o 70.25 induced mesoscale circulation resulting from the
interactionbetween hydrometeorsand radiation, is an

Stratiform 12.35 29.8% important contributing mechanism. For an all liquid

Total (g/g) 0.667 1.411 anvil the local microphysicscontributionis nearly the
same size as the transport from the convectivecore.
However, for the ice anvil the transport from the
convective core is nearly twice that in the liquid anvil
while the local microphysics contribution remains
nearly the same.

We observed that the Iongwave radiative properties
are insensitive to the specificrepresentationof the ice
phase. In contrast, the shortwave radiativeproperties Cirrus Generator
depend stronglyupon the condensate phase (Figure
1). The opticaldepth of the simulatedwater anvilwas We are beginningto studythe long range transportof
138 compared to 4.4 for the simulated ice anvil that convectivelygenerated cirrusin a mesoscale model.
contained approximatelythe same total precipitable This model, however, cannot resolvethe convective
water. In addition,the water anvilhadan albedoof be- parent which injects ice into the upper levels of the
tween 0.8 and 0.9 (dependingupon zenithangle) com- atmosphere, so we must introduce cirrus into the
pared to 0.4 to 0.6 for the ice anvil. The water anvil domain in some other manner, e.g. via a convective
also had a somewhat larger absorptioncoefficient, parameterization, throughthe initialconditions, or by
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means of the lateral boundary conditions.We have withhorizontalresolutionstoo largeto resolvecumulus
developed a cirrus generator that is included in the clouds.The cirrusgeneratorrepresentsthe mesoscale
mesoscalemodelfor the purposeof developingcirrus forcingcaused bythe unresolvedcumuluscloudsand
withinthe model domain, forces cirrus into the mesoscale model which then

interactswiththe largerscale flowfields.
The cirrusgeneratoris a set of tunedforcing functions
that represent the mesoscale forcing due to the In the future, we plan to expand our cloud-scale
unresolved cumulus clouds. It provides the vertical studiesto otherconvective systemsmoving initiallyin
heating profiles and the momentum, moisture, and tropical Pacific convection. We will begin our
heat transportby theunresolvedciouds.Theseprofiles mesoscale studies of the life cycle of cirrus anvils
are derived by spatiallyand temporallyaveragingthe usingthe cirrusgeneratorto developthe cirrus in the
collective properties of cloud ensembles from either mesoscaledomain. We combine the informationfrom
cloud-scalesimulationsor observations, our modeling studies with available observationsto

developmore robustGCM parameterizationsof cirrus
Our initial development has been based upon data anvilsand theireffects on the largerscale flow.
from the Global Atmospheric Research Program's
Atlantic Tropical Experiment (GATE) and refined by
runsof ourcloud scale model.It has been successfully References
used in a model with 20 km horizontal resolution,

producinga reasonablemesoscalecloud structurethat Blackadar, A.K. 1979: High resolution modelsof the
reproduced the observed mature stage mesoscale planetary boundary layer. Advances in Environmental
vertical velocity maximum in both magnitude and and Science Engineering, VoL 1,J.R. Pfafflinand E.N.
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precipitationrate.
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