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ABSTRACT

This report is a summary of results of a study aimed at the development
of thin, oxidation-resistant ceramic coatings to reduce contact stress damage
of ceramic heat engine componentsT. Strongly adherent coatings were
deposited on reaction bonded Si3N4 (RBSN), sintered SiC (SSC), and HIP'ed
SizN4 (HSN) and using a newly developed chemical vapor deposition (CVD)
process. The performance of the coating was assessed by oxidation, strength
and contact stress testing. A new method was developed to experimentally
determine the strength and Weibull modulus of thin brittle films on ceramic
substrates. A significant portion of the study was devoted to numerical
modeling of the coatings in order to understand the contributions of residual
stress as different coating materials and thicknesses were combined. Coating
designs were further analyzed by simulating the crack growth behavior in
multilayer films while accounting for the interface fracture mechanics. This
work has shown that the Al203+ZrO2 composite coating developed in this
program can provide resistance to oxidation and contact stress, as determined
by laboratory measurements. Commercial application of the composite
coating has been successfully demonstrated by use of the Al203+ZrO2
composite as a protective coating on a Si3Ng4 cutting tool.

T Research sponsored by the Advanced Materials Development Program, Office
of Transportation Systems, U.S. Department of Energy, under contract
DE-AC05-840R21400 with Martin Marietta Energy Systems, Inc.



INTRODUCTION

Heat engine operating efficiencies have been significantly improved
by using uncooled ceramics components at temperatures above those
attainable with superalloys. A large number of studies have used Si3N4-based
and SiC based materials, and these have shown considerable potential for use
as heat engine components. However, due to their brittle nature, high

- surface stresses in contact regions cannot redistribute as in metals. This can

result in localized stresses which may exceed the baseline strength, thus
damaging the surface of the component and reducing its strength.  This
susceptibility to contact stress damage has led to projections of premature
failure of ceramic heat engine components that undergo sliding contact.

It has been suggested that surface damage and strength loss under
these conditions can be substantially reduced by applying a thin ceramics
coating [LAC84]. Exploratory studies using plasma sprayed oxide coatings
[GTE81] demonstrated improvements in the contact stress damage resistance of
both SizN4 and SiC ceramics, but the adherence of these coatings was
inadequate.  Yttria-stabilized zirconia coatings deposited by electron beam
physical vapor deposition were also studied [SCH87], but adherence was still
poor. The poor adherence precluded performance testing of coated
components.

A new coating designed specifically for heat engine applications was
proposed for this work. This coating is unique in that it consists of two layers,
each of which is compositionally graded so that" there are not sharp
interfaces. The outer layer is oxidation resistant and should provide
toughness and a low coefficient of friction, while the intermediate layer
serves primarily as a bonding layer. A composite of Al203 and ZrOz was
selected for the outer layer, and AIN was selected for the intermediate layer.
Figure 1 is a schematic of the proposed coating configuration.

Unlike previous studies, one coating configuration was used for all
substrates in this program. However, coating properties (e.g., composition,
thickness, microstructure) could in principle be varied to achieve
compatibility with each substrate by modifying the coating deposition
conditions.  Chemical vapor deposition (CVD) was proposed as the coating



application technique. CVD is preferred for this application because with this
technique, adhesion can be enhanced via chemical bonding or solid solution
formation between coating and substrate, interdiffusion at the interface, or
formation' of new phases at the interface due to reaction between the CVD gas
mixture and the substrate surface. In contrast, alternative deposition
techniques such as those based on physical vapor deposition or spraying
produce coating/substrate attachment which is usually mechanical.
Additional advantages of CVD include its ability to uniformly coat parts with
cbmplex shapes and its ability to be scaled-up to produce commercial
quantities.

The development of the coating configuration and the CVD processes
for applying the coating was guided by mathematical modeling. A model
based on finite element analysis was developed to calculate relationships
between thickness of the various coating layers and residual stress levels in
the coating and substrate.  Although predictive capability was not achieved,
the model did give insight into control of stress build-up in the coating.
Mathematical models were also used to determine (1) feasibility of growing
the desired coating under various sets of CVD operating conditions, (2)
dependence of coating yield and growth rate on operating conditions, and (3)
relationships between coating composition and operating conditions. Results
were plotted in the form of "CVD phase diagrams" for growth of Al203+ZrO2
composite and AIN coatings. |

During this program, the CVD processes were developed and coatings
were deposited on three substrates—reaction bonded Si3N4 (RBSN), hot
isostatically pressed Si3N4 (HSN), and sintered SiC (SSC) (Table 1). Work was
done on test bars measuring 2 in. x 1/4 in. x 1/8 in. that were either whole or
cut into three equal size pieces before coating. Adherence of the coating was
assessed using a conventional scratch test (Revetest type). The effect of the
coating on the flexure strength of each substrate material was measured at
room and elevated temperature. The thermal shock resistance was tested by
rapidly and repeatedly cycling samples to typical engine operating
temperatures. Long term, high temperature oxidation resistance in static air
was also studied. In each case, the effect of the test on coating adhesion was
evaluated. Finally, a set of samples was coated for contact stress tests which



will be conducted by Garrett Turbine Engine Company, Auxiliary Power
Divisiea.

The results obtained in this phase of the program demonstrated
significant potential for the use of this coating configuration on ceramic
engine components to reduce contact stress damage of the substrate. The
coatings generally remained intact during performance tests at temperawurcs
of 1000°C. However, the AIN and Al203+ZrO2 coatings, deposited by CVD, were
. cracked.  Finite element analysis was used to show that these coatings,
- deposited by convential CVD, would always crack, and that the concept of
"graded" layers would not prevent the cracking problem.



EXECUTIVE SUMMARY

This report summarizes the Phase II findings on the development of an
Al203+ZrO2 composite coating, intended to reduce the contact stress damage of
Si3N4 and SiC ceramics. An AIN interlayer (~5 microns thick) was
demonstrated to be an effective means of providing good adhesion between
Al203+Zr0O2 (~1 micron thick) and the ceramic substrates. During this
program, CVD processes were developed and used to successfully deposit the
niultilayer coating. The performance of the coatings produced in Phase II
was assessed by oxidation tests, scratch tests, and pin-on-disk sliding contact.

Modeling the diffusion of oxygen through an Al203 layer at elevated
temperatures suggested that the coating would be an adequate diffusion
barrier to oxygen. However, experimental results revealed that the composite
coating configuration was mnot oxidation resistant for 500 hours at
temperatures above 1000°C. The lack of protection is attributed to cracks in
the Al2034+ZrO2 layer, which allowed oxygen to penetrate and react with AIN.
The kinetics of oxidation of AIN are sufficiently slow at 1000°C for the coating
to protect the substrate for SO0 hours. However, above 1000°C, the oxidation
rate of AIN is rapid enough to cause the AIN to fully oxidize to Al303.

A major aspect of this program has dealt with the use of finite element
" methods and fracture mechanics to model the behavior of brittle multilayer
coatings. Detailed analysis of the residual stresses in uncracked coatings on
ceramic substrates revealed that the coating thickness, order of coating
layers (including grading of the coefficient of thermal expansion), and
elastic modulus of the coating all have a negligible effect on the residual
stress in the coating. It was concluded that due to the high temperatures used
in CVD processing and inherent thermal expansion mismatch between the
materials, the Al203+ZrO2 coatings would contain .racks uf)on cooling to room
temperature.

To better understand the behavior of cracks in the coating and possibly
identify a means to eliminate them from the coating, additional modeling was
performed. The effect of crack propagation during solid body contact was
studied using interface fracture mechanics coupled with finite element

analysis. Several geometries were studied; omne coating layer with a vertical




flaw, twc coating layers with a vertical flaw, and two coating layers with a
horizontal flaw.  Thermal residual stress and point contact loads (which
simulated the scratch test) were applied to the coated system and the crack
was allowed to propagate. For vertical flaws, the cracks always propagated
into the substrate. Further analysis showed that improving the fracture
toughness of the interface would not improve the performance of the coating,
since the interface was not a weak point. In contrast, the horizontal crack did
_not reach the substrate. A crack in the middle layer of a two layer coating,
‘ stayed within that layer. A crack in the outer layer of a coating moved away
from the substrate and towards the fee surface. Therefore, cracks of this
type would not degrade the oxidation performance of a coated substrate.

The possibilities for working around the problem inherent to thin
brittle cpatings could lie in the area of controlled brittle fracture of
multilayers, cdntrolling the residual stress in the deposited film, or by the use
of "ductile” layers which would permit stress relief ard alleviate pre-service
cracking. Physical vapor deposition (PVD) methods, which allow the residual
stress state to be controlled, or low temperature CVD processes may allow for
crack-free coatings to be deposited. @ The coating would then be in a
compressive stress state at the service temperature and would not crack. It is
anticipated that without cracks, the Al303+ZrO2 composite coating would be an
effective means of reducing the contact stress damage and oxidation of SizNgy4
ceramics.

A single point scratch test was used to assess the protective nature of
the coatings during contact loading on unoxidized samples at room
temperature. The coating protected the SiC (SSC) and reaction bonded Si3Ng4
(RBSN) substrates by reducing chipping and cracking of the substrates. No
significant differences were seen in the scratch resistance of the uncoated
and coated hot pressed SizN4 (HSN). |

A method was developed to measure the ultimate tensile strength,
fracture toughness, and Weibull modulus of thin brittle coatings on
substrates. The technique is based on measuring the radius of curvature of a
roated substrate, and equating the resulting calculated stress with a
theoretical shear-lag stress distribution model. The Weibull modulus and
fracture stress of Al203 CVD coatings on SiC substrates were measured. The




fracture stresses for coatings of these materials ranged from 190 MPa to 480
MPa, the Weibull modulus ranged from 16 to 28, and the fracture toughness
ranged from 0.5 - 1.1 MPaVm. This work has shown that the tensile strength
of Al203 and AlI2034+ZrO2 coatings can be approximated by bulk values,
however, the fracture toughness of these coatings was found to be
significantly lower than bulk values.

Additional contact stress tests on Phase I coatings were carried out by
Garrett Turbine Engine company. These tests were deemed inconclusive due
to the lack of coating oxidation resistance at 1200°C.

Pin-on-disk tests were used to measure the breakaway and kinetic
friction coefficients for coated and uncoated materials. Room temperature
results showed that the Al203+ZrO2 coating reduces the kinetic friction
coefficient of RBSN and HSN by as much as 50% in self-mated tests. No
apparent reduction in friction was observed for the SSC substrate. An
improvement in sliding wear resistance was obtained with Al303+Z:0Oy coated
HSN in the pin-on-disk test, whereas the coatings on RBSN and SSC were
ineffective.



DESIGN OF COATING CONFIGURATION
REQUIREMENTS OF THE APPLICATION

Advanced heat engine components are subjected to high localized
stresses in contacting areas during operation. In addition, they are exposed to
extreme conditions of thermal cycling. The use of thin (<100 microns)
ceramic coatings on various components has been shown to reduce contact
stress damage by reducing the relative coefficient of friction and elastic
. modulus of the contacting parts. However, the coating must be strongly
ladherent and not degrade under thermal shock and oxidizing conditions at
engine operating temperatures. These requirements dictate six major design
criteria:

1. Strong coating/substrate adherence.

2. Low residual stress in the coating and at the coating/substrate
interface. |

3. Excellent oxidation resistance and low permeability of oxygen through
the coating..

4. High thermal shock resistance.

S. Improved mechanical strength and low coefficient of friction at room
and elevated temperatures.

6. Minimum chemical interaction between the substrate and the coating
and coating stability at operating temperatures.

A single monolithic ceramic coating which could satisfy all of these criteria
could not be identified. Hence, a multilayered coating configuration was
proposed (see Figure 1). This coating consists of an intermediate layer whose
primary function is to promote bonding with the substrate, and an outer layer
which provides the required mechanical properties and oxidation resistance.
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Figure 1. Schematic of coating design.

CHEMICAL, PHYSICAL, AND MECIOANICAL PROPERTY CONSIDERATIONS
The important chemical properties required of the outer coating layer
are oxidation resistance and low permeability to oxygen. The oxidation
resistance of A!203is well known. Even with this outer layer, it would still be
possible for oxygen to diffuse through the layer via pores or cracks. Hence,
an intermediate layer which can dissolve or react with oxygen is necessary.
Aluminum nitride forms polytypes and solid solutions with oxygen over wide
ranges of composition, so it is a candidate for the intermediate layer. In
addition, AIN forms solid solutions with Si2N20, and these solutions are the
basis for some SiAlON-type compounds. Since Si3N4 readily oxidizes to form
SigN20, the surface of Si3N4 materials generally contains SigN20. Hence the
potential for SiAION formation exists at the Si3N4/coating interface. It is
therefore expected that if AIN is used as the intermediate layer, it will act as a
chemical oxygen barrier and as a bonding agent with Si3Ng4-based substrates.
Physical and mechanical properties which are considered to be
relevant to coating design include density, thermal expansion coefficient,



fracture

are for bulk materials; it is assumed for purposes of coating design that the

toughness,

elastic modulus,

property values are the same for thin films.

hardness,

and Poisson's
composition and selected properties are listed in Table 1 for the substrate
materials as well as for the candidate coating materials.

ratio.

The values reported

Table 1. Properties of the materials used in this study.
Material Nominal Density KHN Identation
‘ Composition (actual/ Fracture
theoretical) Toughness
(Wt%) (g/cm?) (GPa) (MPaVm)

Faceégdgc Faccél’:‘dge

RBSN > 95% Si3Ng 2.75/3.19 9.846 + 0.56 35+03
(Airesearch) [<3Si 9.395 - 0.80 40+ 0.6
<2Fe
SsC >95.5SiC 3.17/3.21 25.29 + 091 + 0.2
(Hexalloy SA) |<05B 2391 £ 0.46 23+02
< 0.1 impurities
HSN 92 Si3Ng4 3.25/3.26 13.22 £ 0.15 34+£02
(GTE AY6) 2 AlO3 13.11 £ 0.17 33+03
6 Y504
< 0.1 impurities
AlL03 3.99 13-15 2-5
AIN 3.28 .- 2-3
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COATING PROCESS DEVELOPMENT
THERMODYNAMIC ANALYSIS OF COATING PROCESS

Thermodynamic analysis of the coating procedure was preformed in
Phase I of this program. The results are listed in Appendix B of the Phase I
final report.

HIGH TEMPERATURE COATING DEPOSITION REACTOR

' A new CVD reactor was built, the Phase II reactor. This reactor is a hot-
wall, crucible type reactor that is heated resistively with graphite heating
elements. The system was leak checked and found to be leak-free down to a
pressure of 10-6 torr. Source gases enter at the bottom, flow upward past the
parts to be coated, and exit through exhaust tubes terminating above the
deposition zone. This is illustrated in Figure 2. A perforated plate defines the
upper limit of the deposition zone. Graphite rods are hung from this plate to
form a fixture for supporting the substrates. The substrates are placed on a
grid of thin alumina rods that pass through holes in the graphite rods. The
volume of the reactor is 5 liters. An intermal reactor is used for generating
volatile AICl3 and ZrCl4, which are the aluminum and =zirconium source
materials being used for the AIN and Al203+Zr0O2 coatings.

11
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Figure 2. Phase II high temperature CVD reactor being used for coating
deposition.
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Formation of a coating at high temperatures (T > 1000°C) was
complicated by the tendency for gas phase nucleation to occur in CVD
processes that use AICl3 as a s urce material. To compensate for tae higher
thermal driving force for gas phase nucleation, we reduced the pressure to 10
torr. The system can be operated at pressures as low as 1 torr depending on
the total gas flow rate.

The CVD reacior which was previously being used for Phase I of this
program was modified to incorporate two internal reactors for simultaneously
g\;:nerating two different source materials. Previously, all source materials
were generated in one intermal reactor. This resulted in poor control over
the relative amounts and distribution of ZrO2 and Al203 in the Alp03+Zr02
composite layer. Details of the composite layer composition were discussed in
the October, 1989 Bimonthly Progress Report. The new design was expected to
allow better control of the relative rates of generation of AICI3 and ZrCl4 for
deposition of the Al03+Zr0O2 composite layer.

EXPERIMENTAL COATIMG PROCESS

Process development for deposition of the coating at temperatures
above 1000°C was carried out for the Phase II graphite high temperature CVD
reactor (Figure 2). Initially, attempts were made to deposit a pure Al203
coating. The first experiment wcs done at 1000°C to establish reproducibility
of coatings obtained in the Phase I CVD reactor. The coating produced was not
analyzed, although it appeared to be similar to those obtained in the Phase I
reactor. Based on weight gain, the deposition rate was approximately
0.5 microns/hour, which was typical of the deposition rate obtained in the
other reactor. The deposition temperature was then raised to 1200°C. This
gave a 1.5 micron thick coating in one hour. However, Al203 powder also
formed cue to gzas phase nucleation. Most of this powder was easily removed
from the samples, and the remaining coating appeared to be nonporous and
smooth on the surface. In order to determine if there was a relationship
between deposition temperature and gas phase nucleation, an experiment was
done at 1120°C. This run produced extensive amounts of powder, causing the
reactor exhaust line to plug. In addition, melting of the Al metal in the AICI3
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generator occurred, so samples from this run were not analyzed. The
remainder of the experiments done were deposition of Al203+ZrO2 or AlN.

Since some success was achieved with deposition of pure Al203 at
1200°C, the first Al203+ZrO2 experiment was done at 1200°C. This resulted in
extensive gas phase nucleation. The deposit that collected on the substrates
was loosely adherent and easily rubbed off. No weight gain of the substrate
was detected, which suggested that no coating had formed. Another
. experiment was done at this temperature, but with the relative amounts of
' AlCl13 and ZrClg source varied; i.e., a higher ratio of Zr/Al. This resulted in a
moderate amount of powder formation due to gas phase nucleation. In
addition, a very thick, loosely adherent coating was again easily removed. A
third experiment was done at 1200°C with the same ratio of source materials
but with a steeper temperature profile so that the source gases did not get
preheated to as high a temperature. It was hypothesized that this would
reduce the amount of gas phase nucleation. This succeeded in producing less
powder. Additional experiments were done with the original Zr/Al ratio in
the source gases and with deposition temperatures of 1300°C and 1375°C. The
experiment at 1300°C produced a thick, nonporous, well adherent coating and
a small amount of powder. The coating thickness indicated a deposition rate of
11 microns/hour. The experiment at 1375°C gave a moderate amount of
powder and a thick coating.

Analysis of the high temperature Al203 and Al203+ZrO2 experiments
suggests that there is a transition temperature, below which gas phase
nucleation dominates, and above which surface nucleation dominates. At the
lowest deposition temperature used in this program (975°C used throughout
Phase I and early Phase II), gas phase nucleation was not measurable, but the
deposition rate was very low (<1 micron/hour for either Al203 or Al203+Zr02).
At 1200°C for pure Al203 and 1300°C for Al203+ZrO2, the deposition rate was
much higher and an adherent coating was formed with only moderate
amounts of powder from gas phase nucleation. At intermediate temperatures,
extensive powder formation took place, and little or no adherent coating was
formed. The only experiment that did not fit this trend was the one in which
Al203+ZrG2 was dcpositéd at 1375°C. It should be emphasized that these resulis

are specific to our deposition system and should therefore not be generalized
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to predict the behavior of other systems. This is especially important since
the temperature profile in the gas phase upstream of the deposition zone
appears to strongly influence the results.

The remainder of the experiments were directed towards the deposition
of AIN. Initially, an experiment was done at 1000°C to establish
reproducibility of coatings obtained in the low temperature CVD reactor. This
resulted in quite different behavior than that which typically occurred in the
low temperature reactor. Specifically, an adherent, thick coating formed
aiong with an extensive amount of powder. The coating thickness varied
substantially on a given sample, corresponding to a deposition rate of
6-9 microns/hour.  The difference in behavior can be attributed to the
different temperature profile experienced by the gas phase, suggesting that
the AIN system is very sensitive to this parameter. A second experiment at
1200°C also gave extensive powder formation, but a lower and more variable
deposition rate (1-5 microns/hour). It should be emphasized that the reported
deposition rates are only apparent rates since they are determined by
measuring coating thickness at several locations and dividing by the total
deposition time. Loss of loosely adherent coating or flaking or chipping of
strongly adherent coating, during fracture of the sample, could skew the
m.casurement.

In Phase I of this work Al and Zr metals were mixed together to
generate the AIlCl3 and ZrCl4 reactant gases for composite layer deposition.
This led to a2 nonuniform distribution of Zr in the coating. The Zr reacted first
and a layer of pure ZrOy was deposited followed by an AlpO3 layer. In Phase II
an Al-Zr metal alloy was used as the metal source to generate the AICl3 and
ZrCls reactant gases for composite layer deposition. The Al-Zr alloy was
prepared by melting under argon and had a composition of 88 wt% Al-12 wt%
Zr. Use of this Al-Zr alloy produced a composite film with a uniform Zr
distribution. The "best set” of deposition conditions used to deposit AIN and
Al203+ZrO2 coatings are listed in Table 2. The microstructure of these coatings
is detailed in the next section.
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Table 2. Process conditions for CVD deposition of AIN and Al203+ZrO2.

Pressure =
Temperature

Ar flows;
Hj flows;
Cls flows;
CO, flow;
NH3 flow;

11 torr
= 950°C
Internal reactor;

AIN coatings;

30 gm Al

Al03+Zr0Oy coatings; 10 gm Al+12 w/o Zr alloy

750 sccm inner

1000 sccm inner

75 sccm inner
300 sccm outer
250 sccm outer

2000 sccm outer
3500 sccm outer

(only for Al203+ZrO2 coatings)
(only for AIN coatings)
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MATERIAL CHARACTERIZATION
MICROSTRUCTURE OF COATING
Phase 1 Coating

Figure 3 shows the surface of an AlpO3 coating deposited on SSC
substrate. The rough surface topology is attributed to Ni contamination from
the Inconel vessel in the CVD reactor [COL86]. This problem was eliminated in
the Phase II coating where a graphite CVD reactor was used.

Figure 4 shows a cross-section of the AIN/Al203+ZrO2 coating on the SSC
sﬁbstrate. the coating had the same morphology on the RBSN and HSN
substrates. The Zr is concentrated at the AlN/composite interface.

The microstructure of the AlpO3+ZrO7 composite layer has been studied

by TEM and analytical electron microscopy. A sample of the Phase I
Al1203+Zr0O7 coating on a TiC whisker reinforced AlpO3 substrate was analyzed.
This substrate was used because previous attempts at preparing a thin foil
specimen of coated silicon nitride-based materials were unsuccessful. The
failure was attributed to uneven milling rates of the coating and substrate
during ion beam milling. The coating was 3 microns thick and contained
approximately 3 w/o Zr. It was found that the majority of the coating was
essentially pure AlpO3 with the Zr concentrated at the interface between the
coating and the substrate. The Zr was present as 30 nanometer particles
containing impurities that were identified as silicon, tungsten, and probably
oxygen.' These impurities are very likely introduced during deposition of the
coating as a result of residue inside the CVD equipment from coating of other
substrate materials. The TEM study did not determine that the Zr was present
as ZrO,. An amorphous Si-rich phase was also present at the interface. This
glass probably formed from the binder material in the substrate. The grain
size of the AlpO3 in the coating ranged from 40 to 200 nanometers with the
majority being 50 nanometers.

The TEM results are consistent with earlier studies done using electron
microprobe. In particular, ZrOy was found to be concentrated at the interface.
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Figure 3. SEM micrograph of the surface of a Phase I Al203 coating on SSC.
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Figure 4. SEM micrograph of a Phase I Al203+ZrO2 coating on SSC. 2) Back
scattered electron image, b) Al X-ray map, ¢) Zr X-ray map.
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Phase II Coating

Figure 5 shows the surface of an Al2013 coating deposited on SSC
substrate. The smooth surface topology is contrasted with the rough surface
of the Phase I coatings, Figure 3.

Figure 6 shows a cross-section of the AIN/Al,03+ZrQ2 coating on the SSC
substrate, the coating morphology on the RBSN and HSN substrates were
identical. The Zr is uniformly dispersed throughout the composite region. A
. sample was prepared for transmission electron microscopy (TEM). This
' sample showed that the Al203 grain size was 30 - 50 nm and was alpha Al03.
ZrO, particles were not identified, this is believed to be due to the small
volume fraction of ZrO2 (5 %) in the composite making it very difficult to
identify ZrOp particles directly. While the phase of ZrO2 was not identified it
is believed that the ZrO2 grain size was the same as the Al203 (30 - 50 nm).

Figure 5. SEM micrograph of the surface of Phase I Al203 coating on SSC.
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Figure 6. SEM micrograph of a Phase II Al203+ZrO2 coating on SSC. a) Back
scattered electron image, b) Al X-ray map, ¢) Zr X-ray map.
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PHYSICAL PROPERTIES OF COATING
Oxidation-Literature Review

During Phase 1, the oxidation resistance of the coating in static air was
studied. The coating was found to be oxidation resistant for up to 500 hours at
1000°C, but was not oxidation resistant at 1200°C or higher. The lack of
oxidation resistance at elevated temperatures was studied in Phase II.

The oxidation behavior of silicon nitride, silicon carbide, and
.aluminum nitride were the subjects of several previous studies. A brief
'summary of the literature is provided in the following sections. These
summaries are intended to provide basic information and to indicate some
relevant articles in the literature.

xidation of

The oxidation of Si3N4 depends on the type and amount of porosity, the
flow rate of the oxidizing gas, and the types of additives and/or impurities
present. Figure 7 shows the weight gain versus time for liquid phase sintered
Si3N4 [BAB83, SIN76a] and RBSN [POR84] for comparison. All samples were
oxidized at ~1300°C, except RBSN-1100°C which was oxidized at 1100°C. The
oxidation rate was strongly dependant on the type of Si3N4 under study. The
general oxidation reaction is:

SisNg +302=3Si02+2 Ny Eq. 1

However, whea impurities are present, a mixed glass phase forms instead of
SiO2. This mixed glass may have a lower viscosity and can have a significant
effect on the oxidation rate. Full oxidation of Si3Ng4 to SiO2 is accompanied by a
28.3% increase in weight. .

The oxidation of liquid phase sintered Si3N4 probably depends on the
diffusion rate of the cation impurities. An activation energy of 374 kJ/mole
(~93 kcal/mole) was reported [SIN76a]. During oxidation the cations became
concentrated in the outer S‘i02 layer. MgO and CaO increase the oxidation rate.
This increase in oxidation rate was probably due to a lowering of the melting
point', of the glassy phase which increases the diffusion rate. Impurities can
increase the oxidation rate by two orders of magnitude or more [BABS83].
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Varying the Nz and/or O2 partial pressures had no effect on the

oxidation rate of liquid phase sintered Si3N4 [SIN76a). The velocity of the
oxidizing gas over the sample had no effect on the oxidation rate of liquid
phase sintered Si3N4 [SIN76a], however it did effect the oxidation rate of RBSN
[MAE89, BAR79]). During oxidation of RBSN a SiO boundary layer forms which
reduces the oxygen partial pressure at the surface and therefore favors
internal oxidation of the RBSN.
: Oxidation of RBSN is very dependent on the amount of open porosity
[POR84]. Open porosity results in the effective surface area of the sample
changing with time in a complex way. Open porosity allows oxygen to reach
the interior of the sample. As oxidation continues, the SiO2 which forms will
slowly close the pores. The closing of the pores is accompanied by a sharp
decrease in the oxidation rate.

Below 900°C the oxidation was parabolic with time and an activation
energy cf 198 kJ/mole (~50 kcal/mole) was reported [POR84]. At 1200°C,
oxidation effectively stopped .after 1.5 hours, due to the pores being closed by
the viscous SiO2 layer. At 1100°C the weight gain was faster than at 1200°C
and the oxidation stopped after 8 hours. This increased oxidation at lower
temperatures is due to the pores being open longer which allows more
internal oxidation to occur, and therefore larger weight gains were reported.
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Figure 7. Plot of silicon nitride oxidation data [BAB83, SIN76a, POR84].

Oxidati ¢ sili Carbid
Several studies dealt with the oxidation of SiC powders [ERV58, JORS9,

JPR61]. For times less than 10 hours the oxidation of SiC powder was parabolic
with time. At longer times the oxidation was faster, which was probably due
to cracking of the SiO2 surface film [ERV58]. Oxidation of SiC in air, 02, and
CO, showed the same behavior.

Figure 8 shows weight gain versus time for two types of sintered SiC
[DUTS84] in air and a hot pressed SiC [SIN76b] in dry oxygen. The oxidation of
the sintered SiC was sensitive to the sintering aid, SiC-1 had no reported
sintering aids and SiC-2 bad B and C additions. The oxidation reaction is:

2SiC+302=28i02+2CO Eq. 2
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Complete conversion of SiC to SiO2 is accompanied by a 49.9% increase in

weight.

Impurities concentrate in the SiO2 film. Above 1200°C the SiO3 layer
was crystalline and the activation energy increased, ~50 kcal/mole [JORS59].
This indicated that diffusion, probably molecular CO, through the SiO2 film
was rate controlling [JORS9, MIE84, FUN84]. At low oxygen partial pressures,
less than 10-6 Pa, the protective SiOz film cannot form and volatile oxidation
products result in rapid oxidation of SiC [WARS4].

The presence of water vapor in the oxidizing atmosphere increased the
oxidation rate [WARS84, JOR61]. Hydrogen prevented the protective SiOz film

from forming and increased the oxidation rate of SiC.

S e e e |

@ Sintered SiC-1
¢ Sintered SiC-2
® Hot pressed SiC

1.0

0.5

2
Weight gain (mg/cm )

0 50 100 150 200

Time (hrs)

Figure 8. Plot of silicon carbide oxidation data [DUT84, SIN76b].

Oxidati £ Alumini Nitrid
The oxidation of AIN is not clearly understood and the literature
indicates that the "oxidation rate” of AIN has little meaning. The oxidation
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ratc must be determined for the specific oxidizing conditions the AIN part will
experience. The reaction was very sensitive to the water content of the
oxidizing atmosphere, which may explain the discrepancies between the
different studies. Oxidation was faster in wet N2 than in dry air [SAT87] and
increased with increasing water partial pressure.

Oxidation starts at 800 - 1150°C. The weight gain began as a linear
relationship with time and- became parabolic with time. The parabolic rate
- constant had an activation energy of 60 - 65 kcal/mole [KAT87, LAV83], which
is reasonable for a diffusional process. The probable reaction is:

4AIN+302=2A103+2 N2 Eq. 3

NO3 and aluminum oxynitride may also form. Complete conversion of AIN to
Al2013 is accompanied by a 24.4% increase in weight.

The weight gains due to oxidation are in the range of 0 - 10 mg/cm2.
Figure 9 is a plot of weight gain versus time for the data in references LAV8S3
and BOC82. Reference LAV83 studied the oxidation behayior of AIN in O (at
900°C, 1000°C, 1050°C, and 1100°C) and reference BOCS82 studied the oxidation
behavior of AIN in air (at 1300°C, 1420°C, 1490°C, 1620°C, and 1680°C).

The Al203 oxide layer that formed was very adherent [BOCS82). Sato et al
[SAT87] found that porous Al203 formed at low temperatures, 1250°C, and solid
Al203 formed at high temperatures, 1400°C. However, Boch et al [BOC82] found
that porous Al303 formed above 1600°C and solid Al203 formed below 1600°C.
The reason for this disagreement is unclear.
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Figure 9. Plot of AIN oxidation data [LAV83, BOC82].

QOxvgen Diffusion through Al1;03

The possibility of oxygen diffusion, ecither grain boundary or lattice,
was theoretically evaluated. This was done by calculating the oxygen
concentration in an AlpO3 coating as a function of temperature, time, and
distance. The approach used was taken from Fisher [FIS51). Three types of
diffusion were included in the calculation: 1) diffusion from the surface
down the grain boundary, 2) diffusion normal to the grain boundary into the
grain, and 3) diffusion from the surface through the grain (bulk diffusion).
Fisher's treatment was used for the first two types of diffusion, and the
constant surface concentration solution to Fick's second law was used for the
third type. For purposes of the calculation, the coating was treated as pure
AlyOs.

Oxygen concentration profiles calculated at temperatures of 1100°C,
1200°C, 1300°C, 1400°C, and 1500°C for times up to 234 years (2,048,000 hours)
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and diffusion distances of 0.5 microns, 1.0 micron, and 1.5 microns. The

following parameters were used: grain boundary width = § x 10-8 cm, bulk
diffusivity for oxygen in AlpO3 at 1500°C = 3.5 x 10-16 cm2/s, grain boundary

diffusivity of oxygen in Alp0O3 at 1500°C = 5.0 x 10-15 cm?2/s, activation energy
for oxygen lattice diffusion in AlpO03 = 152,000 cal/mole K, pre-exponential
factor for oxygen lattice diffusion in Al03 = 1.9 x 103 cm2/s, activation
energy for oxygen grain boundary diffusion in Alp03 = 57,600 cal/mole°K,
_ pre-exponential factor for oxygen lattice diffusion in AlpQCz = 6.3 x 10-8 cm?2/s.
’The activation energies and pre-exponential factors were taken from Oishi
and Kingery [OIS60]. The calculations indicated that, at 1200°C, the oxygen
concentration 0.5 microns below the surface of the coating was less than 10-4
atomic per cent at 500 hours. At 1200°C and 1.0 micron below the surface, the
oxygen concentration was zero after 500 hours and 1 x 10-2 atomic per cent
after 8000 hours. At a depth of 1.5 microns at 1200°C, the oxygen
concentration was 2 x 10-4 atomic percent after 8000 hours. The oxygen
concentration only became significant for a depth of 1.5 microns and a
temperature of 1500°C after 8000 hours. This combination of time and
temperature is well beyond the anticipated service range of these coatings.
Hence, these results suggest that the coating should not fail due to oxygen
diffusion through an Al203 layer and that the composite layer is an adequate
diffusion barrier. ‘

Oxidati Testi
Oxidation tests of coated RBSN, SSC, and HSN were conducted with
substrates measuring 1" x 0.25" x 0.02". For oxidation tests of coated sapphire
the substrate size was 1" x 0.25" x 0.08". This sample size was selected to
maximize the weight of the coating while minimizing the weight of the
substrate, thereby increasing the magnitude of the weight gain due to
oxidation and allowing for more sensitive weight gain measurements.

The oxidation treatments were done in a Lindberg box furnace, model
51314, in static air. The samples were weighed using a Mettler analytical
balance with a readability of 1 pg and an accuracy of ~0.5 pg. After oxidation
testing, some samples are analyzed by X-ray diffraction (XRD) to identify the
oxidation products.
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in apphir t

Substrates of single crystal alumina (sapphire) were used to eliminate
the contribution of substrate oxidation from the weight gain experiments.
Three coating configurations were examined, AlN/sapphire,
Al203/AIN/sapphire, and Al203+Zr03/AlN/sapphire, these were oxidized in
static air at 1000°C, 1100°C, 1200°C, and 1275°C‘ for up to 500 hours. The
samples were periodically removed from the fumace and weighed (after 2, 8,
30, 125, and 500 hours). One sample was removed and set aside for X-ray
diffraction analysis at each weighting. Due to flaking of the AIN coating, the
weight gain as a function of time did not provide useful information,
however, X-ray diffraction allowed the degree of AIN oxidation to be estimated.

AIN Coated Sapphire Substrates

Three samples with this coating configuration were examined at 1000°C
for 2, 8, 30, 125, and 500 hour oxidation times. Table A-1 (in Appendix A) lists
the times and weights gains of these samples, and Table A-2 (in Appendix A)
shows the phases present after oxidation identified by XRD. The  AIN coatings
appeared to have flaked off during the oxidation treatments since the weight
gains in Table A-1 did not increase with time. The flaking was attributed to
poor adhesion between the AIN and the optically polished sapphire.  The
weight gain data is plotted versus oxidation time at 1100°C, 1200°C, and 1275°C
in Figures A-1 - A-3 respectively.

XRD results indicated that some AIN was present in all of the samples up
to 500 hours and AlpO3 formed with its c-axis perpendicular to the plane of the
substrate. Two unidentified peaks of low intensity were found at 0.418 nm and
0.432 nm in all of the samples in Table A-1.

Al203/AIN Coated Sapphire Substrates

Three samples with this coating configuration were examined at
1100°C, 1200°C, and 1275°C for 2, 8, 30, 125, and 500 hour oxidation times. Table
A-3 below lists the times and weights gains of these samples. The weight
gains listed in Table A-3 were expected to increase with time but did not due to
flaking of the coating.
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X-ray diffraction of the oxidized samples (Table A-2) indicated that AIN
was seen in some of the samples in Table A-3, however, the AIN peak intensity
appeared to be reduced in the sample oxidized for 500 hours at 1100°C.
Additional low intensity peaks were found indicating that AION may be
present.

The samples oxidized at 1200°C were similar to those oxidized at 1100°C
except the AIN peak intensity was reduced after 125 hours, and at 1275°C the
~AIN peak intensity was reduced after 30 hours. In all of the samples discussed
" above the Al203 was present in the alpha form.

Al203+2rQ2/AIN Coated Sapphire Substrates

Three samples with this coating configuration were examined at
1100°C, 1200°C, and 1275°C for 2, 8, 30, 125, and 500 hour oxidation times. Table
A-4 lists the times and weights gains of these samples.

X-ray diffraction of the oxidized samples (Table A-2) indicated that AIN
was seen in some of the samples in Table A-4. Thé AIN peak intensity was
reduced in the samples oxidized for 2 hours and longer at 1100°C. The samples
oxidized at 1200°C were similar to those oxidized at 1100°C except that the AIN
peak intensity was not observed for oxidation times longer than 2 hours, and
at 1275°C only a very faint AIN peak was detected after 2 hours. In all of the
above samples a-Al203 was the predominate Al2O3 phase, however, x-Al203
may have been present in the oxidized coatings. Also, both the orthorhombic
and monoclinic forms of ZrO2 were found in the oxidized and unoxidized

coatings.

xidati Kineti f Uncoat and AIN e

Results of the tests are summarized in Tables 3, A-5 and A-6 and Figures
A-4 - A-21. The growth exponents listed in Table 3 were calculated by fitting
the data to an equation of the form:

(wt. gain, mg)" = C * (time, hr) Eq. 1
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where 'C' is a constant and 'n' is the growth exponent. A value of 2.0 for 'n' is
typical of growth processes which are diffusion controlled.

In all of the oxidation tests, 3 samples were oxidized at each condition in
Table 3. In the cases of large variability, samples with the highest weight
gains are reported. The discrepancy between samples oxidized under identical
conditions was thought to be due to flaking of the oxidized layer.

The weight gain versus time plots for the substrates with AIN coatings
had two distinct regions (Figures A-4 - A-21). The first region lasted from 8 to
30 hours and was thought to be due to the rapid oxidation of the AIN layer.
The second region exists at longer times and is essentially flat, was probably
due to the oxidation of the substrate.

The results in Table 3 show that the oxidation of the AIN coating on SSC
and HSN substrates had a growth exponent of ~2. This implies diffusion
controlled oxidation at 1200°C and 1275°C. The growth exponent of the AIN
coated substrates after the AIN coating was fully oxidized were 4 or higher. A
growth exponent larger than 2 can be due to cracking of the oxidized layer or
"ageing” of the oxide layer [MEIS9]. Growth exponents of 1 are attributed to
interface controlled kinetics.
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Table 3.

Summary of oxidation tests for uncoated and AIN coated

RBSN, SSC, and HSN substrates. The tests were done in

static air at 1200°C and 1275°C in a box furnace.

1200°C
1275°C
Uncoated SSC
1200°C
1275°C
Uncoated HSN
1200°C
1275°C
AIN/RBSN
1200°C
1275°C
AIN!SSC
1200°C
1275°C
AIN/HSN
1200°C
1275°C

Number of

Samples

Average
Weight Gain
=1 std. dev.

0.931
0.994 +0.007

0.167
0.219 + 0.039

0.279 £ 0.014
0.990 + 0.007

0.334 £0.219
2.736

0.456
1.511 £ 0.283

0.483 +0.091
1.816 +0.057

Time to
100% AIN

conversion

<30
<8

<30
<8

<8
<8

Growth
Exponent’
+ 1 std. dev.

45204
1.6+0.1

26+0.2
22+0.1

1.0£0.3
2.6

2.1x0.1
1.9+0.4

1.9+0.1
1.9+£0.3

T the growth exponents for the AIN coated substrates are only for

oxidation times up to the "Time to 100% AIN conversion".
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The phases identified after the full 500 hours of oxidation on uncoated
and AIN coated RBSN, SSC, and HSN are listed in Table -A-5 for all temperatures
tested. Uncoated RBSN was predominantly a-Si3N4 and tended to form SiO3
when oxidized. Uncoated SSC consisted of predominantly the 8H and 12H
polytypes and formed SiO2 when oxidized. Uncoated HSN was predominantly
B-Si3N4 and formed a-Y32S8i207, Y2SiOs, and SiO2 when oxidized. The yittrium
came from the grain boundary phase. Yttria was added to this material as a
densification aid.

The oxidation of the AIN coated materials resulted in similar phase
formation as the uncoaied materials with the addition of Alp03. The Al;03
came from the oxidation of the AIN phase. No phases were identified that
suggested a reaction between the AIN and Si3N4 or SiC.

The conventional coating (Al03+ZrO2/AIN) was tested, along with
Al203/AIN, Table A-6. The latter coating was evaluated to eliminate the effect
of ZrO3 to make the interpretation of the oxidation results simpler. ZrO;
undergoes a phase transformation and 10% volume change at ~1200°C which
may cause the coating to crack or flake.

The oxidation tests showed that all coating/substrate configurations
failed at all temperatures. A post-failure analysis was initiated to determine
the cause(s). One possibility was porosity in the oxide layer of the coating.
Examination of as-grown coatings has shown a variety of features ranging
- from cauliflower shaped clusters of grains to faceted grains. ’Examination of
the cauliflower shaped clusters at 5000x shows the presence of large gaps
between clusters. Due to the thinness of the oxide layer of the coating
(typically less than 2 microns), these gaps could penetrate to the AIN layer.
An attempt was made to determine if AIN was exposed by doing a nitrogen map
using an electron microprobe analyzer. Two samples were examined, and
neither gave a nitrogen signal, suggesting that the AlpO3+ZrO9 coating was
continuous. However, the sensitivity of the microprobe to nitrogen was ~3
weight per cent and the detection limit for gaps was ~1 micron ; i.e., only gaps
larger than 1 micron could be detected.

The results indicate that the current coating configuration is not
oxidation resistant for 500 hours at temperatures above 1000°C. The lack of
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protection is attributed to cracks in the Al203+ZrO2 layer, which allow oxygen
to penetrate and react with AIN. The kinetics of oxidation of AIN are
sufficiently slow at 1000°C for the coating to protect the substrate for 500
hours. However, above 1000°C, the oxidation rate of AIN is rapid enough to
cause the AIN to fully oxidize to Alp03 before 500 hours. This oxidation is
accompanied by further cracking, which in turn increases the oxidation of
the substrate. The cause of cracking in the Alp03+ZrO2 layer is large residual
stress dus to thermal expansion mismatch between Al203 or ZrOz and Si3Ng4 or
"SiC. The stress in the Al203+4Zr02 layer is appro:;imately 1900 MPa for a Si3Ng4
substrate and 1300 MPa for a SiC substrate, which is well in excess of the
fracture strength of the Al203+ZrO3 layer. Physical vapor deposition (PVD)
methods, which allow the residual stress state to be controlled, or low
temperature CVD processes may allow for crack-free coatings to be deposited.
When these coatings are heated to 1200°C the stress in the coatings would be
compressive and they would not crack, although they may fail by buckling.
The thermal stress and coating cracking problems are addressed in a
following section.

Contact Stress Testing

The contact stress testing from Phase I of the program was completed
by Garrett Turbine Engine Company. Twenty coated MOR bars (dimensions 2"
x 1/4" x 1/8") and pins of ecach substrate (RBSN, SSC, and HSN) were tested for
contact stress using point sliding contact. The test procedure was described
elsewhere [SCH87]. Each sample had a ~5 micron thick AIN intermediate layer
and a 1 micron thick outer layer of Al203+ZrO2 composite. The coated MOR
bars were oxidized in static air at 1200°C for 100 hours before application of
the contact stress. After oxidation, the composite coatings exhibited good
adherence to the RBSN and SSC substrates and poor adherence to the HSN
substrates. Flexure strength (using 4-point bending)  was measured after
application of the contact stress. The friction coefficient was also calculated
by Garrett.

Tables 4 - 6 show the strength loss and maximum friction coefficient
measured for each set of conditions. The "As-coated strengths" were taken
from samples that were oxidized at 1200°C for 500 hours and tested at 25°C and
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from unoxidized samples tested at 1000 and 1200°C. These measurements were
made at GTE on a separate set of samples. All samples contact stress tested
showed a strength loss of 30 - 50%. The increase in strength of the HSN
samples tested at 1200°C (see Table 5) is not understood.

It was previously reported [DAN89] that the Al203+ZrO2 coatings flaked
off the substrates and that the samples were fully oxidized after 100 hours of
oxidation at 1200°C. Based on the previous oxidation data and the multiple
f;ctors involved in the contact stress testing (oxidation, contact stress, and
variable friction), no firm conclusions are drawn from this contact stress
data.
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Table 4. Summary of contact testing and post-contact MOR strength
testing for CVD coated RBSN.

Test Applied Max. As-Coated | Retained y Contact | Change in
Temp. Load Friction | Strength | Strength | Damage Strength
°C) (1bs) (MPa) (MPa) (%)
25 25 0.44 197 154 yes -22
" " 0.47 " 157 yes -20
" " 0.54 " 137 yes -30
" 50 0.35 " 188 yes -5
" " 0.43 " 130 yes -34
" " 0.37 " 124 yes -37
" 60 0.50 " 116 yes -41
" " 0.48 " 119 yes -40
" " 0.45 " 131 yes -34
1000 25 1.36 245 150 yes -39
" " 1.65 " 137 yes -44
" 50 0.82 " 164 yes -33
" " 0.63 " 115 yes -53
1200 25 1.02 224 90 yes -60
" " 1.03 " 105 yes -53
" 50 0.94 " 92 yes -59
" " 0.81 " 95 yes -58
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Table S. Summary of contact testing and post-contact MOR strength
testing for CVD coated HSN.

Test Applied Max. |As-Coated| Retained | Contact | Change in
Temp. Load Friction | Strength | Strength | Damage | Strength
(°C) (1bs) (MPa) (MPa) (%)

25 50 0.81 520 267 yes -49

" " 0.43 " 564 no +8

" " 0.69 " 330 yes -37

" 60 0.71 " 318 yes -39

" " 0.72 " 322 yes -38

" " 0.65 " 368 yes -29

" 75 0.54 " 334 yes -36

" " 0.71 " 310 yes -40

" " 0.67 " 316 yes -39
1000 50 0.60 557 316 yes -43

" " 0.68 " .ok --- .e-

" 75 0.87 " . .e- ce-

" " 0.85 " 109 yes -80
1200 50 0.36 393 466 no +19

" " 0.48 " 453 no +15

" 75 0.43 " 531 no +35

" " 0.42 " 545 no +39

* Tested improperly
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Table 6.

Summary of contact

testing for CVD coated SSC.

testing and post-contact

MOR strength

Test

Temp.

(°C)

Applied
Load
(1bs)

Max.
Friction

As-Coated
Strength
(MPa)

Retained
Strength
(MPa)

Contact
Damage

Change in
Strength
(%)

60

40

60

0.23
0.48
0.50

0.35
0.49
0.30

0.55
0.76
0.51

0.59
0.69

0.45
0.49

0.85
0.89

0.64
0.91

248

180
209

195
178
192

202
183
162

172
173

165
152

141
115

169
155

yes
yes
yes

yes
yes
yes

yes
yes
yes

yes
yes

yes
yes

yes
yes

yes
yes
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Eriction Coefficient Tests

Self-mated sliding wear tests have been carried out at room
temperature with uncoated and coated samples. In the tests of uncoated
substrates the pin and disk were of the same material. In the tests of coated
substrates the pin and disk were both coated. These samples included RBSN,
SSC, and hot-pressed silicon nitride (HPSN). Hot-pressed material was used in
place of hot isostatically pressed material (HSN) for this study due to the
availability of HPSN of the proper size for fabricating into pins and disks.
' Tests were conducted using a pin-on-disk set-up, Figure 10. The tip of
the pin is spherical, which gives similar results to those obtained in a ball-
on-disk tsst. The testing procedure is based upon the conditions used for the
VAMAS round-robin on wear test methods [RUF89). Tests are carried out in air
with an applied force of 10 N and a sliding velocity of 0.01 m/s.

. O

Figure 10. Schematic of pin-on-disk wear test system. F is the normal force
on the pin, d is the pin diameter, D is the disk diameter, R is the
wear track radius, and o is the rotation velocity of the disk.
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Table 7 summarizes the friction results obtained. The breakaway
friction coefficients were measured prior to wear testing on surfaces polished
to a 1 micron finish. The values reported for the kinetic friction coefficients
are the steady state values obtained after 500 meters of sliding. These results
show that in some instances the Al203+Zr0Q2 coatings reduce friction. A
significant reduction in kinetic friction value is obtained in the case of HPSN
and RBSN, while no apparent benefit is observed with SSC at room
_temperature.  The results at 1000°C were not sufficient to determine coating
' performance. The wear surfaces of uncoated HPSN, RBSN, and SSC are shown
in Figure 11 and the wear surfaces of coated HPSN, RBSN, and SSC are shown
in Figure 12. Figure 11 shows the worn pin and disk surfaces of uncoated
ceramics after 500 meters of sliding contact. The spherical tip of the pins
develop a circular wear scar, the extent of which is a measure of wear
resistance. Coating the pin and disk materials leads to a noticeable
improvement in wear resistance for HPSN as seen by the reduced wear scar
on the pin and the polished wear track surface of the disk, Figure 12. The
RBSN and the SSC materials were not protected as effectively by the coating,
which is ic part attributed to the poor adhesion of these coatings to the
substrates. The wear results obtained with coated materials do agree with the
lower kinetic friction results for HPSN and RBSN in Table 7.
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Table 7. Results from pin-on-disk friction tests of uncoated
and Al203+ZrO2/AIN coated RBSN, HPSN, and SSC. All
tests were done on self-mated samples. Reported -
values, unless otherwise indicated, are an average of
three tests on the same pair of samples.

Material Test Breakaway Kinetic Friction
Temperature| Friction Coefficient
°O) Coefficient
: initial | after 1 km
RBSN
uncoated 25 0.10 0.5 0.8
coated 25 0.17 0.3 0.4
HPSN
uncoated 25 0.3 --- 0.8
uncoated 1000 0.15 0.5 0.9*
coated 25 0.14 0.3 0.4
SSC
uncoated 25 0.1 --- 0.3
uncoated 1000 0.25 0.5 0.7
coated 25 0.17 0.3 0.4

*ocly 1 sample has been tested at this condition.
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Wear tracks on the pins and disks for uncoated HPSN (top), RBSN
(middle), and SSC (bottom). after a sliding distance of 500 meters
at a sliding velocity of 0.01 m/s.

Figure 11.



et
A‘\,&-‘(
R

Figure 12, Wear tracks on the AIN/A1203+ZrO2 coated pins and disks for
HPSN (top), RBSN (middle), and SSC (bottom), after a sliding
distance of 500 meters at a sliding velocity of 0.01 m/s.
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Scratch _Tests

In a scratch test a diamond indenter (Rockwell C) is drawn over a
sample at a constant velocity while the normal force is monotonically
increased (0 to 100 N). An acoustic pick-up is attached to the sample holder
and both the force and acoustic signals are recorded during the test.

The uncoated and Al203+ZrO2/AIN coated disks of HSN, RBSN, and SSC
from the‘pin-on-disk wear tests were scratch tested. Figures 13 - 18 show the
load, acoustic emission, and wear traces for each sample. Several points can
"be made from these figures. The force traces of the uncoated and coated
samples were similar with the exception of uncoated SSC, which showed
several large load drops. In general, the acoustic emission of the coated
‘samples was less than the acoustic emission of the uncoated samples. Acoustic
emission is regarded as an indicator of substrate cracking. The scratches
themselves are very informative and vary from sample to sample. The
individual samples are discussed below.

Cracking of the uncoated SSC disk began at ~40 N (Figure 13). As the
force increased the crag:king became massive failure of the SSC disk. The
coated SSC disk (Figure 14) had a lower acoustic signal than the uncoated SSC
disk, indicating that the coating protected the SSC substrate from damage. The
scratches on the uncoated and coated SSC are very different. The uncoated SSC
showed massive cracking and chipping, while the coated SSC showed no
chipping and less cracking. The major damage to the coated SSC was in the
form of flaking of the coating in the scratch track beginning at ~30 N,
indicating low adhesion of the coating to the SSC.

Vent cracks began to form in the uncoated RBSN disk ~30 N (Figure 15).
As the force increased the size of the vent cracks increased, however, the
RBSN did not chip. The coated RBSN disk (Figure 16) had a lower acoustic
signal than the uncoated RBSN disk indicating that the coating protected the
RBSN substrate from damage. The scratches on the uncoated and coated RBSN
were similar. The major damage to the coated RBSN was in the form of flaking
of the coating in the scratch track beginning at very high forces, ~90 N,
indicating high adhesion of the coating to the RBSN.

Uncoated HSN behaved differently than the SSC and RBSN (Figure 17).
HSN did not exhibit massive chipping (like SSC) or vent crack formation (like
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Scratch Force (Newtons)

RBSN). The uncoated HSN failed at a high force, ~90 N, by small scale chipping
at the edge of the scraich track. The coated HSN (Figure 18) was similar to the
coated RBSN. The coated began to flake at ~50 N. However, the flaking was not
continuous at forces greater than 50 N. The discontinuous nature of the
flaking may be related to processing defects in the coating.

100}
Coated HPSN

31
Qo

S
(4]
Acoustic Emission
Intensity (ARB Units)

0 l.. TANEL

Scratch Distance (cm)

Figure 13. Scratch test results of uncoated HSN. The load trace is the solid
line (left axis) and the acoustic signal is represented by the
spikes (right axis).
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Scratch Force (Newtons)
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Uncoated HPSN
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o

Scratch Distance (cm)

Figure 14. Scratch test results of coated HSN. The load trace is the solid line
(left axis) and the acoustic signal is represented by the spikes
(right axis).
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Figure 15. Scratch test results of uncoated \RBSN. The load trace is the solid
line (left axis) and the acoustic signal is represented by the
spikes (right axis).
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Scratch Force (Newtons)
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Coated RBSN
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Figure 16. Scratch test results of coated RBSN. The load trace is the solid
line (left axis) and the acoustic signal is represented by the
spikes (right axis).
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Figure 17. Scratch test results of uncoated SSC. The load trace is the solid

line (left axis) and the acoustic signal is represented by the

spikes (right axis).
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Figure 18. Scratch test results of coated SSC. The load trace is the solid line
(left axis) and the acoustic sigmal is represented by the spikes
(right axis).
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Measurement of Fracture Stress and Toughness of Coatings on
Substrates

Conventional mechanical property measurement techniques usually
cannot be applied to thin ceramic coatings because of the small amount of
material involved. A method is described to determine the ultimate tensile
strength, Weibull modulus, and crack density of micron-sized ceramic
coatings. This technique is based on measuring the radius of curvature of a
coated substrate, and equating the resulting calculated stress with a
tﬂeoretical shear-lag stress distribution model. The Weibull modulus and
fracture stress of chemical vapor deposited coatings of Al203 have been
measured on SiC and Si3N4 substrates. The fracture stresses for coatings of
these materials ranged from 190 MPa to 480 MPa, the Weibull modulus ranged
from 16 to 28, and the fracture toughness ranged from 0.5 - 1.1 MPaVm. These
results are summarized in Table 8. This work has shown that the tensile
strength c¢f Al203 and Al203+ZrO2 coatings can be approximated by bulk
values, however, the fracture toughness of these coatings was found to be
significantly lower than bulk values. This method is detailed in Appendix B.

Table 8. Calculated fracture stress, fracture toughness, and Weibull
modulus for Al203 and Al03+ZrO2 coatings.

Sample Temp.of First Fracture Fracture Weibull
Cracking Stress, of Toughness, Kjc Modulus
(coating/substrate) (°C) (MPa) (MPavm)
Al203/8iC
Inconel reactior 800 190 0.5 19
Graphite reactor 770 240 0.5 28
Al203+5 vio 2rO2 590 480 1.1 16
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COMPUTER MODELLING OF BRITTLE COATINGS
COMPUTER SIMULATION OF RESIDUAL STRESS

Numerical models were developed to predict residual stresses in the
coating and substrate. The goal was to develop a model with predictive
capability which could be used to determine the optimum thickness of each
layer.

In coatings deposited at elevated temperatures, where the coating and
. substrate materials have different coefficients of thermal expansion (CTE),
.largc stresses are generated in the coating after cooling to room temperature.
Figure 19 shows CTE values for the materials in this study. If tensile, these
stresses often lead to cracking of the coating. The stress component we are
most concerned with is the in-plane normal stress away from the edges of a
coated sample. The word “stress” is used here to describe this component.

As a coated substrate is cooled, stresses build-up in the coating. For
most ceramic coatings these stresses can be described by elastic relationships.
Because the coating is often a ceramic, it has a distribution of fracture
strengths.  Once the fracture stress of the weakest part of the coating is
reached, the coating will crack. The coating will not crack again until it is
cooled further because of the distribution of failure strengths and because
the remaining uncracked coating has a smaller volume and therefore a
higher failure strength.

In phase I conventional FEA was used to predict residual stresses for
the case of AIN coatings on pure Si3N4 and SiC substrates. The model assumed
linear elastic behavior, constant physical properties within a coating layer,
and zero deposition stresses. Calculations for 10 micron thick coatings gave
residual stresses which oscillated between elements, regardless of mesh
pattern. This was found to be caused by the large aspect ratios of the finite
elements. Consequently, a technique for varying the mesh size was
incorporated [SHA88]. The model was used to predict edge effects (Figure A-2).

One drawback of the second generation model was that the predicted
stress was insensitive to edge effects. In addition, the model used 90° angles at
comers. In an effort to overcome these problems, the model was modified to
use a hybrid-stress technique [SHABS].
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In phase II, a generalized treatment of the thermal expansion
mismatch problem was carried out. In addition, finite element analysis
involving the complex combination of thermal stress, linear elastic fracture
mechanics and fracture mechanics of bimaterial interfaces was implemented.
This work was based on contact stress issues for ceramic coatings. The method
has been applied to the single and multilayer coatings of this study and deal
with the presence of pre-existing flaws which are in the form of vertical or
horizontal cracks. The driving force for crack initiation and propagation
stems from thermal loads and a resultant normal load which simulates single
point contact. The following sections describe theory and results of the newly
developed technique.

1.2e-5 Y | E—— T ¥ T ¥ T v T v T

&)
°\ r—
c L Al203
L
@ 1.0e5
=
[+
o
o 8.0es6
[
E 6006
o
=
4.00-6
L
o
T
8 2.0e-6
o
% °.°e+° " ] Y 1 . 1 . 1 ' 1 . | PN |
8 .0 200 400 600 800 1000 1200 1400
T, °C

Figure 19. Thermal expansion coefficients of the various materials present
in this system over the temperature range 25°C to 1500°C.
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Simple Beam Theory

The in-plane stress in a narrow bimaterial strip generated by a change
in temperature was derived by Timoshenko [TIM25].

l - (uz - al)(Td'Ti) Bq )
P~ 1 2(E1ly + Eal) (1 1 '
2+ t (Eltl + Eztz)
172 yE|
omax = (jrr (E1l1 + Ezlp) + 151) Eq. 3

where p is the radius of curvature, a is the coefficient of thermal expansion,
T; is the final temperature, T4 is the initial temperature, “E” is the elastic

modulus, “I” is the moment of inertia, “t; 2” is the layer thickness, and “t” is
the total thickness (t=tj+t2). More details are given in Appendix B. For
systems of interest in this study a coating is thin if it less than 10% of the
substrate. Figure 20 shows the bending and axial contributions to the stress
in a coating. The coefficient of thermal expansion and elastic modulus of the
materials are treated as temperaturc dependent quantities and Equations 2 and
3 are numerically integrated over temperature range (T4 to T;) to solve for
the stress in the coating. The treatment of the coefficients of thermal
expansion as temperature independen: constants can lead to significant
errors in materials where these coefficients are strong functions of
temperature. An example of such a material is diamond. ,

The stresses in AIN and AlyO3 coatings deposited onto SiC and SigNg at
1000°C are shown as a function of cooling temperature in Figure 21. Al203’
coatings on SiC and Si3N4, and AIN coatings on SigN4 have very large stresses
at room temperature, while AIN has only moderate stress level at room
temperature. Based on these calculated stresses the Alz03 coatings would be
expected to be cracked at room temperature, The presence of cracks in the
Al203 cbating has obvious consequences for the ability of the coating to act as i
an oxidation barrier for the substrate.
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Figure 20. At coating thicknesses less than 10% of the substrate thickness
most of the stress in the coating is due to the axial component
-and is therefore independent of the coating and substrate
thicknesses.
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Figure 21. Stress in coating versus AT for AIN coatings on SiC and Si3Ng4, and
Al703 coatings on SiC and Si3N4.

Composite Plate Theory

The method follows the flow chart illustrated in Figure 22.
Nomenclature is given at the end of the report. The geometry of the coated
system is shown in Figure 23, and Figure 24 illustrates the numbering scheme
for a multi-coated substrate. In figure 24, layer 1 could be the substrate, and 5
coating layers could be represented by layers 2 through 6. The method is
flexible for describing any number of coating layers. Note that k is the total
thickness of the substrate and all the coatings. (See appendix D for details).
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Figure 22.

Thermal Mechanical
Loads Loads
Composite Plate Theory
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Stress/Strain Results

Layer properties

Flow chart for computer code implementation of composite plate

stiffness matrix for the entire coated system.

plane strains were then solved for, and stresses in each of the
layers recovered.
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Figure 23. Schematic of the coated substrate model; h is the total thickness,
- and the mid-plane is at h/2. The z direction is normal to the
plane of the coatings. '
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Figure 24. Numbering scheme for a multicoated system. h is the total
coating thickness, and all interface positions are measured
relative to the mid-plane at h/2, which the z = 0 plane. Note that
layers below this plane have negative interlayer position values.

C . Finite El Resul
Numerical experiments were performed to compare the generalized
composite plate theory to those obtained by the finite element method.. Table
9 shows the material properties used in all stress analyses. Each of the
systems was cooled from 1000°C to find the residual stress in each of the
materials present. The substrate was 6350 microns thick for all studies.

Table 9. Material properties used for substrates and coating layers in
this part of the study.

Material Young’s | Poisson’s Fracture Exp;l:i%;mgocff.
Modulus Ratio Toughness (°C) x 10-6
Al02 390 0.22 - 7.8
AIN 340 0.24 1.0 4.9
Interface 320 0.255 - 3.8
SiC 207 0.22 - 43
Al203,Zr0y 380 0.22 5.0 9.4
Si3Ny4 296 0.27 3.5 2.7
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To ensure that the composite plate theory code was working correctly,
the stress results were compared to a finite element solution of a similar
problem [SHAB88]. The finite element method used in Sham and Sarin [SHAS88]
was specially formulated to exploit hybrid finite elements because of the
relative size of the elements used for the coating and for the substrate.

Resulis for both substrate materials are shown in Table 10. Excellent
agreement between the two methods is shown, thus confirming the
. applicability of composite plate theory to this problem.

SizN4 Substrate

Three numerical experiments were performed with the silicon nitride
substrate. Firstly, residual stress with no interlayer but with varying
thickness of the alumina-zirconia coating was calculated. Next an AIN
interlayer between the alumina-zirconia and Si3N4 substrate was varied in
thickness and residual stresses found for each material. Lastly, the AIN
coating was placed above the Si3N4 coating to illustrate the irrelevance of
thermal expansion grading.

Results are shown in Figures D-1, D-2, and D-3 (see Appendix D). The
results indicate that the presence or absence of an interlayer, thickness of
the coating layers, and order of the coatings on the substrate have negligible
effect on residual stress in each of the layers.
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Table 10. Comparison of 2-D finite element results using special hybrid

elements to the composite plate theory described here.  Stress
values are from reference [SHAS88], values in parentheses are
results from the composite plate code described here. For both

tables AT = -1000°C. Note use of Si3N4 and SiC substrates.

. Layer Young’s Poisson’s Thermal Residual Stress (MPa)
Modulus Ratio Expansion | [Layer Thickness, um]
(GPa) Coeff. (/°C)
a (b)
AlLO3* 390 0.22 7.8 x 10-6 | 2475 (2527) | 2482 (2534)
[10] (4]
AIN*® 340 0.24 49 x 106 | 938 (964) 943 (970)
(3] (9]
Interface‘ 320 0.255 3.8 x 10-6 442 (453) 448 (459)
[1] (1]
SigNg* 296.5 0.27 2.7 x 10-6 -16 .11
(-17) (-12)

—

AlyO3f 390 0.22 78 x 10-6 | 1731 (1728)} 1740 (1738)
[10] (4]

AINT 340 0.24 49 x 10-6 282 (249) 290 (258)
(3] [9]

sict 207 0.22 43 x 10-6 | -11 (-11.5) -6 (-6)

TSiC substrate. *Si3N4 substrate.

SiC Substrate

Since, it has been shown that coating stresses are not sensitive to
thickness or coating order variations, all pertinent stresses for the SiC
substrate coating systems can be found with a single residual stress analysis.
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The stresses shown in Figure D-4 (appendix D) are applicable for changes in
any of the layer thickness or order sequence.

Based on these studies, our conclusions for brittle ceramic coatings on
Si3N4 and SiC substrates are:

« Verifying that coating thickness has negligible effect on residual
stress in any of the coating layers.

e The order (i.e., grading the thermal expansion mismatch in a
multilayer coated system) has negligible effect on residual stress in
any of the coating layers.

* Modulus of elasticity has almost no effect on residual stress in any of
the coating layers.

« Because each of the coatings are thin films relative to the size of the
substrate thickness, the strain in the coatings is the same as the strain
at the top fiber of the substrate, that zomne which has an interface with
the first coating layer.

e If material properties vary as a function of temperature, magnitudes of
stress will be different, but the above conclusions still hold.

It should be noted that these conclusions apply to brittle thin films, and
that simulations were performed on uncracked coating layers. The stresses
calculated in each of the layers would be those which induce cracking in any
of the !ayer:s.' and as such are indicators of the tendency for cracking during
cooling from the CVD process.

The effect of crack propagation during solid body contact of these
elastic layers is not known, so thickness and layer ordering may have an
effect in that case. The possibilities for working around the problem
inherent to brittle coatings could lie either in the area of controlled brittle
fracture using multilayer coating, or by the use of "ductile” layers which
would permit stress relief of the ceramic layers when they are bonded to
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other brittle layers. However, the required thickness of the ductile interlayer
wqould probably be too thick for practial applications [SCH92].

COMPUTER SIMULATION OF COATING FRACTURE
Single I ith _Interf . _Initial _Vertical _Flaw

Studies were performed on a single-layer coating of Al03+ZrO2 on a
substrate of silicon nitride. Subsequent sections will describe results for a
m'ulti-laycr coated substrate. Loads were imposed on the body in the form of
residual thermal stress, and mechanical loads resulting from solid body
contact with friction. The finite element model allows automatic changes in
mesh topology due to crack growth, and a bimaterial fracture model which
takes into account the different fracture toughnesses of the coating,
interface, and substrate when the cracks are at or near the interface. Results
indicate that, subject to these loads, a vertical flaw in the coating propagates
approximatcly downward until the coating-substrate interface region. Once
the crack has entered the interface, it moves away from the contact loads
along the interface a distance of approximately half the coating thickness,
after which it continues in a direction nearly normal to the net direction of
the applied load. Since the crack did not continue along the interface,
improvements in the interface bond strength would not have significantly
influenced the crack growth direction.

QQQ]’DQLT!

A finite clement mesh was created to simulate the cross-section of a
wide sample (plane-strain) of a single layer coated substrate. Coating
thickness was 2 microns, substrate thickness was arbitrary, and assigned a
value of 58 microns.

The plane of the mesh is shown in Figure 25. For the single layer
analysis the AIN interlayer was not used. The model was simply Al203+ZrO2 on
a Si3N4 substrate. The width of the model was 60 microns. A set of boundary
markers exists between the elements which describe the coating and those
that define the substrate.  These boundary markers locate the bimaterial
fracture ‘boux_ldary. During remeshing, this boundary must lie on element
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boundaries to keep the interface coherent. The model initially was crack-
free. A vertical flaw 0.5 microns long was positioned 1 micron from the
mechanical load. As the crack propagated, the model was automatically
remeshed to take into account the change in surface, the bimaterial interface,
and the stress concentration at the crack tip. Eight noded quadratic elements
were used for the original mesh. Mesh changes were mapped with 6 noded
triangular elements, and the crack tip was modeled with 6 noded singularity
. elements. When the crack tip was at or near the bimaterial interface,
.singularity clements were not used. For each crack increment, the next
propagation direction was predicted by using a maximum energy release rate
criterion, which is also applicable in the region of the interface. The energy
release rate was calculated by comparing the energy released by the system
for candidate directions in cach of the materials in the vicinity of the crack
tip. Once a direction was found, the crack length was increased a small
amount and the calculation repeated. This procedure was continued until no
significant change in the direction of crack propagation was seen.

B ! Conditi

Thermal loads were applied to the entire body by including a
temperature change of -1000°C into the analysis. This temperature is typical
of temperatures used in the CVD process for this material system. It was
assumed that the coating was applied to the substrate in the CVD chamber in a
stress-free state and that stresses were generated upon cooling by thermal
expansion mismatch between the coating and the substrate. A mechanical
load was also applied to the coating. The mechanical loads represents the load
applied by solid body contact. The load was distributed over a 1 micron region;
the shape of the distribution was parabolic. The magnitude of the maximum
value of the distribution was scaled such that the stress results were
normalized from zero to ome. The coefficient of friction used was 0.5, resulting
in the same form of the distribution of shear stress on the surface of the
coating. Figure 26 is a schematic of the boundary conditions. As previously
mentioned, the AIN interlayer, while shown in Figure 25, was not used in the
single layer analysis. On the lower edge of the model, the central node of the
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edge was pinned, and all other nodes on the edge were constrained in the
vertical direction.

Material Properties

The coating material was Al203+ZrO2 and the substrate was silicon
nitride. Both materials were modeled as elastic in both thermal and
mechanical properties. Material properties were assigned to the coating,
substrate and interface. Elastic and thermal properties for the coating and
sui:strate are shown in Table 9. The interface energy release rate as a
function of mode-mixity is shown in Figure 27,

The crack propagation occurred over 14 crack increments, after which
the direction of crack growth remained constant. Since the crack crossed the
bimaterial interface, the bimaterial interface fracture model was used for
several crack growth steps. Other crack growth steps used linear elastic
fracture mechanics theory solved using finite element methods. This
bimaterial fracture model has been implemented into a finite element
framework [FRA91], and the key concept in the numerical scheme is that the
crack is predicted to propagate in the direction of maximum energy release
rate. This energy release rate is analogous to that described for homogeneous
fracture theory. The difference is that there may be several candidate
directions where the energy release rate is a maximum. All candidate
directions for all materials must be considered and comypared. The method was
developed to apply in cases where the crack tip is in or near a bimaterial
interface.  Figure 28 shows the finite element mesh prior to crack growth,
The upper four elements comprise the coating region. Elements below the
upper four comprise the substrate. An enlargement of the initial vertical
flaw, showing the original and deformed shape of the coated system is shown
in Figure 29. Note that the deformed shape was a result of the thermal,
normal and shear loads on the structure. Figure 30 illustrates the direction of
crack growth prior to crossing the bimaterial interface. The crack has begun
a slight tumn away from the applied mechanical loading. Figures 31 shows the
deformed shape for the final crack increment. Note that the crack did not
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remain in the interface, as it would for a material with a lower range of
interface fracture toughnesses (lower Gy¢ curve), and also that the final crack
direction is approximately normal to the applied mechanical loading
direction. The fracture modeling of coated systems continues in the next
section with a two-layered coated substrate; under the same thermal and
mechanical loads.
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...............

---------------

----------

---------------
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---------------
---------------
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ooooooooooooooo

Figure 25. Schematic of the finite element mesh relative to microstructural
cross section. Direction and positioning of scratch test indenter
is shown.
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The value of “p' (the
tude of the load distribution) was assigned a
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Coefficient of friction was 0.5.
value such that the stress results are normalized.
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maximum m

Schematic of the boundary conditions used
simu

Figure 26.
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Energy release rate for the interface as a function of mode
mixity. A mode-mixity of 0.0 describes pure mode I loading at the
crack tip, and a mode-mixity of 90 (degrees) describes pure mode
il loading at the crack tip.
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Figure 28.

Initial (uncracked) mesh used in the fracture simulation study.
The top four elements are the Alz03+ZrO2 coating material.
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Figure 29.

Initial vertical ilaw, 0.5 micrors long (1/4 coating thickness).




Figure 30. Deformed shape and crack growth direction prior to crossing the
' bimaterial interface.
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Figure 31. Deformed shape and crack path in final increment.
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Simulations of a single-layer fracture were reported in the previous
section. Here we describe the model and results for numerical simulation of a
single-pass scratch test of a substrate with two coating layers, and crack
propagation due to an initial vertical flaw.

Geometry

The finite element mesh was created to simulate the cross-section of a
w‘idc sample (plane-strain) of a double-layer coated substrate. Coating
thicknesses wers 2 microns, substrate thickness was arbitrary, and assigned a
value of 58 microns. The plane of the mesh is shown in Figure 25. The
boundary conditions are those shown in Figure 26.

Material _Properties

The top-layer coating material was Alp03+ZrQO3, the second (middle)
coating layer as AIN, and the substrate was silicon nitride. All materials were
modeled as elastic in both thermal and mechanical properties. Material
properties were assigned to the coatings, substrate and interface. The
interface energy release rate as a function of mode-mixity for both material
interfaces is shown in Figure 32.
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Figure 32. Energy release rate for both interfaces as a function of mode
mixity. A mode-mixity of 0.0 describes pure mode I loading at the crack tip,
and a mode-mixity of 90 (degrees) describes pure mode II loading at the crack
tip.

rack Propagation di

The crack propagation occurred over 27 crack increments, after which
the direction of crack growth remained constant; along the AIN-substrate
interface.  Since the crack crossed both bimaterial interfaces, the bimaterial
interface fracture model was used for several crack growth steps. Other crack
growth steps used linear elastic fracture mechanics theory which was solved
using finite element methods.

Figure 33 shows the finite element prior to crack growth. The upper
four elements (in the vertical direction) comprised the top-layer
(Al203+Zr03). The next four elements in the vertical direction comprised the
second layer (AIN). Elements below the upper eight modeled the substrate. A
zoom of the initial vertical flaw, showing the original and deformed shape of
the coated system is shown in Figure 34. Note that the deformed shape was a
result of the thermal, normal and shear loads on the structure.
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Figure 35 illustrates the direction of crack growth as the crack entered
the first material interface. The Al203+ZrO2 layer would no longer provide
oxidation resistance. @ The crack has begun a slight turmn away from the
applied mechanical loading at this stage in the crack history.

Figure 36 shows the deformed shape for the final crack increment.
Note that the crack did not remain in the top interface, but continued through
the middle AIN layer to the silicon nitride substrate. These results indicate
that both coating layers have been completely fractured. A solution to this
tybc of failure could be to design the first material interface (increased
toughness) such that the crack would not penetrate into the second coating
layer.

Results indicated that, subject to these loads, a vertical flaw in the
coating propagated approximately downward until the first coating-substrate
interface region. Once the crack entered this first interface, it traveled for a
distance of about 20% of the coating thickness, then changed direction and
advanced into the second coating material. While traversing both coating
layers, the crack traveled in a direction nearly normal to the net direction of
the applied load. Since the crack continued to the substrate surface, it was
anticipated that the surface would be exposed to outer gaseous conditions.

The fracture modeling of coated systems continues with a two-layered
coated substrate with initial horizontal flaws; under the same thermal and
mechanical loads.

Two analyses have been performed. The first had the initial horizontal
flaw positioned at the middle of the second coating layer. In this case, the
crack did not cross any of the material interfaces during crack growth.
Figures 25 and 26 show the model and boundary conditions prior to crack
growth. With regard to the mesh the upper four elements (in the vertical
direction) comprised the Al203+ZrO4 layer coating. The next four element in
the vertical direction comprised the second layer (AIN) coating region.
Elements below the upper eight modeled the substrate. A zoom of the initial
horizontal flaw, showing the original and deformed shape of the coated
system is shown in Figure 37. Note that the deformed shape was a result of the
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thermal, normal and shear loads on the structure. Figure 38 illustrates the
direction of crack growth in the final stage of simulation. The crack is
directed upwards toward the free surface, then curves away from the applied
mechanical load.

The second simulation was performed with an initial horizontal crack
in the top coating layer. It was positioned in the middle of this layer. A zoom
of the initial horizontal flaw, showing the original and deformed shape of the
- coated system is shown in Figure 39. Note that the deformed shape was a
result of the thermal, normal and shear loads on the structure. Figure 40
illustrates the direction of crack growth in the final stage of simulation. The
crack is directed upwards toward the free surface, and the analysis was halted
as the crack neared the surface. Since the horizontal cracks were directed
away from the substrate, an opportunity exists to design the coating layer
such that manufacturing flaws are highly oriented in the horizontal
direction, which would promote coating stability and thus oxidation resistance
of the substrate.

Since ¢racks were predicted to move away from the substrate material,
the oxidation resistance of the substrate could be preserved during crack
growth of this type. It should also be emphasized that this was not the case
with initial vertical flaws, which propagated to the substrate.
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Figure 33. Initial (uncracked) mesh used in the fracture simulation study.
The top four elements are the Al203 + ZrO2 coating material. The
next four were the AIN coating material.
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Figure 34. [Initial vertical flaw, 0.5 microns long (1/4 coating thickness).
Solid lines are deformed geometry (thermal and mechanical
loads). Dashed lines are undeformed geometry.
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Figure 35. Deformed shape and crack growth direction as the crack
encountered the top bimaterial interface.
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Figure 36. Deformed shape and crack path in final increment. The crack
has propagated through both coating layers.
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Figure 37.

Initial horizontal flaw in the second coating layer. The flaw is
positioned at the middle of the layer. Solid lines are deformed
geometry (thermal and mechanical loads). Dashed lines are
undeformed geometry.
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Figure 38. Deformed shape and crack path in final increment for the case
where the initial flaw was in the second (middle) coating layer.
The crack has been directed away from the substrate.
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Initial horizontal flaw in the top coating layer. The flaw is
positioned at the middle of the top layer. Solid lines are deformed
geometry (thermal and mechanical loads). Dashed lines are

undeformed geometry.

83



AN -Av
ANGLLAGLINNLL Y 1S .V

‘A"A'AVAVAVAVAVA YAVAYiVi V‘v ~vyt
LAY, ‘VAV a¥a av AT AYATY LV AVAY, Av

yﬂ‘m KX «r,v.v‘uv V\DE 55 A 'uv al
IS AR

AN

—t—+———

Figure 40. Deformed shape and crack path in final increment for the initial
flaw in the top coating layer. The crack has been directed away
from the substrate.
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CONCLUSTONS

A multilayered coating configuration for protection of Si3Ng4 and SiC-
based ceramics used in advanced heat engines was designed, deposited, and
tested. It consists of an intermediate layer of AIN (~5 microns) and an outer
layer of Al303+ZrO2 (~1 micron). The coatings were deposited by CVD onto the
three substrate materials specified by the DOE; reaction bonded SizNg4 (RBSN),
sintered SiC (SSC), and HIP'ed Si3N4 (HSN). The AIN interlayer was
démonstrated to be an effective means of providing good adhesion between
the Al203+ZrO2 coating and the ceramic substrates. ‘

Modeling the grain boundary and lattice diffusion of oxygen through
an Al,O3 layer at elevated temperatures suggested that the coating would be a
good diffusion barrier to oxygen. However, experimental results revealed
that the composite coating was not oxidation resistant at temperatures above
1000°C. The lack of protection was attributed to cracks in the Al203+ZrO2
layer, which allowed oxygen to penetrate and react with AIN.

Finite element methods and fracture mechanics were to model the
behavior of brittle multilayer coatings. Detailed analysis of the residual
stresses in uncracked coatings on ceramic substrates revealed that the
coating thickness, order of coating layers (including grading of the
coefficient of thermal expansion), and elastic modulus of the coating all have
little effect on the residual stress in the coating. Based on these numerical
results, it was concluded that the Al203+ZrO2 coatings would contain cracks
upon cooling to room temperature. These cracks result from the high
temperatures used in CVD processing and inherent thermal expansion
mismatch between the materials.

Additional modeling was performed to better understand the behavior
of cracks in a coating and possibly identify a means to eliminate or stabilize
them. The effect of crack propagation during solid body contact was studied
using interface fracture mechanics coupled with finite element analysis. For
coatings which contain vertical flaws, the cracks always propagated into the
substrate.  Further analysis showed that improvidg the fracture toughness of
the interface would not improve the performance of the coating, since the
interface was not a weak point. In contrast, the horizontal crack did not
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reach the substrate; it either stayed within that layer or moved away from the
substrate and towards the free surface. Therefore, horizontal cracks would
not degrade the oxidation performance of a coated substrate.

The possibilities for working around the problem inherent to thin
brittle coatings could lie in the area of controlled brittle fracture of
multilayers, or by the use of "ductile" layers which would permit stress relief
and alleviate pre-service cracking. However, the ductile interlayer would
.have to be too thick to be effective. PVD methods, which allow the residual
'strcss state to be controlled, or low temperature CVD processes may allow for
crack-free coatings to be deposited which would be in a compressive stress
state at the operation temperature. It is anticipated that without cracks, the
Al203+ZrO3 composite coating would be an effective means of reducing the
contact stress damage and oxidation of Si3N4 ceramics.

A method was developed to measure the ultimate tensile strength,
fracture toughness, and Weibull modulus of thin brittle coatings on
substrates. The fracture stresses of CVD Al303 coatings on SiC substrates
ranged from 190 MPa to 480 MPa, the Weibull modulus ranged from 16 to 28,
and the fracture toughness ranged from 0.5 - 1.1 MPaVm. This work has
shown that the tensile strength of Al03 and Al2034+ZrO3 coatings can be
approximated by bulk values, however, the fracture toughness of these
coatings was found to be 10 - 20% of bulk values.

A single péint scratch test was used to assess the protective nature of
the Phase II coatings during contact loading on unoxidized samples at room
temperature. The coating protected the SSC and RBSN substrates by reducing
chipping and cracking of the substrates, however, no significant differences
were seen in the scratch resistance of the uncoated and coated HPSN.

Pin-on-disk tests were used to measure the breakaway and kinetic
friction coefficients for coated and uncoated materials at room temperature.
The Al203+ZrO2 coating reduced the kinetic friction coefficient of RBSN and
HSN by as much as 50% in self-mated tests. No apparent reduction in friction
was observed for the SSC substrate.  An improvement in sliding wear
resistance was obtained with Al203+ZrOg3 coated HSN in the pin-on-disk test,
whereas the coatings on RBSN and SSC were ineffective.
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APPENDIX A - OXIDATION RESULTS

Table A-1. Weight gain as a function of oxidation time for AIN coated
sapphire oxidized in static air at 1000°C. The weight gain at a
given time was calculated from the original weight and the
measured weight after a given oxidation time.

: I Weight Gain as a Function of Time
Sample Original
Weight (gm) 2 br 8.75 30.5 125 500
A 2.048404 0.022 mg| 0.014 0.022 0.011 0.062
B 1.885474 0.332 0.428 0.408 0.493 0.544
C 1.887054 0.192 0.191 0.155 0.066 0.079
0.8 T T

1160°C Oxidation
O © a AN coated sapphire
® @& A Al203/AN coated sapphire

0.6 I
S + M X Al203+ZrO2/AIN coated sapphire
I o
£ L
- 0.4 °
[
o n "
- 0.2
&
> ‘ .
Qo a
B Ew a
= :
. ®
.0.2 2 ] 2 1 ' I 2 1 '
o 100 ‘ 200 300 400 500

Time (hours)

Figure A-1. Weight gain versus time for AIN, Al;03/AIN, and Al303+Z:02/AIN

coated sapphire oxidized in static air at 1100°C.
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Figure A-3. Weight gain versus time for Al03/AIN and Al203+ZrO2/AlIN
coated sapphire ozidized in static air at 1275°C.
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Table A-2. Phases identified by X-ray diffraction after oxidation in static

air.

Samples were sapphire with AIN, Al20 3/AIN,
Al203+Zr0O2/AIN coating.
reflection are not listed.

and

Phases associated with substrate

Oxidation Time

Oxidation Temperature

(hours)
1000°C 1200°C 1275°C
AIN coated
2 a-Al203 a-Al203 o-Al203
8 a-Al203 a-Al203 a-Al203
30 a-Al203 a-Al203 a-Al203
125 a-Al203 a-Al03 a-Al203
500 a-Al203 a-Al203
Al203/AIN coated
2 -e- a-Al203, AIN a-Al203, AIN
8 ca- a-Al203, AIN a-Al203, AIN
30 .e- a-Al203, AIN a-Al203, AIN
125 a-Al203 a-Al203
560 a-A1203
Al203+2r0O2/AIN
coated
2 cee a-Al203 a-Al203, ZrOs
8 --- a-Al203, ZrO2 a-Al203, ZrOs
30 P a-Al203, ZrO2 a-Al203, ZrOp
125 .-- a-A1203, ZrO2 a-Al203, ZrO3
500 a-Al203, ZrO2
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Table A-3.

Weight gain as a function of oxidation time for Al20 3/AIN coated
sépphire oxidized in static air at 1100°C, 1200°C, and 1275°C. The
weight gain at a given time was calculated from the original
weight and the measured weight after a given oxidation time.

Weight Gain as a Function of Time
{ Sample Original
Weight (gm) 2 hr 8 30 125 500
1100°C
A 1.678948 --- 0.032 -0.033 -0.023 0.017
B 1.788780 -0.115 mg{ -0.070 -0.115 -0.112 -0.129
C 1.697396 -0.041 -0.026 -0.066 -0.051 -0.082
1200°C
A 1.417758 -0.105 --- --- --- ---
B 1.296831 -0.077 .-- --- --- ---
C 1.229500 -1.080 --- --- --- ---
1275°C
A 1.483679 -0.023 -0.056 -0.059 --- ---
B 1.433669 -0.019 -0.014 -0.061 --- ---
C 1.464726 -0.098 -0.074 -0.111 --- ---
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Table A-4.

Weight gain as a function of oxidation time for Al203+ZrO2/AIN
coated sapphire oxidized in static air at 1100°C, 1200°C, and
1275°C. The weight gain at a given time was calculated from the
original weight and the measured weight after a given

oxidation time.

, Weight Gain as a Function of Time
S'ample Original
Weight (gm)| 2 hr | 8 30 125 500
w ﬁ
1100°C
A 1.529552 0.008 mg| 0.028 0.023 0.053 0.120
B 1.430195 0.181 0.285 0.268 0.245 0.265
C 1.582685 -0.030 -0.005 0.015 0.095 0.325
1200°C
A 1.280131 -0.006 -0.013 0.013 --- ---
B 1.250632 -0.077 -0.072 -0.061 --- ---
C 1.213560 -0.080 -0.060 -0.046 --- ---
1275°C
A 1.448246 0.024 0.111 0.244 --- ---
B 1.302016 -0.146 -0.026 0.168 --- ---
C 1.467992 0.239 0.372 0.633 --- ---
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Table A-5. Phases

oxidation

identified by X-ray diffraction after 500 hours of

in static air.

RBSN, SSC, and HSN.

Samples include uncoated and AIN coated

Major Phases

Minor Phases

Uncoated RBSN

Uncoated SSC

Uncoated HSN

a-Si3Ng
SiC(8H), SiC(12H)

B-Si3N4

B-Si3Ng, SiO2
SiO
a-Y28i207, Y28i0s5, Si02

AIN/RBSN a-Al203, a-Si3Ng4 a-Si3Ny4, B-Si3Ng, SiC2
AIN/SSC a-Al203, SiC(8H), SiC(12H) | = -----
AIN/HSN «-Al203 B-Si3Ng4, a-Y2S8i207,
Y2Si0s, Si02
Temperature = 1200°C
Uncoated RBSN Si02, a-Si3Ng4 B-SigNg4(?)*
Uncoated SSC SiC(12H) SiO2
Uncoated HSN B-Si3N4 Si0y, Y2Si207
AIN/RBSN a-Al203 B-Si3N4, SiO2(?)
AIN/SSC SiC(12H), a-Al203 Sio2(M)
AIN/HSN | B-Si3Ng Y2Si207, a-Al203, Si02(?)

Temperature = 1275°C
Uncoated RBSN

Uncoated SSC
Uncoated HSN
AIN/RBSN
AIN/SSC
AIN/HSN

a-Si3N4, SiO2
SiC(12H)
Y2S8i207
a-Al203
SiC(12H), a-Al203

AIN

B-Si3N4
$i02, a-SizN4(?)
B-Si3Ng, SiO2
Si3N4(?)
a-SizN4(?), Si02(?)

¥25i207

* The question mark

denotes uncertainty.
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Table A-6. Phases identified by X-ray diffraction after 500 hour oxidation
in static air. Samples had coating of AIN, Al203/AIN, and
Al1203+ZrO2/AIN. Phases associated with substrate reflection
are not listed.

Sample Oxidation Temperature
. 1000°C 1200°C 1275°C
AIN coated
RBSN a-Al203 a-Al203 a-Al203
SSC «-Al203 a-Al203 a-Al203
HSN «-Al203 a-Al203 AIN
Al203/AIN coated
RBSN --- a-Al203, AIN a-Al203, AIN,
AION(?)
SSC .- a-Al203, AIN a-Al203, AIN
HSN --- a-Al203, AIN(?), | a-Al203, AIN(D),
AION(?) AION(?)
Al203+2r02/AIN
coated
RBSN - eee a-Al203, ZrO2 a-Al203, ZrO2
SSC cea a-Al203, ZrOp a-Al203, AlN,
' Zr02(?)
HSN .- a-Al203, ZrO, AIN ZrO2, AIN(?),
AION(?)

* the question mark indicates uncertainty.

101



14 v T o T M T v T ¥ l
12F * .
a o
10 -
E “p |
e s 8 .
S z
(L] -] a
= r 4
3 4} 1109°C Oxidation -
®
= S o © & uncoated RBSN
ZF % o & ANcoated RBSN
o [l " [l ' I3 P 1 o
0 100 200 300 400 500

Time (hours)

Figure A-4. Weight gain versus time for uncoated and AIN coated RBSN
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Figure A-5. Weight gain versus time for uncoated and AIN coated SSC oxidized
in static air at 1100°C.
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Figure A-6. Weight gain versus time for uncoated and AIN coated HSN
oxidized in static air at 1100°C. '
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Figure A-8. Weight gain versus time for uncoated and Al203/AIN and
A1203+Zr0O2/AIN coated SSC oxidized in static air at 1100°C.
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Figure A-9. Weight gain versus time for uncoated and Al203/AIN and
Ale3+_Zr07jAlN coated HSN oxidized in static air at 1100°C.
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Figure A-10. Weight gain versus time for uncoated and AIN coated RBSN
oxidized in static air at 1200°C.
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in static air at 1200°C.
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Figure A-14. Weight gain versus time for Al303/AIN and Al203+ZrO3/AIN
coated SSC oxidized in static air at 1200°C.
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Figure A-15. Weight gain versus time for Al303/AIN and Al303+ZrO3/AIN
coated HSN oxidized in static air at 1200°C.
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Figure A-16. Weight gain versus time for uncoated and AIN coated RBSN
oxidized in static air at 1275°C.
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Figure A-17. Weight gain versus time for uncoated and AIN coated SSC oxidized
in static air at 1275°C.
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Figure A-19. Weight gain versus time for Al203/AIN and Al203+ZrO2/AIN
coated RBSN oxidized in static air at 1275°C.
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Figure A-20. Weight gain versus time for Al03/AIN and Al203+ZrO2/AIN
coated SSC oxidized in static air at 1275°C.
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110



APPENDIX B - METHOD TO MEASURE FRACTURE STRESS AND
FRACTURE TOUGHNESS OF COATINGS ON SUBSTRATES

SUMMARY

Conventional mechanical property measurement techniques usually
cannot be applied to thin ceramic coatings because of the small amount of
material involved. @A method is described to determine the ultimate tensile
strength, fracture toughness, Weibull modulus, and surface energy of
micron-sized ceramic coatings on substrates. This technique is based on
measuring the radius of curvature of a coated substrate, and equating the
resulting calculated stress with a theoretical shear-lag stress distribution
model using a force balance. The properties of chemical vapor deposited
coatings of Al203 and TiN were measured on SiC and Si3N4 substrates. The
fracture stresses of these coatings were 190 - 480 MPa, the fracture
toughnesses were 0.4 - 1.1 MPaVm, the Weibull modulii were 10 - 28, and the
surface energies were 0.3 - 1.6 J/m2. This work has shown that the tensile
strength of thin brittle coatings can be approximated by bulk values,
however, the fracture toughness of a coating can be significantly lower than
bulk values.

INTRODUCTION

In cdat@ngs deposited at clevated temperatures, where the coating and
substrate materials have different coefficients of thermal expansion, large
stresses are generated in the coating after cooling to room temperature. If
tensile, these stresses often lead to cracking of the coating, Figure B-1.
Nitride, carbide, and oxide chemical vapor deposited (CVD) coatings on silicon
nitride substrates for cutting tool applications are examples of coatings which
crack on cooling. The technique presently described can be used for coatings
deposited by any technique as long as the coating cracks dﬁe to thermnal
stresses and the deposition stress is known.

111



Figure B-1. Scanning electron micrograph of a crack in a coating.

As a coated substrate cools, stress builds up in the coating, Figure B-2.
The stress component we are most concerned with is the in-plane normal
stress. The word “stress” is used here to denote this component, and for most
ceramic coatings this stress can be described by elastic relationships. Since
the coating is a ceramic it is described by a distribution of fracture strengths.
Once the fracture stress of the weakest part of the coating is reached, the
coating will crack (of in Figure B-2). During continued cooling, the peak
stress increases, additional cracks form in the coating, and the overall stress
(6m) is relaxed. The serrations in Figure B-2 indicate the drop in stress due to
cracking and their magnitudes are exaggerated. The coating does not crack
again until it is cooled further because of the distribution of failure strengths
and because the remaining uncracked coating has a smaller volume and
therefore a higher failure strength. The relationship between - the stressed

volume and failure strength of a ceramic is described by Eq. (B-1) from
Davidge [DAV80]:

g_(ﬁ)l/m B-1)

o2 \Vi
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where V, is stressed volume 1, V, is stressed volume 2, o, is the failure stress
for volume V,, o, is the failure stress for volume Vj, and 'm' is the Weibull

modulus of the material.

===|%pT,

______ r--- cp'T1

& acked)

4 =-{omT

| = o
--------------- +== o

Af-=-==---

Figure B-2. Schematic of stress versus AT plot for a cracked ceramic coating
on a substrate. AT is the deposition temperature minus the
instantaneous temperature, op is the predicted stress at T; and T
(Eq. B-3), oy is the measured stress at Ty and T2 (Eq. B-4), and of is
the fracture stress of the coating.

The drop in stress that occurred from cracking during cooling of a
coated substrate was exploited in this research to extract material properties
for the coating. The objective of the study was to determine fracture strength,
fracture toughness, and Weibull modulus for a range of coating-substrate
material systems by equating the predicted theoretical residual thermal stress
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in the coating (taking into account the stress distribution between cracks in
the coating) to the experimentally measured average Siress in the coating.

No previous technique has been described which determines the
fracture stress of thin coatings in situ on a substrate. In the present study,
the theory and methodology are presented for determining the fracture stress
(6f), fracture toughness (Kic) and Weibull modulus (m) of brittle thin
coatings. A useful function of this technique is to study the effect of varying
_the deposition parameters or microstructureé on the strength and Weibull
" modulus of a coating. An example of this last application is provided as an
example.

St in_ Coati . T}
ner in
The in-plane stress in a narrow flat bimaterial strip (consisting of
materials 1 and 2) generated by a change in temperature was derived by
Timoshenko [TIM2S5].

1 (@2 - @1)(T4-T))
~ = (B-2)
P, 2(E1ly + E2l2) /1 1
2 t Eit; Eztz)
172 yE;
o= p( (111 + Eal) + ) (B-3)

where p is the radius of curvature of the strip, @ is the coefficient of thermal
expansion, T; is the final temperature, T4 is the deposition temperature, E is

Young’s modulus, I is the moment of inertia, t1,2 are the individual layer
thicknesses, and t is the total thickness (t=tj+t2). The geometry of the beam is
shown in Figure B-3. To convert from narrow beams to wide beams;
E/(1-v2) is substituted for E; and I = t3/12 in Egs. (B-2) and (B-3), where v is
Poissons ratio.
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Substrate

Figure B-3. Schematic of coating on substrate with a single crack. The ends
are treated as crack faces. The relative size of the coating was
greatly exaggerated to show detail.

The coefficient of thermal expansion and Young's modulus of the
materials are treated as temperature dependent quantities and Eqgs. (B-2) and
(B-3) are numerically integrated to solve for the stress in the coating.
Treating the coefficient of thermal expansion as a temperature independent
constant can lead to significant errors in materials where these coefficients
are strong functions of temperature.

Equation (B-3) was used to predict the stress in an uncracked coating
on a substrate subjected to a change in temperature. This predicted stress was
referred to as op in Figure B-2. Use of Eq. (B-3) assumed that the coating was
deposited with a known stress at the deposigion temperature (assumed 0 in this
work) and was crack free. Equation (B-3) gave the maximum stress in
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material 1, which we treated as the coating. The stress in a thin coating is
nearly uniform through the thickness, and the stress in Eq. (B-3) was set
equal to the stress in the coating. For a “thin” coating, the stress was
independent of coating and substrate thicknesses. For material systems of
interest in this study, a coating is considered thin if it was less than 10% of
the substrate thickness. Figure B-4 shows the bending and axial
contributions to the stress in a coating as a function of relative coating to
. substrate thickness from Equation (B-3). At coating thicknesses less than 10%
| of the substrate thickness, most of the stress is due to axial loading, and hence,
will scale as the coating thickness changes. A “thin film™ approximation to
Eq. (B-3) was derived by setting t; to zero in the relevant terms [FLI87];

2
Eat
e-—Z (L. 1) B.4)
6t1(1-v3) Pc  Puc

where subscripts 'c’ and ‘'uc¢' on p refer to the coated and uncoated strip
respectively. The term in the parenthesis is used to correct for nonflat
uncoated strips. If the uncoated strip is flat 1/p. approaches zero and Eq. (B-3)
is regained, with t; = 0. The primary advantage of Eq. (B-4) over Eq. (B-3) is
that only substrate properties and the coating thickness are needed to
calculate stress in the coating. Measured radii of curvature were substituted
into Eq. (B-4) to arrive at a value for the average stress in the coating. This
stress was valid for coatings which are cracked or plastically deformed and
was referred to as o (measured stress) in Figure B-2.
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Figure B-4. At coating thicknesses less than 10% of the substrate thickness
most of the stress in the coating was due to the axial component
and was therefore independent of the coating and substrate
thicknesses.

Stresses in Cracked Coatings

When a coating cracks, stress relaxation occurs in the coating around
the crack. The in-plane stress is bounded by zero stress at the crack surface
and reaches a steady state level “far” from the crack. The distance over
which the stress is reduced is related to the elastic properties of the coating
and substrate and to the thickness of the coating. Swanson [SWAS89] described
the stress distribution in fiber-reinforced materials near a crack, commonly
known as shear-lag. It can be applied to thin coatings by conmsidering the
fiber as the coating material, and the surrounding matrix as the substrate.
His model considered approximate stress distributions, and the equilibrium
was considered in an average sense through the thickness of a cracked layer.

117



Swanson’s treatment was for a fiber in a ply within a composite. However,
since shear-lag is a general phenomenon, the form of the shear-lag
distribution in a ply near a crack should be similar to that in a coating near a
crack. .

Tﬁc in-plane normal stress distribution in a fiber near a free surface
(a crack) was given by Swanson as:

o(x) = op(tanh(Bg)sinh(Bx) - cosh(Bx) + 1} (B-5)
where
RS 30
P * (B-6)
=—f‘fT and Qm=——§m-5— (B-6b)
2(1-v%) 2(1-v_)

'x' is the position along the coating between cracks (x = 0 is the crack face
position), op is the stress .far from the crack for noninteracting cracks, { is
one-half of the dis:ance between cracks, Gg is the shear modulus of the fiber,
tf,m is one-half the thickness of the fiber or matrix, and Ef m is Young's
modulus of the fiber or matrix. For the case of a coating on a substrate tf and
tm were set to the thickness of the coating and substrate, respectively,
resulting in;

Gif[1 | _1_
= {!1Q1 * tzQz} (B-7)

Figure B-5 shows a plot of normalized stress versus distance from a
crack face in a coating. The shear-lag stress distribution shown in Figure B-5
is for a 4.7 microns thick Al203 coating on a SiC substrate for crack spacings
of 50, 10, and S microns.
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Figure B-5. Plot of the stress distribution in a 4.7 microns Al203 coating on a
SiC substrate according to Eq. (B-5) for three different crack
spacings (10, 30, and 100 microns). The crack is located at x = 0.

Determination of the Weibull Modulus - Theory

The difference between the predicted stress in an uncracked coating op
(calculated with Eq. (B-3)) and the measured stress in the cracked coating o
(calculated with Eq. (B-4)) was used to determine the number of cracks at the
temperature of interest. The experimentally determined average stress (om)

was set equal to the integral of the theoretical stress, including reductions due
to shear-lag drops at the crack faces, Figure B-6.
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Stress in Film

cracks

Substrate

Measured Stress Theoretical Stress
(average stress) (including shear lag)

Figure B-6. Plot of theoretical stress in coating and measured stress in
coating. '

The presence of a crack in a coating caused a drop off in stress near the
free edge in accordance with Eq. (B-5). Figure B-7 shows the average stress in
a coating as a function of the number of cracks (NC). At a certain crack
spacing the stress fields around the cracks begin to interact and the plot of
stress versus the number of cracks becomes nonlinear. Equation (B-8) was
used to solve for the number of cracks in a coating. The only unknown (NC)
was solved for by an iterative procedure.

9
o = 2HCEL) Ojap{tanh(sc)sinh(px) - cosh(Bx) + 1} dx  (B-8)

o—L
2(NC+1) °

where g
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om is the measured stress in the cracked coating, op is the calculated stress in
the uncracked coating (from Eq. (B-3)), and L is the total length of the sample.
The limits on the integral are determined by the length of the coating
between cracks, where that length equals 2{. The factor of 2 in Eq. (B-8)
arises because the stress distribution in the coating is integrated only over
one-half of the distance between cracks due to the symmetry of the problem.

1200
1000 |
800

600

400

Average Stress (MPa)

200

] A 1 A 1 2 1 Y 1 " 1

ob— .
0 500 1000 1500 2000 2500 3000 3500

Number of Cracks (NC)

Figure B-7. Plot of number of cracks (NC) versus the average stress in the
coating, for a 2.3 microns Al,03 coating on SiC, Eq. (B-8).

Once the number of cracks is known the average crack spacing, related
to V2 in Eq. (B-1), was determined by;

L
NC+1 (B-9)

average crack spacing = 2{ =
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and the volume of the coating that cracked, Vpc, was given by
Vuc =2 x (average crack spacing) x t; x w (B-10)

where t{ and w were the thickness and width of the coating respectively. The
. calculations were done for a sample of unit width, i.e. w = 1,

' The Weibull modulus was calculated by rearranging Eq. (B-1) and
substituting in the appropriate values resulting in;

(Xn)
_ In V1o

ms=

oT2 (B-11)
ln(o'n)

The stress values used in Eq. (B-11) are derived from the number of cracks
and the shear-lag distribution. The peak value of the shear-lag distribution
(Figure B-5) was considered to be the fracture stress of the last segment of
coating that cracked.

Determinati { Surf E . T}
Strain_Energy Balance

We preform an energy balance on the cracked and uncracked system.
This is summarized in the following equation:

Us + Uc (uncracked system) = Ug + Ug + 2tc(NC)y (cracked system)
(B-12)

where U represents an energy component of the system, either the substrate
(Us) or the coating (Uc), and the 2tc(NC)y term represents the surface energy
in the system for NC cracks. Each of the components can be described as a
function of the radius of curvature of the system (either cracked or



uncracked), and the material properties of the substrate and coating. The
individual components of the energy balance in Eq. (B-12) are derived below.

The energy in the substrate depends on the radius of curvature¢ and has
the same form for e cracked and uncracked cases:

E
U= | —=—¢2 4 B-13
s J 2(102) - (B-13)

v

for a small arc of the substrate of thickness dr:

E
2(1_“3)8 (vol) ( )
where e=-—-ALL =-_(!——)—'L R)6 and vol=J{ dr (unit thickness) (B-15)

where f is the length of the substrate at a radius 'r. Figure B-8 defines the
geometry of the bent substrate. The length of the substrate changes at all
values of '’ except when r = NA at which £ = L. Substitution of Eq. (B-15) into
Eq. (B-14) gives:

E;  AL2 Es (10 -1)2
dU=—""2— = { dr= d -
2(1-v2) L2 2(1-v2) L2 i (B-16)
therefore
outer
E - L)2
Us= [ dU = —=s (=L g, (B-17)
u Ri. 2003 L
inuner
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A+b

12
Es (18 - L)% s 4r (B-18)

Us = 2 2
20D L

NA-

where NA is the location of the neutral axis. This was integrated to get:

EsLt) SEcLt!
T18(1-v2)R2  216(1-v2)R3

Us (B-19)

Figure B-8. Schematic of bent substrate. NA is the location of the neutral
axis, 'b' is the distance from the NA to the uncoated side of the
substrate, 'a' is the distance from the coated side to the NA, and 'r
is the radius to any given location in the substrate.
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The energy of the substrate for the uncracked and cracked system is
given by Eq. (B-19) with R equal to the radius of curvature of the uncracked
and cracked coated sample, respectively.

The energy in the coating depends on the radius of curvature and has
the same form for the cracked and uncracked cases:

R R - S | )
Uc= JZ(M%) e2 dv (B-20)
v

since the strain is essentially constant through the thickness of a thin film,
the integral over the volume equais v¢ (volume of the coating); Eq. (B-20)

reduces to:
Ug=—ot—¢2 B-21
c 2(1_0%) Ve ( )
from the geometry of a bent beam:
=B wd v = @ao)tc (o unitwidth)  (B-22)
Substituting Eq. (B-22) into Eq. (B-21) gives:
Uom—oi— Q020 o)e (B-23)
¢T2(1-03) L2
Se 0=% and =2 i
tting =g ad a=7" , gives
2l L - 2R
s 3 R
Ue= (B-24)
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This applies to both cracked and uncracked cases, with the appropriate
radius of curvature. For the cracked case, the stress distribution is not
uniform (as it is in the uncracked case), but the energy stored in all of the
cracked segments of the coating is the same as the energy given by Eq. (B-24)
using the cracked radius of curvature.

Once the energies of the substrate and coating are determined for the
uncracked and cracked cases, the surface energy can be solved for by
. rearranging Eq. (B-12).

{Us + Uq (uncracked system)} - {Ug + Ue (cracked system)}
1= 2teNC

(B-25)

where Ug and U, are given by Eqs. (B-19) and (B-24), respectively, using the

uncracked and cracked radius of curvature.

Griffith Energy Balance
Lawn and Wilshaw [LAW75] describe the relationship between the
surface energy (y) and fracture toughness (K¢) of a material derived from

Griffith theory and fracture mechanics. Equation (B-26) below describes this
relationship;

o—f G .
T="3E, (B-26)

EXPERIMENTAL DETAILS
Coating _Procedure

Samples were coated in a hot-wall CVD reactor made of either graphite
or Inconel. Coatings of Al203 and Al203+ZrO2 were deposited at 950°C, while
TiN coatings were deposited at 970°C. Metal chlorides, along with other
reactant gases were used to deposit the coatings; Al203 (AICl3, CO2, Hp, and Ar),
Al203+Zr0O2 (AICl3, ZrCly, CO2, Hj, and Ar), and TiN (TiCly, N3, H3, and Ar). The
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Al203 and Al203+ZrO3 coatings were deposited at low pressures (1.33 Pa), while
TiN was deposited at atmospheric pressure. AlCl3 and ZrCly were generated by
passing Cl2 and Ha over the metals held at ~600°C, while TiClg .was produced in
a bubbler. Deposition of TiN required 1 hour while the Al203 and Al203+5 v/o
ZrO2 depositions required 2 - 3 hours.

Residual Stress Measurements

The stress in a coating was measured from the radius of curvature of
the coated substrate using Eq. (B-4). Thin substrates of silicon nitride and
silicon carbide (nominally 25.4 mm x 2.54 mm x 0.175 mm) were polished to a
0.1 micron surface finish and annealed at ~1200°C in vacuum (10-2 Pa at
temperature) for one hour to relieve stresses induced during preparation.

Figures B-9 and B-10 show flow charts of the experimental procedure.
The radius of curvature (ROC) of the sample was measured with a laser
profilometer, and the measured shape was fitted to the equation of a circle to
determine the ROC (see Appendix C). The ROC of the uncoated sample (pyc) was
measured at room temperature (20°C), then one side was coated and the ROC of
the coated (pc) substrate was measured at 20°C. These values were used in
Eq. (B4) to calculate om at 20°C for the cracked coating with the number of
cracks at 20°C. The coated substrate was then cooled in liquid nitrogen
(-160°C) then warmed to 20°C and the ROC was measured. This value along
with the ROC of the uncoated substrate were used in Eq. (B-4) to calculate om at
20°C in the cracked coating with the number of cracks at -160°C. Room
temperature elastic constants used in these calculations and are listed in
Table B-1 and the thermal expansion data are plotted in Figure B-11.
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Prepare thin substrate
& anneal

¥

Measure ROC of uncoated

substrate at 20°C

}

Coat 1 side of
substrate

Measure ROC of coated

substrate at 20°C

Cool coated substrate
in liquid nitrogen (-160°C)

Measure ROC of coated

1

Calculate measured
average stress in coating at
20°C with NC at -160°C

cracks and maximum
stress in shear lag
distribution at 20°C

substrate at 20°C
Calculate measured
average stress in coating
at 20°C with NC at 20°C
A
Calculate number of Calculate predicted

Figure B-9.

stress in coating at
20°C and -160°C

Calculate fracture stress,
fracture toughness,
Weibull modulus, and the
temperature of first cracking

Calculate number of
cracks and maximum
stress in shear lag
distribution at -160°C

Flow chart of experimental procedure outlining important steps

in the force balance used to calculate the fracture strength,
fracture toughness, Weibull modulus, and temperature of first
; cracking of thin coatings on substrates.
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‘

Predicted ROC of coated ROC of uncoated| | ROC of coated
substrate at 20°C substrate substrate at 20°C
(no cracks) l
Calculate strain energy in Calculate strain energy in
substrate (Uus) and coating (Uuc) substrate (Ucs) and coating (Ucc)
with uncracked coating with cracked coating
Number of cracks (NC)

calculated from force balance

Use total energy of uncracked system (Uus + Uuc),
total energy of cracked system (Ucs + Ucc), and
NC to determine the surface energy of the coating

Figure B-10. Flow chart of experimental procedure outlining important steps
in the energy balance used to calculate the surface energy of
thin coatings on substrates.
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Table B-1.

Material elastic constants used in calculations.

Material .

Young’s Modulus,
E (GPa)

Poisson’s Ratio, v

Shear Mo.dulus,
G= (GPa)

E
2(1-v)

Al203 380 0.26 257
Al203+5 v/o Z10; 340 0.26 135
SiC 405 0.19 250
Si3N4 300 0.23 195
TiN 300 - 600 [TORS87] 0.23 167
1.2e-5 T Y T T v T T
- Al203 + 5.v/0 ZrO2
1.0e-5
§ 8.0e-6 _
;
y 606
=
O 40e6
2.0e-6
0.0e+0 =

Figure B-11. Plot of the coefficients of thermal expansion for materials used
Data for the Al203+5 v/o zrO3z coating is
from the volume weighted average of Al303 and ZrOs3.

in this study [TOU75].

200 0

200

400 600

Temperature (°C)

800

1000

Si3Ng4 at temperatures below 20°C was extrapolated.
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RESULTS

The data used in the calculations and results of these calculations are
listed in Tables B-2 and B-3, respectively. A sample with a 2.34 microns Al203
coating deposited at 950°C on SiC in a reactor with a graphite chamber is used
as an example to demonstrate these calculations. To determine the ROC, 2000
data points were collected and fit to the equation of a circle.  Once the ROC was
measured, Eq. (B-4) was used to determine the stress in the coating. The
~ average stress in the coating at 20°C and at 20°C after cooling to -160°C was
" given by Eq. (B-12) and Eq. (B-13), respectively. Note that the stress at 20°C
was lower in the sample that was first cooled to -160°C.

o o 405 GPa (217 x 106 m)2 I | )_
06(20°C) = 6(2.34 x 10-6 m)(1-{0.19}2) (4.7676 m  15.525m)" 203 MPa
(B-27)
405 GPa (217 x 10-6 m)2 1 |
oC . o= - =
0100 O m1-(0.19)5) (#5257 m © T5525m) =192 M
(B-28)

With .thé, average stress in the coating known (cm), the predicted stress
(6p) in the coating as a function of temperature (below the deposition
temperature) was calculated from Eq. (B-3). In calculating the predicted
stress, a deposition temperature of 950°C and final temperatures of 20°C and
-160°C were used. om and op were then used in Eq. (B-8) to solve for the
number of cracks at 20°C and -160°C. The number of cracks in the sample at
-160°C was determined using the sample that was cooled to -160°C and
measured at 20°C. '

For the coated substrate at 20°C, op = 1146 MPa and om = 203 MPa. These
values were used in Eq. (B-8) to solve for'NC, the crack spacing, and the
maximum stress in the shear-lag distribution. For the sample cooled to -160°C
and measured at 20°C; NC was solved for by using 6p = 1146 MPa and
Sm = 193 MPg in Eq. (B-8). Crack spacings of 6.28 microns at 20°C and of 6.10
microns at -160°C were calculated, corresponding to stressed volumes of
294 x 10-11 m3 and 2.85 x 10-1! m3 for a unit width substrate, respectively.
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Once the number of cracks and the crack spacing were known at
-160°C, the maximum stress in the shear-lag distribution was solved for using
op = 1262 MPa (the predicted stress at -160°C) in Eq. (B-5). At 20°C the
maximum stress was 301 MPa and at -160°C the maximum stress was 316 MPa,
these values were defined as the fracture stress of the coating at 20°C and
-160°C for NC cracks. The predicted stress as a function of AT is plotted along
with the calculated/measured maximum stresses at 20°C and -160°C in

. Figure B-12. The intersection of these lines in Figure B-12 was taken as the

fracture stress, 240 MPa. The fracture stress was the value of stress in the
coating at which first fracture occurred. This value appears reasonable
compared to reported values of bulk Al03 which are in the range of

100 - 300 MPa, Table B-4.

L B L2

1500 LA AR NN SNAL ANNL SRS AN NN NN BNl AN NN Nuna SRS Ny WAL SN N Emay S
. predicted stress for
unctacked coating

AT = 180°C (T = 820°C)
[ 0" = 240 MPa

-
o
o
o

measured values 1
i e

1

S
o

Stress in Coating (MPa)

PO Y

PURNS SIS SR S ST W S 1 A

0 200 400 600 800 1000
AT (°C)

PN YU NS

1200

Figure B-12. Plot of stress versus AT for a 2.34 microns Al203 coating on SiC.

The predicted stress was calculated from Eq. (B-3) and the
measured maximum stress (®) was calculated from Egs. (B-5) and
{B-8).
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Table B4, Fracture toughness, tensile strength, and surface energy of bulk
ceramics from the literature.
Material Fracture Tensile Fracture Surface Energy
Toughness Strength vy (J/m2)
Kic MPaVm) of (MPa) [LIVS56)
[CS91,CHET8] [CS91,KATS3)

Al203
Al203+5 v/o ZrO2
TiN

st
3.8*

100 - 300
250t
300*1t

0.9
0 9tt
1.2*

t this value

expected to play a role in coatings.

includes effects of transformation toughening which

T values estimated with Egs. (B-32) and (B-33).

* values taken to be the same as TiC.

is not

* value form the volume weighted average of Al303 and ZrOj.

The fracture stress was used with the maximum stresses at 20°C and
-160°C along with the associated volumes to calculate the Weibull modulus of
The average Weibull modulus for this
coating is 29. These calculations are shown in Eqs. (B-29) and (B-30).

the coating according to Eq. (B-11).

In

4.68 x 10-8 g3_)
_ _\2.94x10"11 m3

=32

I2{240 MPa

135

01 MPa)

(B-29)



ln(4,68 x 10-8 m3
2.85 x 10-11 m3

= B-
1 (316 MPa 27 (B-30)
11240 MPa

A relationship by Thouless [THO90] was used to calculate the mode I
fracture toughness of the coating.

Ny

, : Kic= 0;7 (B-31)
where o was the fracture stress of the coating, taken as of. Taking of as
240 MPa, the fracture toughness is 0.5 MPaNm. In calculating Kjc of the
coating, the largest error arises from the unceriaimy in the stressed volumes.
The accuracy of these volumes depends on NC and the accuracy of the shear-
lag distribution, Eq. (B-5). This same analysis was repeated for ecach sample
and the results are summarized in Tables B-2 and B-3.

DISCUSSION
Coati p t

Two Al203 coatings, with significantly different surface morphologies,
were deposited at 950°C on SiC substrates for comparison. One coating was
deposited in a hot wall reactor with an Inconel chamber, Figure B-13a. Al203
coatings deposited in this reactor were known to be contaminated with nickel
which caused the textured morphology, Figure B-13a. A second Al;03 coating
was deposited in a hot wall reactor with a graphite chamber, Figure B-13b,
producing a more compact and uniform coating as compared to that deposited
in the Inconel reactor.
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Figure B-13. Scanning electron micrograph of the coatings deposited on a SiC
substrate at 950°C in a) Al203 deposited in an Inconel chamber,
b) Al203 deposited in a graphite chamber, and ¢) Al203 + 5 v/o
ZrQO7 deposited in a graphite chamber.
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The coating in Figure B-13a was expected to have lower mechanical
properties than the coating in Figure B-13b. The textured structure of the
coating in Figure B-13a was expected to allow easier crack propagation
compared to the uniform structure of the coating (Figure B-13b). Therefore,
the coating in Figure B-13a was expected to have lower strength and
toughness as compared to the coating in Figure B-13b. These properties were
measured and reported in Table B-3. The coating in Figure B-13a had a
. fracture strength of 190 MPa, a fracture toughness of 0.5 MPaVm, and a
' Weibull modulus of 19, the coating in Figure B-13b had a fracture strength of
240 MPa, a fracture toughness of 0.5 MPaVm, and a Weibull modulus of 28.
While the difference in properties between these coatings was anticipated due
to their different morphologies, the method described in this work allowed
the expected differences to be quantified. It should be noted that the fracture
strength and fracture toughness values reported in this study are not room
temperature lvalues. but the values at the temperature of first cracking, 800°C
and 770°C for the coatings in Figures B-13a and B-13b respectively.

Figure B-13c shows the surface morphology of the Al203+5 v/o ZrO3
coating on a SiC substrate deposited in the graphite reactor. This coating has
a smoother surfacc morphology than the pure Al203 coating (Figure B-13b).
The Al203+5 v/o ZrOz coating had a fracture strength of 480 MPa, a fracture
toughness of 1.1 MPaVm, and a Weibull modulus of 16. The higher strength
and toughness of the Alp03+5 v/o ZrO3 coating is primarily attributed to grain
refinement of the Al203 by the ZrOz phase.

Table B-4 lists tensile strength, fracture toughness, and surface energy
values from bulk ceramics reported in the literature. Equations (B-32) and
(B-33) were used to estimate tensile strength values from 3-pt and 4-pt
bending tests [DAVE80], since limited tensile strength data was available for
ceramics in the literature.

S3b

ot=T7~ (B-32)
c .
c;='f5h (B-33)
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where the Weibull modulus from the 3-pt and 4-pt bend tests was assumed to
be 10; oy was the tensile strength, ¢3p is the 3-pt bend strength, and o4y is the
4-pt bend strength. The strengths of the Al203 and TiN coatings are generally
higher than those expected for the bulk solid.

The fracture toughness of the Al203 and TiN coatings are generally

lower that the bulk values. The coatings in this study have submicron grain
sizes and large grain boundary area, therefore, cracking is expected to occur
along the grain boundaries.
' The grain boundary fracture toughness for a sintered Al203+0.3 vol %
MgO was reported as 0.32 - 0.98 MPaVm, which was 0.1 - 0.4 of the bulk
fracture toughness [KRES8S5]. this agrees well with the value of 0.5 MPaVm
(Table B-3). Further comparisons are made on the basis of grain boundary
fracture toughness, defined as 0.1-0.4 of the bulk fracture toughness. The
calculated fracture toughness value of a TiN coating on Si3N4 (0.5 MPaVm in
Table B-3) also compares well with the estimated grain boundary fracture
toughness of bulk TiN, 04 - 1.5 MPaVm. Therefore, the properties used to
describe coatings should be grain boundary properties when available.

The surface energy of the coatings were determined by two methods
described, in the introduction section, a strain energy balance, Eq. (B-25), and
a Grifﬁdx energy balance, Eq. (B-26). The surface energies calculated with
Eq. (B-25) are lower than those in Table B-4 from Livey and Murray [LIVS56].
This is attributed to the value of NC used in Eq. (B-25). The crack spacing in
the Al203 coating was calculated to be approximately 6 microns. As the degree
of shear-lag increases NC decreases and y increases. The other properties of
the coating depend on NC to a much lesser extent then y and are not
significantly effected when NC changes. The surface energies calculated
with Eq. (B-26) -are also significantly different from those listed in Table B-4.
This may be due to the cracking process not being at equilibrium, as
suggested by Lawn and Wilshaw [LAW?75]). In general, the present method
does not allow for accurate values of the surface energy to be determined.
However, a more rigorous form of the shear-lag distribution may give better
agreemen: between measured and expected surface energies.

We attempted to measure the crack spacing directly as a check on the
calculated value of NC but could only find isolated cracks which were
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extremely fine. The crack opening was estimated for the Al03+ZrO2 coating
on SiC as follows:

- L
crack opening = _(Ejh_é.z)_ (B-34)

where &g is the strain in the substrate due to the temperature change (from
Eq. (B-2)) and & is the strain in the coating due to the measured stress (om).

3 480 MPa

G.a x 103 - 4L Gpa)o.ozs4 m
crack opening = 1527 =36x108m (B-35)

The crack is expected to be approximately 36 nanometers wide which is 0.7
mm wide on a micrograph taken at a magnification of 20,000 x. This indicates
the difficulty in observing and photographing such a small feature on the
relatively rough surfaces of the coatings studied.

Young’s modulus for TiN was reported to range from 300 - 600 GPa.
Both values (300 and 600 GPa) were used with the experimental data from TiN
coated Si3N4 sample #1 to determine the sensitivity of the analysis to
uncertainty in the Young’s modulus of the coating material. The calculated
values of the fracture strength, fracture toughness, and Weibull modulus are
215 MPa, 0.5 MPaVm, and 10 for a Young’'s modulus of 300 GPa and 195 MPa, 0.4
MPaVm, and 9 for a Young’s modulus of 600 GPa. Therefore, this analysis is
essentially insensitive to uncertainty in the coating elastic properties, with
the exception of the surface energy.

The TiN coated Si3N4 samples in Tables B-2 and B-3 were coated
simultaneously and used to compare the repeatability of the measurement
technique. Figure B-14 shows that these ‘2 samples have very similar surface
morphologies and are expected to have similar microstructures. The fracture
strengths of these samples are within 15%, the fracture toughnesses are
within 20%, the Weibull modulus are within 30%, and the surface energies are
within 25%. These percentages differences are taken to represent the
relative error in each measured property.
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Figure B-14. Scanning electron micrograph of the coatings deposited on a SiC
substrate at 970°C in a) TiN sample # 1, b) TiN sample #2.
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The leading sources of error are the difficulty in determining the

radius of curvature of the sample and the error in the thickness of the
coating. A 1% error in the radius of curvature results in an error of 40% in
the fracture strength, 50% in the fracture toughness, 100% in the Weibull
modulus, and 0 - 100% in the surface energy. A 5% error in the thicknesses of
the coating and substrate results in a 15% error in the fracture strength. The
errors associated with measuring the radius of curvature are discussed in
. Appendix C.
' In determining the fracture stress of the coating, of, two values of
measured stress were used (Figure B-12). Any non-linearity in measured
stress as a function of measurement temperature will result in changes in the
fracture stress of the coating. The curvature of this non-linear region was
related to the Weibull modulus through Eq. (B-1). However, in order to fit a
more accuraie line to the data points, data at several more temperatures are
needed. Since for practical reasons these additional temperatures would fall
between the existing data (taken at 20°C and -160°C) these points would not,
allow a more accurate curve to be fit. The Weibull modulus calculated from of
and the corresponding values at 20°C and -160°C were 32 and 27, respectively.
Since these two values are close to one another, the error introduced by the
straight line approximation cannot be too large, thus the straight line
approximation appears reasonable. The straight line approximation resulted
in the calculated fracture stress of the coating being higher than the actual
fracture stress of the coating. It would be more satisfactory if the error was
conservative.

The largest error in calculating the Weibull modulus is from
calculating the volume that corresponds to the fracture stress. This volume is
calculated from the number of cracks. The number of cracks is a strong
function of the shear-lag distribution. As the amount of lag increases the
number of cracks decreases and the Weibull modulus decreases.

The approach taken in this work has. demonstrated the viability of
measuring the tensile strength, fracture toughrness, and Weibull modulus of a
coating. In comparing the measured properties of coatings to the bulk
properties of the coating material, it was found that bulk properties provide a
reasonable approximation to coating strength. However, the fracture
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toughness of a coating was markedly lower than the bulk fracture toughness
of the same material. The discrepancy between the fracture toughness of the
coating and bulk materials was attributed to the large amount of
intergranular fracture that occurred in fine grained coating materials.

CONCLUSIONS

In modelling and design applications the bulk properties of a material
are used in place of coating properties due to the difficulty of measuring the
mechanical of coatings. A simple method for quantitatively measuring the
fracture stress, fracture toughness, and Weibull modulus of thin brittle
coatings on a substrate was developed. This method involves measuring the
radius of curvature of the coated sample at room temperature.

Two Al203 coatings on SiC substrates were compared. One had a compact
coating structure and the other had a textured coating structure. The compact
coating had a fracture strength of 240 MPa, a fracture toughness of
0.5 MPavm, a Weibull modulus of 28, and a surface energy of 0.3 J/m2. The
textured coating had a fracture strength of 190 MPa, a fracture toughness of
0.5 MPaVm, and a Weibull modulus of 19, and a surface energy of 0.3 J/m2.

A composite Al203+ZrO3 coating on a SiC substrate had a fracture
strength of 480 MPa, a fracture toughness of 1.1 MPaVm, a Weibull modulus of
16 and a surface energy of 1.6 J/m2.

A TiN coating on a Si3Ng4 substrate had a fracture strength of
230 MPa t 35, a fracture toughness of 0.5 MPaV¥m * 0.1, a Weibull modulus of
12+ 3, and a surface energy of 0.3 * 1 J/m2.

Uncertainty in the coating and substrate thicknesses along with
uncertainty in the radius of curvature are the leading sources of error in the
method.  The surface energies determined by this technique do not agree well
with expected values. A more exact form of the shear-lag distribution is
expected to result in more accurate surface energies.
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APPENDIX C - CURVE FITTING OF PROFILOMETER DATA

BACKGROUND

Stresses in thin films on substrates can be measured by the beam
bending technique [NIX89]. The technique involves measuring the radius of
curvature of a coated substrate. The stress in the film (of) is related to the
. Young’s modulus of the film (E), the film thickness (tf), the substrate
' thickness (ts) and, the radius of curvature (R) by Equation C-1:

2
t. E
- -
cf-GIfR Eq. C 1

A new technique was developed for measuring the fracture stress and
fracture toughness of films on substrates which is based on measuring the
radius of curvature of a coated substrate (Appendix B) The samples used to
measure the fracture stress and fracture toughness were limited to lengths of
10 mm and 20 mm, due to material availability. The radii of curvature of the
samples ranged from 0.5 m to 10.0 m. In developing this technique, the
software supplied with the laser profilometer poorly fit the data to the
equation of a circle. A new FORTRAN curve fitting routine was written and
tested with simulated profilometer data to evaluate its accuracy.

EXPERIMENTS AND RESULTS

A PC-based laser profilometer (Rodenstock model RM600) was used for
data acquisition. Software accompanying the profilometer included a routine
to calculate the radius of curvature. This routine was tested with standards of
known radius of curvature (0.500 m, 1.000 m and 5.000 m). In acquiring the
profilometer data, 2000 data points were taken and scans of 10 mm and 20 mm
were used, for reasons stated above. In most cases the results from the fitting
routine were unsatisfactory, see Figure C-1. The resﬁlts for the 0.5 m radius of
curvature standard were accurate. However, for the 1.0 m and 5.0 m radius of
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curvature standards the difference between the calculated and actual radii

ranged from 5% to several thousand percent.

Y (m)

Figure C-1.
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Plot of experimental profilometer data. In this example the RMS
noise is approximately 0.94 microns and the radius of curvature
was calculated to be 7.861 m *5% using the "GUESS" routine (see
end of Appendix), compared to 6.229 m calculated by the
Rodenstock software.

A new routine "POINT_FIT" was written to fit the profilometer data to
the equation of a circle, Equation C-2.

R2 = (x+A)2 + (y+B)2 Eq. C-2

where R is the radius of curvature, x and y are the data points, and A and B are
constants. This subroutine is included at the end of this appendix along with a
routine "GUESS" to supply an initial guess for R, A, and B.

Profilometer data simulating samples with different radii of curvature
were computer generated and fitted to the equation of a circle using the
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subroutines to test these routines for accuracy and robustness. Noise was
introduced into the data to assess the sensitivity of the fitting procedure. All
noise values reported refer to the root mean square (RMS) level. Two
distributions were used to generate the noise, a Gaussian distribution and a
uniform distribution, see Figure C-2. Each set of generated data contained
2000 points. The results were largely insensitive to the number of data points.
Scan lengths of 10 mm, 20 mm, and 50 mm were tested and radius of curvature
.values from 0.5 m to 10.0 m were used. These scan lengths and radii of
'curvature values were selected because they were typical values encountered.

Y (m)

N ,
0.000 0.005 0.010 0.015 0.020
X (m)

Figure C-2a. Plot of computer generated data for a radius of curvature of 7.861
m and an RMS noise level of 0.94 microns with a uniform
distribution, calculated R = 8.002 m. The calculated radius of

curvature value is within 2% of the actual radius of curvature of
7.861 m.
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Figure C-2b. Piot of computer generated data for a radius of curvature of 7.861
m and an RMS noise level of 0.94 microns with a Gaussian
distribution, calculated R = 8.204 m. The calculated radius of
curvature value is within 4% of the actual radius of curvature of
7.861 m.

A plot of the fitted radius of curvature versus the signal-to-noise ratio
(S/N) is shown in Figure C-3 for the Gaussian noise distribution. This plot
shows that as the signal-to-noise ratio decreases (noise increases) the
accuracy decreases to the point that the calculated radius of curvature is
unreliable. The critical value of the signal-to-noisc ratio was 1.8 for the
Gaussian distribution and 0.7 for the uniform distribution. A S/N ratio of 1.8
was used as the minimum acceptable S/N ratio for the profilometer data
because the Gaussian distribution (Figure C-2b) matched the experimental
distribution (Figure C-1) better than the uniform distribution (Figure C-2a).
Figure C-4 shows the value of the noise which corresponds to the signal-to-
noise ratio of 1.8 as a function of radius of curvature. Figure C-5 shows the
error in the radius of curvature as a function of S/N. As S/N increases the
error approaches zero, and when the S/N drops below the critical S/N value of
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1.8 the error increases very rapidly. In general, as the radius of curvature
increases the accuracy of the fit decreases; as the noise increases the
accuracy of the fit decreases; and as the scan length increases the accuracy of

the fit increases.

Rm/R

Figure C-3.
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Ratio of the calculated radius of curvature to the actual radius of
curvature versus the signal-to-noise ratio for data sets with 2000
data points. For the Gaussian distribution the critical S/N ratio
was 1.8 and for the uniform distribution it was 0.7. Only the
results from the Gaussian distribution are shown.
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radius of curvature is within 5% of the true radius of curvature.
A critical S/N ratio of 1.8 was used.

% Error in R

3
e o S - A WP o o» - a0 we a» o- e o=

0o 2 4 6 8 10 12 14 16 18 20
S/N

Figure C-5. Plot of error in the radius of curvature versus S/N.
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CONCLUSIONS

Routines used to fit profilometer data to the equation of a circle are
very sensitive to noise in experimental data, the scan length, and the actual
radius of curvature being measured. A routine for fitting profilometer data to
the equation of a circle was described and its behavior was characterized with
simulated data of known radius of curvature and noise level.

The signal-to-noise ratio has to be greater than 1.8 to measure the
. radius of curvature within 5% of the true value. High values of the signal-to-
noise ratio are favored by small radius of curvatures, small scatter in the data,
and long scan lengths.

COMPUTER ROUTINES FOR CURVE FITTING OF PROFILOMETER DATA

These subroutines are written in FORTRAN and fit experimental data to
the Equation of a circle by solving for the A, B, and R values in Equation C-2.

Subroutine GUESS supplies the initial guess for the fitting routine,
POINT_FIT. GUESS works by evaluating Equation C-2 at 3 different points and
solving these 3 equations for values of R, A, and B. To reduce the effects of
data scatter NCP sets of points are used and averaged to obtain an initial guess.
GUESS requires input arrays of X and Y values of dimension NP, and the
number of sets of equations that are averaged (NCP), and stores the initial
values of R, A, and B in variables RO, AO, and BO.

SUBROUTINE GUESS(X,Y,AO,BO,RO,NP,NCP)
IMPLICIT NONE
REAL*8 X(5000),Y(5000),A0,BO,RO,XNCP,X1,X2,X3,Y1,Y2,Y3,
+ T1,T2,T3,BO_S(100),A0_S(100),RO_S(100),Y1_SAVE,Y2_SAVE
INTEGER ILNCP,NP

DO 1I=1NCP
X1=X{D)
Yi=Y()
Y1_SAVE=Y1_SAVE+Y1
X2=X(NP/2-NCP/2+I)
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Y2=Y(NP/2-NCP/2+I)
Y2_SAVE=Y2_SAVE+Y2
X3=X(NP-NCP+I)
Y3=Y(NP-NCP+I)
T1=(X2*X2+Y2*Y2-X1*X1-Y1*Y1)/(X1-X2)
T2=(X3*X3+Y3*Y3-X1*X1-Y1*Y1)/(X1-X3)
T3=(Y3-Y1)/(X1-X3) - (Y2-YD)/(X1-X2)
BO_S(@)=0.5%(T1-T2)/T3
AO_S(D=(X2*X2+Y2*Y2+2.*BO_S(I)*Y2-X1*X1-Y1*Y1-
+ 2.4BO_S(D*Y1)/2./(X1-X2)
RO_S(M)=SQRT((X1+AO0_SM)**2+(Y1+BO_S(1))**2)/3. +
+ SQRT((X2+A0_SM))**2+(Y2+BO_S(M))**2)/3. +
+ SQRT((X3+A0_S(I))**2+(Y3+BO_S(D)**2)/3.
1 CONTINUE
DO 2 I=1,NCP
AO=AO+AO_S(I)/XNCP
BO=BO+BO_SI)/XNCP
RO=RO+RO_SI)/XNCP
2 CONTINVE
RO=ABS(RO)
IF(Y1_SAVE LT. Y2_SAVE)RO=-RO
RETURN
END

Subroutine POINT_FIT fits experimental data fo Equation C-2. It
requires arrays of X and Y values of dimension NP, an initial guess for the R,
A, B values (R_LAVE, AO, and BO), and the value of NCP. R_AVE contains the
initial guess of R at the beginning and the final value of R on exit. Several
parametei's control the accuracy of the calculation; NUM_C controls the
number of fitting steps used to solve for A and B, NUM_TOTAL controls the
number of fitting steps used to solve for R_AVE, STEP is the increment size
used t0 change the values of A and B during fitting, D is how much STEP is
reduced by, and TOL is used to terminate the routine. The routine is ended
when either NUM_C or NUM_TOTAL is reached, or when the change in R_AVE
is less than TOL*ERR_R. ERR_R is defined as the absolute magnitude of the
average deviauion of R(i) from R_AVE.

SUBROUTINE POINT_FIT(X,Y,NP,AO0,BO,A,B,R_AVE.ERR_R,NCP)
IMPLICIT NONE

REAL*8 AO,BO,A_SIGN,B_SIGN,OLD_R_AVE,DA,DB,OLD_ERR_R,C(2),
+ R_AVE,XNP.ERR_R,D_ERR,TOL,X(5000),Y(5000),R(5000),
+ AB,T1,T2,STEP(2),STEP_LSIGN,RA,D
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INTEGER TOTAL_FIT,I,NP.NUM_C,NUM_TOTAL,FIT(2),ILNCP
COMMON/CC2/NUM_C,NUM_TOTAL,STEP_1,D,TOL

GET 'BEST A & B VALUES BY MINIMIZING VARIATION IN R
A =C(1); B=C(2)
APPROXIMATE STARTING VALUES OF STEP=0.25, D=5., TOL=1.E-4

eleloiole]

XNP=FLOAT(NP)
C(1)=A0
C(2=BO
STEP(1)=STEP_I
STEP(2)=STEP_I
TOTAL_FIT=0
SIGN=1.0
OLD_R_AVE=1.E6
TOTAL_FIT=0
100 DO 999 I=1,2
OLD_ERR_R=1.E6
FIT(D)=0

22 CONTINUE
R_AVE=0.0
DO 20 I=1,NP
R(II)-SQRT((X(II)+C(1))*"'2+(Y(II)+C(2))*"‘2)
R_AVE=R_AVE+R(II)
20 CONTINUE
R_AVE=R_AVE/XNP

ERR_R=0.0
DO 21 II=1,NP
ERR_R=ERR_R+ABS(R_AVE-R(II))/XNP
21 CONTINUE
D_ERR=ERR_R-OLD_ERR_R
OLD_ERR_R=ERR_R

FIT(D=FIT()+1
IF(FIT(T) .EQ. NUM_C)GOTO 30

IF(D_ERR .GT. 0.)THEN
SIGN=-SIGN
STEP()=STEP(I)/D
ENDIF
IF( ABS(D_ERR) .LT. TOL*ERR_R )GOTO 30
CM=C@)*(1.+SIGN*STEP(I))
GOTO22
30 CONTINUE
999 CONTINUE

A=C(1)

=C(2)
TOTAL _FIT=TOTAL _FIT+1
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1901

918

T1=0.
T2=0.
DO 1901 I=1,NCP
T1=T1+Y()
T2=T2+Y(NP/2-NCP/2+])
CONTINUE

RA=ABS(R_AVE)

IF(T1 LT. T2)RA=-R_AVE

IF(TOTAL_FIT .EQ. NUM_TOTAL)GOTO 918

IF(ABS(OLD_R_AVE-R_AVE) .GT. TOL*R_AVE)THEN
OLD_R_AVE=R_AVE
GOTO 100

ENDIF

R_AVE=ABS(R_AVE)

IF(T1 LT. T2)R_AVE=-R_AVE

RETURN

END
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APPENDIX D - SIMPLE COMPOSITE PLATE AND BEAM THEORY

COMPOSITE PLATE THEORY
Firstly, individual layer stiffnesses are calculated by

kK _k
Er v21 B

k kK k
Q;= ¥k Qr=Q;= k Xk
1-vyavyy 1-vyyvy

If the layer is anisotropic, the stiffnesses of each of the layers are rotated to
the principal directions of the plate by using the tensor rotation

transformation
Ox k zx
Sy | = [T]'l [Q] 1 y
Txy [T] ny y
m2 12 2mn
M=| 2 m2 -2mn
-mn mn m2-n2
'wherc

m=cos9® and n=sino

where 0 1is described in a counter-clockwise direction. Next, each of the
transformed layer stiffnesses are assembled into a global stiffness matrix of

the form:
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Nx A1l A12 A6 B11 Bi2 Big £x
Ny A12 A22 Azs Bjz B2 Byg e;
Nxy | | A16 A26 Ae6 Bie¢ B26 Bes 0
My || Bi1 B2 Big D11 D12 Dig || "xy
My B12 B2z B2 D21 D22 D2 Kx
Mxy Bi6 B2s Be6 De1 D62 Ds6 Ky
L):xy-i

where

N
k
Aj= 2 Qf (u-hi-1)
k=1

N =
Tz

k .2 2 -
Bij = Q‘J (hk " k-1 ) (1,j=1,2,6)

Djj=

W fra
Tz
—t

k 3 3
Qj @k -k-1)

The goal is to solve for the mid-plane strain and curvatures of the
coated structure, due the applied loads, then to use the strain values to back-
calculate for all the stress components through the thickness of each of the
materials in the structure. Thermal forces (due to cooling) are

N

N= 3 (@} of +Qf; o+ Qg apy) (b 1) ATE
Nt_NQk k, ok ok, ok ok X -
y-k%( 12 % +Qpp o+ Qg o) (x-b k1) A

t N ¥ k¥ .k k .k k
Nay= 2, Q16 % +Q6 %y + Q6 %y) Bl k-1) ATx
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and the total load on the structure is the sum of any mechanical loads and
moments (here zero) with these thermal loads. The global stiffness matrix is
then inverted to get

Hj1 Hiz Hji3 His His Hig Nx
Hz2 Ha3 Hz4 Hzs Hazg Ny
Hj3 Hz3 Hi3z H3s4 H3s Hjg Nxy

[y
<o xo

(oo}

|

[ 3]

His5 H2s Hjs H4s Hss Hsg My
Hi¢ H26 Hie¢ H4s Hse Hee Mxy

and the mid-plane strain and curvature can then be solved for by any matrix
solution method. Mid-plane strain and curvatures are used to find the strains
through the entire thickness of the coated substrate

(o]
€x=€x+mx
€ "€°+ZK
Y™% y

(o]
Txy= Txy + Z¢xy
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Now that strains have been resolved, stress can be found by

k
x

k

k -k ,k
oy =Qq; (& - " Cxy

sk ko k -k k
atk) + Qy 5 (g - 0y AT) + Q¢ (1, ATk)

k

k -k ,k k k k k k _k
Gy=Q21 (Ex - GXATk) + Q22 (Sy - ayATk) + Q26 (‘ny - axy

ATK)

k .k k k., .k k k.. ok k k,
‘txy-QGI (e; - ¢ AT )"'Q62 (ey - ayAT ) + Q66 (ny - axyAT )

Each of the s;- terms vary through the thickness a very small amount

relative to the aAT strain terms, thus leading to the sharp discontinuities in

the in-plane stress terms when traversing material interfaces.

This theory has been implemented in a FORTRAN computer code, which

also includes material properties of the specific material systems used here.

NOMENCLATURE

E; - Young's Modulus

Yij - Poisson’s Ratio

Gij - Shear Modulus

Qij - Stiffness Component

Tij - Rotation Transformation Component
e - Mid-plane Strain

Xi - Mid-plane Curvature

Nj - Applied Forces

M; - Applied Moments

h - Total Thickness

hj - Distance from Mid-plane to Interfaces
v § - Coefficient of Thermal Expansion
AT - Temperature Change
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Figure D-1 In-plane residual stresses for a Si3Ng4 substrate coated with

alumina-zirconia without an interlayer.  Stresses for 1, 4 and 10
microns coating thicknesses are shown. Thickness of the
coating layer has negligible effect on residual stress.
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Figure D-2. In-plane residual stresses for a Si3Ng4 substrate coated with
alumina-zirconia with an AIN interlayer. Stresses for 1, 4 and 10
- microns interlayer thicknesses are shown. Thickness of the
interlayer has negligible effect on residual stress.
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Figure D-4. In-plane residual stresses for a SiC substrate coated with AIN and
alumina-zirconia. Stresses shown are applicable for a wide
range of coating thicknesses.
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