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ABSTR ACT

This report is a summary of results of a study aimed at the development

of thin, oxidation-resistant ceramic coatings to reduce contact stress damage

of ceramic heat engine componentst. Strongly adherent coatings were

deposited on reaction bonded Si3N4 (RBSN), sintered SiC (SSC), and HIP'ed

Si3N4 (HSN) and using a newly developed chemical vapor deposition (CVD)

process. The performance of the coating was assessed by oxidation, strength

and contact stress testing. A new method was developed to experimentally

determine, the strength and Weibull modulus of thin brittle films on ceramic

substrates. A significant portion of the study was devoted to numerical

modeling of the coatings in order to understand the contributions of residual

stress as different coating materials and thicknesses were combined. Coatin_

designs were further analyzed by simulating the crack growth behavior in

multilayer films while accounting for the interface fracture mechanics. This •

work has shown that the A1203+Zr02 composite coating developed in this

program can provide resistance to oxidation and contact stress, as determined

by laboratory measurements. Commercial application of the composite

coating has been successfully demonstrated by use of the A1203+ZrO2

composite as a protective coating on a Si3N4 cutting teel.

t Research sponsored by the Advanced Materials Development Program, Office

of Transportation Systems, U.S. Department of Energy, under contract

DE-ACOS-840tLT,1400 with Martin Marietta Energy Systems, Inc.



INTRODUCTION

Heat engine operating efficiencies have been significantly improved

by using uncooled ceramics components at temperatures above those

attainable with superalloys. A large number of studies have used Si3N4-based

and SiC ba;ed materials, and these have shown considerable potential for use

as heat engine components. However, due to their brittle nature, high

surface stresses in contact regions cannot redistribute as in metals. This can

result in localized stresses which may exceed the baseline strength, thus

damaging the surface of the component and reducing its strength. This

susceptibility to contact stress damage has led to projections of premature

failure of ceramic heat engine components that undergo sliding contact.

It has been suggested that surface damage and strength loss under

these conditions can be substantially reduced by applying a thin ceramics

coating [LAC84]. Exploratory studies using plasma sprayed oxide coatings

[GTE81] demonstrated improvements in the contact stress damage resistance of

both $i3N4 and SiC ceramics, but the adherence of these coatings was

inadequate. Yttria-stabilized zirconia coatings deposited by electron beam

physical vapor deposition were also studied [SCH87], but adherence was still

poor. The poor adherence precluded performance testing of coated

components.

' A new coating designed specifically for heat engine applications was

proposed for this work. This coating is unique in that it consists of two layers,

each of which is compositionally graded so that there are not sharp

interfaces. The outer layer is oxidation resistant and should provide

toughness and a low coefficient of friction, while the intermediate layer

serves primarily as a bonding layer. A composite of A1203 and Zr02 was

selected for the outer layer, and A1N was selected for the intermediate layer.

Figure 1 is a schematic of the proposed coating configuration.

Unlike previous studies, one coating configuration was used for all

substrates in this program. However, coating properties (e.g., composition,

thickness, microstructure) could in principle be varied to achieve

compatibility with each substrate by modifying the coating deposition

conditions. Chemical vapor deposition (CVD) was proposed as the coating



application technique. CVD is preferred for this application because with this

technique, Adhesion can be enhanced via chemical bonding or solid solution

formation between coatin_ _ and substrate, intcrdiffusion at the interface, or

formation of new phases at tl',e interface due to reaction between the CVD gas

mixture and the substrate surface. In contrast, alternative deposition

techniques such as those based on physical vapor deposition or spraying

produce coating/substrate attachment which is usually mechanical.

Additional advantages of CVD include its ability to uniformly coat parts with

complex shapes and its ability to be scaled-up to produce commercial

quantities.

The development of the coating configuration and the CVD processes

for applying the coating was guided by mathematical modeling. A model

based on finite element analysis was developed to calculate relationships

between thickness of the various coating layers and residual stress levels in

the coating and substrate. Although predictive capability was not achieved,

the model did give insight into control of stress build-up in the coating.

Mathematical models were also used to determine (I) feasibility of growing

the desired coating under various sets of CVD operating conditions, (2)

dependence of coating yield and growth rate on operating conditions, and (3)

relationships between coating composition and operating conditions. Results

were plotted in the form of "CVD phase diagrams" for growth of AI203+ZrO2

composite and AIN coatings.

During this program, the CVD processes were developed and coatings

were deposited on three substrates---reaction bonded Si3N4 (RBSN), hot

isostaticaily pressed Si3 N4 (HSN), and sintered SiC (SSC) (Table I). Work was

done on test bars measuring 2 in. x I/4 in. x 1/8 in. that wcr_ either whole or

cut into three equal size pieces before coat.ing. Adherence of the coating was

assessed using a conventional scratch test (Rcvetest type). The effect of the

coating on the flexure strength of each substrate material was measured at

room and elevat.ed temperature. The thermal shock resistance was tested by

rapidly an_ repeatedly cycling samples to typical engine operating

temperatures. Long term, high temperature oxidation resistance in static air

was also studied. In each case, the effect of the test on coating adhesion was

evaluated. Finally, a set of samples was coated for contact stress tests which



will be conducted by Garrett Turbine Engine Company, Auxiliary Power

Division.

The results obtained in this phase of the program demonstrated

significant potential for the use of this coating configuration on ceramic

engine components to reduce contact stress damage of the substrate. The

coatings generally remained intact during performance tests at tempera_arcs

of 1000°C. However, the A1N and A1203+ZrO2 coatings, deposited by CVD, were

cracked. Finite element analysis was used to show that these coatings,

deposited by convential CVD, would always crack, and that the concept of

"graded" layers would not prevent the cracking problem.



EXECUTIVE SUMMARY

This report summarizes the Phase II findings on the development of an

AI203+Zr02 composite coating, intended to reduce the contact stress damage of

S i3N4 and SiC ceramics. An A1N interlayer (-5 microns thick) was

demonstrated to be an effective means of providing good adhesion between

Al203+ZrO2 (--1 micron thick) and the ceramic substrates. During this

program, CVD processes were developed and used to successfully deposit the

multilayer coating. The performance of the coatings produced in Phase II

was assessed by oxidation tests, scratch tests, and pin-on-disk sliding contact.

Modeling the diffusion of oxygen through an A1203 layer at elevated

temperatures suggested that the coating would be an adequate diffusion

barrier to oxygen. However, experimental results revealed that the composite

coating configuration was not oxidation resistant for 500 hours at

temperatures above 1000*C. The lack of protection is attributed to cracks in

the A1203+ZrO2 layer, which allowed oxygen to penetrate and react with AIN.

The kinetics of oxidation of AIN are sufficiently slow at 1000°C for the coating

to protect the substrate for 500 hours. However, above 1000*C, the oxidation

rate of A1N is rapid enough to cause the AIN to fully oxidize to A1203.

A major aspect of this program has dealt with the use of finite element

methods and fracture mechanics to model the behavior of brittle multilayer

coatings. Detailed analysis of the residual stresses in uncracked coatings on

ceramic substrates revealed that the coating thickness, order of coating

layers (including grading of the coefficient of thermal expansion), and

elastic modulus of the coating ali have a negligible effect on the residual

stress in the coating. It was concluded that due to the high temperatures used

in CVD processing and inherent thermal expansion mismatch between the

materials, the A1203+Zr02 coatings would contain ,;racks upon cooling to room

temperature.

To better understand the behavior of cracks in the coating and possibly

identify a means to eliminate them from the coating, additional modeling was

performed. The effect of crack propagation during solid body contact was

studied using interface fracture mechanics coupled with finite element

analysis. Several geometries were studied; one coating layer with a vertical



flaw, twG co_.ting layers with a vertical flaw, and two coating layers with a

horizontal flaw. Thermal residual stress and point contact loads (which

simulated the scratch test) were applied to the coated system and the crack

was allowed to propagate, For vertical flaws, the cracks always propagated

into the substrate. Further analysis showed that improving the fracture

toughness of the interface would not improve the performance of the coating,

since the interface was not a weak point. In contrast, the horizontal crack did

not reach the substrate. A crack in the middle layer of a two layer coating,

stayed within that layer. A crack in the outer layer of a coating moved away

from the substrate and towards the f"ee surface. Therefore, cracks of this

type would not degrade the oxidation performance of a coated substrate.

The possibilities for working around the problem inherent to thin

brittle coatings could lie in the area of controlled brittle fracture of

multilayers, controlling the residual stress in the deposited film, or by the use

of "ductile" layers which would permit stress relief and alleviate pre-service

cracking. Physical vapor deposition (PVD) methods, which allow the residual

stress state to be controlled, or low temperature CVD processes may allow for

crack-free coatings to be deposited. The coating would then be in a

compressive stress state at the service temperature and would not crack. It is

anticipated that without cracks, the A1203+ZrO2 composite coating would be an

effective means of reducing the contact stress damage and oxidation of Si3N4

ceramics.

A single point scratch test was used to assess the protective nature of

the coatings during contact loading on unoxidizcd samples at room

temperature. The coating protected the SiC (SSC) and reaction bonded Si3N4

(RBSN) substrates by reducing chipping and cracking of the substrates. No

siguificant differences were seen in the scratch resistance of the uncoated

and coated hot pressed Si3N4 (HSN).

A method was developed to measure the ultimate tensile strength,

fracture toughness, and Weibull modulus of thin brittle coatings on

sui_strates. The technique is based on measuring the radius of curvature of a

coated substrate, and equating the resulting calculated stress with a

theoretical shear-lag stress distribution model. The Weibull modulus and

fracture stress of A1203 CVD coatings on SiC substrates were measured. The



fracture stresses for coatings of these materials ranged from 190 MPa to 480

MPa, the Weibull modulus ranged from 16 to 28, and the fracture toughness

ranged from 0.5- 1.1 MPa_m. This work has shown that the tensile strength

of A1203 and A1203+ZrO2 coatings can be approximated by bulk values,

however, the fracture toughness of these coatings was found to be

significantly lower than bulk values.

Additional contact stress tests on Phase I coatings were carried out by

Garrett Turbine Engine company. These tests were deemed inconclusive due

to the lack of coating oxidation resistance at 1200°C.

Pin-on-disk tests were used to measure the breakaway and kinetic

friction coefficients for coated and uncoated materials. Room temperature

results showed that the A1203+ZrO2 coating reduces the kinetic friction

coefficient of RBSN and HSN by as much as 50% in self-mated tests. No

apparent reduction in friction was observed for the SSC substrate. An

improvement in sliding wear resistance was obtained with A1203+Z_O2 coated

HSN in the pin-on-disk test, whereas the coatings on RBSN and SSC were

ineffective.



DESIGN OF COATING CONFIGURATION

REQUIREMENTS OF THE APPLICATION

Advanced heat engine components are subjected to high localized

stresses in contacting areas during operation. In addition, they are exposed to

extreme conditions of thermal cycling. The use of thin (<100 microns)

ceramic coatingson variouscomponents has been shown to reduce contact

stressdamage by reducingthe relativecoefficientof frictionand elastic

•modulus of the contactingpans. However, the coating must be strongly

adherentand not degrade under thermalshock and oxidizingconditionsat

engine operatingtemperatures.These requirementsdictatesix major design

criteria:

I.Strong coating/substrateadherence.

2.Low residualstress in the coating and at the coating/substrate

interface.

3. Excellent oxidation resistance and low permeability of oxygen through

the coating.

4. High thermal shock resistance.

5. Improved mechanical strength and low coefficient of friction at room

and elevated temperatures.

6. Minimum chemical interaction between the substrate and the coating

and coating stability at operating temperatures.

A singlemonolithicceramiccoatingwhich could satisfyallof thesecriteria

could not be identified.Hence, a multilayeredcoatingconfigurationwas

proposed(seeFigureI). This coatingconsistsof an intermediatelayerwhose

primaryfunctionis to promotebondingwith the substrate,and an outerlayer

which providesthe requiredmechanicalpropertiesand oxidationresistance.
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Figure 1. Schematic of coating design.

CHEMICAL, PHYSICAL, AND MECHANICAL PROPERTY CONSIDERATIONS

The important chemical properties required of the outer coating layer

arc oxidation resistance and low permeability to oxygen. The oxidation

resistance of A1203 is well known. Even with this outer layer, it would still be

possible for oxygen to diffuse through the layer via pores or cracks. Hence,

an intermediate layer which can dissolve or react with oxygen is necessary.

Aluminum nitride forms polytypes and solid solutions with oxygen over wide

ranges of composition, so it is a candidate for the intermediate layer. In

addition, AIN forms solid solutions with Si2N20, and these solutions are the

basis for some SiAION-type compounds. Since Si3N4 readily oxidizes to form

Si2N20, the surface of Si3N4 materials generally contains Si2N20. Hence the

potential for SiAlON formation exists at the Si3N4/coating interface, lt is

therefore expected that if AIN is used as the intermediate layer, it will act as a

chemical oxygen barrier and as a bonding agent with Si3N4-based substrates.

Physical and mechanical properties which are considered to be

relevant to coating design include density, thermal expansion coefficient,



fracture toughness, elastic modulus, hardness, and Poisson's ratio. The

composition and selected properties arc listed in Table 1 for the substratc

materials as well as for the candidate coating materials. The values reported

arc for bulk materials; it is assumed for purposes of coating design that the

property values are the same for thin films.

Table I. Properties of the materials used in this study.

Material Nomin al Density KHN Iden tati on

Composition (actual/ Fracture

theoretical) T ou ghne s s

(wt%) (g/cre 2 ) (GPa) (MPa_m)

Face/Edge Face/Edgei , • || , i ii ii,, i IIii'I i i ii i' i iiii i i i ii " ,'i ii 'i'

RBSN > 95% 5i3N4 2.75/3.19 9.846 ± 0.56 3.5 ± 0.3

(Airesearch) <3 Si 9.395 ._:0.80 4.0 +_0.6

<2F¢

iii , i i ii i i i i iii ii

SSC • 95.5 SiC 3.17/3.21 25.29 +_.0.91 2.2 ± 0.2 .

(Hexalloy SA) < 0.5 B 23.91 +_.0.46 2.3 +_0.2

< 0.i impurities

i ......1,1 ii i i i i ii i ii i ii i

HSN 92 Si3N4 3.25/3.26 13.22 ± 0.15 3.4 +_.0.2

(GTE AY6) 2 A1203 13.11 ± 0.17 3.3 _+0.3

6 Y203

< 0.1 impurities

i i i ii li i i i i i

A1203 3.99 13-15 2-5

i| i ii ,| i ii,

A1N 3.28 - -- 2-3

ii ii i ii i i i
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CObTING PR,OCESS DEVELOPMENT

TI:IERMODYNAMIC ANALYSIS OF COATING PROCESS

Thermodynamic analysis of the coating procedure was preformed in

Phase I of this program. The results are listed in Appendix B of the Phase I

final report.

HIGH TEMPERATURE COATING DEPOSITION REACTOR

A new CVD reactor was built, the Phase II reactor. This reactor is a hot-

wall, crucible type reactor that is heated resistively with graphite heating

elements. The system was leak checked and found to be leak-free down to a

pressure of 10-6 torr. Source gases enter at the bottom, flow upward past the

parts to be coated, and exit through exhaust tubes terminating above the

deposition zone. This is illustrated in Figure 2. A perforated plate defines the

upper limit of the deposition zone. Graphite rods are hung from this plate to

form a fixture for supporting the substrates. The substrates are placed on a

grid of thin alumina rods that pass through holes in the graphite rods. The

volume of the reactor is 5 liters. An internal reactor is used for generating

volatile AICl3 and ZrCl4, which are the aluminum and zirconium source

materials being used for the AIN and AI203+ZrO2 coatings.

11



exhaustlines

perforated
graphiteplate

graphiterods

graphite _ forsupporting
cannister substrates

aluminarods
for supporting

substrates

gasmixing
box GrafoilTM sealing

washers

intemaJ metalsourcematerial
reactorshell

gasdiffuser
i

MacorTM threadedscrews
withaluminatubes
epoxiedincenter

inletgas
feed line

Figure 2. Phase II high temperature CVD reactor being used for coating

deposition.

12



Formation of a coating at high temperatures (T > 1000°C) was

complicated by the tendency for gas phase nuclcatiort to occur in CVD

processes that use AIC13 as a ._:_urccmaterial. To compensate for the; higher

thermal driving f<Jrce for gas phase nucleation, we reduced _c pressure to 10

torr. The _stem can be operated at pressures as low as 1 torr depending on

the total gas flow rate.

The CVD reactor which was previously being used[ for Phase I of this

program was modified to incorporate two internal reactors for simultaneously

g_nerating two different source materials. Previously, ali source materials

were _enerated in one internal reactor. This resulted in poor control over

the relative amounts and distribution of ZrO2 and A1203, in the A1203+ZrO2

composite layer. Details of the composite layer composition were discussed in

the October, 1989 Bimonthly Progress Report. The new design was expected to

allow better control of the relative rates of generation of A1Cl3 and ZrCl4 for

deposition of the A1203+ZrO2 composite layer.

EXPERIMENTAL COATIY_GPROCESS

Process development for deposition of the coasting at temperatures

above 1000°C was c_ried out for the Phase H graphite high temperature CVD

reactor (Figure 2). Initially, attempts were made to deposit a pure A1203

coating. Ttte first experiment w_ done at 1000°C to establish reproducibility

of coating_ obtained in the Phase I CVD reactor. The coating produced was not

analyzed, although it appeared to be similar to those obtained in the Phase I

reactor. Based on weight gain, the deposition rate was approximately

0.5 microns/hour, which was typical of the deposition rate obtained in the

other reactor. The deposition temperature was then ral,,;ed to 1200°C. This

gave a 1.5 micron thick coating in one hour. However, A1203 powder also

formed c:ue to gas phase nucleation. Most of this powder was easily removed

from the smnples, and the remaining coating appeared to be nonporous and

smooth on the surface. In order to determine if there was a relationship

between deposition temperature and gas phase nucleation, an experiment was

done at 1120°C. This run produced extensive amounts of powder, causing the

reactor exhaust line to plug. In addition, melting of the A1 metal in the A1C13

13



generatoroccurred,so samples from this run were not analyzed. The

remainderof theexperimentsdone were depositionof Al203+ZrO2 or AIN.

Since some successwas achievedwith depositionof pure A1203 at

1200°C,the firstAl203+Zr02 experimentwas done at 1200°C. Thisresultedin

extensivegas phase nucleation.The depositthatcollectedon the substrates

was looselyadherentand easilyrubbedoff. No weight gainof the substrate

was detected,which suggested that no coating had formed. Another

experimentwas done at thistemperature,but with the relativeamounts of

AICl3 and ZrCI4 sourcevaried;i.e.,a higherratioof Zr/Al. This resultedin a

moderate amount of powder formationdue to gas phase nucleation. In

addition,a very thick,looselyadherentcoatingwas againeasilyremoved. A

thirdexperimentwas done at 1200°C with the same ratioof sourcematerials

but with a steepertemperatureprofileso that the sourcegases did not get

preheatedto as high a temperature,lt was hypothesizedthat this would

reducethe amount of gas phase nucleation.This succeededin producingless

powder. Additionalexperimentswere done with the originalZr/Al ratioin

the sourcegasesand withdepositiontemperaturesof 1300°C and 1375°C. The

experimentat 1300°C produceda thick,nonporous,well adherentcoatingand

a small amount of powder. The coating thickness indicated a deposition rate of

II microns/hour. The experiment at 1375°C gave a moderate amount of

powder and a thick coating.

Analysis of the high temperature A1203 and AI203+ZrO2 experiments

suggests that there is a transition temperature, below which gas phase

nucleation dominates, and above which surface nucleation dominates. At the

lowest deposition temperature used in this program (97S°C used throughout

Phase I and early Phase II), gas phase nucleation was not measurable, but the

deposition rate was very low (<I micron/hour for either A1203 or Al203+ZrO2).

At 1200°C for pure A1203 and 1300°C for Al203+ZrO2, the deposition rate was

much higher and an adherent coating was formed with only moderate

amounts of powder from gas phase nucleation. At intermediate temperatures,

extensive powder formation took place, and little or no adherent coating was

formed. The only experiment that did not fit this trend was the one in which

AI203+ZrO2 was depositedat1375°C. Itshouldbe emphasizedthattheseresults

are specificto our depositionsystem and should thereforenot be generalized

14



to predict the behavior of other systems. This is especially important since

the temperature profile in the gas phase upstream of the deposition zone

appears to strongly influence the results.

The remainder of the experiments were directed towards the deposition

of A1N. Initially, an experiment was done at 1000°C to establish

reproducibility of coatings obtained in the low temperature CVD reactor. This

resulted in quite different behavior than that which typically occurred in the

low temperature reactor. Specifically, an adherent, thick coating formed

along with an extensive amount of powder. The coating thickness varied

substantially on a given sample, corresponding to a deposition rate of

6-9 microns/hour. The difference in behavior can be attributed to the

different temperature profile experienced by the gas phase, suggesting that

th_ AIN system is very sensitive to this parameter. A second experiment at

1200°C also gave extensive powder formation, but a lower and merc variable

deposition rate (1-5 microns/hour), lt should be emphasized that the reported

deposition rates are only apparent rates since they are determined by

measuring coating thickness at several locations and dividing by the total

deposition time. Loss of loosely adherent coating or flaking or chipping of

strongly _clherent coating, during fracture of the sample, could skew the

measurement.

In Phase I of this work Al and Zr metals were mixed together to

generate the AICI3 and ZrCl4 reactant gases for composite layer deposition.

This led to a nonuniform distribution of Zr in the coating. The Zr reacted first

and a layer of pure ZrO2 was deposited followed by an A1203 layer. In Phase II

an AI-Zr metal alloy was used as the metal source to generate the AIC13 and

ZrCl4 reactant gases for composite layer deposition. The AI-Zr alloy was

prepared by melting under argon and had a composition of 88 wt% AI-12 wt%

Zr. Use of this AI-Zr alloy produced a composite film with a uniform Zr

distribution. The "best set" of deposition conditions used to deposit A1N and

A1203+ZrO2 coatings arc listed in Table 2. The microstructure of these coatings

is detalle,'l in ",.he next section.

15



Table 2. Process conditions for CVD deposition of AIN and AI203+Zr02.

ii

Pressure = 11 torr

Temperature = 950°C

Internal reactor; A1N coatings; 30 grn Al

A1203+ZrO2 coatings; 10 gm Al+12 w/o Zr alloy

Ar flows; 750 sccm inner 2000 sccm outer

H2 flows; 1000 sccm inner 3500 sccm outer

Cl2 flows; 75 sccm inner

CO2 flow; 300 sccm outer (only for A1203+ZrO2 coatings)

NH3 flow; 250 sccm outer (only for AIN coatings)

16
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MATERIAL CHARACTERIZATION

MICROSTRUCTUREOF COATING

Phase I Coatin_

Figure 3 shows the surface of an A1203 coating deposited on SSC

substrate. The rough surface topology is attributed to Ni contamination from

the Inconel vessel in the CVD reactor [COL86]. This problem was eliminated in

the Phase II coating where a graphite CVD reactor was used.

Figure 4 shows a cross-section of the A1N/A1203+ZrO2 coating on the SSC

substrate, the coating had the same morphology on the RBSN and HSN

substrates. The Zr is concentrated at the A1N/composite interface.

The microstructure of the AI203+ZrO2 composite layer has been studied

by TEM and analytical electron microscopy. A sample of the Phase I

A1203+ZrO 2 coating on a TiC whisker reinforced A120 3 substrate was analyzed.

This substrate was used because previous attempts at preparing a thin foil

specimen of coated silicon nitride-based materials were unsuccessful. The

failure was attributed to uneven milling rates of the coating and substrate

during ion beam milling. The coating was 3 microns thick and contained

approximately 3 w/o Zr. It was found that the majority of the coating was

essentially pure A120 3 with the Zr concentrated at the interface between the

coating and the substrate. The Zr was present as 30 nanometer particles

containing impurities that were identified as silicon, tungsten, and probably

oxygen. These impurities are very likely introduced during deposition of the

coating as a result of residue inside the CVD equipment from coating of other

substrate materials. The TEM study did not determine that the Zr was present

as ZrO2. An amorphous Si-rich phase was also present at the interface. This

glass probably formed from the binder material in the substrate. The grain

size of the Al20 3 in the coating ranged from 40 to 200 nanometers with the

majority being 50 nanometers.

The TEM results are consistent with earlier studies done using electron

microprobe. In particular, ZrO2 was found to be concentrated at the interface.

17
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Figure 3. SEM micrograph of the sm'face of a Phase I A1203 coating on SSC.
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(c)

Figure 4. SEM micrograph Cf a Phase I AI203+ZrO2 coating on SSC. a) Back

scattered electron image, b) AI X-ray map, c) Zr X-ray map.
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Phase II Coating

Figure 5 shows the surface of an A1203 coating deposited on SSC

substrate. The smooth surface topology is contrasted with the rough surface

of the Phase I coatings, Figure 3.

Figure 6 shows a cross-section of the A1H/A1203+ZrO2 coating on the SSC

substrat¢, the coating mor_hology on the RBSN and HSN substrates were

identical. The Zr is unifoT:mly dispersed throughout the composite region. A

• sample was prepared for transmission electron microscopy (TEM). This

sample showed that the A1203 grain size was 30 - 50 nm and was alpha A1203.

ZrO2 particles were not identified, this is believed to be due to the small

volume fraction of ZrO2 (5 %) in the composite making it very difficult to

identify ZrO2 particles directly. While the phase of ZrO2 was not identified it

is believed that the ZrO2 grain size was the same as the A1203 (30 - 50 nra).

Figure5. SEM micrographof the surfaceof PhaseIIA1203 coatingon SSC.
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Figure 6. SEM micro_'aphof a PhaseII AI203+ZrO2 coatingon SSC. a) Back
scattex_:l electron image, b) AI X-ray map, c) Zr X-ray map.

21



PHYSICAL PROPERTIES OF COATING

Qxldation.Literature Review

During Phase I, the oxidation resistance of the coating in static air was

studied. The coating was found to be oxidation resistant for up to 500 hours at

1000°C, but was not oxidation resistant at 1200°C or higher. The lack of

oxidation resistance at elevated temperatures was studied in Phase II.

The oxidation behavior of silicon nitride, silicon carbide, and

aluminum nitride were the subjects of several previous studies. A brief

summary of the literature is provided in the following sections. These

summaries are intended to provide basic information and to indicate some

relevant articles in the literature.

Oxidation of Silicon Nitride

The oxidation of Si3N4 depends on the type and amount of porosity, the

flow rate of the oxidizing gas, and the types of additives and/or impurities

present. Figure 7 shows the weight gain versus time for liquid phase sintered

Si3N4 [BAB83, SIN76a] and RBSN [POR84] for comparison. All samples were

oxidized at -1300eC, except RBSN-1100°C which was oxidized at l l00°C. The

oxidation rate was strongly dependant on the type of Si3N4 under study. The

general o_idation reaction is:

Si3N4 + 3 02 = 3 SiO2 + 2 N2 Eq. 1

However, when impurities are present, a mixed glass phase forms instead of

SiO2. This mixed glass may have a lower viscosity and can have a significant

effect on the oxidation rate. Full oxidation of Si3N4 to SiO2 is accompanied by a

28.3% increase in weight.

The oxidation of liquid phase sintered Si3N4 probably depends on the

diffusion rate of the cation impurities. An activation energy of 374 kJ/mole

(-93 kcal/mole) was reported [SIN76a]. During oxidation the cations became

concentrated in the outer $iO2 layer. MgO and CaO increase the oxidation rate.

This increase in oxidation rate was probably due to a lowering of the melting

point of the glassy phase which increases the diffusion rate. Impurities can

increase the oxidation rate by two orders of magnitude or more [BAB83].
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Varying the N2 and/or 02 partial pressures had no effect on the

oxidation rate of liquid phase sintered Si3N4 [SIN76a]. The velocity of the

oxidizing gas over the sample had no effect on the oxidation rate of liquid

phase sintered Si3N4 [SIN76a], however it did effect the oxidation rate of RBSN

[MAE89, BAR79]. During oxidation of RBSN a SiO boundary layer forms which

reduces the oxygen partial pressure at the surface and therefore favors

internal oxidation of the RBSN.

Oxidation of RBSN is very dependent on the amount of open porosity

[POR$4]. Open porosity results in the effective surface area of the sample

changing with time in a complex way. Open porosity allows oxygen to reach

the interior of the sample. As oxidation continues, the SiO2 which forms will

slowly close the pores. The closing of the pores is accompanied by a sharp

decrease in the oxidation rate.

Below 900°C the oxidation was parabolic with time and an activation

energy of 198 kJ/molc (--50 kcal/mole) was reported [POR84]. At 1200°C,

oxidation effectively stopped .after 1.5 hours, due to the pores being closed by

the viscous SiO2 layer. At I I0O°C the weight gain was faster than at 1200°C

and the oxidation stopped after 8 hours. This increased oxidation at lower

temperatures is due to the pores being open longer which allows more

internal oxidation to occur, and therefore larger weight gains were reported.
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Figure 7. Plot of silicon nitride oxidation data [BAB83, SIN76a, POR841.

Oxidation of Silicon Carbide

Several studies dealt with the oxidation of SiC powders [ERV58, ]OR59,

YPR61]. For times less than 10 hours the oxidation of SiC powder was parabolic

with dme. At longer times the oxidation was faster, which was probably due

to cracking of the SiO2 surface film [ERV58]. Oxidation of SiC in air, 02, and

CO2 showed the same behavior.

Figure 8 shows weight gain versus time for two types of sintered SiC

[DUT84] in air and a hot pressed SiC [SIN76b] in dry oxygen. The oxidation of

the sintered SiC was sensitive to the sintering aid, SiC-I had no reported

sintering aids and SIC-2 had B and C additions. The oxidation reaction is"

2SiC +3 O2=2 SiO2+ 2 CO Eq. 2
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Complete conversion of SiC to SiO2 is accompanied by a 49.9% increase in

weight.

Impurities concentrate in the Si02 film. Above 1200°C the SiO2 layer

was crystalline and the activation energy increased,-50 kcal/mole [JOR59].

This indicated that diffusion, probably molecular CO, through the Si02 film

was rate controlling [JOR59, MIE84, FUN84]. At low oxygen partial pressures,

less than 10.6 Pa, the protective SiO2 film cannot form and volatile oxidation

products result in rapid oxidation of SiC [WAR$4].

The presence of water vapor in the oxidizing atmosphere increased the

oxidation rate [WAR84, JOR61]. Hydrogen prevented the protective SiO2 film

from forming and increased the oxidation rate of SiC.
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Figure 8. Plot of silicon carbide oxidation data [DUT84, SIN76b].

Oxidation of Aluminium Nitride

The oxidation of AIN is not clearly understood and the literature

indicates that the "oxidation rate" of A1N has litde meaning. The oxidation
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rate must be determined for the specific oxidizing conditions the AIN part will

experience. The reaction was very sensitive to the water content of the

oxidizing atmosphere, which may explain the discrepancies between the

different studies. Oxidation was faster in wet N2 than in dry air [SAT87] and

increased with increasing water partial pressure.

Oxidation starts at 800 - I150°C. The weight gain began as a linear

relationship with time and became parabolic with time. The parabolic rate

constanthad an activationenergyof 60 - 65 kcal/mole[KAT87, LAV83], which

is reasonablefor a diffusionaiprocess. The probablereactionis:

4 AIN + 3 02 = 2 AJ203+ 2 N2 P_].3

NO2 and aluminum oxynitridemay alsoform. Completeconversionof AIN to

A1203 isaccompaniedby a 24.4% increasein weight.

Th= weightgainsdue to oxidationare in the rangeof 0 - 10 mg/cm2.

Figure9 is a plotof weightgainvenus timeforthe datain referencesLAV83

and BOC82. ReferenceLAV83 studiedthe oxidationbehaviorof AIN in 02 (at

900°C, 1000°C,I050°C,and 1100°C)and referenceBOC82 studiedthe oxidation

behaviorof AIN in air(at1300°C,1420oc,1490°C,1620°C,and 1680°C).

The A1203 oxidelayerthatformedwas veryadherent[BOC82]. Satee_al

[SAT87] found thatporousA1203 formed atlow temperatures,1250°C,and solid

A1203 formedathightemperatures,1400°C. However,Boch et al[BOC82] found

thatporousA1203 formedabove 1600°C and solidA1203 formed below 1600°C.

The reasonfor thisdisagreementis unclear.
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Figure 9. Plot of AIm o:/;idafion data [LAV83, BOC82].

Oxvffen Diffusion through Al__._l._.

Tile possibility of oxygen diffusion, either graLin boundary or lattice,

was theoretically evaluated. This was done by calculating the oxygen

concentration in an AI20 3 coating as a function of' temperature, time, and

distance. The approach used was taken from Fisher [FIS51]. Three types of

diffusion were included in the calculation: l) diffusion from the surface

down the grain boundary, 2) diffusion normal to the grain boundary into the

grain, and 3) diffusion from the surface through the grain (bulk diffusion).

Fisher's treatment was used for the first two types of diffusion, and the

constant surface concentJradon solution to Fick's second law was used for the

third type. For purposes of the calculation, the coating was treated as pure

J2o3.
Oxygen concentration profiles calculated at tqcmperatures of lIDO°C,

1200°C, 1300°C, 1400°C, and 1500°C for dines up to 234 years (2,048,000 hours)
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and diffusion distances of 0.5 microns, 1.0 micron, and 1.5 microns. The

following parameterswere used: grain boundary width = 5 x I0-8 cm, bulk

diffusivityfor oxygen in Al20 3 at 1500°C = 3.5 x 10"16 cm2/s, grain boundary

:liffusivityof oxygen in Al20 3 at 1500°C = 5.0 x 10"15 cm2/s, activationenergy

for oxygen latticediffusionin AI20 3 = 152,000 cal/mole K, pre-exponential

factor for oxygen latticediffusionin Al20 3 = 1.9 x 103 cm2/s, activation

energy for oxygen grain boundary diffusionin AI20 3 = 57,600 cal/mole°K,

pre-exponentialfactorfor oxygen latticediffusionin Al20 3 = 6.3x 10-8 cm2/s.

The activationenergies and pre-exponentialfactors were taken from Oishi

and Kingery [OIS60]. The calculationsindicatedthat,at 1200°C, the oxygen

concentration0.3 microns below the surface of the coating was less than 10-4

atomic per cent at 500 hours. At 1200°C and 1.0 micron below the surface,the

oxygen concentrationwas zero after500 hours and 1 x 10-2 atomic per cent

after 8090 hours. At a depth of 1.5 microns at 1200°C, the oxygen

concentrationwas 2 x 10-4 atomic percent after 8000 hours. The oxygen

concentration only became significantfor a depth of 1.5 microns and a

temperature of 1500°C after 8000 hours. This combination of time and

temperature is well beyond the anticipated service range of these coatings.

Hence, these results suggest that the coating should not fail due to oxygen

diffusion through an A1203 layer and that the composite layer is an adequate

diffusion barrier.

Oxidation Testin_

Oxidation tests of coated RBSN, SSC, and HSN were conducted with

substrates measuring I" x 0.2.5" x 0.02". For oxidation tests of coated sapphire

the subst_-ate size was I" x 0.25" x 0.08". This sample size was selected to

maximize the weight of the coating while minimizing the weight of the

substrate, thereby increasing the magnitude of the weight gain due to

oxidation and allowing for more sensitive weight gain measurements.

The oxidation treatments were done in a Lindberg box furnace, model

51314, in static air. The samples were weighed using a Mettler analytical

balance with a readability of 1 ttg and an accuracy of -.0.5 p.g. After oxidation

testing, some samples arc analyzed by X-ray diffraction (XRD) to identify the

oxidation products.
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Coatings on Savr_hir¢ Substrates

Substrates of single crystal alumina (sapphire) were used to eliminate

the contribution of substratc oxidation from the weight gain experiments.

Three coating configurations were examined, AIN/sapphire,

A1203/AIN/sapphirc, and A1203+ZrO2/A1N/sapphirc, these were oxidized in

static air at 1000°C, ll00°C, 1200°C, and 1275°C for up to 500 hours. The

samples were periodically removed from the furnace and weighed (after 2, 8,

30, 125, and 500 hours). One sample was removed and set aside for X-ray

diffraction analysis at each weighting. Due to flaking of the AIN coating, the

weight gain as a function of time did not provide useful information,

however, X-ray diffraction allowed the degree of A1N oxidation to be estimated.

31iV Coated Sapphire Substrates

Three samples with this coating configuration were examined at 1000°C

for 2, 8, 30, 125, and 500 hour oxidation times. Table A-1 (in Appendix A) lists

the t]mes and weights gains of these samples, and Table A-2 (in Appendix A)

shows the phases present after oxidation identified by XRD. The" A1N coatings

appeared to have flaked off during the oxidation treatments since the weight

gains in Table A-1 did not increase with time. The flaking was attributed to

poor adhesion between the AIN and the optically polished sapphire. The

weight gain data is plotted versus oxidation time at l l00°C, 1200°C, and 1275°C

in Figures A-1 - A-3 respectively.

XRD results indicated that some A1N was present in all of the samples up

to 500 hours and A1203 formed with its c-axis perpendicular to the plane of the

substrate. Two unidentified peaks of low intensity were found at 0.418 nm and

0.432 nra in ali of the samples in Table A-1.

_.2.t2__/AIN Coated Sa_phire Substrates

Three samples with this coating configuration were examined at

ll00°C, 1200°C, and 1275°C for 2, 8, 30, 125, and 500 hour oxidation times. Table

A-3 below lists the times and weights gains of these samples. The weight

gains listed in Table A-3 were expected to increase with time but did not due to

flaking of the coating.
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X-ray diffraction of the oxidized samples (Table A-2) indicated that A1N

was seen in some of the samples in Table A-3, however, the A1N peak intensity

appeared to be reduced in the sample oxidized for 500 hours at 1100°C.

Additional low intensity peaks were found indicating that AION may be

present.

The samples oxidized at 1200°C were similar to those oxidized at 1100°C

except the A1N peak intensity was reduced after 125 hours, and at 1275°C the

A1N peak intensity was reduced after 30 hours. In all of the samples discussed

above the A1203 was present in the alpha form.

_J2Q.___/AIN C_¢red Sapphire Substrates

Three samples with this coating configuration were examined at

1100°C, 1200°C, and 1275°C for 2, 8, 30, 125, and 500 hour oxidation times. Table

A-4 lists the times and weights gains of these samples.

X-ray diffraction of the oxidized samples (Table A-2) indicated that AIN

was seen in some of the samples in Table A-4. The A1N peak intensity was

reduced in the samples oxidized for 2 hours and longer at 1100°C. The samples

oxidized at 1200°C were similar to those oxidized at l l00°C except that the AIN

peak intensity was net observed for oxidation times longer than 2 hours, and

at 1275°C only a very faint A1N peak was detected after 2 hours. In all of the

above samples a-A1203 was the predominate A1203 phase, however, x-AI203

may have been present in the oxidized coatings. Also, both the orthorhombic

and monoclinic forms of ZrO2 were found in the oxidized and unoxidized

coatings.

Results of the tests are summarized in Tables 3, A-5 and A-6 and Figures

A-4 - A-21. The growth exponents listed in Table 3 were calculated by fitting

the data to an equation of the form:

(wt. gain, rag)n= C * (time, ht) Eq. 1
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where 'C' is a constant and 'n' is the growth exponent. A value of 2.0 for 'n' is

typical of growth processes which are diffusion controlled.

In all of the oxidation tests, 3 samples were oxidized at each condition in

Table 3. In the cases of large variability, samples with the highest weight

gains arc reported. The discrepancy between samples oxidized under identical

conditions was thought to be due to flaking of the oxidized layer.

The weight gain versus time plots for the substrates with AIN coatings

had two d/stinct regions (Figures A-4 - A-21). The first region lasted from 8 to

30 hours and was thought to be due to the rapid oxidation of the A1N layer.

The second region exists at longer times and is essentially flat, was probably

due to the oxidation of the substrate.

The results in Table 3 show that the oxidation of the A1N coating on SSC

and HSN substrates had a growth exponent of-2. This implies diffusion

controlled oxidation at 1200°C and 1275°C. The growth exponent of the A1N

coated substrates after the A1N coating was fully oxidized were 4 or higher. A

growth exponent larger than 2 can be due to cracking of the oxidized layer or

"ageing" of the oxide layer [MEIS9]. Growth exponents of 1 are attributed to

interface controlled kinetics.
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Table3. Summary of oxidationtestsfor uncoatedand AIN coated

RBSN, SSC, and HSN substrates.The testswere done in

staticairat 1200°C and 1275°C ina box furnace.

.... i ii

Average Time to Growth

Sample Number of Weight Gain 100% AIN Exponent?

• Samples _ I std.dev. conversion __.I std.dev.

(m_/cm 2) (hrs), r ,i ' i, " ! ii' ' ' i i ,,, _ , i f m , ,, i

Uncoated RBSN

1200°C 1 0.931 ......

1275"C 2 0.994 +_0.007 --- 1.2 +_0.1

Uncoated SSC

1200°C 3 0.167 --- 4.5 _+0.4

1275°C 2 0.219 + 0.039 --- 1.6 ± 0.1

Uncoated HSN

1200"C 3 0.279 ± 0.014 --- 2.6 +_0.2

1275°C 2 0.990 ± 0.007 --- 2.2 ± 0.1

1200"C 3 0.334 ± 0.219 <30 1.0 +_.0.3

1275*C 1 2.736 <8 2.6

_sc

1200=C 1 0.456 <30 2.1 ± 0.1

1275°C 2 1.511 _+0.283 <8 1.9 +_.0.4

1200"C 3 0.483 ± 0.091 <8 1.9 _+0.1

1275"C 2 1.816 ± 0.057 <8 1.9 ± 0.3
i

? the growth exponents for the AIN coated substrates are only for

oxidation times up to the "Time to 100% A1N conversion".
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Phase Formation During. Oxidation of Uncoated and Coated Substrates

The phases identified after the full 500 hours of oxidation on uncoated

and AIN coated RBSN, SSC, and HSN are listed in Table A-5 for all temperatures

tested. Uncoated RBSN was predominantly a-Si3N4 and tended to form Si02

when oxidized, Uncoated SSC consisted of predominantly the 8H and 12H

polytypes and formed SiO2 when oxidized. Uncoated HSN was predominantly

[3-Si3N4 and formed a-Y2Si207, Y2SiO5, and Si02 when oxidized. The yittrium

came from the grain boundary phase. Yttria was added to this material as a

densification aid.

The oxidation of the AIN coated materials resulted in similar phase

formation as the uncoated materials with the addition of A1203. The A1203

came from the oxidation of the AIN phase. No phases were identified that

suggested a .-caetion between the AIN and Si3N 4 or SiC.

The conventional coating (AI203+ZrO2/AIN) was tested, along with

• AI203/AIN, Table A-6. The latter coating was evaluated to eliminate the effect

of ZrO2 to make the interpretation of the oxidation results simpler. ZrO2

undergoes a phase transformation and 10% volume change at-1200°C which

may cause the coating to crack or flake.

The oxidation tests showed that ali coating/substrate configurations

failed at all temperatures. A post-failure analysis was initiated to determine

the cause(s). One possibility was porosity in the oxide layer of the coating.

Examination of as-grown coatings has shown a variety of features ranging

from cauliflower shaped clusters of grains to fac_,ted grains. Examination of

the cauliflower shaped clusters at 5000x shows the presence of large gaps

between clusters. Due to the thinness of the oxide layer of the coating

(typically less than 2 microns), these gaps could penetrate to the AIN layer.

An attempt was made to determine if AIN was exposed by doing a nitrogen map

using an electron microprobe analyzer. Two samples were examined, and

neither gave a nitrogen signal, suggesting that the Al203+ZrO 2 coating was

continuous. However, the sensitivity of the microprobe to nitrogen was -3

weight per cent and the detection limit for gaps was -I micron ; i.e., only gaps

larger than I micron could be detected.

The results indicate that the current coating configuration is not

oxidation resistant for 500 hours at temperatures above 1000°C. The lack of
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protection is attributed to cracks in the A1203+ZrO2 layer, which allow oxygen

to penetrate and react with A1N. The kinetics of oxidation of A1N are

sufficiently slow at 1000"C for the coating, to protect the substrate for 500

hours. However, above 1000"C, the oxidation rate of AIm is rapid enough to

cause the A1N to fully oxidize to A1203 before 500 hours. This oxidation is

accompanied by further cracking, which in turn increases the oxidation of

the substrate. The cause of cracking in the AI203+ZrO2 layer is large residual

stress due to thermal expansion mismatch between A1203 or Zr02 and Si3N4 or

SiC. Th_ stress in the AI203+ZrO2 layer is approximately 1900 MPa for a Si3N4

substrate and 1300 MPa for a SiC substrate, which is well in excess of the

fracture strength of the AI203+ZrO2 layer. Physical vapor deposition (PVD)

methods, which allow the residual stress state to be controlled, or low

temperature CVD processes may allow for crack-free coatings to be deposited.

When these coatings are heated to 1200°(2 the stress in the coatings would be

compressive and they would not crack, although they may fall by buckling.

The thermal stress and coating cracking problems are addressed in a

following section.

Contact Stress Testine

The contact stress testing from Phase I of the program was completed
T.:"by Garrett _u,bme Engine Company. Twenty coated MOR bars (dimensions 2"

x 1/4" x I/8") and pins of each substrate (RBSN, SSC, and HSN) were tested for

contact stress using point sliding contact. The test procedure was described

elsewhere [SCH87]. Each sample had a--5 micron thick ,MN intermediate layer

and a 1 micron thick outer layer of Al203+ZrO2 composite. The coated MOR

bars were oxidized in static air at 1200"C for 100 hours before application of

the contact stress. After oxidation, the composite coatings exhibited good

adherence to the RBSN and SSC substrates and poor adherence to the HSN

substrates. Flexure strength (using 4-point bending)was measured after

application of the contact stress. The friction coefficient was also calculated

by Garrett.

Tables 4 - 6 show the strength loss and maximum friction coefficient

measured for each set of conditions. The "As-coated strengths" were taken

from samples that were oxidized at 1200"C for 500 hours and tested at 250C and
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from unoxidized samples tested at 1000 and 1200°C. Those measurements wore

made at GTE on a separate set of samples. All samples contact stress tested

showed a strength loss of 30 - 50%. The increase in strength of the HSN

samples tested at 1200°C (soc Table 5) is not understood.

It was previously reported [DAN89] that the Al203+ZrO2 coatings flaked

off the substrates and that the samples were fully oxidized after I00 hours of

oxidation at 1200°C. Based on the previous oxidation data and the multiple

factors involved in the contact stress testing (oxidation, contact stress, and

variable friction), no firm conclusions are drawn from this contact stress

data.
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Table4. Summary of contacttestingand post-contactMOR strength

testing for CVD coated RBSN.
i

i i

Test Applied Max. As-Coated Retained Contact Change in

Temp. Load Friction Strength Strength Damage Strength

(°C) (Ibs) (MPa) (MPa) (%)

i iiiii i
i i i ii i i

25 25 0.44 197 154 yes -22

" " 0.47 " 157 yes -20

- " 0.54 " 137 yes -30

" 50 0.35 " 188 yes -5

- " 0.43 " 130 yes -34

- " 0.37 " 124 yes -37

" 60 0.50 " 116 yes -41

- " 0.48 " 119 yes -40

" " 0.45 " 131 yes -34

I000 25 1.36 245 150 yes -39

" " 1.65 " 137 yes -44

" 50 0.82 " 164 yes -33

" " 0.63 " 115 yes -53

....1200 25 1.02 224 90 yes -60

- " 1.03 " 105 yes -53

" 50 0.94 " 92 yes -59

- " 0.81 " 95 yes -58
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Table 5. Summary of contact testing and post-contact MOR strength

testing for CVD coated HSN.

i i

Test Applied Max. As-Coated Retained Contact Change in

Temp, Load Friction Strength Strength Damage Strength

(°C) (Ibs) (MPa) (MPa) (%)

L...... ° ...... " I I i i IFlll I ill iii I iii ii i iii illl lit Ii rl I I III iIlllll i

25 50 0.81 520 267 yes -49

" " 0.43 " 564 no +8

" " 0.69 " 330 yes -37

" 60 0.71 " 318 yes -39

" " 0.72 " 322 yes -38

" " 0.65 " 368 yes -29

" 75 0.54 " 334 yes -36

" " 0.71 " 310 yes -40

" " 0.67 " 316 yes -39

I000 50 0.60 557 316 yes -43

" " 0.68 " --* ......

" 75 0.87 " --* ......

" " 0.85 " 109 yes -80

1200 50 0.36 393 466 n o +19

" " 0.48 " 453 no +15

" 75 0.43 " 531 no +35

" " 0.42 " 545 no +39

* Tested improperly
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Table 6. Summary of contact testing and post-contact MOR strength

testing for CVD coated SSC.

, ,, , u ................... i ill i i1| Iii i i i ill i i

Test Applied Max. As-Coated Retained Contact Change in

Temp. Load Friction Strength Strength Damage Strength

(°C) (lbs) (MPa) (MPa) (%)

• I
I llll _li,Inw i i i ] ii T_lll I H|ll ,, _11I,,ll I I if

25 40 0.23 328 248 yes -24

" " 0.48 " 180 yes -45

" " 0.50 " 209 yes -36

" 50 0.35 " 195 yes -41

" " 0.49 " 178 yes -46

" " 0.30 " 192 yes -41

" 60 0.55 " 202 yes -38

" " 0.76 " 183 yes -44

" " 0.51 " 162 yes -51

1000 40 0.59 258 172 yes -33

" " 0.69 " 173 yes -33

" 60 0.45 " 165 yes -36

" " 0.49 " 152 yes -41

1200 40 0.85 320 141 yes -56

" " 0.89 " 115 yes -64

" 60 0.64 " 169 yes -47

" " 0.91 " 155 yes -52
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Friction Coefficient Tests

Self-mated sliding wear tests have been carried out at room

temperature with uncoated and coated samples. In the tests of uncoated

substrates the pin and disk were of the same material. In the tests of coated

substrates the pin and disk were both coated. These samples included RBSN,

SSC, and hot-pressed silicon nitride (HPSN). Hot-pressed material was used in

place of hot isostatically pressed material (HSN) for this study due to the

availability of HPSN of the proper size for fabricating into pins and disks.

Tests were conducted using a pin-on-disk set-up, Figure 10. The tip of

the pin is spherical, which gives similar results to those obtained in a ball-

on-disk t_st. The testing procedure is based upon the conditions used for the

VAMAS round-robin on wear test methods [RUF89]. Tests are carried out in air

with an applied force of 10 N and a sliding velocity of 0.01 m/s.

Figure I0. Schematic of pin-on-disk wear test system. F is the normal force

on the pin, d is the pin diameter, D is the disk diameter, R is the

wear track radius, and m is the rotation velocity of the disk.
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Table 7 summarizes the friction results obtained. The breakaway

friction coefficients were measured prior to wear testing on surfaces polished

to a 1 micron finish. The values reported for the kinetic friction coefficients

are the steady state values obtained after 500 meters of sliding. These results

show that in some instances the AI203+Zr02 coatings reduce friction. A

significant reduction in kinetic friction value is obtained in the case of HPSN

and RBSN, while no apparent benefit is observed with SSC at room

temperature. The results at 1000°C were not sufficient to determine coating

performance. The wear surfaces of uncoated HPSN, RBSN, and SSC are shown

in Figure II and the wear surfaces of coated HPSN, RBSN, and SSC are shown

in Figure 12. Figure II shows the worn pin and disk surfaces of uncoated

ceramics after 500 meters of sliding contact. The spherical tip of the pins

develop a circular wear scar, the extent of which is a measure of wear

resistance. Coating the pin and disk materials leads to a noticeable

improvement in wear resistance for HPSN as seen by the reduced wear scar

on the pin and the polished wear track surface of the disk, Figure 12. The

RBSN and the SSC materials were not protected as effectively by the coating,

which is in part attributed to the poor adhesion of these coatings to the

substrates. The wear results obtained with coated materials do agree with the

lower kinetic friction results for I-IPSN and RBSN in Table 7.
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Table7. Resultsfrom pin-on-diskfrictiontestsof uncoated

andAI203+ZrO2/AINcoatedRBSN, I-IPSN,andSSC. Ali

testswcrc done on self-matedsamples. Reported

values,unlessotherwiseindicated,are an averageof

threetestson the same pairof samples.

Material Test Brcakaway KineticFriction
Temperature Friction Coefficient

(°C) Coefficient
.... initial [after1 kmii | i

RBSN
uncoated 25 0.10 0.5 0.8

coated 25 0.17 0.3 0.4

HPSN
uncoated 25 0.3 --- 0.8
uncoated 1000 0.15 0.5 0.9*

coated 25 0.14 0.3 0.4

SSC
uncoated 25 0.1 --- 0.3
uncoated I000 0.25 0.5 0.7

coated 25 0.17 0.3 0.4

i ii i |

*only i samplehas been testedatthiscondition.
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UNCOATED
Pin Disk

Figur_ 11. Wear tracks on the pins and disks for uncoated HPSN (top), RBSN
(middle), and SSC (bottom), after a sliding distance of _00 me_ers
at a sliding velocity of 0.01 m/s.
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ODATED
Pin Disk

Figure 12. Wear tracks on the AIN/AI203+ZrO2 coated pins and disks for
HPSN (top), RBSN (middle), and SSC (bottom), after a sliding
distance of 500 meters at a sliding velocity of 0.01 m/s.
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Scratch Tests

In a scratchtesta diamond indenter(RockwellC) is drawn over a

sample at a constantvelocitywhile the normal force is monotonically

increased(0 to 100 N). An acousticpick-upisattachedto the sample holder

and both the forceand acousticSignalsare recordedduringthe test.

The uncoatedand AI203+ZrO2/AIN coateddisksof HSN, RBSN, and SSC

from the pin-on-diskwear testswere scratchtested.Figures13 - 18 show the

load,acousticemission,and wear tracesfor each sample. Severalpointscan

be made from these figures. The forcetracesof the uncoated and coated

samples were similarwith the exceptionof uncoated SSC, which showed

severallarge load drops. In general,the acousticemissionof the coated

samples was lessthanthe acousticemissionof the uncoatedsamples. Acoustic

emission is regardedas an indicatorof substratecracking. The scratches

themselves are very informativeand vary from sample to sample. The

individualsamples are discussedbelow.

Crackingof the uncoatedSSC diskbegan at -40 N (Figure13). As the

forceincreasedthe crackingbecame massivefailureof the SSC disk. The

coatedSSC disk(Figure"14) had a lower acousticsignalthan the uncoatedSSC

disk,indicatingthatthe coatingprotectedthe SSC substratefrom damage. The

scratchesonthe uncoatedand coatedSSC areverydifferent.The uncoatedSSC

showed massive crackingand chipping,while the coated SSC showed no

chippingand lesscracking.The major damage to the coatedSSC was in the

form of flakingof the coatingin the scratchtrackbeginningat -30 N,

indicatinglow adhesionof the coatingto the SSC.

Vent cracksbeganto form in the uncoatedRBSN disk-30 N (Figure15).

As the force increasedthe size of the vent cracksincreased,however, the

RBSN did not chip. The coatedRBSN disk(Figure15) had a lower acoustic

signalthan the uncoatedRBSN disk indicatingthatthe coatingprotectedthe

RBSN substratefrom damage. The scratcheson theuncoatedand coatedRBSN

wer_ similar.The majordamage to the coatedRBSN was in theform of flaking

of the coatingin the scratchtrackbeginningat very high forces,-90 N,

indicatinghigh adhesionof the coatingto the RBSN.

Uncoated HSN behaveddifferentlythan the SSC and RBSN (Figure17).

HSN did not exhibitmassivechipping(likeSSC) or vent crackformation(like
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RBSN). The uncoatedHSN failedat a high force,-90 N, by small scalechipping

at the edge of the scratchtrack. The coatedHSN (Figure18) was similarto the

coatedRBSN. The coatedbegan to flakeat-50 N. However, the flakingwas not

continuous at forces greater than 50 N. The discontinuousnature of the

flakingmay be relatedto processingdefectsin the coating.

100
Coated HPSN

Figure 13. Scratchtestresultsof uncoated HSN. The load traceis the solid

line (lef_ axis) and the acoustic signal is represented by the

spikes (rightaxis).
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100
Uncoated HPSN

Figure 14. Scratch test results of coated HSN. The load trace is the solid line

(left axis) and the acoustic signal is represented by the spikes

(right axis).
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100 UncoatedRB
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Figure 15. Scratch test results of uncoated RBSN. The load trace is the solid

line (left axis) and the acou tic signal is represented by the

spikes (right axis).
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100
CoatedRBSN

Figure 16. Scratch test results of coated RBSN. The load trace is the solid

line (left axis) and the acoustic signal is represented by the

spikes (right axis).
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lO0
UncoatedSSC

Figure 17. Scratch test results oi" uncoated SSC. The load trace is the solid

line (left axis) and the acoustic signal is represented by the

spikes (right axis).
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100
Coated SSC

Figure 18. Scratch test results of coated SSC. The load trace is the solid line

(left axis) and the acoustic signal is represented by the spikes

(right axis).
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Measurement of Fracture Stress and. Toughness of Coatln_s o n

Substrates

Conventional mechanical property measurement techniques usually

cannot be applied to thin ceramic coatings because of the small amount of

material involved. A method is described to determine the ultimate tensile

strength, Weibull modulus, and crack density of micron-sized ceramic

coatings. This technique is based on measuring the radius of curvature of a

coated substrate, and equating the resulting calculated stress with a

theoretical shear-lag stress distribution model. The Weibull modulus and

fracture stress of chemical vapor deposited coatings of A1203 have been

measured on SiC and Si3N4 substrates. The fracture stresses for coatings of

these materials ranged from 190 MPa to 480 MPa, the Weibull modulus ranged

from 16 to 28, and the fracture toughness ranged from 0.5 - I.I MPa_r'n_m. These

results are summarized in Table 8. This work has shown that the tensile

su_ngth cf A1203 and AI203+ZrO2 coatings can be approximated by bulk

values, however, the fracture toughness of these coatings was found to be

significantly lower than bulk values. This method is detailed in Appendix B.

Table 8. Calculated fracture stress, fracture toughness, and Weibull

modulus for A1203 and AI203+ZrO2 coatings.

_I [ [ i i [ [ [ rail i [ |[[ [I [ • i [ i li I I i i I iii |

Sample Temp.of First Fracture Fracture Weibull
Cracking Stress, of Toughness, KIc Modulus

(coating/substrate) (°C) (MPa) (MPa_m)
• i iiii ii . i

AI2Os/SLC
Inconel :'¢ac:.or 800 190 0.5 19

Graphite reactor 770 240 0.5 28

A1203+5 v/oZr02 590 480 I.I 16

= ,,% , , ' , ", ,,, % , , ,! , _ , , ,',
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COMPUTER MODELLING OF BRITTLE COATINGS

COMPUTER SIMULATION OF RESIDUAL STRESS

Numerical models were developed to predict residual stresses in the

coating and substrate. The goal was to develop a model with predictive

capability which could be used to determine the optimum thickness of each

layer.

In coatings deposited at elevated temperatures, where the coating and

substrate materials have different coefficients of thermal expansion (CTE),

large stresses are generated in the coating after cooling to room temperature.

Figure 19 shows CTE values for the materials in this study. If tensile, these

stresses often lead to cracking of the coating. The stress component we are

most concerned with is the in-plane normal stress away from the edges of a

coated sample. The word "stress" is used here to describe this component.

As a coated substrate is cooled, stresses build-up in the coating. For

most ceramic coatings these stresses can be described by elastic relationships.

Because the coating is often a ceramic, it has a distribution of fracture

strengths. Once the fracture stress of the weakest part of the coating is

reached, the coating will crack. The coating will not crack again until it is

cooled further because of the distribution of failure strengths and because

the remaining uncracked coating has a smaller volume and therefore a

higher failure strength.

In phase I conventional FEA was used to predict residual stresses for

the case of A1N coatings on pure Si3N4 and SiC substrates. The model assumed

linear elastic behavior, constant physical properties within a coating layer,

and zero deposition stresses. Calculations for I0 micron thick coatings gave

residual stresses which oscillated between elements, regardless of mesh

pattern. This was found to be caused by the large aspect ratios of the finite

elements. Consequently, a technique for varying the mesh size was

incorporated [SHA$8]. The model was used to predict edge effects (Figure A-2).

One drawback of the second generation model was that the predicted

stress was insensitive to edge effects. In addition, the model used 90 ° angles at

corners. In an effort to overcome these problems, the model was modified to

use a hybrid-stress technique [SHA88].
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In phase II, a generalized treatment of the thermal expansion

mismatch problem was carried out. In addition, finite element analysis

involving the complex combination of thermal stress, linear elastic fracture

mechanics and fracture mechanics of bimaterial interfaces was implemented.

This work was based on contact stress issues for ceramic coatings. The method

has been applied to the single and multilayer coatings of this study and deal

with the presence of pre-existing flaws which are in the form of vertical or

horizontal cracks. The driving force for crack initiation and propagation

stems from thermal loads and a resultant normal load which simulates single

point contact. The following sections describe theory and results of the newly

developed technique.

Figure 19. Thermal expansion coefficients of the various materials present

in this system over the temperature range 2:5"C to 1500°C.
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Slmnle Beam T_eol'_

The in-planestressin a narrow bimaterialstripgenerated by a change

in temperaturewas derived by Timoshenko [TIM25].

!= ...........c 2-l)(Td'T.i! 2
P 2+t 2(EIII+E212) (EI_lt + E2-_21

_max = (EIII + E212) + P,q. 3

where p is the radius of curvature, a is the coefficient of thermal expansion,

T i is the final temperature, T d is the initial temperature, "E" is the elastic

modulus, "I" is the moment of inertia, "ti,2" is the layer thickness, and "t" is

the total thickness (t=tl+t2). Mor_ details are given in Appendix B. For

systems of interest in this study a coating is thin if it less than 10% of the

substrate. Figure 20 shows the bending and axial contributions to the stress

in a con'.ing. The coefficient of thermal expansion and elastic modulus of the

materials are treated as temperature dependent quantities and Equations 2 and

3 arc numerically integrated over temperature range (T d to Ti)to solve for

the stress in the coating. The treatment of the coefficients of thermal

expansion as temperature independent constants can lead to significant

errors in materials where these coefficients are strong functions of

temperature. An example of such a material is diamond.

The stresses in AIN and A1203 coatings deposited onto SiC and $i3N4 at

1000°C arc shown as a function of cooling temperature in Figure 21. A1203'

coatings on SiC and Si3N4, and AIN coatings on Si3N4 have very large stresses

at room temperature, while AIN has only moderate stress level at room

temperature. Based on these calculated stresses the A1203 coatings would be

expected to be cracked at room temperature. The presence of cracks in the ....
":..

A1203 coating has obvious consequences for the ability of the coating to act as

an oxidation barrier for the substrate.
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l=igurc 20. At coating thicknesses less than 10% of Lhc substratc thickness

most of the stress in the coating is duc to the axial component

and is therefore independent of the coating and substrat¢
.

thicknesses.
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Figure 21. Stress in coating versus AT for AIN coatings on SiC and Si3N4, and

AI20 3 coatings on SiC and Si3N4.

Comno_ite Plate Theory_

The method follows the flow chart illustrated in Figure 22.

Nomenclature is given at the end of the report. The geometry of the coated

system is shown in Figure 23, and Figure 24 illustrates the numbering scheme

for a multi-coated substrate. In figure 24, layer 1 could be the substrate, and 5

coating layers could be represented by layers 2 through 6. The method is

flexible for describing any number of coating layers. Note that h is the total

thickness of the substrate and all the coatings. (See appendix D for details).

56



I iI Thermal Mechanical

Loads Loads
ii

Layer Stiffness - Q ij

Stiffness - Q ij

_ , ,

Total Stiffness -"ABD"
H ,_J ]

T

Total Compliance' 1Hij - [ABD] -I
i

Stress/Strain Results
i

Figure 22. Flow chart for computer code implementation of composite plate

theory. Layer properties were used to get transformed
stiffnesses for each layer, and these were cumulated into a total

stiffness matrix for the entire coated system. Unknown mid-

plane strains were then solved for, and stresses in each of the

layers recovered.
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l hl2

Figure 23. Schematic of the coated substrate model; h is the total thickness,

and the mid-plane is at h/2. The z direction is normal to the

plane of the coatings.
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Fi.gurc24. Numbering scheme for a multicoatedsystem, h is the total

coating thickness,and all interfacepositionsare measured

relativeto the mid-planeath/2,which the z = 0 plane. Note that

layersbelow thisplane have negativeinterlayerpositionvalues.

Comoarison to Finite Element Results

Numerical experiments were performed to compare the generalized

compositeplatetheoryto thoseobtainedby the finiteelementmethod.. Table

9 shows the materialpropertiesused in all stressanalyses. Each of the

systemswas cooled from I000°C to findthe residualstressin each of the

materialspresent.The substratewas 6350 micronsthickfor allstudies.

Table 9. Material properties used for substrates and coating layers in

this part of the study.

H, .......

Thermal
Material Young's Poisson's Fracture

Expansion Coeff.
Modulus Ratio Toughness (/°C) x 10-6

........... _(Gp.a) .......... _ .....(MVa_m) ,m,, i

AI20). 390 0.22 - 7.8

A1N 340 0.24 1.0 4.9

Interface 320 0.255 - 3.8

SiC 207 0.22 - 4.3

A1203+ZrO2 380 0.22 5.0 9.4

Si3N4 296 0.27 3.5 2.7
ii i i i . i i i mim i " ,,. i
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To ensurethatthe compositeplatetheorycode was working correctly,

the stressresultswere compared to a finiteelement solutionof a similar

problem [SHA$8]. The finiteelementmethod used in Sham and Satin[SHA88]

was speciallyformulatedto exploithybrid finiteelements because of the

relativesizeof the elementsused for the coatingand for the substrat¢.

Resultsfor both substrat¢materialsare shown in Table 10. Excellent

agreement between the two methods is shown, thus confirming the

•applicabilityof compositeplatetheoryto thisproblem.

_.N#_.._
Three numerical experiments were performed with the silicon nitride

substrate. Firstly, residual stress with no interlayer but with varying

thicknessof the alumina-zirconiacoatingwas calculated. Next an AIN

interlayerbetween the alumina-zirconiaand Si3N4 substratewas variedin

thicknessand residualstressesfound for each material. Lastly,the AIN

coatingwas placed above the$i3N4 coatingto illustratethe irrelevanceof

thermal expansion grading.

Resl.dtsare shown in FiguresD-I,D-2, and D-3 (seeAppendixD). The

resultsindicatethat the presenceor absence of an interlayer,thicknessof

the coatinglayers,and order of the coatingson the substratchave negligible

effecton residualstressin each of the layers.
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Table 10. Comparison of 2-D finite element results using special hybrid

elements to the composite plate theory described here. Stress

values are from reference [SHA88], values in parentheses are

results from the composite plate code described here. For both

tables AT = -1000°C. Note use of Si3N4 and SiC substrates.

i ii

Layer Young's Poisson's Thermal Residual Stress (MPa)
Modulus Ratio Expansion [Layer Thickness, _tm]

(GPa) Coeff. (/°C)
, I

ii

A1203" 390 0.22 7.8 x 10-6 2475 (2527) 2482 (2534)ilO] [4]

A1N* 340 0.24 4.9 x 10-6 938 (964) 943 (970)
[3] [9]

Interface* 320 0.255 3.8 x 10-6 442 (453) 448 (459)
[li [11

Si3N4* 296.5 0.27 2.7 x 10-6 - 16 - 11
(-17) (-12)

i ii i i i i i i

A1203? 390 0.22 7.8 x 10-6 1731 (1728) 1740 (1738)[lO] [4]

A1NI" 340 0.24 4.9 x 10"6 282 (249) 290 (258)
[31 [91

SiCt 207 0.22 4.3 x 10-6 -11 (-11.5) -6 (-6)

tSiC substrat¢. *Si3N4 substrate.

SiC ,Substrate

Since it has been shown that coating stresses are not sensitive to
i

thickness or coating order variations, ali pertinent stresses for the SiC

substrate coating systems can be found with a single residual stress analysis.
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The stresses shown in Figure D-4 (appendix D) are applicable for changes in

any of the layer thickness or order sequence.

Based on these studies, our conclusions for brittle ceramic coatings on

Si3N4 and SiC substrates arc:

• Verifying that coating thickness has negligible effect on residual

stress in any of the coating layers.

• The order (i.e., grading the thermal expansion mismatch in a

multilayer coated system) has negligible effect on residual stress in

any of the coating layers.

• Modulus of elasticity has almost no effect on residual stress in any of

the coating layers.

• Because each of the coatings are thin films relative to the size of the

substrate thickness, the strain in the coatings is the same as die st'rain

at the top fiber of the substrata, that zone which has an interface with

the first coating layer.

• If material properties vary as a function of temperature, magnitudes of

stress will be different, but the above conclusions still hold.

It should be noted that these conclusions apply to brittle thin films, and

that simulations were performed on untracked coating layers. The stresses

calculated in each of the layers would be those which induce cracking in any

of the layers, and as such are indicators of the tendency for cracking during

cooling from the CVD process.

The effect of crack propagation during solid body contact of these

elastic layers is not known, so thickness and layer ordering may have an

effect in that case. The possibilities for working around the problem

inherent to brittle coatings could lie either in the area of controlled brittle

fracture using multilayer coating, or by the use of "ductile" layers which

would permit stress relief of the ceramic layers when they are bonded to
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otherbrittlelayers. However, the requiredthicknessof the ductileinterlayer

wqould probablybe too thickforpractialapplications[SCH92].

COMPUTER SIMULATION OF COATING FRACTURE

_|n_le Laver .....with Interface - Initial Vertical Flaw

Studieswere performedon a single-layercoatingof AI203+ZrO2 on a

substrateof siliconnitride.Subsequentsectionswill describeresultsfor a

multi-layercoatedsubstratc.Loads were imposedon the body in the form of

residualthermal stress,and mechanical loads resultingfrom solid body

contactwith friction.The finiteelementmodel allowsautomaticchangesin

mesh topologydue to crack growth,and a bimaterialfracturemodel which

takes into account the different fracture toughnesses of the coating,

interface,and substratewhen the cracksare at or near the interface.Results

indicatethat,subjectto theseloads,a verticalflaw in the coatingpropagates

approximatelydownward untilthe coating-substrateinterfaceregion. Once

the crack has enteredthe interface,it moves away _from the contact loads

along the interfacea distanceof approximatelyhalf the coatingthickness,

afterwhich it continuesin a directionnearlynormal to the net directionof

the appliedload. Since the crack did not continuealong the interface,

improvements in the interfacebond strengthwould not have significantly

influencedthe crack growth direction.

Geometry

A finiteelementmesh was createdto simulatethe cross-sectionof a

wide sample (plane-strain)of a single layer coated substratc. Coating

thicknesswas 2 microns,substratethicknesswas arbitrary,and assigneda

valueof 58 microns.

The plane of the mesh is shown in Figure25. For the singlelayer

analysistheAIN interlayerwas notused. The model was simplyAl203+ZrO2 on

a Si3N4 substrate.The widthof the model was 60 microns. A setof boundary

markers existsbetween the elementswhich describethe coatingand those

_at define the substratc. These boundary markers locatethe bimaterial

fractureboundary. During remeshing,this boundary must lie on element

63



boundaries to keep the interface coherent. The model initially was crack-

free. A vertical flaw 0.5 microns long was positioned I micron from the

mechanical load. As the crack propagated, the model was automatically

remeshed to take into account the change in surface, the bimaterial interface,

and the stress concentration at the crack tip. Eight noded quadratic elements

were used for the original mesh. Mesh changes were mapped with 6 noded

triangular elements, and the crack tip was modeled with 6 noded singularity

elements. When the crack tip was at or near the bimaterial interface,

singularity elements were not used. For each crack increment, the next

propagation direction was predicted by using a maximum energy release rate

criterion, which is also applicable in the region of the interface. The energy

release rate was calculated by comparing the energy released by the system

for candidate directions in each of the materials in the vicinity of the crack

tip. Once a direction was found, the crack length was increased a small

amount and the calculation repeated. This procedure was continued until no

significant change in the direction of crack propagation was seen.

]3oundary Conditions

Thermal loads were applied to the entire body by including a

temperature change of-1000°C into the analysis. This temperature is typical

of temperatures used in the CVD process for this material system. It was

assumed that the coating was applied to the substrate in the CVD chamber in a

stress-free state and that stresses were generated upon cooling by thermal

expansion mismatch between the coating and the substrate. A mechanical

load was also applied to the coating. The mechanical loads represents the load

applied by solid body contact. The load was distributed over a 1 micron region;

the shape of the distribution was parabolic. The magnitude of the maximum

value of the distribution was scaled such that the stress results were

normalized from zero to one. The coefficient of friction used was 0.5, resulting

in the same form of the distribution of shear stress on the surface of the

coating. Figure 26 is a schematic of the boundary conditions. As previously

mentioned, the A1N interlayer, while shown in Figure 25, was not used in the

single layer analysis. On the lower edge of the model, the central node of the
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edge was pinned, and ali other nodes on the edge were constrained in the

vertical direction.

Material Prononies

The coating material was AI203+Zr02 and the substrato was silicon

nitride. Both materials were modeled as elastic in both thermal and

mechanical properties. Material properties wore assigned to the coating,

substrate and interface. Elastic and thermal properties for the coating and

substrate are shown in Table 9. The interface energy release rate as a

function of mode-mixity is shown in Figure 27.

Crack Pr0va_ation $tudi_s

The crack propagation occurred over 14 crack increments, after which

the direction of crack growth remained constant. Since the crack crossed the

bimaterial interface, the bimaterial interface fracture model was used for

several crack growth steps. Other crack growth steps used linear elastic

fracture mechanics theory solved using finite element methods. This

bimaterial fracture model has been implemented into a finite element

framework [FRA91], and the key concept in the numerical scheme is that the

crack is predicted to propagate in the direction of maximum energy release

rate. This energy release rate is analogous to that described for homogeneous

fracture theory. The difference is that there may be several candidate

directions where the energy release rate is a maximum. Ali candidate

directions for all materials must be considered and compared. The method was

developed to apply in cases where the crack tip is in or near a bimaterial

interface. Figure 28 shows the finite element mesh prior to crack growth.

The upper four elements comprise the coating region. Elements below the

upper four comprise the substrate. An enlargement of the initial vertical

flaw, showing the original and deformed shape of the coated system is shown

in Figure 29. Note that the deformed shape was a result of the thermal,

normal and shear loads on the structure. Figure 30 illustrates the direction of

crack growth prior to crossing the bimaterial interface. The crack has begun

a slightrum away from the appliedmechanicalloading.Figures31 shows the

deformed shape for the finalcrack increment. Note thatthe crack did not
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remain in the interface, as it would for a material with a lower range of

interface fracture toughnesses (lower GIc curve), and also that the final crack

direction is approximately normal to the applied mechanical loading

direction. The fracture modeling of coated systems continues in the next

section with a two.layered coated subs,rate; under the same thermal and

mechanical loads.

Figure 25. Schematic of the finite element mesh relative to microstructural

cross section. Direction and positioning of scratch test indenter

is shown.
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AT = -1000 °C
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Figure 26. Schematic of the boundary conditions used in the fracture

simulation. Coefficient of friction was 0.5. The value of "p' (the

maximum magnitude of the load distribution) was assigned a

value such that the stress results are normalized.
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Figure 27. Energy release rate for the interface as a function of mode

mixity. A mode-mixity of 0.0 describes pure mode I loading at the

crack tip, and a mode-mixity of 90 (degrees) describes pure mode

II loading at the crack tip.
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Figure28. Initial(uncracked)mesh used in the fracturesimulationstudy.

The mp fourelementsarctheAI203+ZrO2 coatingmaterial.



Figure 29. Initisl vertical _law, 0.5 micror_ long (1/4 coating thickness).
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Figure 30. Deformed shape and crack growth direction prior to crossing the

bimatcrial interface.
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Figure Bl. Deformed shape and crack path in final increment.
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Multilaver Analysis . Initial Vertical Flaw

Simulations of a single-layer fracture were reported in the previous

section. Here we describe the model and results for numerical simulation of a

single-pass scratch test of a substrat¢ with two coating layers, and crack

propagation due to an initial vertical flaw.

Geometr'¢

The finiteelementmesh was createdto simulatethe cross-sectionof a

wide sample (plane-strain)of a double-layercoated substrate. Coating

thicknesseswore 2 microns,substratothicknesswas arbitrary,and assigneda

valueof 58 microns. The plane of the mesh is shown in Figure25. The

boundaryconditionsare thoseshown in Figure26.

Material Properti¢_

The top-layercoatingmaterialwas Al203+ZrO2, the second (middle)

coatinglayeras AIN, and the substratewas siliconnitride.Ali materialswere .

modeled as elasticin both thermal and mechanical properties. Material

propertieswore assignedto the coatings,substratcand interface. The

interfaceenergy releaserateas a functionof modo-mixityfor both material

interfacesis shown in Figure32.
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Interface Properties
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Figure 32. Energy release rate for both interfaces as a function of" mode

mixity. A mode-mixity of O.0 describes pure mode I loading at the crack tip,

and a mode-mixity of 90 (degrees) describes pure mode II loading at the crack

tip.

Crack Prop,agation Studies

The crack propagation occurred over 2? crack increments, after which

the direction of crack growth remained constant; along the AIN-substrate

interface. Since the crack crossed both bimaterial interfaces, the bimaterial

interface fracture model was used for several crack growth steps. Other crack

growth steps used linear elastic fracture mechanics theory which was solved

using finite element methods.

Figure 33 shows the finite element prior to crack growth. The upper

four elements (in the vertical direction) comprised the top-layer

(AI203+ZrO2). The next four elements in the vertical direction comprised the

second layer (Al/q). Elements below the upper eight modeled the substrate. A

zoom of the initial vertical flaw, showing the original and deformed shape of

the coated system is shown in Figure 34, Note that the deformed shape was a

result of the thermal, normal and shear loads on the structure.
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Figure 35 illustrates the direction of crack growth as the crack entered

the first material interface. The A1203+ZrO2 layer would no longer provide

oxidation resistance. The crack has begun a slight turn away from the

applied mechanical loading at this stage in the crack h/story.

Figure 36 shows the deformed shape for the final crack increment.

Noto that the crack did not remain in the top interface, but continued through

the middle A1N layer to the silicon nitride substrate. These results indicate

that both coating layers have been completely fractured. A solution to this

type of failure could be to design the first material interface (increased

toughness) such that the crack would not penetrate into the second coating

layer.

Results indicated that, subject to these loads, a vertical flaw in the

coating propagated approximately downward until the first coating-substratc

interface region. Once the crack entered this first interface, it traveled for a

distance of about 20% of the coating thickness, then changed direction and

advanced into the second coating material. While traversing both coating

layers, the crack traveled" in a direction nearly normal to the net direction of

the applied load. Since the crack continued to the substrate surface, it was

anticipated that the surface would be exposed to outer gaseous conditions.

The fracture modeling of coated systems continues with a two-layered

coated substrate with initial horizontal flaws; under the same thermal and

mechanical loads.

_Vlultilavor _Analysis - Initial Horizontol Flow

Two analyses have been performed. The first had the initial horizontal

flaw positioned at the middle of the second coating layer. In this case, the

crack did not cross any of the material interfaces during crack growth.

Figures 25 and 26 show the model and boundary conditions prior to crack

growth. With regard to the mesh the upper four elements (in the vertical

direction) comprised the AI203+ZrO2 layer coating. The next four element in

the vertical direction comprised the second layer (AIN) coating region.

Elements below the upper eight modeled the substrate. A zoom of the initial

horizontal flaw, showing the original and deformed shape of the coated

system is shown in Figure 37. Note that the deformed shape was a result of the
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thermal, normal and shear loads on the structure. Figure 38 illustrates the

direction of crack growth in the final stage of simulation. The crack is

directed upwards toward the free surface, then curves away from the applied

mechanical load.

The second simulation was performed with an initial horizontal crack

in the top coating layer. It was positioned in the middle of this layer. A zoom

of the initial horizontal flaw, showing the original and deformed shape of the

coated system is shown in Figure 39. Note that the deformed shape was a

result of the thermal, normal and shear loads on the structure. Figure 40

illustrates the direction of crack growth in the final stage of simulation. The

crack is directed upwards toward the free surface, and the analysis was halted

as the crack neared the surface. Since the horizontal cracks were directed

away from the substrate, an opportunity exists to design the coating layer

such that manufacturing flaws are highly oriented in the horizontal

direction, which would promote coating stability and thus oxidation resistance

of the substrate.

Since Cracks were predicted to move away from the substrate material,

the oxidation resistance of the substrate could be preserved during crack

growth of this type. It should also be emphasized that this was not the case

with initial vertical flaws, which propagated to the substrate.

'°, .
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Figure 33. Initial (uncracked) mesh used in the fracture simulation study.
The top four elements arc the A1203 + ZrO2 coating material. The

next four were the A1N coating material.
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Figure 34. Initial vertical flaw, 0.5 microns long (I/4 coating thickness).
Solid lines are deformed geometry (thermal and mechanical

loads). Dashed lines are undeformed geometry.

?8



Figure 35. Deformed shape and crack growth direction as the crack

encountered the top bimaterial interface.
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Figure 36. Deformed shape and crack path in final increment. The crack

has propagated through both coating layers.
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Figure 37. Initial horizontal flaw in the second coating layer. The flaw is

positioned at the middle of the layer. Solid lines are deformed

geometry (thermal and mechanical loads). Dashed lines are

undeformed geometry.
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/:igure 38. Deformed shape and crack path in final increment for the case
where the initial flaw was in the second (middle) coating layer.

The crack has been directed away from the substrate.

i

82



Figure39. Initialhorizontalflaw in the top coatinglayer.The flaw is

positionedat themiddleof thetop layer.Solidlinesaredeformed

geometry (thermaland mechanical loads).Dashed lines are

undcformed geometry.
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Figure 40. Deformed shape and crack path in final increment for the initial

flaw in the top coating layer. The crack has been directed away

from the substratc.
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CONCLUSIONS

A multilayered coating configuration for protection of Si3N4 and SiC-

based ceramics used in advanced heat engines was designed, deposited, and

tested. It consists of an intermediate layer of A1N (-5 microns) and an outer

layer of A1203+ZrO2 (-1 micron). The coatings were deposited by CVD onto the

three substrate materials specified by the DOE; reaction bonded Si3N4 (RBSN),

sintered SiC (SSC), and HIP'ed Si3N4 (HSN). The A1N interlayer was

demonstrated to be an effective means of providing good adhesion between

the A1203+ZrO2 coating and the ceramic substrates.

Modeling the grain boundary and lattice diffusion of oxygen through

an A1203 layer at elevated temperatures suggested that the coating would be a

good diffusion barrier to oxygen. However, experimental results revealed

that the composite coating was not oxidation resistant at temperatures above

1000*C. The lack of protection was attributed to cracks in the AI203+ZrO2

layer, which allowed oxygen to penetrate and react with A1N.

Finite element methods and fracture mechanics were to model the

behavior of brittle multilayer coatings. Detailed analysis of the residual

stresses in untracked coatings on ceramic substrates revealed that the

coating thickness, order of coating layers (including grading of the

coefficient of thermal expansion), and elastic modulus of the coating ali have

little effect on the residual stress in the coating. Based on these numerical

results, it was concluded that the A1203+Zr02 coatings would contain cracks

upon cooling to room temperature. These cracks result from the high

temperatures used in CVD processing and inherent thermal expansion

mismatch between the materials.

Additional modeling was performed to better understand the behavior

of cracks in a coating and possibly identify a means to eliminate or stabilize

them. The effect of crack propagation during solid body contact was studied

using interface fracture mechanics coupled with finite element analysis. For

coatings which contain vertical flaws, the cracks always propagated into the

substrate. Further analysis showed that improving the fracture toughness of

the interface would not improve the performance of the coating, since the

interface was not a weak point. In contrast, the horizontal crack did not
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reachthe substrate;iteitherstayedwithinthatlayeror moved away from the

substrateand towards the frec surface. Therefore,horizontalcracks would

not degradethe oxidationperformanceof a coatedsubstrate.

The possibilitiesfor working around the problem inherentto thin

brittlecoatings could lie in the area of controlledbrittlefractureof

multilayers,or by the use of "ductile"layerswhich would permitstressrelief

and alleviatepre-servicecracking. However, the ductileinterlayerwould

•have to be too thickto be effective.PVD methods,which allowthe residual

stressstateto be controlled,or low temperatureCVD processesmay allow for

crack-freecoatingsto be depositedwhich would be in a compressivestress

state at the operationtemperature,lt is anticipatedthatwithoutcracks,the

Al203+ZrO2 compositecoatingwould be an effectivemeans of reducingthe

contactstressdamage and oxidationof Si3N4 ceramics.

A method was developed to measure the ultimatetensilestrength,

fracturetoughness, and Weibull modulus of thin brittlecoatings on

substrates.The fracturestressesof CVD A1203 coatingson SiC substrates

rangedfrom 190 MPa to 480 MPa, the Weibullmodulusrangedfrom 16 to 28,

and the fracturetoughnessranged from 0.S - 1.1 MPa'_'m. This work has

shown thatthe tensilestrengthof A1203 and AI203+ZrO2 coatingscan be

approximated by bulk values,however, the fracturetoughness of these

coatingswas foundto be 10 - 20% of bulkvalues.

A singlepointscratchtestwas used to assessthe protectivenatureof

the Phase II coatingsduringcontactloadingon unoxidizedsamples at room

temperate.¢. The,coatingprotectedthe SSC and RBSN substratesby reducing

chippingand crackingof the substrates,however,no significantdifferences

were seen in the scratch resistance of the uncoated and coated HPSN.

Pin-on-disk tests were used to measure the breakaway and kinetic

friction coefficients for coated and uncoated materials at room temperature.
The Al203+ZrO2 coating reduced the kinetic friction coefficient of RBSN and

HSN by as much as 50% in self-mated tests. No apparent reduction in friction

was observed for the SSC substrate. An improvement in sliding wear

resistance was obtained with Al203+ZrO2 coated HSN in the pin-on-disk test,

whereas the coatings on RBSN and SSC were ineffective.
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_PPENDIX A - OXIDATION RESULTS

Table A-1. Weight gain as a function of oxidation time for A1N coated

sapphire oxidized in static air at 1000°C. The weight gain at a

given time was calculated from the original weight and the

measured weight after a given oxidation time.

i Bmi.

Weight Gain as a Function of Time

Sample Original

Weight (gin) 2 hr 8.75 30.5 125 500

A 2.048404 0.022 mg 0.014 0.022 0.011 0.062

B 1.885474 0.332 0.428 0.408 0.493 0.544

C 1.887054 0.192 0.191 0.155 0.066 0.079

ii

II

o.s .__oo"c_.__nx;,_at_n' " ' '" ' "
D o & /kiNcoatedsapphire
I • & AI203/AINcoatedsapphire0.6
•_-N X AI203+ZrO2/NNcoatedsapphire

E =
_ .

.= 0.4 0

-
¢_ M M
q" 0.2 k
•I: AIDD
mlm,

o.o _n =" ti&
,II •

"0.2 , .1 , I = I . • I .
o _oo 2oo 3oo 4oo soo

Time (hours)

Figure A-1. Weight gain versus time for AIN, AI203/AIN, and A1203+Z:O2/A1N

coated sapphire oxidized in static air at 1100°C.
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Figure A-2. Weight gain versus time for AIN and AI203+ZrO2/AIN coated
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Figure A-3. Weight gain versus time for A1203/AIN and A1203+ZrO2/A1N

coatod sapphireo_idized in staticair at 1275°C.
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Table A-2. Phases identified by X-ray diffraction after oxidation in static

air. Samples were sapphire with AIN, AI20 3/AIN, and

AI203+ZrO2/AIN coating. Phases associated with substrate

reflection arc not listed.

.... | i

Oxidation Time Oxidation Temperature

(hours)

• 1000°C 12OO°C 1275°C
i ii i iii ii .,, ,

AIN coated

2 a-A1203 tz-Al203 tx-Al203

8 a-A1203 a-A1203 a-AI203

30 a,.A1203 a-A1203 a-A1203

125 a-A1203 a-A1203 a-AI203

500 a-A1203 - -- a-A1203

i i i lli i i mi i ii

AI20$1AIN coated

2 --- ¢x-AI203, AIN a-Al203, AIN

8 --- ¢z-A1203, A.IN a-A1203, A.IN

30 --- a-A1203, AIN o-AI203, AIN

125 - - - a-A1203 a-Al203

5(JO - - - ¢x-AI203 - - -

li i i i

AI20$+ZrO2/AIN

coated

2 --- ez-AI203 a-A1203, ZrO2

8 --- ¢z-A1203, ZrO2 a-A1203, ZrO2

30 --- c_-A1203, ZrO2 a-A1203, ZrO2

125 --- a-A1203, ZrO2 c_-A1203, ZrO2

500 --- ¢z-A1203, ZrO2 ---

l lll ,, •
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TableA-3, Weightgainas a functionof oxidationtimeforAI2031AIN coated

sapphireoxidizedinstaticairat II00°C,1200°C,and 1275°C. The

weight gain at a given time was calculated from the original

weight and the measured weight after a given oxidation time.

ii

Weight Gain as a Function of Time

Sample Original _

Weight (gin) 2 hr 8 30 125 500

i
ii, i

1100o12

A 1.678948 --- 0.032 -0.033 -0.023 0.017

B 1.788780 -0.115 mg -0.070 -0.115 -0.112 -0.129

t2 " 1.697396 -0.041 -0.026 -0.066 -0.051 -0.082
i.

ii

1200°C

A 1.417758 -0.105 ............

B 1.296831 -0.077 ............

C 1.229500 -1.080 ............

III

1275°C

A 1.483679 -0.023 -0.056 -0.059 ......

B 1.433669 -0.019 -0.014 -0.061 ......

C 1.464726 -0.098 -0.074 "0.111 ......

i ii
I

..
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Table A-4. Weight gain as a function of oxidation time for AI203+ZrO2/AIN

coated sapphire oxidized in static air at I100°C, 1200°C, and

1275°C. The weight gain at a given time was calculated from the

original weight and the measured weight after a given

oxidation time. ..,

....._ i i
I

I Weight Gain as a Function of Time

Sample" [ Original

IWeight (gm)2 hf 8 I 30 i 125 500i

ll00°C

A 1.529552 0.008 mg 0.028 0.023 0.053 0.120

B 1.,0,30195 0.181 0.285 0.268 0.245 0.265

C 1.582685 -0.030 -0.005 0.015 0.095 0.325

1200°C

A 1.280131 -0.006 -0.013 0.013 ......

B 1.250632 -0.077 -0.072 -0.061 ......

C 1.213560 -0.080 -0.060 -0.046 ......

i ii

1275oC '

A 1.448246 0.024 0.I11 0.244 ---

B 1.302016 -0.146 -0.026 0.168 ......

C 1.467992 0.239 0.372 0.633 ......
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Table A-5. Phases identified by X-ray diffraction after 500 hours of

oxidation in static air. Samples include uncoated and AIN coated

RBSN, SSC, and HSN.
ii i i i i li i i

Sample Major Phases Minor Phases
' [i i rill i| i i i ii i[ i i i iii f Ii i i IIIIIi g i llll,t

Temperature= 1300"6"
UncoatedRBSN a-Si3N4 _-Si3N4,SiO2

Uncoated SSC SiC(8H), SiC(12H) SiO2

Uncoated HSN _-Si3N4 a-Y2Si207, Y2Si05, SiO2

A1N/RBSN a-A1203, a-Si3N4 a-Si3N4, _-Si3N4, SiO2

AIN/SSC a-A1203, SiC(SH), SiC(12H) .....

AIN/HSN a-A1203 _-Si3N4, a-Y2Si207,
..... y2Sio ,s o2 ,,i

Temperature= 1200°C
Uncoated RBSN SIO2, a-Si3N4 l_-Si3N4(?)*

Uncoated SSC SiC(12H) SiO2

Uncoated HSN [3-Si3N4 SiO2, Y2Si2&'/

AIN/RBSN a-A1203 _-Si3N4, Si&2(?)

AIN/SSC SiC(12I-I), a-Al203 Si02(?)

A1N/HSN _-Si3N4 Y2Si207, a-Al203, SiO2(?)

.....1275'*c.....Temperature =
Uncoated RBSN a-Si3N4, Si02 [_-Si3N4 •

Uncoated SSC SiC(12H) SiO2, c_-Si3N4(?)

Uncoated HSN Y2Si207 13-Si3N4, SiO2

A1N/RB SN a-A1203 Si3 N4(? )

AIN/SSC SiC(12H), a-Al203 a-Si3N4(?), SiO2(?)

AIN/HSN, AIN Y2Si207i iii i i iii

• The question mark denotes uncertainty.
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Table A-6. Phases identified by X-ray diffraction after 500 hour oxidation

in static air. Samples had coating of AIN, AI203/AIN, and

AI203+ZrO2/AIN. Phases associated with substrate reflection

are not listed.

.

Sample Oxidation Temperature

lOOO°C 12OO°C 1275°C

AIN corned

RBSN a-Al203 o-A1203 a-A1203

SSC a-Al203 a-A1203 a-A1203

HSN a-Al203 a-A1203 A1N

i i i i

AI203/AlN coated

RBSN --- ez-AI203, A1N a-Al203, A1N,

A1ON(?)

SSC --- a-A1203, A1N a-A1203, AIN

HSN --- a-A1203, A1N(?), a-A1203, A1N(?),

A1ON(?) A1ON(?)

AI203+ZrO2/AIN

coated

RBSN --- a-A1203, ZrO2 a-A1203, ZrO2

SSC --- a-Al203, Zr02 a-A1203, A1N,
+

ZrO2(?)

HSN --- a-Al203, ZrO2, AIN ZrO2, AIN(?),

A1ON(?)

i

* the question mark indicates uncertainty.
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,_PPENDIX B . METHOD TO MEASURE FRACTURE STRESS AND

FRACTURE TOUGHNESS OF COATINGS ON SUBSTRATES

SUMMARY

Conventional mechanical property measurement techniques usually

cannot be applied to thin ceramic coatings because of the small amount of

material involved. A method is described to determine the ultimate tensile

strength, fracture toughness, Weibull modulus, and surface energy of

micron-sized ceramic coatings on substrates. This technique is based on

measuring the radius of curvature of a coated substrate, and equating the

resulting calculated stress with a theoretical shear-lag stress distribution

mo4el using a force balance. The properties of chemical vapor deposited

coatings of A1203 and TiN were measured on SiC and Si3N4 substrates. The

fracture stresses of these coatings were 190 - 480 MPa, the fracture

toughnesses were 0.4- 1.1 MPa_/-'mm,the Weibull modulii were 10 - 28, and the

surface energies were 0.3 - 1.6 J/m2. This work has shown that the tensile

strength of thin brittle coatings can be approximated by bulk values,

however, the fracture toughness of a coating can be significantly lower than

bulk values.

INTRODUCTION

In coatings deposited at elevated temperatures, where the coating and

substrate materials have different coefficients of thermal expansion, large

stresses are generated in the coating after cooling to room temperature. If

tensile, these stresses often lead to cracking of the coating, Figure B-1.

Nitride, carbide, and oxide chemical vapor deposited (CVD) coatings on silicon

nitride substrates for cutting tool applications are examples of coatings which

crack on cooling. The technique presently described can be used for coatings

deposited by any technique as long as the coating cracks due to thermal

stresses and the deposition stress is known.
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Figure B-1. Scanning electron micrograph of a crack in a coating.

As a coated substrate cools, stress builds up in the coating, Figure B-2.

The stress component we are most concerned with is the in-plane normal

stress. The word "stress" is used here to denote this component, and for most

ceramic coatings this stress can be described by elastic relationships. Since

the coating is a ceramic it is described by a distribution of fracture strengths.

Once the fracture stress of the weakest part of the coating is reached, the

coatin8 will crack (of in Fisure B-2). Durin_ continued cooling, the peak

stress increases, additional cracks form in the coating, and the overall stress

(ota) is relaxed. The serrations in Figure B-2 indicate the drop in stress due to

cracking and their magnitudes are exaggerated. The coating does not crack

again until it is cooled further because of the distribution of failure strengths

and because the remaining uncracked coating has a smaller volume and

therefore a higher failure strength. The relationship between .the stressed

volume and failure strength of a ceramic is described by Eq. (B-I) from

Davidge [DAV8O]:
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where V 1 is stressed volume 1, V2 is stressed volume 2, o 1 is the failure stress

for volume V 1, a 2 is the failure stress for volume V2, and 'm' is the Weibull

modulus of the material.

Figure B-2. Schematic of stress versus AT plot for a cracked ceramic coating

on a substrate. AT is the deposition temperature minus the

instantaneous temperature, Op is the predicted stress at T1 and T2

(Eq. B-3), Om is the measured stress at T1 and 1"2(Eq. B-4), and of is

the fracture stress of the coating.

The drop in stress that occurred from cracking during cooling of a

coated substrate was exploited in this research to extract material properties

for the coating. The objective of the study was to determine fracture strength,

fracture toughness, and Weibull modulus for a range of coating-substrate

material systems by equating the predicted theoretical residual thermal stress
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in the coating (taking into account the stress distribution between cracks in

the coating) to the experimentally measured average stress in the coating.

No previous technique has been described which determines the

fracture stress of thin coatings in situ on a substrate. In the present study,

the theory and methodology are presented for determining the fracture stress

(cyf), fracture toughness (KIc), and Weibull modulus (m) of brittle thin

coatings. A useful function of this technique is to study the effect of varying

the deposition parameters or microstructure on the strength and Weibull

modulus of a coating. An example of this last application is provided as an

example.

Stresses in Coatings - Theory

Stresses in Uncracked Coatin_.s

The in-plane stress in a narrow fiat bimaterial strip (consisting of

materials 1 and 2) generated by a change in temperature was derived by

Timoshenko [TIM:?.5].

1_= (a2 - al)(Td-T i) (B-2)
P t 2(Eli 1 + E2121 1 +

2 + t

o=_ (Eli1 + E212) + (B-3)

where p is the radius of curvature of the strip, a is the coefficient of thermal

expansion, T i is the final temperature, T d is the deposition temperature, E is

Young's modulus, I is the moment of inertia, tl,2 are the individual layer

thicknesses, and t is the total thickness (t=tl+t2). The geometry of the beam is

shown in Figure B-3. To convert from narrow beams to wide beams;

E/(I-_ 2) is substituted for Ei and I = t3/12 in Eqs. (]3-2) and (B-3), where _ is

Poissons ratio.
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Figure B-3. Schematic of coating on substrate with a single crack. The ends

are treated as crack faces. The relative size of the coating was

greatly exaggerated to show detail.

t

The coefficient of thermal expansion and Young's modulus of the

materials are treated as temperature dependent quantities and Eqs. (B-2) and

(B-3) are numerically integrated to solve for the stress in the coating.

Treating the coefficient of thermal expansion as a temperature independent

constant can lead to significant errors in materials where these coefficients

are strong functions of temperature.

Equation (B-3) was used to predict the stress in an uncracked coating

on a substrate subjected to a change in temperature. This predicted stress was

referred to as ap in Figure B-2. Use of Eq. (13-3) assumed thal the coating was

deposited with a known stress at the deposition temperature (assumed O in this

work) and was crack free. Equation (B-3) gave the maximum stress in
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material 1, which we treated as the coating. The stress in a thin coating is

nearly uniform through the thicknt;ss, and the stress in Eq. (B-3) was set

equal to the stress in the coating. For a '*thin" coating, the stress was

independent of coating and substrate thicknesses. For material systems of

interest in this study, a coating is considered thin if it was less than 10% of

the substrate thickness. Figure B-4 shows the bending and axial

contributions to the stress in a coating as a function of relative coating to

substrate thickness from Equation (B-3). At coating thicknesses less than 10%

of the substrate thickness, most of the stress is due to axial loading, and hence,

will scale as the coating thickness changes. A "thin film" approximation to

Eq. 03-3) was derived by setting tl to zero in the relevant terms [FLI$7];

o'= - ' - (B-4)

where subscripts 'c' and 'uc' on p refer to the coated and uncoated strip

respectively. The term in the parenthesis is used to correct for nonflat

uncoated strips. If the uncoated strip is fiat I/pc approaches zero and Eq. (B-3)

is regained, with tl = 0. The primary advantage of Eq. (B-4) over Eq. (13-3) is

that only substrate properties and the coating thickness are needed to

calculate stress in the coating. Measured radii of curvature were substituted

into F-Zl. (B-4) to arrive at a value for the average stress in the coating. This

stress was valid for coatings which are cracked or plastically deformed and

was referred to as am (measured stress) in Figure B-2.
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Figure B-4. At coating thicknesses less than 10% of the substrate thickness

most of the stress in the coating was due to the axial component

and was therefore independent of the coating and substrate

thicknesses.

Stresses in Cracked Coatings

When a coating cracks, stress relaxation occurs in the coating around

the crack. The in-plane stress is bounded by zero stress at the crack surface

and reaches a steady state level "far" from the crack. The distance over

which the stress is reduced is related to the elastic properties of the coating

and substrate and to the thickness of the coating. Swanson [SWAB9] described

the stress distribution in fiber-reinforced materials near a crack, commonly

known as shear-lag. It can be applied to thin coatings by considering the

fiber as the coating material, and the surrounding matrix as the substrate.

His model considered approximate stress distributions, and the equilibrium

was considered in an average sense through the thickness of a cracked layer.
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Swanson's treatment was for a fiber in a ply within a composite. However,

since shear-lag is a general phenomenon, the form of the shear-lag

distribution in a ply near a crack should be similar to that in a coating near a

crack.

The in-plane normal stress distribution in a fiber near a free surface

(a crack) was given by Swanson as:

o(x) = Op{tanh(13_)sinh([3x) - cosh([3x) + I} (B-5)
where

132= Gf 1_'_ + _1----_tf (B-6a)

em

Qf=2(l.Ef_) and Qm=2(l._2 ) (B-6b)

'x' is the position along the coating between cracks (x = 0 is the crack face

position_, Op is the stress .far from the crack for noninteracting cracks, _ is

one-half of the distance between cracks, Gf is the shear modulus of the fiber,

tf, m is one-half the thickness of the fiber or matrix, and Ef,m is Young's

modulus of the fiber or matrix. For the case of a coating on a substrate tf and

tm were set to the thickness of the coating and substrate, respectively,

resulting in;

t
tl tt"_ + t2_} (B-7)

Figure B-5 shows a plot of normalized stress versus distance from a

crack face in a coating. The shear-lag stress distribution shown in Figure B-5

is for a 4.7 microns thick A1203 coating on a SiC substrate for crack spacings

of 50, 10, and 5 microns.
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Figure B-5. Plot of the stress distribution in a 4.7 microns A1203 coating on a

SiC substrate according to Eq. (B-5) for three different crack

spacings (I0, 30, and I00 microns). The crack is located at x = O.

])etermlnstinn of the Weih.ll Mhd.Ius . Thenrv

The difference between the predicted stress in an uncracked coating qp

(calculated with Eq. (B-3)) and the measured stress in the cracked coating _m

(calculated with Eq. (B-4)) was used to determine the number of cracks at the

temperature of interest. The experimentally determined average stress (Cym)

was set equal to the integral of the theoretical stress, including reductions due

to shear-lag drops at the crack faces, Figure B-6.
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Figure B-6. Plot of theoretical stress in coating and measured stress in

coating.

The presence of a crack in a coating caused a drop off in stress near the

free edge in accordance with Eq. (B-5). Hgurc B-? shows the average stress in

a coating as a function of the number of cracks (NC). At a certain crack

spacing the stress fields around the cracks begin to interact and the plot of

stress versus the number of cracks becomes nonlinear. Equation (B-8) was

used to solve for the number of cracks in a coating. The only unknown (NC)

was solved for by an iterative procedure.

2(NC+I) f

°ma L 0j ¢_p{tanh(_)sinh(_x) - cosh(@x) + 1} dx (B-8)

L
where {;= 2(NC+I) '
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Om is the measured stress in the cracked coating, Op is the calculated stress in

the uucracked coating (from Eq. (B-3)), and L is the total length of the sample.

The limits on the integral are determined by the length of the coating

between cracks, where that length equals 2_. The factor of 2 in Eq. (B-8)

arises because the stress distribution in the coating is integrated only over

one-half of the distance between cracks due to the symmetry of the problem.
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Figure B-7. Plot of number of cracks (NC) versus the average stress in the

coating, for a 2.3 microns A1203 coating on SiC, Eq. (B-8).

Once the number of cracks is known the average crack spacing, related

to V2 in Eq. (B-I), was determined by;

L
averagecrackspacing= 2_ =_ (B-9)

121



and the volume of the coating that cracked, Vbc, was given by

Vbc = 2 x (average crack spacing) x tl x w (B-10)

where tl and w were the thickness and width of the coating respectively. The

calculations were done for a sample of unit width, i.e. w = I.

The Weibull modulus was calculated by rearranging Eq. (B-I) and

substituting in the appropriate values resulting in;

m = (B-11)

The stress values used in Eq. (B-lD arc derived from the number of cracks

and the shear-lag distribution. The peak value of the shear-lag distribution

(Figure B-5) was considered to be the fracture stress of the last segment of

coating that cracked.

Determination of Surface Ener_ey . Theory

Strain Energy palance

We preform an energy balance on the cracked and untracked system.

This is summarized in the following equation:

Us + Uc (uncracked system) = Us + Uc + 2tc(NC)y (cracked system)

(B-12)

where U represents an energy component of the system, either the substrate

(Us) or the coating (Uc), and the 2tc(NC)y term represents the surface energy

in the system for NC cracks. Each of the components can be described as a

function of the radius of curvature of the system (either cracked or
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uncracked), and the material properties of the substrate and coating. The

individusl components of the energy balance in Eq. (B-12) are derived below.

The energy in the substrate depends on the radius of curvature and has

the same form for me c=_cked and untracked cases:

Es ¢2Us -- 2(1._2 ) dv (B-13)
V

for a small arc of the substrate of thickness dr:

dU= Es e2 (vol) (B-14)
2(l-us2)

where _='-_- and vol=,f dr (unit thickness) (B-15)

where I is the length ,)f the substrate at a radius 'r'. Figure B-8 defines the

geometry of the bent substrate. The length of the substrate changes at ali

values of 'r' except when r : NA at which ,f : L. Substitution of Eq. (B-15) into

Eq. (B-14) gives:

Es AL2 Es (rO - L)2

dU=2(l._2) L-"_ Jrdr=2(l._s2) L2 rOdr (B-16) ,

therefore

'Router Es (r0 - L) 2 rO d r (B- 17)
Us= J dU =| 2(1._2 ) L2

u .) Rinner
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A+b Es (rO - L)2Us = 2t1._2__s j L2 rO dr (B-18)JNA-a

where NA is the location of the neutral axis. This was integrated to get:

L 3 5EsLt4sEs ts

Us- 18(1._2)R2 - 216(1._2)R 3 (B-19)

R r

Figure B-8. Schematic of bent substratc. NA is the location of th_ neutral

axis, 'b' is the distance from the NA to the uncoated side of the

substrat¢, 'a' is the distance from the coated side to the NA, and 'r'

is the radius to any given location in the substrate.
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The energy of the substrate for the uncracked and cracked system is

given by Eq. (B-19) with R equal to the radius of curvature of the uncracked

and cracked coated sample, respectively.

The energy in the coating depends on the radius of curvature and has

the same form for the cracked and uncrackcd cases:

f E_ e2• Uc= 2(1._c2) dv (B-20)
V

since the strain is essentially constant through the thickness of a thin film,

the integral over the volume equals Vc (volume of the coating); Eq. (B-20)

reduces to:

Uc = F._ e2 Vc (B-21)
2(1-_ 2)

from the geometry of a bent beam:

AL a8
¢c ="L-= - "L" and Vc = (L-aS)tc (for unit width) (B-22)

Substituting Eq. (B-22) into Eq. (B-21) gives:

En (aO)2

• Uc=2(1._2 ) L2 (L - aO)tc (B-23)

_ts gives:Setting e= L and a= 3 ,

Uc = 9(I._2)R 2 (B-24)
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This applies to both cracked and uncracked cases, with the appropriate

radius of curvature. For the cracked case, the stress distribution is not

uniform (as it is in the uncracked case), but the energy stored in ali of the

cracked segments of the coating is the same as the energy given by Eq. (B-24)

using the cracked radius of curvature.

Once the energies of the substrate and coating are determined for the

uncracked and cracked cases, the surface energy can be solved for by

• rearranging Eq. (B-12).

7 ( ..Us+ Uc (uncracked system)..} - [Us + Uq (cracked syste m )}
=-- 2tcNC ....

(B-25)

where Us and Uc are given by Eqs. (B-19) and (B-24), respectively, using the

uncracked and cracked radius of curvature.

Griffith Energy Balance

Lawn and Wilshaw [LAW75] describe the relationship between the

surface energy (Y) and fracture toughness (Kc) of a material derived from

Griffith theory and fracture mechanics. Equation (B-26) below describes this

relationship;

ii

Yffi 2F.¢ (B-26)

EXPERIMENTAL DETAILS

Coatin_ procedure

Samples were coated in a hot-wall CVD reactor made of either graphite

or Inconel. Coatings of A1203 and AI203+ZrO 2 were deposited at 950°C, while

TiN coatings were deposited at 970°C. Metal chlorides, along with other

reactant gases were used to deposit the coatings; AI20 3 (AlCl 3, CO2, H2, and Ai'),

A1203+ZrO2 (AIC13, ZrCl4, CO2, H2, and Ar), and TiN (TIC14,N2, H2, and At). The
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A1203 and Al203+ZrO2 coatings were deposited at low pressures (1.33 Pa), while

TiN was deposited at atmospheric pressure. AICl3 and ZrCl4 were generated by

passing Cl2 and H2 over the metals held at --600°C, while TIC14 was produced in

a bubbler. Deposition of TiN required 1 hour while the A1203 and A1203+5 v/o

ZrO2 depositions required 2 - 3 hours.

Residual Stress Measurements

The stress in a coating was measured from the radius of curvature of

_¢ coated substrate using Eq. (Be4). Thin substrates of silicon nitride and

silicon carbide (nominally 25.4 mm x 2.54 mm x 0.175 mm) were polished to a

0.1 micron surface finish and annealed at-1200"C in vacuum (10 .2 Pa at

temperature) for one hour to relieve stresses induced during preparation.

Figures B-9 and B-10 show flow charts of the experimental procedure.

The radius of curvature (ROC) of the sample was measured with a laser

profilometer, and the measured shape was fitted to the equation of a circle to •

determine the ROC (see Appendix C). The ROC of the uncoated sample (Puc) was

measured at room temperature (20°C), then one side was coated and the ROC of

the coated (Pc) substrate was measured at 20°C. These values were used in

Eq. 03-4) to calculate ¢Ym at 20°C for the cracked coating with the number of

cracks at 20°C. The coated substrate was then cooled in liquid nitrogen

(-160°C) then wanned to 20°C and the ROC was measured. This value along

with the ROC of the uncoated substrate were used in Eq. (13-4) to calculate _m at

20°C in the cracked coating with the number of cracks at -16O°C. Room

temperature elastic constants used in these calculations and are listed in

Table B-I and the thermal expansion data are plotted in Figure B-II.
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PreparethinsubstrateI
& anneal

[MeasureROC ofuncoatedI .... __
I sub=rateat 20°C J

co=1 o,"Isub=rate
l

[Measure ROC of coated
I sub=rateat20°C

l

i Coolcoatedsub=rate Iin liquidnitrogen(-160°C)!
l

[ MeasureROCofcoated,',i , •substrateat 20=C J
tP ii iii

averagestressincoatingI averagestress in coatingat J
at 20°C withNCat20°C J 20°C withNC at -160°C J

Calculatenumberof JCalculatepredicted Calculatenumberof
cracksandmaximum ! stressincoatingat cracksandmaximumstressinshearlag 20°C and-160°C stressinshearlag

distributionat 20°C distributionat-160°C

Calculatefracturestress,
fracturetoughness,

Weibullmodulus,andthe
temperatureof firstcracking

Figure B-9. Flow chart of experimental procedure outlining important steps

in the force balance used to calculate the fracture strength,

fracture toughness, Weibull modulus, and temperature of first

_ cracking of thin coatings on substrates.
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Pr.oio.oRooo,o°iRocofoooo°,ooofoo°eoIsubstrateat 20°C substrate substrateat20°C
(nocracks) ' '

Calculatestrainenergyin J Calculatestrainenergyin .....J

substrate(Uus)andcoating(Uuc) Isubstrata(Ucs)andcoating(Ucc)Iwith uncrackedcoating with crackedcoating
i ii i ii

Numberof cracks(NC)
calculatedfromforcebalance

ii

I

Use total energy of uncracked system (Uus + Uuc),
total energyof crackedsystem(Ucs+ Ucc),and
NC to determine the surface energy of the coating

i ii

Figure B-IO. Flow chart of experimental procedure outlining important steps

in the energy balance used to calculate the surface energy of

thin coatings on substrates.
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Table B-1. Material elastic constants used in calculations.

Material Young's Modulus, Poisson's Ratio, _ Shear Modulus,
E

E (GPa) G--2(1._)(GPa)

A1203 380 0.26 257

A1203+5 v/o ZrO2 340 0.26 135

SiC 405 0.19 250

Si3N4 300 0.23 195

TiN 300-600 [TOR87] 0.23 167

1.2e-5
AI203 + 5, ZrO2

1.0e-5

AI203
A 8.0e-6
O

6.0e-6
til
I.=

4.0e-6

Si3N4
2.0e-6

0.0e+0
-200 0 200 400 600 800 1000

Temperature (°C)

Figure B-11. Plot of the coefficients of thermal expansion for materials used

in this study [TOU75]. Data for the A1203+5 v/o 2',rO2 coating is

from the volume weighted average of A1203 and ZrO2. Data for

Si3N4 at temperatures below 20°C was extrapolated.
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RESULTS

The data used in the calculations and results of these calculations are

listed in Tables B-2 and B-3, respectively. A sample with a 2.34 microns A1203

coating deposited at 950°C on SiC in a reactor with a graphite chamber is used

as an example to demonstrate these calculations. To determine the ROC, 2000

dam poin_ were collected and fit to the equation of a circle. Once the ROC was

measured, Eq. (B-4) was used to determine the stress in the coating. The

average stress in the coating at 20°C and at 20°C after cooling to -160°C was

given by Eq. (B-12) and Eq. (B-13), respectively. Note that the stress at 20°C

was lower in the sample that was first cooled to -160°C.

o(20°C) e.

6(2.34 x 10.6 m)(1.(0.19}2) _-7676 m " 15.525 m

(B-27)

405 GPa (217 x 10 -6 m) 2 I4 1 1 t=193 MPa
o(20°C,-160°C)=

6(2.34 x 10.6 m)(1.(0.19}2) _'92-32 m " 15.525 m

(B-28)

With the average stress in the coating known (eta), the predicted stress

(Op) in the coating as a function of temperature (below the deposition

temperature) was calculated from Eq. (B-3). In calculating the predicted

stress, a deposition temperature of 950°C and final temperatures of 20°C and

-160°C were used. e m and ep were then used in Eq. (]3-8) to solve for the

number of cracks at 20°C and -160eC. The number of cracks in the sample at

-160°C was determined using the sample that was cooled to -160°C and

measured at 20°C.

For the coated substrate at 20°C, ep = 1146 MPa and em= 203 MPa. These

values were used in Eq. (B-8) to solve for NC, the crack spacing, and the

maximum stress in the shear-lag distribution. For the sample cooled to -160°C

and measured at 20°C; NC was solved for by using ep = 1146 MPa and

em = 193 MPa in Eq. (B-8). Crack spacings of 6.28 microns at 20°C and of 6.10

microns at -160°C were calculated, corresponding to stressed volumes of

2.94 x 10-11 m3 and 2.85 x 10-11 m3 for a unit width substrate, respectively.
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Once the number of cracks and the crack spacing were known at

-160°C, the maximum stress in the shear-lag distribution was solved for using

ap = 1262 MPa (the predicted stress at -160°C) in Eq. (B-5). At 20oC the

maximum stress was 301 MPa and at -160°C the maximum stress was 316 MPa,

these values were defined as the fracture stress of the coating at 20°C and

-160°C for NC cracks. The predicted stress as a function of AT is plotted along

with the calculated/measured maximum stresses at 20°C and -160°C in

•Figure B-12. The intersection of these lines in Figure B-12 was taken as the

fracture stress, 240 MPa. The fracture stress was the value of stress in the

coating at which first fracture occurred. This value appears reasonable

compared to reported values of bulk A1203 which are in the range of

100- 300 MPa, Table B-4.

1500 • .'.,... ,,.., '...,-.., • • •
predictedstressfor
uncocked coating

1000

&T= 180°C(T= 8200Cof = 240 MPa

g .
0

0 200 400 600 800 1000 1200

AT (°C)

Figure B-12. Plot of stress versus AT for a 2.34 microns A1203 coating on SiC.

The predicted stress was calculated from Eq. (B-3) and the

measured maximum stress (') was calculated from Eqs. (B-5) and

(B-S).
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Table B_. Fracture toughness, tensile strength, and surface energy of bulk

ceramics from the literature.

Material Fracture Tensile Fracture Surface Energy
Toughness Strength ? (Jim2)

Xlc (MPa'_m) cyf (MPa) [LIV56]
[CS91,CKE78] [CS91Jr,AT83]

' i' I III ' , ,=,, ,, ,,

A1203 4 100- 300 0.9

A1203+5 v/o Zr02 5t 250t 0.9**

TiN 3.8* 300*'tr 1.2"

t this value includes effects of transformation toughening which is not

expected to play a role in coatings.

values estimated with Eqs. (B-32) and (B-33).

* values taken to be the same as TiC.

** value form the volume weighted average of A1203 and ZrO2.

The fracture stress was used with the maximum stresses at 20°C and

-160°C along with the associated volumes to calculate the Weibull modulus of

the coating according to Eq. (B-11). The average Weibull modulus for this

coating is 29. These calculations are shown in Eqs. (B-29) and (B-30).

1n(4.68 x 10 "8 m3 1
_2.94'x 10 "11 m 3/

m -- ---32 (B-29)

.,:)la 40 MP
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1nf4.68 x I0" 8 m3 1_2.85 x 10"11 m3
m= ' ' =27 (B-3O)

MPa)

A relationship by Thouless [THO90] was used to calculate the mode I

fracture toughness of the coating.

, KIc= 0.7 (B-31)

where o was the fracture stress of the coating, taken as al. Taking _f as

240 MPa, the fracture toughness is 6.5 MPa_m. In calculating KIc of the

coating, the largest error arises from the uncertainty in the stressed volumes.

The accuracy of these volumes depends on NC and the accuracy of the shear-

lag distribution, Eq. (B-S). This same analysis was repeated for each sample

and the results are summarized in Tables B-2 and B-3.

DISCUSSION

Cost|n_ PronertJes

Two A120 3 coatings, with siguificanfly different surface morphologies,

were deposited at 950°C on SiC substrates for comparison. One coating was

deposited in a hot wall reactor with an Inconel chamber, Figure B-13a. A1203

coatings deposited in this reactor were known to be contaminated with nickel

which caused the textured morphology, Figure B-13a. A second A1203 coating

was deposited in a hot wall reactor with a graphite chamber, Figure B-13b,

producing a more compact and uniform coating as compared to that deposited

in the Inconel reactor.

!
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(c)
Figure B-13. Scanning electron micrograph of the coatings deposited on s SiC

subswate at 950°C in a) A1203 deposited in an Inconel chamber,

b) A1203 deposited in a graphite chamber, and c) _d203 + 5 v/o

ZrO2 deposited in a graphite chamber.
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The coating in Figure B-13a was expected to have lower mechanical

properties than the coating in Figure B-13b. The textured structure of the

coating in Figure B-13a was expected to allow easier crack propagation

compared to the uniform structure of the coating (Figure B-13b). Therefore,

the coating in Figure B-13a was expected to have lower strength and

toughness u compared to the coating in Figure B-13b. These properties were

measured and reported in Table B-3. The coating in Figure B-13a had a

fracture strength of 190 MPa, a fracture toughness of 0.5 MPa_/-m, and a

Weibull modulus of 19, the coating in Figure B-13b had a fracture strength of

240 MPa, a fracture toughness of 0.5 MPa'_m, and a Weibull modulus of 28.

While the difference in properties between these coatings was anticipated due

to their different morphologies, the method described in this work allowed

the expected differences to be quantified. It should be noted that the fracture

strength and fracture toughness values reported in this study are not room

temperature values, but the values at the temperature of first cracking, 800°C

and 770°C for the coatings in Figures B-13a and B-13b respectively.

Figure B-13c shows the surface morphology of the A1203+5 v/o ZrO2

coating on a SiC substrate deposited in the graphite reactor. This coating has

a smoother surface morphology than the pure A1203 coating (Figure B-13b).

The A1203+5 v/o Zr02 coating had a fracture strength of 480 MPa, a fracture

toughness of 1.1 MPa_"mm,and a Weibull modulus of 16. The higher strength

and toughness of the A1203+5 v/o ZrO2 coating is primarily attributed to grain

refinement of the A1203 by the ZrO2 phase.

Table B-4 lists tensile strength, fracture toughness,, and surface energy

v',dues from bulk ceramics reported in the literature. Equations (B-32) and

(B-33) were used to estimate tensile strength values from 3-pt and 4-pt

bending te_.t.s [DAVS0], since limited tensile strength data was available for
ceramics in the literature.

a3b (B-32)o't= i.7

a-'4-h (B-33)ot= 1.5
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where the Weibull modulus from the 3-pr and 4-pr bend tests was assumed to

be 10; cyt was the tensile strength, O'3b is the 3-pt bend strength, and O'4b is the

4-pt bend strength. The strengths of the A1203 and TiN coatings are generally

higher than those expected for the bulk solid.

The fracture toughness of the A1203 and TiN coatings are generally

lower that the bulk values. The coatings in this study have submicron grain

sizes and large grain boundary area, therefore, cracking is expected to occur

along the grain boundaries.

The grain boundary fracture toughness for a sintered A1203+0.3 vol %

MgO was reported as 0.32 - 0.98 MPa_/'mm, which was 0.I - 0.4 of the bulk

fracture toughness [KRE85]. this agrees well with the value of 0.5 MPa'_"m

(Table B-3). Further comparisons arc made on the basis of grain boundary

fracture toughness, defined as 0.1-0.4 of the bulk fracture toughness. The

calculated fracture toughness value of a TiN coating on Si3N4 (0.5 MPa_"mm in

Table B-3) also compares well with the estimated grain boundary fracture

toughness of bulk TiN, 0.4- 1.5 MPa'_m. Therefore, the properties used to

describe coatings should be grain boundary properties when available.

The surface energy of the coatings were determined by two methods

described, in the introduction section, a strain energy balance, Eq. (B-25), and

a Griffith enc:rgy balance, Eq. (B-26). The surface energies calculated with

Eq. (B-25) are lower than those in Table B-4 from Livey and Murray [LIV56].

This is attributed to the value of NC used in Eq. (B-25). The crack spacing in

the A1203 coating was calculated to be approximately 6 microns. As the degree

of shear-lag increases NC decreases and y increases. The other properties of

the coating depend on NC to a much lesser extent then y and are not

significantly effected when NC changes. The surface energies calculated '

with Eq. (B-26)are also significantly different from those listed in Table B-4.

This may be due to the cracking process not being at equilibrium, as

suggested by Lawn and Wilshaw [LAW'/5]. In general, the present method

does not allow for accurate values of the surface energy to be determined.

However, a more rigorous form of the shear-lag distribution may give better

agreement between measured and expected surface energies.

We attempted to measure the crack spacing directly as a check on the

calculated value of NC but could only find isolated cracks which were
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extremely fine. The crack opening was estimated for the AI203+ZrO2 coating

on SiC as follows:

crack opening = (es-¢c)LNC "' (B-34)

where _s is the strain in the substrate due to the temperature change (from

Eq. (B-2)) and ¢c is the strain in the coating due to the measured stress (¢_m).

3 480 MPa_.6 x 10"3- '3-4-0G_'a) 0"0254 m
crack opening = 1527 = 3.6 x 10-8 m (B-35)

The crack is expected to be approximately 36 nanometers wide which is 0.7

mm wide on a micrograph taken at a magnification of 20,000 x. This indicates

the difficulty in observing and photographing such a small feature on the

relatively rough surfaces of the coatings studied.

Limitations on Modelin_ and Exveri_l.eptal Data

Young's modulus for TiN was reported to range from 300 - 600 GPa.

Both values (300 and 600 GPa) were used with the experimental data from TiN

coated Si3N4 sample #1 to determine the sensitivity of the analysis to

uncertainty in the Young's modulus of the coating material. The calculated

values of the fracture strength, fracture toughness, and Weibull modulus are

215 MPa, 0.5 MPa_m, and l0 for a Young's modulus of 300 GPa and 195 MPa, 0.4

MPa'_m, and 9 for a Young's modulus of 600 GPa. Therefore, this analysis is

essentially insensitive to uncertainty in the coating elastic properties, with

the exception of the surface energy.

The TiN coated Si3N4 samples in Tables B-2 and B-3 were coated

simultaneously and used to compare the repeatability of the measurement

technique. Figure B-14 shows that these 2 samples have very similar surface

morphologies and are expected to have similar microstructures. The fracture

strengths of these samples are within 15%, the fracture toughnesses are

within 20%, the Weibull modulus are within 30%, and the surface energies are

within 25%. These percentages differences are taken to represent the

relative error in each measured property.
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(a)

(b)

Figure B-14. Scanning electron micrograph of the coatings deposited on a SiC

substrate at 970°C in a) TiN sample # 1, b) TiN sample #2.
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The leading sources of error are the difficulty in determining the
)

radius of curvature of the sample and the error in the thickness of the

coating. A I% error in the radius of curvature results in an error of 40% in

the fracture strength, 56% in the fracture toughness, 100% in the Weibull

modulus, and 0 - 100% in the surface energy. A 5% error in the thicknesses of

the coating and substrate results in a 15% error in the fracture strength. The

errors associated with measuring the radius of curvature are discussed in

• Appendix C.

In determining the fracture stress of the coating, of, two values of

measured stress were used (Figure B-12). Any non-linearity in measured

stress as a function of measurement temperature will result in changes in the

fracture stress of the coating. The curvature of this non-linear region was

related to the Weibull modulus through Eq. (B-I). However, in order to fit a

more accurate line to the data points, data at several more temperatures are

needed. Since for practical reasons these additional temperatures would fall

between the existing data (taken at 20°C and -160°C) these points would not

allow a more accurate curve to be fit. The Weibull modulus calculated from (Tf

and the corresponding values at 20°C and -160°C were 32 and 27, respectively.

Since these two values are close to one another, the error introduced by the

straight line approximation cannot be too large, thus the straight line

approximation appears reasonable. The straight line approximation resulted

in the calculated fracture stress of the coating being higher than the actual

fracture stress of the coating. It would be more satisfactory if the error was

conservative.

The largest error in calculating the Weibull modulus is from

calculating the volume that corresponds to the fracture stress. This volume is

calculated from the number of cracks. The number of cracks is a strong

function of the shear-lag distribution. As the amount of lag increases the

number of cracks decreases and the Weibull modulus decreases.

The approach taken in this work has demonstrated the viability of

measuring the tensile strength, fracture toughness, and Weibull modulus of a

coating. In comparing the measured properties of coatings to the bulk

properties of the coating material, it was found that bulk properties provide a

reasonable approximation to coating strength. However, the fracture
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toughness of a coating was markedly lower than the bulk fracture toughness

of the same material. The discrepancy between the fracture toughness of the

coating and bulk materials was attributed to the large amount of

intergranu!ar fracture that occurred in fine grained coating materials.

CONCLUSIONS

In modelling and design applications the bulk properties of a material

are used in place of coating properties due to the difficulty of measuring the

mechanical of coatings. A simple method for quantitatively measuring the

fracture stress, fracture toughness, and Weibull modulus of thin brittle

coatings on a substrate was developed. This method involves measuring the

radius of curvature of the coated sample at room temperature.

Two A1203 coatings on SiC substrates were compared. One had a compact

coating structure and the other had a textured coating structure. The compact

coating had a fracture strength of 240 MPa, a fracture toughness of

6.5 MPa_m, a Weibull modulus of 28, and a surface energy of 0.3 J'/m2. The

textured coating had a fracture strength of 190 MPa, a fracture toughness of

6.5 MPa_m, and a Weibull modulus of 19, and a surface energy of 0.3 J/m2.

A composite Al203+ZrO2 coating on a SiC substrate had a fracture

strength of 480 MPa, a fracture toughness of 1.1 Mpa_'mm, a Weibull modulus of

16 and a surface energy of 1.6 J/m 2.

A TiN coating on a Si3N4 substrate had a fracture strength of

236 MPa + 35, a fracture toughness of 0.5 MPa'_m + 6.1, a Weibull modulus of

12 + 3, and a surface energy of 0.3 + I J/m2.

Uncertainty in the coating and substrate thicknesses along with

uncertainty in the radius of curvature are the leading sources of error in the

method. The surface energies determined by this technique do not agree well

with expected values. A more exact form of the shear-lag distribution is

expected to result in merc accurate surface energies.
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APPENDIX C . C.URVE FITTING OF PROFILOMETER DATA

BACKGROUND

Stresses in thin films on substrates can be measured by the beam

bending technique [NIX89]. The technique involves measuring the radius of

curvature of a coated substrate. The stress in the film (of) is related to the

Young's modulus of the film CE), the film thickness (tr), the substrate

thickness (ts) and, the radius of curvature (R) by Equation C-l:

¢_f- 6tfr Eq. C-1

.'

A new technique was developed for measuring the fracture stress and

fracture toughness of films on substrates which is based on measuring the

radius of curvature of a coated substrat¢ (Appendix B) The samples used to

measure the fracture stress and fracture toughness were limited to lengths of

10 mm and 20 mm, due to material availability. The radii of curvature of the

samples ranged from 0.5 m to 10.0 m. In developing this technique, the

software supplied with the laser profilometer poorly fit the data to the

equation of a circle. A new FORTRAN curve fitting routine was written and

tested with simulated profilometer data to evaluate its accuracy.

EXPERIMENTS AND RESULTS

A PC-based laser profilometer (Rodcnstock model RM600) was used for

data acquisition. Software accompanying the profilometer included a routine

to calculate the radius of curvature. This routine was tested with standards of

known radius of curvature (0.500 m, 1.000 m and 5.000 m). In acquiring the

profilometer data, 2000 data points were taken and scans of 10 mm and 20 mm

were used, for reasons stated above. In most cases the results from the fitting

routine were unsatisfactory, see Figure C-1. The results for the 0.5 m radius of

curvature standard were accurate. However, for the 1.0 m and 5.0 m radius of
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curvature standards the difference between the calculated and actual radii

ranged from 5% to several thousand percent.
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Figure C-I. Plot of experimental profilometer data. In this example the RMS

noise is approximately 6.94 microns and the radius of curvature

was calculated to be 7.861 m +5% using the "GUESS" routine (see

end of Apgendix), compared to 6.229 m calculated by the

Rodenstock software.

A new routine "POINT_FIT" was written to fit the pr.til.meter data to

the equation of a circle, Equation C-2.

R2 = (x+A) 2 + (y+B) 2 Eq. C-2

where R is the radius of curvature, x and y are the data points, and A and B are

constants. This subroutine is included at the end of this appendix along with a

routine "GUESS" to supply an initial guess for R, A, and B.

Pr.til.meter data simulating samples with different radii of curvature

were computer generated and fitted to the equation of a circle using the
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subroutines to test these routines for accuracy and robustness. Noise was

introduced into the data to assess the sensitivity of the fitting procedure. All

noise values reported refer to the root mean square (RMS) level. Two

distributions were used to generate the noise, a Gaussian distribution and a

uniform distribution, see Figure C-2. Each set of generated data contained

2000 points. The results were largely insensitive to the number of data points.

Scan lengths of I0 mm, 20 mm, and 50 mm were tested and radius of curvature

values from 0.5 m to I0.0 m were used. These scan lengths and radii of

curvature values were selected because they were typical values encountered.
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lr:. DarLa- Uniform Distribution ._
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0.000 0.005 0.010 0.015 0.020

X lm)
Figure C-2a. Plot of computer generated data for a radius of curvature of 7.861

m and an RMS noise level of 0.94 microns with a uniform

distribution, calculated R = 8.002 m. The calculated radius of

curvature value is within 2% of the actual radius of curvature of

7.861 m.
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Figure C-2b. Plot of computer generated data for a radius of curvature of 7.861

m and an RMS noise level of 0.94 microns with a Gaussian

distribution, calculated R = 8.204 m. The calculated radius of

curvature value is within 4% of the actual radius of curvature of

7.861 m.

A plot of the fitted radius of curvature versus the signal-to-noise ratio

(S/N) is shown in Figure C-3 for the Gaussian noise distribution. This plot

shows that as the signal-to-noise ratio decreases (noise increases) the

accuracy decreases to the point that the calculated radius of curvature is

unreliable. The critic_ value of the signal-to-noise ratio was 1.$ for the

Gaussian distribution and 0.7 for the uniform distribution. A S/N ratio of 1.8

was used as the minimum acceptable S/N ratio for the profilometer data

because the Gaussian distribution (Figure C-2b) matched the experimental

distribution (Figure C-l) better than the uniform distribution (Figure C-2a).

Figure C-4 shows the value of the noise which corresponds to the signal-to-

noise ratio of 1.8 as a function of radius of curvature. Figure C-5 shows the

error in the radius of curvature as a function of S/N. As S/N increases the

error approaches zero, and when the S/N drops below the critical S/N value of
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1.8 the error increases very rapidly• In general, as the radius of curvature

increases the accuracy of the fit decreases; as the noise increases the

accuracy of the fit decreases; and as the scan length increases the accuracy of

the fit increases.

1 50 ........... .....• q - • • • • li " • II |

GaussianDistribution
' ..... 5%errorlimits

1.25 1___.........................
1.00 " - _

iiiiiiiiiii ..........
0.5 1.0 1.5 2.0 2.5 3.0

S/N

Figure C-3. Ratio of the calculated radius of curvature to the actual radius of
curvature versus the signal-to=noise ratio for data sets with 2000

data points. For the Gaussian distribution the critical S/N ratio

was 1.8 and for the uniform distribution it was 0.7. Only the

results from the Gaussian distribution are shown.
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Figure C-4. Values of the maximum RMS noise level for which the fitted

radius of curvature is within 5% of the true radius of curvature.

A critical S/N ratio of 1.8 was used.
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Figure C-5. Plot of error in the radius of curvature versus S/H.
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CONCLUSIONS

Routines used to fit profilometer data to the equation of a circle are

very sensitive to noise in experimental data, the scan length, and the actual

radius of curvature being measured. A routine for fitting profilometer data to

the equation of a circle was described and its behavior was characterized with

simulated data of known radius of curvature and noise level.

The signal-to-noise ratio has to be greater than 1.8 to measure the f

radius of curvature within 5% of the true value. High values of the signal-to-

noise ratio are favored by small radius of curvatures, small scatter in the data,

and long scan lengths.

COMPUTER ROUTINES FOR CURVE FITTING OF PROFILOMETER DATA

These subroutines arc written in FORTRAN and fit experimental data to

the Equation of a circle by solving for the A, B, and R values in Equation C-2.

Subroutine GUESS supplies the initial guess for the fitting routine,

POINT_FIT. GUESS works by evaluating Equation C-2 at 3 different points and

solving these 3 equations for values of R, A, and B. To reduce the effects of

data scatter NCP sets of points are used and averaged to obtain an initial guess.

GUESS requires input arrays of X and Y values of dimension NP, and the

number of sets of equations that are averaged (HCP), and stores the initial

values of R, A, and B in variables RO, AO, and BO.

SUBROUTINEGUESS(X,Y,AO,BO,RO,_,NCP)
]MPI/CIT NONE
REAL*8 X(5000),Y(5000),AO,BO,RO,XNCP,X 1,X2,X3,Y1,Y2,Y3,

+ TI,T2,T3,BO_S (100),AO_S(100),RO_S(100),Y I_SAVE,Y2_SAVE
INTEGER I,NCP,NP
AO=0.
BO=0.
RO=0.
YI_SAVE=0.
Y2_SAVE--0.
XNCP=-FLOAT(NCP)
DO 1 I=I,NCP

Xl=X(I)
YI=Y(I)

YI_SAVE=YI_SAVE+YI
X2=X(NP/2-NCP/2+I)
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Y2=Y(NP/2-NCP/2+I)
Y2_SAVE=Y2_SAVE+Y2
X3=X(I_-NCP+I)
Y3=Y(NP-NCP+I)
TI=(X2*X2+Y2*Y2-XI*X1-YI*YI)/(X1-X2)
T2=C_*X3+Y3*Y3-XI*X1-YI*Y1)/(XI"X3)
T3=fYB-Y1)/(X1-X3)- (Y2-YI)/(XI-X2)
BO_S(1)=0_5*(TI-T2)/13
AO_S(1)=(X2*X2+Y2*Y2+2.*BO_S(I)*Y2-X1*X1-YI*YI-

+ 2.*BO.S(I)*Y1)/2./(XI-X2)
RO_S (1)--SQRT((XI:+AO_S(1))**2+CYI+B0_S(I))*'2)/3.+

+ SQRT((X2+AO_S(1))**2+CY2+BO_S(I))*'2)/3.+
+ SQRT(CX3+AO_S(1))**2+(Y3+BO_S(1))**2)/3.

1 CZ)NTINUE
DO 2 I=I,NCP
AO=AO+AO_S(1)/XNCP
BO=-BO+BO_SG)/XNCP
RO=RO_RO_S(1)FXNCP

2 CONTI_._
RO=ABS(RO)
IF(YI_SAVE .LT. Y2_SAVE)RO=-RO
RETURN

Subroutine POINT_FIT fits experimental data io Equation C-2. It

requires arrays of X and Y values of dimension NP, an initial guess for the R,

A, B values (RAVE, AO, and BO), and the value of NCP. R_AVE contains the

initial guess of R at the beginnivg and the final value of R on exit. Several

parameters control the accuracy of the calculation; NUM_C controls the

number of fitting steps used to solve for A and B, NUM_TOT,_J_ controls the

number of fitting steps used to solve for R_AVE, STEP is the increment size

used to change the values of A and B during fitting, D is how much STEP ks

reduced by, and TOL is used to terminate the routine. The routine is ended

when either NUMC or NUM_TOTAL is reached, or when the change in R_AVE

is less than TOL*ERR_R. ERR_R is defined as the absolute magnitude of the

average deviation of R(i) from R_AVE.

SUBROUTINE POINT_FTr(x,Y_IP,AO,BO,A,B,R_AVE.ERR_R_CP)
IMPLICITNONE
REAL*8 AO_BO,A_SIGN,B_SIGN,OLD_R_AVE,DA.DB,OLD_EI_:R_R,C(2),

+ R_AVE,XINP_RR_R,D_ERR,TOL,X(5000),Y(5000) J_(50DO),
+ A,B,TI,T2,STEP(2),STEP_I,SIGN,RA,D
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INTEGER TOTAL_FIT,I,NP J_qJM_C,NUM_TOTAL_fT(2 ),II,N CP
COMMON/C__CJ_./M_TOTAL,$T__IJ),TOL

C
C GET 'BEST A & B VALUES BY MINIMIZING VARIATION IN R
C A= C(1); B=C(2)
C APPROXIMATE STARTING VALIF_,.qOFSTEP_.25, D=5., TOL= I.E-4
C

XNP=-PLOAT(NP)
C0)=AO
C(2)=SO
STEP(1)=STEP_I
STEP(2)=STEP_I
TOTAL..H_=0
SIGN--I.0
OLD_R_AVE=I.E_
TOTAL_HT=0

I00 DO 999I=1,2
OLD_ERR_R=I_6
_Tr(1)---0

22 CONTIN[_
R_AVE_.0
DO 2OII=I_P

R(II)=SQRT((X(II)+C(1))**2+(Y(II)+C(2))**2)
R_AVE=R_AVE+R(II)

2O CONTINUE
R_AVF._R_AVFJXNP

ERR_R=0.0
DO 21n-IJqP

ERR_R-ERR_R+ ABS (R_AVE-RtlI))/XNP
21 CONTINUE

D_=ERR_R-OLD_ERR_R
OLD_I_%R..R=ERR_R

HT(I)=-FIT(1)+1
n_iwr(I)_Q.NUM_C)OOTO30

IF(D_I_ .GT.0.)THEN
SIGN=-SIGN
STm_)=ST_(1)/D

_NDIF

IF(ABS(D_ERR).LT.TOL*I_R_R )GOTO 30
C(1)=C(1)*(1.+SIGN*STEP(1))

GOT_22
3O CONTINUE
999 CONTINUE

A--C(1)
B=C(2)
TOTAL_HT=TOTAL_FIT+1
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TI=0.
T2=0.
DO 1901 I=I,NCP

TI=TI+Y(I)
T2=T2+Y(_/2-NCP/2+I)

1901 CONTINUE

RA=ABS(R_AVE)
IF(T1 .LT. T2)RA--R_AVE
IF(TOTAL_FIT.EQ.NL_VI_TOTAL)GOTO918
IF(ABS(OLD_R_AVE-R_AVE) .GT. TOL*R_AVE)THEN

OLD_R_AVF,v-R_AVE
CKIrO 100

ENDIF
R_AVE=ABS(R_AVE)

918 IF(T"I .LT. T2)R_AVE=-R_AVE
.RETURN
END
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APPENDIX D - SIMPLE COMPOSITE PLATE AND BEAM THEORY

COMPOSITE PLATE THEORY

Firstly, individual layer stiffnesses are calculated by

1 - v12v21 1 - v12 v21

1 - v 12 v21

If the layer is anisotropic, the stiffnesses of each of the layers are rotated to

the principal directions of the plate by using the tensor rotation

transformation

ax k ey= m "1[0.]
'_x [T] 1 _'x

I m 2 n 2 2mn 1
LT]= n 2 m2 -2mn

-mn m n m2-n 2

,.

Where

m-cosO and n=sinB

where 0 is described in a counter-clockwise direction. Next, each of the

transformed layer stiffnesses are assembled into a global stiffness matrix of

the form:
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m i

O

INx I A11 A12 A16 B11 B12 BI6 cx

O

Ny A12 A22 A26 B12 B22 B26 Cy
Nxy Al6 A26 A66 Bl6 B26 B66 o

LMiyJ = Bl l Bl2 Bl6 Dl l D12 D16 7xY

Bl2 B22 B26 D21 D22 D26 _:x
Bl6 B26 B66 D61 D62 D66 _:Y

--_xy--

where

N /

k

Aij- _ (_ij (hk-hk- I )k=l

1 _ k (h2k.2.1) (i,j=1,2,6)Bij =_ (_ijk-I

1 _ k (h3k 3k.- )k--I

The goal is to solve for the mid-plane strain and curvatures of the

coated structure, due the applied loads, then to use the strain values to back-

calculate for all the stress components through the thickness of each of the

materials in the structure. Thermal forces (due to cooling) are

Nxt= k-_1 ((_kl a_ +(_k2 a_+ (_k16_y)(hk-h k-l) AT k

Nyt_ k-:lZ((_k2 a x +(_k 2 ay + ) (hk-h k-l)AT k

Nxyt _-.k._Nl(Qk6ax+k f_k6 ay+k _6C_y) (hk'h k-1)_T k
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N k k

M_=2k-1

and the totalload on the structureis the sum of any mechanicalloads and

moments (herezero)with thesethermalloads. The globalstiffnessmatrixis

then inverted to get

o

eX Hll H12 H13 H14 H15 H16 ["Nx 7

¢yO Jl H12 H22 H23 H24 H25 H26 /NY /o , H13 H23 H33 H34 H35 H36 Nxy

_'xy = H14 H24 H34 H44 H45 H46 LMiyJ

_:x H15 H25 H35 H45 H55 H56
_y Hl6 H26 H36 H46 H56 H66

"_X y"

and the mid-plane strain and curvature can then be solved for by any matrix

solution method. Mid-plane strain and curvatures are used to find the strains

through the entire thickness of the coated substrate

0

_x --- Ex + ZICx

0

Cy = gy + ZlCy

o

7xYffi_/xy+ Z_:xy
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Now that strains have been resolved, stress can be found by

i

k k k
k akATk) (_k6(Y_y axyAT )k k k akArk) (_k2 (eyax =(_I I (¢x " + " + "

k k k
k akATk) (_k6 (7_y axyAT )k k akATk) (_2 (¢y°'y=-_LI(¢x" + " + "

_xyk= _I (¢xk. akATk) + {_k2 (¢yk aykATk)+ _6 (Yxyk. axyAT)k k

k

Each of the sij terms vary through the thickness a very small amount

relative to the aAT strain terms, thus leading to the sharp discontinuities in

the in-plane stress terms when traversing material interfaces.

This theory has been implemented in a FORTRAN computer code, which

also includes material properties of the specific material systems used here.

NOMENCLATURE

El - Young's Modulus

Yij = Poisson_sRatio

Gij - Shear Modulus

Qij - Stiffness Component

Tij - Rotation Transformation Component
o

s i - Mid-plane Strain

_i - Mid-plane Curvature

Ni - Applied Forces

Mi - Applied Moments

h - Total Thickness

hi - Distance from Mid-plane to Interfaces

ai - Coefficientof Thermal Expansion

AT - Temperature Change
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Figure D-I In.plane residual stresses for a Si3N4 substrat¢ coated with

alumina-zirconia without an interlayer. Stresses for I, 4 and 10

microns coating thicknesses are shown. Thickness of the

coating layer has negligible effect on residual stress.
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Fig m'c D-2. In-plane residual stresses for a Si3N4 substrata coated with

alumina-zirconia with an .&IN interlayer. Stresses for I, 4 and I0

microns interlayer thicknesses are shown. Thickness of the

interlayer has negligible effect on residual stress.
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Figure D-3. In-plane residual stresses for a Si3N4 substrate coated with AIN

and an alumina-zirconia interlayer (coating order is reversed

from the previous figure). Stresses tor 1,4 and I0 microns

interlayer thicknesses are shown. Comparing to the previous

figure, order of the coating layers has negligible effect on

residual stress.
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