

1 of 1

**Cover Sheet for a Hanford
Historical Document
Released for Public Availability**

Released 1994

**Prepared for the U.S. Department of Energy
under Contract DE-AC06-76RLO 1830**

**Pacific Northwest Laboratory
Operated for the U.S. Department of Energy
by Battelle Memorial Institute**

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This is a **historical document** that is being released for public availability. This was made from the best available copy. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any **warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.** The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

(CLASSIFICATION)

DECLASSIFIED

DOCUMENT NO.

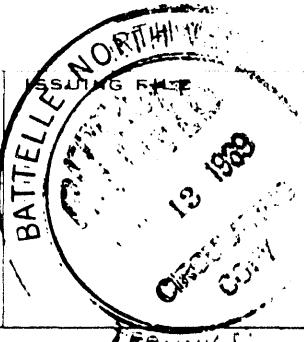
HW-57007 RD

SERIES AND COPY NO.

BMC

DATE 9-8-58

HANFORD ATOMIC PRODUCTS OPERATION - RICHLAND, WASHINGTON


THIS DOCUMENT CONTAINS RESTRICTED DATA AS
DEFINED IN THE ATOMIC ENERGY ACT OF 1954.
ITS TRANSMISSION OR THE DISCLOSURE OF ITS
CONTENTS IN ANY MANNER IS UNAUTHORIZED
PENALTY IS PROHIBITED.

TITLE

OTHER OFFICIAL CLASSIFIED INFORMATION
THIS MATERIAL CONTAINS INFORMATION AFFECTING
THE NATIONAL DEFENSE OF THE UNITED STATES
WITHIN THE MEANING OF THE ESPIONAGE LAWS,
TITLE 18, U. S. C., SECS. 793 AND 794, THE TRANS-
MISSION OR REVELATION OF WHICH IN ANY MANNER
TO AN UNAUTHORIZED PERSON IS PROHIBITED BY
LAW.

AUTHOR

GL Locke

THIS DOCUMENT MUST NOT BE LEFT UNATTENDED OR WHERE AN UNAUTHORIZED PERSON ~~MAINTAIN~~ ACCESS TO IT. WHEN NOT IN USE, IT MUST BE STORED IN AN APPROVED LOCKED REPOSITORY WITHIN AN APPROVED GUARDED AREA, WHILE IT IS IN YOUR POSSESSION AND UNTIL YOU HAVE OBTAINED A SIGNED RECEIPT FROM CLASSIFIED FILES. IT IS YOUR RESPONSIBILITY TO KEEP IT AND ITS CONTENTS WITHIN THE LIMITS OF THIS PROJECT AND FROM ANY UNAUTHORIZED PERSON. ITS TRANSMITTAL TO, AND STORAGE AT YOUR PLACE OF RESIDENCE IS PROHIBITED. IT IS NOT TO BE DUPLICATED. IF ADDITIONAL COPIES ARE REQUIRED, OBTAIN THEM FROM THE RELATED ISSUING FILE. ALL PERSONS READING THIS DOCUMENT ARE REQUESTED TO SIGN IN THE SPACE PROVIDED BELOW.

ROUTE TO:	PAYROLL NO.	LOCATION	FILE'S ROUTE DATE	SIGNATURE AND DATE
300 Extra				

FILES ROUTE
DATE

SIGNATURE AND DATE

300 Extra

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

54 3000-052 (7-6-9) A E C C S RICHLAND, WASH.

(CLASSIFICATION)

DECLASSIFIED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This document consists of
13 pages, copy 1 of
[redacted] copies. [redacted]

NPR DESIGN BASIS

September 8, 1958

Classification Cancelled and Changed To

DECLASSIFIED

By Authority of SE Gydson
RLD CG-4, 12-7-93

By Jesse Mally 1-5-94
Verified By J. E. Sawley 1-5-94

G. L. Locke
Reactor Design Analysis Operation
IRRADIATION PROCESSING DEPARTMENT

DISTRIBUTION

1. E. R. Astley
2. G. E. Bonham
3. J. R. Carrell
4. A. B. Carson
5. D. L. Condotta
6. R. F. Corlett
7. H. S. Davis
8. G. T. Haugland
9. L. G. Henke
10. H. B. Kosmata
11. G. L. Locke
12. D. B. Lovett
13. W. A. Massena
14. C. A. Mansius
15. D. Marinos

16. W. W. McIntosh
17. D. W. McLengen
18. W. J. Morris
19. W. J. Mundt
20. G. A. Newell
21. J. F. Nesbitt
22. H. L. Pringle
23. C. A. Pusey
24. G. L. Rodgers
25. R. A. Rohrbacher
26. M. H. Russ
27. D. E. Sebado
28. 300 Area File
29. Record Center

MASTER

DISTRIBUTION RESTRICTED TO U.S. ONLY

DECLASSIFIED

pt

NPR DESIGN BASIS

INTRODUCTION

The design basis is composed of requirements and conditions for the design of the reactor plant (composed of the reactor and heat dissipation system). Its intent is to insure that the final product meets the economic, safety, and technical objectives of the project.

The design basis is dependent on the ground rules, objectives, technical criteria, and practical design considerations. This document is being issued with the understanding that these items are not yet firmly established in all respects, and therefore, the numbers put down here are subject to change.

Consideration of the spectrum of probable changes that might be made leads to the conclusion that the numbers here are close to the final ones and are satisfactory as a basis for the initial stages of design. Some numbers are omitted because of insufficient data at this time.

GROUND RULES AND OBJECTIVES

Ground Rules

1. Initial operation: 4000/0⁽¹⁾
2. Initial cost: \$145 x 10⁶
3. Second phase operation: 4000/300
4. Ability of reactor to accommodate and demonstrate operation of power reactor fuel elements.

DECLASSIFIED

(1) 4000 MW is the ultimate operating goal. Its attainment will depend on development work, particularly in the fuel element field. There is no certainty that the reactor can be operated at 4000 MW with the start-up fuel element.

5. Length of time operated at 4000/0: 3 years
6. Length of time operated at 4000/300: 7 years
7. Disposition of plant upon completion of 4000/300 operation: Sell as a power producer to a power company such as a PUD which will operate it for 15 years.
8. Financing scheme:
 - A. Government financing for the first 10 years.
 - B. PUD type financing for the remaining 15 years with an effective 2-1/2 percent interest charged on the total capital investment for 15 years and 8.3 percent tax on gross power output.

Objectives

1. Minimum cost of conversion between initial and final operation within the above ground rules.
2. Minimum plutonium cost during the first 10 years of operation. (2)

TECHNICAL CRITERIA

The technical criteria is composed of (1) information regarding the properties of materials and the limitations of material under reactor plant operating conditions (i.e., in-reactor creep strength of Zr-2); and (2) methods of predicting physical phenomena where no known method has been satisfactorily developed (i.e., calculation of flux distribution within the reactor). Wherever applicable, the data in reference 1 has been used as the technical criteria.

(2) Under some circumstances, objectives 1 and 2 are conflicting. The decision as to which one will take precedent over the other will be deferred until more is known about how conflicting they are.

DECLASSIFIED

1.0 Design Basis

1.01 <u>Operating Conditions</u>		Phase I	Phase II	Phase III
1-Power level	MW	4000	4000	2400
2-Approx. Net Elec. Power Generation	MW	0	300	700
3-Primary Loop Water Temp. °F				
a-Bulk Outlet		540	540	573
b-Inlet		380	380	505
c-MPT Outlet		556	556	580
4-Flow Rate	lb.hr.	74.5×10^6	74.5×10^6	96.3×10^6
5-Pressures	psig			
a-Front riser		1500/50	1500/50	1645/50
b-Rear riser		1425/50	1425/50	1525/50
6-Orificing Efficiency	%	90	90	90
7-Flattening Efficiency	%	75	75	75

1.02 Fuel Element - Initial Load

1-Type*		7-element cluster
2-Material		Enriched U Metal, Zr-2 clad
3-Fuel Diameter	in.	.664
4-Clad Thickness	in.	.020
		<u>@ 4000 MW</u>
5-Maximum U Temperature	°F	1170
6-Bulk Average U Temp.	°F	
7-Design Exposure	MWD/T	2000
8-Pile Load	T	332.1
9-Enrichment		
a-Initial		0.823
b-Final		0.606
		0.615

*As per Ref. 2, this limits power level to about 3500 MW.

DECLASSIFIED

10-Production	Kg/T	@ 4000 MW	@ 2400 MW
		1.44	1.45

1.03 Process Tube

1-Material		Zr-2
2-Inside Diameter	in.	2.70
3-Wall Thickness	in.	0.25
4-Maximum Temperature	°F	675-825
5-Average Temp. of MPT	°F	
6-Bulk Average Temp.	°F	
7-Total Number		1004
8-Energy Generation	% (5)	0.5

1.04 Moderator

1-Material		Graphite
2-Purity, Reflector AGOTCR Equiv.		
- GBF or Equiv.		
3-Density of Material	gm/cc	1.65 \pm .03 .02
4-Effective Moderator Density	gm/cc	1.29
5-Dimensions Over-all (Nominal)	ft-in.	
a-Length		38 $\frac{1}{2}$
b-Width		33 $\frac{1}{2}$
c-Height		30 $\frac{1}{2}$
6-Reflector Thickness	in. (3)(4)	
a-Front and Rear		21-1/2
b-Sides		49-1/2
c-Top and Bottom		49-1/2

DECLASSIFIED

7-Temperature

°F

a-Maximum hot spot	2050-2300
b-Ave. Temp. of Max. Temp. Cell (4" x 9" x 16")	1600-1850
c-Temp. seen by Control Rod	1100-1200
d-Flux Squared Ave. Stack Temp.	

8-Energy Generation % of total⁽⁵⁾

5

9-No. of Lattice Units

a-Total ⁽⁶⁾	1004
b-In Horizontal Direction	34
c-In Vertical Direction	32
d-Missing from Each Corner	21

10-Lattice Spacing in.⁽⁶⁾

a-In Horizontal Direction*	8
b-In Vertical Direction	9

1.05 Primary Shielding⁽¹²⁾

Front & Rear

Sides & Top

Bottom

1-Material

a-Thermal	CI	Boron Steel	Borated Mortar
b-Biological	Cement-iron concrete	Hydrous-iron concrete	Concrete

2-Thickness

a-Thermal	in.	8	1	4
b-Biological	in.	40		

3-Energy Generation

a-Thermal⁽⁷⁾ Btu/ft²-hr 915 1230

b-Biological

1230
DECLASSIFIED

* The original 7-inch spacing has been increased to allow steam escape passages in the moderator in the event of a tube rupture.

Front & Rear Sides & Top Bottom

4-Maximum Temperatures

a-Thermal

b-Biological

5-Average Temperatures

a-Thermal

b-Biological

1.06 Horizontal Control & Safety System

1-Type	Rods Entering From Two Sides
2-Control Material	LiAl, 10% nat.Li and B ₄ C
3-Effective Rod Diameter	(2.55" x .25" thick) and (2.288 LiAl Solid) Dia. of Boron
4-Rod Spacing	27" x 40" maximum
5-Rod Number	76
6-Maximum Rod Temperature	
7-Maximum Energy Gen. in Rod	
8-Active Rod Length	26 ft.
9-Insertion Time Capabilities	1.6 sec. Full, 1.4 sec, 3/4 way
10-Rod Strength	5.9 percent Δk

1.07 Vertical Safety System

1-Type	Ball
2-Material	Stainless Steel, 1-1/2% Boron
3-Channel Diameter	4 in. diameter
4-Number of Channels	68
5-Spacing	32" x 40" max.
6-Drop Time	\sim 1-1/2 sec. for first balls to hit bottom
7-Ball Strength	6.2% Δk

DECLASSIFIED

1.08 Primary Coolant

1-Design Pressure ⁽⁸⁾	1825 psig or 900 fitting capabilities (whichever is lowest)
2-Normal Water Activity	See Reference 10
3-Maximum Operating Activity	See Reference 10
4-Reactor Pressure Drop Flow Characteristics	Figure 1 attached
5-Heat Transfer to Coolant During Scram	Figure 2 attached
6-Water Quality Requirements	See Reference 11

1.09 Pile Atmosphere

1-Type of Gas	Helium	
2-Flow Rates, cfm	400	
3-Temperature, °F ⁽¹¹⁾	<u>4000 MW</u>	<u>2400 MW</u>
a-Inlet	80	80
b-Outlet	800	771

1.10 Major Instrumentation Requirements

1-Allowable inlet coolant water temperature variation in steady state operation - °F.	± 5 -10
2-Allowable flow variation during steady oper.-%	- 5
3-Allowable tube power level variation during steady operation - %	± 10
4-Allowable pile power level variation during steady operation - %	± 2
5-Process tube instrumentation requirements	Flow rate Outlet temp. Outlet activity
6-Bulk inlet water instrumentation	Flow rate Temperature
7-System pressure - %	± 2

DECLASSIFIED

8-Nuclear

a-Range, $n/cm^2/sec.$ $10^2 - 10^{13}$

b-Accuracy - %

(1) Start-up

± 20

(2) Operating

± 5

c-Response

(1) Period trips 2 periods

(2) Start-up level trip 1-2 sec.

(3) Operating trip $1/4$ sec.

d-Trips Required

(1) Start-up range Period & Level

(2) Approach to upper range Rate & Level

(3) Operating range Level

9-Moderator

a-Temperature

(1) Range, $^{\circ}C$ 10-1200

(2) Time response, min. 1

(3) Accuracy, $^{\circ}C$ ± 10

b-Atmosphere

(1) Thermal Conductivity

Range -

Accuracy - % ± 10

Time response - min. 1

(2) O_2 and H_2O Concentration

Range - % 0-2.5

Accuracy - % ± 10

Time response, min. 1

DECLASSIFIED

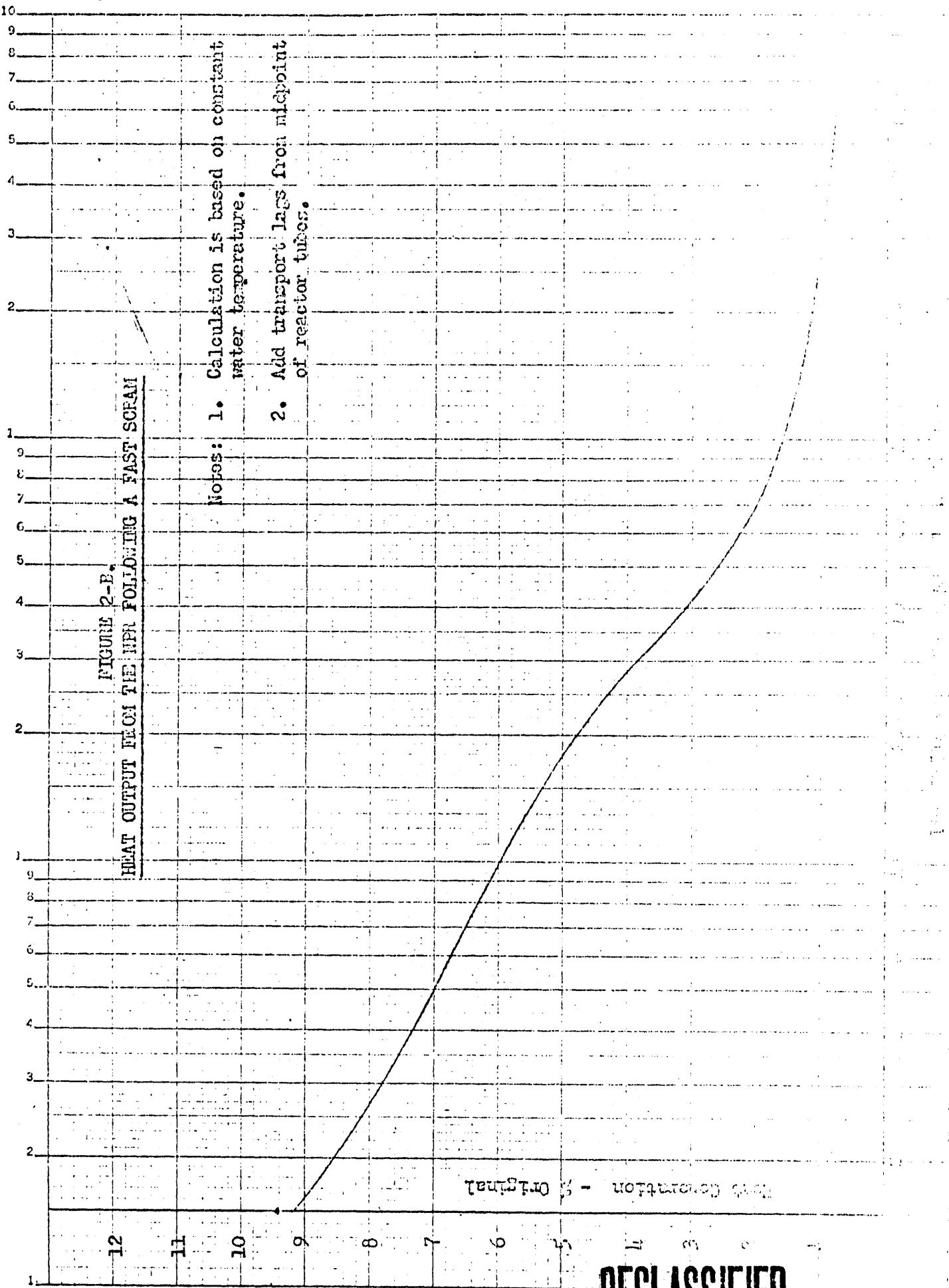
REFERENCES

- (1) HW-53612, "Technical Criteria and Bases, Pressurized Water-Cooled, Graphite Moderated Production Reactor", R. L. Dickeman, Confidential-Undocumented.
- (2) HW-56634, "NPR Power Level Limitations Imposed by Uranium Core Temperatures", D. L. Condotta, June 26, 1958.
- (3) HW-55658, "NPR Reflector Thicknesses", D. E. Wood, April 9, 1958.
- (4) HW-56482, "The Effects of Temperature and Flattening on the NPR Reflector Thicknesses", D. E. Wood, June 26, 1958.
- (5) HW-55167, "Heat Generation Rate in the NPR Graphite," E. R. Astley, February 27, 1958.
- (6) HW-53542, "Selection of NPR Lattice Size", H. R. Kosmata, January 3, 1958.
- (7) HW-56144, "Heat Generation in the NPR and K Reactor Thermal Shield", D. E. Wood, May 28, 1958.
- (8) Letter, D. L. Condotta to G. L. Locke, dated March 7, 1958.
- (9) HW-53544, "Maximum Activity Levels in NPR Heat Dissipation System", G. T. Carlton and C. A. Mansius, January 20, 1958.
- (10) HW-57252, "NPR Water Quality Design Bases", W. D. Bainard, August 13, 1958.
- (11) HW-54202, "Preliminary Estimates of Stack and Stack-Gas Temperatures - NIN", R. F. Corlett, December 27, 1957.
- (12) HW-55263, "NPR Shielding Prospectus", H. S. Davis, March 7, 1958.

Charles T. Locke
Supervisor
Reactor Design Analysis Operation
IRRADIATION PROCESSING DEPARTMENT

GL Locke:bk

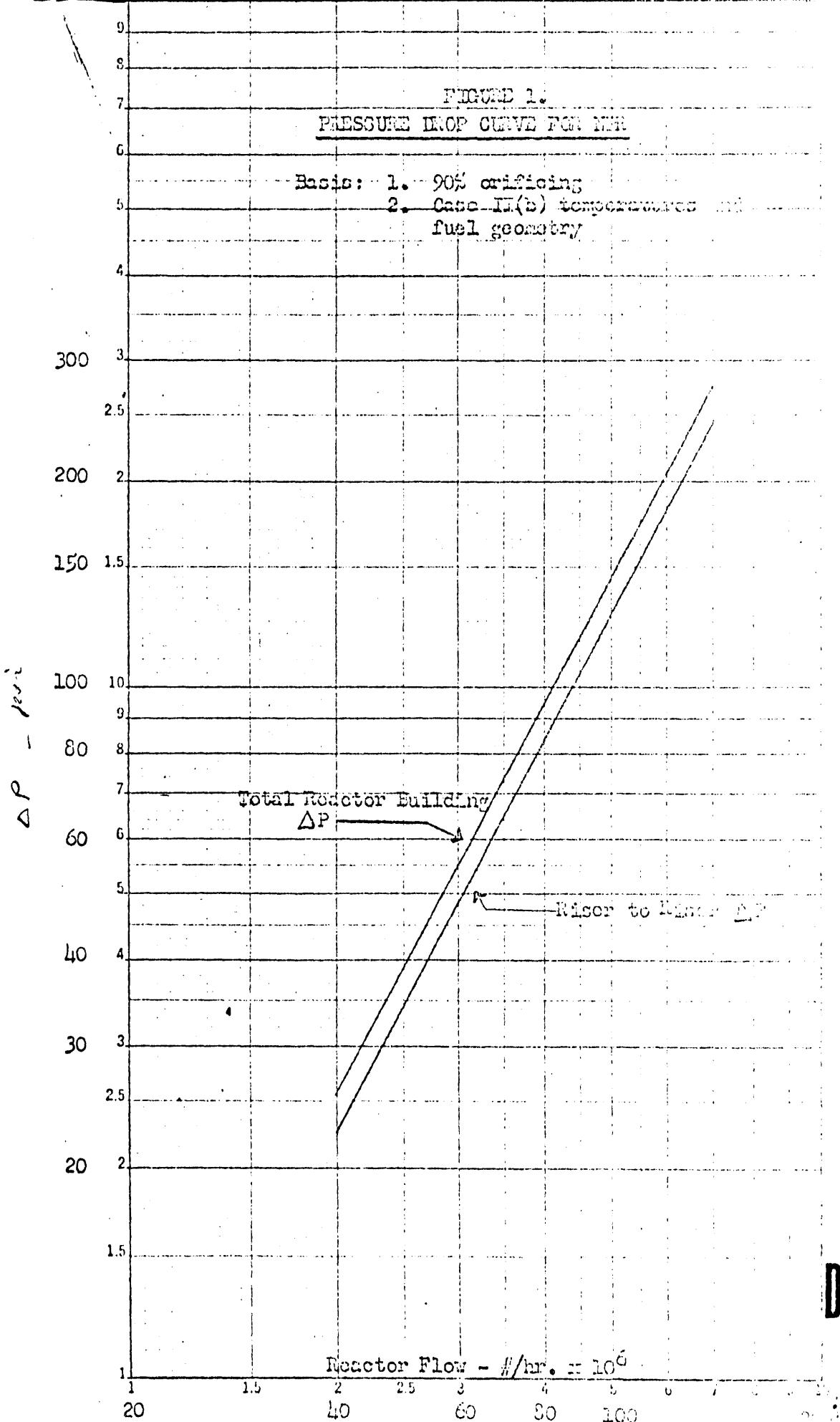
DECLASSIFIED


FIGURE 2-A
HEAT OUTPUT FROM THE PWR FOLLOWING A FAST SCRAM

Notice:

1. Calculation is based on constant water temperature.
2. Add transport lags from midpoint of reactor tubes.

Heat Generation - % Output


DECLASSIFIED

THIS CLASSIFICATION - 9. ORIGIN

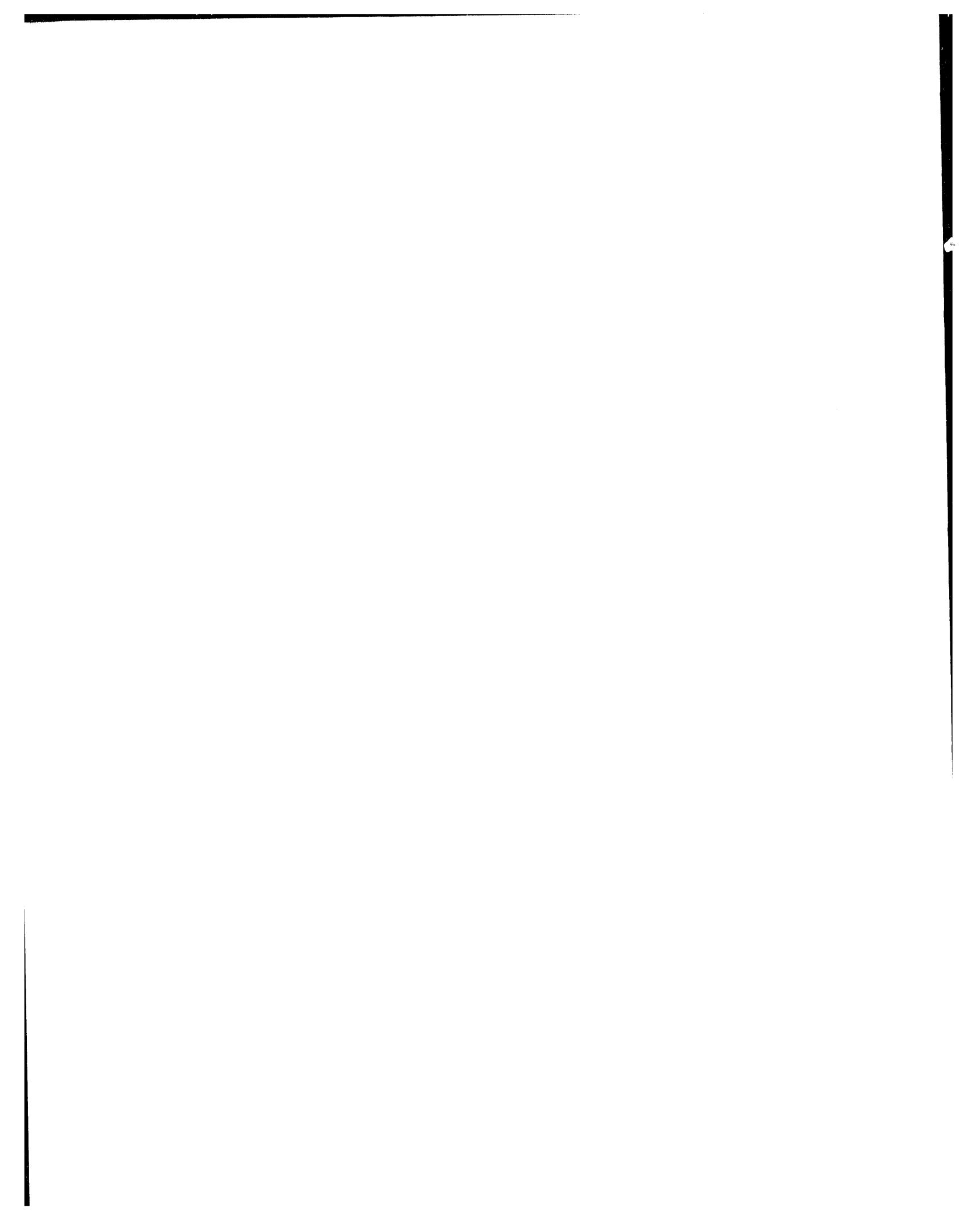

DECLASSIFIED

FIGURE 1
PRESSURE DROP CURVE FOR NHR

100-1000

9/10/96
FILED
MED
DATE

