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Evolution of Turbulent Fields in Explosions
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Abstract

Explosions always contain turbulent mixing regions, e.g.: boundary layers, shear
layers, wall jets and unstable interfaces. The inherent unsteadiness of turbulent mixing in
explosions, and the lack of sufficient data, pose insurmountable difficulties for turbulence
modeling of such flows. Proposed here is a direct numerical simulation approach—
where the three-dimensional (3-D) conservation laws are integrated via a high-order
Godunov method. Adaptive Mesh Refinement (AMR) is used to capture the convective
mixing processes on the computational grid. Then, an azimuthal-averaging operator is
applied to the 3-D solution—in order to extract the instantaneous mean and fluctuating
components of the turbulent field. As an illustration, this methodology is applied to the
numerical simulation of the turbulent wall jet and dusty boundary layer flow induced by a
point explosion above a ground surface. Principal results include the evolution of the
turbulent velocity field near the surface. During the wall jet phase, the mean profiles
resemble our previous two-dimensional calculations, while the velocity fluctuation
profiles and Reynolds stress profiles are qualitatively similar to measurements of self-
preserving wall jets. During the boundary layer phase, the mean velocity profile evolved
with time, e.g.: initially it agreed with measurements of a dusty boundary layer behind a
shock; at intermediate times it resembled the dusty boundary layer profiles measured in a
wind tunnel; while at late times, it approached a 1/7 power-law profile. Velocity
fluctuation profiles were qualitatively similar to those measured for a turbulent boundary
layer on a flat plate. The methodology can be used to predict the evolution of other
turbulent fields such as dust clouds, axisymmetric jets, fireball instabilities, and dusty
boundary layers in shock tube and wind tunnel flows.
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1. Introduction

Explosions always contain embedaed turbulent mixing regions, for example:
boundary layers, shear layers, wall jets, and unstable interfaces. There are two
approaches that can be used for numerical calculations of such turbulent flows, namely,
turbulence modeling or direct numerical simulation. Let us first contrast the strengths
and weaknesses of each approach.

Turbulence models all begin by averaging the conservation laws. In physics this
is known as the mean-field approximation, which works well if the fluctuations are
always small compared to the mean values. However, as pointed out by Chorin (1975),
the equations of fluid dynamics are nonlinear, and the integration of the averaged
equations does not equal the average of the integrated equations. This implies that the
turbulence model equations are not predictive (i.e., they cannot accurately forecast
turbulent flows which lack a significant data base). The inherent unsteadiness of
turbulent mixing in explosions poses a particularly difficult challenge in this regard.
Hence, for this class of flows, one must resort to other approaches which are not tied to
the limitations of integrating the averaged equations.

Due to recent advances in computational power and improvements in numerical
algorithms (e.g., nonlinear monotone schemes and adaptive mesh refinement), it is now
feasible to perform direct numerical simulations of three-dimensional (3-D) turbulent
flows. Recent studies by Bell and Marcus (1992), and Oran and Boris (1993) have shown
that time-dependent solutions of the 3-D conservation laws exhibit all the properties
associated with turbulent flows—including the Kolmogorov energy spectrum with a
power-law slope of -5/3—if enough grid resolution is used. The problem then becomes:
how can one extract order from this turbulent 3-D solution? For example, in many
engineering applications one is primarily interested in the mean flow. Clearly, the way to
construct the mean of nonsteady flows is by ensemble averaging—but it is impractical to
perform hundreds of 3-D calculations.

To solve such dilemmas, this paper presents a methodology for evaluating
averages of turbulent fields in symmetric explosions from a single direct numerical
simulation. As an illustration, this methodology is then applied to a 3-D simulation of the
dusty boundary layer induced by an explosion above a ground surface.

2. Averaging Methodology

We begin with a turbulent flowfield ¢ (x, y, z, ¢) derived from a direct integration
of the 3-D conservation laws. We assume that the explosion is initially spherical (i.e., no
jetting). Then it is reasonable to expect that the laminar flowfield outside the turbulent

mixing region is azimuthally symmetric. Take advantage of this unlying symmetry and
sample the solution at fixed azimuths 6= 27k/K in a cylindrical coordinate system:

¢ (x,y,2,t) => @ (r,z 6,1
This forms a set

(06, 0(0)...... ¢ (60}

where the dependence on other variables has temporarily been suppressed for clarity.
One can view this set as K realizations of the turbulent flow, in other words, an ensemble.



If this ensemble is statistically representative, then one can think of forming averages of
the turbulent flow. In particular, divide the flow field ¢ into a mean component ¢ and a
fluctuating component ¢”:

p=9+¢’ (0

such that ¢’ = 0. Let us define an azimuthal averaging operator 4:

a()=5 31 ) ®

Then application of the averaging operator to ¢ extracts the mean component of the flow:

K
F(rz0)=2{¢}= %Z«b(r,z, 6,.1). 3)

while application of the averaging operator to (¢’)" extracts the n'h moments of the flow:

K

(o) = 2{(¢) = 2[ ¢(r.2,6,,1) =6 (r,z,1)[ )

k:

and the root-mean-squared (r.m.s.) fluctuations:

¢’(r,z,t)=v(¢")" . : (5)

The above relations may be used for scalars. In order to calculate the Reynolds stress
tensor 7;;, one must consider the velocity field u(r,z, Bk,t). Then, application of the
averaging operator to uu; extracts the Reynolds stress:

7, (r,z,t) = ﬂ{u,.’u;}

=%{-i[ (r,2,6,.t)—u;(r,2 r)][ (r,z,G,‘,t)-u—j(r,z,t)] (6)

k=1

while the r.m.s. velocity fluctuations are related to the diagonal components of the
Reynolds stress by:

wr,z,t)=+1; . (7

Thus, by storing the complete flowfield at a few times ¢", this methodology
allows one to visualize the evolution of the azimuthally-averaged flow. For example, one
can make two-dimensional (2-D) contour plots of the mean flow ¢(r,z,t") and r.m.s.
fluctuations ¢’(r,z,t" at various times. In addition, by selecting fixed ground ranges r;,
one can djsplay the evolution of the boundary layer profiles: u,.(r,,z,t"gjr,u,.’(r,,z,t”% and
7,;\r,2,¢" ). Examples of these will be presented in subsequent sections.



3. The Problem

The problem considered here is the turbulent boundary layer flow induced by a
37-KT point explosion detonated 203 meters above a ground surface that had an initial
loose dust layer (see Figure 1). While much is known about blast wave reflections from
ideal surfaces (e.g., through gas dynamic calculations of Colella et al., [1986] and
laboratory experiments of Reichenbach et al., [1992]), much less is known about the
details of the boundary layer flow from explosions over real surfaces. One of the reasons
is that the flow is considerably more complex (see Figure 1).

For a point explosion over a ground surface, thermal radiation from the fireball
heats the air near the surface, creatmg a thermal layer TL ahead of the shock front. The
blast wave propagates faster in the high-sound-speed layer, generating an outrunning
precursor shock P. Gas from the main blast wave fills in the flow behind the precursor,
forming a turbulent wall jet (Figure 2). At the same time, vorticity is generated by
baroclinic effects (i.e., pressure gradients interacting with oblique density gradients). For
example, shock interactions with the dust bed create a boundary layer along the surface,
while shock interactions with the thermal layer create a vortex sheet that passes up and
over the top of the wall jet. These shear layers roll-up and interact, forming the turbulent
wall jet flow seen in Figure 2. Dust scouring occurs because the vortex tubes entrain
mass from the fluidized bed and mix it throughout the boundary layer.

The details of modeling the dusty flow have been published elsewhere (Kuhl et
al.,, 1993). The primary assumption was that the dust and air are in thermal and
mechanical equilibrium (however, nonequilibrium models may also be used; see Collins
et al., 1994). This results in the 3-D conservation laws of gasdynamics for the mixture.
These are augmented a convection equation for the dust mass concentration. The
conservation laws are integrated numerically with a second-order Godunov algorithm
(Colella and Glaz, 1985). Adaptive Mesh Refinement (AMR) was used to calculate the
convective mixing processes on the computational grid. Three levels of mesh
refinements were used: grid 1 defined the computational domain of 2000 m3 (A; = 24
m); grid 2 was used to capture the shock waves (4; = 6 m); while grid 3 followed the
dusty wall jet flow (43 = 1.5 m). The problem was run to a time of 2 seconds, which took
about 60 CPU hours on the Cray Y-MP.

A 3-D visualization of the turbulent wall jet and dusty boundary layer flow is
depicted in Figure 3. Three-dimensional effects are quite evident, for example:
streamwise vortex structures (Gortler vortices) in the boundary layer region (view a) and
hairpin structures in the wall jet flow (view b). The question is: does this chaotic mixing
layer possess smooth mean profiles that are similar to other well-documented turbulent
flows? This question is explored in the next two sections.

4, Wall Jet Profiles

mean streamwise velocity & (r z,t1)= Aiu_;. The time evolution of the resulting mean
radial velocity profiles is depicted in Fi 4 for two fixed ranges (r = 600 m and 700
m). The profiles exhibit the characteristic wall jet shape: velocities are zero in the
fluidized bed (z < 17 m); they reach a maximum value in the middle of the jet (z ~ 40 m);
and then decay to the freestream flow as one moves away from the surface. For the first
time we can actually visualize the temporal evolution of the mean profiles. For example,
at 600 meters the wall jet grows in strength to reach a maximum velocity of about 800
m/s at ¢t = 0.60 s; later it relaxes to a boundary layer flow (1, < 200 m/s) after the wall jet

The azimuthal- -averaging opcrat{ as applied to 4, in order to determine the
al




has passed over this station. Similar trends are seen at 700 meters, but the peak values
are somewhat smaller (~600 m/s) due to blast wave decay with range; maximum
velocities in the boundary layer are less than 50 m/s at late times (¢ = 1.45 s).

In order to compare the present results with other wall-jet flows, the velocities
were non-dimensionalized by the instantaneous maximum mean velocity un(t), and then
the profiles

ai/um':fi(r’nl’t) (8)
were scaled with the wall jet similarity variable n, (Bajura and Catalano, 1975):
n=(z2-2)/(2.~z,) ©)

where
zo(t) = height of the fluidized bed (i.e., where ¢ = 2/3),
z,(¢) = height of free shear layer (i.e., where & = u,), and
u = (u, +u.)/2.

The fiducial z, removes the flow in the fluidized bed from further consideration. Thus
the fluidized bed is an artifice that is used to allow dust entrainment into the flow in a
natural way that mimics the fluid mechanics (i.e., without imposing some artificial dust
injection model), but is not part of the boundary layer flow per se. The wall jet then
scales with the height of the free shear layer, &, :

Sy (1) = 2.(1) = 2,(2). (10)

The mean velocity profiles in the precursor wall jet are depicted in Figure 5 for
the same two ground ranges (r = 600 m and 700 m). The azimuthal-averaging procedure
gives smooth, well-behaved profiles. The scaling technique seems to collapse the radial
velocity profiles (Figures Sa and 5d) into a shape that is characteristic of other wall-jet
flows (Launcher and Rodi, 1981; Wygnanski et al., 1992). Nevertheless, the profile
shape changes somewhat over time, indicating that the wall jet is not truly self-similar.
(Of course, there is no reason to expect that the profile shape would be independent of
time for such a decaying blast wave problem.)

The mean vertical velocities (Figures 5b and Se) oscillate about zero
(-0.1<@, /u, < 0.1) in response to the rotational structures in the wall jet. At later times
(corresponding to symbol x) the flow direction is toward the surface as gas from the main
blast wave rushes in to support the wall jet flow. Mean azimuthal velocities (Figures 5¢
and 5f) are small—typically a few percent of u,y,.

Previously, we had performed detailed two-dimensional (2-D) calculations of this
same precursor wall jet flow (Kuhl et al., 1993). In that case we time-averaged the
solution in wall jet coordinates (Equation 9) to evaluate the mean-flow profiles. Note that
with that technique, one produces a single profile that is characteristic of the mean flow at
that ground range. For comparison purposes, the 2-D results have been plotted in Figure
S as the solid curves labeled 2-D. Clearly, the 2-D mean profiles are qualitatively similar
to the present 3-D results; however, only the 3-D calculation allows one to properly
evaluate the temporal evolution of the profiles.

Evolution of the corresponding turbulent velocity fluctuation profiles

u ) u, = g,(r,n,.1) (n



are depicted in Figure 6 for the same two ground ranges. For comparison, measured
profiles for a 2-D, self-preserving, clean wall jet (Launder and Rodi, 1981) are included
as dashed-line curves. Profiles of the radial (or streamwise) component of the velocity
fluctuations are shown in Figures 6a and 6d. They exhibit a bimodal distribution,
qualitatively similar to the experimental profiles: velocity fluctuations peak in the
boundary layer (7, =~ 0.2) and then again in the free shear layer (77, =~ 1) portion of the
jet. Values range from 20 to 30 percent of u,,. The second peak (near 7, = 1) disappears
at late times (time symbol x) as the flow relaxes to a boundary layer flow after the wall jet
has passed the considered ground range.

Evolution of the vertical component of the turbulent velocity fluctuations are
depicted in Figures 6b and 6e. The profiles exhibit a single-hump shape, qualitatively
similar to the experimental profiles. Values range from 10 to 20 percent of u,p,.

Evolution of the azimuthal component of the turbulent velocity fluctuation
profiles are depicted in Figures 6c and 6f. They exhibit a bimodal shape—with a peak in
the boundary layer (7, = 0.2) and a second peak in the free shear layer (7, ~ 1)—that is
qualitatively similar to the experimental profiles. Values range from 10 to 20 percent of
un. The second peak disappears at late times (time symbol x) as the flow relaxes to a
boundary layer flow after the wall jet has passed the considered ground range.

For comparison purposes, results from the previous 2-D simulation of this
problem are presented in Figure 6 as the solid curves labeled 2-D. The 2-D profiles are
qualitatively similar to the present 3-D results, but the peak values are too large—
typically by a factor of 1.5 to 2. This is a result of the 2-D flow approximation where the
turbulent fluctuations are shared among two degrees of freedom versus the three degrees
of freedom found in real turbulent flows. :

Evolution of the corresponding turbulent Reynolds stress profiles are depicted in
Figure 7 for the same two ground ranges. The radial-vertical component u/u, (Figure 7a
and 7d) has a negative peak in the boundary layer (7, ~ 0.2) and a positive peak in the
free shear layers (7, ~ 0.8)—as is typical of measured wall jet profiles. Profiles of other
components of the calculated turbulent Reynolds stress are more erratic. Apparently one
needs a bigger spectrum of samples to get smooth, well-behaved profiles for these
components. Unfortunately there are no experimental measurements to guide further
assessment of these profiles.

In summary, the preceding figures suggest that this blast wave wall jet is not self-
similar (or self-preserving). Instead the profiles evolve over time, and finally relax to a
boundary layer flow—whose properties will be examined in the next section.

5. Boundary Layer Profiles

In order to compare the present results with other boundary layer flows, the mean
velocity profiles:

E;/u,,=Fi(r,7hL,t) (12)

were rescaled with the boundary layer similarity variable, 1, :

TIBLz(Z‘Zo)/(ZBL“Zo) (13)




where zp;(t) denotes the boundary layer height (i.e., where u, =0.99 u,). This assumes
that the profiles scale with the boundary layer velocity thickness, dpL:

Op (1) = 25, (1) = 2,(r). (14)
Again, the fiducial z, removes the fluidized bed from the boundary layer analysis.

The evolution of the mean velocity profiles is depicted in Figure 8 for the same
two ground ranges (r = 600 m and 700 m). For comparison purposes, various
experimental profiles are included as dashed lines: curves labeled NS and WT represent
the dusty boundary layer profiles measured behind a normal shock (Batt et al., 1988) and
in a steady-flow wind tunnel (Batt et al., 1993), respectively; while curves labeled FP
denote the clean turbulent layer on a flat plate (Klebanoff, 1955). Clearly, the mean
radial velocity profile changes with time (Figures 8a and 8d). During the wall jet phase
(symbols Q, O, A, and +), the profiles resemble a dusty boundary layer behind a shock;
at intermediate times, the profiles resemble the dusty boundary layer in a wind tunnel;
while at late times, the profiles approach the clean flat plate case. In effect what happens
is that the vortex tubes in the boundary layer entrain dusty mass from the fluidized bed—
thereby continuously decreasing its mean density (see Appendix A for more details). The
corresponding mean densities in the bottom of the boundary layer also decrease with
time—which allows the mean velocities in the bottom of the boundary layer to creep up
toward the clean flat plate values.

The mean vertical velocity profiles are presented in Figures 8b and 8e. Vertical
velocities are essentially zero during the wall jet phase, but then expand upward during
the boundary layer phase as a result of the divergence of the blast wave flow. Mean
azimuthal velocities remain near zero at all times.

Evolution of the corresponding turbulent velocity fluctuation profiles:
u) /U, =G,(r, N .t) (15)

are presented in Figure 9 for the same two ground ranges (r = 600 m and 700 m). The
azimuthal averaging operator is adequate to give smooth, well-behaved profiles. The
radial velocity fluctuations grow with time, and reach a peak value of 30 percent of «,,
during the wall-jet phase. Then they relax to a profile that is relatively independent of
time, with a peak value at the bottom of the boundary layer of about 20 percent of up,.
This profile is about a factor of two greater than the clean flat plate case.

Similar trends are found in the vertical and azimuthal velocity fluctuation profiles.
At late times, they relax to a time-independent profile. Near 71, =0, azimuthal
fluctuations are larger than vertical fluctuations (0.12 u, versus 0.08 u,, , respectively).
This is the same trend as observed for a turbulent boundary layer on a flat plate (see
dashed curves) where (u;)max =~ 1.5(x;)max.

The turbulent Reynolds stress profiles are depicted in Figure 10, using boundary
layer scaling. As in Figure 7, the profiles are somewhat erratic. Apparently one needs a
larger spectrum of samples to get smooth, well-behaved profiles for these components.
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Figure Captions

Figure 1.
Figure 2.
Figure 3.

Figure 4.

Figure 3.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure .

Figure .

Explosion over a dusty surface (t =1 s).
Cross-sectional view of the turbulent wall jet flow (t =0.73 s).

Three-dimensional visualization of the turbulent wall jet and dusty boundary
layer flow at 1.68 s: (a) oblique view of the dust concentration; (b) vorticity
magnitude, viewed looking toward ground zero.

Evolution of the mean radial velocity profile versus time: (a) 600 m;
(b) 700 m..

Mean velocity profiles in a precursor wall jet at 600 m (a - radial, b - vertical,
¢ - azimuthal) and 700 m (d, e, f). Solid line denotes previous 2-D calculation
(Kuhl et al., 1993).

Velocity fluctuadon profiles in a precursor wall jet at 600 m (a - radial, b -
vertical, ¢ - azimuthal) and 700 m (d, ¢, f). Solid line denotes previous 2-D
calculation (Kuhl et al., 1993).. Dashed lines denote measurements of a self-
preserving 2-D clean wall jet (Launder and Rodi, 1981).

Reynolds stress profiles in a precursor wall jet at 600 m (a - radial, b -
vertical, ¢ - azimuthal) and 700 m (d, ¢, f). Solid line denotes previous 2-D
calculation (Kuhl et al., 1993).. Dashed lines denote measurements of a self-
preserving 2-D clean wall jet (Launder and Rodi, 1981).

Mean velocity profiles in the boundary layer at 600 m (a - radial, b -

vertical, ¢ - azimuthal) and 700 m (d, e, f). Curves labeled NS and WT
represent the dusty boundary layer profiles measured behind a normal shock
(Batt et al., 1988) and in a wind tunnel (Batt et al., 1993), respectively, while
curves labeled FP represent the turbulent boundary layer on a clean flat plate.

Velocity fluctuation profiles in the boundary layer at 600 m (a - radial, b -
vertical, ¢ - azimuthal) and 700 m (d, ¢, f). Dashed line represents
measurements of a turbulent boundary layer on a clean flat plate (Klebanoff,
1955).

Reynolds stress profiles in the boundary layer at 600 m (a - radial,

b - vertical, ¢ - azimuthal) and 700 m (d, e, f). Dashed line represents
measurements of a turbulent boundary layer on a clean flat plate (Klebanoff,
1955).

Mean flow profiles in a precursor wall jet: the 3-D calculation
(a - density, b - pressure, ¢ - dynamic pressure) compared with the previous
2-D calculation (d, e, f).

Fluctuation profiles in a precursor wall jet: the 3-D calculation
(a - density, b - pressure, ¢ - dynamic pressure) compared with the previous
2-D calculation (d, e, f).
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Figure 1. Explosion over a dusty surface (t = 1 s).
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Figure 3. Three-dimensional visualization of the turbulent wall jet and dusty boundary
layer flow at 1.68 s: (a) oblique view of the dust concentration; (b) vortcity

magnitude, viewed looking toward ground zero.
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Figure 7. Reynolds stress profiles in a precursor wall jet at 600m (a-radial, b-vertical

and 700m (d, e, f)
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Figure 10. Reynolds stress profiles in the boundary layer at 600 m (a - radial, b - vertical, ¢ - azimuthal)
and 700 m (d, e, f). Dashed line represents measurements of a turbulent boundary layer on a
clean flat plate (Klebanoff, 1955).









