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Abstract 

Integrated Gasification Combined Cycle (IGCC) system using coal gasification is an important approach for 
future energy options. This work focuses on understading the system operation and optimizing it in the presence 
of uncertain operating conditions using ASPEN Plus and CAPE-OPEN compliant stochastic simulation and 
multiobjective optimization capabilities developed by Vishwamitra Research Institute. The feasible operating 
surface for the IGCC system is generated and deterministic multiobjective optimization is performed. Since the 
feasible operating space is highly non-convex, heuristics based techniques that do not require gradient 
information are used to generate the Pareto surface. Accurate CFD models are simultaneously developed for the 
gasifier and chemical looping combustion system to characterize and quantify the process uncertainty in the 
ASPEN model.  
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The U.S. Department of Energy (DOE) is investing 
heavily in Fossil Energy R&D programs to promote the 
development of advanced power generation systems that 
meet the Nation’s energy needs while achieving a 
sustainable balance between economic, environmental, 
and social performance.  Integrated Gasification 
Combined Cycle (IGCC) technology is becoming 
increasingly important in this effort, where low-cost 
opportunity feedstock such as coal, heavy oils and pet 
coke are the fuels of choice. IGCC technology produces 
low-cost electricity while meeting strict environmental 
regulations. Efficient gasification process and combined 
with excellent post-gasification processing such as 
chemical looping combustion makes this an exciting 
option.   

To achieve performance targets and at the same time 
reduce the number of costly pilot-scale and demonstration 
facilities, the designers of these systems increasingly rely 
on high-fidelity process simulations to design and 

evaluate virtual plants. Developed by the DOE’s National 
Energy Technology Laboratory (NETL), the Advanced 
Process Engineering Co-Simulator (APECS) is a virtual 
plant simulator that combines process simulation, 
equipment simulations, immersive and interactive plant 
walk-through virtual engineering, and advanced analysis 
capabilities (Zitney et al. 2006, Zintey 2006a). The 
APECS system uses commercial process simulation 
software (e.g., Aspen Plus®) and equipment modeling 
software (e.g., FLUENT® computational fluid dynamics) 
integrated with the process-industry CAPE-OPEN (CO) 
software standard (Braunschweig 2002, Zitney 2006b). 
Plug-and-play interoperability of analysis tools in APECS 
is also facilitated by the use of the CO standard.  

This work presents the application of the CO-
compliant stochastic modeling and multi-objective 
optimization framework for APECS for the analysis of an 
IGCC system with single-stage gasification and chemical 
looping combustion. This framework enables optimizing 



  
 

 

model complexities in the face of uncertainty and multiple 
and sometimes conflicting objectives of design.  It also 
provides a decision support tool to address some of the 
key questions facing designers and planners of advanced 
process engineering systems 

The paper is arranged as follows. The next section 
gives a brief review of the IGCC system analyzed in this 
work. The theory behind the multi-objective analysis and 
the analysis results are presented in the subsequent 
sections. The last section draws the important 
conclusions.  

IGCC System 

The system is based on the General Electric (GE) 
Energy gasifier (single stage entrained-flow), two 
Advanced F-Class gas turbines partially integrated with 
an elevated pressure Air Separation Unit (ASU). Syngas 
desulfurization is provided by a Selexol Acid Gas 
Removal (AGR) system and a two-bed Claus Unit with 
Tail Gas Recycle to Selexol, and a chemical looping 
combustion system. In chemical looping combustion, 
metal oxide particles (oxygen carrier) are used for the 
transfer of oxygen from the combustion air to the fuel, 
thus the combustion products CO2 and H2O (or pure H2) 
are obtained in a separate stream (Lyngfelt et al. 2001). 
The flowsheet for chemical looping combustion combined 
cycle system is separated into sections like coal 
gasification, water gas shift reaction, sorbent energy 
transfer system and power generation. The coal 
gasification the process is modeled with two reactors, the 
first reactor decomposes the stream of coal into its 
elemental constituents (C, H2, N2, O2, S, H2O and Ash as 
a yield reactor) and the second reactor generates the fuel 
comprising CH4, H2, CO, NH4, H2S and CO2 (plus 
unreacted N2, O2, H2 and H2O) by minimizing the total 
Gibbs free energy of the system (Gibbs reactor). The 
products of the gasification process are fed to the water 
gas shift (WGS) reactor section to complete the oxidation 
of CO with the simultaneous production of hydrogen. The 
reaction takes place in two adiabatic reactors in series 
simulated as Gibbs reactors with intermediate heat 
exchangers. Sulfur and Ammonia removal unit is located 
downstream the WGS section. H2S is removed by an 
absorber using methanol or glycol. The removal of 
Ammonia is carried out with a reactive absorption process 
on sulfuric acid. Both separations are modeled in one 
single unit as a simple component separator. This section 
of the process is finished with a pressure swing adsorption 
(PSA) unit to purify the hydrogen that is fed to the gas 
turbine. The pure hydrogen stream and the fuel gas 
stream from the PSA are fed to the sorbent energy transfer 
system (SETS) which uses a chemical looping principle to 
purify CO2 and to recover the energy from the oxidation 
processes. The reduction reactor, the oxidation reactor 
and the combustion chamber are modeled as adiabatic 
Gibbs reactors. The metal carrier used in this case is 25% 
NiO in Al2O3. Please refer to DOE/NETL (2006) and 
Maurstad (2005) for further details related to the process. 

Aspen Plus model for the IGCC system has been 
developed by the Department of Energy in order to 
conduct system level analysis of the process. The Aspen 
Plus modeling details (including the modeling 
approximations and configuration) is explained in 
DOE/NETL (2006) and not discussed here for the sake of 
brevity. 

Multi-objective Analysis: Theory 

Multiobjective problems appear in virtually every 
field and in a wide variety of contexts (Diwekar 2003).  
Conventional process models (such as the IGCC Aspen 
Plus model) now in use are largely based on a 
deterministic computational framework used for 
simulation of a specified flowsheet. An important 
shortcoming of these models is their inability to analyze 
uncertainties rigorously.  Uncertainty analysis is 
especially important in the context of advanced energy 
systems, since available performance data typically are 
scant, accurate predictive models do not exist, and many 
technical as well as economic parameters are not well 
established. The work, therefore, goes beyond a 
deterministic analysis and studies multi-objective 
optimization in the presence of uncertainty. A generalized 
multi-objective optimization problem is of the form: 
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 The problem under consideration involves a set 
of n decision variables represented by the vector x

v

 = (x1, 
x2, …, xn).  The equality constraints hI ( x

v

), I ≥ 0: Rn → 
R, and inequality constraints gJ( x

v

) ≤ 0, J ≥ 0: Rn → R 
are real-valued (possibly nonlinear) constraint functions, 
and lj and uj are given lower and upper bounds of decision 
variable xj (allowed to be - ∞ and/or + ∞).  If I = 0 and J 
= 0, the problem becomes unconstrained. The problem 
involves k (≥ 2) continuously differentiable nonlinear 
objective functions fk : Rn → R. Without loss of 
generality, we assume that all the objective functions are 
to be minimized simultaneously.  

The solution of a multi-objective optimization 
problem is a set of solution alternatives called the Pareto 
set.  For each of these solution alternatives, it is 
impossible to improve one objective without sacrificing 
the value of another relative to some other solution 
alternatives in the set. There are usually many (infinite in 
number) Pareto optimal solutions. The collection of these 
is called the Pareto set.  The result of the application of a 
nonlinear multi-objective technique to a decision problem 
is the Pareto set for the problem, and it is from this subset 
of potential solutions that the final, preferred decision is 
chosen by the decision-makers.  



  

 

The most commonly used analytical techniques for 
multi-objective optimization problems (and to generate 
the Pareto surface) are: preference-based methods and 
generating methods (Diwekar 2003). Preference based 
methods require a-priori knowledge of the weights on 
different objectives and solves a single objective problem. 
Generating methods provide a great deal of information, 
emphasizing the Pareto optimal set or the range of choice 
available to decision-makers, and providing the trade-off 
information of one objective versus another.  Generating 
techniques can be further divided into two sub-classes: no-
preference methods and a posteriori methods. The 
selection of the appropriate method often depends on the 
optimization problem formulation.  

It has been mentioned that this work performs multi-
objective optimization in the presence of uncertainty. 
Uncertainty analysis consists of four main steps: (1) 
characterization and quantification of uncertainty in terms 
of probability distributions, (2) sampling from these 
distributions, (3) propagation through the modeling 
framework, (4) analysis of results (Diwekar et al. 1997). 
Once the uncertain parameters of a given model are 
identified in terms of their probability distributions, an 
efficient sampling techniques, such as the Hammersley 
Sequence Sampling (Kalagnanam and Diwekar 1997), is 
used to sample the uncertain space. The next important 
step is the propogation of uncertainty through the model. 
This work uses the Cape-Open compliance stochastic 
simulation capability to perform uncertainty analysis of 
the IGCC system and compute the feasible solution space. 

IGCC System: Multi-objective Optimization Results 

In this work, the non-dominated (Pareto) surface for 
the IGCC system is computed for following three 
important performance measures of the system, 
constituting the objectives for the system: Total plant 
efficiency (based on HHV of coal); Total CO2 emissions 
measures in Ib/hr; and Total SOx emission measured as 
volumetric fraction of the total flue gas volumetric flow 
rate. For multi-objective optimization, model parameters 
that have a significant impact on the system performance 
are first identified using the stochastic modeling PRCC 
(Partial Rank Correlation Coefficient) analysis for 11 
different model parameters (Diwekar and Rubin, 1991). 
PRCC provides a major or unique or unshared 
contribution of each variable, and explains the unique 
relationship between two variables that cannot be 
explained in terms of the relations of these variables with 
any other variable. PRCC analysis identifies following 
critical parameters for the IGCC system: Gasifier 
operating temperature; Gasifier operating pressure; and 
Claus burner temperature. These parameters are used to 
analyze results of multi-objective optimization (used as 
decision variables). 

The first step in the multi-objective analysis is to 
identify the feasible solution surface for the IGCC system 
for variations of the given decision variables. The feasible 
surface is generated through stochastic simulation by 

using 1000 samples of eleven different model parameters 
and propagating the uncertainty through the Cape-Open 
compliance stochastic simulation capability. The feasible 
surface is plotted as the values of the three objectives 
identified before and is shown in Figure 1. Here, the 
contours of one of the objectives (SOx) are plotted with 
respect to the values of the other two objectives for the 
1000 samples. Please note that CO2 emissions are 
measures in Ib/hr while the SOx emissions are measures 
in volumetric fraction of the total exit gas volume as 
mentioned before. From the figure it is clearly evident that 
the trade-off surface is highly non-convex. One can 
observe multiple peaks and valleys in terms of one of the 
objectives when the other two objectives are varied.  

 

Figure 1.   Feasible surface for IGCC system 

Although constraint based methods or preference 
based methods give a good estimate of the Pareto surface, 
they require the use of gradient based techniques to 
determine the surface. However, since the feasible surface 
for the IGCC system is non-convex, it makes the use of 
the previous mentioned techniques very difficult. The ‘No 
preference based methods’ can successfully tackle such 
problems and hence are used in this case. The ‘No 
preference based methods’ include compromise 
programming (Yu 1985), Multi-objective Proximal 
Bundle (MPB) (Miettinen 1999), and feasibility-based 
methods, such as the parameter space investigation (PSI) 
methods (Osyczka 1984). They focus on generating a 
feasible solution or all the feasible solutions instead of the 
Pareto set (the best feasible solutions). In PSI methods the 
continuous decision space is first uniformly discretized 
using the Monte Carlo sampling technique; next a 
solution is checked with the constraints. If one of the 
constraints is not satisfied, the solution is eliminated and 
the objective values are finally calculated, but only for 
those feasible solutions. Therefore, a discretized 
approximation of the feasible objective region, instead of 
the Pareto set, is retained by the PSI method. The 
solutions of this feasibility-based method cover the whole 
feasible objective region rather than covering only the 
optimal solutions in the Pareto set. Because most of the 
feasible solutions are not Pareto optimal, a relatively small 



  
 

 

number of the non-dominated (relatively better, but not 
necessarily Pareto optimal) solutions must be extracted 
from the whole feasible solution set to formulate an 
approximate representation of the Pareto set for 
feasibility-based methods. This justifies the use of PSI 
method to generate the approximate Pareto surface for the 
IGCC system. The feasible space shown in Figure 1 
constitutes the output of the stochastic simulation which 
must be used for approximate identification of the Pareto 
surface.  

Figure 2 shows the approximate Pareto surface in a 2-
dimensional space where the Pareto surface is constituted 
by points A-B-C-D-E. The values of different objectives 
for the Pareto surface are reported in Table 1. The values 
of decision variables corresponding to this Pareto surface 
are shown in Table 2. The results illustrate that the 
optimal operating point changes based on the particular 
realizations of the uncertain parameters, and the decision 
variables can vary significantly for the optimal operating 
point.  

 
Table 1. Approximate Pareto surface for IGCC System 

 
Point Efficiency CO2 emission 

(Ib/hr) 
SOx emission 

(volume fraction) 
1. 0.30111 105430 0 
2. 0.30578 117000 0 
3. 0.31533 103950 0.00000031028 
4. 0.32057 119110 0.00000076794 
5. 0.31757 105580 0.00000073921 
6. 0.31641 103960 0.00000024813 

 
 

 
Figure 2.  IGCC Pareto surface 

 
Table 2. Decision variable values for the Pareto surface 

 
Poin

t 
Gasifier 

operating 
temperature (F) 

Gasifier 
operating 

pressure (psia) 

Claus 
burner 

temperature 
(F) 

1. 2295.7043 741.1281 2245.6123 
2. 2376.7432 832.2906 2166.2783 
3. 2589.1709 759.775 2307.2532 
4. 2639.041 773.8 2590.3447 
5. 2636.6433 886 2507.5862 
6. 2615.0649 786.55 2242.1877 

Conclusions  

This work focused on the multi-objective 
optimization analysis of the IGCC system with a single 
stage coal gasifier. Initially, the important uncertain 
model parameters and the critical system objectives 
(performance indicators) are identified. The stochastic 
simulation of this system shows that the feasible solution 
is highly non-convex. Therefore, the PSI method is used 
to determine the approximate Pareto surface. The analysis 
of the results shows that uncertainty has a significant 
effect on the Pareto surface. It is also observed that there 
is a trade-off between the different objective functions of 
the system. Thus, Low SOx and CO2 emission often lead 
to low efficiency of the IGCC system. 
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