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Abstract

Integrated Gasification Combined Cycle (IGCC) system using coal gasification is an important approach for
future energy options. This work focuses on understading the system operation and optimizing it in the presence
of uncertain operating conditions using ASPEN Plus and CAPE-OPEN compliant stochastic simulation and
multiobjective optimization capabilities developed by Vishwamitra Research Ingtitute. The feasible operating
surface for the IGCC system is generated and deterministic multiobjective optimization is performed. Since the
feasible operating space is highly non-convex, heuristics based techniques that do not require gradient
information are used to generate the Pareto surface. Accurate CFD models are simultaneously devel oped for the
gasifier and chemica looping combustion system to characterize and quantify the process uncertainty in the

ASPEN modd.
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Introduction

The U.S. Department of Energy (DOE) is investing
heavily in Fossil Energy R&D programs to promote the
development of advanced power generation systems that
meet the Nation's energy needs while achieving a
sustainable balance between economic, environmental,
and social performance. Integrated Gasification
Combined Cycle (IGCC) technology is becoming
increasingly important in this effort, where low-cost
opportunity feedstock such as coal, heavy oils and pet
coke are the fuels of choice. IGCC technology produces
low-cost eectricity while meeting strict environmental
regulations. Efficient gasification process and combined
with excdllent post-gasification processing such as
chemical looping combustion makes this an exciting
option.

To achieve performance targets and at the same time
reduce the number of costly pilot-scale and demonstration
facilities, the designers of these systems increasingly rely
on high-fidelity process simulations to design and
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evaluate virtual plants. Developed by the DOE’s National
Energy Technology Laboratory (NETL), the Advanced
Process Engineering Co-Simulator (APECS) is a virtual
plant simulator that combines process simulation,
equipment simulations, immersive and interactive plant
walk-through virtual engineering, and advanced analysis
capabilities (Zitney et al. 2006, Zintey 2006a). The
APECS system uses commercial process simulation
software (e.g., Aspen Plus®) and equipment modeling
software (e.g., FLUENT® computational fluid dynamics)
integrated with the process-industry CAPE-OPEN (CO)
software standard (Braunschweig 2002, Zitney 2006b).
Plug-and-play interoperability of analysis tools in APECS
isalso facilitated by the use of the CO standard.

This work presents the application of the CO-
compliant stochastic modeling and multi-objective
optimization framework for APECS for the analysis of an
IGCC system with single-stage gasification and chemical
looping combustion. This framework enables optimizing



model complexities in the face of uncertainty and multiple
and sometimes conflicting objectives of design. It also
provides a decision support tool to address some of the
key questions facing designers and planners of advanced
process engineering systems

The paper is arranged as follows. The next section
gives a brief review of the IGCC system analyzed in this
work. The theory behind the multi-objective analysis and
the analysis results are presented in the subsequent
sections. The last section draws the important
conclusions.

IGCC System

The system is based on the Genera Electric (GE)
Energy gasifier (single stage entrained-flow), two
Advanced F-Class gas turbines partially integrated with
an elevated pressure Air Separation Unit (ASU). Syngas
desulfurization is provided by a Sdexol Acid Gas
Removal (AGR) system and a two-bed Claus Unit with
Taill Gas Recycle to Sdexol, and a chemical looping
combustion system. In chemical looping combustion,
metal oxide particles (oxygen carrier) are used for the
transfer of oxygen from the combustion air to the fud,
thus the combustion products CO, and H,O (or pure Hy)
are obtained in a separate stream (Lyngfelt et al. 2001).
The flowsheet for chemical looping combustion combined
cycle system is separated into sections like cod
gasification, water gas shift reaction, sorbent energy
transfer system and power generation. The coa
gasification the process is modeled with two reactors, the
first reactor decomposes the stream of coal into its
elemental constituents (C, Hp, N, O,, S, HO and Ash as
a yield reactor) and the second reactor generates the fuel
comprising CH4, H,, CO, NH; H,S and CO, (plus
unreacted N,, O, H, and H,O) by minimizing the total
Gibbs free energy of the system (Gibbs reactor). The
products of the gasification process are fed to the water
gas shift (WGS) reactor section to complete the oxidation
of CO with the simultaneous production of hydrogen. The
reaction takes place in two adiabatic reactors in series
smulated as Gibbs reactors with intermediate heat
exchangers. Sulfur and Ammonia removal unit is located
downstream the WGS section. H,S is removed by an
absorber using methanol or glycol. The remova of
Ammoniais carried out with a reactive absorption process
on sulfuric acid. Both separations are modeled in one
single unit as a simple component separator. This section
of the process is finished with a pressure swing adsorption
(PSA) unit to purify the hydrogen that is fed to the gas
turbine. The pure hydrogen stream and the fuel gas
stream from the PSA are fed to the sorbent energy transfer
system (SETS) which uses a chemical looping principle to
purify CO2 and to recover the energy from the oxidation
processes. The reduction reactor, the oxidation reactor
and the combustion chamber are modeled as adiabatic
Gibbs reactors. The metal carrier used in this caseis 25%
NiO in Al,Os;. Please refer to DOE/NETL (2006) and
Maurstad (2005) for further details related to the process.

Aspen Plus mode for the IGCC system has been
developed by the Department of Energy in order to
conduct system level analysis of the process. The Aspen
Plus modeling details (including the modeling
approximations and configuration) is explained in
DOE/NETL (2006) and not discussed here for the sake of
brevity.

Multi-objective Analysis. Theory

Multiobjective problems appear in virtualy every
field and in a wide variety of contexts (Diwekar 2003).
Conventional process models (such as the IGCC Aspen
Plus model) now in use are largey based on a
deterministic computational  framework used for
smulation of a gpecified flowsheet. An important
shortcoming of these models is their inability to analyze
uncertainties rigoroudly. Uncertainty analysis is
especialy important in the context of advanced energy
systems, since available performance data typically are
scant, accurate predictive models do not exist, and many
technical as well as economic parameters are not well
established. The work, therefore, goes beyond a
deterministic analysis and studies multi-objective
optimization in the presence of uncertainty. A generalized
multi-objective optimization problem is of the form:

Minimize:

f(X),i=1...k k=2
Sbjedt to:
h(%)=0,1>0
9,(X)<0,J20 @
li<x<u, j=1..n,

The problem under consideration involves a set
of n decision variables represented by the vector X = (x,
Xo, ..., Xn). The equality constraintsh, (X ), | 20: R" =
R, and inequality constraints gs( X ) <0,J >0: R" - R
are real-valued (possibly nonlinear) constraint functions,
and l; and u; are given lower and upper bounds of decision
variable x; (allowed to be - e and/or + ). If [ = 0and J
= 0, the problem becomes unconstrained. The problem
involves k (= 2) continuoudy differentiable nonlinear
objective functions f, : R" — R. Without loss of
generality, we assume that all the objective functions are
to be minimized simultaneoudly.

The solution of a multi-objective optimization
problem is a set of solution alternatives called the Pareto
set.  For each of these solution alternatives, it is
impossible to improve one objective without sacrificing
the value of another relative to some other solution
alternatives in the set. There are usually many (infinitein
number) Pareto optimal solutions. The collection of these
is called the Pareto set. The result of the application of a
nonlinear multi-objective technique to a decision problem
is the Pareto set for the problem, and it is from this subset
of potential solutions that the final, preferred decision is
chosen by the decision-makers.



The most commonly used analytical techniques for
multi-objective optimization problems (and to generate
the Pareto surface) are: preference-based methods and
generating methods (Diwekar 2003). Preference based
methods require a-priori knowledge of the weights on
different objectives and solves a single objective problem.
Generating methods provide a great deal of information,
emphasizing the Pareto optimal set or the range of choice
available to decision-makers, and providing the trade-off
information of one objective versus another. Generating
techniques can be further divided into two sub-classes. no-
preference methods and a posteriori methods. The
selection of the appropriate method often depends on the
optimization problem formulation.

It has been mentioned that this work performs multi-
objective optimization in the presence of uncertainty.
Uncertainty analysis consists of four main steps. (1)
characterization and quantification of uncertainty in terms
of probability distributions, (2) sampling from these
distributions, (3) propagation through the modeling
framework, (4) analysis of results (Diwekar et al. 1997).
Once the uncertain parameters of a given model are
identified in terms of their probability distributions, an
efficient sampling techniques, such as the Hammerdey
Sequence Sampling (Kalagnanam and Diwekar 1997), is
used to sample the uncertain space. The next important
step is the propogation of uncertainty through the model.
This work uses the Cape-Open compliance stochastic
simulation capability to perform uncertainty analysis of
the IGCC system and compute the feasible solution space.

IGCC System: M ulti-objective Optimization Results

In this work, the non-dominated (Pareto) surface for
the IGCC system is computed for following three
important  performance measures of the system,
congtituting the objectives for the system: Total plant
efficiency (based on HHV of coal); Total CO, emissions
measures in Ib/hr; and Total SOx emission measured as
volumetric fraction of the total flue gas volumetric flow
rate. For multi-objective optimization, model parameters
that have a significant impact on the system performance
are first identified using the stochastic modeling PRCC
(Partial Rank Correlation Coefficient) analysis for 11
different model parameters (Diwekar and Rubin, 1991).
PRCC provides a major or unique or unshared
contribution of each variable, and explains the unique
relationship between two variables that cannot be
explained in terms of the relations of these variables with
any other variable. PRCC analysis identifies following
critical parameters for the IGCC system: Gasifier
operating temperature; Gasifier operating pressure; and
Claus burner temperature. These parameters are used to
analyze results of multi-objective optimization (used as
decision variables).

The first step in the multi-objective analysis is to
identify the feasible solution surface for the IGCC system
for variations of the given decision variables. The feasible
surface is generated through stochastic simulation by

using 1000 samples of eleven different model parameters
and propagating the uncertainty through the Cape-Open
compliance stochastic simulation capability. The feasible
surface is plotted as the values of the three objectives
identified before and is shown in Figure 1. Here, the
contours of one of the objectives (SOx) are plotted with
respect to the values of the other two objectives for the
1000 samples. Please note that CO, emissions are
measures in Ib/hr while the SOx emissions are measures
in volumetric fraction of the total exit gas volume as
mentioned before. From the figureit is clearly evident that
the trade-off surface is highly non-convex. One can
observe multiple peaks and valleys in terms of one of the

objectives when the other two objectives are varied.
IGCC feasible region

Figure 1. Feasble surface for IGCC system

Although constraint based methods or preference
based methods give a good estimate of the Pareto surface,
they require the use of gradient based techniques to
determine the surface. However, since the feasible surface
for the IGCC system is non-convex, it makes the use of
the previous mentioned techniques very difficult. The ‘No
preference based methods can successfully tackle such
problems and hence are used in this case. The ‘No
preference based methods  include  compromise
programming (Yu 1985), Multi-objective Proximal
Bundle (MPB) (Miettinen 1999), and feasibility-based
methods, such as the parameter space investigation (PSl)
methods (Osyczka 1984). They focus on generating a
feasible solution or all the feasible solutions instead of the
Pareto set (the best feasible solutions). In PSI methods the
continuous decision space is first uniformly discretized
using the Monte Carlo sampling technique; next a
solution is checked with the constraints. If one of the
constraints is not satisfied, the solution is eiminated and
the objective values are finally calculated, but only for
those feasble solutions. Therefore, a discretized
approximation of the feasible objective region, instead of
the Pareto set, is retained by the PSI method. The
solutions of this feasibility-based method cover the whole
feasible objective region rather than covering only the
optimal solutions in the Pareto set. Because most of the
feasible solutions are not Pareto optimal, arelatively small



number of the non-dominated (relatively better, but not
necessarily Pareto optimal) solutions must be extracted
from the whole feasible solution set to formulate an
approximate representation of the Pareto set for
feasibility-based methods. This justifies the use of PSI
method to generate the approximate Pareto surface for the
IGCC system. The feasible space shown in Figure 1
congtitutes the output of the stochastic simulation which
must be used for approximate identification of the Pareto
surface.

Figure 2 shows the approximate Pareto surfacein a 2-
dimensional space where the Pareto surface is constituted
by points A-B-C-D-E. The values of different objectives
for the Pareto surface are reported in Table 1. The values
of decision variables corresponding to this Pareto surface
are shown in Table 2. The results illustrate that the
optimal operating point changes based on the particular
realizations of the uncertain parameters, and the decision
variables can vary significantly for the optimal operating
point.

Table 1. Approximate Pareto surface for IGCC System

Point | Efficiency | CO, emission SOx emission

(Ib/hr) (volume fraction)

1 0.30111 105430 0

2. 0.30578 117000 0

3. 0.31533 103950 0.00000031028

4. 0.32057 119110 0.00000076794

5. 0.31757 105580 0.00000073921

6. 0.31641 103960 0.00000024813
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Figure 2. IGCC Pareto surface

Table 2. Decision variable values for the Pareto surface

Poin Gasifier Gasifier Claus
t operating operating burner
temperature (F) | pressure(psia) | temperature
)

1. 2295.7043 741.1281 2245.6123
2. 2376.7432 832.2906 2166.2783
3. 2589.1709 759.775 2307.2532
4, 2639.041 773.8 2590.3447
5. 2636.6433 886 2507.5862
6. 2615.0649 786.55 2242.1877
Conclusions

This work focused on the multi-objective

optimization analysis of the IGCC system with a single
stage coal gasifier. Initially, the important uncertain
model parameters and the critical system objectives
(performance indicators) are identified. The stochastic
simulation of this system shows that the feasible solution
is highly non-convex. Therefore, the PSI method is used
to determine the approximate Pareto surface. The analysis
of the results shows that uncertainty has a significant
effect on the Pareto surface. It is also observed that there
is a trade-off between the different objective functions of
the system. Thus, Low SOx and CO2 emission often lead
to low efficiency of the IGCC system.
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