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LASER-ULTRASOUND CHARACTERIZATION
OF SPHERICAL OBJECTS

Chung-kao Peter Hsieh, Ph. D.
Stanford University, 1993

Ceramic bearing balls are desirable for use in high temperature and nonlubricative
environments because of their ability to retain high mechanical strength and reduced
wear. However, because ceramics are brittle, it is very important to inspect ceramic parts
for the existence of small (1-10 um) surface defects. The resonance spectrum of a
spherical object can provide information about its material properties such as shear and
longitudinal wave velocities to a high degree of accuracy. Also, surface wave resonant
modes that are observed at high frequencies (the half circumference of the sphere is a
multiple of at least 100 times the half surface wavelength) provide information about the
surface cracks density. As surface waves encounter a defect, the resonant energy will be
attenuated. By comparing the surface wave mode Quality factors (Q) between a perfect
and an imperfect sphere, we are able to quickly detect the existence of surface
imperfection. We find that a single defect will reduce the surface wave resonant Q by

about 30%.

A non-contacting detection scheme is desired because contacting points will also
attenuate surface wave energy and make the detection of surface cracks less sensitive.
We presen here a non-contacting detection method to measure resonances of a sphere.

In this case, we constructed a computer controlled system to excite resonances on a

iv




sphere with a transducer by a single Hertzian contact, and we use an optical Heterodyne
interferometer to detect both amplitude and phase of the surface variations on the
opposite pole of the sphere. This system is capable of inspecting bearing balls with

diameters ranging from 12 mm to 1 mm.
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Chapter 1

Introduction

1.1 Introduction
11.1 Importance of Ceramic Materials

Among the new discoveries and developments of science and technology in the
last few decades, which include an unprecedented number of new materials and
applications, are ceramics materials. Because of their unique performance and cost
competitiveness, ceramics have an important role as the most suitable substitutes in
traditional applications and as new functional materials for innovative technology
systems. Research tools and knowledge from powder metallurgy have been appraised
and adapted to the field, as has experience gained from the classical ceramics industry;
and novel sophisticated physical and chemical routes to ceramics processing and
characterization have been introduced. This has resulted in improved processing
techniques, novel materials, and the opening of new frontiers to research and

applications.1

Ceramic products touch our lives in many ways. Pottery and porcelain vessels,

glass and cement are only among the more familiar. Their applications include the
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magnets in television sets, optical fibers for telecommunications, automobile spark plugs,
and the insulators for power transmission lines and Japan's high-speed trains. They are
widely used in electronics, not only as magnets and as insulators, but also as heating
elements and substrates for integrated circuits. In bioceramics, they are used for artificial
teeth and bones. As engineering ceramics, they appear in ceramic engines and cutting

tools.2
1.1.2 Definitions of Ceramics

As a result of the high rate of technology development, there arises a need to
formulate a definition of the term ‘ceramics’. According to D. E. Dodd's Dictionary of

Ceramics, the following definition applies:3

Ceramic. The usual derivation is from Keramos, the Greek work for potters' clay or ware
made from clay and fired; by a natural extension of meaning, the term has for long
embraced all products made from fired clay, i.e., bricks and tiles, pipes and fireclay
refractories, sanitary-ware and electrical porcelain, as well as pottery tableware. In 1822
silica refractories were first made; they contained no clay, but were made by the normal
ceramic process of shaping a moist batch, drying the shaped ware and firing it. The word
‘ceramic’, while retaining its original sense of a product made from clay, thus tacitly
began to include other products made by the same general process of manufacture. There
has in consequence been no difficulty in permitting the term to embrace the many new
non-clay materials now being used in electrical, nuclear and high-temperature

engineering.
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In the USA a radical extension of meaning was authorized by the American
Ceramic Society in 1920; chemically, clay is a silicate and it was proposed that the term
‘ceramic’ should be applied to all the silicate industries; this brought in glass, vitreous
enamel, and hydraulic cement. In Europe, this wider meaning of the word has not yet

been fully accepted.

Technological change is also forcing changes in the limits placed on the term
‘ceramics’. Generally speaking, ceramics are a class of inorganic, refractory materials
with extremely useful structural and electrical properties as well as being applicable in

familiar applications such as eating utensils.

Structural ceramics, such as silicon nitride (Si3N4) and silicon carbide (SiC), are
desirable for use because of their high mechanical strength at high temperature and in
nonlubricative environments. These materials also exhibit good corrosion resistance and
are light in weight relative to most metals used in structural applications. These are the
properties that make ceramics attractive for use in high temperature applications, as in
components for internal combustion engines, bearings, gas turbines, cutting tools and
other devices. This category of ceramic materials is the one of interest in this work. This
thesis deals with the non-destructive inspection for surface defects on ceramic bearing

balls.
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1.2 Inspection of Ceramic Materials
1.2.1 The Importance of the Inspection of Ceramic Materials

The brittle nature of ceramics and consequent susceptibility to fracture initiated
from stress concentrating flaws, either internal or external, can offset many of the more
attractive properties of these materials Under load or wear conditions, a defect can cause
total mechanical failure of the entire structure. Although improvements in processing
technologies have greatly reduced the occurrence and severity of internal defects, it is
very important to inspect ceramic parts for the existence of small (1-10 pm) defects on
the surface. The evolution of techniques for detecting and characterizing cracks is thus

necessary for reliable failure prediction.

The use of ultrasonic waves as a quantitative tool in nondestructive testing of
materials for defects has received considerable attention in recent years. There has been
significant development in experimental techniques as well as advances in theories
describing the interaction between acoustic waves with various types of flaws. Among
these advances is the use of surface acoustic waves (SAW or Rayleigh waves)43:6 in the

inspection of surface defects.

In this thesis, we discuss issues of the characterization of ceramic bearing balls.
The problem of inspecting surface defects of ceramic bearing balls remains a difficult
one. Little research has been done on the subject of surface waves propagating on
spheres, or other objects of odd geometries. The theoretical difﬁculty lies in the

mathematical treatment of surface acoustic waves propagating around a sphere, a
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resonant case. On the experimental side, the difficulties lie in the excitation and detection
of surface waves on a sphere, especially on small spleres, for which the handling and

change of orientation are very difficult to control.

1.2.2 Current Inspection Techniques

Current inspection of ceramic bearing balls involve visual inspection, resonant
ultrasound spectroscopy, and acoustic microscopy. In the case of visual of inspection, a
human operator manually rotates the sphere and inspects it under an ordinary optical
microscope. The process of completing the inspection of one ball typically takes up to 30
minutes. Consequently, human factors such as fatigue make this inspection technique

unreliable.

A group in Los Alamos National Laboratory has also developed a resonant
ultrasound spectroscopic technique to perform non-destructive inspection on spherical
objects’”. By observing the resonance spectrum of the lowest resonant mode, they
claimed to be able to observe the existence of defects. However, low frequency
measurement results are not reliable for detecting the existence of defects, as will be

discussed later with our experimental results in chapter 3.

In the Ginzton Laboratory, we have developed and used an acoustic microscope
that operates in the frequency range of 1-200MHz. This microscope is capable of
measuring amplitude and phase associated with defects on ceramic bearing balls89. This
microscope provides clear images of surface damage with lateral sizes smaller than the

wavelength. Figure 1.1 shows three images taken by the microscope. The field of view
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is 1mm x Imm. The operating frequency is 112MHz, the lens aperture 1mm, and the
focal length is 1mm (F# =1). Fringes are due to the spherical shape of the sample being

observed.

The three pictures are images of the same bearing ball, the first is taken with the
lens focused on the top of the surface, the second is taken at a defocused distance of
10pum by bringing the lens closer to the sample, and the third is defocused by 100um. It
is observed that the defect becomes more apparent when defocused, while the image of

the dust (the round shadow) is sharpest when the microscope is focused on the top.

The acoustic microscope, though provides accurate images of the surface of the
sphere, cannot cover the entire surface without several rotations of the sphere. This
procedure not only is time consuming but also becomes especially cumbersome for small

spheres.

The three current inspection techniques are either unreliable or time consuming or
both. Therefore, it is important to develop a technique to be able to perform quality

control of ceramic bearing balls more efficiently and reliably.



Chapter 1: Introduction 7

1 mm

defocused by 100 um

Figure 1.1 Amplitude image of a
ceramic bearing ball
with a diameter of

0.251in.

1.3 Summary of Theory and Experiment

Continuous waves on a finite structure such as spheres form standing waves. At

certain frequencies, these standing waves will form resonances on the objects. Resonance
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contains information of the whole mechanical system which in our case, is the ceramic
bearing ball. Therefore, by exciting resonances on the ball, we should be able to get
information about its entire structure. Generally speaking, there are two types of waves
propagating on a ceramic bearing ball, longitudinal waves and shear waves. We shall
show later in Chapter 2 that it is possible to excite two types of resonances on a sphere,
the spheroidal resonances and the torsional resonances. The former is generated by a
combination of a longitudinal waves and a shear waves, the latter is formed by a pure
shear waves. We shall also show that in the high frequency region, surface wave
resonances (a special case of the spheroidal resonance) can ve¢ generated and used for

surface defect inspection.

The resonant sphere technique was developed in 1964 by D. B. Fraser.10 to
characterize material acoustic properties such as longitudinal wave velocity, shear wave
velocity, and Poisson's ratio. As we will show in Chapter 2, the resonance frequencies of
a sphere can be theoretically calculated given its radius and the longitudinal wave
velocity, and shear wave velocity, or Poisson's ratio. Therefore, the inverse problem of
calculating the acoustic properties of a sphere given experimentally measured resonance
frequency data and the sphere's radius becomes trivial. The technique developed by
Fraser was operated in the low frequency region where the resonance modes are more
easily identified (theoretically the higher frequency spectrum is very complicated because
of higher order harmonics). This technique was adopted by several other research
groups!1:12, but all limited its use in the low frequency region to material property

measurement.
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This thesis describes broader applications and improvements over the original
resonant sphere technique. We will show its application in both low and high frequency
regions. In the low frequency region, we are able to characterize material properties to a
high degree of accuracy. In the high frequency region, we show experimentally, for the
first time, the existence of surface wave resonances on a sphere. We then use the surface

waves to characterize the existence of surface flaws on spheres.

In Chapter 2, we discuss and summarize the theory of Rayleigh wave propagation.
We then show that there are two different types of resonance modes on a sphere, the
spheroidal resonances and the torsional resonances. The spheroidal resonances are
caused by a combination of longitudinal and shear waves, while the torsional resonances
are caused by shear waves only. We will also consider one of the special cases of the
spheroidal resonances — surface acoustic wave resonance on spheres. We then use
Green's function theory!® to discuss an important phenomenon of surface wave
propagation on spheres — focusing. The understanding of this phenomenon helps us
establish the criteria for the excitation and detection of surface waves on spheres later in

chapters 3 and 4.

In chapter 3 we discuss a variation and improvement of the resonant sphere
technique — the contact-contact resonant sphere technique. Two transducers in light
contact with the ball at the opposite poles act as a transmitter-receiver pair. Because of
the focusing effect of surface waves on a sphere, we choose the focal points (two opposite
poles) of the surface waves to be our contacting points. We show the application of this

technique in the low frequency region — measuremeat of material properties. We then
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discuss the experimental observation of surface wave resonances at high frequencies and

how surface waves on a sphere can be used to detect surface defects.

In chapter 4 we will describe a laser-ultrasound measurement system. We
developed a laser-ultrasound system that can measure the resonance spectrum of spheres
from 10 KHz to 70 MHz. We manufactured a special type of transducer that supports the
sphere and excites resonances on the sphere through only one contacting point. The
resonance spectrum of the sphere is detected by a non-contacting broadband optical
detection scheme on the opposite pole of the sphere. We demonstrated high accuracy in
the measurement of acoustic properties using this system. We demonstrated also the use

of surface waves to perform non-destructive evaluation of spheres.

In chapter 5 we will give a brief summary of the experimental results and discuss

future applications and possible improvements to the current technique.
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Chapter 2

Theories of Rayleigh Waves and
Spherical Resonances

2.1 Introduction

In this chapter, we will discuss theories of Rayleigh waves! and spherical
resonances. Rayleigh waves have been shown to be cépable of the detection of surface
defects on planar surfaces.2” and have attracted applications in the field of non-
destructive testing (NDT) during the past decade. For the case of a sphere, Rayleigh
waves exist only at high frequencies where the radius of curvature of the sphere is

relatively large compared to the wavelength.

Resonances on a sphere can be categorized into two types: the spheroidal
resonances and the torsional resonances. A spheroidal resonance is generated by a
combination of shear waves and longitudinal waves, while a torsional resonance is
generated by shear waves only. Since resonances are formed by standing waves, there is

a relationship between Rayleigh waves on a sphere and spherical resonances. As will be
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shown later in this chapter, Rayleigh wave resonances on a sphere are just a special case

of the spheroidal resonance, and only exist at high frequencies.

The theory of Rayleigh wave propagation on a planar surface is familiar in the
field of non-destructive evaluation because of its wide usage. We will only try to
summarize this theory briefly in this chapter. Interested readers are referred to a famous
book by I. A. Viktorov called Rayleigh and Lamb Waves.* This book discusses in great
detail the theory of Rayleigh wave propagation. Spherical resonances, on the other hand,
are unfamiliar to the NDT community, and will be discussed in greater detail in this
chapter. The relationship between spherical resonances and Rayleigh waves will also be
discussed.

2.2 Rayleigh Wave Theory

The propagation of acoustic waves on the surface of a semi-infinite medium with
stress-free boundary condition was first described by Lord Rayleigh in 18855. These
waves are called Rayleigh waves or Surface Acoustic Waves (SAW). Rayleigh wave
propagation is confined to vicinity of the free boundary with wave amplitudes decaying
rapidly with increasing depth below the solid surface. The theory of Rayleigh wave
propagation on planar surfaces has been studied in great detail. We will only summarize
this theory briefly in this sectionS.

Consider a linear elastic half space which occupies the region y > 0, with a free

surface at y =0 as shown in Figure 2.1. The surface of the half space lies in the x - z
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Traction Free Surface

y

Figure 2.1 Configuration for Rayleigh wave analysis

plane. For isotropic materials, the mechanical displacement u can be expressed in terms

of a scalar potential ® and a vector potential ¥

u=VO+Vx¥ (2.1)

We associate the potential ® with the longitudinal component of motion, and the
vector potential ¥ with the shear component of motion. For motions that are independent
of the coordinate x, the V¥ term in equation (2.1) tells us that only the x coordinate

of ¥ can be finite, and we write:
Y= yi. (2.2)

The two potentials ® and ¥ satisfy Helmholtz's equations’, separately:

(V2 +if)p=0 2.3)
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(V2 +£2)¥=0 (2.4)

where
k= mw/p/(k +2u) =0/, 2.5)
ks = mw/p/u =w/V; (2.6)

where © is the angular frequency, p is the mass density, A and p are the Lamé constants

of the material, V; and V are the acoustic velocities of the longitudinal and shear waves.

Again, for propagation that is independent of the coordinate x, equations (2.3) and

(2.4) can be written as
5zt £ +k?®=0 2.7
5z +—Tay +k2P=0 (2.8)
Solutions to equations (2.7) and (2.8) have the general form:
@ = Ae~ikr-o)-0y 2.9)
and
W = Bg~ilke-t)-5y (2.10)

where kg is the wave number of the Rayleigh wave, A and B are constants, and the

quantities g and s are given by
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g = ki -k} (2.11)
and
st =k} -k} (2.12)

If we look for solutions that fall off exponentially to as y — e, q and s must be the

positive roots of the above two equations.

The boundary condition of Rayleigh waves requires traction free on the free
surface y =0. The expression for stress is obtained by first finding the displacement
expression and then utilizing the stress-strain relationship. From equation (2.1), we get

expressions for displacemeant as follows:

_90 oy
u, = "3 (2.13)
and
u,=§a%+%w; (2.19)

Equations (2.13) and (2.14) can be used to determine the stress components in the

medium given by the stress-strain relationship for isotropic materials8:

Ox| [A+20 A A 0 0 of u, /9x

Gyy A A+20 A 0 0 O du, /dy

P A A A+24 0 0 O auz /0z

Gy, | o 0 0 po0o (au, / az) +(0u, /9y) (2.1
Ox 0 0 0 O p 0} (Ou,r9z)+(du,/ox)
o] L 0O 0 0 0 0 pj(3u;/3y)+(ou,/3x)]
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If we substitute equations (2.1) and (2.2) into equation (2.15) for propagation

independent of the coordinate x, we get:

{2 24
e )
=M —5+—5

( ~2 24 2 2
9“9 ¢ (a¢ 8w)
Oy =M —5 +— [+ 21| =5 + ===
» \0y" 0z # dy“ 0dyoz
(22 2.4\ 2 2
0’9  d°¢ %6 Jo'y
= <X 2 L 45 10
Oz \ay2 * 022 )+ "(azi ayaz]

J (2.16)

If we substitute equations (2.9) and (2.10) into equation (2.16) and look for
solutions to surface waves by applying the stress free boundary condition at the surface
y =0, we get:

2jkpq
B==—%5A
kR +S

2ijS
A=-—"5B
kR +s

217

Combining equations (2.11), (2.12), and (2.17), the Rayleigh wave characteristic

equation can be found as:

2 4 2 2
&:2_,_2 ~16 1__’97 -ESZ_ =0, (2.18)
kR kR kR

or,
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V2 4 V2 v2 _
(Vs -2) —16[1-;?—11-—-‘-5-)—0, (2.19)

s

where Vp and kg are the velocity and wave number of the Rayleigh wave, respectively.

To find a real value solution to equation (2.19), we express Vp in terms of V and

Poisson's ratio, where Poisson's ratio is given by

2
_ (Vi) -2 (2.20)
vy -1|
Combining equations (2.19) and (2.20), it can be shown easily that
2
o) 160 V) 48V 1v,) - (Varvi)’) o2

8(Va/V,)* ~8(Vi/V,)* +(Vi/ V.s){r

It has been shown by L. A. Viktorov* that Vg can be found from the approximate form:

Ve _087+1.12v

) 2.22
Ve 1+v (222)
A more accurate result is given by curve fitting equation (2.21), the result is

-“’7& = 0.87379 +0.20178v — 0.077453v> (223)

s

Figure 2.2 shows a comparison of equations (2.22), (2.23) with the theoretical
data generated from equation (2.21). Figure 2.3 shows the corresponding error from

theoretical value (2.21) of equations (2.22) and (2.23).
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Figure 2.2 Rayleigh wave velocity V; as a function of Poisson's

ratio v

As shown in Figure 2.2, the curve fitting result given by equation (2.23) fits the
theoretical data given by equation (2.21) so well that it is difficult to distinguish them in
the plot from one another. The approximate solution given by equation (2.22), though it
generally agrees well with the exact solution, is not sufficiently accurate at both large and
small Poisson's ratio region. Figure 2.3 shows that the curve fitting result (2.23) has an
error which .s generally smaller than 0.02 percent throughout the Poisson's ratio range
from O to 0.5, while the largest error from equation (2.22) is 0.45 percent. For the case
of ceramics, where v = 0.2616, theoretical value of Vi / V; is 0.9212958, the approximate
solution has a value of 0.9218384 with an error of -0.059 percent, while the curve fitting

result has a value of 0.9212750 with an error of only 0.0024 percent.
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Figure 2.3 Error percentage comparison between equations (2.22) and (2.23)

As will be shown later in chapter 4, the laser-ultrasound technique is capable of
measuring material acoustic velocities Vs and V; to an accuracy of one in 104. To
predict and compare the resonance frequencies of surface wave resonances on a sphere,
we have to have an accurate value for the surface wave velocity Vg. Therefore it is

necessary to use equation (2.23) in stead of equation (2.22) to calculate V.
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Polar Angle

0
Azimuthal Angle

Figure 2.4 Definition of spherical coordination system

2.3 Resonance of Spheres
2.3.1 Basics

In the literature, there has been little research that deals with resonance of spheres,
no matter whether it is experimental or theoretical. The papers by K. Sezawa® and by
Yasuo Satd and Tatsuo Usami in 196210 are the fundamental towards the understanding

of the frequencies and distribution of displacement of the free oscillations.

We use the following notation:

6:  polarangle
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o azimuthal angle
r: coordinate in the radial direction (refer to figure 2.4 for 6, ¢, and r)
a Radius of sphere
f Frequency
Vs Shear wave velocity
Vi  Longitudinal wave velocity
ks: Shear wave number
ki Longitudinal wave number
n: 2nfa/ Vs =ksa
E: 2nfa/V; =ka
m: Integer, for variation in ¢ direction (will become clear later)
n: Integer, for variation in 0 direction (will become clear later)
A and p: Lamé constants
u= (u,,ue,uq,): Mechanical displacement vector

o= (c,,, 0,9,0',,4,): Stress components on the surface of the sphere

Amn Bmn, Con: Arbitrary Constants

We express the radial, polar and azimuthal components of the displacement vector

as u= (u,.,ue,uq,). K. Sezawa derived solutions to the Helmholtz's equations (2.3) and
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(2.4) in a spherical coordinate system. For solutions related to @ in equation (2.3), the

displacement vector is given by:

A d(Jnlkr ]
= ——kﬁa;("—’j’%—’l)&m(cose)cos(mcn
- —i‘%ﬁﬂ%"i’liz.wcose)cos(m)

n+1/2(k1' ) P Scosel

There are two sets of solutions for ¥ in equation (2.4). The first set solves for the

g

(2.24)

full solution, and the displacement vector is given by:

Uy =-— n(n ';?Bm ""*:Zg ) P (cos0)cos(mo)
oz = _‘; ( P27 2k, r)) = P(cosB)cos(m) (2.25)
Uy2 = mf -—(fl/21u+1,2(k ))M.ﬂn(m¢)

The second set of solutions to equation (2.4) is for a pure torsional case where the radial

component of ¥ is equal to zero, and the displacement vector is given by:

]

U3=0
__mCpy Jns1s2(ksr) P(cos0) »
Con_Ins12(ks?) d pm

Up3 =— RSy (cose)sm(mq))‘
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In equations (2.24), (2.25), and (2.26), the subscripts 1, 2, and 3 stand for three

sets of solutions, namely solution to ®, solution to ¥ , and solution to ¥ with no radial

component. The term J,,;,5 is the spherical Bessel function and P)*(cos®) is the

associated Legendre function. As shown in the three sets of equations, n stands for

variation in the 0 direction. With |m| < n, there are 2n+1 degenerate modes that are

represented by m in the ¢ direction.

The stress components corresponding to equations (2.24), (2.25), and (2.26) are
given by Satd and Usami as shown in equations (2.27), (2.28), and (2.29), respectively:

J kyrr 1
Crr = A,,.,.{(l + 2,,;)_2«:1;/%1_)

2u( 2 d (Jpasz(ker Tne1r2(kit)
2L — n(n+1)=2 2
+;F(r dr( rt n(n+1) r

- P*(cos8)cos(mo) ,
C9,1 = ‘%L%(l%@)ga P (cosO)cos(mo) 2.27)
1

2 d ( Jps12(k7) Y P (cos®) .
oy = 22 & e glir) 0080 1 g




26 Chapter 2: Theories of Rayleigh Wave and Spherical Resonance

3

Opp s = _2n(n "I:)U-Bm _g;'_(]nﬂm(kar )P,,"‘(cose)cas(mq:)

da(J k J gk r)
0'6.2=‘E£?°‘k { drz( M:,’iz/(rsr))"'("(""‘l)'z) M;/z/ : }
'S

4
9

2
s

F(cos®) sin(mo)

s5in®

P (cos®)cos(mo) \

Cn3 =0

_muCry { d (Jn+1/2 kr) _ Ju+1/2(ks")]}

n(n+1) |dr rt! 1P

Fy"(cos®) cos(m)

sin®
= _&Qm.{i(fmlz(ksr) _ J,m/g(k,r))} (2.29)

003

o —
37 n(n+1) |dr P72 P2

d .m ,
-2—9-13, (cos®)sin(md)

If we look for solutions for the free resonance of a sphere with the boundary
condition that requires no normal stress on the spherical surface, Satd and Usami have
shown that the above three equations can be combined into two groups. The first group is
formed by a combination of longitudinal and shear waves, coming from equations (2.27)
and (2.28), this is called the spheroidal mode. The second group is a pure torsional case
coming from equation (2.29). In the following two sections, we are going to discuss in

more detail these two groups of resonances.
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2.3.2 Torsional Resonance of a Homogeneous Elastic Sphere ( T, — T,;)

Equation (2.29) pertains to pure torsional resonance modes. In this case, there is
no radial component of the displacement vector. The first sub-index » stands for
variation in the polar angle 6 direction. The second sub-index [ stands for the I'»
harmonic of the nt* resonance, where | = 1, 2, ..., .. For each », there are (2 n +1)
degenerate modes in the azimuthal ¢ direction represented by m, where |m| < n. These
degenerate modes have the same resonant frequencies; therefore, the Tp;, modes can be
represented by T,; modes. The characteristic equation is deduced from the boundary
conditions on the surface, that is,

°r9|r=a = 0}

0.ﬂblr:a =0 , (2.30)

where a is the radius of the sphere. If we substitute equation (2.30) into (2.29), we get

two solutions of the same form given by:

%(—-17—]": f/z(")] -0 (2.31)

wa . .
where N = k.a = V. this equation reduces to
s

(n=1)Jns1/2(N) =MW py3/2(n) = 0 (2.32)

As shown in equation (2.32), the resonant frequencies of the torsional resonances

are dependent upon the radius of the sphere a and the shear wave velocity V; only.

Figure 2.5 shows an example of one of the torsional modes T;; mode for Si3N4 ceramic
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bearing with Vs = 6250m/sec. In this figure we assume m = 0, therefore ug = 0 according
equation (2.26), and only ug is non-zero. The picture on the left is a 3-D plot of ug versus
r and q, the displacement is normalized according to the largest value, and radius of the
sphere is assumed to be one. The picture on the right illustrates that this is a case of a
rigid rotation with two spherical shells moving in the shearing direction against each

other!!,

2.3.3 Spheroidal Resonance of a Homogeneous Elastic Sphere ( S,z,, — S,;)

Similarly to the torsional resonance case, the first sub-index n stands for

variation in the polar angle 6. The second sub-index ! stands for the I harmonic of

Figure 2.5 T;; mode. No radial motion, two spherical shells move in the shear

direction against each other.
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the nth resonance, where /=1, 2, ..., . For each n, there are (2 n +1) degenerate
modes in the azimuthal direction represented by m, where |m|<n . These degenerate
modes have the same resonant frequency, therefore, the Sp;m modes can be represented

by Sp; modes.

The treatment of the spheroidal resonances is much more complicated than the
pure torsional resonances. Because of the excitation scheme used in our experiments, we
can only consider the solutions for which the motion is independent of the azimuthal
direction, i.e., m = 0. We can rewrite expressions (2.24) and (2.25) as:

= - A, d (Jn+1/2(klr))Pn (Cose)1

U,1=
7.1 k[z dr rll2

2 g

An Ju+l/2(klr)_é_
o P, (cos6) (2.33)

Ug, = -F—’;ﬁ_—
1 r
Uy =0

and

__n(n+1)B, Jpy

kor
U2 = e ’-3% S )P,, (cos6)
)

r

s

d
k2 r"&?('mfnﬂ/z(ksr))ggl’n (cos®) (2.34)

Equations (2.27) and (2.28) become:
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kir
crr,l = {()‘ +2 )'ﬂ%—z(—!_)

Ins k Jns12(K
ISP

2u4, d 1/2(kz’) d
:;4" dr( Bt 572 %Pn (cos®)

an'l = 0

v

(2.35)

C1="—

and

2n(n+1 d(J k
Cpa2=- n(nkz )”LBn _‘;r_( n+;gZ/g Sr))Pn (COSO)
'S

. d? In kgr n kgr)| d
f; { d,z( ‘“‘,’{‘12 ))+(n(n+1) 2)—11-%2—(———)}%P,.(cose)»(2.36)

0',.¢'2 =0

Sezawa has shown that under the condition

B, _ K d(Jwnn(kr)) [1 4 ¢
:4_,.-—-2-17,2-; "'_r—3/2_"' w/—er( n+112( s'))

) 2.37)
WI/ 4 (Fnsrs2(k57)) + "'—sl/ 3 ("(" +1)- "5")—’n+l/2(ksr ) ‘
r’'<adr r 4 rea

A summation of equation (2.35) and equation (2.36) satisfies the stress free
boundary condition.

O,pl;=g =0
relr—a } (2.38)
o'r9|r=a =0
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Figure 2.6 An example of the spheroidal
S,y mode, also called the

oblate-prolate mode.

The characteristic equation of the spheroidal resonance is then obtained as:
2k |1 (n=1)n+ 2)(Jn+3/2(ﬂ) _n+ 1)] Tui312(8)
ks n ﬂz Jn+1/2(n) n Jn+l/2(E..)

{_ 1, (n=1)(n+2) ,,_( 1_ zn(n-l)(n+2)\fn+3,z(n)] _0
2 3
27 7 n 7 Menm)

(2.39)
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where

£= kla} (2.40)

n=ka

Equation (2.37) gives us the relative amplitude contribution for spheroidal
resonance between shear wave and longitudinal wave. Equation (2.39) tells us that the
resonance frequencies of the spheroidal modes, unlike the torsional modes, depend on

Vi, Vs, and a, since they are combinations of longitudinal and shear wave components.

Figure 2.6 demonstrates an example of the spheroidal modes, in this case, the Sz
mode for Si3N4 ceramic bearing ball with Vs =6250m/s, V;= 11000m/s. B2 /A3 is
calculated to be 0.281183 from equation (2.37), this is also called the oblate-prolate mode
and is the fundamental spheroidal mode. The top two pictures are 3-D plots of
displacements u, and ug versus coordinates r and 0. The displacements are calculated
according to u, = u,1 + (B2 /A2) ur2 and ug=ug) + (B2/A2) ug2. The amplitudes of
the displacements are normalized with the maximum amplitude of u,, and the radius of

the sphere is assumed to be unity.

A special case of the spheroidal rnode is the pure compressional mode. In this
case n = 0 (implying m = 0, since }iizl < ), this means there is no variation in either 8 or
¢ direction. There is displacement in the radial direction only. Equation (2.39) can be
simplified to be:

tan(E) = —S 241)

where
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Figure 2.7 The S,; mode, the fundamental compressional mode, is also called
the breathing mode. The entire sphere expands and contracts in

unison.

&= k’a} (2.40)

n=ka

The only non-zero displacement component in equations (2.24) and (2.25) is ur,1.
Figure 2.7 shows an example of the fundamental pure compressional mode, the Sg;
mode, also called the breathing mode. The entire sphere is observed to expand and
contract in unison. For higher order pure compressional modes, there are different

spherical shells moving against one another in the radial direction.
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Figure 2.8 Mode chart for an isotropic spherical resonator of radius g, with

stress-free boundary condition. The horizontal axis is Poisson's ratio
=[wm) 2] /{2[(V, 1v,)? —1]}. The vertical axis is normalized
frequency. As can be seen from the chart, resonant frequencies of

the torsional resonances are independent of V;.
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Figure 2.8 shows a low frequency mode chart of the free oscillation of a sphere!l.
As seen in the figure, the horizontal straight lines are the torsional resonances. These
resonant frequencies of the torsional modes depend on the shear wave velocity Vs but
not on the longitudinal wave velocity V;. The spheroidal resonance frequencies, on the

other hand, depend on both V; and V.

2.3.4 Surface Acoustic Wave Resonance of a Homogeneous Elastic Sphere

For large values of n (n 2 100), we substitute an asymptotic expansion to the

Bessel functions in the characteristic equation (2.39) and simplify it to the following

4
k2 k? k2
2| -16{1-=Lf1-=%|=0 2.42
(kR ) 6(;1%_ 7‘? @42

Equation (2.42) is the characteristic equation of Rayleigh waves, where kg is the wave

form12;

number of the Rayleigh waves. This tells us that Rayleigh waves exist on spherical

surface at high frequencies.

2.3.5 SAW Propagation On A Sphere

As discussed in chapter 1, in the field of ultrasonics, surface wave probing is a
good tool for surface defect inspection. However, to excite and detect surface waves on a

sphere, we need to know how surface waves propagate on its surface. We have shown in
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the previous section the existence of surface wave resonances on a sphere. In this
section, we use Green's function formalism, i.e., consider excitation at a point, to analyze
the propagation of surface waves on a sphere6, We will show that surface waves excited
at a point on one pole of a sphere are focused at the opposite pole of the sphere. This
focusing effect assists us in the design of the experimental setups in chapters 3 and 4,
where we use a point source to excite surface waves on a sphere, and detect at a point on

the opposite side of the sphere.

Consider wave propagation on a spherical surface in the spherical coordinate
system (r, 0, ¢). With azimuthal symmetry, no radial dependence, and only 0 as the

independent coordinate variable, Helmholtz's equation reduces to:

LA ed), a0
in® de(sme de)+kRa H=0 (243)

where H is a displacement potential, it can be either @ or ¥, or a linear combination

thereof. Also, kg is the wave number of the surface wave, and a is the radius of the

sphere. Compare equation (2.43) to Legendre's equation”:

1 df . dZ.,(cosB)
1 daf. g%y\cost) -
prap: (sme ]+ Y(Y +1)Zy(cos8)=0 (2.44)

As discussed in the previous section, Rayleigh waves on a spherical surface exist only at

high frequencies. For kza >>1, let

kka® =y(y+1) (2.45)

then
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¥ = kRa——;- (2.46)

The solution to equation (2.44) can be chosen to bel3:
Z,(cos®) = Oy(cos8)~ j Py(cosO) (2.47)

where Q,(cos®) and Py(cos6) are Legendre Polynomials of the second kind and first
kind, respectively. The sign of the imaginary part is chosen to give an asymptotic form
equivalent in this context to surface wave propagation in one direction along a plane

semi-infinite substrate.

We use Green's function formalism to obtain the field distribution of surface
waves on a sphere. To solve for the Green's function G(0) of surface wave potential on a

sphere, some properties of Legendre polynomials have to be understood. The first one is

the recurrence relation given by7:
d
(+*- 1)2; (1) = (Y+1D)Zy 0y (1) = (¥ +1)x Z, (x) (2.48)

Second, it can be shown by mathematical induction that:

lim(y+ )y (x) - xQy(x)]=-1 (2.49)

To find the two dimensional Green's function G(8) corresponding to the potential

® or ¥ satisfying the wave equation:

V2G + k3G = 5(6) (2.50)
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where V2 corresponds to differentiation only in the @ direction, where 3(8) is the Dirac

delta function, which satisfies the equation

ﬁa(e)d Q=1
(2.51)

with 3(8) — oo as 0 - 0, and where

dQ=2na?sin6d 6 (2.52)

We write the solution to equation (2.50) as

G(8) = 4]0, (cos8) - j Py (cos6)] (2.53)

To find the constant A, we integrate equation (2.50) over a small spherical surface

element enclosing the point © = 0. Thus
tim §b(V2G+ (kga)’G)d Q=1 (2.54)
60

Combining equations (2.51), (2.52), (2.53), (2.54), plus an application of Gauss's theorem

gives:

0 n dG
lim J‘ k},G-(Znazsine)de+j —sinfd¢ =1 (2.55)
00 J, 4=0 do

Substituting (2.53) into (2.55), using the relationship given by (2.48) and (2.49), and

solving for A in equation (2.53), we get:

G(6)= %[Q,(cos ) - j Py (cos 9)] (2.56)
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For y>> 1 and 0 sufficiently larger than zero, the asymptotic solutions of the Legendre

Polynomials are:
1/2 1
FPy(cos6) = (-2:{_.:%;5) sin[('y + -2-)9 + -}] (2.57)
N ) .
Qy (cos©) = (m) COS[(‘Y + 5)9 + -4-] (2.58)

Substituting (2.46), (2.57), and (2.58) into (2.56), we have

1/2

G(8) = - 1 . exp[— j(kRae+-})] (2.59)
81t(kka - E)Sl'ne

Equation (2.59) is a very important result. It contains physical meaning in its

structure. First, the —jkpa® term inside the exponential describes propagation of a

Phase Delay = kpa6

-0, a
& 2sind ~

Figure 2.9 This figure illustrates two physical phenomena in equation (2.50).

(i) Polar angle propagation. (ii) Cylindrical wave attenuation.
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North Pole

South Poe

Figure 2.10 Focusing effect of surface acoustic waves on a sphere.

Rayleigh wave in the polar angle 0 direction, with a phase delay of kga®, as shown in
Figure 2.9. This explains the reason for the negative sign in equation (2.47). Second, the
asin® term in the denominator of the square root corresponds to the decrease in
amplitude of a cylindrical wave as its area increases. The amplitude reduction of a
cylindrical wave is proportional to 1/+/radius. For a surface acoustic wave propagating
on the surface of a sphere, the circumference is equal to 27 a sinb , as shown also in

Figure 2.9.
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(2.59), this is a singular point because of the sin term in the denominator. Therefore,
the field near the focal point needs further treatment. Refer to figure 2.11, in actual
experiments, there is no so called ‘point source’, the excitation actually takes place over
an area of finite size, and the focal point will not be exactly be an angle of © away from
the source. We understand that the field distribution should be independent of the
azimuthal direction because of our excitation scheme. To calculate the field distribution
near the south pole, we can arbitrarily put a ring-type source at any polar angle
sufficiently away from the two poles and perform Green's function integration over the
source. Readers interested in the integration procedure are referred to chapter 3 of
Professor G. S. Kino's book ‘Acoustic Waves: Devices, Imaging, and Analog Signal
Processing.’6  'We chose the equator as the ring-type source and calculated the field
distribution H(0) near the south pole by integrating the Green's function over source
using the Kirchhoff formula in Kino's book:

H(0,0)= H(6) = J(HV'G({)) - G(9)V'H)- nds (2.60)

where ds is an element of the ring-type source, »# is a normal vector pointing in the

negative 0 direction, s is the entire ring of the source (integration from 0 to 2x).

There is a reason why we chose the equator as the source. Kino pointed out that it
is not rigorously correct to specify both H and V’'H on the source, however, since the

length of the equator is much larger than the wave length, we can assume V'H -n = jkgH

in the equation.
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Referring to figure 2.11, the angle ¥ is the angle extended on the spherical
surface between a point on the source (a, 90,%) and the point (a,9.¢) of which the field

we are interested in, 9 is given by:

¥ =cos™! [sine sinBg cos(¢ — ¢ ) + cosO cos 90] (2.61)

Note in the case of using the equator as the source, 0y =®/2. The integration
result is shown in figure 2.12. In this figure, the vertical axis is normalized with the
amplitude at the focal point, the horizontal axis is distance away from the focal point and
is normalized with surface wavelength.

We observe that surface waves are focused at the south pole of the sphere. Ata
distance Ap away from the focal point, the normalized amplitude drops to 1/4/2,
therefore we say the 3dB spot size is two times this distance, or, 0.364A,. The
observation of the focusing phenomenon is important for experimental purposes, it tells
us that in order to detect the highest amplitude to have the largest signal to noise ratio, the
detection point has to be either at the excitation point, or at the opposite pole, in our case,

the south pole.

Finally, to form a surface wave resonance, the sphere's circumference must be an

integral number of surface wavelengths, given by the formula:

2na _ vy 2.62)
Ar

where M is an integer.
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Use equator as the
ring-type source for
integration convenience

(a: 901%)

Figure 2.11 Treat surface wave source with a finite dimension in stead of a point

source

The physical meaning is that as surface wave travels, its phase encounters a
change of kp(ma) after the first half circumference with a traveling distance of na, =
after the first focal point, another kg(na) after the second half circumference, another n
after it refocused at the source. Thus after traveling one round-trip we have a total phase

change of:
[2kg(na) + 21} = [27(1 + kga)| = [27(1 + 2ma/ A5 )] (2.63)

In order to form a resonance, this sum should be an integer number of 2%. Therefore,

1+ 2ma/Ap =M, this gives the result in (2.60).
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We have used Green's function integration to calculate field distribution on the
sphere. Here we will show a much simpler approach with a lot more physical meaning.

The Green's function for a traveling wave was given by

G(9)=-§-11;[Qy(cos0)— jPy(cos0)] (2.56)

To form standing waves, there is another Green's function for waves traveling in

the opposite direction, namely:

G'(6)=%[Qy(cos9)+ jPy(cos8)] (2.56)

1I0,Frrvr~ 1717y T

0.8

0.6

0.4

Normalized Amplitude

0.2

0.0 a 0/,

S5 -4 -3 -2 -10 1 2 3 4 5
Normalized Distance
Figure 2.12 Standing wave pattern of surface waves on a sphere. Here, the
horizontal axis is normalized with respect to surface wavelength Ag.
We see that surface waves focus down to a 0.364 Ap 3-dB spot

size.
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Therefore, the standing wave pattern is actually (G +G’) and is proportional to
Oy(cos0) =0y 4-1/2(cos8) = 0y_3,5(cosB), where M is an integer. When this

expression is plotted against figure 2.12, they are found to be identical.

2.4 Concluding Remarks

In this chapter, we discussed briefly the propagation of Rayleigh waves on a
planar surface. Further, we discussed in more detail about the theories of spherical
resonances. The torsional resonance frequencies are found to be dependent on the shear
wave velocity and radius of the sphere, while the spheroidal resonance frequencies are
dependent on the shear wave velocity, the longitudinal wave velocity, and radius of the

sphere.

Surface wave resonances are found to be one of the special cases of the spheroidal
resonances. We used Green's function approach to show the focusing effect of surface
waves propagating on a sphere. The focal point spot size is found to be 0.364A5. This
enables us to design the excitation and detection scheme for surface waves to be used in

Chapters 3 and 4.
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Chapter 3

Contact-Contact
Resonant Sphere Technique

3.1 Introduction

The resonant sphere technique was originally introduced by D. B. Fraser and L.
C. LeCraw in 1964 as a technique to measure material properties of spherical objects!. A
sphere was put on a piezoelectric transducer, and surrounded by cardboard to prevent it
from rolling. A tone burst signal was sent into the transducer and the gated reflected
signal was detected using the same transducer. Resonance frequency was determined
when the maximum reflection amplitude was found. The quality factor of each resonance
was determined by measuring the decay rate of the reflected signal. This proved to be a
useful technique for measuring acoustic properties such as longitudinal wave velocity V;
and shear wave velocity V;. Several researchers continued on with this technique, but all

limited its usage to measuring material properties23.

In chapter 2 we discussed wave propagation on spheres. Waves propagating in

opposite directions on the sphere will form standing waves. At certain frequencies, these
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standing waves will form resonances on the sphere. Researchers following in the
footsteps of Fraser used the resonant sphere technique in the low frequency region to
measure material properties. In this chapter, we will present our improvements and
modifications of this technique. First, we improved the experimental setup to enable the
system to measure not only the resonance amplitude but also its phase. Second, we
pushed the operation to a high frequency region and, for the first time, experimentally
demonstrated surface wave resonances on spheres. Since we are able to generate surface
waves on spheres, these surface waves can be used to perform surface defect inspection,

particularly of ceramic bearing balls which are of most interest to this research.

3.2 Experimental Setup

We designed and built a contact-contact resonance experimental setup to measure
resonances of spheres. The setup is shown in Figure 3.1. The sphere is mechanically
mounted between two LiNbOj3 longitudinal transducers. The signal from the first
synthesizer is inserted into the bottom transducer (transducer 1), on which the ball rests,
and excites continuous ultrasonic waves on the sphere, in this case, a ceramic bearing
ball. The top transducer, which is similar to the bottom transducer, acts as a receiver. It
is positioned to make a light contact with the sphere. To detect both the phase and
amplitude of the acoustic resonance signal which depend on the displacement of the north
pole of the sphere, the received signal is mixed with a signal from the second synthesizer
with a frequency setting which is 5 KHz lower than that of the first synthesizer. After
mixing, the signal is sent into a lock-in amplifier. Signals from the trigger output

channels of both synthesizers are also mixed, low pass filtered at 5 KHz, and then sent
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into the referer.ce channel of the lock-in amplifier. We designed a computer-controlled
system to s'weep over the frequency range of interest at a fixed, but arbitrary, frequency
increment. Local maxima in amplitude are used to determine the resonance frequencies

of the sphere, whereas the phase of the spectrum is used to measure the resonance Q's*.

Before each measurement, we had to make sure that the static force between the
transducers and the sphere was as light as possible. To achieve this goal, the position of
the top transducer was controlled by an x -y -z stage, with the spring connecting the
stage and the transducer. Once a signal was observed, we gradually lifted the position of
the top transducer. When a sudden disappearance of signal was found, the position of the

top transducer was lowered by a very small distance, usually this meant a quarter turn of

Computer
7 Controller

l

Synthesizer 1 Synthesizer 2 Amp. Phase
f (KHz) £.5 (KHz) P
trigger signal || trigger  signal
g8 & Low Pass
[ Mixer 2 @5
2 >§—D—) Reference
2 B
Mixer 1 >|Signal
Transducer 2 ic ball
amic ba -
Lock-in
Transducer 1 Amp.

Figure 3.1 Contact-contact spherical resonance experiment setup
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the stage knob, which corresponds to a compression in the spring of the order of 10 pum,

Figure 3.2 shows a detailed diagram of the transducer-sphere configuration. As
shown in the figure, the two transducers are mounted on two springs. The purpose of
having two springs is to insure that the transducers are in light contact with the sphere,

and the free oscillation condition of the sphere can be closely simulated.

3.3 Signal Processing Analysis

The mathematics behind the analog signal processing scheme shown in Figure 3.1
can be explained in more detail as follows. The output from both the signal and the

trigger channels of synthesizer 1 is:

Spring

Receiver Transducer

Ceramic Ball

Transmitter Transducer

Spring

Figure 3.2 Zoom-in look of the transducer-sphere set, the two transducers are

mounted on springs.
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5y Sin[ 27t + 0] (3.1

where for simplicity, we assume the outputs from both channels of synthesizer 1 to have

the same amplitude s;, frequency f;, and phase ¢;;.

We can write the acoustic signal output from transducer 1 as
$1h Sin[27fit + 0 + 0], (3.2)

where t; and ¢,; are the amplitude and phase conversion factor of transducer 1. The

resonant acoustic signal at the north pole of the ball is
Sihbsin[27ht + g + O + 0], (3.3)

where b and ¢, are the amplitude factor and phase change of the wave propagating

through the ball. This acoustic signal at the north pole is converted by transducer 2 to an
electric signal

Syt bty Sin[2718 + G5y + Oy +0p + 0] 3.4)
where 72 and ¢, are the amplitude and phase conversion factor of transducer 2. This
signal is mixed by mixer 1 with output from synthesizer 2,

sy sin[2nfyt + 9] 3.5)
where for simplicity, we assume the outputs from both channels of synthesizer 2 to have

the same amplitude s, frequency f2, and phase ¢s2. The output from mixer 1 contains

two signals, namely
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:2'1'3132'1'2” cos[2m(fy + £ )t + (01 + O3 + Oy +Br3) + 05 ] (3.6)
and
%Slszflfzb cos[2n(f; = )t + (a1 — sz + 01 +12) + 05, (3.7)

plus higher harmonics. This set of two signals is sent into the signal channel of the lock-
in amplifier. On the other hand, there are two signals being fed into mixer 2: from
synthesizer 1:

51 Sin[ 27 + ], 3.8)
and from synthesizer 2:

8, Sin2nfot + 95 (3.9
The output from mixer 2 contains two signals, namely:

.71 552 cas[ZR(fi +fo )‘ + (‘psl + ¢32)] (3.10)

and

';'8152 COS[Zﬂ(fl - H)+(0q "%2)], (3.11)

plus higher harmonics. This set of two signals is sent into a low-pass filter set at SKHz.

Since

=1 —5KHz, (3.12)
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the output from the low-pass filter contains only the signal (3.11), i.e.,
(1/2)s,5 cos[2n(f; = f )t + (951 — 9s2)], & SKHz signal. This SKHz signal is fed into the
reference channel of the lock-in amplifier. The lock-in amplifier locks onto the SKHz
component of the signal being sent into the signal channel, i.e., the expression given by
(3.7). The lock-in amplifier has two outputs, the amplitude of the locked-in signal sent
into the signal channel given by (3.7), and the phase difference between the reference

channel signal (3.11) and the lock-in signal (3.7). Therefore, the amplitude output should
be

%Sﬁ'ztlfzb ’ (3.13)

and the phase reading should be
O+ 02 +0p (3.14)

Combining expressions (3.13) and (3.14) with the definition of the resonance

quality factor5:

0= Resonance Frequency
3dB Bandwidth '

(3.15)

it is seen that if the operation is at 10MHz, the 3dB bandwidth will be around 1KHz for a
quality factor in the order of 10,000, which is typical for the resonances of ceramic
bearing balls. The two transducers in this experiment are excited at frequencies off
resonance and their responses within a narrow frequency range, say 10 KHz, are very flat.
Therefore, for each resonance peak of the sphere, we can treat 1, &, ¢,, and ¢,, as

constants. In addition, s; and s, are fixed setting values on each synthesizer and are
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constants. It can be concluded that for each resonance peak, the amplitude (3.13)
measured by the lock-in amplifier is proportional to the actual acoustic resonance signal
at the north pole of the sphere; also, the phase (3.14) measured by the lock-in amplifier is
the actual phase of the acoustic signal offset by a constant which is a characteristic of the

pair of transducers.

3.4 Experiment Results and Analysis
3.4.1 Low Frequency Measurement

Three Si3N4 ceramic bearing balls of 1/2 inch diameter were used as samples for
the experiment. The first ball is perfect with no cracks. The second ball has a series of
cracks made with a 10 g load on a Knoop indenter; and the third ball has cracks made
with a load of 50 g on the indenter. We will refer to these three balls as balls A, B, and
C, respectively. We measured phase and amplitude of the resonant frequency spectrum
of the spheres. Local maxima in amplitude are used to determine the resonance
frequencies of the sphere, whereas the phase of the spectrum is used to measure the

resonance Q's.

There is an important reason why we want to measure both amplitude and phase.
Using amplitude alone to measure samples with high Q's is time consuming because of
the small frequency increment necessary for an accurate measurement. The importance

of phase measurement is evident for the following reason: near resonance, the phase
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curve is almost a straight line. The phase undergoes a change of ® on passing through

resonance and its slope at resonance is:5

d(phase) d0 20

= ———— (3.16)
d(frequency) df  fy
which is a constant. The equation for the phase near resonance is given by:
2_ g2
0=0, - zan'l(f—f")g (3.17)
ffo

where 8¢ is the phase value at resonance, fp is the resonance frequency, f is the
frequency at each point, and Q is the quality factor. This characteristic equation is

commonly observed also in resonant electric circuits for large values of Q.

Therefore, to determine the resonance Q for a particular mode, we simply
determine the resonant frequency to the desired accuracy by amplitude measurement,
measure several points around resonance, and fit a curve to the measured phase according

to the above equation.

We determine the mechanical properties of the samples following the procedures
shown in the flow chart in Figure 3.3. We note from the discussion following the

characteristic equation of torsional resonances, in equation (2.24)

(n=1)Jp41/2(M) =N p43,2(M) =0 (2.32)

that the resonant frequencies of the torsional resonances are only dependent upon radius

of sphere a and shear wave velocity Vy (n=2nfa/V;). If we are able to accurately
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Measure one torsional resonant frequency

'

Calculate V,

Y

Measure one spheroidal resonant frequency

Y

Combine with calculated V,
Calculate V,

Y

Combine Calculate V, & V,
Calculate Vy & v

Figure 3.3 Flow chart of material acoustic property measurement using the

resonant sphere technique.

measure the resonance frequency of one of the torsional modes, we should be able to use

equation (2.24) to calculate V; accurately. Given the definition

0= Resonance Frequency
3 dB Bandwidth

(3.15)

it is understood that high Q modes have a smaller 3 dB bandwidth and are therefore more
frequency selective. For resonance frequency measurement, it is desirable to choose a

particular high Q mode to perform accurate resonance frequency measurement.
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Similarly, the third step in Figure 3.3 is to find a high Q spheroidal mode and
measure its resonance frequency. Combining the measured spheroidal mode resonance

frequency and calculated V; from step two, the longitudinal wave velocity V; can be

calculated using the characteristic equation of spheroidal mode resonance,

2kz[ I U 1)(""'2)( Jne3:2(N) n+1)1"n+3/2 (&)
n

ks n? Tns172(N) J Jnr2(8)
,,[_ 1,(=1)n+2) ( 1_2n(n-1)(n+2)) Jn+3/g(ﬂ)] o
2 n n n ) Jns172(M) (2.39)

where & =2nfa/V}, k; and k; are the wave numbers of longitudinal and shear waves,

respectively.
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Figure 3.4 Typical low frequency amplitude spectrum for ceramic bearing balls

with diameter 1/2 inch.
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Figure 3.4 shows an example of the amplitude frequency spectrum of ball C, the
1/2 inch diameter SizN4 ceramic bearing ball which has a series of cracks made by a
50 g Knoop indenter. Compared with the mode chart in Figure 2.8, the contact-contact
resonant sphere technique is capable of generating all the low frequency resonances.
Each peak in Figure 3.4 can be identified to correspond to a theoretically calculated
resonance mode in Figure 2.8.

As discussed previously, our experimental technique enables us to mix the
resonance acoustic signal down to a low frequency so that the lock-in amplifier can
measure the phase of the signal. In figure 3.5 we zoom in on the frequency spectrum in
both the amplitude and phase of a particular high Q mode T';2 of ball A, the ball with no

defect. Among the numerous torsional modes of a sphere, the T, modes had the

35 gt : ' 450
30 $— amp :
o 25 §°°° unwrapped phasg 1100 g
= ] ] ~
R | 150 8
g‘ 15 3 : g
S T :
0 It rrererer——1250
905.65 905.7 905.75 905.8 905.85 905.9

Frequency (KHz)

Figure 3.5 T;, mode, a high Q mode used for calculating shear wave velocity

V;. We can see clearly the phase transition of 180° near resonance.
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Ball A Ball B Ball C

S1:; (KHz) 905.80 905.74 905.50
011 34799 42242 32085
fso1 (KHz) 720.41 724.42 721.40
Oso 20058 19245 16918

Vs (/s) 6270.5 6270.1 6268.4
v 0.26447 0.26573 0.26522

Vi (m/s) 11081 11100 11082
Vg (m/s) 5779.9 5780.8 5778.8

61

Table 3.1 Data on spherical resonances obtained by the resonant sphere

technique for three ceramic bearing balls, each with a diameter of

1/2 inch. Ball A is a perfect ball with no cracks. Ball B had a series

of cracks made with a 10 g load on a Knoop indenter, and Ball C

had the cracks with a load of 50 g on the Knoop indenter.

highest Q. The reason is that the large displacement amplitudes of the T,, modes are

mainly inside the sphere. Therefore the contact load between the two transducers and the

sphere has little effect on the Q of the resonance. High O modes are more frequency

selective, and are chosen to calculate the mechanical properties. A rough estimation of

the accuracy of the measurement is as follows: Given
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0= (3.22)

L
&
for a particular torsional mode such as

2nfa = constant - V, (3.23)

where the constant is the theoretical value of the normalized frequency in the mode chart.

Therefore,

2nalf = constait - AV,. (3.24)

Divide (3.24) by (3.23) and utilize (3.22), we get

AV, A 1
—l =, 3.25
v, f 0O (3:25)

Equation (3.25) tells us that the accuracy of acoustic wave velocity mezsurement
is of the same order of magnitude as the reciprocal of the quality factor of the resonance
mode. As shown in table 3.1, where we list the material constants calculated from the
resonant frequencies for the three samples, the two resonance modes selected, T72 and
So1 modes, are two particular high Q modes. The values for surface wave velocity Vg in
the table are calculated according to the curve fitting equation in equation (2.23). From
Table 3.1, we deduce several important conclusions about low frequency measurements
of spherical resonances. First, the resonance modes selected here have quality factors of
the order of 104 Equation (3.25) thus predicts an accuracy of material property
measurement to be in the order of one part in 104. This is confirmed by considering the

variation of material property values shown in the table. Second, we conclude from the
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data that low frequency measurement results are not sensitive to the existence of surface
defects and do not reflect the existence of surface defects since low frequency resonances

are mainly bulk wave resonances.

3.4.2 High Frequency Measurement

In the higher frequency region, the resonance spectrum becomes more
complicated as there is an increasing number of closely spaced higher-order resonance
modes. Still, it is possible to isolate the surface wave resonances when the frequency is
high enough. In section 2.2.3 we showed the existence of surface acoustic waves in the

high frequency region. As shown in Table 3.1, the surface wave velocity of the SizNy

ceramic material used to make our sample is Vp = 5780m/s. For

.__=-_—=kRa=n=100, » (3.26)

this corresponds to an operating frequency of around 14.3 MHz. We operated the
contact-contact resonance setup at this frequency region. A typical measurement result is
shown in Figure 3.6. Plot (a) of Figure 3.6 is the spectrum of Ball A. Plots (b), (¢), and
(d) will be discussed later in this section. From plot (a), we observe several dominant
resonance modes that are almost equally spaced in the frequency domain. Several
reasons lead us to conclude that these dominant modes are indeed surface wave resonance
modes. First, because most of their energy is stored near the surface, surface waves are
easily excited and detected, therefore, they tend to dominate in the higher frequency

region. Second, at the end of chapter 2, we discussed the condition for surface wave
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resonance on a sphere. We found that to form a surface wave resonance, the
circumference of the sphere has to be an integral number of surface wavelength. We
combine the calculated data for Vz from Table 3.1 with our measured high frequency
resonance frequencies, and calculate the corresponding surface wave length at these

resonance frequencies to be:

Amplitude

141 142 143 144 145 146 147

Frequency (MHz)
©
1. _
0. a
go. - 3
. [ a
<0 - 2
0 4
0 i
141 142 143 144 145 146 .7 14.175 14.176 14.177 14.178 14.179 14.180 14.181
Frequency (MHz) Frequency (MHz)

Figure 3.6 Surface wave resonance amplitude spectra for Ball A and Ball C.

The dominance of surface wave is evident.
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_ Vg(calculated)
f(measured) -

3.27)

We then ascertain that there is an integer number of surface wavelength that fit on
one circumference of the sphere. According to the relationship given by equation (3.26),
this large integer n is around 100 in this case. This also explains our observation of

these equally spaced resonance peaks. For large values of n, the resonance frequency f,
is easily derived from equation (3.26) as:

=V 328
=3k (3.28)

Therefore, the peak-peak distance in the frequency domain is given by:

cp_g oWV (-DVp Vp 3.29
Af=tn=Ja 2na 2na 2na constant (3.29)

The experimentally measured values of the resonance Q's for the dominating
modes are of similar value, which indicates that these modes are of similar character. We
therefore conclude that these dominant modes are surface wave modes. It has to be noted
here that it is almost impossible to use the mode chart in Figure 2.8 to identify the surface
wave resonance modes because there are so many different higher order harmonics in the

high frequency region.

In figure 3.6, we show four spectra plots, two for Ball A, two for Ball C. Plots (a)
and (b) are the spectra of Ball A, where (b) is a zoom-in plot which also shows the phase
information, the thin solid line in (b) is the curve fitting of the phase using equation
(3.17). Plots (c) and (d) are the spectra of Ball C, where (d) is a zoom-in plot which also

shows the phase information, the thin solid line in (d) is the curve fitting of the phase
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A U N

Ball A Ball B Ball C
2ra/Ag | f (MHz) Q f (MHz) Q f (MHz) Q
98 14.1975 | 10810 | 14.2090 | 7905 14.1790 3655
99 143406 | 11321 | 143547 7998 14.3252 4348
100 14.4846 9573 | 14.4988 8546 14.4677 4607

TABLE 3.2 Data obtained by the resonant sphere technique for three ceramic bearing
balls, each with a diameter of 1/2 inch. Ball A is a perfect ball with no
cracks. Ball B had a series of cracks made with a 10 g load on a Knoop
indenter, and Ball C had the cracks with a load of 50 g on the Knoop
indenter. Vp is the surface wave velocity, and Ag =Vpff s the
wavelength of the surface wave at frequency f.

using equation (3.17). When we compare (a) with (c), we see qualitatively that the
spectrum of Ball C is much noisier than that of Ball A. When zooming in on one of the
resonance peaks, as shown in (b) and (d), we see that the spectrum for Ball C is split
while the spectrum for Ball A is quite smooth near resonance. Both of these two
phenomena are probably due to the interaction between the original surface wave and the
surface waves scattered by the surface defects. The spectra of ball B are similar to those

of ball C, but the effect of the cracks on the quality of resonances is less severe.

Table 3.2 summarizes the measurement results of the three balls A, B and C for
three surface wave resonance modes. We note that the Q of the surface wave

resonances decreases by as much as 50~60% as the load on the indenter, and
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consequently, the size of the surface cracks increases. Thus we have a direct relationship
between the value of the Q of the surface wave resonance and the density of surface

defects.

The physical definition of quality factor Q is

- 27 - Maximum Stored Energy
Power Dissipation per Cycle

(3.30)

The numerator is the maximum stored energy in the acoustic resonance of the
sphere. The power dissipation term in the denominator consists of several parts: power
loss due to viscous damping in the material, power loss due to leakage of surface wave
energy into the air, and power loss due to scattering from surface defects. Surface defects
scatter surface wave energy into two parts: the first part is scattered surface waves and the
second part is scattered bulk waves. The scattered surface wave interferes with the
original incident surface wave, and the energy lost into bulk does not contribute to
surface wave energy at all. Therefore, the larger the crack size, the more significant the
loss mechanism and the larger the denominator of equation (3.30). We conclude that as

crack size increases, the value of Q decreases.

3.5 Concluding Remarks for the Contact-Contact Resonance Sphere
Technique

In this chapter, we described our development of the contact-contact resonance
sphere technique. We developed a computer controlled system that is capable of

measuring the frequency spectrum of a sphere in both amplitude and phase. We showed
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also the high degree of accuracy of our measurements in determining the material
properties (one in 104 accuracy). From experiment conducted in the high frequency
region, we demonstrated experimentally, for the first time, the existence of surface waves
on spheres. We showed in Table 3.1 that low frequency measurement is good for
material property measurement, and has no direct relationship with surface defect. In the
high frequency region, as shown in Table 3.2, we observed a one to one correspondence
between crack size and surface wave resonance Q. It has to be noted here that it is
extremely important to control the alignment between the two transducers and the
pressure load between the transducer and the sphere. The effect of the loading is
especially significant when operated in the high frequency region, when the experiment
procedure about loading and unloading the transducers described in section 3.2 is
properly followed, the results are repeatable. This loading problem motivated us to

develop the non-contacting detection scheme which is discussed in chapter 4.
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Chapter 4

Laser-Ultrasound:
One-Point-Contact Measurement

4.1 Introduction

In the previous chapter, we described the method of the contact-contact resonance
sphere technique. This technique is operable in two frequency regions. In the low
frequency region, the technique can accurately characterize (one in 104) acoustic material
properties such as longitudinal wave velocity, shear wave velocity, and Poisson's ratio.
In the high frequency region, where surface wave resonance dominates, it can be used to
perform surface defect inspection. The existence of surface defects significantly reduces
the quality factor of surface wave resonance modes. However, this technique has certain
limitations, particularly in the measurement of small spheres. The first limitation is in the
proper alignment of the two transducers, because the transducers are mounted on springs
to simulate the free oscillation condition of the sphere. The second limitation is in
controlling the contacting load between the transducers and the sphere. As the sphere
gets smaller, the contact pressure and area between the transducers and the sphere can no

longer be ignored. These problems can be circumvented by a one-point-contact
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measurement technique, in which the sample is supported by a concave depression in a
buffer rod bonded to a transducer. This technique uses only one point to support the
sphere as well as excite resonances on the sphere. The resonance signal is detected using
an optical interferometer which measures the displacement of the top surface of the

sphere, a non-contacting detection scheme.

Heterodyne Interferometer
(Amplitude and Phase Measurement)

Focusing Lens

Synthesizer

Figure 4.1 One-Point-Contact measurement experimental setup.
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4.2 Experimental Setup

Figure 4.1 shows the schematic of the one-point-contact technique. The ball is
placed on a spherical depression (lens) in a buffer rod with a longitudinal piezoelectric
transducer on the other end. The radius of curvature of the lens is larger than that of the
ball, so that the ball can rest at the bottom of the lens. The transducer excites resonances
on the ball and the interferometer measures vertical displacements of the waves on the

ball at the opposite pole.

4.2.1 Hertzian Contact

The only contact between the sphere and the external environment is a single

Hertzian contact with a diameter of d given by!:

DRR )% @D

d=2F§(—R—_-E

3
here D==
v 4(

4.2)

w2 1oy
1v+1v
E E’

and R, v, E are the radius, Poisson's ratio, and Young's modulus of the lens, R', V', E' are
the radius, Poisson's ratio, and Young's modulus of the sphere, and F is the total contact

force (i.e., weight of the sphere).

For a fused quartz buffer rod, v = 0.1694 and E = 7.274*1010 Newton/m2. For a hot
isostatically pressed Si3sN4 ceramic (NBD 200), v' = 0.2616 , E' =3.223*1011 Newrton/m?2,
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and density = 3270 Kg/m3 . In Figure 4.2 we show two calculation results. The first one
shows curves for contact diameter versus radius of a Si3N4 ceramic ball sitting on a fused
quartz buffer rod. Each curve stands for a different radius of curvature of the depression
on the buffer rod. In figure 4.2, we also show an extreme case where there is no
depression (R = infinity). The second plot shows the contact diameter versus the radius
of curvature of the concave depression on the buffer rod. We see that for each size of
ball, the contact diameter varies only slowly with the radius of curvature of the

depression when it is sufficiently larger than the radius of the ball.

For example, with R=4mm, a 1 mm diameter ceramic ball with R'=0.5mm ,
we calculate d = 0.45 pm . At 60 MHz , where the surface wavelength on ceramics is
around 100 pm , the contact diameter is only about one percent of the wavelength, and

thus has little effect on the propagation of surface waves.

To calculate the relationship between radius of ball and radius of curvature of the
depression for most efficient surface wave excitation, the contact diameter should be
equal to Ar/2 =Vr/(2f), where f (Hz) is the operating frequency, and Ag and Vi are
the surface wavelength and surface wave velocity on the ball, respectively. For Si3Ny4
ceramics, Vg = 5758.5 m/sec, the relationship between radius of ball R' and radius of
curvature of the depression R for most efficient surface wave excitation is

R= R
1-5.5928-10"7 x f> x R

(4.3)

Figure 4.3 shows the optimum radius of curvature of the depression versus

operating frequency for 5 particular radii of ceramic balls.
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Figure 4.2 (a) Hertzian contact diameter versus radius of ceramic ball.

(b) Hertzian contact diameter versus radius of rod depression
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Figure 4.3 Optimum radius of curvature of the depression versus operating

frequency for 5 different radii of ceramic balls

It is to be noted here that we are interested in measuring resonance spectra.
Therefore, in order to keep the resonance Q high the coupling to the ball should be weak,
so the contact diameter should be much smaller than 1/10 of the surface wavelength in
order not to interfere with the propagation of surface waves. For fused quartz buffer rod
and Si3N4 ceramic ball, the minimum radius of curvature of the depression becomes:

R> K
1-6.991-10°1 f3g4

(4.3.2)

Figure 4.4 shows the minimum radius of curvature required for the depression on

a fused quartz buffer rod with diffcrcnt radii of SizNy balls.
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Figure 44 Minimum radius of curvature of the spherical depression for a

Hertzian contact less than 1/10 of surface wavelength.

We can also combine results of equation (4.3.a) with the condition for generating
true surface waves that requires kga > 100. For example, for a Si3N4 ball with radius
4mm, to generate true surface waves, the frequency has to be higher than 23MHz, this
corresponds to a minimum radius of curvature require for the depression of only

4.089mm.
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4.2.2 Advantages Of The One-Point-Contact Technique

The one-point-contact technique has advantages over the contact-contact
technique because it does not require alignment of the two transducers. Also, the
contacting load between the ball and the transducer is predictable. An experiment similar
to the one-point-contact technique has been performed by Royer and Shui where a sphere
was placed on a three-point mount and resonance was excited photoacoustically by a
modulated laser beam2. The ball had a diameter of 20 mm and was made of stainless
steel with 13% of chromium. They determined the shear wave velocity and the
longitudinal wave velocity with a delay line method with an accuracy with 0.1% and
measured V; = 3290 m/sec and V;= 5988 m/sec. They calculated Vz to be 3061 m/sec.
They reported the observation of low frequency surface wave resonance modes up to

kg a =40 which corresponds to a maximum operating frequency of 1.95 MHz.

Our technique has several advantages over this earlier technique. First, the only
contact between the sphere and the external environment is a Hertzian contact. The effect
of this contacting point on the resonance of the sphere is negligible as discussed in the
last section. Second, it is more efficient to excite resonance by a direct mechanical
contact. The surface displacement of the transducer piezoelectric material LiNbO3,
(crystal-type trigonal 3m, propagation along Z axis), active area 1 mm?, center frequency
150 MHz, fused quartz rod length 30 mm, with an input of 1 volt, is shown in figure 4.5.
The top plot shows a frequency response between DC and SMHz, the bottom plot shows
a frequency response up to 300MHz. The resonant spectrum in the low frequency is due
to resonance of the buffer rod, it disappears in the high frequency region because of

attenuation inside the buffer rod. We see that we can acoustically excite a strong
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displacement on the ball. Since the photoacoustic effect on ceramics is very weak,3 to
generate surface waves using laser excitation will have the risk of damaging the sample.
The laser for the interferometer in our setup is a He-Ne laser with a power of 4mW and
should have negligible thermal effect on the sphere. Therefore, the measurement can be
done at a higher signal-to-noise ratio, compared to the photoacoustic method which is
very inefficient on ceramics. Furthermore, because the sphere is always located at the
bottom of the concave depression, alignment of the measurement system for different
spheres of identical diameters becomes trivial. Finally, there is no limit to the frequency
range over which the measurement can be made. We have measured up to a kza value
of 240, in this case, a 1/4 inch diameter ceramic bearing ball with an excitation up to 70
MHz.

4.2.3 Optical Detection And Heterodyne Interferometer

An excellent paper written by Jean-Pierre Monc halin reviews various optical
methods to detect ultrasound at the surface of opaque solids4. Optical detection
techniques for ultrasound can be classified into non-interferometric techniques and
interferometric techniques. The former are well developed and of limited application,

while the latter are more general and are presently the object of active developmuents.
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Figure 4.5 Displacement of the transducer used. (LiNbO; crystal-type trigonal 3m,
propagation along Z-axis, active area 1mm?, center frequency 150 MHz,

fused quartz rod length 30mm, with an input of 1 volt)
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Refrence Beam

Laser

Detector

Figure 4.6 Optical Heterodyne Interferometer configuration for spherical

resonance detection.

There are several optical techniques used to detect ultrasound that are not based
on interferometry: the knife-edge techniques.6.7.89.10.11  the surface-grating
technique!2.13, the reflectivity technique!4.15, and a technique based on a light filterl6:17,
All these techniques give a filtering bandwidth that is fixed and determined by the

medium, unlike interferometry, which enables one to choose the most suitable bandwidth

easily.

There are various interferometric detection techniques that can be classified into

the following three types: optical heterodyning interferometry18.19.20.21.22_ differential
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interferometry?3.24, and velocity or time-delay interferometry25:26, Of these different
interferometric detection techniques, optical heterodyning interferometry is the most
commonly used, and is employed in our experiment. The configuration of our

heterodyne interferometer is shown in figure 4.627.

The output of a low noise He-Ne laser is split into two parts. One part, the beam
in the reference arm, is reflected twice by the two mirrors and sent directly into the photo
detector. The second part is sent into a Bragg cell, an acousto-optic modulator, in our
case driven at 80 MHz. The output from the Bragg cell consists of several diffraction
beams28. An iris is used to pass only the first diffraction lobe which is frequency shifted
by the Bragg cell frequency. The Bragg cell is rotated to an angle such that the first
diffracted beam has maximum intensity, as shown in figure 4.6. We call this first
diffraction beam the probe beam. The probe beam is deflected by the mirror and

reflected by the north pole of the resonating sphere. The optical phase of the reflected
probe beam is modulated by the displacement ucos(@,t + ¢, ) of the resonating surface,

where u, ®,, and ¢, stand for maximum displacement amplitude, angular frequency,
and phase of the acoustic displacement at the north pole of the sphere. Theoretically, it is
possible to calibrate an optical heterodyne interferometer and measure both the amplitude

and the phase of the displacement as will be shown in the following discussion.

We represent the reference beam sent into the photo detector by

R=R &XP{J'[(O)L‘ +Or+0py )]} (4.4)
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where R, ¢p, and ¢y are the amplitude, phase, and phase noise of the reference beam,

respectively and ®; is angular frequency of the laser. The reflected probe signal has

the form:

§ = Sexp{j[(cog +wp)r+ 05 + by + 2K ucos(@,t + 0,)]}. 4.5)

where p is the angular frequency of the Bragg cell; S, ¢g, and ¢gy are the amplitude,

phase, and phase noise of the probe beam, respectively; and K; =2n/A; is the wave
number of the laser beam. For the He-Ne laser, A, = 6325 A, and K =1/1007(1/A).

The photo detector detects the intensity of the incident light. Therefore, the

output signal from the photo detector is:
|+ & = (R+ SR +5%)=
[Rew{f{(wrr+ 0z +0av)]}
+Sexp{f{(@L +@p )+ 65 + sy + 2K ucos(w,t + 9, )]}] (4.6)
'[R exp{-j[(mLt +Or+OrN )]}
+§ exp{-—;{(ml, +@p)t+ b5 + by + 2K ucos(w t + ¢, )]}]
where the asterisk stands for complex conjugate. Equation (4.6) can be simplified to be:
‘5-‘- ﬁlz - 4.7)
5%+ R? +2SRcos|wpt + 05 — b + Osn — Orw + 2K ucos(w,t +,)|

For Kyu<<1 ( u << 1007 A for He-Ne laser ),

cos[ZK Lucos(Q,t+ o, )] =1, 4.8)
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and

sin| 2K ucos(wat +9,)] = 2K Lucos(@,t + ¢,) (4.9)

Therefore, (4.7) can be expressed as follows:

(2 + R2)+ 25R{cos(wpt + 05 — Or + O3 — Orw ) cos 2K pucos(gt +0,)]
— sin(wpt + s ~ Og + bsy — Ory)sin| 2K ucos(@yt +0,)]}
= (S2 + R2)+2SR{cos(0)Bt+ 05—+ sy —Oy)-1
— sin(@pgt + 5 —Or + Osy — Orn)- 2K ucos(@qt +¢,)}
= (S2 + Rz) +2SR{cos(wpt + b5 — O +Osy — Oy )
~ Kpu[sin(@pt + b5 ~0g + sy ~ Opy +0gt +0,)
—~ sin(@pt + 05 = Op + Osn — Opn — W4f — ¢a)]}
= (s2 + R2)+2SRcos(th+¢s ~Or +0sv — OrN)
—25RK usin[(@p + @, )t + @5 — Op + gy — Ory + 04

—ZSRKLusin[(mB ~ @, )t + 5 =g + gy — Oy — 4]

(4.10)

In expression (4.10), we see that the signal output from the photo detector consists
of four parts: a DC signal, a signal with angular frequency ® g, and two signals of equal

amplitude but different angular frequencies, one at (wp + @, ), another at (wg — @, ).

Figure 4.7 shows a typical picture of the output of a spectrum analyzer that
monitors the output signal from the heterodyne interferometer as given by expression
(4.10). In this case, the DC signal is blocked to protect the spectrum analyzer. As shown
in the picture, the main band is the signal at 80 MHz, our Bragg cell operation frequency.

The two side bands are of equal amplitude and with equal frequency distance away from
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Figure 4.7 A typical picture of the screen of a spectrum analyzer that monitors

the output signal from a heterodyne interferometer.

the main band. The frequency difference between the main band and the side band is the
frequency of the acoustic signal on the sphere. From the last expression of (4.10), it is
observed that the amplitude ratio between the main band and the side band is equal to

1/(Kyu). This means the heterodyne interferometer can be calibrated absolutely, and that

- Amplitudesige pang 1 _ Amplitudegige pamg Ay
Amphtudemm band K L Amplitudemam band 2% , ( 4.1 1)

where A is the wavelength of the laser. For He-Ne laser used in our experiment,

A = 632.8 nm. For this wavelength, equation (4.11) becomes:
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u= 1007————-————:$§;“:::: bl () 4.12)

To perform broadband detection and acquire the amplitude and phase of the
resonance signal, it is necessary to analog signal process the output signal from the
interferometer. A schematic of the analog signal processing of the output from the
heterodyne interferometer is shown in figure 4.8. The signal from the photo detector
(wp, wp T ®,) is DC bypassed and then split into two parts. The first part is sent into a
phase locked loop. The output from the phased locked loop is an 80 MHz signal whose
phase follows the variation of the main band. The second part is low pass filtered, so
only (wp - ) is passed. These two signals are mixed. The result of the mixing

operation is:

28R cos(wpt + s —Op + Osy — Ory)

-2SRK, Lusin[(co B~ W)t +0g—bp+ sy —brn — ¢a]

=25?R2K pusin(20p - 0, )t +2(0s — Og + dsn — Oay) — 0]
- 2S*R*Kusin[@,t +0,]

(4.13)

The output from the mixer is seen to consist of two parts, one with an angular
frequency of (20p ~®, ), another with an angular frequency of ®,. This two part signal
is low pass filtered so that only signal at the acoustic frequency is measured. It is
observed that this signal is a scaled version of the acoustic signal, and is immune from the
phase noise terms. The advantage of using the heterodyne interferometer becomes
apparent at this point, where it is apparent that this type of detection scheme is immune

from environmental noise (fluctuations in phase). This acoustic signal is further
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Figure 4.8 Signal analysis of the output of the Heterodyne interferometer

processed using the method discussed in the contact-contact resonance sphere technique

in chapter 3 to determine both its amplitude and phase.
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Figure 4.9 Low frequency spectrum of a SizN, ceramic bearing ball with a

diameter of 3/8 inch.
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4.3 Experimental Results
4.3.1 Low Frequency Measurement

To verify the results of the contact-contact resonance sphere technique and to
qualify the one-point-contact measurement system, we first measured the low frequency
spectrum of a 3/8 inch diameter SizN4 ceramic bearing ball. The frequency spectrum in
amplitude is shown in figure 4.9. As seen in the figure, only the S,p modes and the S¢;
modes are visible, while the torsional modes disappear. It is to be noted here that we are
using a longitudinal wave transducer, the excitation is normal to the contact surface so no
torsional mode should be excited. Even if we excite torsional modes using a shear wave
transducer, since torsional wave resonances have no radial motion and their vertical
displacement is equal to zero, we will not be able to observe the torsional modes. This is
because the interferometer detects only the vertical displacement of the surface. This also
demonstrates one of the alignment problems in the contact-contact measurement where
we used longitudinal transducers but still observed torsional wave resonances.
Comparing to the contact-contact measurement, the one-point contact technique is
incapable of observing the torsional modes, but it has considerable advantages in the

control of alignment and loading, and yields reproducible results.

4.3.2 High Frequency Measurement

We have also used the technique to operate in the high frequency region to

observe surface wave resonances. We measured three Si3N, ceramic bearing balls with a
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diameter of 1/4 inch. We first measured in the 30 to 35 MHz region where kra = 100.
The results are shown in figure 4.10. As we can see in the figure, for the good ball, there
is a series of equally spaced peaks. The modulation of the peaks is probably due to the
frequency response of the transducer. Balls with cracks have a smaller surface wave
resonance amplitude. This is because the cracks are scattering the surface waves. Part of
the scattered energy goes into bulk waves and does not contribute to the surface wave
resonance. The larger the surface defect, the more energy is converted to bulk waves,

causing the decrease of surface wave resonance amplitude.

This interferometer can observe a frequency spectrum from around 10 KHz to
about 70 MHz. The limit in the high frequency is due to the physical operating frequency
of the Bragg cell. To show this capability, we measured the frequency spectrum of the
same three balls from 65 MHz to around 70 MHz. Figure 4.11 shows the result of this

measurement.

Good Ball

Lo

Smal} Crack Ball

Large Crack Ball

tAl-AhhlLLA_MLW

30 305 31 315 32 325 33 335 34 345 35
Frequency (MHz)

Figure 4.10 Amplitude decrease due to existence of surface defects
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( 4x magnification)
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Figure 4.11 Scrambling effect at high frequencies, we see some hybrid modes as

well as the disappearance of some modes.
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crack

Figure 4.12 Iustration of surface crack as a secondary surface wave source.
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In figure 4.11, we again observe a series of equally spaced peaks for the good ball.
For balls with defects, figure 4.11 shows a scrambling effect in the higher frequency
range. New resonances appear at different frequencies. In this frequency range, surface
cracks act like secondary sources of propagation of surface waves. Since waves passing
by cracks suffer a phase change and an amplitude change, the primary wave generated by
the transducer, and the secondary wave generated by surface cracks, interfere with each
other, producing the scrambling effect observed. This phenomenon is illustrated in

figure 4.12.

150 : s Caamm

MO v =5790.5 mis '
F 130 Vo= 6619.3 mis |
S 1201 Ve = 6593.4 mis |
(@]
L 1104 good -
small crack
100 large crack s
2 ¥——-—r—"v—r—r—r—r————r—r——
30 34 38 42 46 50
Frequency (MHz)

Figure 4.13 Increase in apparent surface wave velocity with existence of surface
defect. Curves of the smalil crack case and the large crack case are

almost overlapped.
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We also observed another phenomenon, an increase of apparent surface wave

velocity with the existence of surface defects. The apparent surface wave velocity Vp is
calculated as discussed at the end of chapter 2 where we showed that the circumference

of the sphere must be an integral multiple of surface wave length to form surface wave

resonance:
integer =m -—---31}2:M
e W (4.14)
Therefore,
Ve =2 (4.15)
m

where m=n+2 is the number of waves on the sphere.

The reason there is an increase in apparent surface wave velocity with the
existence of surface defects is not yet clear. A hypothesis is that some surface waves get
scattered back to the source before the waves have propagated one whole circumference.
Therefore, the distance travelled becomes shorter, so the measured apparent surface wave

velocity is larger. The result is shown in figure 4.13.

Results from the above three figures are useful for non-destructive test. We have
shown qualitatively, the effects of surface defects on the resonance spectrum of the balls.
If we include our observation from the contact-contact measurement in Chapter 3, we can
conclude our observations as (1) decrease in Q, (2) overall decrease in surface resonance
peak amplitude, (3) scrambling effect at high frequencies (kg a = 200), and (4) increase in

the apparent surface wave velocity. The second and third phenomena will probably take
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too long to finish in one experiment, while the first and fourth phenomena seem to be the
faster ways to observe the existence of surface defects. For the first phenomenon, we
recall the measurement of Q requires curve fitting phase information near resonance
using equation (3.17). For the fourth phenomenon, we use equation (4.15) to find the

apparent surface wave velocity.

It is necessary to be able to predict surface wave resonance frequencies in order to
speed up the measurement. To do this, we have to be able to accurately calculate material
properties V; and V, in advance. In section 4.3.3, we will discuss the dispersion of
surface waves on a sphere. By using V; and V; calculated from the low frequency
measurement, we can predict each one of the high frequency surface resonance modes
and verify with high frequency measurements. In section 4.3.4, we will discuss the
dependence of acoustic velocities with temperature. It is useful to establish this

dependence relationship to calibrate for high frequency measurement.

4.3.3 Dispersion of Surface Waves on a Sphere

We demonstrate in this section the capability of the one-point-contact technique
on small bearing balls. We measured, from 100 KHz to 70 MHz, the resonance spectrum
of a good Si3Ny4 bearing ball with a diameter of 1 mm. As discussed before, in the low
frequency spectrum, we can identify resonant frequencies of bulk resonant modes. We
see that this technique, unlike the contact technique, excites only spheroidal modes. This
is because there is only one point of contact, and the excitation direction is in the normal

direction of the contact. It also helps to explain the alignment difficulty for the contact-
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contact technique where we observed torsional modes. We chose two high Q spheroidal
modes to calculate material properties of the 1 mm diameter sphere using equation
(2.26). The results are shown in Table 4.1. The calculated values of V; and V,; were
then used to calculate the dispersion curve of surface waves using equation (2.26). For
each positive integer n, the first solution to equation (2.26) is mode S,9 , which
corresponds to surface wave resonance mode (there is no surface wave resonance mode
solution for n =1). For n larger than 100, the equation asymptotically approaches that

of the Rayleigh wave characteristic equation as discussed in section 2.2.3.

The calculated surface wave dispersion curve is then compared to the
experimentally measured surface wave resonances, as seen in figure 4.13. The theoretical
prediction and measurement agree with each other very well. Each one of the surface
wave mode is predicted and measured. This means if we know V; and V; accurately,
we should be able to predict where the high frequency resonance modes are. We also see
that the apparent surface wave velocity asymptotically approaches a constant—true
Rayleigh wave velocity. As shown in figure 4.14, Vp starts approaching a constant when
kr a = 40.

Table 4.1 Material properties of a ceramic bearing ball with a diameter 1mm,

calculated from two high Q spheroidal modes.
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Figure 4.14 Dispersion relation of surface waves on a sphere.
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Figure 4.15 Temperature changes in the laboratory.
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4.34 Temperature Calibration

In section 4.3.2 we discussed the necessity to get accurate numbers for V; and
Vs. In this section, the optical probing technique is used to observe the change in
acoustic velocities with respect to temperature variation. Figure 4.15 illustrates the

temperature changes in the laboratory within a 42-hour time period .

For a laboratory temperature variation between 19°C and 26°C, we continuously
measured two high Q spheroidal modes. We then used these two modes to calculate V
and V; Figures 4.16 and 4.17 show the calculated velocity-temperature relationship. In

figure 4.16,
V; = 11177-0.15524T
LaV __;38892-10°5 —1.92911.10-°T (4.16)
V, dT
and from figure 4.17,
V, = 6322.8— 0.087853T
LV _138946-10~5 —1.93061-10°107" 4.17)
V. aT

Combining equations (4.16), (4.17), and (2.12), it can be shown that Poisson's ratio is:

v=0.264691+3.73871x10~°T. (4.18)
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Figure 4.16 Longitudinal wave velocity change versus laboratory temperature

change for Si;N, material.
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Figure 4.17 Shear wave velocity change versus laboratory temperature change

for Si;N, material.
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Also, combining equations (4.16), (4.17), and (2.15), it can be shown that the

Rayleigh wave velocity is:

Vp =5828.18 - 0.0809767T. (4.19)

Equations (4.16), (4.17), and (4.19) all show a decrease in acoustic velocity with
an increase in temperature. This phenomenon can be explained by the following
physical interpretation. Acoustic velocity is equal to the square root of stiffness divided
by density. As temperature increases, the material becomes softer and the stiffness
decreases, also, the density decreases due to thermal expansion. Therefore, as
temperature increases, the acoustic velocity decreases. The ordinates of figures 4.16 and

4.17 also show the high degree of accuracy in our measurement.

The above argument is verified by calculating the dependence of stiffness
constants ¢;; =A+2y and c4 =W, where Aand u are the Lamé constants2®. The
theoretical value for density of Si3N4 ceramic material is 3270 Kg/m3. Combining

equations (4.16) and (4.17) and

V=4

P R (4.20)
Vs= Caa

p

we get

%L =-1.13477-107 +157.610T

4.2
dese 4.21)

=-3.63282-10° + 50.4767T
aT
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4.4 Concluding Remarks

In this chapter, we demonstrated a new technique capable of measuring the
material properties of spherical objects, and capable of inspecting them for the presence
of surface defects. The technique uses a single point contact to excite resonances in the
object and an optical interferometer tc measure these resonances. The measurement can
be made on spherical objects of any size and over an unlimited frequency range. We also
showed, for the first time, good agreement between theory and experiment for the
dispersion relation of surface waves on a sphere. This technique has the potential of
inspecting nonmetallic spheres, or spheres with coatings, and cylindrical objects. It may

also be applied to objects of uncommon geometries.
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Chapter 5

Conclusion

In this dissertation, we started by discussing the importance of inspecting ceramic
bearing balls. We studied the theory of wave propagation on spheres and analyzed how
these waves build up resonances on spheres. It was shown that there are two types of
resonances on a sphere. The first type is the torsional resonances. Their resonant
frequencies are dependent only on geometry and shear wave velocity of the material. The
second type is the spheroidal resonances. Their resonant frequencies are dependent on
geometry, shear wave velocity, and longitudinal wave velocity of the material. One
special case of the spheroidal resonances is the pure compressional resonances. Another
special case of the spheroidal resonances is the surface acoustic wave resonances at high
frequencies. Surface waves are shown to propagate along great circles of the sphere, and

have focus to a 3 dB spot size of only 0.364 surface wavelength.

The contact-contact resonance sphere technique demonstrated its capability of
measuring material properties at low frequencies. We also discussed the fact that there is
no correlation between the low frequency spectrum and the crack size. At high

frequencies, we observed the existence of surface wave resonances. This is one of the
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major breakthrough of this research project. At the same time, we obscrved qualitatively

the relationship between crack size and surface wave resonance quality factor.

The continuation of the application of the contact-contact resonance sphere
technique is the one-point-contact technique. With one single point contact, we
successfully excited surface wave resonance. The optical detection scheme, using a
heterodyne interferometer, eliminates external environmental interference with the
resonance of the sphere. This technique enables one to perform measurement at even
higher frequency region, which in turn allows the generation of surface waves on smaller
spheres. We reported several observations of the effects of surface defects on the
resonance spectrum. We also demonstrated the high degree of accuracy of this technique
by reporting the small dependence of acoustic velocities with temperature. In addition,
we showed, for the first time, excellent agreement between theory and experiment for the

dispersion relation of surface waves on a sphere.

The laser-ultrasound measurement can be made on spherical objects of any size
and over an unlimited frequency range. This technique has the potential of inspecting
nonmetallic spheres, spheres with coatings, and cylindrical objects. It can also be applied

to objects of uncommon geometries.

Future development and potential application of this research project will be
multi-directional. First of all, it is important to establish a theoretical model that
describes the effect on the resonance spectrum of different types of surface defects. It
would then be helpful to select the best technique to obtain high measurement speed.
Second, it would be interesting to be able to excite a high frequency surface wave pulse.

We actually tried to do this using the current transducer. However, due to the small
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contact area, we were unable to generate a strong enough pulse to be observable.
Therefore, it is desirable to design another transducer which can generate a stronger
surface wave pulse on the sphere by changing its material (buffer rod) and geometry
(radius of the hemispherical bowl).

To adapt to industrial applications, it would be quite feasible to build a number of
transducer-interferometer system in parallel for multiple ball inspection. The advantage
of not needing realignment of the optical system makes this technique attractive for

multiple ball inspection, since it will definitely speed up the entire quality control process









