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LASER-ULTRASOUND CHARACTERIZATION

OF SPHERICAL OBJECTS

Chung-kao Peter Hsieh, Ph.D.

Stanford University, 1993

Ceramicbearingbailsaredesirableforuseinhightemperatureandnonlubricative

environmentsbecauseoftheirabilitytoretainhighmechanicalstrengthand reduced

wear.However,becauseceramicsarebrittle,itisveryimportanttoinspectceramicparts

fortheexistenceof small(1-10_tm)surfacedefects.The resonancespectrumof a

sphericalobjectcanprovideinformationaboutitsmaterialpropertiessuchasshearand

longitudinalwave velocitiestoa highdegreeofaccuracy.Also,surfacewave resonant

modes thatareobservedathighfrequencies(thehalfcircumferenceofthesphereisa

multipleofatleast100timesthehalfsurfacewavelength)provideinformationaboutthe

surfacecracksdensity.As surfacewavesencountera defect,theresonantenergywillbe

attenuated.By comparingthesurfacewave mode Qualityfactors(Q)betweena perfect

and an imperfectsphere,we are ableto quicklydetectthe existenceof surface

impcrfection.We findthata singledefectwillreducethesurfacewave resonantQ by

about 30%.

A non-contacting detection scheme is desired because contacting points will also

attenuate surface wave energy and make the detection of surface cracks less sensitive.

We presem here a non-contacting detection method to measure resonances of a sphere.

In this case, we constructed a computer controlled system to excite resonances on a
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sphere with a transducer by a single Hertzian contact, and we use an optical Heterodyne

interferometer to detect both amplitude and phase of the surface variations on the

opposite pole of the sphere. This system is capable of inspecting bearing balls with

diameters ranging from 12 mm to 1 ram.
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Chapter I

Introduction

1.1 Introduction

1.1.1 Importance of Ceramic Materials

Among the new discoveries and developments of science and technologyin the

last few decades, which include an unprecedented number of new materials and

applications, are ceramics materials. Because of their unique performance and cost

competitiveness, ceramics have an important role as the most suitable substitutes in

traditional applications and as new functional materials for innovative technology

systems. Research tools and knowledge from powder metallurgy have been appraised

and adaptedto the field, as has experience gained from the classical ceramics industry;

and novel sophisticated physical and chemical routes to ceramics processing and

characterization have been introduced. This has resulted in improved processing

techniques, novel materials, and the opening of new frontiers to research and

applications.1

Ceramic products touch our lives in many ways. Pottery and porcelain vessels,

glass and cement are only among the more familiar. Their applications include the
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magnets in television sets, optical fibers for telecommunications, automobile spark plugs,

and the insulators for power transmission lines and Japan's high-speed trains. They are

widely used in electronics, not only as magnets and as insulators, but also as heating

dements and substrates for integrated circuits. In bioceramies, they are used for artificial

teeth and bones. As engineering ceramics, they appear in ceramic engines and cutting

tools. 2

1.1.2 Definitions of Ceramics

As a result of the high rate of technology development, there arises a need to

formulate a definition of the term 'ceramics'. According to D. E. Dodd's Dictionary of

Ceramics, the following definition applies: 3

Ceramic. The usualderivation is fromKeramos, the Greekwork for potters'clay or ware

made from clay and fired; by a naturalextension of meaning, the term has for long

embraced all products made from fired clay, i.e., bricks and tiles, pipes and fireclay

refractories, sanitary-wareandelectrical porcelain, as well as pottery tableware. In 1822

silica refractories were first made; they contained no clay, but were madeby the normal

ceramic process of shaping a moist batch, dryingthe shapedwareandfiring it. The word

'ceramic', while retaining its original sense of a product made from clay, thus tacitly

began to include other productsmadeby the same general processof manufacture. There

has in consequence been no difficulty in permitting the term to embrace the many new

non-clay materials now being used in electrical, nuclear and high-temperature

engineering.
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In the USA a radical extension of meaning was authorized by the American

Ceramic Society in 1920; chemically, clay is a silicate and it was proposedthat the term

'ceramic' should be applied to all the silicate industries;this brought in glass, vitreous

enamel, andhydraulic cement. In Europe, this wider meaning of the word has not yet

been fully accepted.

Technological change is also forcing changes in the limits placed on the term

'ceramics'. Generally speaking, ceramics are a class of inorganic, refractory materials

with extremely useful structural and electrical properties as well as being applicable in

familiar applications such as eating utensils.

Structural ceramics, such as silicon nitride (Si3N4) and silicon carbide (SIC), arc

desirable for use because of their high mechanical strength at high temperature and in

nonlubricative environments. These materials also exhibit good corrosion resistance and

are light in weight relative to most metals used in structural applications. These are the

properties that make ceramics attractive for use in high temperature applications, as in

components for internal combustion engines, bearings, gas turbines, cutting tools and

other devices. This category of ceramic materials is the one of interest in this work. This

thesis deals with the non-destructive inspection for surface defects on ceramic bearing

balls.
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1.2 Inspection of Ceramic Materials

1.2.1 The Importance of the Inspection of Ceramic Materials

The brittle nature of ceramics and consequent susceptibility to fracture initiated

from stress concentrating flaws, either internal or external, can offset many of the more

attractive properties of these materials Under load or wear conditions, a defect can cause

total mechanical failure of the entire structure. Although improvements in processing

technologies have greatly reduced the occurrence and severity of internal defects, it is

very important to inspect ceramic parts for the existence of small (1-10 _tm) defects on

the surface. The evolution of techniques for detecting and characterizing cracks is thus

necessary for reliable failure prediction.

The use of ultrasonic waves as a quantitative tool in nondestructive testing of

materials for defects has received considerable attention in recent years. There has been

significant development in experimental techniques as well as advances in theories

describing the interaction between acoustic waves with various types of flaws. Among

these advances is the use of surface acoustic waves (SAW or Rayleigh waves)4,5, 6 in the

inspection of surface defects.

In this thesis, we discuss issues of the characterization of ceramic bearing balls.

The problem of inspecting surface defects of ceramic bearing balls remains a difficult

one. Little research has been done on the subject of surface waves propagating on

spheres, or other objects of odd geometries. The theoretical difficulty lies in the

mathematical treatment of surface acoustic waves propagating around a sphere, a
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resonant case. On the experimental side, the difficulties lie in the excitation and detection

of surface waves on a sphere, especially on small spl,eres, for which the handling and

change of orientation are very difficult to control.

1.2.2 Current Inspection Techniques

Current inspection of ceramic bearing balls involve visual inspection, resonant

ultrasound spectroscopy, and acoustic microscopy. In the case of visual of inspection, a

human operator manually rotates the sphere and inspects it under an ordinary optical

microscope. The process of completing the inspection of one ball typically takes up to 30

minutes. Consequently, human factors such as fatigue make this inspection technique

unreliable.

A group in Los Alamos NationalLaboratoryhas also developeda resonant

ultrasoundspectroscopictechniquetoperformnon-destructiveinspectionon spherical

objects7. By observingtheresonancespectrumof thelowestresonantmode, they

claimedto be ableto observetheexistenceof defects.However, low frequency

measurementresultsarenotreliablefordetectingtheexistenceofdefects,aswillbc

discussedlaterwithourexperimentalresultsinchapter3.

IntheGinztonLaboratory, we havedevelopedand usedanacousticmicroscope

thatoperatesinthefrequencyrangeof 1-200MHz. Thismicroscopeiscapableof

measuringamplitudeandphaseassociatedwithdefectsonceramicbearingballss.9.This

microscopeprovidesclearimagesofsurfacedamagc withlateralsizessmallerthanthe

wavelength.FigureI.I showsthreeimagestakenbythemicroscope.The fieldofview
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is 1ram x 1ram. The operating frequency is 112MHz, the lens aperture 1ram, and the

focal length is lmm (F# =1). Fringes are due to the spherical shape of the sample being

observed.

The three pictures are images of the same bearing ball, the first is taken with the

lens focused on the top of the surface, the second is taken at a defoeused distance of

101an by bringing the lens closer to the sample, and the third is defocused by 1001.tin. It

is observed that the defect becomes more apparent when defoeused, while the image of

the dust (the round shadow) is sharpest when the microscope is focused on the top.

The acoustic microscope, though provides accurate images of the surface of the

sphere, cannot cover the entire surface without several rotations of the sphere. This

procedure not only is time consuming but also becomes especially cumbersome for small

spheres.

The three current inspection techniques are either unreliable or time consuming or

both. Therefore, it is important to develop a technique to be able to perform quality

control of ceramic bearing balls more efficiently and reliably.
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1.3 Summary of Theory and Experiment

Continuous waves on a finite structure such as spheres form standing waves. At

certain frequencies, these standing waves will form resonances on the objects. Resonance
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contains information of the whole mechanical system which in our case, is the ceramic

bearing ball. Therefore, by exciting resonances on the ball, we should be able to get

information about its entire structure. Generally speaking, there are two types of waves

propagating on a ceramic bearing ball, longitudinal waves and shear waves. We shall

show later in Chapter 2 that it is possible to excite two types of resonances on a sphere,

the spheroidal resonances and the torsional resonances. The former is generated by a

combination of a longitudinal waves and a shear waves, the latter is formed by a pure

shear waves. We shall also show that in the high frequency region, surface wave

resonances (a special case of the spheroidal resonance) can t_ generated and used for

surface defect inspection.

The resonant sphere technique was developed in 1964 by D. B. Fraser.10 to

characterize material acoustic properties such as longitudinal wave velocity, shear wave

velocity, and Poisson's ratio. As we will show in Chapter 2, the resonance frequencies of

a sphere can be theoretically calculated given its radius and the longitudinal wave

velocity, and shear wave velocity, or Poisson's ratio. Therefore, the inverse problem of

calculating the acoustic properties of a sphere given experimentally measured resonance

frequency data and the sphere's radius becomes trivial. The technique developed by

Fraser was operated in the low frequency region where the resonance modes are more

easily identified (theoretically the higher frequency spectrum is very complicated because

of higher order harmonies). This technique was adopted by several other research

groups 11,12, but all limited its use in the low frequency region to material property

measurement.
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This thesis describes broader applications and improvements over the original

resonant sphere technique. We will show its application in both low and high frequency

regions. In the low frequency region, we are able to characterize material properties to a

high degree of accuracy. In the high frequency region, we show experimentally, for the

first time, the existence of surface wave resonances on a sphere. We then use the surface

waves to characterize the existence of surface flaws on spheres.

In Chapter 2, we discuss and summarize the theory of Rayleigh wave propagation.

We then show that there are two different types of resonance modes on a sphere, the

spheroidal resonances and the torsional resonances. The spheroidal resonances are

caused by a combination of longitudinal and shear waves, while the torsional resonances

are caused by shear waves only. We will also consider one of the special cases of the

spheroidal resonances m surface acoustic wave resonance on spheres. We then use

Green's function theory 13 to discuss an important phenomenon of surface wave

propagation on spheres- focusing. The understanding of this phenomenon helps us

establish the criteria for the excitation and detection of surface waves on spheres later in

chapters 3 and 4.

In chapter 3 we discuss a variation and improvement of the resonant sphere

technique m the contact-contact resonant sphere technique. Two transducers in light

contact with the ball at the opposite poles act as a transmitter-receiver pair. Because of

the focusing effect of surface waves on a sphere, we choose the focal points (two opposite

poles) of the surface waves to be our contacting points. We show the application of this

technique in the low frequency region- measurement of material properties. We then
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discusstheex_ental observationofsurfacewave resonancesathighfrequenciesand

how surfacewavesona spherecanbcusedtodetectsurfacedefects.

In chapter4 we willdescribea laser-ultrasoundmeasurementsystem. We

developeda laser-ultrasoundsystemthatcanmeasuretheresonancespecmnnofspheres

from10KHz to70 MHz. We manufactureda specialtypeofu'ansducerthatsupportsthe

sphereand excitesresonanceson thespherethroughonlyone contactingpoint,The

resonancespectrumof thesphereisdetectedby a non-contactingbroadbandoptical

detectionschemeontheoppositepoleofthesphere.We demonstratedhighaccuracyin

themeasurementofacousticpropertiesusingthissystem.We demonstratedalsotheuse

ofsurfacewavestoperformnon-destructiveevaluationofspheres.

Inchapter5 we willgiveabriefsummaryoftheexperimentalresultsanddiscuss

futureapplicationsandpossibleimprovementstothecurrenttechnique.
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Chapter 2

Theories of Rayleigh Waves and
Spherical Resonances

2.1 Introduction

In this chapter, we will discuss theories of Rayleigh waves I and spherical

resonances. Rayleigh waves have been shown to be capable of the detection of surface

defects on planar surfaces. 2-3 and have attracted applications in the field of non-

destructive testing (NDT) during the past decade. For the case of a sphere, Rayleigh

waves exist only at high frequencies where the radius of curvature of the sphere is

relatively large compared to the wavelength.

Resonances on a sphere can be categorized into two types: the spheroidal

resonances and the torsional resonances. A spheroidal resonance is generated by a

combination of shear waves and longitudinal waves, while a torsional resonance is

generated by shear waves only. Since resonances are formed by standing waves, there is

a relationship between Rayleigh waves on a sphere and spherical resonances. As will be
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shown later in this chapter, Rayleigh wave resonances on a sphere are just a special case

of the spheroidal resonance, and only exist at high frequencies.

The theory of Rayleigh wave propagation on a planar surface is familiar in the

field of non-destructive evaluation because of its wide usage. We will only try to

summarize this theory briefly in this chapter. Interested readers are referred to a famous

book by I. A. Vilaorov called Rayleigh and Lamb Waves. 4 This book discusses in great

detail the theory of Rayleigh wave propagation. Spherical resonances, on the other hand,

are unfamiliar to the NDT community, and will be discussed in greater detail in this

chapter. The relationship between spherical resonances and Rayleigh waves will also be

discussed.

2.2 Rayleigh Wave Theory

The propagation of acoustic waves on the surface of a semi-infinite medium with

stress-free boundary condition was first described by Lord Rayleigh in 18855. These

waves are called Rayleigh waves or Surface Acoustic Waves (SAW). Rayleigh wave

propagation is confmed to vicinity of the free boundary with wave amplitudes decaying

rapidly with increasing depth below the solid surface. The theory of Rayleigh wave

propagation on planar surfaces has been studied in great detail. We will only summarize

this theory briefly in this section 6.

Consider a linear elastic half space which occupies the region y > 0, with a free

surface at y = 0 as shown in Figure 2.1. The surface of the half space lies in the x- z
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Traction Free Surface

......... _

Y

Figure 2.1 Configuration for Rayleigh wave analysis

plane. For isotropic materials, the mechanical displacement u can be expressed in terms

of a scalar potential • and a vector potential _.

u= VO+V x_I' (2.1)

We associate the potential • with the longitudinal component of motion, and the

vector potential _F with the shear component of motion. For motions that are independent

of the coordinate x, the V x _F term in equation (2.1) tells us that only the x coordinate

of 1t' can be fmite, and we write:

The two potentials • and _F satisfy Helmholtz's equations 7, separately:



16 Chapter 2: Theories of Rayleigh Wave and Spherical Resonance

(v_+#),I,=o (2.4)

where

k_=o#'(,'/(_.+2_)=_/v, (2.5)

ks = _.J_ = co/Vs (2.6)

wherecoistheangularfrequency,p isthemassdensity,X and _taretheI.,amdconstants

ofthematerial,VtandVsarctheacousticvelocitiesofthelongitudinalandshearwaves.

Again, for propagation that is independent of the ctx_dinate x, equations (2.3) and

(2.4) can be written as

020 020

_z +'_2"+ k210= O (2.7)

02_ + 02_ + #_F = 0 (2.8)

Solutionsm equations(2.7)and(2.8)havethegeneralform:

= ae -j(kR-_)-qy (2.9)

and

_F = Be-J(kR-_) -sy (2.10)

where kR isthewave number oftheRayleighwave,A andB areconstants,and the

quantifiesq ands arcgivenby
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q2 = k_ - k_ (2.11)

and

s 2 =k 2 -k2s (2.12)

If we look for solutions that fall off exponentially to as y ---)**, q and s must be the

positive roots of the above two equations.

The boundary condition of Rayleigh waves requires traction free on the free

surface y ffi0. The expression for stress is obtained by first finding the displacement

expression and then utilizing the stress-strain relationship. From equation (2.1), we get

expressions for displacement as follows:

uz = (2.13)az _y

and

u, _+_= "_z (2.14)

Equations (2.13) and (2.14) can be used to determine the stress components in the

medium given by the stress-strain relationship for isotropic materialsS:

"o= "k + 2g _, _ 0 0 O" /3ux//)x

o. _, _.+2g _, 0 0 0 Ouy/Oy

Ozz _. k _,+2bt 0 0 0 Ouz/az

oYzl= 0 0 0 g 0 0 (3uy/igz)+(i}uz/OY). (2.15)o_,1 o o o o _ o (_/_z)+(_u_/_)]
._,j o o o o o _ (_u_/_)+(_u,_)J
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If we substitute equations (2.1) and (2.2) into equation (2.15) for propagation

independent of the coordinate x, we get:

o= iv+g)
__(:, :,] _ ::, +:v

o. tV+vj+_.LV _-_)

: + 2_1<_,°" "t,V v) -_-_Tj

O'xz=Ozx =Oxy =O_ =0

(2.16)

If we substitute _qu.aons(2.9) and (2.10) into equation (2.16) and look for

solutions to surface waves by applying the stress free boundary condition at the surface

y = 0, we get:

2jk_qA I
B = k2 + s2 [

- 2jkRs BI (2.17)
A k,_+:J

Combining equations (2.11), (2.12), and (2.17), the Rayleigh wave characteristic

equation can be found as:

( )4/ +'+'k-_s2-2 -16 1- =0 (2.18)+I gJr gJ '

or,
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V_-2 -16 1 1 (2.19)

where VR and kR are the velocity and wave number of the Rayleigh wave, respectively.

To fred a real value solution to equation (2.19), we express VR "mterms of Vs and

Poisson's ratio, where Poisson's ratio is given by

/v,)2_2

Combining equations (2.19) and (2.20), it can be shown easily that

(8(VR/Vs)2_ 16(V R/V s)4 "4"8(V R/V$)6 - (VR/V$)8)
v = (2.21)

8(VR/Vs)4-8(VR/Va) 6 ar(VR/V$) 8 "

It has been shown by I. A. Viktorov4 that VR can be found from the approximate form:

= 0_.87+ !'12v, (2.22)
Vs l+v

A more accurate result is given by curve fitting equation (2.21), the result is

VR = 0.87379 + 0.20178v -0.077453v 2 (2.23)
v,

Figure 2.2 shows a comparison of equations (2.22), (2.23) with the theoretical

data generated from equation (2.21). Figure 2.3 shows the corresponding error from

theoretical value (2.21) of equations (2.22) and (2.23).
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0.96

0.86

0 0.I 0.2 0.3 0.4 0.5

V

Figure 2.2 Rayleigh wave velocity VR as a function of Poisson's

ratio v

As shown in Figure 2.2, the curve fitting result given by equation (2.23) fits the

theoretical data given by equation (2.21) so well that it is difficult to distinguish them in

the plot from one another. The approximate solution Oven by equation (2.22), though it

generally agrees well with the exact solution, is not sufficiently accurate at both large and

small Poisson's ratio region. Figure 2.3 shows that the curve fitting result (2.23) has an

error which ._ generally smaller than 0.02 percent throughout the Poisson's ratio range

from 0 to 0.5, while the largest error from equation (2.22) is 0.45 percent. For the case

of ceramics, where v = 0.2616, theoretical value of VR / Vs is 0.9212958, the approximate

solution has a value of 0.9218384 with an error of-0.059 percent, while the curve fitting

result has a value of 0.9212750 with an error of only 0.0024 percent.
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Figure 2.3 Errorpercentage comparison between equations (2.22) and (2.23)

As willbe shown laterinchapter4,thelaser-ultrasoundtechniqueiscapableof

measuringmaterialacousticvelocitiesVs and V l toan accuracyofone in 104.To

predictandcomparetheresonancefrequenciesofsurfacewave resonanceson a sphere,

we havetohave an accuratevalueforthesurfacewave velocityVR. Thereforeitis

necessarytouseequation(2.23)insteadofequation(2.22)tocalculateVR.
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Z

olar Angle

¢
Azimuthal AngleX

Figure 2.4 Definition of spherical coordination system

2.3 Resonance of Spheres

2.3.1 Basics

In the literature, there has tw,en little research that deals with resonance of spheres,

no matter whether it is experimental or theoretical. The papers by IC Sezawa9 and by

Yasuo Sat6 and Tatsuo Usami in 1962 ]0 are the fundamental towards the understanding

of the frequencies and distribution of displacement of the free oscillations.

We use the foUowing notation:

0" polar angle
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_: azimuthal angle

r: coordinate in the radial direction (refer to figure 2.4 for O,0, and r)

a: Radius of sphere

fi Frequency

V,: Shear wave velocity

Vt: Longitudinal wave velocity

k,: Shear wave number

kl: Longitudinalwave number

11: 2fa / V, = k,a

_: 2gfa / Vt = kta

m: Inmger, for variation in _ direction (will become clear later)

n: Integer,forvariationin 0 direction(willbecomeclearlater)

and _t: Lamd constants

u = (ur,u0,u#): Mechanicaldisplacementvector

(_ = x( (yrr' OrO, (yr_/" Stress components on the surface of the sphere/

Amn,Bran,Cmn: Arbitrary Constants

We expresstheradial,polarandazimuthalcomponentsofthedisplacementvector

= (Ur,Uo,U¢).K. Sezawa derivedsolutionstotheHelmholtz'sequations(2.3)and
as u
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(2.4)ina sphericalcoordinatesystem.Forsolutionsrelatedto¢I)inequation(2.3),the

displacement vector is given by:

ur.1 = -Ak_a _(Jn+:_2/Sktr)_nm(cosO)cos(m_

_A.__ Jn+u2(ktr) d pnm(cose)cos(m_)
ttO.1- kl r3/2 --_ (2.24)

U#.l= _ .Jn+!/2(k,r)P_(cose)sin(m_)r3/2 sine

There are two sets of solutions for lit in equation (2.4). The first set solves for the

full solution, and the displacement vector is given by:

n(n + 1)B,,m Jn+l/2/!ksr )e_(cose)cos(m_)k2 r3

1 d ir1/2 J I_. r_ d
ue,2=--_s r_rt n+1/2[_, ]]-_P_(cose)cos(m,) (2.25)

mBmn1 d/_/2- ,_ ,_P_=(cos
u#.2 = _.2 r'_r t r" Jn+l/2[lcsr)} ' ";'i.A0) sin(m_)

-v s -- _ M,wwin,v

The second set of solutions to equadon (2.4) is for a pure torsional case where the radial

component of • is equal to zero, and the displacement vector is given by:

Ur.3=0

mCmn Jn+t/2(ksr) P_(cose) cos(m_) (2.26)
Uo'3= n(n + 1)) rI/2 sine

Jn+1/2(ksr) d ,_m, -e)sin(m+)
U_'3= - n(n + 1) .....r 1/2 "_ r;z [cos
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In equations (2.24), (2.25), and (2.26), the subscripts 1, 2, and 3 stand for three

sets of solutions, namely solution to _, solution to _F, and solution to _F with no radial

component. The term J.+1/2 is the spherical Bessel function and Pnm(cosO) is the

associated Legendre function. As shown in the three sets of equations, n stands for

variation in the 0 direction. With Ira[< n, there are 2n + 1 degenerate modes that are

represented by m in the _ direction.

The stress components corresponding to equations (2.24), (2.25), and (2.26) are

given by Sat6 and Usami as shown in equations (2.27), (2.28), and (2.29), respectively:

O,,,l = Area (_,+ "v'/ rl/2

+2_t_2d(Jq+l/2!ktr)_-n( n+l )_t_r'_rI r 1'/2 ) r5/2 JJ

•e(cosO)cost

- 2$xAmnd ,Jn':/_2/_ktr))._op:(cosO)cos(md:) (2.27)

2ml,tAm,_ d Jn+!/2(ktr))p_ (cosO)sin(md_)
ff_'l= k_ 'dr r3/2 J sinO
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2n(n. 1)l_mn d (Jn+l,2(kar)_.m. ^. • _,

O,v.1= ............kil - "_rt :,l : 'yil tcosii)c°stmlpJ

_. f d_(J.+,,_(k:)]+ X..+,,_(k,'){o,o.:=---_-:l_t rl,' "' ) (n(n+ 1)-2) rS/_ [

• d._P_(cosO)cos(m_)dO

{ di (Jn+l/2 k, r 1.._ ,,Jn+l/2(k,)l (2.28)m.I_B-mn..... .ri.)l ) (n(n+ 1)-.., r,/i j°,i._: k_ +

e_'(c°se) sin(m,)• sine

Orr3= 0

a,_ - n(n+1) r1i2 - r3_a

e2'(cosO), _,
• sinO costm_J

o,_:-,,(_'c_l)[_t ,,,i -
d ,n

•-_P; (cosO)sin(m_)

If we look for solutions for the free resonance of a sphere with the boundary

condition that requires no normal stress on the spherical surface, Sat8 and Usami have

shown that the above three equations can be combined into two groups. The first group is

formed by a combination of longitudinal and shear waves, coming from equations (2.27)

and (2.28), this is called the spheroidal mode. The second group is a pure torsional case

coming from equation (2.29). In the following two sections, we are going to discuss in

more detail these two groups of resonances.
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2.3.2 Torsional Resonance of a Homogeneous Elastic Sphere ( Ts_ --->Tn:)

Equation (2.29) pertains to pure torsional resonance modes. In this case, there is

no radial component of the displacement vector. The first sub-index n stands for

variation in the polar angle 0 direction. The second sub-index 1 stands for the Ith

harmonic of the n th resonance, where I = 1, 2, ..., oo. For each n, there are (2 n +1)

degenerate modes in the azimuthal _ direction represented by m, where _ _ n. These

degenerate modes have the same resonant frequencies; therefore, the Tn_ modes can be

represented by Tnt modes. The characteristic equation is deduced from the boundary

conditions on the surface, that is,

o,el,fa = _}°,_,l ,=,, = , t2.30)

where a is the radius of the sphere. If we substitute equation (2.30) into (2.29), we get

two solutions of the same form given by:

a
(2.31)

¢13d
where T1= ksa = ---, this equation reduces to

(n- 1)Jn+l/2(Vl)- TIJ,z+3/2(vl) = 0 (2.32)

As shown in equation (2.32), the resonant frequencies of the torsional resonances

are dependent upon the radius of the sphere a and the shear wave velocity Vs only.

Figure 2.5 shows an example of one of the torsional modes T11 mode for Si3N4 ceramic
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bearing with Vs = 6250m/sec. In this figure we assume m = 0, therefore u0 = 0 according

equation (2.26), and only u_ is non-zero. The picture on the left is a 3-D plot of u_ versus

r and q, the displacement is normalized according to the largest value, and radius of the

sphere is assumed to be one. The picture on the right illustrates that this is a case of a

rigid ro,,ation with two spherical shens moving in the shearing direction against each

otherix.

2.3.3 Spheroidal Resonance of a Homogeneous Elastic Sphere ( Sam --+ Sa)

Sira i laxly to the torsional resonance case, the first sub-index n stands for

variation in the polar angle 0. The second sub-index 1 stands for the /th harmonic of

Figure 2.5 Tzl mode. No radial motion, two spherical shells move in the shear

direction against each other.
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the nth resonance, where l = 1, 2, ..., oo. For each n, there are (2 n +1) degenerate

modes in the azimuthal direction represented by m, where Iml< n . These degenerate

modes have the same resonant frequency, therefore, the Snlm modes can be represented

by $nl modes.

The treatment of the spheroidal resonances is much more complicated than the

pure torsional resonances. Because of the excitation scheme used in our experiments, we

can only consider the solutions for which the motion is independent of the azimuthal

direction, i.e., m = 0. We can rewrite expressions (2.24) and (2.25) as:

Ur.l =-ki2 et ri/2 J'n( c050 )

Pn (cosO) (2.33)
140"1=-_1 r3/2 dO

ul,1=0

and

n(n+ 1)Bn Jn+l/2(ksr)

Ur.2 = k2 r312 Pn (c050)

Bn 1 d/rl/2j %d

= --_sr-_r t n+l/2(ksr))'_ Pn(c°sOl (2.34)
uo,2

u_,2=0

Equations (2.27) and (2.28) become:
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jn+l/2(klr )ffrr,1= An (_ + 2g) r112

2_(2 d.d.(Jn+l/2(ktr)) Jn+l/2(.k,r))_p.

(2.35)

21_4n d (Jn+l/2(klr)) d P (tosS)

a_, 1 = 0

and

2.(.+_)_.n(s.._(_k:))p.
Orr,2 = k2 drL r3/2 )n(cosO)

lib n _ d 2 (Jn+,/2(ksr)l 2_Jn+l.f2(ksr)_ d paro.2 =---_s_d-_r L rl/2 +(n(n+l)- , r5/2 j_'_n(c°sO) (2.36)

ar_,2 = 0

Sezawa has shown that under the condition

B. k_d(s.+_,_(k:))[_ d_
"_"- *_/2"_rrL r3,2 LoL_r_(J.+,,_(k:))-

(2.37)
5 1

A summation of equation (2.35) and equation (2.36) satisfies the stress free

boundary condition.

O.r:}O,O[r=a (2,38)
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/ Figure 2.6 An example of the spheroidal

/ \ Szo mode, also called the
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[ _ / j oblate-prolate mode.
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The characteristic equation of the spheroidal resonance is then obtained as:

2kill+ (n-l)(n+2)_Jn+3/2('q)n+l.)]Jn+3/2(_)
(2.39)

+[_½+ (n-1)(n,_-2)ll2 +I_ 2n(n-1)(n+2)) J'+3/201)l=ll3 _:2-_J
0
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where

=kla
11= k_aJ (2.40)

Equation (2.37) gives us the relative amplitude contribution for spheroidal

resonance between shear wave and longitudinal wave. Equation (2.39) tells us that the

resonance frequencies of the spheroidal modes, unlike the torsional modes, depend on

Vl, Vs, and a, since they are combinations of longitudinal and shear wave components.

Figure 2.6 demonstrates an example of the spheroidal modes, in this case, the Szo

mode for Si3N4 ceramic bearing ball with Vsf6250m/s, Vl= l l000m/s. B2/A2 is

calculated to be 0.281183 fi'om equation (2.37), this is also called the oblate-prolate mode

and is the fundamental spheroidal mode. The top two pictures are 3-D plots of

displacements Ur and uo versus coordinates r and 0. The displacements are calculated

accordingtour= Ur,l+ (B2/A2)Ur,2and u0ffiu0,1+ (B2/A2)uo,2.The amplitudesof

the displacements are normalized with the maximum amplitude of Ur, and the radius of

the sphere is assumed to be unity.

A special case of the spheroidal rhode is the pure compressional mode. In this

case n = 0 (implying m = 0, since [_ _ r.), this means there is no variation in either 0 or

direction. There is displacement in the radial direction only. Equation (2.39) can be

simplified to be:

1 2 (2.41)

where
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Ur

.?5

r0.6_I
! I.S

Figure 2.7 The Sol mode, the fundamental compressional mode, is also called

the breathing mode. The entire sphere expands and contracts in

unison.

= kta_
11 ksaj (2.40)

The only non-zero displacement component in equations (2.24) and (2.25) is Ur,1.

Figure 2.7 shows an example of the fundamental pure compressional mode, the SOl

mode, also called the breathing mode. The entire sphere is observed to expand and

contract in unison. For higher order pure compressional modes, there are different

spherical shells moving against one another in the radial direction.
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Figure 2.8 Mode chart for an isotropic spherical resonator of radius a, with

stress-free boundary condition. The horizontal axis is Poisson's ratio

frequency. As can be seen from the chart, resonant frequencies of

the torsional rvsonances are independent of Vt.
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Figure 2.8 shows a low frequency mode chart of the free oseiUation of a sphere 11.

As seen in the figure, the horizontal straight lines are the torsional resonances. These

resonant frequencies of the torsional modes depend on the shear wave velocity Vs but

not on the longitudinal wave velocity Vt. The spheroidal resonance frequencies, on the

other hand, depend on both Vs and Vt.

2.3.4 Surface Acoustic Wave Resonance of a Homogeneous Elastic Sphere

For large values of n (n > 100), we substitute an asymptotic expansion to the

Bessel functions in the characteristic equation (2.39) and simplify it to the following

form12:

_ 214-- _R)_I _1=0 (2.42)

Equation (2.42) is the characteristic equation of Rayleigh waves, where kR is the wave

number of the Rayleigh waves. This tells us that Rayleigh waves exist on spherical

surface at high frequencies.

2.3.5 SAW Propagation On A Sphere

As discussed in chapter 1, in the field of ultrasonics, surface wave probing is a

good tool for surface defect inspection. However, to excite an:t,detect surface waves on a

sphere, we need to know how surface waves propagate on its surface. We have shown in
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the previous section the existence of surface wave resonances on a sphere. In this

section, we use Green'sfunction formalism, i.e., consider excitation at a point, to analyze

the propagationof surface waves on a sphere6. We will show thatsurface waves excited

at a point on one pole of a sphere are focused at the opposite pole of the sphere. This

focusing effect assists us in the design of the experimental setups in chapters 3 and 4,

where we use a point sourceto excite surfacewaves on a sphere, and detect at a point on

the opposite side of the sphere.

Consider wave propagation on a spherical surface in the spherical coordinate

system (r, 0, _). With azimuthal symmetry, no radial dependence, and only 0 as the

independentcoordinatevariable,HelmhoRz'sequationreduces to:

1 d (. ^dH_+
sinO dO_smu-_j k2a2H =0 (2.43)

where H is a displacement potential, it can be either • or W, or a linear combination

thereof. Also, kR is the wave numberof the surface wave, and a is the radius of the

sphere. Compareequation(2.43) to Legendre'sequationT:

1 d(. dZ._(cosO)3,,,,o.......J+ + ° (2.44)

As discussedintheprevioussection,Rayleighwavesonasphericalsurfaceexistonlyat

high frequencies. For kRa >> 1, let

k] a2 = 7(7 + 1) (2.45)

then
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1

y ,. kRa - _ (2.46)

The solution to equation (2.44) can be chosen to be13:

Z_(COSO)= Q_(cosO)- j P_t(cosO) (2.47)

where Q_(cosO) and P_t(cosO) are Lcgendre Polynomials of the second kind and first

kind, respectively. The sign of the imaginary part is chosen to give an asymptotic form

equivalent in this context to surface wave propagation in one direction along a plane

semi-infinite substrate.

We use Green's function formalism to obtain the field distribution of surface

waves on a sphere. To solve for the Green's function G(0) of surface wave potential on a

sphere, some properties of Legendre polynomials have to be understood. The first one is

the recurrence relation given byT:

(x 2 -ll4Z.I(x) = (Y+ 1)Z,t+l (x)- (Y+ 1)xZ,t(x) (2.48)
lax

Sex_nd, it can be shown by mathematical induction that:

lim(y + 1)[Q_+I(x) - x Q_(x)] = -1 (2.49)z--_l

To findthetwo dimensionalGreen'sfunctionG(0) correspondingtothepotential

or • satisfying the wave equation:

V2G + k_O = 8(0) (2.50)
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where V2 corresponds to differentiation only in the 0 direction, where 8(0) is the Dirac

delta function, which satisfies the equation

_ S[o)d_1= 1 (2.51)

with8(0)_- as0_ 0. andwhom

d£1= 2_a2sinOdO (2.52)

We write the solution to equation (2.50) as

G(O) = A[Qy(cosO)- ] Rt(cosO)] (2.53)

To find the constant A, we integrate equation (2.50) over a small spherical surface

element enclosing the point 0 ffi0. Thus

lim _(V2G + (kRa)2G)d L'_= l (2.54)
0_0 j j,

Combining equations (2.51), (2.52), (2.53), (2.54), plus an application of Gauss's theorem

givcs:

rr i, o0]lim k2G.(2xa 2 sinO)dO+ --_sinOd = 1 (2.55)°-'°LJ0 =o

Substituting (2.53) into (2.55), using the relationship given by (2.48) and (2.49), and

solving for A in equation (2.53), we get:

O(O) (cosO)-j (2.56)
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For y >> 1 and e sufficiently larger than zero, the asymptotic solutions of the Legendre

Polynomials are:

_ = _l/2sin[(7+l)o+41 (2.57)P_(c°sO)'[ 27sinO j

r=(c°se)" t sinoJ

Substituting(2.46),(2.57),and(2.58)into(2.56),we have

G(e) - - 8=(kRa _ llsinO exTJ[-j(kltaO+41 } (2.59)

Equation (2,59) is a very important result, It contains physical meaning in its

structure. First, the -jkRaO term inside the exponential describes propagation of a

Delay = kRaO

a

asinO

Figure 2.9 This figure illustrates two physical phenomena in equation (2.50).

(i) Polar angle propagation. (ii) Cylindrical wave attenuation.
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North Pole

uator

South Pole

Figure 2.10 Focusing effect of surface acoustic waves on a sphere.

Rayleigh wave in the polar angle 0 direction, with a phase delay of kRaO, as shown in

Figure 2.9. This explains the reason for the negative sign in equation (2.47). Second, the

asinO term in the denominator of the square root corresponds to the decrease in

amplitude of a cylindrical wave as its area increases. The amplitude reduction of a

cylindrical wave is proportional to 1/_radius. For a surface acoustic wave propagating

on the surface of a sphere, the circumference is equal to 2_ a sinO, as shown also in

Figl)re 2.9.
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(2.59), this is a singular point because of the sinO term in the denominator. Therefore,

the field near the focal point needs further treatment. Refer to figure 2.11, in actual

experiments, there is no so called 'point source', the excitation actually takes place over

an area of finite size, and the focal point will not be exactly be an angle of g away from

the source. We understand that the field distribution should be independent of the

azimuthal direction because of our excitation scheme. To calculate the field distribution

near the south pole, we can arbitrarily put a ring-type source at any polar angle

sufficiently away from the two poles and perform Green's function integration over the

source. Readers interested in the integration procedure are referred to chapter 3 of

Professor G. S. Kino's book "Acoustic Waves: Devices, Imaging, and Analog Signal

Processing. '6 We chose the equator as the ring-Wpe source and calculated the field

distribution H(0) near the south pole by integrating the Green's function over source

using the. Kirchhoff formula in Kino's book:

U(O,_) ffin(O) = _,(HV'GCO) - GCO)V'H). n_ (2.60)

where ds is an element of the ring-type source, n is a normal vector pointing in the

negative 0 direction, s is the entire ring of the source (integration from 0 to 2=).

Them is a mason why we chose the equator as the source. Kino pointed out that it

is not rigorously correct to specify both H and V'H on the source, however, since the

length of the equator is much larger than the wave length, we can assume V'H. n = ]kRH

in the equation.
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Referring to figure 2.11, the angle 0 is the angle extended on the spherical

surface between a point on the source (a, e0.¢0 ) and the point (a,e.,)of which the field

we are interested in, 0 is given by:

o=co: e Oo - Oo] (z61)

Note inthecaseofusingtheequatorasthesource,00 = x/2. The integration

resultisshown infigure2.12.In thisfigure,theverticalaxisisnormalizedwiththe

amplitudeatthefocalpoint,thehorizontalaxisisdistanceaway fromthefocalpointand

isnormalizedwithsurfacewavelength.

We observe that surface waves are focused at the south pole of the sphere. At a

distance _'R away from the focal point, the normalized amplitude drops to I/_,

therefore we say the 3dB spot size is two times this distance, or, 0.364_, R. The

observation of the focusing phenomenon is important for experimental purposes, it tells

us that in order to detect the highest amplitude to have the largest signal to noise ratio, the

detection point has to be either at the excitation point, or at the opposite pole, in our case,

the south pole.

Finally, to form a surface wave resonance, the sphere's circumference must be an

integral number of surface wavelengths, given by the formula:

2_a
---- = M - 1 (2.62)

where M is an integer.



Chapter 2: Theories of Rayleigh Wave and Spherical Resonance 43

Use equatoras the
ring-typesourcefor
integrationconvenience

(a,Oo,%)

Figure 2.11 Treat surfacewave source with a finite dimension in stead of a point

SOurCe

The physical meaning is that as surface wave travels, its phase encounters a

change of kR(xa ) after the fh-sthalf circumference with a travelingdistance of xa,

afterthe first focal point, another kR(ga) after the second half circumference, another

after it refocused at the source. Thus after traveling one round-tripwe have a total phase

change of:

[2RR(xa)+2x]-[27t(1+kea)]= [2x(1+ 2r_,a/_,R)] (2.63)

Inordertoformaresonance,thissum shouldbeanintegernumberof27t.Therefore,

I+2xa/_.R = M, thisgivestheresultin(2.60).
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We have used Green's function integration to calculate field distributionon the

sphere. Here we will show a much simpler approach with a lot morephysical meaning.

The Green'sfunction for a travelingwave was given by

G(o)= je, o)] (2.56)

To form standing waves, there is another Green'sfunction for waves traveling in

the opposite direction,namely:

-1

G'(O)= -E_[Q,l(cosO)+jP.t(cosO)] (2.56')

1.0

._ 0.8

'0.6

i 0.40.2

0.0 .......... a 0&R
-5 -4 -3 -2 -1 0 1 2 3 4 5

Normalized Distance

Figure 2.12 Standing wave pattern of surface waves on a sphere. Here, the

horizontal axis is normalized with respect to surface wavelength ;LR.

We see that surface waves focus down to a 0.364 ;tg 3-dB spot

size.
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Therefore, the standing wave patternis acmaUy (G +G') and is proportional to

Q_(cosO)=QkRa_I/2(cosO)=QM_3/2(cosO), where M is an integer. When this

expression is plotted against figure2.12, they arefoundto be identical.

2.4 Concluding Remarks

In this chapter, we discussed briefly the propagation of Rayleigh waves on a

planar surface. Further, we discussed in more detail about the theories of spherical

resonances. The torsional resonance frequenciesare found to be dependent on the shear

wave velocity and radiusof the sphere, while the spheroidal resonance frequencies are

dependent on the shear wave velocity, the longitudinal wave velocity, and radiusof the

sphere.

Surfacewave resonances arefound to be one of the special cases of the spheroidal

resonances. We used Green'sfunction approachto show the focusing effect of surface

waves propagatingon a sphere. The focal point spot size is found to be 0.364_.R. This

enables us to design the excitation and detection scheme for surface waves to be used in

Chapters3 and 4.
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Chapter 3

Contact-Contact

Resonant Sphere Technique

3.1 Introduction

The resonant sphere technique was originally introduced by D. B. Fraser and L.

C. LcCraw in 1964 as a technique to measure material properties of spherical objects1. A

sphere was put on a piezoelectric transducer, and surrounded by cardboard to prevent it

from rolling. A tone burst signal was sent into the transducer and the gated reflected

signal was detected using the same transducer. Resonance frequency was determined

when the maximum reflection amplitude was found. The quality factor of each resonance

was determined by measuring the decay rate of the reflected signal. This proved to be a

useful technique for measuring acoustic properties such as longitudinal wave velocity Vt

and shear wave velocity Vs. Several researchers continued on with this technique, but all

limited its usage to measuring material properties2, 3.

In chapter 2 we discussed wave propagation on spheres. Waves propagating in

opposite directions on the sphere will form standing waves. At certain frequencies, these
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standing waves will form resonances on the sphere. Researchers following in the

footsteps of Fraser used the resonant @here technique in the low frequency region to

measure material properties. In this chapter, we will present our improvements and

modifications of this technique. First, we improved the experimentalsetup to enable the

system to measure not only the resonance amplitude but also its phase. Second, we

pushed the operation to a high frequencyregion and, for the first time, experimentally

demonstratedsurface wave resonances on spheres. Since we areable to generate surface

waves on spheres, these surface waves can be used to performsurfacedefect inspection,

particularlyof ceramicbearingballs which areof most interestto this research.

3.2 Experimental Setup

We designed and built a contact-contactresonance experimentalsetup to measure

resonances of spheres. The setup is shown in Figure 3.1. The sphere is mechanically

mounted between two LiNbO3 longitudinal transducers. The signal from the first

synthesizer is inserted into the bottom transducer(transducer 1), on which the ball rests,

and excites continuous ultrasonic waves on the sphere, in this case, a ceramic bearing

ball. The top transducer,which is similarto the bottom transducer,acts as a receiver. It

is positioned to make a light contact with the sphere. To detect both the phase and

amplitudeof the acoustic resonance signal which depend onthe displacementof the north

pole of the sphere,the received signal is mixed with a signal from the second synthesizer

with a frequency setting which is 5 KHz lower than thatof the fhst synthesizer. After

mixing, the signal is sent into a lock-in amplifier. Signals from the trigger output

channels of both synthesizers axe also mixed, low pass filtered at 5 KHz, and then sent
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into the referer:cechannel of the lock-in amplifier. We designed a computer-controlled

system to sweep over the frequency range of interestat a fixed, but arbitrary,frequency

increment. Local maxima in amplitudeareused to determinethe resonance frequencies

of the sphere,whereas the phaseof the spectrumis used to measuretheresonance Q's4.

Before each measurement,we had to make sure that the static force between the

transducersand the sphere was as light as possible. To achieve this goal, the position of

the top transducerwas controlled by an x -y - z stage, with the spring connecting the

stage and the transducer. Once a signal was observed, we graduallylifted the position of

the top transducer. When a suddendisappearanceof signal was found, the position of the

top transducerwas towered by a very small distance, usually this meant a quarterturn of

" ComputerController

i|11,

Synthesizerf(KHz) I I Synthesizerf.5(KHz)2 Amp. Phasetriggersignal trigger signal V ----"

...... _ i"' Low Pass[

I ! I
I_ ¢_, _-__Reference

......... _Signal

Traasducer2=_=CeramicbalI

TransducerI_ _plni

Figure 3.1 Contact-contact spherical resonance experiment setup
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the stage knob, which corresponds to a compression in the spring of the order of 10 _tm.

Figure 3.2 shows a detailed diagram of the transducer-sphere configuration. As

shown in the figure, the two transducers are mounted on two springs. The parpose of

having two springs is to insure that the transducers are in light contact with the sphere,

and the free oscillation condition of the sphere can be closely simulate_

3.3 Signal Processing Analysis

The mathematics behind the analog signal processing scheme shown in Figure 3.1

can be explained in more detail as follows. The output from both the signal and the

trigger channels of synthesizer 1 is:

Spring
Receiver Transducer

Ceramic Ball

Transmitter Transducer

Spring

Figure 3.2 Zoom-in look of the transducer-sphere set, the two transducers are

mounted on springs.
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s1sin[2_tit + _,1]. (3.1)

where for simplicity, we assume the outputs from both channelsof synthesizer 1 to have

the same amplitudeSl, frequencyfl, and phase ¢_sl.

We can write the acoustic signal output from transducer1 as

sltl sin[2_flt+_,I+ _tl], (3.2)

where tl and _,1 are the amplitude and phase conversion factor of transducer 1. The

resonant acoustic signal at the northpole of the ball is

sltlbsin[27_fff+_,l +_tl +_b], (3.3)

where b and _b are the amplitude factor and phase change of the wave propagating

throughthe ball. This acoustic signal at the northpole is converted by transducer 2 to an

e!_c signal

sltlbt2sin[2_fff +_sl +_:1 +_b + _t2]. (3.4)

where t2 and _2 are the amplitude and phase conversion factor of transducer2. This

signal is mixed by mixer I with output from synthesizer 2,

s2sin[2xf2t ++,2]. (3.5)

where for simplicity, we assume the outputs from both channelsof synthesizer 2 to have

the same amplitude s2, frequency f2, and phase 0:,2. The output from mixer 1 contains

two signals, namely
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and

2sxs2tlt2bcos[2_(fl-f2) t +(*sl-_s2 +_tl + _t2) + _b], (3.7)

plus higher harmonics. This set of two signals is sent into the signal channelof the lock-

in amplifier. On the other hand, there ate two signals being fed into mixer 2: from

synthesizer 1:

sl si_2x_fff+ _,l], (3.8)

and from synthesizer 2:

s2sin[2_f2t + _s2]. (3.9)

The outputfrommixer 2 containstwo signals, namely:

. .(,,1 (3.10)

and

2

plus higher harmonics. This set of two signals is sent into a low-pass filter set at 5KHz.

Since

f2 = J_- 5KHz, (3.12)
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the output from the low-pass filter contains only the signal (3.11), i.e.,

(12)sis2 c°s[2g(fl -f2_ +(_,1-*,2)], a 5F',J-Izsignal. This 5KHz signal is fed into the

reference channel of the lock-in amplifier. The lock-in amplifier locks onto the 5KI-Iz

component of the signal being sent into the signal channel, i.e., the expression given by

(3.7). The lock-in amplifier has two outputs, the amplitude of the locked-in signal sent

into the signal channel given by (3.7), and the phase difference between the reference

channel signal (3.11) and the lock-in signal (3.7). Therefore, the amplitude output should

be

1

_ s_s2tff2b , (3.13)

and the phase reading should be

_tz+0:2 +tb (3.14)

Combining expressions (3.13) and (3.14) with the clef'tuition of the resonance

quality factorS:

Resonance Frequency
Q- -'3 dB Bandwidth- ' (3.15)

it is seen that ff the operation is at 10MHz, the 3dB bandwidth will be around 1KHz for a

quality factor in the order of 10,000, which is typical for the resonances of ceramic

bearing balls. The two transducers in this experiment are excited at frequencies off

resonance and their responses within a narrow frequency range, say 10 KHz, are very flat.

Therefore, for each resonance peak of the sphere, we can treat tz, t2, _tz, and _t2 as

constants. In addition, sz and s2 are f'Lxedsetting values on each synthesizer and are
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constants. It can be concluded that for each resonance peak, the amplitude (3.13)

measuredby thelock-inamplifierisproportionaltotheactualacousticresonancesignal

atthenorthpoleofthesphere;also,thephase(3.14)measuredbythelock-inamplifieris

theactualphaseoftheacousticsignaloffsetby aconstantwhichisacharacteristicofthe

pair of wansducers.

3.4 Experiment Results and Analysis

,i

3.4.1 Low Frequency Measurement

Three Si3N4 ceramic bearing balls of 1/2 inch diameter were used as samples for

the experiment. The first ball is perfect with no cracks. The second ball has a series of

cracks made with a I0 g load on a Knoop indenter, and the third ball has cracks made

with a load of 50 g on the indenter. We will refer to these three balls as balls A, B, and

C, respectively. We measured phase and amplitude of the resonant frequency spectrum

of the spheres. Local maxima in amplitude are used to determine the resonance

frequencies of the sphere, whereas the phase of the spectrum is used to measure the

resonance Q's.

Thereisanimportantreasonwhy we wanttomeasurebothamplitudeandphase.

UsingamplitudealonetomeasuresampleswithhighQ'sistimeconsumingbecauseof

thesmallfrequencyincrementnecessaryforan accuratemeasurement.The importance

ofphasemeasurementisevidentforthefollowingreason:nearresonance,thephase
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curve is almost a straight line. The phase undergoes a change of _ on passing through

resonance and its slope at resonance is: 5

a(phase) dO 2Q
= --- = ----- (3.16)

d(frequency) df fo

which is a constant. The equation for the phase near resonance is given by:

O=Oo-,an -l (f2- f02_2 (3.17)
ff0

where 00 is the phase value at resonance, f0 is the resonance frequency, f is the

frequency at each point, and Q is the quality factor. This characteristic equation is

commonly observed also in resonant electric circuits for large values of Q.

Therefore, to determine the resonance Q for a particular mode, we simply

determine the resonant frequency to the desired accuracy by amplitude measurement,

measure several points around resonance, and fit a curve to the measured phase according

to the above equation.

We determine the mechanical properties of the samples following the procedures

shown in the flow chart in Figure 3.3. We note from the discussion following the

characteristic equation of torsional resonances, in equation (2.24)

(n- 1)Jn+l/2(n)-'qJn+3/2(n) = 0 (2.32)

that the resonant frequencies of the torsional resonances are only dependent upon radius

of sphere a and shear wave velocity Vs ('q=2xfa/Vs). If we are able to accurately
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i In|illnlii i

I toronresonant frequency I

J.
iii i T i

] Measure one spheroidal resonant frequency I

, ,
Combine with calculated Vs

CalculateVt

m_ i mUll

Combine Calculate V, & Vt
Calculate Vs & v

Figure 3.3 Flow chart of material acoustic property measurement using the

resonant sphere technique.

measure the resonance frequency of one of the torsional modes, we should be able to use

equation (2.24) to calculate Vs accurately. Given the definition

Q = Resonance Frequency, (3.15)
3 dB Bandwidth

it is understood that high Q modes have a smaller 3 dB bandwidth and are therefore more

frequency selective. For resonance frequency measurement, it is desirable to choose a

particular high Q mode to perform accurate resonance frequency measurement.
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Similarly, the third step in Figure 3.3 is w find a high Q spheroidal mode and

measure its resonance frequency. Combining the measured spheroidal mode resonance

frequency and calculated V, from step two, the longitudinal wave velocity Vt can be

calculated using the characteristic equation of spheroidal mode resonance,

2k_._tll+ (n-1)(n+2)(Jn+3/2(rl) n+lllJn+3/2(_ )ks LTI _2 Jn+l/2('fl) ,i Jn+l / 2(_)

+[---}4 (n-X,(n+2, (; 2n(n-X)(n+2,'_Jn+zt2(ll)q__1.12 + 1,13 .) jn+i/2,i.rl)j 0 (2.39)

where _ = 2_fa/V t, kt and ks are the wave numbers of longitudinal and shear waves,

respectively.

25e .... ' .... ' .... ' .... i . . . i i . . . . i t...

200 S211T40150

Tli "1"5

50" S2o Sit III SS01_-

o ll!• , • . • • • • • | • . . • • • • . . . . • • • . v | 17 • i

300 4{30 500 600 700 800 900 1000
Frequency (KHz)

Figure 3.4 Typical low frequency amplitude spectrum for ceramic bearing balls

with diameter 1/2 inch.
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Figure3.4shows anexampleoftheamplitudefrequencyspectrumofballC,the

1/2 inchdiameterSisN4 ceramicbearingballwhichhasa seriesofcracksmade by a

50 g Knoop indenter.Compared withthemode chartinFigure2.8,thecontact-contact

resonantspheretechniqueiscapableof generatingallthelow frequencyresonances.

Each peak inFigure3.4can be identifiedtocorrespondtoa theoreticallycalculated

resonancemode inFigure 2.8•

As discussedpreviously,our experimentaltechniqueenablesus tomix the

resonanceacousticsignaldown toa low frequencyso thatthelock-inamplifiercan

measurethephaseofthesignal.Infigure3.5we zoom inon thefrequencyspecmxm in

boththeamplitudeandphaseofaparticularhighQ mode T_2 ofballA,theballwithno

defect.Among thenumeroustorsionalmodes ofa sphere,the Tw modes had the

35 ..... I,---: .... : .... : .... 50

30 -"'""....."-'-

25 _amP ""f 't 100 8

• 150 '_
15

10 200
5

0 ,..,. I..,'. I.... I .... I.... 250
905.65 905.7 905.75 905.8 905.85 905.9

Frequency (KHz)

Figure3.5 T12mode,a highQ mode usedforcalculatingshearwave velocity

Vs. We canseeclearlythephasetransitionof180°nearresonance.
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! i i i
-- i i|,l, . i . . .............

I I II I I lilll_ TT

fTu(KHz) . 905.80 905.74 .. 905.50

QTn 34799 42242 32985
i i I ii iii I

f$oz (KItz) 720.41 724.42 721.40
I ii I I I

• QsO! 20058 19245 16918

Vs (m/s) 6270.5 . 6270.1 6268.4

v 0.26447 0.26573 0.26522
II III llllll III I

VI (m/s) 11081 11100 11082
|ill i I

VR (m/S) 5779.9 5780.8 5778.8
,,,,,, .....

Table 3.1 Data on spherical resonances obtained by the resonant sphere

technique for three ceramic bearing bails, each with a diameter of

1/2 inch. Ball A is a perfect ball with no cracks. Ball B had a series

of cracks made with a 10 g load on a Knoop indenter, and Ball C

had the cracks with a load of 50 g on the Knoop indenter.

highest Q. The reason is that the large displacement amplitudes of the Tn_ modes are

mainly inside the sphere. Therefore the contact load between the two transducers and the

sphere has little effect on the Q of the resonance. High Q modes are more frequency

selective, and are chosen to calculate the mechanical properties. A rough estimation of

the accuracy of the measurement is as follows: Given
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f (3.22)

for a particular torsional mode such as

2xfa = constant. Vs, (3.23)

where the constant is the theoretical value of the normaliM frequency in the mode chart.

Therefore,

2ruaAf= constmlt•AVs. (3.24)

Divide(3.24)by (3.23)andutilize(3.22),we get

Av,_ I
v, (325)

Equation (3.25) tells us that the accuracy of acoustic wave velocity m_surement

is of the same order of magnitude as the reciprocal of the quality factor of the resonance

mode. As shown in table 3.1, where we list the material constants calculated from the

resonant frequencies for the three samples, the two resonance modes selected, TI_ and

Sol modes, are two particular high Q modes. The values for surface wave velocity VR in

the table are calculated according to the curve fitting equation in equation (2.23). From

Table 3.1, we deduce several important conclusions about low frequency measurements

of spherical resonances. First, the resonance modes selected here have quality factors of

the order of 104. Equation (3.25) thus predicts an accuracy of material property

measurement to be in the order of one part in 104. This is confirmed by considering the

variation of material property values shown in the table. Second, we conclude from the
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data that low frequency measurement results are not sensitive to the existence of surface

defects and do not reflect the existence of surface defects since low frequency resonances

are mainly bulk wave resonances.

3.4.2 High Frequency Measurement

In the higher frequency region, the resonance spectrum becomes more

complicated as there is an increasing number of closely spaced higher-order resonance

modes. Still, it is possible to isolate tile surface wave resonances when the frequency is

high enough. In section 2.2.3 we showed the existence of surface acoustic waves in the

high frequency region. As shown in Table 3.1, the surface wave velocity of the Si3N4

ceramic material used to make our sample is VR = 5780m/s. For

2_fa = 2r_a = kRa = n = 100, (3.26)
vR

this corresponds to an operating frequency of around 14.3 MHz. We operated the

contact-contact resonance setup at this frequency region. A typical measurement result is

shown in Figure 3.6. Plot (a) of Figure 3.6 is the spectrum of Ball A. Plots (b), (c), and

(d) will be discussed later in this section. From plot (a), we observe several dominant

resonance modes that are almost equally spaced in the frequency domain. Several

reasons lead us to conclude that these dominant modes are indeed surface wave resonance

modes. First, because most of their energy is stored near the surface, surface waves are

easily excited and detected, therefore, they tend to dominate in the higher frequency

region. Second, at the end of chapter 2, we discussed the condition for surface wave
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resonance on a sphere. We found that to form a surface wave resonance, the

circumference of the sphere has to be an integral number of surface wavelength. We

combine the calculated data for VR from Table 3.1 with our measured high frequency

resonance frequencies, and calculate the corresponding surface wave length at these

resonance frequencies to be:

Figure 3.6 Surface wave resonance amplitude spectra for Ball A and Ball C.

The dominance of surface wave is evident.
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VR(calculated )

_.R = f(measured) " (3.27)

We then ascertain that there is an integer number of surface wavelength that fit on

one circumference of the sphere. According to the relationship given by equation (3.26),

this large integer n is around 100 in this case. This also explains our observation of

these equally spaced resonance peaks. For large values of n, the resonance frequency fn

is easily derived from equation (3.26) as:

fn= nv--v_. (3.28)
2xa

Therefore, the peak-peak distance in the frequency domain is given by:

Af = fn - fn-I = "_'- (n - 1)VR= "_ =constant (3.29)
2_a 2_a 2xa

The experimentally measured values of the resonance Q's for the dominating

modes are of similar value, which indicates that these modes are of similar character. We

therefore conclude that these dominant modes are surface wave modes. It has to be noted

here that it is almost impossible to use the mode chart in Figure 2.8 to identify the surface

wave resonance modes because there are so many different higher order harmonics in the

highfrequencyregion.

In figure 3.6, we show four spectra plots, two for Bail A, two for Ball C. Plots (a)

and(b)arethespectraofBallA,where(b)isa zoom-inplotwhichalsoshowsthephase

information,thethinsolidlinein(b)isthecurvefittingofthephaseusingequation

(3.17).Plots(c)and(d)arethespectraofBallC,where(d)isa zoom-inplotwhichalso

shows thephaseinformation,thethinsolidlinein(d)isthecurvefittingofthephase
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I I II II I I= ,III II , ,, , L,, ,,,,,,,,,,,,,,,, ,,, _L

Ball A Ball B Bail C
ill II m, Ill Ill IIllllll I

2xa/_,_ f(MHz) .... Q f 0ViHz) Q f (MHz) QII l[ Illl Ill[ll I I I

98 14.1975 10810 14.2090 7905 14.1790 3655
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99 14.3406 11321 14.3547 7998 14.3252 4348
Hr i liHi i, , i IrI I IIHIt air I

100 14.4846 9573 14.4988 8546 14.4677 4607
iii - H ii == ' == III _

TABLE 3.2 Data obtained by the resonant sphere technique for three ceramic bearing

balls, each with a diameter of 1/2 inch. Ball A is a perfect ball with no

cracks. Ball B had a series of cracks made with a 10 g load on a Knoop

indenter, and Ball C had the cracks with a load of 50 g on the Knoop

indenter. VR is the surface wave velocity, and _,x = VR/f is the

wavelength of the surface wave at frequency f.

using equation (3.17). When we compare (a) with (c), we see qualitatively that the

spectrum of Ball C is much noisier than that of Ball A. When zooming in on one of the

resonance peaks, as shown in (b) and (d), we see that the spectrum for Ball C is split

while the spectrum for Ball A is quite smooth near resonance. Both of these two

phenomena are probably due to the interaction between the original surface wave and the

surface waves scattered by the surface defects. The spectra of ball B are similar to those

of ball C, but the effect of the cracks on the quality of resonances is less severe.

Table 3.2 summarizes the measurement results of the three balls A, B and C for

three surface wave resonance modes. We note that the Q of the surface wave

resonances decreases by as much as 50-60% as the load on the indenter, and
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consequently, the size of the surface cracks increases. Thus we have a direct relationship

between the value of the Q of the surface wave resonance and the density of surface

defects.

The physical definition of quality factor Q is

2x. Maximum Stored Energy
Q = Power Dissipation per cycle" (3.30)

The numerator is the maximum stored energy in the acoustic resonance of the

sphere. The power dissipation term in the denominator consists of several parts: power

loss due to viscous damping in the material, power loss due to leakage of surface wave

energy into the air, and power loss due to scattering from surface defects. Surface defects

scatter surface wave energy into two parts: the first part is scattered surface waves and the

second part is scattered bulk waves. The scattered surface wave interferes with the

original incident surface wave, and the energy lost into bulk does not contribute to

surface wave energy at all. Therefore, the larger the crack size, the more significant the

loss mechanism and the larger the denominator of equation (3.30). We conclude that as

crack size increases, the value of Q decreases.

3.5 Concluding Remarks for the Contact-Contact Resonance Sphere

Technique

In this chapter, we described our development of the contact-contact resonance

sphere technique. We developed a computer controlled system that is capable of

measuring the frequency spectrum of a sphere in both amplitude and phase, We showed
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also the high degree of accuracy of our measurements in determining the material

properties (one in 10t accuracy). From experiment conducted in the high frequency

region, we demonsuated experimentally,for the first time, the existence of surfacewaves

on spheres. We showed in Table 3.1 that low frequency measurement is good for

material propertymeasurement,andhas no directrelationshipwith surfacedefect. In the

high frequency region, as shown in Table 3.2, we observed a one to one correspondence

between crack size and surface wave resonance Q. It has to be noted here that it is

extremely important to control the alignment between the two transducers and the

pressure load between the transducer and the sphere. The effect of the loading is

especially significant when operated in the high frequency region, when the experiment

procedure about loading and unloading the transducers described in section 3.2 is

properly followed, the results are repeatable. This loading problem motivated us to

develop the non-contactingdetection scheme which is discussed in chapter4.
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Chapter 4

Laser-Ultrasound:
One-Point-Contact Measurement

4.1 Introduction

In the previous chapter, we denim the method of the contact-contact resonance

sphere technique. This technique is operable in two frequency regions. In the low
I

frequency region, the technique can acctnately characterize (one in 104) acoustic material

properties such as longitudinal wave velocity, shear wave velocity, and Poisson's ratio.

In the high frequency region, where surface wave resonance dominates, it can be used to

perform surface defect inspection. The existence of surface defects significantly reduces

the quality factor of surface wave resonance modes. However, this technique has certain

limitations, particularly in the measurement of small spheres. The first limitation is in the

proper alignment of the two transducers, because the transducers are mounted on springs

to simulate the free oscillation condition of the sphere. The second limitation is in

controlling the contacting load between the transducers and the sphere. As the sphere

gets smaller, the contact pressure and area between the transducers and the sphere can no

longer be ignored. These problems can be circumvented by a one-point-contact
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measurement technique, in which the sample is supported by a concave depression in a

buffer rod bonded to a transducer. This technique uses only one point to support the

sphere as well as excite resonances on the sphere. The resonance signal is detected using

an optical interferometer which measures the displacement of the top surface of the

sphere, a non-contacting detection scheme.

Heterodyne Interferometer

(Amplitude and Phase Measurement)

Focusing Lens

Laser Beam

Ceramic Ball

Transducer

Synthesizer

Figure 4.1 One-Point-Contact measurement experimental setup.
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4.2 Experimental Setup

Figure 4.1 shows the schematic of the one-point-contact technique. The ball is

placed on a spherical depression (lens) in a buffer rod with a longitudinal piezoelectric

transducer on the other end. The radius of curvature of the lens is larger than that of the

ball, so that the ball can rest at the bottom of the lens. The transducer excites resonances

on the ball and the interferometer measures vertical displacements of the waves on the

ball at the opposite pole.

4.2.1 Hertzian Contact

The only contact between the sphere and the external environment is a single

Hertzian contactwitha diameterof d given by1:

d = 2F_( DRK )_\R-R' (4.1)

=-- ._4 (4.2)
E E'

and R, v, E are the radius, Poisson's ratio, and Young's modulus of the lens, R', v', E' are

the radius, Poisson's ratio, and Young's modulus of the sphere, and F is the total contact

force (i.e., weight of the sphere).

For a fused quartz buffer rod, v =0.1694 and E = 7.274*lOIONewtonlm 2. For a hot

isostatically pressed Si3N4 ceramic (NBD 200), v'= 0.2616, E' =3.223"1011 Newton/m 2,
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and density = 3270 Kg/m 3 . In Figure 4.2 we show two calculation results. The first one

shows curves for contact diameter versus radius of a Si3N4 ceramic ball sitting on a fused

quartz buffer rod. Each curve stands for a different radius of curvature of the depression

on the buffer rod. In figure 4.2, we also show an extreme case where there is no

depression (R ffiinfinity). The second plot shows the contact diameter versus the radius

of curvature of the concave depression on the buffer rod. We see that for each size of

ball, the contact diameter varies only slowly with the radius of curvature of the

depression when it is sufficiently larger than the radius of the ball.

For example, with R ffi4 mm, a 1 mm diameter ceramic ball with R'= 0.5 ram,

we calculate d = 0.45 Ia_,n. At 60 MI-Iz, where the surface wavelength on ceramics is

around 100 I_n, the contact diameter is only about one percent of the wavelength, and

thus has little effect on the propagation of surface waves.

To calculate the relationship between radius of ball and radius of curvature of the

depression for most efficient surface wave excitation, the contact diameter should be

equal to 3.R/2 = VR/(21), where f (Hz) is the operating frequency, and 7,R and V,_ are

the surface wavelength and surface wave velocity on the ball, respectively. For Si3N4

ceramics, VR = 5758.5 m/see, the relationship between radius of ball R' and radius of

curvature of the depression R for most efficient surface wave excitation is

R'

R= 10-17 f3 R,4 (4.3)1- 5.5928. x x

Figure 4.3 shows the optimum radius of curvature of the depression versus

operating frequency for 5 particular radii of ceramic balls.
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Figure 4.2 (a) Hertzian contact diameter versus radius of ceramic ball.

(b) Hertzian contact diameter versus radius of rod depression
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Figure 4.3 Optimum radius of curvature of the depression versus operating

frequency for 5 different radii of ceramic bails

It is to be noted here that we are interested in measuring resonance spectra.

Therefore, in order to keep the resonance Q high the coupling to the ball should be weak,

so the contact diameter should be much smaller than I/1O of the surface wavelength in

order not to interfere with the propagation of surface waves. For fused quartz buffer rod

and Si3N4 ceramic ball, the minimum radius of curvature of the depression becomes:

R'

R > 1-6.991. lo_lSfZRa I (4.3.a)

Figure 4.4 shows the minimum radius of curvature required for the depression on

a fused quartz buffer rod with different radii of Si3N4 balls.
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Figure 4.4 Minimum radius of curvature of the spherical depression for a

Hertzian contact less than III0 of surface wavelength.

We can also combine results of equation (4.3.a) with the condition for generating

true surface waves that requires kRa > 100. For example, for a Si3N4 ball with radius

4ram, to generate true surface waves, the frequency has to be higher than 23MHz, this

corresponds to a minimum radius of curvature require for the depression of only

4.089mm.
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4.2.2 Advantages Of The One.Point-Contact Technique

The one-point-contact technique has advantages over the contact-contact

technique because it does not require alignment of the two transducers. Also, the

contacting load between the ball and the transducer is predictable. An experiment similar

to the one-point-contact technique has been performed by Royer and Shui where a sphere

was placed on a three-point mount and resonance was excited photoacoustically by a

modulated laser beam2. The ball had a diameter of 20 mm and was made of stainless

steel with 13% of chromium. They determined the shear wave velocity and the

longitudinal wave velocity with a delay line method with an accuracy with 0.1% and

measured V, = 3290 m/see and Vt = 5988 m/see. They calculated VR to be 3061 m/see.

They reported the observation of low frequency surface wave resonance modes up to

kR a _ 40 which corresponds to a maximum operating frequency of 1.95 MI-Iz.

O-_rtechnique has several advantages over this earlier technique. First, the only

contact between the sphere and the external environment is a Hertzian contact. The effect

of this contacting point on the resonance of the sphere is negligible as discussed in the

last section. Second, it is more efficient to excite resonance by a direct mechanical

contact. The surface displacement of the transducer piezoelectric material LiNbO3,

(crystal-type trigonal 3m, propagation along Z axis), active area 1 mm2, center frequency

150 MI-Iz, fused quartz rod length 30 ram, with an input of 1 volt, is shown in figure 4.5.

The top plot shows a frequency response between DC and 5MHz, the bottom plot shows

a frequency response up to 300MHz. The resonant spectrum in the low frequency is due

to resonance of the buffer rod, it disappears in the high frequency region because of

attenuation inside the buffer rod. We see that we can acoustically excite a strong
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displacement on the ball. Since the photoacoustic effect on ceramics is very weak, 3 to

generate surface waves using laser excitation will have the risk of damaging the sample.

The laser for the interferometer in our setup is a He-Ne laser with a power of 4roW and

should have negligible thermal effect on the sphere. Therefore, t_aemeasurement can be

done at a higher sign,-to-noise ratio, compared to the photoacoustic method which is

very inefficient on ceramics. Furthermore, because the sphere is always located at the

bottom of the concave depression, alignment of the measurement system for different

spheres of identical diameters becomes trivial. Finally, there is no limit to the frequency

range over which the measurement can be made. We have measured up to a kRa value

of 240, in this case, a 1/4 inch diameter ceramic bearing ball with an excitation up to 70

MHz.

42.3 Optical Detection And Heterodyne Interferometer

An excellent paper written by Jean-Pierre Morn halin reviews various optical

methods to detect ultrasound at the surface of opaque solids 4. Optical detection

techniques for ultrasound can be classified into non-interferometric techniques and

interferometric techniques. The former are well developed and of limited application,

while the latter are more general and are presently the object of active developments.
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Figure 4.5 Displacement of the transducerused. (LiNbO3 crystal-type trigonal 3m,

propagation along Z-axis, active area 1ram2, center frequency 150 MHz,

fused quartzrod length 30ram,with an input of I volt)
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RefrenceBeam

ProbeBeam

.............................

Beam SpUtter

Splitter Bragg Cell
fB

Detector

Figure 4.6 Optical Heterodyne Interferometer configuration for spherical

resonancedetection.

There are several optical techniques used to detect ultrasoundthat are not based

on interferometry: the knife-edge technique s.6.7.8.9,10.11,the surface-grating

technique lz13, the reflectivity technique14.15,and a technique based on a light f'tlter16,17.

All these techniques give a filtering bandwidth that is fixed and determined by the

medium, unlike intefferometry, which enables one to choose the most suitable bandwidth

easily.

There are various interferometric detection techniques that can be classified into

the following three types: optical heterodyning interferometry18.19.20,21,_, differential
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intefferometry 23.24, and velocity or time-delay interferometry 2s,26. Of these different

interferometric detection techniques, optical heterodyning interfemmetry is the most

commonly used, and is employed in our experiment. The configuration of our

heterodyne interferometer is shown in figure 4.627.

The output of a low noise He-Ne laser is split into two parts. One part, the beam

in the reference arm, is reflected twice by the two mirrors and sent directly into the photo

detector. The second part is sent into a Bragg cell, an acousto-optic modulator, in our

case driven at 80 MHz. The output from the Bragg cell consists of several diffraction

beams 28. An iris is used to pass only the first diffraction lobe which is frequency shifted

by the Bragg cell frequency. The Bragg cell is rotated to an angle such that the first

diffracted beam has maximum intensity, as shown in figure 4.6. We call this first

diffraction beam the probe beam. The probe beam is deflected by the mirror and

reflected by the north pole of the resonating sphere. The optical phase of the reflected

probe beam is modulated by the displacement ucos(coat + _a) of the resonating surface,

where u, coa, and _a stand for maximum displacement amplitude, angular frequency,

and phase of the acoustic displacement at the north pole of the sphere. Theoretically, it is

possible to calibrate an optical heterodyne interferometer and measure both the amplitude

and the phase of the displacement as will be shown in the following discussion.

We represent the reference beam sent into the photo detector by

= Rexp{j[(=/.,t +*a +*aN)]} (4.4)
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where R, _)R, and OJ_v are the amplitude, phase, and phase noise of the reference beam,

respectively and coL is angular frequency of the laser. The reflected probe signal has

the form:

S = Se.xp{j[(o_ L + CO.), + OS + d#SN+ 2KLucos(O_at + dPa)]}, (4.5)

where coB is the angular frequency of the Bragg cell; S, 0s, and 0sN are the amplitude,

phase, and phase noise of the probe beam, respectively; and KL = 2xlX L is the wave

numberof the laser beam. FortheHe-Ne laser, X_ =6325 A, andKz =1/1007(1/A).

The photo detector detects the intensity of the incident light. Therefore, the

output signal from the photo detector is:

Ik._'-(_+_)(k.+e)--
[,=_{J[(=_,*,,*,._)l}
+Sexp{jt(O0L +¢oa)' +¢#s+$s_v+ 2KLucos(coa' * Sa)]}] (4.6)

•[,_{-J[(=_,.,. +,_)l}

where the asterisk stands for complex conjugate. Equation _,4.6)can be simplified to be:

(4.7)

s_+R_+2sRco4=,,+,s-,,,+,sN-,_ +2_,u_o_(==,+,=)]

For KLU<<I ( u << 1007 A for He-Ne laser ),
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and

sin[2Kzuc°s(O_at + *a)] = 2KLuc°sCO_a' + Oa) (4.9)

Therefore, (4.7) can be expressed as follows:

(: +R_)+2sR{_os(_,+,s-,_+,s_-,_)_o42K,u_os(_.,+,o)]
- sin(raBt + *S - #?R+ *SN -- 01ev)sin[2KLucos(OOat + *a)]}

. (: . R_)+2sR{,o,lo,,. ,s-,, .,s_-,_). 1
-sin(ooBt + Cs -1_1¢+ ¢sN -0_1e¢)"2rt,ucos(COat + ¢a)}

= ($2 + R2) + 2SR{c°stc°Bt + Os - *I¢+ OSN- 0_)

- KLu[si_(oa+¢s-¢R+¢s_-¢_v+Oot+¢°)

-a,,(,.o,,+,s-,,,. ,s,,-,_ -0,,:-,,,}]}
= ($2 + R2) + 2SRc°s(c°Bt +¢s -¢#R +OSN -OedV) (4.10)

-2s_r_u,_[(o,+,.%),+,s-,t,,_+,_-,t,_-_,t,.]
- 2SRKLusin[(OB -Oa)t + (_S -OR + (_SN-(_RN -(_a]

In expression (4.10), we see that the signal output from the photo detector consists

of four parts: a DC signal, a signal with angular frequency COB,and two signals of equal

amplitude but different angular frequencies, one at (coB + ¢Oa),another at (t0/_ - ¢Oa).

Figure 4.7 shows a typical picture of the output of a spectrum analyzer that

monitors the output signal from the heterodyne interferometer as given by expression

(4.10). In this case, the De signal is blocked to protect the specmma analyzer. As shown

in the picture, the main band is the signal at 80 MHz, our Bragg cell operation frequency.

The two side bands are of equal amplitude and with equal frequency distance away from
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Figure 4.7 A typical pietu_.e of the screen of a spectrum analyzer that monitors

the output signal from a heterodyne intefferometer.

the main band. The frequency difference between the main band and the side band is the

frequency of the acoustic signal on the sphere. From the last expression of (4.10), it is

observed that the amplitude ratio between the main band and the side band is equal to

1/(KLu ). This means the heterodyne interferometer can be calibrated absolutely, and that

Amplitudesideband 1 Amplitudeside band AL
U'- -"

Amplitudemainband KL Amplitudemainb_ d 2_, (4.11)

where AL is the wavelength of the laser. For He-Ne laser used in our experiment,

AL = 632.8 nm. For this wavelength, equation (4.11) becomes:
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u = 1007Amplitudesideband (_) (4.12)
Amplitudemaiaband

To performbroadbanddetectionand acquiretheamplitudeand phase ofthe

resonancesignal,itisnecessarytoanalogsignalprocesstheoutputsignalfrom the

interferometer.A schematicof theanalogsignalprocessingof theoutputfrom the

heterodyneinterferometerisshown infigure4.8.The signalfrom thephotodetector

(coB,coB± coa)isDC bypassedand thensplitintotwo parts.The firstpartissentintoa

phaselockedloop.The outputfromthephasedlockedloopisan80MHz signalwhose

phasefoUowsthevariationofthemain band. The secondpartislow passfiltered,so

only(coa-C0a)ispassed.These two signalsaremixed. The resultof themixing

operation is:

2SRcos(coBt+*s - *R+*sN- )

(4.13)
= 2S2R2KLusin[(2coB -coa) t + 2(t)S -_R +Oslv - _RN)- _a]

- 2S2R2KLusin[coat + dPa]

The output from the mixer is seen to consist of two parts, one with an angular

frequency of (2coB - coa), another with an angular frequency of coa. This two part signal

is low pass filtered so that only signal at the acoustic frequency is measured. It is

observedthatthissignalisa scaledversionoftheacousticsignal,andisimmune fromthe

phasenoiseterms.The advantageof usingtheheterodyneinterfcrometerbecomes

apparentatthispoint,whereitisapparentthatthistypeofdetectionschemeisimmune

from environmentalnoise(fluctuationsinphase). Thisacousticsignalisfurther
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mo_B- _

Figure 4.8 Signal analysis of the output of the Heterodyne interferometer

processed using the method discussed in the contact-contact resonance sphere technique

in chapter 3 to determine both its amplitude and phase.
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Figure 4.9 Low frequency spectrum of a SiaN 4 ceramic bearing ball with a

diameter of 3/8 inch.
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4.3 Experimental Results

4.3.1 Low Frequency Measurement

To verify the results of the contact-contact resonance sphere technique and to

qualify the one-point-contact measurement system, we ftrst measured the low frequency

spectrum of a 3/8 inch diameter Si3N4 ceramic bearing ball. The frequency spectrum in

amplitude is shown in figure 4.9. As seen in the figure, only the S_o modes and the Sot

modes are visible, while the torsional modes disappear. It is to be noted here that we are

using a longitudinal wave transducer, the excitation is normal to the contact surface so no

torsional mode should be excited. Even if we excite torsional modes using a shear wave

transducer, since torsional wave resonances have no radial motion and their vertical

displacement is equal to zero, we will not be able to observe the torsional modes. This is

because the intefferometer detects only the vertical displacement of the surface. This also

demonstrates one of the alignment problems in the contact-contact measurement where

we used longitudinal transducers but still observed torsional wave resonances.

Comparing to the contact-contact measurement, the one-point contact technique is

incapable of observing the torsional modes, but it has considerable advantages in the

control of alignment and loading, and yields reproducible results.

4.3.2 High Frequency Measurement

We have also used the technique to operate in the high frequency region to

observe surface wave resonances. We measured three Si3N4 ceramic bearing bails with a
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diameter of 1/4 inch. We first measured in the 30 to 35 MHz region where kRa = 100.

The results are shown in figure 4.10. As we can see in the figure, for the good ball, there

is a series of equally spaced peaks. The modulation of the peaks is probably due to the

frequency response of the transducer. Balls with cracks have a smaller surface wave

resonance amplitude. This is because the cracks are scattering the surface waves. Part of

the scattered energy goes into bulk waves and does not contribute to the surface wave

resonance. The larger the surface defect, the more energy is converted to bulk waves,

causing the decrease of surface wave resonance amplitude.

This intefferometer can observe a frequency spectrum from around 10 KHz to

about 70 MHz. The limit in the high frequency is due to the physical operating frequency

of the Bragg cell. To show this capability, we measured the frequency spectrum of the

same three balls from 65 MHz to around 70 MHz. Figure 4.11 shows the result of this

measurement.

Sinai Crack Ball

Large Crack Ball

_..:___1_
I ' ' " " I" '" ' I .... I " " "" I " " ' " I ' ' " ' I " " '' I ' "'" I'''_'1_''''!
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Frequency (MHz)

Figure 4.10 Amplitude decrease due to existence of surface defects
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Good Ball
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Figure 4.11 Scrambling effect at high frequencies, we sec some hybrid modes as

well as the disappearance of some modes.

Primary wave

Secondary Wave

crack

Figure 4.12 Illustration of surface crack as a secondary surface wave source.
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In figure 4.11, we again observe a series of equally spaced peaks for the good ball.

For balls with defects, figure 4.11 shows a scrambling effect in the higher frequency

range. New resonances appear at different frequencies. In this frequency range, surface

cracks act like secondary sources of propagation of surface waves. Sint:e waves passing

by cracks suffer a phase change and an amplitude change, the primary wave generated by

the transducer, and the secondary wave generated by surface cracks, interfere with each

other, producing the scrambling effect observed. This phenomenon is illustrated in

figure 4.12.
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Figure 4.13 Increase in apparent surface wave velocity with existence of surface

defect. Curves of the small crack case and the large crack case are

almost overlapped.
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We also observed another phenomenon, an increase of apparent surface wave

velocity with the existence of surface defects. The apparent surface wave velocity VR is

calculated as discussed at the end of chapter 2 where we showed that the circumference

of the sphere must be an integral multiple of surface wave length to form surface wave

resonance:

2r_a 2_af
integer = m = ----- = ------

_.R VR . (4.14)

Therefore,

VR = 2ruaf (4.15)m

where m = n + 2 is the number of waves on the sphere.

The reason there is an increase in apparent surface wave velocity with the

existence of surface defects is not yet clear. A hypothesis is that some surface waves get

scattered back to the source before the waves have propagated one whole circumference.

Therefore, the distance travelled becomes shorter, so the measured apparent surface wave

velocity is larger. The result is shown in figure 4.13.

Results from the above three figures are useful for non-destructive test. We have

shown qualitatively, the effects of surface defects on the resonance spectrum of the balls.

If we include our observation from the contact-contact measurement in Chapter 3, we can

conclude our observations as (1) decrease in Q, (2) overall decrease in surface resonance

peak amplitude, (3) scrambling effect at high frequencies (kR a __.200), and (4) increase in

the apparent surface wave velocity. The second and third phenomena will probably take
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too long to finish in one experiment, while the first and fourth phenomena seem to be the

faster ways to observe the existence of surface defects. For the f'n'stphenomenon, we

recall the measurement of Q requires curve fitting phase information near resonance

using equation (3.17). For the fourth phenomenon, we use equation (4.15) to find the

apparent surface wave velocity.

It is necessary to be able to predict surface wave resonance frequencies in order to

speed up the measurement. To do this, we have to be able to accurately calculate material

properties Vt and Vs in advance. In section 4.3.3, we will discuss the dispersion of

surface waves on a sphere. By using Vl and Vs calculated from the low frequency

measurement, we can predict each one of the high frequency surface resonance modes

and verify with high frequency measurements. In section 4.3.4, we will discuss the

dependence of acoustic velocities with temperature. It is useful to establish this

dependence relationship to calibrate for high frequency measurement.

4.3.3 Dispersion of Surface Waves on a Sphere

We demonstrate in this section the capability of the one-point-contact technique

on small bearing balls. We measured, from 100 KHz to 70 MHz. the resonance spccu'mu

of a good Si3N4 bearing ball with a diameter of 1 ram. As discussed before, in the low

frequency spectrum, we can identify resonant frequencies of bulk resonant modes. We

see that this technique, unlike the contact technique, excites only spheroidal modes. This

is because there is only one point of contact, and the excitation direction is in the normal

direction of the contact. It also helps to explain the alignment difficulty for the contact-
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contact technique where we observed torsional modes. We chose two high Q spheroidal

modes to calculate material properties of the 1 mm diameter sphere using equation

(2.26). The results are shown in Table 4.1. The calculated values of Vt and Vs were

then used to calculate the dispersion curve of surface waves using equation (2.26). For

each positive integer n, the first solution to equation (2.26) is mode Sno , which

corresponas to surface wave resonance mode (there is no surface wave resonance mode

solution for n = 1). For n larger than 100, the equation asymptotically approaches that

of the Rayleigh wave characteristic equation as discussed in section 2.2.3.

The calculated surface wave dispersion curve is then compared to the

experimentally measured surface wave resonances, as seen in figure 4.13. The theoretical

prediction and measurement agree with each other very well. Each one of the surface

wave mode is predicted and measured. This means ff we know Vt and Vs accurately,

we should be able to predict where the high frequency resonance modes are. We also see

that the apparent surface wave velocity asymptotically approaches a constant--tree

Rayleigh wave velocity. As shown in figure 4.14, VR starts approaching a constant when

kR a >_40.

ii i 11 i ,,,.,flu , i ,h 11 .',1'1111

v (Poisson's Ratio) 11 V l (in/s) [ V$ (m/s) VR (m/s)

|111 [ I Iii i I_II I i i ii i i |1 i $7_

0.26646 10999 16206.1 5772.6

Table 4.1 Mawrial properties of a ceramic bearing ball with a diameter lmm,

calculated from two high Q spheroidal modes.
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Figure 4.14 Dispersionrelation of surface waves on a sphere
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Figure 4.15 Temperaturechanges in the laboratory.
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4.3.4 Temperature Calibration

In section 4.3.2 we discussed the necessity to get accurate numbers for Vl and

Vs. In this section, the optical probing technique is used to observe the change in

acoustic velocities with respect to temperature variation. Figure 4.15 illustrates the

temperature changes in the laboratory within a 42-hour time period.

For a laboratory temperature variation between 19°C and 26°C, we continuously

measured two high Q spheroidal modes. We then used these two modes to calculate Vs

and Vl. Figures 4.16 and 4.17 show the calculated velocity-temperature relationship. In

figure 4.16,

_ = 11177- 0.15524T

1 _ (4.16)
_-z_- = -1.38892.10 -5 - 1.92911.10-1°T

and from figure 4.17,

VlS=6322.8-O.O87853T
= -1.38946.10 -5 - 1.93061.10-1°T" (4.17)

Combining equations (4.16), (4.17), and (2.12), it can be shown that Poisson's ratio is:

v = 0.264691+ 3.73871 x 10-9 T. (4.18)
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Figure 4.16Longitudinal wave velocity change versus laboratory temperature

change for Si3N4 material.
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Figure 4.17 Shear wave velocity change versus laboratory temperature change

for Si3N 4 material.
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Also, combining equations (4.16), (4.17), and (2.15), it can be shown that the

Rayleigh wave velocity is:

VR = 5828.18- 0.0809767T. (4.19)

Equations (4.16), (4.17), and (4.19) all show a decrease in acoustic velocity with

an increase in temperature. This phenomenon can be explained by the following

physical interpretation. Acoustic velocity is equal to the square root of stiffness divided

by density. As temperature increases, the material becomes softer and the stiffness

decreases, also, the density decreases due to thermal expansion. Therefore, as

temperature increases, the acoustic velocity decreases. The ordinates of figures 4.16 and

4.17 also show the high degree of accuracy in our measurement.

The above argument is verified by calculating the dependence of stiffness

constants c11= _,+ 2_t and c44 = _t, where _. and _t are the Lam6 constants 29. The

theoretical value for density of Si3N4 ceramic material is 3270 Kg/m 3. Combining

equations (4.16) and (4.17) and

, (4.20)

we get

J-_ = -1.13477-107 + 157.610T (4.21)

[-._- = -3.63282 •106 + 50.4767T
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4.4 Concluding Remarks

In this chapter, we demonstrated a new technique capable of measuring the

material properties of spherical objects, and capable of inspecting them for the presence

of surface defects. The technique uses a single point contact to excite resonances in the

object and an optical intefferometer to measure these resonances. The measurement can

be made on spherical objects of any size and over an unlimited frequency range. We also

showed, for the first time, good agreement between theory and experiment for the

dispersion relation of surface waves on a sphere. This technique has the potential of

inspecting nonmetallic spheres, or spheres with coatings, and cylindrical objects. It may

also be applied to objects of uncommon geometries.
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Chapter 5

Conclusion

In this dissertation, we started by discussing the importance of inspecting ceramic

bearing balls. We studied the theory of wave propagation on spheres and analyzed how

these waves build up resonances on spheres. It was shown that there are two types of

resonances on a sphere. The first type is the torsional resonances. Their resonant

frequencies are dependent only on geometry and shear wave velocity of the material. The

second type is the spheroidal resonances. Their resonant frequencies are dependent on

geometry, shear wave velocity, and longitudinal wave velocity of the material. One

special case of the spheroidal resonances is the pure compressional resonances. Another

special case of the spheroidal resonances is the surface acoustic wave resonances at high

fxeguencies. Surface waves are shown to propagate along great circles of the sphere, and

have focus to a 3 dB spot size of only 0.364 surface wavelength.

The contact-contact resonance sphere technique demonstrated its capability of

measuring material properties at low frequencies. We also discussed the fact that there is

no correlation between the low frequency spectrum and the crack size. At high

frequencies, we observed the existence of surface wave resonances. This is one of the
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major breakthrough of this research project. At the same time, we observed qualitatively

the relationship between crack size and surface wave resonance quality factor.

The continuation of the application of the contact-contact resonance sphere

technique is the one-point-contact technique. With one single point contact, we

successfully excited surface wave resonance. The optical detection scheme, using a

heterodyne interferometer, eliminates external environmental interference with the

resonance of the sphere. This technique enables one to perform measurement at even

higher frequency region, which in turn allows the generation of surface waves on smaller

spheres. We reported several observations of the effects of surface defects on the

resonance spectrttm. We also demonstrated the high degree of accuracy of this technique

by reporting the small dependence of acoustic velocities with temperature. In addition,

we showed, for the first time, excellent agreement between theory and experiment for the

dispersion relation of surface waves on a sphere.

The laser-ultrasound measurement can be made on spherical objects of any size

and over an unlimited frequency range. This technique has the potential of inspecting

nonmetallic spheres, spheres with coatings, and cylindrical objects. It can also be applied

to objects of uncommon geometries.

Future development and potential application of this research project will be

multi-directional. First of all, it is important to establish a theoretical model that

describes the effect on the resonance spectrum of different types of surface defects. It

would then be helpful to select the best technique to obtain high measurement speed.

Second, it would be interesting to be able to excite a high frequency surface wave pulse.

We actually tried to do this using the current transducer. However, due to the small
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contact area, we were unable to generate a strong enough pulse to be observable.

Therefore,itisdesirabletodesignanothertransducerwhich can generatea stronger

surfacewave pulseon thesphereby changingitsmaterial(bufferrod)and geometry

(radiusofthehemisphericalbowl).

To adapttoindustrialapplications,itwouldbequitefeasibletobuildanumberof

transducer-interferometersysteminparallelformultipleballinspection.The advantage

ofnotneedingrealignmentoftheopticalsystemmakes thistechniqueattractivefor

multipleballinspection,sinceitwilldefinitelyspeeduptheentirequalitycontrolprocess






