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Abstract

We present some techniques for volume rendering unstructured data. Interpolation
between vertex colors and opacities is performed using hardware assisted texture

. mapping, and color is integrated for use with a volume rendering system. We also

, prc:,ent an O(n2) method for sorting n arbitrarily shaped convex polyhedra prior to
visualization. It generalizes the Newell, Newell and Sancha sort for polygons to 3-D
volume elements.

Introduction Tuckman, without artifacts due to linear approximation
of the non-linear opacity effects.

This project grew out of the need to visualize
unstructured meshed vector fields such as those found in The Shirley-Tuckman algorithm classifies the projection

existing finite element analysis code. Some volume of each tetrahedron into one to four cases consisting of
rendering applications do not require more than one one to four triangles. Figure 1 shows the two non-
color. However, we have developed a visualization tool degenerate cases, where no vertex projects onto another
for rendering fftulti-colored elements, such as colored vertex or edge.
flow volumes in a vector field, using an implementation
of the Shirley-Tuckman [1] algorithm. While I:: D

monochromatic elements can be composited in any C ' A
order as shown by [2], datasets containing many colors

must be composited in either a back-to-front or front-to- /_ D

back order. Indeed, most volume rendering applications
have color and opacity variations which require sorting.

B C
This paper describes the visualization tool we have B
developed which can display a set of convex, non-
intersecting polyhedra, with colors and opacities case (a) case (b)
assigned to each vertex, using hardware assisted texture

mapping. It uses an implementation of the Shirley- Figure 1.
Tuckman algorithm to render the polyhedra once they

have been subdivided into tetrahedra. Rendering A tetrahedron can project to three triangles as in case
colored volumes requires compositing the elements in a (a), or four triangles as in case (b). Each case has a

• back to front order. Hence, we pres¢ : an algorithm single "thick" vertex A; the other vertices on the profile
A that sorts these unstructured elements before they are are called "thin". The thick vertex is the projection of

subdivided. The algorithm will correctly sort the 3-D segment AoA_ where a viewing ray intersects
unstructured topologies of convex polyhedra that are the tetrahedron. In case (a), Ao is A, and At lies on the

devoid of cycles and intersections, face BCD. In case (b), A0 is on edge BD, and A t is on

Volume Rendering edge CE. Let I be the length of segment A0A1.

Assume that the color C(x) and extinction coefficient

We have developed a new volume rendering x(x) vary linearly across the tetrahedron. Then these
approximation which takes advantage of texture
mapping and compositing available on modem graphics quantities can be interpolated across faces or edges to
workstations. This allows tetrahedra to be composited give values x0=x(A0), C=C(Ao), "_l=x(A_)and Cl=C(A:).
by the Projected Tetrahedra algorithm of Shirley and Shirley and Tuckman show that the total opacity ot of a



segment AoA1 is ot = 1- exp((x o + 1:1) / 2), where l is the Then

length of the ray segment AoA 1. The opacity at the t1(x) = l-al(x)
profile vertices is zero. They approximate the color at = 1-(s.0 +(1- s)exp(-xl))

the thick vertex to be (C O+ C t)/2; we will improve this. = 1-(1 -s)exp(-'_l)

For each triangle, the color and opacity are interpolated and similarly
linearly from the three vertex values to the interior,

usually along the edges and then across scan lines, as in t2(x) = 1- ot2(x) = 1- s. exp(-x/).
Gouraud shading. Then the interpolated color Ci and

opacity a i are composited over the old pixel color Co_ to Thus
give the new color Cn_ ,, by the formula:

Cne_,= otiCi + (1 - oti )Col I . Often the linear interpolation t(x) = tI(x)t 2(x) = 1- exp(-_/) + s(l - s)(exp(-x/)) 2.
and compositing steps can be performed by special

purpose pipelined and/or parallel hardware available in B D F
the rendering engines of a graphics workstation ........

The Projected Tetrahedra algorithm has several artifacts a)
which produce incorrect colors, or Mach bands
revealing the subdivision into tetrahedra. The first
artifact comes from the linear interpolation of the color
and opacity across the tetrahedra. This interpolation is
not C _ across the faces, and can produce Mach bands, A C E
particularly at faces which are parallel to the viewing
direction and project to lines. The only cure is higher
order interpolation, which is not available in hardware
on most workstations. 1

\ /

However, there is a more serious problem with the b) _ /
algorithm, which occurs even when the color C and

I !
extinction coefficient 1: are constant. The problem is 0 I I I I I ,easiest to understand when the color is zero, so that the
image shows an opacity cloud hiding the background, A B C Q D E F
and in 2-D, where the tetrahedra become triangles.

Consider a strip of triangles T 0, T t, T2... of a constant
width I as shown in Figure 2(a), projected vertically to a

scan line. In triangle T_, C is the "thick" vertex, where 1
the opacity a = exp(-x/), and or=0 at B and D. Figure _ _"

2(b) is a graph of the transparency tI(x) = 1- a I (x) along c)
the scan line, which is used to multiply the background

color during compositing of triangle T I. It is piecewise
linear, because the opacity a(x) has been linearly 0 I I I [ [ I
interpolated across the scan line segments BC and CD. A B C Q D E F

Similarly, Figure 2(c) shows the transparency t2(x) from
triangle T 2. The final transparency along the segment
CD, resulting from compositing both triangles on top of

the background is the product t(x)=tl(x)t2(x ), shown as 1 \ /
the quadratic polynomial segment above CD in Figure d)
2(d).

TO derive the form of this quadratic polynomial, let 0 I ' I I I I I
x=sD+(l-s)C be the point a fraction s of the way from C
toD. A B C Q D E F

Figure 2



The transparency should actually be l-exp(-'tl), so the Figures 7(a), (b), (d) and (e) all use texture mapping for

quadratic term s(1-s)(exp(-xl)) 2 represents the error due the opacity. Figures 7(a) and (b) show a triangular

to approximating tl(x) and t2(x) linearly, prism divided into three tetrahedra. Figure 7(a) uses the
average color (C0+C1)/2 at the thick vertices, while

Other similar quadratic segments come from other Figure 7(b) uses the more accurate color integration of
projected diagonal edges, and the final intensity, Williams and Max [4]. Note that in Figure 7(b) the
proportional to the transparency if the background is color of the yellow-orange vertex closest to the viewer is
uniform, is not C t. In three dimensions, the more prominent, as it should be. Figure 7(c) shows a

corresponding effect produces Mach bands along the 2x2x2 array of cubes, each divided into five tetrahedra,
projection of edges of the tetrahedra, and rendered by linearly interpolated opacities. Notice

the Math Bands predicted in Figure 2. Figure 7(d)

The solution to this problem is to define at(x) correctly shows the same volume using the texture mapping for
as 1-exp(-sx/). This requires a linear interpolation of the more accurate opacities, and is much improved.

quantity xl, and then an exponent per pixel, which is not
The Sorting Algorithm

commonly available in hardware. Instead, we have used

the texture map table available on our SGI Onyx TM Because the Shirley-Tuckman algorithm allows us to
system. For the case of constant "tper tetrahedron, as in scan convert entire polyhedra very quickly as opposed to
our flow volume application, we put the quantity l-exp(- the other point sampling methods that calculate the
u) in a one dimensional texture table, indexed by u [2]. color and intensity color integration on a point by point
The texture coordinate u was set to zero at the thin basis, we needed to devise an efficient algorithm that
vertices of each triangle, and to 'tl at the thick vertex, would sort unstructured meshed elements in a back to

and was interpolated by the shading hardware, before front order. Our implementation will correctly sort
being used as an address to the texture table, arbitrarily shaped convex elements in a back to front

order as long as there are no cycles or intersections in
Ifx varies linearly within each tetrahedron the product the data set. Each polyhedron can then be subdivided
xl varies quadratically inside each triangle. Quadratic into a set of tetrahedra for rendering. If a convex mesh

interpolation of texture coordinates was implemented in is structured so that cells meet on common faces, and
hardware on the Apollo DNIOOOOVS [3], but was not this topological information is stored in an adjacency
available on our Onyx TM. Therefore we used a 2-D graph, then the adjacency graph can be used to produce

texture table, with coordinates't and l, and put l-exp(- a back-to-front sort (see [10] or [liD. However, we

x/) in the table, wanted to handle unstructured meshes where this data is
unavailable. Such examples are sliding interfaces,

Now consider the case when the color also varies where cells meet on only part of their faces, and non-

linearly across the tetrahedron. The Shirley-Tuckman convex meshes, such as those with cavities. Figure 3

approximation (C0+Ct)/2 for the color of the thick shows such a mesh of a piston in a cylinder. We
vertex is not precise; it weights the two colors equally, therefore extended the Newell, Newell and Sancha sort

for polygons to correctly handle convex polyhedra. TheActually, the frontmost color should have greater
weight, because the opacity along the ray segment hides sort will perform no subdivisions in the case of
the rear color more than the front one. Williams and intersecting polyhedra or cycles, and will instead

Max [4] have found an exact formula for the color in arbitrarily choose a drawing order for the problem

this case, which they implement with the aid of table causing polyhedra.
lookups. However, the supplementary arithmetic
required goes far beyond what is practical in hardware

computation at each pixel. As a compromise, we have _ sliding interfaces
used the exact analytic form of the color of the thick . -.'"

vertex, and then used the hardware to interpolate the
color across each triangle. The colors of the thin

vertices come from the original color specification, and
the opacity is determined, as above, from a texture table.
This compromise can be implemented entirely in
hardware, and gives a fairly smooth color variation that
seems to move appropriately when a colored volume
density rotates.

Figure 3.



This algorithm is a three dimensional extension of the edges of P's projection and the edges of Q's projection.
Newell, Newell and Sancha painter's algorithm [5-8] If one is found, it finds the Z component of that
and operates on the volumes after having performed all intersection point for P and for Q, and returns the
of the perspective transformation operations. Once the polyhedron whose Zo,,,,c,o,, is closer to the eye. In the
elements have been sorted in back-to-front order, they case that they are both equal, then we continue
can be fed to the volume renderer for scan conversion searching for intersections looking for an inequality
and compositing, using the techniques described above, between the two Z,,,,,_,ctio,, components.

There are three stages to the sorting process. The first If the above function returns a False, then polyhedra P
applies all viewing transformations on the vertices to and Q are considered to be in the wrong order and Q
obtain the screen coordinates with a perspective should be moved to the head of the list and the tests
corrected Z. The second obtains a rough sorting of the should be repeated with Q becoming the new P. It is
polyhedra based on the rearmost Z component of each possible that the list H could contain a cycle. For
element. Because we have applied the viewing instance, if polyhedron A obscures B, and B obscures C.
transformation to all vertices and have scaled Z so as to and C, in turn, obscures A, then there is no correct

correct for perspective, we would like to sort by ordering for thepolyhedra involved. Figure4 illustrates
increasing Z; the eye looks down the Z axis towards a traditional cycle for three polyhedra. The existence of
negative infinity in a right-handed coordinate system, a cycle is easily determined by tagging polyhedron Q
In our implementation, this rough sort was obtained before inserting it at the head of the list after the
through an O(nlogn) QuickSort. The third stage, or Test Polyhodra(I function fails. If Q has already
"fine tuning" of the sort, is a bit more complicated, been tagged, then a cycle exists and it will need to be
However, like the painter's algorithm approach, it is also addressed.
broken down into multiple steps with each one
increasing in computational complexity, in hopes that a
majority of the polyhedra will pass the earlier and less
expensive tests.

The goal of the fine tuning is to find a separating plane
between two polyhedra, P and Q, such that it can be
determined whether or not P can safely be drawn before
Q. The fine tuning process can be broken down into
five steps in order to efficiently find this separating
plane. Given a list H of polyhedra roughly sorted by
increasing Z coordinate of the rearmost vertex (called
7_.,,,,,,,o,,),let polyhedron P be at the head of the list. P Figure 4.
can be safely rendered if, for all polyhedra Q in the list
H whose Z,,,,,,,a,, is less than (behind) P's Zc,.o,,,,,a,, the If polyhedron P passes the tests for all polyhedra Q

following function returns a value of True: where Q,,,,, is less than Ppont, then polyhedron P is free
to be rendered; the tests have determined that P will not

Test_Polyhedra (P, Q) obscure any polyhedra which are considered to be in
( front of it. P is then shipped to the renderer and the

if (P and Q do not have next polyhedron in the list is chosen for the new P.
overlapping X extents) return True

else if (P and Q do not have

overlapping Y extents) The first two tests to determine whether the XZ and YZ
return True planes correspond to separating planes between P and Q.

else if (P is behind a They are very easy to perform. It involves merely
back-plane of Q) return True checking the bounding boxes of the two polyhedra in theelse if (Q is in front of a

front-plane of P) return True X and Y plane. The third,fourthand fifthtests,
else if however, present more of a challenge.

(Q! -EdgeIntersection (P, Q) )
return True

else return False The main thrust of the third and fourth tests is to find a
l separating plane between P and Q. If such a plane

exists, then P can safely be considered to lie behind Q.

The function EdgeIntersection (P, Q) returns the

polyhedron which it determines to be in front. It makes To simplify the third and fourth tests, we can mark each
this decision by looking for intersections between the face of every polyhedron as being either a front-facing



polygon (it faces the eye) or a back-facing polygon. The illustrations (a) and (b) in Figure 5, which both

This is easily determined because the algorithm stores represent screen projections, both fail the
an outward pointing normal for each face. Therefore, a EdgeIntersect ion () function because neither
simple query as to the sign of the Z component of a have intersecting edges in their projections. However,
face's normal is enough to determine whether the face is in case (a) the order in which the two tetrahedra are
front facing or not. A positive Z, in a right-handed rendered makes no difference since they are completely
coordinate system, is front facing. Otherwise it is back- disjoint in the _reen projection and therefore an error
facing. This pre-processing is all performed while condition can correctly be treated as if polyhedron P
reading in the meshed topology, were in front of polyhedron Q. On the other hand, this

is not necessarily the situation in case (b). We can rest
The third test then simplifies to testing whether all of assured that this will never cause a sorting glitch
P's vertices lie behind a plane defined by any one of Q's because the back face of the brick (assuming the
back-facing polygons. If this is true, then the face under tetrahedron is behind the brick) is a back-facing
consideration forms a separating plane between P and Q separating plane and would have been caught in the
and therefore we can conclude that P is behind Q. third or fourth test. Thus, if the fifth test reports an

Performing this test is a matter of making sure that for error, the algorithm 'always correctly assumes that the
at least one back-facing polygon of Q, the sign of brick is in front of the tetrahedron. This fifth test is a a

f(xj,yj,zj) for all vertices j in P is non-negative for more efficient alternative to the linear programming

that particular face of Q. The plane equation,f, is based method proposed by Newell [6]. If the fifth test fails,
on the outward pointing normals for that face. If this then polygon Q should be moved to the front of the list
test fails, then the algorithm will proceed to the fourth and whole process should be repeated.
test and try to determine whether the plane specified by
a front-facing polygon belonging to P separates P from With the exception of the fifth, these tests are very easy
Q. to calculate. When reading in the topological data-set,

one must store the plane equation coefficients, with

This fourth test is very similar to the third test. In respect to an outward pointing normal, in the polyhedral
determining whether Q lies entirely in front of P, one database. From these pre-computed coefficients,
must make sure that for at least one front-facing polygon determining which side of a face a point j lies is as

of P, f(xj,yj,z j) is positive for all vertices j in simple as finding the sign of axj +byj +czj +d.

polyhedron Q. This time, f is the plane equation for a

front-facing polygon of P, again based on outward In the case that all of the tests fail and we have a cycle,
pointing normals. If this test passes, then Q lies entirely the program will render first whichever of P and Q
in front of at least one of the front-facing polygons of P whose Z_,,,,,_,, is further from the eye.

and it can be concluded that P lies behind Q. Non-planar ;:aces

The fifth test, EdgeIntersection ( ), returns either
The algorithm described works correctly for convexthe number of the polyhedra which is in front, or an

error condition if it cannot detect any intersecting edges, polyhedra with planar faces and no cycles or
The two cases where this test can fail are shown in intersections. Unfortunately, it is quite possible, in

Figure 5. As we will see, this does not jeopardize the finite element codes, for the faces to skew slightly
correctness of our algorithm, yielding non-planar faces. Fortunately, the faces will be

mostly planar because highly non-planar faces can lead
to instabilities in the code. Figure 6 illustrates an

_,_-:-- exaggeration of what could possibly happen. Even if the
' - face were mildly non-planar, it is still enough to cause

the tests to fail. To accommodate slightly non-planar
faces, we have introduced an error tolerance 8.

In order to sort convex polyhedra with non-planar faces

..... as shown in Figure 4, the algorithm first calculates an
average outward pointing normal for each face. This is
done using Newell's method as follows [8,91:

(a) (b)

Figure 5.



i

R

a = _,_(Yi - Yj)(zi + zj) P
i=l

R

b= _,_(z i - zj)(x, + xj)
i=l

n a

c= _,_(xi-xj)(y i + yj) (2
i'=l

where: j=(i+l) mod n
and n is the number of vertices per polygon

The last coefficient of the plane equation, d, can be

calculated by picking some point on the average plane. '_'
We chose the center of gravity of the face for this point eye
as follows:

Figure 6.

Xi, Yi, zi

_=t _=_ i=_ Discussion

To determineon whichsideof a planea point lies, an Thefine-tuningsortingprocessdescribedrunsin O(N2)
error toleranceis used. This is neededbecausewith with respect to the number of" polyhedra sorted.
non-planarfacesthe algorithmcouldreturnvertexa of However,thisquadraticrunningtime is anupperbound
polyhedronQ, in Figure6 below,as being contained andwouldonlybe foundin themostpathologicalcases
insideof P whichwouldultimatelyresultina cycle. But whereall polyhedrahaveoverlappingZ extents. The
that is not the case. In fact, if vertex a were actually average running times for normal datasets should be
touching a plane of polyhedron P, machine round-off lower. While the first and second tests run in constant

might place a on the wrong side of that face which, time, and the third and fourth tests run in O(FiEj) and
again, would result in a cycle. Therefore, an O(EiFj) time with respect to the number of faces and
overlapping tolerance _i, a distance from a vertex to a vertices, the fifth test runs in O(E_Ej) where E
plane which is deemed to be an acceptable error by the corresponds to the number of edges for polyhedra i and
sort, should be used. In other words, the third and j, respectively. Again, this is a worst case running time
fourth tests should consider vertex a to be on the outside and it should be substantially better in practice since the
of a face (the plane equation evaluated at point a should function terminates once a suitable intersection in the
yield a non-negative value) if point a is within _iunits two projections is found.
away from the plane under consideration, regardless of
which side of the face point a actually lies. We can The implementation of this algorithm was coded in C++
rationalize the existence of this _ tolerance as follows: and has been used to sort those primitives found in the
if a comer of polyhedron Q happens to intersect a planar SGI Explorer pyramid type. Each volume primitive is a
face of polyhedron P by the amount 8, for a suitably subclass of a very general primitive C++ class. These
small _i,the visual impact will be minimal, if perceptible subclasses are as follows: the tetrahedra, pyramid,

at all. Our implementation uses a unique 8 for each prism, wedge and brick. We can easily extend the
" face, based on the maximum deviation of a vertex from system to include others. With a QuickSort only sorting

its corresponding average plane, option which yields a faster, but not entirely correct sort,
the algorithm can interactively sort thousands of

• elements on an SGI Indigo2 workstation. With correct
sorting, this algorithm slows down to a few hundred
elements on the same machine.

Figure 7(e) illustrates the results of the sort, with the
Williams and Max color integration, on the "blunt fin"
dataset from the AVS visualization package.



This paper presents extensions to the Shirley-Tuckman
algorithm for compositing our colored smoke and [4] Williams, P. and N. Max, "A Volume Density
pyramid volumes, and also extensions to the Newell, Optical Model", 1992 Workshop on Volume
NeweU, and Sancha sort for use with unstructured data. Visualization, Association for Computing
We present no new approaches to cycle breaking. If a Machinery, New York (1992) pp. 61-68.
cycle is detected during the sorting, then the polyhedron
with the vertex farthest from the eye would be removed [5] Newell, M. E., R.G. Newell, and T. L. Sancha,
from the listandrendered. The mostcommon form of a "A Solution to the Hidden Surface Problem."

cycle the algorithm would detect in a dataset would Proceedings of the ACM National Conference
probably be two non-planar faced polyhedra 1972, pp. 443--450.
"intersecting" each other. However, the _5overlapping
tolerance should eliminate most of these situations. The [6] Newell, M. E. "The Utilization of Procedure
more traditional, but slower method for removing cycles, Models in Digital Image Synthesis", Ph.D. Thesis,
such as the type illustrated in Figure 4, would be to pass University of Utah, 1974 (UTEC-CSc-76-218 and
one or more cutting planes through the offending NTIS AD/A 039 008/LL).

• polyhedra.
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7a. Integration using Average color. 7b. Williams' color integration.

7c. No texture mapping. 7d. With texture mapping.

7e. Blunt fin with 440 sorted brick elements, using texture mapping.




