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Sorting and Hardware Assisted Rendering for Volume Visualization

Clifford Stein
Barry Becker
Nelson Max

Lawrence Livermore National Laboratory
Livermore, CA 94551 U.S. A.

We present some techniques for volume rendering unstructured data. Interpolation
between vertex colors and opacities is performed using hardware assisted texture
mapping, and color is integrated for use with a volume rendering system. We also
present an O(n2) method for sorting n arbitrarily shaped convex polyhedra prior to
visualization. It generalizes the Newell, Newell and Sancha sort for polygons to 3-D

volume elements.
Introduction

This project grew out of the need o visualize
unstructured meshed vector fields such as those found in
existing finite element analysis code. Some volume
rendering applications do not require more than one
color. However, we have developed a visualization tool
for rendering niulti-colored elements, such as colored
flow volumes in a vector field, using an implementation
of the Shirley-Tuckman [1] algorithm. While
monochromatic elements can be composited in any
order as shown by [2], datasets containing many colors
must be composited in either a back-to-front or front-to-
back order. Indeed, most volume rendering applications
have color and opacity variations which require sorting.

This paper describes the visualization tool we have
developed which can display a set of convex, non-
intersecting polyhedra, with colors and opacities
assigned to each vertex, using hardware assisted texture
mapping. It uses an implementation of the Shirley-
Tuckman algorithm to render the polyhedra once they
have been subdivided into tetrahedra.  Rendering
colored volumes requires compositing the elements in a
back to front order. Hence, we presc ¢ an algorithm
that sorts these unstructured elements before they are
subdivided. The algorithm will correctly sort
unstructured topologies of convex polyhedra that are
devoid of cycles and intersections.

Volume Rendering

We have developed a new volume rendering
approximation which takes advantage of texture
mapping and compositing available on modem graphics
workstations. This allows tetrahedra to be composited
by the Projected Tetrahedra algorithm of Shirley and

Tuckman, without artifacts due to linear approximation
of the non-linear opacity effects.

The Shirley-Tuckinan algorithm classifies the projection
of each tetrahedron into one to four cases consisting of
one to four triangles. Figure 1 shows the two non-
degenerate cases, where no vertex projects onto another
vertex or edge.

C

case (a) case (b)
Figure 1.

A tetrahedron can project to three triangles as in case
(a), or four triangles as in case (b). Each case has a
single "thick" vertex A; the other vertices on the profile
are called "thin". The thick vertex is the projection of
the 3-D segment AjA, where a viewing ray intersects
the tetrahedron. In case (a), A, is A, and A lies on the
face BCD. In case (b), A, is on edge BD, and A, is on
edge CE. Let!be the length of segment AyA,.

Assume that the color C(x) and extinction coefficient
7(x) vary linearly across the tetrahedron. Then these
quantities can be interpolated across faces or edges to
give values 1,=1(A,), C=C(Ay), 1,=1(A)) and C,=C(A)).
Shirley and Tuckman show that the total opacity a of a




segment AjA, is a =1-exp((1 +1,)/2), where [ is the
length of the ray segment AjA,. The opacity at the
profile vertices is zero. They approximate the color at
the thick vertex to be (C, +C,)/2; we will improve this.

For each triangle, the color and opacity are interpolated
linearly from the three vertex values to the interior,
usually along the edges and then across scan lincs, as in
Gouraud shading. Then the interpolated color C; and
opacity o, are composited over the old pixel color C , to
give the new color C_,, by the formula:
Chew =0;C; +(1-0;)Cy. Often the linear interpolation
and compositing steps can be performed by special
purpose pipelined and/or parallel hardware available in
the rendering engines of a graphics workstation.

The Projected Tetrahedra algorithm has several artifacts
which produce incorrect colors, or Mach bands
revealing the subdivision into tetrahedra. The first
artifact comes from the linear interpolation of the color
and opacity across the tetrahedra. This interpolation is
not C! across the faces, and can produce Mach bands,
particularly at faces which are parallel to the viewing
direction and project to lines. The only cure is higher
order interpolation, which is not available in hardware
on most workstations.

However, there is a more serious problem with the
algorithm, which occurs even when the color C and
extinction coefficient 1 are constant. The problem is
easiest to understand when the color is zero, so that the
image shows an opacity cloud hiding the background,
and in 2-D, where the tetrahedra become triangles.
Consider a strip of triangles Ty, T,, T,... of a constant
width { as shown in Figure 2(a), projected vertically to a
scan line. In triangle T,, C is the "thick" vertex, where
the opacity o = exp(-1/), and a=0 at B and D. Figure
2(b) is a graph of the transparency f,(x) = 1-a,(x) along
the scan line, which is used to multiply the background
color during compositing of triangle T,. It is piecewise
linear, because the opacity o(x) has been linearly
interpolated across the scan line segments BC and CD.
Similarly, Figure 2(c) shows the transparency t,(x) from
triangle T,. The final transparency along the segment
CD, resulting from compositing both triangles on top of
the background is the product #(x)=t,(x)t5(x), shown as
the quadratic polynomial segment above CD in Figure
2(d).

To derive the form of this quadratic polynomial, let
x=5sD+(1-5)C be the point a fraction s of the way from C
to D.

Then
H(x)=1-a,(x)

=1-(s-0+(1-s)exp(-1))
=1-(1-s)exp(-1l)

and similarly
t(x)=1-0,(x)=1-s-exp(-1).
Thus

1(x) = 1, (x)ty(x) = 1 — exp(—tl) + s(1 - s)(exp(-1))*.

a)
1
b)
0 L 1 1 1 | 1
i | R I 1 T
A B C QD E F
1
) \/_—
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A B C QD E F
1
d)
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1 | | 1 T
A B C QD E F

Figure 2




The transparency should actually be 1-exp(-t/), so the
quadratic term s(l-s)(c:xp(-tl))2 represents the crror due
to approximating ¢,(x) and ¢,(x) lincarly.

Other similar quadratic segments come from other
projected diagonal edges, and the final intensity,
proportional to the transparency if the background is
uniform, is not C!. In three dimensions, the
corresponding effect produces Mach bands along the
projection of edges of the tetrahedra.

The solution to this problem is to define «,(x) correculy
as 1-exp(-stl). This requires a linear interpolation of the
quantity t/, and then an exponent per pixel, which is not
commonly available in hardware. Instead, we have used
the texture map table available on our SGI Onyx™
system. For the case of constant 1 per tetrahedron, as in
our flow volume application, we put the quantity 1-exp(-
u) in a one dimensional texture table, indexed by u [2].
The texture coordinate 4 was set to zero at the thin
vertices of each triangle, and to t/ at the thick vertex,
and was interpolated by the shading hardware, before
being used as an address to the texture table.

If 1 varies linearly within each tetrahedron the product
1l varies quadratically inside each triangle. Quadratic
interpolation of texture coordinates was implemented in
hardware on the Apollo DN10000VS [3], but was not
available on our Onyx™. Therefore we used a 2-D
texture table, with coordinates T and /, and put 1-exp(-
1/) in the table.

"Now consider the case when the color also varies
linearly across the tetrahedron. The Shirley-Tuckman
approximation (C,+C,)/2 for the color of the thick
vertex is not precise; it weights the two colors equally.
Actually, the frontmost color should have greater
weight, because the opacity along the ray segment hides
the rear color more than the front one. Williams and
Max [4] have found an exact formula for the color in
this case, which they implement with the aid of table
lookups. However, the supplementary arithmetic
required goes far beyond what is practical in hardware
computation at each pixel. As a compromise, we have
used the exact analytic form of the color of the thick
vertex, and then used the hardware to interpolate the
color across each triangle. The colors of the thin
vertices come from the original color specification, and
the opacity is determined, as above, from a texture table.
This compromise can be implemented entirely in
hardware, and gives a fairly smooth color variation that
seems to move appropriately when a colored volume
density rotates.

Figures 7(a), (b), (d) and (e) all use texture mapping for
the opacity. Figures 7(a) and (b) show a triangular
prism divided into three tetrahedra. Figure 7(a) uscs the
average color (Cy+C))/2 at the thick vertices, while
Figure 7(b) uses the more accurate color integration of
Williams and Max [4]. Note that in Figure 7(b) the
color of the yellow-orange vertex closest to the viewer is
more prominent, as it should be. Figure 7(c) shows a
2x2x2 array of cubes, cach divided into five tetrahedra,
and rendered by linearly interpolated opacities. Notice
the Mach Bands predicted in Figure 2. Figure 7(d)
shows the same volume using the texture mapping for
more accurate opacities, and is much improved.

The Sorting Algorithm

Because the Shirley-Tuckman algorithm allows us to
scan convert entire polyhedra very quickly as opposed to
the other point sampling methods that calculate the
color and intensity color integration on a point by point
basis, we needed to devise an efficient algorithm that
would sort unstructured meshed elements in a back to
front order. Our implementation will correctly sort
arbitrarily shaped convex elements in a back to front
order as long as there are no cycles or intersections in
the data set. Each polyhedron can then be subdivided
into a set of tetrahedra for rendering. If a convex mesh
is structured so that cells meet on common faces, and
this topological information is stored in an adjacency
graph, then the adjacency graph can be used to produce
a back-to-front sort (see [10] or [11]). However, we
wanted to handle unstructured meshes where this data is
unavailable. Such examples are sliding interfaces,
where cells meet on only part of their faces, and non-
convex meshes, such as those with cavities. Figure 3
shows such a mesh of a piston in a cylinder. We
therefore extended the Newell, Newell and Sancha sort
for polygons to correctly handie convex polyhedra. The
sort will perform no subdivisions in the case of
intersecting polyhedra or cycles, and will instead
arbitrarily choose a drawing order fo: the problem
causing polyhedra.

N7

_. sliding interfaces

Figure 3.



This algorithm is a three dimensional extension of the
Newell, Newell and Sancha painter's algorithm [5-8]
and operates on the volumes after having performed all
of the perspective transformation operations. Once the
elements have been sorted in back-to-front order, they
can be fed to the volume renderer for scan conversion
and compositing, using the techniques described above.

There are three stages to the sorting process. The first
applies all viewing transformations on the vertices to
obtain the screen coordinales with a perspective
corrected Z. The second obtains a rough sorting of the
polyhedra based on the rearmost Z component of each
element. Because we have applied the viewing
transformation to all vertices and have scaled Z so as to
correct for perspective, we would like to sort by
increasing Z; the eye looks down the Z axis towards
negative infinity in a right-handed coordinate system.
In our implementation, this rough sort was obtained
through an O(nlogn) QuickSort. The third stage, or
"fine tuning" of the sort, is a bit more complicated.
However, like the painter's algorithm approach, it is also
broken down into multiple steps with each one
increasing in computational complexity, in hopes that a
majority of the polyhedra will pass the carlier and less
expensive tests.

The goal of the fine tuning is to find a separating plane
between two polyhedra, P and Q, such that it can be
determined whether or not P can safely be drawn before
Q. The fine tuning process can be broken down into
five steps in order to efficiently find this separating
plane. Given a list H of polyhedra roughly sorted by
increasing Z coordinate of the rearmost vertex (called
Zrearmost), let polyhedron P be at the head of the list. P
can be safely rendered if, for all polyhedra Q in the list
H whose Zrearmos: is less than (behind) P's Zponmos:, the
following function returns a value of True:

Test_Polyhedra (P, Q)
{

1if (P and Q do not have
overlapping X extents) return True
else if (P and Q do not have
overlapping Y extents)
return True
else if (P is behind a
back-plane of Q) return True
else if (Q is in front of a
front-plane of P) return True
else if
(Q!=EdgelIntersection (P,Q))
return True
else return False
}

The function EdgeIntersection (P, Q) returns the
polyhedron which it determines to be in front. It makes
this decision by looking for intersections between the

edges of P's projection and the edges of Q's projection.
If one is found, it finds the Z component of that
intersection point for P and for Q, and returns the
polyhedron whose Zintersecuon is closer to the eye. In the
case that they are both equal, then we continue
searching for intersections looking for an inequality
between the two Zintersection components.

If the above function returns a False, then polyhedra P
and Q are considered to be in the wrong order and Q
should be moved to the head of the list and the tests
should be repeated with Q becoming the new P. It is
possible that the list H could contain a cycle. For
instance, if polyhedron A obscures B, and B obscures C,
and C, in turn, obscures A, then there is no correct
ordering for the polyhedra involved. Figure 4 illustrates
a traditional cycle for three polyhedra. The existence of
a cycle is easily determined by tagging polyhedron Q
before inserting it at the head of the list after the
Test_Polyhedra () function fails. If Q has already
been tagged, then a cycle exists and it will need to be
addressed.

Figure 4.

If polyhedron P passes the tests for all polyhedra Q
where Qrear is less than Ponr, then polyhedron P is free
to be rendered; the tests have determined that P will not
obscure any polyhedra which are considered to be in
front of it. P is then shipped to the renderer and the
next polyhedron in the list is chosen for the new P.

The first two tests to determine whether the XZ and YZ
planes correspond to separating planes between P and Q.
They are very easy to perform. It involves merely
checking the bounding boxes of the two polyhedra in the
X and Y planc.  The third, fourth and fifth tests,
however, present more of a challenge.

The main thrust of the third and fourth tests is to find a
separating plane between P and Q. If such a plane
exists, then P can safely be considered to lie behind Q.

To simplify the third and fourth tests, we can mark each
face of every polyhedron as being either a front-facing



polygon (it faces the eye) or a back-facing polygon.
This is easily determined because the algorithm stores
an outward pointing normal for each face. Therefore, a
simple query as to the sign of the Z component of a
face's normal is enough to determine whether the face is
front facing or not. A positive Z, in a right-handed
coordinate system, is front facing. Otherwise it is back-
facing. This pre-processing is all performed while
reading in the meshed topology.

The third test then simplifies to testing whether all of
P's vertices lie behind a plane defined by any one of Q's
back-facing polygons. If this is true, then the face under
consideration forms a separating plane between P and Q
and therefore we can conclude that P is behind Q.
Performing this test is a matter of making sure that for
at least one back-facing polygon of Q, the sign of
f(x;,y;,2;) for all vertices j in P is non-ncgative for
that particular face of Q. The plane equation, f, is based
on the outward pointing normals for that face. If this
test fails, then the algorithm will proceed to the fourth
test and try to determine whether the plane specified by
a front-facing polygon belonging to P separates P from

Q.

This fourth test is very similar to the third test. In
determining whether Q lies entirely in front of P, one
must make sure that for at least one front-facing polygon
of P, f(x;,y;,z;) is positive for all vertices j in
polyhedron Q. This time, f is the plane equation for a
front-facing polygon of P, again based on outward
pointing normals. If this test passes, then Q lies entirely
in front of at least one of the front-facing polygons of P
and it can be concluded that P lies behind Q.

The fifth test, EdgeIntersection (), returns either
the number of the polyhedra which is in front, or an
error condition if it cannot detect any intersecting cdges.
The two cases where this test can fail are shown in
Figure 5. As we will see, this does not jeopardize the
correctness of our algorithm.

N

N :

(@) ®)

Figure §.

The illustrations (a) and (b) in Figurc 5, which both
represent  screen  projections,  both  fail  the
EdgelIntersection() function because neither
have intersecting edges in their projections. However,
in case (a) the order in which the two tetrahedra are
rendered makes no difference since they are completely
disjoint in the screen projection and therefore an error
condition can correctly be treated as if polyhedron P
were in front of polyhedron Q. On the other hand, this
is not necessarily the situation in case (b). We can rest
assurcd that this will never cause a sorting glitch
because the back face of the brick (assuming the
tetrahedron is behind the brick) is a back-facing
separating plane and would have been caught in the
third or fourth test. Thus, if the fifth test reports an
error, the algorithm always correctly assumes that the
brick is in front of the tetrahedron. This fifth testis a a
more cfficicnt altcrnative to the linear programming
method proposed by Newell [6]. If the fifth test fails,
then polygon Q should be moved to the front of the list
and whole process should be repeated.

With the exception of the fifth, these tests are very easy
to calculate. When reading in the topological data-set,
one must store the plane equation coefficients, with
respect to an outward pointing normal, in the polyhedral
database.  From these pre-computed coefficients,
determining which side of a face a point j lies is as
simple as finding the sign of ax; + by, +cz; +d.

In the case that all of the tests fail and we have a cycle,
the program will render first whichever of P and Q
whose Znearmost is further from the eye.

Non-planar Faces

The algorithm described works correctly for convex
polyhedra with planar faces and no cycles or
intersections.  Unfortunately, it is quite possible, in
finite element codes, for the faces to skew slightly
yielding non-planar faces. Fortunately, the faces will be
mostly planar because highly non-planar faces can lead
to instabilities in the code. Figure 6 illustrates an
exaggeration of what could possibly happen. Even if the
face were mildly non-planar, it is still enough to cause
the tests to fail. To accommodate slightly non-planar
faces, we have introduced an error tolerance d.

In order to sort convex polyhedra with non-planar faces
as shown in Figure 4, the algorithm first calculates an
average outward pointing normal for each face. This is
done using Newell's method as follows [8,9]:



a=Y (=¥ Xu+1)

i=]

b= Z(Zi —2;}(x; +x;)

i=l

c= D (5= x)i+))

i=]

where: j=(i+1) mod n
and n is the number of vertices per polygon

The last coefficient of the plane equation, d, can be
calculated by picking some point on the average plane.
We chose the center of gravity of the face for this point
as follows:

[$.5.5)

i=l i=] i=]

To determine on which side of a plane a point lies, an
error tolerance is used. This is needed because with
non-planar faces the algorithm could return vertex a of
polyhedron Q, in Figure 6 below, as being contained
inside of P which would ultimately result in a cycle. But
that is not the case. In fact, if vertex a were actually
touching a plane of polyhedron P, machine round-off
might place a on the wrong side of that face which,
again, would result in a cycle. Therefore, an
overlapping tolerance 3, a distance from a vertex to a
plane which is deemed to be an acceptable error by the
sort, should be used. In other words, the third and
fourth tests should consider vertex a to be on the outside
of a face (the plane equation evaluated at point a should
yield a non-negative value) if point a is within 8 units
away from the plane under consideration, regardless of
which side of the face point g actually lies. We can
rationalize the existence of this 8 tolerance as follows:
if a comer of polyhedron Q happens to intersect a planar
face of polyhedron P by the amount 8, for a suitably
small §, the visual impact will be minimal, if perceptible
at all. Our implementation uses a unique & for each
face, based on the maximum deviation of a vertex from
its corresponding average plane.

&

&
v

<
.

eye

Figure 6.

Discussion

The fine-tuning sorting process described runs in O(N2 )
with respect to the number of polyhedra sorted.
However, this quadratic running time is an upper bound
and would only be found in the most pathological cases
where all polyhedra have overlapping Z extents. The
average running times for normal datasets should be
lower. While the first and second tests run in constant
time, and the third and fourth tests run in O(F;E;) and
O(E;F;) time with respect to the number of faces and
vertices, the fifth test runs in O(EiEj) where E
corresponds to the number of edges for polyhedra i and
J, respectively. Again, this is a worst case running time
and it should be substantially better in practice since the
function terminates once a suitable intersection in the
two projections is found.

The implementation of this algorithm was coded in C++
and has been used to sort those primitives found in the
SGI Explorer pyramid type. Each volume primitive is a
subclass of a very general primitive C++ class. These
subclasses are as follows: the tetrahedra, pyramid,
prism, wedge and brick. We can easily extend the
system to include others. With a QuickSort only sorting
option which yields a faster, but not entirely correct sort,
the algorithm can interactively sort thousands of
elements on an SGI Indigo? workstation. With correct
sorting, this algorithm slows down to a few hundred
clements on the same machine.

Figure 7(e) illustrates the results of the sort, with the
Williams and Max color integration, on the "blunt fin"
dataset from the AVS visualization package.



This paper presents extensions to the Shirley-Tuckman
algorithm for compositing our colored smoke and
pyramid volumes, and also extensions to the Newell,
Newell, and Sancha sort for use with unstructured data.
We present no new approaches to cycle breaking. If a
cycle is detected during the sorting, then the polyhedron
with the vertex farthest from the eye would be removed
from the list and rendered. The most common form of a
cycle the algorithm would detect in a dataset would
probably be two non-planar faced polyhedra
"intersecting" each other. However, the § overlapping
tolerance should eliminate most of these situations. The
more traditional, but slower method for removing cycles,
such as the type illustrated in Figure 4, would be to pass

one or more cutting planes through the offending
polyhedra.
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7a. Integration using Average color. 7b. Williams’ color integration.

7¢. No texture mapping. 7d. With texture mapping.

7e. Blunt fin with 440 sorted brick elements, using lexture mapping.







