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A NEW TECHNIQUE FOR DYNAMIC LOAD
DISTRIBUTION WHEN TWO MANIPULATORS
MUTUALLY LIFT A RIGID OBJECT
PART 1" THE PROPOSED TECHNIQUE
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Abstract

A general framework for solving the dynamic load distribution when two
manipulators hold a rigid object is proposed. The underspecified prob-
lem of solving for the contact forces and torques based on the object's
equations of motion is transformed into a well specified problem. This
is accomplished by augmenting the object's equations of motion with

additional equations which relate a new vector variable quantifying the
internal contact force and torque degrees of freedom (DOF) as a linear
function of the contact forces and torques. The resulting augmented sys-
tem yields a well specified solution for the contact forces and torques in
which they are separated into their motion inducing and internal compo-
nents. A particular solution is suggested which enables the designer to
conveniently specify what portion of the payload's mass each manipula-
tor is to bear. It is also shown that the results of the previous work [1] are
just a special case of the general load distribution framework described
here.

INTRODUCTION

When two serial link manipulators having N1 and N2 joints, respectively, hold
and transport a rigid body object in a three dimensional workspace, there arises
a problem in dynamically distributing the payload's mass between the manip-
ulators. This is due to the fact that the dynamics of the rigid payload can be
described by six second order differential equations of motion (e.g., Newton's
and Euler's equations) which are explicit functions of the twelve components of
contact force and torque imparted to the object by the manipulators. Assuming
that the motion of the center of mass of the object has been specified, it is easy
to see that the problem of computing the contact forces 2 based on the dynamics
of the object is underspecified. Indeed, there exists infinitely many solutions
for the contact forces.

Approaches for distributing the load to determine the contact forces have
typically posed it as an optimization problem and have suggested various per-
formance criteria. Among these include the pseudo-inverse method [2] which
yields a minimum Euclidean norm particular solution for the contact forces
which induce object motion. The addition of a homogeneous solution for the
contact forces (i.e., the internal contact forces which cause stress and torsion in
the object but do not contribute to its motion) as done in [2] so as to minimize

1Research sponsored by the Engineering Research Program, Office of Basic Energy Sci-
ences, of the U.S. Department of Energy, under contract DE-AC05-84OR21400 with Martin
Marietta Energy Systems, Inc.

_contact forces implies both contact forces and torques hereinafter



a secondary criteria via gradient projection, sacrifices theminimum norm solu-
tion. Using this approach the internal contact forces become implicit variables
and their calculation involves no servoing. Other optimization algorithms and
criteria for minimizing the magnitudes of the motion inducing contact forces
are discussed in [3]. The internal contact forces, however, are not addressed
in [3]. The load distribution approach in this paper avoids optimization tech-
tuques such as the pseudo-inverse method and extends the results of a previous
paper [1]. The internal forces are explicit variables to be controlled to track
reference trajectories.

In [1], a rigid body dynamical model was derived in the joint space for the
aforementioned configuration. It was then transformed to separate it into two
sets of equations. One set of equations characterized the motion of the closed
chain and contained no forces of contact. The other set was used to calculate an
independent subset of the contact forces, specifically those between manipulator
two and the object. A composite control architecture was suggested which led
to an explicit decoupling of the force- and position-controlled degrees of freedom
(DOF).

The underspecifieddynamicloaddistributionproblemand theinternalcon-
tactforceswhich ariseinthisclosedchainconfigurationwerenot addressed
in[i].Moreover,theforce-controlledDOF werequantifiedbythecontactforces
impartedby manipulatortwo to theobject.The contactforcesbetweenma-
nipulatorone and theobjectwereimplicitvariablesinthemodeland thusin-
accessibleforcontrolpurposes.No motivationforselectingtheforcecontrolled
variables in this way was provided in [1].

This paper seeks to resolve these problems by introducing a general proce-
dure for solving the dynamic load distribution when two manipulators lift and
transport a rigid body object. The load distribution procedure is incorporated
into the modeling framework [1] and a solution for the contact forces is sug-
gested which permits the designer to conveniently specify what amount of the
payload's mass each manipulator is to assume. The problem of controlling the
internal contact forces to track reference trajectories is addressed in Part 2.

MANIPULATOR AND OBJECT DYNAMICS

This section presents the equations of motion of the individual manipulators
and the payload. The composite dynamics of the manipulators are given by:

lr Dl ONI×N2 1
×X, Jfwfc2 J (1)

where 0k×,_ denotes a (k × m) matrix of zeros and superscript T denotes a ma-
trix transpose. The joint positions of manipulator i(= 1,2) are represented by
vector qi = [q,1, q;2,..., qiu,] r and the joint torques applied to the joint actua-
tors by the vector ;r - [;rl, ir2..... iru,]r. The (Ni × .¥i) symmetric, positive
definite inertia matrix is Di(q,). and the Coriolis, centripetal, and gravity forces
for manipulator i are described by the (Ni × 1) vector Ci(qi.gli). The (6 × Ni)
matrix Jiw(qi) is the Jacobian matrix for manipulator i, which is assumed to
have full rank six. The (6 x 1) contact force vector f¢i expressed in the stationary
world coordinate system (Xw, Yw, Zw ) is shown in Figure 1. It is comprised
of a (3 x 1) force vector i_, fN,,U,+l and a (3 × 1) torque vector i_ TtN,,N,+1 shown
in Figure 1:

[iwtT iw T ] T

Li =t JN,,N,+I, //N, ,N,+ 1] (2)
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FIG 1. Freebody diagram for the rigid object.

It is convenient to express Newton's and Euler's equations for the rigid object
in a compact form:

f_2 " (3)

In eq. (3) , Y is a (6 x 1) vector defined by:

03×3 Kc &c + _c Kc o.)c

where all Cartesian vectors are with respect to the world coordinate system. In
eq. (4), mc is the mass of the rigid object, and Kc is the (3×3) symmetric inertia
matrix of the object about its center of mass. The (3xl) vector g represents
the gravitational acceleration of the object. The (6× 1) vectors IvT , ,,'[ IT and
[b/ ' E,r IT denote the Cartesian velocity and acceleration of the center of mass
of the load, respectively, with (vc, i,c) being the translational and (_'_, £'c) the
rotational components. In eq. (4) , (tic h'c_c) is a (3× l) vector arising from the

cross product expression (_ × (K_,%)) where f_c(wc) is a (3 × 3) skew symmetric
matrix [1].

Using forward kinematic relationships, eq. (4) can be expressed in the joint
space [1]:

+ fl_h'c [03×3, I3×3] d,_;l,
q
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"_' " where A is the coefficient matrix of [i,[, &TIT in eq. (4).
The _6 × 12) matrix L(ql, q2) in eq. (3) is an explicit function of the (6 x 6)

contact torce transmission matrices Ll(ql) and L2(q_):

where matrix L,(i = 1,2) is defined by [1]:

13×3 03×3

Li = 0 "_rz -"_r_ ] (7)

-- iWrz 0 iWrx J /3×3iwry -- iwr x 0

where l_×k denotes a (k x k) identity matrix and i'_r = [iWr,, iWry, iWrz]T is
a vector emanating from the point where force iWfN,,N,.l acts on the object
whose head coincides with point CMo, the center of mass of the rigid object
(see Figure 1). Li is positive definite and whose determinant is equal to one.

In [1], six rigid body kinematic constraints imposed on the joint velocities
were derived as functions of the Jacobian and force transmission matrices:

[(Lr)-'
The six constraints result in the number of degrees of freedom in the closed
chain system reducing from (N1 + N:) to (Nl + N2 - 6).

A GENERAL FRAMEWORK FOR LOAD DISTRIBUTION

There are infinitely many solutions for the contact forces based on eq. (3) . The
T T T

approach proposed here for solving for [f_, f_2] is based on a methodology
developed in [4, 5] for expressing a set of n generalized velocities whose values
are restricted by k(< n) bilateral constraints as a linear function of a new
set of (n - k) independent pseudovelocities. It is also inspired in part by the
authors' recent work which used the method [4, 5] to develop position and force
control laws for a nonholonomic, omnidirectional platform [6] and to resolve the
kinematic redundancy of a serial link manipulator [7].

To solve the dynamic load distribution problem, a new vector variable e =
let, e2, ..., e6]T is introduced. The number of components of e is equal to the
dimension of the null space of matrix L and reflects the fact that the number
of position controlled DOF lost in the closed chain is equal to the number of
DOF gained for controlling the internal contact forces [8]. e is defined by:

f_ . (9)

The (6 × 12) matrix M(q) in eq. (9) is selected such that the (12 × 12) composite
matrix S(q), defined by:

/10,S= M

is nonsingular. The symbolic determinant of S is given by:

ISl = M2 - Mt L_-] L21 (11)q



_"° " where eq. (6) has been used and where Ml(q) and M2(q) are (6 × 6) submatrices
of M:

M = [Mr, M2 ]. (12)

It is convenient to partition the inverse of S into two matrices:

5'-' = [_, _] (13)

where _(q) and 9(q) are (1"2 × 6) matrices. Eqs. (10) and (13) imply that
L_ = I6x6, L _ = 06x6, M_ = 06×6, M _ = I6x6, and _L + _ M = I12x12.

Eqs. (3) and (9) can be solved for the contact forces:

[fell =_Y+_efc2 (14)

in which eq. (13) has been invoked. The first term {_ Y} on the right ofeq. (14)

is a particular solution to eq. (4) and are the components of [f_, f_]T which
cause the object to physically move. The second term {_ e} is the homogeneous
solution and are the internal components which cause stress and torsion in the
object but do not contribute to its motion.

The symbolic solution for the contact forces given by eq. (14) is significant
because it indicates that the designer can specify the distribution of the pay-
load's mass between the two manipulators by the choice of M. To demonstrate
this concept using examples, it is convenient to determine a symbolic solution
for matrices _ and _ in terms of matrices {LI, L2, MI, M2} using the method
of inverse by partitioning [9]:

i [I6×6+ L'_'L2AM, ] ,= - ,5 M1 L:'I (15)

_ = [-Li-IL2 ]16×6 A (16)

where the (6 x 6) matrix _ is defined by:

A = (M2 - MI L_"1L2) -1 (17)

Example 1. In this example it is shown that the result of [l] can be obtained
by an application of the general framework provided here. In the previous work,
the closed chain dynamics in the joint space were obtained by the following
procedure: (i) solve eq. (3) for fcl: (ii) substitute for f_t in eq. (l) using its
solution obtained in step i; and (iii) eliminate vector Y in the resulting equations
by applying eq. (5) with i = 1.

Motivated further by a desire to provide physical insight into the modeling
procedure in [1]. suppose matrix M is selected as:

Substituting eq. (18) into eqs. (15) and (16) gives:

' 06x6 I6×e " (19)

Substituting eq. (19) into eq. (14) and inserting the result into eq. (1)
reveals that we have obtained the model of [1] with e = f_2. The procedureq



"_'- " " in [1] unknowingly distributed tile load such that tile contact forces imparted by
manipulator '2 are purely internal thus manipulator 1 alone supports the entire
mass of the object. That is to say, only manipulator one induces the payload
to physically move.

THE PROPOSED CHOICE FOR M

Suppose M is chosen to be:

M= c,L] (2o)
where cl and c2 are scalars whose values are restricted as follows:

cl + c2 = 1, 0 _< ci <_ 1, i=1,2. (21)

Substituting eq. (20) into eqs. (15) and (16) yields the symbolic solution for

' c_L_" L_' " (22)

By simply choosing values for {c,, c2} such that eq. (21) is satisfied, the
designer can specify how much of the load each manipulator is to support. The
designer can base the selection of {el, c_} on the load carrying capacities of the
individual manipulators.

Example'2. In this example the values of {cl, c_} are determined such that
the payload is equally distributed between the manipulators. Eq. (14) yields
the solution for the motion and internal components of the contact forces acting
at the contact points between the manipulators and object. However, it is
insightful to determine the equivalent motion and internal forces acting at the
center of mass of the object. (By equivalent we mean a force that has the same
external effect on the object.) This is accomplished by premultiplying the upper
and lower six rows of eq. (14) by matrices L1 and L_ respectively:

L2 fc2 = c2 16×6 Y + 16×6 e (23)

where eq. (22) has been invoked, ci Y is the equivalent motion inducing force
acting at the center of mass due to manipulator i. and it is easy to see that
selecting cl = c2 = 1/2 distributes the payload equally between the manip-
ulators. With this choice, the equivalent motion and internal stress inducing
forces in eq. (23) are orthogonal vectors. Interestingly, eq. (23) with e = 06×1
is similar to the optimized result suggested in [3] for an equal distribution of
the load. It should be noted, however, that the earlier work [3] did not properly
account for the force transmission matrices {L1, L2} which arise in the equa-
tions of motion for the rigid object. Furthermore. the internal contact forces
wer, not addressed in [3].

'tn added benefit of selecting M by eq. (20) is demonstrated by evaluating
the determinant of ..e,using eq. (11) :

IS[ = Ic, L2 + c_L21 = 1 (24)

since ]L,I = 1 [1]. Therefore the algorithm proposed to calculate [f_, fgT]T
using eq. (14) is singularity free when M is defined by eq. (20) .
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_- " CONCLUSION

A new method for resolving the dynamic load distribution problem which arises
when two manipulators hold a rigid object has been proposed. The method is
based on the fact that six internal force controlled DOF arise due to the loss
of six position controlled DOF in the closed chain configuration. A vector vari-
able _ was introduced which parameterizes the internal force controlled DOF. It
was defined as a linear function of the contact forces. The equation defining e
together with the equations of motion for the object yielded a well specified so-

lution for the contact forces. A choice for the matrix M which relates if T, f_2]"
and e was suggested which enables the designer to conveniently specify how
much of the load each manipulator is to bear by selecting two scalars {cl, c2}
such that cl + c2 = 1. Additionally, it was demonstrated that the modeling
procedure in [1] used to obtain the dynamics of the closed chain in the joint
space is just a special case of the general dynamic load distribution method
given here.
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