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Abstract

A rigid body model for the entire system which accounts for the load

distribution scheme proposed in Part ! as well as for the dynamics of
the manipulators and the kinematic constraints is derived in the joint
space. Direct application of the method in [I] to obtain the model re-

salts in an inertia matrix for the entire system which is not symmetrical.
A technique is presented for expressing the object dynamics in terms of

the joint variables of both manipulators which leads to a positive definite
and symmetric inertia matrix. The model is then transformed to obtain

reduced order equations of motion and a separate set of equations which
govern the behavior of the internal contact forces. The control architec-

ture proposed in [I] is applied to the mode] which results in the explicit

decoupling of the position- and internal contact force-controlled degrees
of freedom (DO F).

INTRODUCTION

To incorporate the dynamic load distribution scheme proposed in Part I [2]
into a computer simulation of the multirobot closed chain system or controller
design process, it is necessary to derive a rigid body model for the entire system
which accounts for the aforementioned scheme as well as for the dynamics of the
manipulators and the kinematic constraints. Such a model is derived here in the
joint space. Direct application of the method in [I] to obtain the model results
m an inertia matrix for the entire system which is not symmetric. To overcome
this problem, a technique is sugges(ed to express the obj'ect's dynamics in terms
of the joint variables of both manipulators. This leads to an inertia matrix which
is positive definite and symmetric. Applying the procedure in [1], the model
is separated into a reduced order model and and a functional relation for the
internal contact forces. The control architecture proposed in [l] is applied to
the separated form of the model which results in the explicit decoupling of the
position- and internal contact force-controlled DOF.

A RIGID BODY MODEL IN THE JOINT SPACE

A rigid body model is derived in the joint space for the entire closed chain dual-
manipulator system in this section. In the ensuing development it is convenient
to partition matrix • defined in eq. (13) + 2 into two matrices:

1Research sponsored by the Engineering Research Program, Office of Basic Energy Sci-
ences, of the U.S. Department of Energy, under contract DE-AC05-84OR21400 with Martin
Marietta Energy Systems, Inc.

2Superscript + denotes that the referenced equation is in Part 1



= _2 (I)

where _i(q) has dimension (6 x 6). Also, to express the dimension of ma-
trix/column vector quantities compactly, let Nt2 = 3"1+ N2.

The closed chain dynamics in the joint space are obtained by first substitut-

ing for [f_r f2_]r in eq. (1) + using eq. (14)+:

rZ = 0mx,V, D2 f/2 + C2 + c2,I2_L_ 1 Y + (A'(q) e
(2)

where eq. (22) + has been invoked. The (NI_ x 6) matrix (A') r in eq. (2) is
termed the internal contact force coefficient matrix. It is defined by:

(A')r [ -JTwL'[1= J_ L_-' (3)

where the superscript , signifies that the matrix/vector quantity is different
from the unstarred quantity in eq. (10) of [1]. It is assumed that (A') T has full
rank six.

If eq. (5) + is applied with i = 1 to eliminate vector Y from eq. (2) (as
was done in [1]), then the coefficient matrix of the vector of joint accelerations

[_r, 0T]r has the following structure:

D' = O1 + c, 3TL_''A(JLL_') r 0.v,x,v2 ] (4)
Lr') D, J

D' is the inertia matrix for the entire system. It is positive definite and thus
nonsingular. But in general D' is not symmetrical. Unfortunately, we need to
invert the (6 x6) mairix (A ° (D') -1 (A') T) which may or may not be nonsingular
when D' is not symmetrical.

There is another, and better approach for expressing Y in the joint space
which leads to a system inertia matrix which is positive definite and symmetric.
Eq. (.5)+ permits Y to be expressed as a function of the joint variables of either
one of the manipulators but not both. However. by a mathematical observation,
the following relation holds true:

2

}" = __d,}; (5)

where _ = Y(qi. q,, q,) for i = 1.2 and where dl and d2 are scalars whose
values are constrained:

d_ + d2 = 1, 0 < di < 1, i= 1,'2. (6)

Substituting for Y in eq. (2) using eq. (5) yields the closed chain dynamics in
the joint space:

r = D'(q)O + C(q, il) + H'A(q, fl) + H_{q. q}q + (A'(q))r e (7)

where r = ['r r,2rr]r and _ = [Or ,or] T. The(.",'12 x 1) vector C(q. il) =

[CT, CT]T, where C, is defined in conjunction with eq. (1)+.
q



The (Nl2 x Nl2) matrix D'(q) in eq. (7) is defined by:

,,

T -1 T -1 T
DI +cldtJt_Ll A(JI_Lt ) cld2jr_L_lA(Jf L_t) r

-" T -I T -I T

c_d, d2_L 2 A(Jt_L, ) D2 + c2d2JT L_'A(Jf_L; ')T .(8)

D ° is the new inertia matrix for the entire system. If the scalars {dr, d2}
introduced in eqs. (5) and (6) are selected as:

d_ = cl (9)

for i = 1, 2, then D ° is positive definite and symmetric. In this case the matrix
quantity (A ° (D') -l (A') T) is positive definite and therefore nonsingular [3].

The (Nt2 × 1) vector H'A(q, q) and (Nt2 × Nt_) matrix H_(q, q) in eq. (7)
are defined as:

[ TI][ ]ct JtwLt - m_g (10)

n_

_ T -I d T -I T 1 2,'lw*_l : _ _J2,_Ju2 ) f
-- T -1 d T -1 T 2 T -I d T -I T

where eq. (9) has been invoked. It should be mentioned that the quantities
{D, HA, Hs} in eq. (10) of [1] are just special cases of eels. (8),(10), and (11)
with ct = 1, c_ = 0.

Eq. (7) accounts for the dynamics of all components of the closed chain
but does not satisfy the rigid body kinematic constraints in eq. (8)+. To form
a joint space model for the entire closed chain, it is convenient to transform
the constraints such that the coefficient matrix of q is the transpose of matrix
IA') r in eq. (3) . Premultiplying eq. (8) + by (-16×6) accomplishes this:

A'q = 06×1. (12)

It should be mentioned that the form of eqs. (7) and (12) has been obtained
for a broad class of constrained mechanical systems in [4, 5] using the method
of Lagrange undetermined multipliers [6]. However, the issues of dynamic load
distribution and relating _ to internal contact forces were not addressed in [4, 5].

Differentiating eq. (12) gives the acceleration constraints:

A'_ + A'4 = o_. (13)
The (Nl2 + 6) scalar equations comprising eqs. (7) and (13) can be used to

accomplish a forward dynamics simulation of the system where the quantities
{_, e} are unknowns when the joint torques r are specified. However, the Nl2
equations comprising eq. (7) exceed the DOF of the entire system (= NI2 - 6).
Also, this form of the model is not particularly useful for the controller design
process. To alleviate these problems, a reduced order model is derived in the
next section.
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A. * •

_--" " REDUCED ORDER MODEL AND INTERNAL FORCE
DETERMINATION

Linear transformations are applied to the closed chain dynamics in eq. (7) to
separate the model into two sets of equations. The sets of equations govern the
motion of the closed chain and the behavior of the internal component of the
contact forces, respectively. Additionally, linear transformations which express
the coupled joint velocities {q} and accelerations in terms of new independent

pseudovariables [7, 8] are applied to eliminate {4. q} from the equ,ations.The (Nt2 x 1) pseudovelocity and pseudoacceleration vectors ar,. defined by:

.= B,_, (14)

i, = B_ + Bq. (1.5)
The ((Nl2 -6) x N12) matrix B(q) in eqs. (14) and (15) is selected so that the
composite (Nt2 x Nl_) matrix T, defined by:

B (16)

is nonsingular. It is convenient to partition the inverse of T into two matrices:

T-' = In, Z] (17')
where H(q) is a (N12 x 6) matrix and E(q) a (.Vl., × (.\'i,, -6)) matrix. Eq. (17)
implies that A'H = I6x6, A'_ = 0(6x(_',2-6)). B rI = 0((Nta_6)x6), B _ "-

I((.V,2-_)×(N,2-6))and (IfA" + _ B) = IN,2x.%_.
Eqs. (12) and (14) and eqs. (13) and (1.5) can be solved for {4, q}:

,/= _:v, (18)

in which eq. (17) has been invoked.

Premultiplying eq. (7) by the nonsingular matrix [E, (D') -l (A')T] r and
utilizing the properties of eq. (17) obtain:

A'(D')-t(.4")re = .4" (D')-' {r-C- HI- HbEu} + :t'Eu 121)

in which eqs. (18) and (19) have been applied. The reduced order equations of
motion for the entire closed chain system are given by eq. (20) which may be
solved for the pseudoaccelerations as a function of the variables (q, t,, r). The
internal contact forces {e} have been eliminated from eq. (20) which in turn are
calculated as a function of the variables (q, t,. r) using eq. (21) . The separated
form of the model is useful for the controller design. This is discussed next.



,l_ d •

_" " " CONTROL ARCHITECTURE

The problem considered is to derive a control law for the NI_ joint torques
r = [lrr, _rT]T sO that the variables {_, _} quantifying the internal contact
force- and position- controlled DOF can be controlled independently. This
can be accomplished by applying the control law proposed in [1] to completely
decouple eqs. (20) and (21) . The composite control {r} is the sum of an
(N12 x 1) primary controller rP and an (.V12 x 1) secondary controller r" which
are defined by:

_" = (A')Tr¢ + D'Er_. (23)

In eq. (23) , ri' and r_ are (6xl) and ((Nt2- 6)×1) vectors, respectively, rep-
resenting control variables to be determined.

The composite control (r = rP + r' ) defined by eqs. (22) and (23) is sub-
stituted into eqs. (20) and (21). The resulting equations, under the assumption
of perfect knowledge of the nonlinear terms in the model, leads to the closed
loop system:

= (24)
= r; (25)

in which eq. (17) has been invoked.
Suppose r_ is selected to servo the pseudovariable error, and r i' for servo-

ing the internal contact force error. Since eqs. (24) and (25) are completely
decoupled, the secondary controller components r_' and r_ are non-interacting
controllers for internal contact force and position, respectively.

In [1], the control architecture decoupled the control of t) and fc2. At that
time f¢2 was viewed simply as an independent subset of the contact forces. It
was not understood that fc2 is in fact a pure internal force, as was shown in
Example 1 of Part 1 where the result of [1] was demonstrated to be a special
case of the proposed load distribution scheme with e = fc2. The control law
(r = r p + r _) in fact decouples the position- and internal force-controlled DOF.

CONCLUSION

Direct application of the method in [1] to derive the rigid body model in the joint
space results in a system inertia matrix tl_at is not symmetric. A method for
describing the dynamics of the held object in terms of the joint variables of both
manipulators was presented which led to a symmetric inertia matrix. Finally,
the control architecture proposed in [1] was used to decouple the internal force
controlled DOF and the position controlled DOF. Previously, it decoupled the
control of the pseudovariables and an independent subset of the contact forces,
namely, those between manipulator two and the object.
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