(o2 Q4625Y- .3

Title:

AN OBJECT—~ORIENTED IMPLEMENTATION OF A GRAPHICAL-
PROGRAMMING SYSTEM

Author(s): |G. S. Cunningham
K. M. Hanson

G. R. Jennings
D. R. Wolf

apparatuS.

SPIE Medical Imaging 1994
Newport Beach, California
February 13-18, 1994

hereof.

5

e

3

)

g Submitted to:
(<}

g

3

3

2

expressed
t or any agency t

completeness,

thors

United States Governmen

&
5

&
g
s

3

>
)

@

¢
!
E

¢ accuracy,
y

and opinions of au

employess,
bility for th
mendation,

Los Alamos

NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operatod by the University of California for the U.S. Department of Energy
under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Govarnment retains a nonexclusive, royalty-free license to

publigh or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. The Los Alamos National Laboratory
requests that the publisher identify this article as work performed under the auspices of the U.S. Department ot Energy.

Ve Form No. 836 RS

ST 2629 10/91
CrSYWBUTION OF THIS DOCUMENT I8 UNLIMITED

C



An object-oriented implementation of a
graphical-programming system

G. S. Cunningham, K. M. Hanson, G. R. Jennings, Jr., and D. R. Wolf*
Los Alamos National Laboratory, MS P940
Los Alamos, New Mexico 87545 USA

Abstract

Object-oriented (OO) analysis, design, and programming is a powerful paradigm for creating
software that is easily understood, modified, and maintained. In this paper we demonstrate how
the OO concepts of abstraction, inheritance, encapsulation, polymorphism, and dynamic binding
have aided in the design of a graphical-programming tool.

The tool that we have developed allows a user to build radiographic system models for computing
simulated radiographic data. It will eventually be used to perform Bayesian reconstructions of
objects given radiographic data. The models are built by connecting icons that represent physical
transformations, such as line integrals, exponentiation, and convolution, on a canvas.

We will also briefly discuss ParcPlace’s application development environment, VisualWorks,
which we have found to be as helpful as the OO paradigm.

1 Introduction

In this paper we discuss the importance of OO concepts for software development in the context of
a graphical programming tool. The graphical programming tool that we have built allows a user
to instantiate data-transform icons and connect these transforms with lines to define a “data-flow”
diagram on a canvas that appears on a workstation screen. The icons represent transforms that map
input data to output data, e.g. the line integral transform of the input data, exponentiation of the
input data, the addition of two data inputs, etc. The data-flow diagram represents a measurement
system.

Our goal is to use the graphical programming tool in conjunction with a 3D radiographic object
modeling tool that is still in the process of being built. The object-modeling tool will allow a
user to lay down simple 3D shapes and then twist, warp, and deform them to create novel shapes.
Furthermore, the user will eventually be able to identify parameters of the created object that are
subject to uncertainty for Bayesian inference and hypothesis testing.

We believe that these tools wil! be useful to scientists and engineers for orchestrating Bayesian
inference and hypothesis testing of geometric object parameters [12, 14] given real radiographic
data [6]. The general problem for which these tools are intended is the determination of an object
of unknown shape and distribution, described by a user-defined parameterization, given limited
data generated by a well-characterized, user-defined measurement system.

*Supported by the United States Department of Energy under contract number W-7405-ENG-36.




The software described in this paper was written in an OO programming language, Smalltalk-80
[5], in the context of ParcPlace’s supporting environment, VisualWorks [11]. We have found that
the OO concepts of abstraction, inheritance, message-passing, encapsulation, polymorphism, and
dynamic binding, are important in realizing our goal of a flexible and powerful software solution.
In the discussion of the graphical programming software, we will provide examples of how each of
these concepts was important.

The rest of the paper is organized as follows: the next section will define basic OO concepts.
Section 3 will describe the graphical programming tool, with an emphasis on the software’s structure
and the importance of the OO concepts discussed in Section 2. Section 4 will describe Smalltalk-80
and VisualWorks and the impact both had on our software development.

2 The Object-Oriented Paradigm

The OO paradigm has recently attracted attention because of its promise for code re-use and ease
of maintainence, in addition to the natural and intuitive language it promotes for discussion of
software problems and their solutions [15].

2.1 OO concepts

Software development using the OO paradigm (3, 13] includes the same three phases that are used
in other software-engineering methodologies: analysis (OOA), design (OOD), and programming
(OOP). In OOA, OOD, and OOP, the concept of class and object is critical. A class is an abstraction
of an object. A class is defined as a set of methods, or functionality, and atiributes, or data. An
object is a particular instance of a class, in the sense that it has specific values for its attributes. For
example, a Car class may have a color attribute, while a Car object may have a red instance of the
color attribute. The concept of inheritance allows the software developer to organize classes into
a hierarchy, wherein subclasses, which are lower in the hierarchy, inherit methods and attributes
from superclasses, which are higher in the hierarchy.

The “world outside” of an object can communicate with that object only through messages sent
to it that request some method to be performed. The implementation of the method is entirely
up to the object that possesses it, and is of no concern to the outside world. Thus, attributes are
encapsulated by their methods so that internal data representations and implementations of data
retrieval are unimportant to the outside world. That is, if the value of a certain attribute of object
#1 is desired by object #2, object #2 has to send a message to #1 requesting the value of that
attribute. Object #1 can then implement the retrieval of that attribute value in any way it desires.

If many objects can respond to the same message with potentially different implementations
of the method associated with that message, we say that the system is polymorphic. For example,
text strings, PostScript documents, and raster images may all know how to print, but will certainly
have different implementations of the method associated with the same message print.

Finally, dynamic binding is the capability provided in some programming languages to omit
typecasting, i.e. assigning a specific type such as integer, float, etc. The type of object bound to a
message is determined at run-time rather than at compile-time.

2.2 OO Analysis and Design

Software engineering experts seem to be split over whether the OOA, OOD, and OOP phases should
be distinct and sequential, or whether it is more desirable to use a recursive approach [17]. We
have used a recursive approach, in part because many of the OOA tools require a detailed problem




statement, which was difficult for us to create at the beginning of the project. We found that
“use-cases” (8], which document a typical user’s interaction with the final product, were the most
helpful OOA tool for defining the scope of our problem, but we did not persist in their use long
enough to prove them as valuable in a formal analysis or design.

Our approach was to rapid prototype a set of classes and then to use OOA tools (Object
International’s ObjecTool) to display the software’s structure and discuss it. The next stage of rapid
prototyping was based on these discussions. With the help of a consultant in OO technology we
decided that we should use the Coad and Yourdon OOA/OOD methodology (3], which emphasizes
the static nature of classes contained in the inheritance tree, in conjunction with some elements of
Rumbaugh’s methodology [13], which contains state diagrams for describing the dynamic nature
of classes, although we have made little use of Rumbaugh’s methodology thus far.

The OO concepts discussed in this section are important in all three phases of software develop-
ment: OOA, OOD, and OOP. In our limited experience with OOA and OOD, we have found that
the OO paradigm fosters creativity by making it easy to put aside implementation details. The
OO concepts are important because they allow software developers to discuss project goals using
a natural language - one which revolves around objects, their responsibilities or behaviors, and
their attributes. However, we have more experience concerning the importance of these concepts
in OOP, and so the next section will be focussed on illustrating their importance in OOP through
examples drawn from our experience in building a graphical programming tool.

3 Discussion of the software

The graphical programming tool that we will discuss in this section is part of a larger project that
is described in Section 1. The tool allows a user to construct measurement models for radiographic
systems by graphically connecting transforms to define a data-flow diagram. The data-flow di-
agram represents the measurement process. For example, a simple system model might consist
of a sequence of transforms including: 1) a line integral transform that takes line integrals of a
radiographic object’s attenuation profile in order to determine the pathlength of photons traveling
through the object, 2) an exponentiation transform of the pathlength data to determine the average
probability that a photon travels through the object unscattered along the given paths, and 3)a
spatial convolution transform that describes the detector’s blur function.

The graphical programming tool operates as follows. The user is presented with a window, or
canvas, on which appear buttons that allow the user to add items to, or delete items from, the
canvas. The user can add or delete Transforms and Connections. Transforms map input Data to
output Data and are represented on the screen with a 32x32 bit-mapped icon. The user can specify
the direction of the flow of data by connecting one Transform to another using a Connector,
which is represented on the screen as a line segment between the two Transform icons that it
connects. The user can move the Transforms on the canvas by clicking and dragging the cursor
when the cursor is in the region of the screen owned by the Transform’s icon. The user can delete
Transforus, and any Connections to the Transform are also automatically deleted. The user can
break Connection lines so that the Connection is represented with connected line segments rather
than just a single line segment between the two Transform icons it connects.

The Transforms are “living” objects, and the user can interact with them in several ways. The
user can see a description of a Transform, and change the parameters that define it. For example,
a SetOfParallellLineIntegrals has parameters that describe the angle(s) and separation of lines,
a Convolution has parameters that describe the filter function, etc. The user can also message the
Transform to display its output. This message is forwarded to the Transform's output attribute,



which is messaged to display itself. The fact that the Transform objects are alive distinguishes this
graphical programming tool from one that allows a user to construct and visualize a script that
contains a sequence of actions to be executed in a certain order [9).

In this section, we describe the Transform, Data, and Connection classes with an emphasis on
demonstrating the utility of OO concepts.

3.1 Data class hierarchy

The Data class hierarchy is shown in Fig. 1. The classes whose names start with Abstract are so
named because they are never instantiated, but provide a repository for methods and attributes
contained by their subclasses. The letter C is contained in the names of all of the classes in this
hierarchy because they all contain an attribute that points to external “C” programming language
data structures, kept external to the Smalltalk programming environment for efficiency of execution
reasons. This class hierarchy is intended to capture the structure and responsibility of vector and
image data that will be manipulated by C programming language subroutines.

The subclasses of AbstractCVector include Vector and Matrix objects that store values or
coordinates of float or integer types in C memory. Vector0OfValues objects can perform pointwise
transformations of themselves, using the exponential, logarithmic, square root, and trigonometric
functions. They can multiply themselves pointwise by another VectorOfValues, subtract them-
selves, add themselves or copy themselves. A FloatMatrixOfValues object can multiply itself by
a FloatVectorOfValues object. A VectorOfValues object can dot product itself with another
VectorOfValues object. FloatVectorOfValues objects can be told to display. This message
produces a line plot of the data. FloatMatrixOfValues objects can also be told to display. At
present, this produces an ImageAnalysisManager that displays gray-scale views of the data and
provides some tools for manipulation of the display. Each of these behaviars can be elicited by
sending a single message to a VectorOfValues object.

In the graphical programming tool that we have described, Data are passed around by Connectors
and manipulated by Transforms, and are naturally viewed as objects. Message-passing proves in-
valuable for making code that involves Data objects comprehendable. Most functionality can be
elicited with a single command, e.g. aFloatVectorOfValues display, in which display is the
message sent to the object aFloatVectorOfValues, aFloatVectorOfValues exp, or

aFloatVectorOfCoordinates translateBy:aCoordinate,

in which translateBy: is the message sent to the object aFloatVectorOfCoordinates and the
object aCoordinate is the argument of the message.

Several other OO concepts are illustrated in this class hierarchy. Inheritance is used to indicate
that all CVectors must have an address (pointer to C memory) and size attribute. The size
attribute may be a single number, as for a FloatVector, or it may contain z and y components,
as for a FloatMatrix. Although the message sent to each in order to retrieve its size is the
same, the methods are implemented differently, an example of polymorphism. All subclasses of
AbstractCVector possess the accessing methods, at :anIndex and at:anIndex put:aCoordinate.
Sending the message at:anIndex to a CVectorOfCoordinates returns the (z,y) coordinate pair
at the location specified by anIndex. The implementation uses the fact that the data are stored
in C memory as z00,y00,z01,y01, ..., that is, as (z,y) pairs row-wise in one contiguous block. On
the other hand, sending the message at:anIndex to a CVectorOfValues returns the value at the
location specified by anIndex (either an integer or float), another example of polymorphism.

The implementations for accessing, displaying, and manipulating are hidden from the user and
so the data is encapsulated. If, at a later time, we wish to change the memory allocation protocol,




we may also have to change the implementation of the at:anIndex method in some or all of the
subclasses of CVectorOfValues, but we won't have to change how every nther object elicits the
same old behavior.

FloatMatrixOfCoordinates and IntegerMatrixOfCoordinates share all methods and at-
tributes except the type of pointer to C memory that they have. The C memory is allocated,
and the pointer to it defined, in the instance creation method

FloatMatrixOfCoordinates new:aSize withAll:aCoord.

Note that we are able to avoid typecasting the address attribute that was inherited, an example of
dynamic binding.

3.2 Transforms

The Transform classes are relatively simple at this early stage in our software development. We
have written classes for several categories of Transforms, including MultiInputSingleOutput (Add,
Multiply, Subtract), SingleInputSingleOutput (Convolution, Exponential,Log, Log10, SqRt,
Sin, Cos, LineIntegral, ParallelLineIntegral) and no-input single-output (Parameter and its
subclasses).

All Transforms inherit output and dataSet attributes. The attribute output is generated from
dataSet using the subclass-specific method generateOutput, which first calls generateDataSet
to get the current dataSet and then computes output. Finally, all Transforms know how to
displayOutput (this message is forwarded to output which knows how to display itself).

All subclasses of Transform except Parameter share the method generateDataSet. generateDataSet
queries the Connections that are connected to the Transform in order to find the ones which deliver
input to it. These Connections are told to generateOutput and the return object is stored in the
dataSet. Parameters do not depend on a Connection object to deliver their data, and so they
over-ride this inherited method.

Subclass-specific transformations are in the method generateOutput, so that sending this mes-
sage to any Transform will result in output being computed as a transformation of the input
object, dataSet, an example of polymorphism. Again, note that we can decide to change the
implementation of the transform in order to increase speed, etc., but that this does not affect the
“rest of the world”.

All transforms are implemented by telling items in dataSet to compute the transform associated
with the Transform object that contains dataSet as input. In this way, a LineIntegral can
take line integrals of all kinds of Data objects, since it just tells the Data object to take line
integrals of itself. The responsibility lies with the Data object. This mechanism is called double
dispatching, which is a way to implement dynamic binding. Another example of double dispatching
is the following implementation of aFloat addSelfTo:aNumber. aFloat doesn’t know the type of
aNumber. aFloat could have logic that first determines what the type of aNumber is and then pick
an implementation that is consistent with aNumber's type (equivalent to a case statement in C),
or it could simply say aNumber addSelfToFloat:aFloat. Since aFloat knows that it is a Float
object, it can pick the proper implementation for aNumber to do the addition properly.

3.3 Connections

Connections merely transport Data from one Transform to another, which is a trivial responsi-
bility in the context of the environment we are operating in at present, wherein Data is stored in
memory on a single CPU computer. However, Connections might be very useful in a distributed




environment or in an application where Data is stored in a database or even in files. Note that,
even though a Connection merely passes along Data from one Transform to another, even this
simple activity exhibits the important concept of dynamic binding. Since Connections don’t know
what type of Data they are passing, the reference to the passed object cannot be typecast. Simi-
larily, the Connection doesn't know what type of Transfornm it is getting Data from and passing
it to. Thus, the attributes that hold these input and output Transforms cannot be typecast.
For example, the user might use a aConnection to connect aFloatVector to a Convolution or a
aFloatMatrix to a Convolution, but this is not determined until the application is run, so that

the input to aConnection cannot be typecast to either the FloatVector or the FloatMatrix class
at compile-time.

3.4 Advantages of OOP
3.4.1 Ease in understanding software

The notion of objects is natural and intuitive since we think in terms of objects. Objects have
responsibilities or behaviors that they must be able to perform and attributes that describe their
current state. Behaviors of one object are elicited by another object through messaging. Objects are
passed as arguments of messages, meaning that tremendous information can be passed into an ob-
ject with a minimal amount of syntax. For example, the generateOutput method of aTransform
might contain the single line dataSet lineIntegralSpecifiedBy:aLinelIntegralDescripticn.
The object dataSet might be a very complex 3D parameterization of a radiographic object.
alineIntegralDescription might be an attribute-rich object (like a C structure) that contains a
long list of specifications that define lines along which dataSet is to compute its integral. Alterna-
tively, aLineIntegralDescription might be a method-heavy object that produces the set of line
integrals programmatically. aLineIntegralDescription might also be able to answer questions
about what kind of set of line integrals it is so that dataSet could take advantage of particular reg-
ularities (like an equally spaced set of parallel lines, e.g.). Message-passing with object arguments
encourages the programmer to write code that is compact and easy to comprehend.

Since many objects may have the same methods, the same message can be sent to different
objects with a different implementation in each case (polymorphism), resulting in code that more
closely parallels a natural language description of the software’s function. Furthermore, the im-
plementation is not important to the “outside world” (the data is encapsulated) and so internal
data representation, accessing, and computation can be modified easily. Finally, inheritance trees
put generic functionality higher in the tree so that only methods and attributes that differentiate
a class from its superclass are contained in the class description. Inheritance makes it easier to
comprehend classes, organize them, and re-use them.

3.4.2 Ease in extending software

The notion of objects puts an emphasis on responsibility, meaning that it is easy to determine
where new functionality should be put - it will be a method or set of methods belonging to some
particular class or set of classes. The inheritance tree allows the programmer to incrementally add
responsibility and test it by subclassing (rapid prototyping). Encapsulation makes it easier to use
the new functionality since the implementation details are hidden. For example, when we wanted
to make line plots of FloatVectorOfValues, we created a new method called display for the class
FloatVectorOfValues. Now, whenever an instance of FloatVectorOfValues is told to display,
it knows how to do it. This new functionality was engaged immediately from other objects in the
application. We didn’t have to worry about all of the setup particular to aFloatVectorOfValues,



R A PR ik i i

e.g. the number of points in aFloatVector0OfValues, because this information is stored as at-
tributes of aFloatVectorOfValues, and is used by the method display. We have found rapid
prototyping to be a very important tool for testing ideas and stimulating new ones.

4 Programming language and environment

In this section, we will briefly discuss the impact that the programming language and environment
has had on our software development. Before choosing Smalltalk-80 and the VisualWorks envi-
ronment, we looked at one other option: using C++ as the programming language, InterViews
and/or DEC’s VUIT for building graphical user interfaces (GUIs), and CenterLine's ObjectCenter
environment for code development.

We feel that the C++ language is lacking in many respects. The language is essentially C,
which we feel does not encourage modularity. C++ enforces typecasting and dynamic binding
is only ailowed through the use of virtual classes. We also felt that InterViews and VUIT were
inadequate. In fact, we could not find a good, portable GUI class library. InterViews and other
packages are X-Windows based, but we are interested in transparent portability to PCs, which
don’t support X-Windows. DEC’s VUIT allows MacDraw-like construction of GUIs, and generates
the stubs that are associated with them, but, again, it is based on X-Windows. Code development
environments, like CenterLine’s ObjectCenter, still seemed immature to us. Finally, and most
convincingly, while ParcPlace’s VisualWorks melds the solutions to all of our requirements into a
seamless environment that works on multiple platforms, using C++ would have required us to use
several platform-specific tools that were not designed to work with one another.

4.1 Smalltalk-80

Smalltalk-80 is a pure OOP language, incorporating all of the desirable characteristics described
above: classes, objects, inheritance, encapsulation, messaging, polymorphism, and dynamic bind-
ing. ParcPlace’s class library contains several hundred useful classes and tens of thousands of
methods. We have reaped many benefits by building our class hierarchy underneath the ParcPlace
library through subclassing, especially as regards the GUI.

4.2 VisualWorks

ParcPlace’s VisualWorks is a development environment that greatly enhances the programmer’s
productivity. VisualWorks includes a tool for building GUIs with MacDraw-like commands. Many
components are provided, such as buttons, knobs, switches, sliders, text editors, etc. The graphical
editor allows the programmer to define his own components and re-use them easily. The graphical
editor also builds “stubs” for the methods connected to messages initiated by user interactions, e.g.
when the user pushes on a button.

VisualWorks includes a debugger that allows easy access to the last several messages that
were sent before an error occurred, or a user-written program “halt” or “notify” was encountered.
Inspectors can be used to display the values of the attributes of the objects to which the last
messages were sent. The ability to do incremental compilation of individual methods and the
integration of the code editor, compiler and debugger mean that a seamless environment is provided
for code development.

Furthermore, once the code is written, it can be run on a number of other platforms without
modification. Smalltalk-80 and VisualWorks are suppported on DECStation, Sun SPARC, NeXT
3.0, Macintosh, MS-Windows, Sun Solaris 2.0, 0S/2 2.0, IBM RS/6000, HP9000/700, and Sequent.



Finally, ParcPlace provides the C Programmer’s ObjectKit (CPOK) for integrating C and C++
code into your application. On some computing platforms, C/C++ code can be dynamically linked
into the SmallTalk application.

4.3 Summary of Smalltalk-80 and VisualWorks

It has been suggested [4] that the OO paradigm may not be as important as the development
environment in terms of boosting productivity. However, we feel that VisualWorks and Smalltalk-
80 work hand-in-hand and that it is difficult to separate the contributions of one from the other.

The incremental compilation provided by VisualWorks is useful primarily because the piece
of code being compiled (and debugged) is usually a method of an object rather than an arbitrary
chunk out of a stream of code. Thus, when debugged and compiled, it truly provides an incremental
extension to the functionality of the system and can be used immediately.

We found that when we initially began to use Smalltalk-80, debugging an entire application
(collection of classes) took more time to do initially than debugging an equivalent piece of C code.
The reason for this is that we were still learning the entire class library, which is inherited by our
classes. Debugging is actually the primary means by which we learned the class library provided
by ParcPlace. Once the steep part of the learning curve is overcome, though, the programmer finds
that debugging OO systems is very efficient and sensible. Again, the browsers and inspectors for the
code and data, which are part of the debugger, are much more useful because the code (methods)
and data (attributes) are already organized via the class definitions and inheritance tree.

The main contribution that the VisualWorks environment makes, independent of the language,
is the seamlessness with which the tools can be used together. The debugger contains a panel with
a code editor and incremental compiler, a panel with an inspector on the object of current interest,
and a panel containing a list of the most recent messages before the error or halt. Other browsers
can be open simultaneously for a more thorough browsing of related classes. The ease with which a
programmer can find errors, fix them, recompile, and restart the application profoundly enhances
productivity. The environment encourages and rewards rapid prototyping and reverse engineering
(recursive approach) for designing, implementing, and evaluating a system.

5 Conclusions

We have found that OO concepts play an important part in thinking about our software project
and in building a solution. Since the world around us is filled with objects and their interaction, the
OO0 paradigm meshes well with our thought processes. The basic human instinct to categorize and
organize is well-suited to the construction of inheritance hierarchies. Abstraction and inheritance
encourage the programmer to organize his understanding of the software and make changes to it
that fit in the existing structure sensibly. The real ability to incrementally extend functionality
using inheritance is evidenced by the dramatic increase in the availability of source code for purchase
from software vendors (in the form of class hierarchy libraries) instead of executables.

Message-passing and polymorphism make the code easy to comprehend and prototype quickly
since compact, readable software modules are encouraged. For example, ParcPlace recommends
that Smalltalk-80 methods be no more than 5-7 lines long [16]. Encapsulation makes the code
easy to extend since implementation specifics are hidden inside of objects that must fulfill their
responsibilities via appropriate behavior, but can do the dirty details of that behavior in any way
they like.

Our software resembles other applications that currently exist, some of which are also OO. For
example, graphical programming tools like Khoros [9], AVS [1], IRIS Explorer (7], and VIVA [2],

8



allow a user to place icons (that may represent data transforms) un a canvas and connect them
to other icons, creating a data-flow diagram. There are also abundant applications for free-hand
drawing and solid object modeling, as well as class libraries and OO graphical object descriptions
[10]. However, our goals beyond the immediate project include having control over and access
to the software environment so that it is readily modifiable and extendable for new projects and
goals. Toward this end, we conclude that the choice of a robust OO programming environment is
necessary for us to create a comprehensive class library that will be useful in our future efforts.

References

[1] Advanced Visual Systems Inc., 300 Fifth Ave., Waltham, MA 02154, e-mail address:
avs@avs.com, ftp to avs.ncsc.org [128.109.178.23].

[2] Birchman, J.J., Tanimoto, S.L., Rowberg, A.H., Choi, H.S., and Kim, Y., “Applying a Visual
Language for Image Processing as a Graphical Teaching Tool in Medical Imaging,” Proc. SPIE,
vol. 1653, pp. 379-390, 1992.

[3] Coad, P., and Yourdon, E., Object-Oriented Analysis, Prentice-Hall, 1991.

[4] Coggins, J., “Strategic Significance of Object-Oriented Design,” Proc. SPIE, vol. 1898, pp.
690-701, 1993.

[5]) Goldberg, A., and Robson, D., Smalitalk-80: The Language, Addison-Wesley, 1989.

[6] Hanson, K.M., “Bayesian reconstruction based on flexible prior models,” J. Opt. Soc. Am. A,
vol. 10, 1993, pp. 997-1004.

[7] IRIS Explorer Center (North America), 1400 Opus Place, Suite 200, Downers Grove, IL 60515-
5702, e-mail address: infodesk@nag.com, ftp to swedishchef.lerc.nasa.gov.

[8] Jacobson, 1., Object-Oriented Software Engineering: A Use-Case Driven Approach, Addison-
Wesley, 1992.

[9] The Khoros Group, Room 110 EECE Dept., University of New Mexico, Albuquerque,
NM 87131, e-mail address: khoros-request@chama.eece.unm.edu, ftp to pprg.eece.unm.edu
[129.24.24.10}.

[10] Koved, L., and Wooten, W.L., “GROOP: An Object-Oriented Toolkit for Animated 3D Graph-
ics,” OOPSLA 1993, Washington DC, pp. 309-325.

[11] ParcPlace Systems, 999 East Arques Avenue, Sunnyvale, CA 94086-4593, phone: (800) 759-
PARC.

(12] Raloff, J., “Brain Warping,” Science News, vol. 144, 1993, pp. 392-394.

[13] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W., Object-Oriented
Modeling and Design, Prentice-Hall, 1991.

[14] Szeliski, R., and Lavallee, S., “Matching 3-D Anatomical Surfaces with Non-Rigid Deforma-
tions using Octree-Splines,” SPIE Geometric Methods in Computer Vision II, 1993, vol. 2031,
pp. 306-315.



(15] Taylor, D. A., Object-Oriented Technology: A Manager’s Guide, Addison-Wesley, 1990.
[16] Notes for “Introduction to Smalltalk”, a course offerred by ParcPlace Systems.

[17) OOPSLA 1993, Washington DC, “Experience Reports” sessions. No published summary.

AbstractCVectoiQfVaiues

TwoDFinkeElementMatrix

Figure 1. Class hierarchy for vector and matrix data.

10



. 5/20/‘14







