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Abstract

CIRCE2 is a computer code for modeling the optical performance of three-dimensional
dish-type solar energy concentrators. Statistical methods are used to evaluate the direc-
tional distribution of reflected rays from any given point on the concentrator. Given con-
centrator and receiver geomerries, sunshape (angular distribution of incident rays from
the sun), and concentrator imperfections such as surface roughness and random devia-
tion in slope, the code predicts the flux distribution and total power incident upon the
target. Great freedom exists in the variety of concentrator and receiver configurations
that can be modeled. Additionally, provision ; for shading and receiver aperturing are
included. DEKGENZ? is a preprocessor designed to facilitate input of geometry, error dis-
tributions, and sun models. This manual describes the optical model, user inputs, code
outputs, and operation of the software package. A user tutorial is included in which sev-
eral collectors are built and analyzed in step-by-step examples.
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Preface

In the mid-1980s, A. C. Ratzel and B. D. Boughton, prompted by the need of San-
dia solar energy engineers to model point-focus solar collectors, reviewed existing optics
simulation codes available to them. These included CAV [1], COPS |2]|, and HELIOS
13,4,5]. Of these, HELIOS, developed by F. Biggs and C.N. Vittitoe at Sandia National
Labs during the 1970s, was best suited for modeling the large variety of retiector and
receiver configurations possible for point-focus collector systems. HELIOS, which incor-
porates much of the solar optics theory developed by George Schrenk |6}, is in principle
capable of modeling any practical reflector and receiver configuration. However, the
computer code was written principally for the purpose of modeling central-receiver col-
lector systems. HELIOS’ large size, generality, and predisposition toward central re-
ceivers made it cumbersome to use for modelling dish-type collector systems. With the
goal of providing users with a tool that is relatively easy to implement and does not
require a large investment of time to obtain results, Ratzel and Boughton simplified and
specialized HELIOS to be more amenable to analysis of dish-type systems. The result-
ing analysis package, CIRCE.001 (Convolution of Incident Radiation with Concentrator
Errors) (7,81, allowed a user to efficiently build and analyze a variety of point-focus solar
concentrators.

The present work has focused on expanding the capabilities of CIRCE.001, opti-
mizing storage and computational efficiency, and increasing user-friendliness. Among
the new features offered in CIRCEZ2 are: an ability to generate and analyze three-dimen-
sional (3-D) internal or external receivers of arbitrary geometry, receiver aperture mod-
eling, the capability to model triangular facets, augmented ability to generate and
analyze axisymmetric and nonaxisymmetric facets of arbitrary contour, elimination of
rotational constraints on facets, augmented shading capability, more than 20X greater
resolution of target flux distributions, an improved integration scheme for calculating
total collected power from flux distributions, and more explicit control over convolution
of sunshape and concentrator error distributions. Though capabilities have increased,
code optimization has increased computational efficiency, and reduced storage require-
ments by 95%. Computer savings are problem dependent, but significant savings in
CPU time are realized for all problems, and reduction of over 300X are observed for
some. Thus, CIRCE2 is moie I’C {riendly than ever, and is now coupled tn the PC-
compatible thermal analysis code AEETES | 18].

The user-interface code DEKGEN has been modified to include the new capabili-
ties of CIRCE2 and check user input for correctness where possible. It is now called
DEKGENZ2. Because of the proliferation of plotting routines, and personal preferences
for certain packages over others, the graphics simulation code PLOT accompanying the
release of CIRCE.001 has not been carried along with the new software ensemble.

The optical model upon which CIRCE2 is based is documented fully in the
HELIOS manuals [3-5]. A concise yet thorough synopsis of the theory can be found
in Reference |9]. In this manual, the theory that is essential for competent use of the
analysis code is developed for the benefit of the user. Though based on the same para-
digm, many differences between CIRCE2 and HELIOS exist in numerical and algorith-
mic implementation of the theoretical model. The numerical procedures described in
this document apply to CIRCE2, and supercede those described in the HELIOS docu-
mentation where overlap exists.



Caution

The CIRCE2 family of codes discussed in this report is still under development.
Numerous test cases have been run against HELIOS and qualitative and quantitative
comparison with measured data from several receivers have been made to verify the
code. However, solution techniques are approximate and there may still be “bugs” in the
simulation. The author should be informed if any problems are uncovered while using
the codes so that future releases will reflect all possible upgrades. Users should contact
the author periodically to learn if any “bugs” in the code have been discovered/corrected.
The author may be contacted by phone at (505) 844-5890, by E-mail at vjromer.eng-
sci.sandia.gov, by fax at (505) 844-8251, 0. , correspondence at Vicente J. Romero, San-
dia National Laboratories, Box 5800, Albuquerque, NM 87185-0835. The Sandia
personnel locator service at (505) 844-5678 has updated information in case these desti-
nations change.
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1 INTRODUCTION

If you need to get started quickly, or find it extremely painful to wade through
such things as solar optics theory and numerical methods, you may want to proceed
immediately to Chapter 8, the user tutorial, after reading this section. There you will
find four examples that, in a step-by-step manner, take the user through the rigors of
running CIRCE2 and DEKGENZ2. The examples introduce the user to many of the capa-
bilities of the software package. Explanatory comments and interpretation of significant
results are provided, and where supplementary information is required, the user is
directed to key sections of the manual. Once all four examples are read and understood,
sufficient familiarity with the software and the underlying theory will have been achieved
to enable the reader to use the analysis package.

CIRCEZ2 and DEKGENZ2 are design and analysis tools for the study and optimiza-
tion of dish-type solar collectors. With inputs of concentrator and receiver geometry, sun-
shape (angular distribution of incident rays from the sun), and concentrator
imperfections such as non-unity reflectivity, surface roughness, and random deviation in
slope, CIRCEZ2 uses statistical optics to predict flux-density distribution and total inci-
dent power on the target. After the above information is supplied, the normal mode of
operation is as follows: the user discretizes the concentrator into a number of smaller
subareas called subfacets; a grid of points on the target surface is established; the con-
tribution of each subfacet to the normally incident flux at each target point is evaluated;
and the resulting discrete flux distribution at the target points is numerically integrated
over the target surface to determine total incident power.

In developing the codes, two comprehensive goals were set at the start. First, the
code should be user-friendly and versatile —enabling rapid and easy construction and
analysis of collector systems of common geometries, though general enough to investi-
gate more complex or unconventional designs. Accordingly, a user-interface code, DEK-
GENZ2, has been written to help build collector system data decks, and great freedom
exists in CIRCEZ2 for the types of reflectors, sun models, and targets that can be ana-
lyzed. Concentrators can be comprised of one facet, such as a continuous-surface para-
bolic dish, or several facets (up to 350) that can be aligned automatically by DEKGEN2.
Facets can have circular, rectangular, or equilateral triangular projected shape. They
may have spherical, parabolic, or flat contour, or may have a custom profile generated by
revolution of a user-specified curve. Alternatively, the user has the freedom to supply a
subroutine that describes a facet’s contour —whatever it might be. Shading and blocking
by the target and support structures or other objects can be accounted for. Completely
arbitrary 3-D target geometries may be accomodated. In addition, “standard” planar tar-
gets of rectangular or circular shape, and internal or external 3-D receivers of spherical,
cylindrical, or conical (upright or inverted) shape are supported. These targets are not
limited to “complete” shapes, i.e., just the frustrum of a cone may be analyzed, or only a
small angular section of the frustrum as opposed to the full axisymmetric region. More-
over, axisymmetric “hybrid” receivers can be constructed from the above component
shapes. Thus, CIRCEZ2 is particularly well suited for treating axisymmetric “cavity” type
receivers, which are the kind most commonly used in dish/receiver applications. Addi-
tionally, the receiver aperture is automatically taken into account for axisymmetric
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receivers and can be separately defined for other targets. To investigate the effects of
instantaneous tracking errors, the freedom to specify sun position relative to the concen-
trator has been included.

Second, the code should have the capability to run on mainframe and personal
computer systems and be adaptable to the computing environment. Accordingly,
CIRCE2 has many options that can be used to economize on CPU time (at slight sacri-
fices in accuracy) for PC analyses. For more powerful systems, the full capability of the
HELIOS code is at hand. Moreover, CIRCE2 enjoys intrinsic accuracy advantages over
HELIOS for analyzing dish-type concentrators —featuring 20X greater target-flux reso-
lution, more accurate integration of flux distributions on the target surface, and several
deep-dish correction factors, while having vastly lower storage requirements and a
restructured computational algorithm that results in large computational savings.

This manual describes the mathematical model, user inputs, code outputs, and
run environment for the CIRCE2 and DEKGENZ codes. It is important that the user be
aware of the theory and numerical procedures upon which CIRCEZ is based before using
it in a simulation. This will help in deciding how to model a given collector and sun con-
dition (what geometric quantities affect results most and therefore are most important
to capture accurately?, how does sunshape figure into the calcuiation?, what is the effect
of a single convolution vs. multiple convolutions? etc.), and in interpreting results.
Chapter 2 outlines the important concepts in a statistical treatment of real reflecting
surfaces in the presence of a sun that is treated as a disk- (not point-) source. Chapter 3
introduces the preprocessor code DEKGENZ2, its structure, mode of operation, and inter-
face with CIRCE2. The file system associated with the codes is also described. Chapters
4 through 7 describe the parameters that DEKGEN2 prompts for when building a data
deck, and provide the background information necessary for competently choosing
parameter values and analysis options. Chapter 4 summarizes the sun models and con-
centrator-error distributions, and their manipulation in a statistical treatment of real
reflecting surfaces. The parameters that control the numerical implementation of the
statistical algorithm are explained, and guidelines are given for appropriate use of these
parameters under various circumstances. Chapter 5 is devoted to target geometry and
mesh generation, output of target flux distributions, and numerical integration schemes
for calculating total incident power. Chapters 6 and 7 are concerned with geometric
modeling of individual reflectors and of the aggregate concentrator. Finally, Chapter 8 is
a tutorial for familiarizing the user with the CIRCE2/DEKGEN2 system. Four varied
examples are used to illustrate important capabilities of the software package and to
provide guidance for competent usage.
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2 OVERVIEW OF THEORY

It is important for the user of CIRCE2 to know the underlying physical principles
and mathematical approximations upon which the code is based. Without going into too
much detail, it is the purpose of this section to inform the user of the optical theory in the
CIRCE2 model of solar collector systems. In this and following chapters, the numerical
treatment necessary for computer implementation of the theoretical model is outlined
where necessary to equip the user with information to make competent modeling deci-
sions and interpret analysis results correctly. Further details are thoroughly docu-
mented in the references cited in the discussions below. A concise synopsis of the theory
is presented in Reference {9].

2.1 Solar Optics for Perfect Reflectors

Fundamental to solar optics is the existence of the sun as an energy source of
finite dimension. Looking up at the sun, it appears to be a disk of small but non-zero
radius. Since the sun is not a point source but a disk, it irradiates a point on a reflector
surface as a cone of energy rays instead of as a single ray, as Figure 2.1 illustrates. Rays
originating from one diametric line across the solar disk are shown. As the variation in
vector magnitudes along this line indicates, the intensity of energy incident from each
point across the solar disk may vary. The angular distribution of energy with respect to
the "central ray” (ray from the center of the solar disk) is called the “sunshape”. A per-
fect (ideal) reflector has a smooth surface and no absorption of incident radiation. Thus,
all energy in a given wavelength band incident upon the surface is specularly reflected
(angle of incidence = angle of reflection). For a perfect flat reflector, this means that the
reflected cone is a mirror image of the incident cone. So, treating the sun as a disk
source implies foregoing the classical techniques of ray tracing for the more applicable
cone methods, and requires using an angular distribution function to describe solar-flux
intensity over the disk surface.

SOLAR DISK

~——REFLECTED CONE

REFLECTOR SURFACE

Figure 2.1 Solar Disk and Reflected Cone.
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Consider the insolation at two adjacent points A; and B; on the flat reflector
depicted in Figure 2.2. By the definition of solar optics [6], the incident sunshape and
incoming direction of the central ray with respect to the absolute X-Y-Z reference frame
are identical at the two points (and in general at all points on the reflector). The central
rays reflected from points A; and B, on the reflector strike the flat target at points Ag and
B,, respectively. Since the reflector is flat, the reflected central rays are parallel. If the
surface had some curvature to it, the central rays, and thus the points of intersection on
the target, would diverge or converge depending upon the magnitude and direction of the
curvature.

INCOMING

/CEN;I'R/AL RAYS

TARGET

REFLECTED
CENTRAL RAYS

FLAT REFLECTOR

Figure 2.2 Sun-Reflector-Target Sequence.

The reflected cones of light from points A; and B illuminate the outlined areas on
the target about points Ay and By as shown. The flux at target point C is desired.
Reflector point A; will have no contribution. Point B; will, however. A flux vector of a
certain magnitude strikes point C from Bj. The component of this vector in the direction
normal to the target at C constititutes the contribution from reflector point B; to the
incident flux at target point C. Summing the contribution from every point on the reflec-
tor surface gives the total flux incident at C due to the reflector.

2.2 Statistical Optics for Real Reflecting Surfaces

In CIRCE2, the effect of non-ideal reflectors is taken into account by statistical
means. An attempt is made here to inform the user what this entails, while avoiding
the substantial mathematical details of the process.
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A real (imperfect) reflector deviates from a perfect reflector in many respects. First,
all of the energy striking the surface does not leave because of surface absorption. This is
handled by allowing the user to specify a specular solar-band reflectance. Additionally, in
the CIRCE2 simulation, reflecting surfaces are assumed to conform to certain ideal
geometries, such as flat, paraboloidal, etc. Real reflectors cannot be made to conform to
these shapes exactly without introducing great expense. The overall profile of reflectors
in use will generally deviate from the ideal shapes. For example, waviness may exist on
the reflector surface. Deviation from the ideal slope is called a “slope error”. The bet-
ter the quality control in manufacturing the reflector, the smaller the slope errors will
be. Slope errors will cause the surface normal to deviate from that of an ideal surface.
A distribution function can be used to assign a probability to the direction taken by the
actual surface normal. A perfect (specular) reflector is microscopically smooth, which
dictates that the surface normal at any point is unambiguously associated with the
geometry of the surface. A real reflector, however, has surface roughness that creates ambi-
guity in the actual direction of the surface normal and makes the reflection diffuse. A sepa-
rate distribution function can be associated with these errors as was done for
the slope errors. The smoother the surface, the smaller the standard deviation of this error
distribution.

Up to five such distributions, for slope errors, specularity errors, facet misalign-
ment, etc. can be specified. The errors, all assumed to be random, are described by
either 1-D circular-normal or 2-D elliptic-normal error distributions. The combined
effect of the concentator errors is obtained by convolving these distribution functions, as
discussed in Section 4.4. The result is an effective distribution of normal directions
about the “ideal normal” of the surface, N,. This distribution is assumed to be invari-
ant over the entire surface of the concentrator. Since the distribution represents a multi-
tude of surface-normal directions as Figure 2.3 illustrates, it is scmetimes referred to as
the “concentrator error cone” .

e
SURFACE NORMAL A EFFFECTIVE SUNSHAPE
\ N° / /
! /
REFLECTED GENTRAL RAY
/
INCIDENT / "

SUNSHAPE

\\\ EFFECTIVE

REFLECTED
CONE

INCIDENT
CONE

Figure 2.3 Igmpé)rtant Distributions in the CIRCEZ2 Statistical Model of Real Reflecting
Surfaces.
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The last step in the process of modeling real reflecting surfaces is to convolve the
sunshape with the concentrator error-cone. A cone of light is reflected from any point on
the concentrator due to the sun being a disk-source (c. f. Figure 2.1). The reflected cone
is centered about the central reflected ray and may vary in intensity with angular direc-
tion from the central ray. Now, the direction of the reflected central ray depends upon
the incident central ray and the surface normal direction. However, since there is a mul-
titude of possible normal directions (i.e. the error cone), the reflected cone may exit in
any of a number of directions. As conceptually illustrated in Figure 2.3, the distribution
of energy is dependent upon both the incident angular distribution of incoming rays
(sunshape) and the concentrator error-cone probability distribution. These two distribu-
tions are combined in a convolution integral (“convolved”) to obtain the directional prob-
ability distribution of energy leaving the surface. This effective reflected distribution is
referred to as the “effective sunshape” distribution, ESUN. Chapter 4 addresses the
calculation of the effective sunshape. The chapter includes the information the user
needs to know to model the sun, define concentrator errors, and control the convolution
process.

2.3 Application to Solar Collector Systems

Some additional considerations must be taken into account when modeling collec-
tor systems. Figure 2.4 shows a generic solar collector system. An analysis requires
definition of the three aspects of the collector system: concentrator geometry, target
geometry, and the sun model. An absolute X-Y-Z coordinate system is used as the refer-
ence frame for setting up the problem. It is also referred to as the global or “collector
coordinate system”. Concentrator geometry is described in terms of this system. A
local 1-2-3 “target coordinate system” is used to generate the target. The target coor-
dinate system is translated (not rotated) from the collector coordinate system. Its origin
is located in the collector coordinate system at the point (X=Xo,Y=Yo,Z=Z0). The sun
position is specified by definition of a vector, v , pointing toward it from the origin of
the collector coordinate system. The negative of this vector gives the direction of the
incoming central ray.

On its way from the sun to the concentrator, and then to the receiver, a ray may be
stopped in several ways. The receiver, or supporting structures, may block rays as they
descend toward the concentrator, shading portions of it. In turn, such structures may
block some of the energy reflected from the concentrator toward the target. It is also
possible that facets may shade/block portions of themselves and/or other facets. These
effects can be accounted for with a shading/blocking factor B; (see Equation 2.3) that cor-
responds to the fraction of shaded surface of each facet, which also includes the fraction
of the surface whose reflected rays are being blocked. The aperture of a receiver may
block some rays reflected from the concentrator, and should also be taken into account
when modeling a collector system.
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Figure 2.4 Generic Collector System.

For purposes of numerical computation, the concentrator is usually subdivided
into relatively small reflecting surfaces called “subfacets”. Figure 2.5 shows in sche-
matic a subfacet and target section. Both are flat for convenience in this example. The
incident central ray, ideal normal N,, and ideal reflected central ray are shown.
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Figure 2.5 Schematic Used in Derivation of Flux Incident at Target Point i from
Reflecting Surface j.
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The plane containing these vectors defines the {-n plane of the “sun-reflector coordi-
nate system”. The angular distribution of energy contained within the effective
reflected error-cone is projected upon a computationally convenient plane, as suggested
in [ 6], called the “reflected-ray reference plane”. This plane is normal to the reflected
central ray and at unit distance from point j on the subfacet. The differential area dS on
the target is contained within a solid angle dw given by:

do = dScosd)/d2 (2.1)

where d is the distance between point i on the target surface and point j on the reflector
surface, and dScos¢ is the projection of dS normal to the line between points i and j.
This solid angle intercepts the area dS’ on the reflected-ray reference plane. With
respect to the reference plane, do is defined by:

do = ds cos\g 2.2)
(secy)

where dS’cosy is the projection of dS’ normal to the line between points j and i, and
the distance between these points is secy, recalling that the plane is at unit distance
(along the reflected central ray) from j. Since they share the same solid angle, the total
power intercepted by dS and dS " is the same.

At this point, an approximation is made to enable numerical solution of the prob-
lem we are formulating. The energy reflected from all points on the subfacet surface is
assumed to originate from the point j. The total power (P) reflected from subfacet j is
given by the solar insolation, I, multipied by Ajcosu (1-B;) which is the unshaded and
unblocked intercepted reflector area where B; is the fraction of the subfacet that is
shaded/blocked and u is the angle of incidence/reflection as shown in Figure 2.5, multi-
plied by the facet’s specular reflectance for sunlight, « . Thus,

P=IKAjcosu(1—Bj) (2.3)

In section 6.3 we address the determination of the important subfacet quantites A, N,,
and source-point location.

The distribution of energy within the reflected cone is given by the effective sun-
shape probability distribution ESUN(u,v), where u and v are orthogonal coordinates in
the reflected-ray plane. The origin of the coordinate system is at the point O where the
reflected central ray intersects the plane. ESUN is a normalized distribution such that
its integration over the illuminated area of the plane yields a value of unity. Thus, the
probability that power passes through the plane at any point i"is given by ESUN(u;,v;-).
The power intercepted by dS” is then approximated by multiplying the total power
reflected from the subfacet element by ESUN(u;,v;)dS’, which is the fraction of power
passing through dS°. Expressing dS” in terms of dS by equating (2.1) and (2.2), the
power intercepted by dS” can be written:
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P x JESUN(ulr, Uir) dScosq) (2.4)
Pyg =

d? cos3y
The flux density, Fy;, at target point i due to subfacet j is given by:

[ (1 - B)) cospcosd AESUN (u7, v;) |
FU = Pds/ds = PdSl/dS = IK““"‘ co d2 COSSW T (2~5)

where the fraction term is a function of the locations i and j.

The total flux at target point i is obtained by summing the contributions from each
of the j subfacets on the concentrator:

Fi = ZFij s J =1, NUMsubfacets (2.6)
J

2.4 Determination of Total Power Intercepted by Target

To determine total power collected, the incident flux at a regular pattern of grid
points on the target surface is numerically integrated. Here, “regular” means: at inter-
vals on the target surface described by equi-incremental stations of the curvilinear coor-
dinates that describe the surface. For example, consider a spherical target section,
which is completely described by variations of the coordinates ® and ¢ on the surface
defined by the equation p=constant. The total angular extents A® and A¢ are divided
into equal increments 80 and 8¢ , such that A® = nd0 and A¢ = md¢ where n is the num-
ber of divisions in the ©-direction and m is the number of divisions in the ¢-direction. An
orthogonal net of lines if formed on the surface with 3@ and d¢ spacing. The grid of
points located by the intersections of the mesh lines represents a “regular” discretization
of this two-coordinate surface.

Quadrature is performed over a flat, rectangular domain in the surface coordi-
nates. For example, in the spherical case, the surface ‘ntegral becomes:

”F(@, ¢) p2sindOd¢ = ”I:‘(G),(p)d@d(p (2.7)
R R

where F(O, ¢) is the flux distribution on the target. Orthogonal coordinates © and ¢ can
be visualized to preside over a flat domain upon which the Jacobian-weighted scalar
function F is defined. The grid of points becomes rectangular and equi-spaced in this
domain, and the value of F' is known at each of the points. The specific numerical tech-
niques employed to evaluate this double integral are summarized in Section 5.2.2.
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3 DATA-FILE GENERATION AND OUTPUT OF RESULTS

3.1 DEKGEN2: A Preprocessor and Data-Deck Generator

Sections 4-7 of this manual provide the necessary information to build and ana-
lyze solar concentrators. DEKGEN2 is an interactive preprocessor that guides the user
through the building process and creates the data file necessary to run the analysis.
DEKGENZ2 provides on the computer screen a description of the current parameter
whose value needs to be input, along with an associated keyword in capital letters.
DEKGENZ2 keywords are the same as those in t'is manual. Once the user gains an
understanding of each of the parameters that CI'¢CE2 uses, the manual rarely has to be
consulted because of the detailed prompts in DEKGEN2. However, referring to the man-
ual for more complete information is expedited by Appendix G. It lists keywords,
grouped by category (see below), in alphabetical order. Beside each keyword is a short
description, statement of dimensional units in which the value should be input, and page
number in the manual where it is described further. Keywords are written in all capital
letters, hopefully making them easy to spot on a page.

Input data is organized into four categories:
e Sun and Concentrator-Error parameters
* Target/Receiver parameters
» Facet/Reflector parameters
* Concentrator parameters

A user-input title precedes each data group.

DEKGEN2 can be used to create a new data file or can be used to modify an exist-
ing one. When the latter option is specified, DEKGEN2 asks for the old file’s name and
displays its parameters for the first data group. The user is then prompted as to
whether any of the values need to be altered. If one parameter is to be altered, then all
parameters from the data group must be redefined (input). After completing the first
data group. DEKGENZ2 advances through the other data groups similarly. For certain
information lists that can be quite lengthy, such as tabular sunshape data and facet data
for a concentrator with a large number of facets, DEKGEN2 can read-in pre-existing
files. The files can be generated outside of DEKGENZ, saving the user laborious interac-
tive input of data. All data files are read in free-format.
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WARNING

Use of DEKGEN?Z is strongly encouraged even for the experienced
user because of operations such as unit conversions and creation of unit
vectors that the user may not be aware of. Also, one entry in a data deck
may affect quantities in other places in the file. For these reasons, chang-
ing entries by editing the data file may lead to unexplained errors and
should be avoided. Much work has gone into making DEKGENZ2 user-
friendly, fast, and painless to use. Internal logic is used where possible to
simplify and shorten the data input process. Checks are made in many
places to ensure that information input is consistent with previous infor-
mation and/or within the acceptable ranges of the parameters.

3.2 Coupling between DEKGEN2 and CIRCE2

Upon completion of a DEKGENZ2 session, the code will create an output file named
“input” for CIRCEZ2’s use, whether it was generated from scratch or modified from a pre-
existing file. Appendix D contains a sample input file. If the receiver modeled is a hybrid
target (see Section 5.4.6) the file “hybrid” containing the geometry of the receiver will
also be output for CIRCE2’s use. Example problem 4 in Chapter 8 contains a sample
hybrid file. If a user-defined custom target is to be analyzed, DEKGEN2 outputs the file
“usertarg” for CIRCE2’s use. Example 1 of Chapter 8 illustrates the file-coupling
between CIRCE2 and DEKGEN2 in an in-depth manner.

3.3 CIRCEZ2 Results Files

In the course of an analysis, CIRCE2 reads the relevant input files and outputs
the files: “output,” “flux,” and “messages.” The contents of these files are presented in
the Chapter 8 examples, with commentary as appropriate. Briefly:

The output file echos input data, lists convolved sunshape information, locations
and normals (referred to the collector coordinate system) of target grid points, computed
flux at each target point, total integrated power incident upon the target, the number of
subfacets reflecting rays to each target point (“hit map”), system efficiencies, and the
maximum target-point flux calculated (“peak flux”).

The flux file contains a concise subset of information from output. The matrix
forms of the flux distribution and hit map are given along with the results summary
table. The results summary table is located at the bottom of both the output and flux
files. Appendix E contains a sample flux file.

The messages file contains messages pertaining to “unusual” occurances during
the analysis and should be checked at the completion of each run.
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3.4 Coupling between CIRCE2 and AEETES

The AEETES computer program [18] predicts the thermal performance of axisym-
metric cavity-type solar receivers such as the Sandia reflux pool-boiler and heat-pipe
receivers. CIRCE2 can create, at the user’s request, a data file of the flux-density profile
on the receiver surface that may be read directly into the preprocessor for the AEETES
program. The file, “circ2aee”, can only be generated if the receiver is modeled as a
“hybrid” receiver (Section 5.4.6).
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4  CALCULATION OF THE EFFECTIVE SUNSHAPE
DISTRIBUTION, ESUN

The existence of the sun as a disk source, coupled with imperfections of real
reflecting surfaces yields to statistical treatment as explained in Sections 2.1 and 2.2, In
this section, the parameters used in defining sunshape and concentrator-error distribu-
tions are discussed. The convolution process for combining the two distributions to yield
the reflected sun image (effective sunshape distribution ESUN in Equation (2.5)) is also
described, along with the parameters that control the process. Guidar.ce is also given for
choosing the most appropriate combination of convolution parameters to match a given
set of circumstances.

4.1 Sun Position

The first consideration in modeling the sun is the definition of its location relative
to the concentrator. Definition of the vector V in Figure 2.4 determines the sun posi-
tion. The sun vector is defined in DEKGEN2 by the components SV(i), i=1-3, referred to
the global X-Y-Z coordinate system. V, does not have to be a unit vector. Freedom in
specification of the sun position allows investigation of instantaneous tracking errors,
facet or collector astigmatism effects, etc.

4.2 Sunshape Distribution

The sunshape is the angular intensity distribution of incoming rays about the
sun’s central ray. Assuming a perfect surface, the reflected sunshape is the same as the
incident sunshape. With this in mind, it is convenient to describe the incident sunshape
with the ideal reflected sunshape depicted in Figure 4.1. The reflected cone illuminates
a circular area on the reflected-ray reference plane, whose orientation is normal to the
reflected central ray as explained in Section 2.3. Since the plane is by definition (see Sec-
tion 2.3) a unit distance from point of incidence/reflection, p of Figure 4.1 is given by
(1) (tan y) = tan y. If the sunshape is an azimuthally symmetric distribution, which is the
customary assumption, it can be described by one coordinate —the angle v, or equiva-
lently through the small-angle approximation, the measure p. It is more convenient to
use p in integrating the distribution over the illuminated area. Figure 4.2 gives some
example sunshape distributions, S (p), where p has units of milliradians (mrad) because
of its equivalency to y at these small angles (though is really not an angle). The quantity
S(p) 2npdp gives the amount of solar energy incident from a differential ring on the illu-
minated spot of Figure 4.1. Integrating over the area of the spot gives the total energy
reflected from one point on the reflector surface, which is equal to the solar insolation
(for our temporarily assumed-perfect reflector).
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CIRCEZ allows separation of the total insolation 1 (Watts/m?) from the shape of
the insolation distribution. Thus, the distribution S (p) input for the sunshape can
have any units or be unitless. In CIRCEZ2, the value of the sunshape at a given value of
p is given by Equation (4.1), where S (p) is the “normalized” distribution function given
by Equation (4.2) such that Equation (4.3) holds. Here p.4g, is the angle formed by the
solar central-ray and the outer limit of the illuminated region beyond_which intensity
falls to zero. Note that, because Equation 4.3 applies, the integral of S(p) in Equation
4.4 is equal to I, as required.

S(p) =Ix8S(p) (4.1)
< S
S(p) = Pd (Q) 4.2)
edge
[ S(p)2mpdp
0
pedge ‘
j S (p)2npdp = 1.0 (4.3)
0
pedge~
_[ S(p)2npdp =1 4.4)
0

Sun modeling is a subject unto itself. A grod synopsis of sun modeling and discus-
sion of the large sensitivity of collected power to sunshape variation for the Solar Cen-
tral Receiver Test Facility at Sandia, Albuquerque is presented in [3, chapter 6].
References [ 10] though [14] may be consulted for further information on sunshapes.

In CIRCEZ2, three modeling options for the sunshape distribution are available, as
defined by the choice of the parameter JSUN,

JSUN = 1 - User-tabulated distribution
2 - Gaussian distribution
3 - Uniform, or “pillbox,” distribution

The distributions in Figure 4.2 are representative examples of these options. (Note the
semi-log scale.)
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When JSUN=1, the user must provide a table of SVAL vs. RHO (i.e. S(p) vs. p)
data. The number of points in the table is controlled by the variable NTABL (< 50). The
first point in the table must be at p = 0, i.e. RHO(1)=0, with subsequent tabular entries
at increasing distance p from the solar central-ray. As previously mentioned, the units of
S(p) do not matter as long p is measured in milliradians. With the tabular option, sun-
shape is assumed to vary linearly between data points. The radius of the last data point
is taken to be pedge. beyond which intensity is zero. If desired, a file containing the tabu-
lar data may be read into DEKGENZ2 in preference to entering the data interactively. A
sample file is presented in Example 1 of Chapter 8 (pp. 76).

The option JSUN=2 generates a Gaussian sunshape of specified dispersion DIP-
SUN. A normalized Gaussian (1-D circular-normal) distribution is given by

exp% P 4.5)

where o is called the “dispersion”, or “root-mean-square-width” (rmsw) of the dis-
tribution. In many cases it is advantageous to approximate circumferentially-symmetric
distributions with circular-normal (Gaussian) distributions. This is done with JSUN=1
and JSUN=3 sunshapes when analytic convolution of the projected error-cone and sun-
shape distributions is requested (see Section 4.6.2). The basis for “equivalency” between
tabular or pillbox sunshapes and their Gaussian approximations is equivalency of their
rms radii. (All of the sunshapes plotted in Figure 4.2 have equal rms radii.) The “root--
mean-square-radius” (rmsr) of a normalized circumferentially-symmetric distribution
S (p) of finite radius peqg, (beyond which the distribution is zero-valued) is defined as

‘ 2
| pedgo i

rmsry_p = '[ QZS(p)andp‘l (4.6)
L0 1
The rms width, or dispersion, of an azimuthally symmetric distribution is related to its

the rms radius by

rmsr = J26 4.7)

When analytic convolution is used, the equivalent rms width of tabular and pillbox sun-
shapes is reported in the output file.

The option JSUN=3 allows specification of a pillbox sun of radius RHOEDGE
(pedge ). The normalized sunshape is described by

Spy = ! (4.8)

n(pedgc)z
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Equation 4.6 simplifies in the case of a pillbox sun to

rmsr = 8- 4.9)

4.3 Concentrator Error Distributions

Concentrator imperfections such as slope errors, surface roughness, random facet
misalignments, etc., have impact on the actual normal at the concentrator surface.
These imperfections give rise to error distributions, which assign a probability to the
chances that the actual surface normal will take a given direction. Concentrator imper-
fections can usually be modeled with 2-D elliptic-normal error distributions.

A (normalized) elliptic-normal distribution having rms widths or “standard
deviations” ¢, and o, along the major () and minor (s) axes, respectively, is described
by:

(4.10)

1
Eop(r.s) = onc 6 P |7
r §

It is convenient to represent such a distribution by the contour obtained by setting
the argument of the exponential term in Equation (4.10) equal to -1/2. The principal axis
intercepts of such a contour are equal to the standard deviations of the distribution, as
shown in Figure 4.3. In the figure, a reflector section is shown with its associated
“sun-reflector coordinate system”. Such a system has its origin at a representative
center point of the reflecting section. The ideal nermal there defines the direction of the
{-axis. The &-n plane is perpendicular to the {-axis. A central ray from the sun that
strikes at the origin reflects in a direction whose projection onto the &-n plane defines
the direction of the n-axis. The &-axis completes the rectalinear right-handed (&, n, )
coordinate system. When the (-axis lines up with the sun vector, no solar projection of
the {-axis exists. The ambiguity is resolved by: lining up the &- and n- axes with the
absolute X- and Y- axes for the case where the {-axis is vertical (lines up with the global
Z-axis); otherwise, the &-direction is defined by the crossing the horizontal projection of
the (-axis onto the {-axis. Note that the orientation of the sun-reflector coordinate sys-
tem with respect to the absolute collector reference frame changes from point-to-point on
the concentrator (see Example 4, Chapter 8).
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Figure 4.3 Concentrator Error Distribution on the Reflector Reference Plane.

In the figure, random surface roughness exists on the reflector, along with a slight
striation pattern in the 0 direction. This will tend to make the surface-normal less pre-
dictable in the direction perpendicular to the striations (s direction) than in the parallel
(r) direction. A “reflector reference plane” at normal incidence to the ideal normal
and at unit distance from the origin of the &-n-{ system is also shown. The ellipse on
the plane represents the 2-D elliptic normal error distribution arising from these surface
imperfections. For this case, the parameter o, (SIGR) that describes standard deviation
in the r direction would be smaller than o, (SIGS) which describes standard deviation in
the s direction. The counter-clockwise rotation angle, © (TH), of the r-axis from the
E-axis of the sun-reflector coordinate system is input in degrees.

For the other error types, corresponding error distributions are input in a like
manner. Up to 5 concentrator error types are allowable. The quantity is controlled by
the parameter NER. If errors are truly random without a predisposition in any direc-
tion), it is appropriate to model them with 1-D circular-normal distributions. These dis-
tributions, special cases of the elliptic-normal distribution, are used for most error types.
Circular-symmetric Gaussian distributions result when the input quantities SIGR and
SIGS are equal. In this case, Equation (4.10) reduces to:

(4.11)
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where r = |r2+szl , and o, and o are equal to the dispersion ¢. In this case, the
rotation angle 0 is immaterial, and a (iummy value is input for TH.

4.4 Calculating the Concentrator Error-Cone Distribution E(P,Q)

If two independent error distributions exist such that each direction of the first
distribution is subject to the directional probability described by the second one, the
resultant effective distribution can be obtained by mathematical convolution. Let both
distributions be functions of the planar coordinates P and Q. One is described by E{(P,Q)
and the other by Ey(P,Q). The distributions combine to create a new distribution
E; 5(P,Q). The value of the new distribution at some point (P=P,,Q=Q,) is described by
the convolution integral

oo 0o

E,5(P,Q,) = [ [E(P,-P.Q,~@)E,(P.Q)dPdQ (4.12)

—00 — 00

The process of combining two elliptic-normal distributions by convolution integral
is done analytically, as described in [3, Section 5.3|. If more than two error distributions
are input, the third is convolved with the convolved product of the first two, etc., until all

concentrator errors are accounted for. The result is the “concentrator error-cone” dis-
tribution, E(P,Q).

The result of convolving many elliptic-normal distributions, even though their
principal axes may not coincide (i.e., TH is not the same for all), is also an elliptic-normal
distribution. In the event that all individual error distributions are 1-D circular-normal,
the resulting error cone is a 1-D circular-normal distribution (Eq. 4.10) whose dispersion
o, is related to the dispersions of the K; individual errors by

K,
_ 2
o, = '\fkglﬁk (4.13)

4.5 Mapping the Error Cone into a Distribution M(U,V) of
Directions for Ray Reflection

The error cone represents the probability function governing the likelihood that
the actual surface-normal will assume a given direction. Naturally, this implies a distri-
bution of possible directions for the reflected ray. We seek to obtain the latter distribu-
tion from the former one.

31



32

With reference to Figure 4.4, consider the solar central-ray incident on an element
of reflector surface. The direction of incidence is given by the vector A. The vector B,
indicates the direction of reflection that corresponds to the ideal surface normal N,,.
The P-Q reflector-reference plane is normal to N, its P and Q axes aligned along the
€ and n sun-reflector axes. The U-V reflected-ray plane is normal to the central
reflected-ray, its U axis being aligned with the £ axis and its V-axis being orthogonal to U
and B,. By definition, both planes are at unit distance from the point of incidence
(though they are not depicted as such in the figure). Consider a perturbation of the sur-
face-normal to the direction N, while holding the direction of incidence A fixed. Where
will the reflected ray pierce the U-V plane? For small angles between N and N,,, the
(U,V) coordinates where this occurs are related to the (P,Q) coordinates where the exten-
sion of N pierces the P-Q plane by the formulas

U = 2Pcosp (4.14)

V =2Q (4.15)

These relations are used to transform the concentrator error-cone distribution E(P,Q) in
the reflector reference plane to a distribution of directions that a reflected ray may be
expected to take. The latter distribution is termed the “mapped (projected) error
cone distribution”, M(U,V), and is described in terms of (U, V) coordinates in the
reflected-ray reference plane. The details of the mapping are given in [9] and |3, section
5.4]. It turns out that, whether the error cone is elliptic-normal or circular-normal, the
mapped error-cone on the reflected-ray plane is elliptic-normal, having a form repre-
sented by Equation (4.10), [except for the combination of normal incidence, u=0, and a
circular-normal error cone E(P,Q), i which case the mapped error-cone defaults to a 1-D
circular-normal distribution in the form of Equation (4.11)].

Figure 4.4 Mapping the Error Cone from the Reflector (P-Q) Reference Plane to the
Reflected-Ray (U-V) Reference Plane.



4.6 Convolution of the Sunshape with the Mapped Error-Cone

The approximation is made that all rays within the incident solar cone may be
expected to reflect in a spread of directions given by the mapped error-cone. This is not
strictly true because the mapped error-cone is derived based upon the nominal incidence
angle  between A and N, though the incidence angle actually varies over the cone of
rays. However, the approximation is a good one since the small solid angle occupied by
the solar cone guaranties that only small deviations about the nominal incidence angle
exist within the cone. If the above approximation is taken as exact, a convolution of the
mapped error-cone and sunshape distributions results in the effective sunshape dis-
tribution (ESUN (U, V) of Equation (2.5)) describing the reflected solar image.

The mapped error-cone distribution on the reflected-ray plane is ordinarily 2-D
elliptic-normal, whereas the sunshape distribution on this plane (Figure 4.1) is always 1-D
circular-symmetric, though usually not circular-normal because in most cases a Gaussian
distribution is not a realistic sun model. Thus, in general, an elliptic-normal distribution is
convolved with a circular-symmetric (non circular-normal) distribution to obtain a 2-D
effective sunshape. Strictly, this operation must be done by approximate numerical tech-
niques, and can be quite expensive. However, several options exist to approximate the
effective sunshape to various levels of accuracy with corresponding reductions in compu-
tational effort. As explained in Section 4.6.3, the reflected solar image changes from
point-to-point on the concentrator, and, strictly, should be recalculated at each subfacet.
In most cases, however, this is unnecessary and could get prohibitively expensive. The
next three sections explain the options for controlling the convolution process. Since
imprudent use of these options can result in needless and excessive computer run-time
and/or large inaccuracies in the predicted flux distribution, a fourth section provides rec-
ommendations for appropriate use of the convolution parameters.

4.6.1 IDIM: 1-D vs. 2-D Effective Sunshape

IDIM controls the dimensionality of the mapped error-cone and, thus, the effective
sunshape.

IDIM = 1- 1-D approximatin to 2-D mapped error-cone
2 - 2-D mapped error-cone

IDIM=2 preserves the 2-D elliptic-normal character of the mapped error-cone that,
when convolved with the circularly-symmetric sunshape, results in a 2-D effective sun-
shape. IDIM=1 causes the mapped error-cone to be approximated with a 1-D circular--
normal distribution of equivalent root-mean-square radius, where rmsr for a normalized
2-D distribution M(U,V) is given by

oo ©o

rmsry_p = J' J (U2+V2)M(U. V)dUdV (4.16)

—00 —00
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Equating (4.7) and (4.16) provides a relation for the dispersion of the 1-D Gauss-
ian approximation to the 2-D mapped error-cone. The mapped error-cone distribution
then takes the form of Equation (4.5) or (4.11), and convolution with the sunshape
results in a 1-D (usually non-Gaussian) distribution. The operations represented by
evaluating Equation (4.16) and substituting into (4.7) result in a simple algabraic for-
mula |3, section 5.4.3| relating the dispersion ¢ to the standard deviations along the
principal axes of the error cone E(F,Q). Evaluating this formula is less involved than
obtaining the standard deviations and principal directions of M(U,V) by the mapping
process of Section 4.5, and therein lies the computational advantage of choosing IDIM=1.
The tradeoff is that the reflected solar image loses its 2-D character. The relative merits
of choosing IDIM=1 or IDIM=2 are discussed in Section 4.6.4.

4.6.2 IANLYT: Numerical vs. Analytic Convolution

The TANLYT parameter dictates whether numerical or analytic procedures are
used to convolve the sunshap: and mapped error-cone distributions.

IANLYT = 1- aralytic convolution

0 - numerical convolution

At the expense of some accuracy, much computational effort can be saved by con-
volving the sunshape and mapped error-cone distributions analytically, as opposed to
numerically. This can be accomplished if the 1-D (non-Gaussian) sunshape is converted
into an “equivalent” 1-D circular-normal (Gaussian) sunshape of comparable rms radius.
When the IANLYT=1 option is chosen, the equations of Section 4.1 are used to construct
a Gaussian approximation to the input sunshape. (When a Gaussian sunshape
(JSUN=2) is input, IANLYT automatically defaults to 1.) Convolution with the mapped
error-cone, hether treated as 1-D or 2-D, can then be performed analytically (see Sec-
tion 4.4).

For IANLYT=0, the tabular or pillbox sunshape input is numerically convolved
with the mapped error-cone (or its 1-D approximation if IDIM=1 has been selected).
Fast-Fourier Transforms are used for numerical convolution.

Figure 4.2 shows a tabular, a pillbox, and a Gaussian sunshape whose rms radii
are equal. The semi-log scale somewhat disguises the physical differences between the
tabular sunshape and its Gaussian approximation, which are quite significant. Even so,
the two distributions will perform much the same in a convolution, provided the mapped
error-cone has rms widths or standard deviations (see Equation 4.10) along its principal
axes that are “large” relative to the rms width, or dispersion, of the sunshape distribu-
tion. Then, analytical convolution (IANLYT=1) can be used in preference to the more
expensive numerical convolution with very little loss in accuracy. In contrast, when the
rms widths of the mapped error-cone are “small” relative to the rmsw of the sunshape,
analytic convolution is extremely innacurate, and numerical convolution (IANLYT=0)
should be used instead. One might begin to be concerned about the accuracy of analytic
convolution when the ratio of mapped error-cone rms width-to-sunshape rms
width approaches 2, and should probably run an accuracy check against a numerically
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convolved result when this factor drops below 1.5. Certainly, when the ratio falls below
one, numerical convolution should always be used. CIRCEZ2 puts a warning in the mes-
sages file to alert users when the ratio is less-than or equal-to one. The rms widths of
the sunshape and error-cone distribations are printed in the output file. If the IAN-
LYT=1 option is chosen, the user should check this file for the rms values of the two dis-
tributions to determine whether the requirements for using this option have been met.

With regard to the accuracy of numerical convolution, the technique employed is
robust provided the grid density is adequate to accurately resolve both the sunshape and
mapped error-cone distributions. When the sunshape distribution varies abrubtly (the
elliptic-normal mapped error-cone distribution is guaranteed to be smooth) or when the
width scales of the two distributions are widely disparate, the numerical approach may
be inaccurate. The present grid in CIRCE2 is probably sufficient to maintain acceptable
accuracy over a range from 0.1 to 10 in the ratio of the mapped error-cone rmsw -to- the
sunshape rmsw.

4.6.3 NEWCONV: Controlling the Number of Convolutions Performed

"The angle of incidence |, between the nominal surface-normal N, and the incoming
central sun-ray changes from point-to-point on the concentrator. Correspondingly, the
relative positioning of the reflector- and reflected-ray reference planes (whose orien-
tations differ by the angle |, Figure 4.4) also changes from point-to-point. This
affects the mapping of the error-cone distribution, through Equation 4.14, and ulti-
mately the effective sunshape distribution ESUN(U,V). Ideally, a new convolution
should be performed at every subfacet of the concentrator to most accurately capture the
variation in the reflected solar image over the concentrator surface. However, since the
calculation is relatively expensive (especially for the more accurate (2-D and numerical)
convolution options), this may not be feasible or even advisable on cost/benefit basis.
(This issue is explored in the next section.) Accordingly, the options also exist to recon-
volve at just the center of each facet, or at only one location on the concentrator. The
“degree” of convolution over the concentrator surface, i.e. the number and placement of

locations at which a new effective sunshape is calculated, is controlled by the parameter
NEWCONV:

NEWCONYV = 1 - convolve only once at;:
INCPICK = 1 - specified angle of
indence (INCANGL)
2 - center/vertex of first
facet listed in data file
2 - convolve at center/vertex of each facet
3 - convolve at center of each subfacet

NEWCONV=1, the “minimal” convolution option, directs CIRCEZ2 to calculate the
effective sunshape at only one point on the concentrator, and to use this ESUN distribu-
tion when evaluating Equation 2.5 for each subfacet/target-point combination. Under
this option, one of two accompanying options is selected via the INCPICK parameter.
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For INCPICK=1 the user inputs the incident angle INCANGL (p) through which the
error cone is mapped before convolution with the sunshape to determine the ESUN dis-
tribution. To first order, the optimum value of INCANGL is i, the average angle of inci-
dence of sun rays striking the concentrator:

k= [udS = % [acos (Koo V,)dS (4.17)
AS AS

where S represents the concentrator surface, A the concentrator surface-area, N, the
nominal surface-normal, V, the unit vector pointing toward the sun, and acos( ) the
inverse-cosine function. Unfortunately, the integral does not appear to succumb to ana-
lytic integration even for standard spherical and parabolic geometries. The user might
opt for numerical integration (especially for faceted concentrators), or might simply esti-
mate a value for |i. For axisymmetric geometries, a practical and effective approxima-
tion to |i may be found in the manner outlined in Appendix B. There, an approximate j
is derived for the common case of a parabolic dish of rim-radius R and focus f that is
on-axis with the sun. The result is

~-12
W(R, ) = acos (Na,,gOQ) = acos (|1+ [R/(3f)]2] ) (4.18)

As explained in Appendix B, the use of this simple equation can increase the accuracy of
the NEWCONV=1 option by over an order of magnitude.

The other choice available for the parameter INCPICK is INCPICK=2. With this
selection, the convolution is performed at the center/vertex of a continuous-surface dish
concentrator or at the center of the first facet listed in the data file for a faceted concen-
trator. For the latter, it is advisable that the first facet input be one whose normal-direc-
tion at the facet vertex makes a representative angle, i.e. pu, with the incident solar
central-ray. A facet located about 2/3 of the way out from the vertex of the concentrator
is probably appropriate.

Since the NEWCONV=1 option is much faster than the other NEWCONYV choices,
by careful selection of INCANGL for INCPICK=1, or of which facet to list first if
INCPICK=2, execution time can be cut dramatically without a corresponding loss in
accuracy.

NEWCONV=2, the “intermediate” convolution option, directs CIRCE2 to perform
a new convolution at the center/vertex of each facet of a multiple-facet concentrator.

NEWCONV=3, the “full” convolution option, directs the program to calculate anew
the reflected solar image at the center of each subfacet of the concentrator.
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4.6.4 Appropriate Choice of Convolution Options

Along with concentrator subdivision, the convolution options outlined in the
three sections above can affect accuracy and execution-time dramatically. One
must subdivide the concentrator (into subfacets) and select convolution options in
an integrated fashion, as improper choice of the convolution options can impair
improvements in accuracy that finer concentrator subdivision should produce.
Moreover, since the cost of concentrator subdivision is tightly coupled to the con-
volution options, it is important not to invoke parameter combinations that provide
only marginal increases in accuracy at relatively large cost, thereby spuriously con-
straining the degree to which the concentrator can be economically subdivided.
Respecting the tradeoff between accuracy and computational cost, this section
provides guidance for optimal use of the convolution options. A detailed quantita-
tive study of the effect of convolution options on predictions and execution times is pre-

sented in Appendix B. Based on this and other convolution studies, the following
strategy is suggested:

I For a faceted concentrator with less than 15-20 facets, the parameter combination
IDIM=2/IANLYT=0/NEWCONV=2 should be used. This will result in essentially
the same accuracy as the (most accurate) IDIM=2/IANLYT=0/NEWCONV=3 com-
bination, but at a much reduced cost.

II For a faceted concentrator with more than about 20 facets or for continuous-surface
concentrators, the following are more appropriate options:

i) If the user either: a) has a fast computer or a lot of time and/or only wants to run
one simulation and be done with it, or b) does not have a good estimate of p
and/or knows absolutely nothing about the relative rms widths of the mapped
error-cone and sunshape distributions, then the combination IDIM=1/IAN-
LYT=0/NEWCONV=3 should be used. This combination of parameters
requires minimal user involvement and typically matches the accuracy of full
2-D numerical convolution to within 1% in 1/40 the CPU time. Though opti-
mally fast for the degree of robustness exhibited, this parameter combination is
relatively inefficient compared to the parameter sets below, which apply under
more narrow sets of conditions and require more involvement of the user.

iYWith a little more user involvement, more accurate and efficient parameter
combinations than the above may be invoked. Before proceeding, if nothing is
known about the relative widths of the sunshape and mapped error-cone distri-
butions, then a quick, inexpensive run with the settings IDIM=1/IANLYT=1/
NEWCONV=1 should be performed. The resulting output file should be
examined for the widths of these distributions. This information directs the
user to one of two approaches:

a)lf, according to the criteria of section 4.6.2, a relatively narrow error cone
exists, then the combination IDIM=2/TANLYT=0/NEWCONV=I[ gives
accuracy to within 0.1% of full 2-D numerical convolution in 1/300 the
CPU time. Moreover, if a good approximation to u is supplied via the
INCPICK=I/INCANGL parameters, accuracy to within 0.01% results at
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no additional cost. The same effect can be obtained with the INCPICK=2
option by listing, as the first facet in the data file, a facet that is about 2/3 of
the way out from the vertex of the concentrator.

b)1f, according to the criteria of section 4.6.2, a relatively wide error cone
exists, then one of two approaches is taken:

DIf a good approximation to p is available or if a certain facet is
known to have at its center/vertex a normal that makes with the solar
central ray an angle representative of p, then two distinct options
exist:

A) For scoping or parametric studies where speed is relatively more
important than accuracy, the recommended parameter combinations
are, as the case may be, IDIM=I/IANLYT=I/NEWCONV=1/
INCPICK=1/ INCANGL = p or  IDIM=1/IANLYT=1/NEW-
CONV=I/INCPICK=2/appropriate facet listed first. These parameter
sets typically match the accuracy of full 2-D numerical convolution
within 1% in /1800 the execution time.

B) For final results where accuracy is the dominant concern, the rec-
ommended parameter combinations are, as the case may be,
IDIM=2/IANLYT=0/NEWCONV=1/INCPICK=1/ INCANGL ~ p
or IDIM=2/IANLY T=0/NEWCONV=1/INCPICK=2/appropriate
facet listed first. These parameter sets typically match the accuracy of
full 2-D numerical convolution within 0.2% in less than 1/270 the
execution time.

2)1f a good approximation to p is not available and, for faceted concen-
trators, it is also not known which facet is most “representative”, then
two distinct options exist:

A) For scoping or parametric studies where speed is relatively more
important than accuracy, the appropriate choice is IDIM=1/IAN-
LYT=I/NEWCONV=3. This parameter set typically matches
the accuracy of full 2-D numerical convolution within 1.3% in about
[/880 the execution time.

B) For final results where accuracy is the dominant concern, the rec-
ommended parameter set is IDIM=1/IANLYT=0/NEWCONV=3.
This parameter set typically matches the accuracy of full 2-D numeri-
cal convolution within about 0.9% in 1/36 the execution time.

It should be emphasized that in trying to keep within a given CPU budget, going to less
expensive convolution options than those suggested here in order to get an even finer
division of the concentrator surface will probably be counter-productive. Fortunately, in
many cases the recommended parameter sets are among the least costly.
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5 TARGET/RECEIVER MODELING

This chapter explains the process of generating target geometry and imposing a
grid of points on the target surface. It is also convenient here to discuss output of analy-
sis results, which includes flux distribution and “hit” map over the target surface, total
collected power, and optical disk efficiency. The integration schemes used in determining
total power are also addressed.

5.1 Target Geometries, Coordinate Systems, and Mesh Generation

CIRCE2 can be used to determine the flux distribution on targets of custom shape
(see Section 5.3). Beyond this, the flux distribution can be integrated to determine total
collected power for targets of certain characteristic geometries. This section and the
next pertain to these characteristic geometries. In particular, surfaces of spherical,
cylindrical, and conical (upright or inverted) contour can be modeled, as well as planar
targets of circular or rectangular aspect. Such targets are not limited to complete
shapes, i.e., just the frustrum of a cone may be analyzed, or only a small angular section
of the frustrum as opposed to the full axisymmetric region. Additionally, axisymmetric
“hybrid” receivers can be constructed from multiple axisymmetric component shapes.
Certain target shapes that cannot be properly handled are outlined in Section 5.5.

Targets are generated by a locai target coordinate system whose basis is the
translated but unrotated reference frame (1-2-3) shown in Figure 2.4. The target is
moved relative to the concentrator by specifying the global coordinates (Xo,Yo,Zo) of the
target-system origin. The origin is also referred to as the “center of generation” of the
target. The target coordinate system may be cylindrical, spherical, conical, polar, or rect-
angular, depending upon the characteristic shape of the target. The target, which is a 2-
D Riemannian surface, can be described by two curvilinear coordinates that lie in the
target surface. This will be referred to as the K-L. parametric coordinate system.
The origin of the K-L system is at the parametric center of the target, referred to as the
“center” of the target. All linear dimensions used in defining targets must be in meters
and angular measures are in degrees.

A grid of points must be imposed over the target surface in order to determine the
flux distribution. A mesh of up to 2601 points (51 in the K direction by 51 in the L direc-
tion) can be generated for each target entity. For curvilinear targets, K is in the azi-
muthal direction, and L is in the orthogonal direction. The grid is regular and
rectangular in K-L parametric space (in the sense uf section 2.4) but is not necessarily so
in physical space. Examples will be presented later. For hybrid receivers, each compo-
nent target can have a 51x51 grid of points. The number of grid points in each direction
must be odd. Section 5.2.2 discusses the specific quadrature techniques used in CIRCE2
to evaluate total collected power once the flux distribution has been established.

IMPORTANT: Integrated power has sometimes been found to be
extremely inaccurate when the flux distribution is only slightly under-
resolved by the mesh. When using a sparse target mesh for scoping stud-
ies, a representative result should be verified against a run with a 51x51
mesh to check if unanticipated loss of accuracy with the sparse mesh has
occurred.
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5.2 Output of Analysis Results

As explained in Section 3.3, CIRCE2 creates several output files. This section
concerns the most important information output: flux distribution and total collected
power. Sample output information of the type described below is presented and
explained further in the examples of Chapter 8, particularly Examples 2 and 3.

5.2.1 Convention for Output Distributions

CIRCEZ2 outputs two important distributions. The target flux distribution con-
sists of the normally-incident flux at each of the grid points on the target. The “hit
map” distribution indicates the number of subfacets reflecting energy to each target
point. Flux distributions and hit maps are output in both list and matrix forms. In
matrix form, rows and columns are associated with the two target-generation coordi-
nates characteristic of the particular target shape (e.g. angular coordinates 8 and ¢ for a
spherical surface). A counting index, starting at the left-top entry in the matrix and end-
ing at the right-bottom entry (using the regular left-to-right and top-to-bottom reading
convention) is associated with each element of the matrix. This same numbering system
is used to number grid points on the target surface, as examples below will demonstrate.
In list form, ;aformation such as target-point index, flux, number of hits, and global X-Y-
Z coordinates, are printed for each of the grid points. (Example 3 of Chapter 8 presents
flux and hit map distributions resulting from a CIRCE2 run.)

5.2.2 Calculation of Total Collected Power

The flux distribution on the target surface is numerically integrated to determine
the total collected power. In order to perform the quadrature, the target geometry is
transformed to K-L parameter space as explained in the subsections of 5.4 for supported
geometries. The integral transformation is explained by way of example in Section 2.4.
The generalization of Equation 2.7 is:

J'F(K,L)dS = ”ir(K,L)deL (5.1)
S S

where F (K. L) is the Jacobian-weighted flux distribution over the transformed domain.

The transformed domain in K-L coordinates becomes a planar rectangle where the
target mesh forms a regular rectangular grid of points. The integrand is kncwn at each
of these grid points, so integration is a matter of choosing an interpolation scheme to
accomplish the quadrature. Two different algorithms are employed in CIRCEZ2, depend-
ing upon the target geometry:

For all target types, CIRCE2 uses a variant of the 9-point integration schemes

(131, Section 7.1} .mplemented in the HELIOS code. Appendix C summarizes the
HELIOS schemes and derives the new 9-point method (here termed “Hogan’s method”)
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that CIRCE2 uses. Essentially, Hogan’s method uses the trapezoidal rule to integrate
along the K-coordinate and Simpson’s rule to integrate along L. It has been found
(Appendix C) that Hogan’s method gives results that are far less dependent upon limits
of integration for axisymmetric targets and, by implication, it appears to be more accu-
rate for other geometries than the HELIOS methods. For all targets, the Jacobian is
either constant or varies only as a function of L. Additionally, the conventions adopted in
CIRCEZ2 are generally expected to result in flux distributions that will exhibit greater
variation along L than along the K, or azimuthal, direction. The combined effect of these
two factors is that the integrand of Equation 5.1 is expected to vary much more rapidly
in L than in K. Appropriately, Hogan’s method affords greater resolution in the L-direc-
tion.

For flat-target quadrature, a slightly more accurate but much more expensive
Legendre-Gauss/Newton-Cotes algorithm is used in addition to Hogan’s 9-point scheme.
It employs the Sandia SLATEC library routine QAGS (adaptive Legendre-Gauss tech-
nique) to integrate in the K-direction, and the more robust Newton-Cotes adaptive algo-
rithm QNC79 to integrate the relatively rapidly varying function in the L-direction.
Although the results from both methods are reported, whenever flat targets are analyzed
the answer from the Legendre-Gauss/Newton-Cotes algorithm is used in subsequent cal-
culations and is the value reported in the results summary tables.

5.2.3 “Optical Disk Efficiency” Table for Flat Circular Targets

For flat circular targets, a table labelled “Optical Efficiency for Aperture Disk” is
created. It posts cumulative integrated power versus radius for “aperture disks” of
increasing size that are concentric with the physical target. Collection efficiencies ver-
sus radius are reported based upon two denominators: total power incident on the target
and total power incident on the unshaded concentrator. These efficiencies are relevant
in making decisions involving tradeoffs between aperture size, which afiects the compet-
ing effects of flux spillage and receiver losses, and receiver size, which affects concentra-
tor shading but also has other driving factors. (Example 2 of Chapter 8 presents the
optical efficiency table resulting from a CIRCEZ2 run.)

5.3 User-specified Custom Targets, ITARSH=2

In CIRCE2, the capability exists to determine the incident flux at any given
point(s) in space, or the distribution of flux on a target whose geometry does not conform
to the supported shapes described in Section 5.4. This capability is invoked by selecting
ITARSH=2 during the DEKGENZ session and either interactively specifying the spatial
coordinates (XTA, YTA, ZTA) at each point and direction cosines VMTx, VMTy, and
VMTz of the normal-vector, or by naming a file to be read-in that contains this data. The
parameter NTART specifies the number of target grid-points to be input (NTART<2601).
The price of maintaining freedom in target geometry and grid-point placement is that
the resulting flux distributions are not integrated by CIRCE2. However, standard Finite
Element technology | 15| may be employed to integrate over arbitrary target geometries
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where the flux has been determined at irregularly placed points. In the special case
where grid placement satisfies the conditions stipulated in Section 2.4, e.g. grids gener-
ated with boundary-fitted coordinates [16], the more convenient method of integration
explained in Appendix C may be used.

5.4 Standard Target Shapes

The following are the choices for the target geometries that CIRCE2 supports. All
but choice #2 involve “standard” geometries over which an integration for total incident
power is performed. Choice #2 is addressed in Section 5.3, all other choices are described
in individual subsections below.

ITARSH = 0 - Flat rectangular target
1 - Spherical target section
2 - Custom target, user-supplied subroutine
3 - Cylindrical target section
4 - Conical target section
6 - Flat circular sector
-N - Hybrid receiver made up of N components

5.4.1 Flat Rectangular Target: ITARSH=0

Figure 5.1a shows a rectangular target in X-Y-Z space. Rectangular targets are
restricted to having horizontal top and bottom edges (i.e. to be parallel to the planes
defined by the 1-2 and X-Y axes). Since the target is flat, its center and center of genera-
tion coincide, and the parametric K-L coordinate system, whose origin is at (Xo,Yo,Z0), is
used to generate the target. The K-L system defines the plane of the target. Orientation
is established by the rotation angle o (ALPHA) and tilt angle B (BETA) of the (+)L-axis
as shown. The tilt angle BETA is the acute angle that the axis (and target) makes with
the horizontal 1-2 plane. The angle must be non-negative (giving the L-axis an upward
component for nonzero BETA). The target is rotated by rotating the L-axis about the 3-
axis of the local target system. The rotation angle ALPHA is counted positive from the
1- toward the 2- axis.

Figure 5.1b (opposite Figure 5.1a) shows a typical rectangular target with its asso-
ciated parametric coordinates. The irradiated side of the target (side facing the concen-
trator) is viewed at normal incidence (target lies in the plane of the page). This is the
convention used for flux output for planar targets. For rectangular targets, the (+) K-
axis is to the right and the (+) L-axis is up, resembling a conventional x-y right-handed
coordinate system. The parameter KEXT defines length in the K direction, while LEXT
defines length in the L direction. In generating the target grid, from 3 to 51 (must be an
odd number) equally spaced points may be specified along the K direction (KPTS) and
from 3 to 51 (must be an odd number) points in the L direction (LPTS). In the example,
KPTS=3 and LPTS=5, yielding a regular rectangular grid of NTART=KPTSxLPTS=15
points. Note the grid point indexing scheme. Upon output, grid points are identified by
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their (K,L) generation coordinates and the indexing scheme. The labeling system for the
output flux distribution also makes use of this convention.

It is also possible to model a rectangular target which has a rectangular or circular
hole in it. Such a case might arise in calculating spillage on a rectangular or circular
aperture plate. The process is described in the next section.

# KPTS X (LPTS - 1)

‘ KPTS X LPTS

Figure 5.1 (a) Rectangular Target Orientation. (b) Flux Grid for Rectangular Target.

5.4.2 Flat Circular Target Sector: ITARSH=6

A flat circular target can be defined with a cylindrical coordinate system, as is
done when it is part of a hybrid receiver (Section 5.4.6) or with a polar coordinate system
(ITARSH=6). As explained here, the ITARSH=6 option allows the target to be tilted,
whereas the other option does not. To orient the flat target, a virtual K-L coordinate
frame that lies in the plane of the target, as shown in Figure 5-2, is used. The K-L sys-
tem, thus the target, is oriented by the same process described in Section 5.4.1 above.
Thus, the rotation angle o (ALPHA) and tilt angle B (BETA) controlling the orientation
of the K-L system are as depicted in Figure 5.1a. The target generation system becomes
a poldr (R, 0) system in which 0 is measured positive from the (+)K-axis to the (+)L-axis.

A target mesh of RPTS (from 3 to 51, odd) equally spaced radial points by TPTS
(from 1 to 51, odd) equi-angular points may be generated. The outside radius of the tar-
get (RMAX) and total angular span (THETAMAX) must also be input. {Whenever the
user specifies a full circular target (THETAMAX=21%), an Optical Disk Efficiency table is
generated (see Section 5.2.3)|. Figure 5.2 diagrams a THETAMAX=90 degree circular
target section. Node numbering corresponds to RPTS=5 and TPTS=3. Grid points are
identified by their (R, 8) generation coordinates in the output flux table. For the pur-
poses of numerical integration, L of Section 5.2.2 becomes R, and K becomes 6.
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Figure 5.2 Geometry and Flux Grid for a Circular Target Section.

IMPORTANT:

Circular targets generated with ITARSH=6 are different from those gener-
ated for use as a component of a hybrid receiver (Section 5.4.6). For
ITARSH=6, 0 is measured relative to the virtual K-L system, which can
have any number of orientations relative to the 1-2-3 target system, as
specified by the user. When a circular target is part of a hybrid receiver,
the geometry and node numbering may be obtained as a special case of a
conical receiver (Section 5.4.5) with zero height and zero top radius. In
particular, the target is constrained to be perpendicular to the 3-axis, and
0 is counted positive when proceeding from the 1- toward the 2- axis. This
is opposite the direction of positive 6 when an untilted circular target is
created with ITARSH=6. Likewise, the azimuthal indexing of target grid
points is opposite for the two cases. This can be a possible point of confu-
sion unless the user is forewarned. In either case, the global (X,Y,Z) coor-
dinates output for grid points alleviates any ambiguity.

For flux distributions with azimuthal symmetry, it is only necessary to obtain
variation in flux along a target radial line. Such a flux distribution would be expected to
exist, for example, on an uncanted circular target whose center is pierced by the axis of a
one-piece axisymmetric dish that is on-axis with the sun. This is a common configura-
tion. In this case, the user can reduce execution time significantly by assigning TPTS=1
(THETAMAX=2r is obligatory in this case).

In some cases, it may be desirable to model flat targets with circular or
rectangular holes in them. Such a case might arise, for example, in finding the spillage
on the annular aperture plate shown in Figure 5.3. To find the flux distribution, the ring
would be first modeled as a circular target. To find the total power incident on the ring,
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a second run would be made with the target diameter equal to the inside diameter of the
aperture plate. Total integrated power from the second run would then be subtracted
from results of the first run to determine the spillage.

CAVITY RECEIVER

ANNULAR APERTURE PLATE

N

REFLECTED SOLAR ENERGY

Figure 5.3 Spillage on Annular Aperture Plate.
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5.4.3 Spherical Target Section: ITARSH=1

To generate spherical target sections, a spherical coordinate system is used. Fig-
ure 5.4 demonstrates the use of this system to generate a section of a spherical surface.
Note that any portion of a spherical surface, such as the one shown, can be analyzed.
The target center point (origin of the K-L parametric coordinate system) is first estab-
lished by specifying radius of curvature RCURV (p) and angular coordinates THETAC
(6,) and PHIC (¢ ) of the target center. (Note that with the definition of target center
used here, PHIC for a concave-down hemisphere would be n/4.) The parametric coordi-
nate K corresponds to the direction of increasing 0 and the L coordinate lies in the direc-
tion of increasing ¢.

pon
>

e e,

AN )“~\ SPHERICAL TARGET SECTION

\\«Ae

TARGET "CENTER" POINT P(p,9, , 6, )

AP ~

CENTEROF —»
GENERATION
OF TARGET

Figure 5.4 Spherical Target Generation Parameters.

The dimensions of the target, A6 and A ¢, are given by KEXT and LEXT, respec-
tively. Figure 5.5 depicts the node numbering scheme for a spherical target section. In
the example, KPTS=5 and LPTS=7. KPTS must be an odd integer from 3 to 51 and
LPTS an odd integer from 3 to 51. Grid points are identified by their (8, ¢) generation
coordinates in the output flux table.
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v KPTS*(LPTS-1)
KPTS*LPTS

Figure 5.5 Flux Grid for Spherical Target Section.

5.4.4 Cylindrical Target Section: ITARSH=3

For cylindrical target sections, a cylindrical coordinate system like that shown in
Figure 5.6 is used. The target center-point location is established by defining the appro-
priate radius RADIUS (r) and angle THETAC (8 ). The target center is restricted to be
in the 1-2 plane (2=0). The parametric coordinate K corresponds to the direction of increas-
ing theta, and the L coordinate runs opposite the direction of increasing 2.

CENTER OF ~_
GENERATION ~*
OF TARGET

TARGET "CENTER"
POINT P(r, ¢ c,z=0)

Figure 5.6 Cylindrical Target Generation Parameters.
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The dimensions of the target, A® and Az, are given by KEXT and LEXT, respec-
tively. Figure 5.7 illustrates the node numbering scheme for the target section. In the
example, KPTS=5 and LPTS=9. KPTS must be an odd integer from 3 to 51 and LPTS an
odd integer from 3 to 51. Grid points are identified by their (6, 2) generation coordinates
in the output flux table.

3,2
A
4 A KPTS
1 2 3
K
4 ,
_’
1 | KPTS*(LPTS-1)
| KPTS'LPTS
| 44
41 42 ‘13
L

Figure 5.7 Flux Grid for Cylindrical Target Section.

5.4.5 Conical Target Section: ITARSH=4

Conical target sections are generated with a cylindrical coordinate system as
shown in Figure 5.8. The parametric coordinate K corresponds to the direction of
increasing 0, and the L coordinate lies in the surface of the cone as shown. Target gener-
ation can be accomplished with the two coordinates (6, 2), since the r-coordinate can be
written as a function of z, using the fact that the snrface is part of a right circular cone.
The target parametric center is restricted to be in the 1-2 plane (2=0). Because the z
coordinate does not lie in the surface of the cone, it must be related to the surface coordi-
nate L by specification of the bottom and top radii of the section, RBOT and RTOP. With
this formulation, it is only necessary to define the angle THETAC (6 ) to the parametric
center of the target. In DEKGEN2, the value 1nput for LEXT is the height, Az, of the
section, though this is not really the target extent in the parametric direction L. KEXT
is the angular extent, A6, of the section.
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Figure 5.8 Conical Target Generation Parameters.

KPTS divides the cone in the 0 direction and LPTS divides it in the L direction. A
mesh with KPTS=3 and LPTS=5 is pictured in Figure 5.9. KPTS must be an odd integer
from 3 to 51 and LPTS an odd integer from 3 to 51. Grid points are identified by their (6,
2) coordinates in the output flux table.

KPTS(LPTS-1)
2

KPTS'LPTS

13

Figure 5.9 Flux Grid for Conical Target Section.
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5.4.6 Hybrid Receivers: ITARSH=-N

Axisymmetric cavivy-type rece.vers are an integral part of modern point-focus col-
lector systems. The capability to easily build and analyze internal and external receiv-
ers of widely varying geometry is included in the present analysis package. Additionally,
for hybrid receivers, CIRCE2 can output a data file for input to the cavity-receiver ther-
mal analysis code AEETES |18]. Thus, a fairly seemless capability to model these types
of collector systems has been - tablished.

The user should be aware that there are limitations to properly posed geometries,
as the WARNING in the next section explains in greater detail. DEKGEN2 interactively
guides the user through the construction steps necessary to build geometrically correct
targets that do not violate the restrictions. If a hybrid receiver is built without using
DEKGENZ2, deliberate care must be taken to meet these considerations. A good under-
standing of the target-generation coordinate systems of the individual component types
is needed in order to construct targets that do not have overlapping sections or leave
gaps in the receiver walls. In short, it is best to use DEKGEN2 to build and reposition
these more complex receivers.

Hybrid targets may be constructed from axisymmetric (A6 = 2r) cylindrical, coni-
cal, spherical, and flat-circular component shapes. DEKGENZ2 is alerted that the
receiver will be a hybrid target when the choice for the parameter ITARSH is input as a
negative integer, -N, where N is the number of component shapes that the receiver will
be constructed from. The receiver is generated from the bottom up, with the local target
coordinate system having its origin at the center of the receiver aperture. (The aperture
is the opening at the bottom of the receiver.) Just as for the other target types described
above, the local target coordinate system remains unrotated relative to the collec-
tor frame, but can be moved about by :pecification of the collector-system coordinates
(X0,Y0,Z0) of its origin. Points on the target mesh are defined in global (X)Y,Z) coordi-
nates, and the fluxes are reported in terms of a local (1,6, 2) cylindrical system in the out-
put flux table.

Note that results for spherical and flat-circular targets generated with the
hybrid target option are output in terms of cylindrical coordinates rather
than in the natural coordinates used in the ITARSH=1 and ITARSH=6
options. This can be a possible point of confusion unless the user is fore-
warned.

For each component, from 3 to 51 points are allowable in the azimuthal (K) direc-
tion and from 3 to 51 points in the L direction. Even though only physically axisymmet-
ric receivers (AO = 2n) can be analyzed, they can be modeled with sections of lesser
angular extent in order to save computational time if flux distributions are expected to
be cyclically symmetric (see Example 4 of Chapter 8 for an illustration of this case). For
such analyses, collected power reported by the program will be proportional to the
receiver area modeled. If only 1/4 of the receiver is modeled for a quarter-symmetric
problem, the collected power output by CIRCE2 should be multiplied by four to obtain
total power collected by the physical (axisymmetric) receiver. Thus, a receiver angular
extent (KEXT) of less than 360 degrees is allowable for such cases, but the whole concen-
trator must still be modeled.
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As with other target types (including custom (ITARSH=2) targets), the user may
use DEKGENZ2 to reposition (translate) hybrid receivers, perhaps to investigate effects of
receiver axial positioning with respect to the focal plane of a parabolic dish. After the
new (Xo0,Yo,Zo) coordinates of the target-system origin are specified, DEKGEN2 auto-
matically reconstructs the target in the new location (and defines the new coordinates of
the associated aperture for hybrid receivers). Example 4 of Chapter 8 explains the steps
involved in the creation of a four-component hybrid receiver.

5.5 Internal/External Receivers and Aperture Considerations

Curved surfaces may be designated as either internal or external receivers,
depending upon the parameter INORM.:

INORM = 0 - flat target
1 - internal receiver, energy is to be collected on the concave side
2 - external receiver, energy is to be collected on the convex side

Any rays hitting the side of the target not designated as the receiving side will be
discounted. For flat targets, INORM is internally set to zero and the side of the target
facing the concentrator is assumed to be the receiving side.

Allied to the choice of INORM is the parameter IAPT, which designates whether
an aperture exists, and the type of aperture (circular or square) if it does exist.

IAPT = 0 - no aperture exists for the collector system
1 - rectangular aperture
2 - circular aperture

3 - internally generated circular aperture for axisymmetric receivers

If an aperture is specified, only reflected raysthat go through the aperture are
allowed to strike the target if it is an internal receiver (INORM=1) or a flat target. If the
target is an external receiver (INORM=2), only rays not passing through the aperture
are allowed to strike the target surface. Figure 5.10 depicts reflected rays passing
through an aperture. The aperture is defined by specifying the elements of the matrix
AC(i,j) of the collector-system (X,Y,Z) coordinates for the ith corner point (i=1,4). As the
figure suggests, the points are input in the order encountered when the aperture bound-
ary is traversed in a clockwise manner as viewed by a ray entering the aperture. The
aperture may be tilted with respect to the concentrator and does not have to be centered
about the collector Z-axis. Ifit is tilted, the edges defined by the corners 1,2 and 3,4 must
remain horizontal. That is, the Z coordinate of corners 1 and 2 must be the same, and
the Z coordinate of points 3 and 4 must be the same. The four points must all lie in the
same plane, and opposite edges of the rectangle must be equal in length. Appendix F
outlines an algorithm by which the coordinates of the corner points can be calculated.
Example 3 of Chapter 8 provides an occasion for such a calculation.
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Figure 5.10 Geometry Convention for a Rectangular Aperture.

IAPT=2 indicates a circular aperture. A square can be inscribed within a circle
such that its vertices lie on the circle. Conversely, if the four corners of a square are
specified, the corresponding circle is also defined. Locating and orienting a circular aper-
ture, then, is just a special case of the process used to define a rectangular aperture. The
four points must lie in the same plane and all edge lengths must be equal. Even though

they are defined similarly, the circular and rectangular apertures are treated differently
in CIRCE2.

IAPT=3 should be chosen when analyzing full axisymmetric (A8 = 2r) receivers
such as a cylinder, cone, hemisphere, or a hybrid combination of these shapes. All axi-
symmetric receivers have apertures defined by the target geometry. For example, the
bottom opening of an internal cylindrical receiver is itself an aperture; only rays enter-
ing through the bottom can impinge upon the receiver surface. The choice IAPT=3
directs DEKGEN2 to generate the coordinates of the points that define the aperture.
The resulting aperture is geometrically consistent with the target geometry, including
hybrid receivers.
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WARNING:

In general, when analyzing physical concave (internal) receivers that are
not fully axisymmetric, such as the one shown in Figure 5.11, an aperture
should not be defined because it will cut off rays that should be allowed to
strike the internal surface. For example, ray 1 in the figure should be able
to strike the target at point P1 even though it does not go through the
aperture. However, not defining an aperture also has a drawback in that
rays that should be cut off by the aperture will be allowed to strike the sur-
face. If no aperture is defined, the program will allow ray 2 to strike the
target at P2, even though this is not physically possible. Whether or not
this is a problem depends on the target section being analyzed and the
position (location and orientation) of the target relative to the concentra-
tor. For some geometries the problem does exist, but the user should be
aware of this fact when modeling concave targets that are not axisymmet-
ric. When dealing with external receivers, problems of this nature do not
exist.

RECEIVER

ALY

/

APERTURE

RAY 1
RAY 2

Figure 5.11 Conflict Arising from Modeling an Incomplete Axisymmetric Internal
Receiver.

When modeling hybrid receivers, care should be taken to avoid geometries that
exhibit multiple apertures. Such a case is illustrated in Figure 5.12. This hybrid cavity
receiver is a combination of two inverted cone frustrums (components 1 and 2), a cylinder
(component 3), and a flat circular disk (component 4). Aperture 1 is established automat-
ically by DEKGEN2 when IAPT=3 is chosen. However, the second aperture at the junc-
tion of components 1 and 2 would not be accounted for, allowing the ray shown to strike
component 3 as well as component 1, an instance of double-counting. Figure 5.13 shows



in cross section another cavity receiver that cannot be currently treated by CIRCEZ2.
The back wall intercepts the ray; it should not be allowed to strike the side wall also, but
does so with the present algorithm. CIRCEZ2 counts or ignores rays based upon which
side of the target is the receiving side and whether it did (did not) pass through the aper-
ture for an internal (external) receiver. The program does not determine whether a ray
has already struck another part of the receiver when it counts or discounts rays. Using
this knowledge, the user must carefully examine the receiver he wants to analyze and
determine whether it is valid for this analysis code.

HYBRID CAVITY RECEIVER

N

2nd APERTURE ————\

2nd STRIKE

1st STRIKE

1st APERTURE —X_, &-Df—2

(xo ’ Yo ’ zo)
ENTERING RAY

Figure 5.12 Hybrid Cavity Receiver with Multiple Apertures (not allowed).

2nd STRIKE 1st STRIKE

HYBRID CAVITY RECEIVER

7~

ENTERING RAY

Figure 5.13 Cross-Sectional View of an Unallowable Hybrid Cavity Receiver.
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6 REFLECTOR/FACET MODELING

A concentrator may comprise one or several reflectors. A continuous-surface
reflector is called a “facet.” CIRCE2 can analyze solar concentrators whose reflector(s)
can be approximated with the facet shapes described below, or a combination of those
shapes. If one is creative, almost any concentrator can be modeled with the available
facet shapes. Of extreme importance is the subdivision of the facet into “subfacets,” or
reflector elements, each of which is treated in the manner described in Section 2.3.

6.1 Facet Projected Shape

Facet geometry is described by projected shape and contour. Figure 6.1 helps
visualize the meanings of these terms. The facet shown has its vertex at the origin of the
x- y-z “facet coordinate system” and its axis is along the z-direction. The facet has a
spherical contour. Its projection onto the x-y plane is called its “projected shape.” The
centroid of the projected shape coincides with the origin of the facet coordinate system.
In the example the projected shape is triangular. Projected shape is controlled by the
parameter KORD. The following options are available.

KORD = 1 -circular
2 - rectangular
3 - equilateral triangular

SPHERICAL FACET OF TRIANGULAR
/ PROJECTED SHAPE

FACET COORDINATE SYSTEM

PROJECTED SHAPE

Figure 6.1 Facet Contour, Projected Shape, and Coordinate System.
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The size of the projected shape is specified by one or two characteristic lengths
input in meters. Facets of circular projected shape require only specification of projected
radius (FLENG). Triangular facets require that the length of a side (FLENG) be speci-
fied. Rectangular facets require specification of length (ELENX) and width (ELENY)
(ELENX > ELENY). This is described in more detail below.

6.2 Facet Subdivision

Before describing the options available for facet contour, it is necessary to address
division of a facet into subfacets. As stated in Section 2.3, this process is necessary for
numerical integration over the facet surface. If the facet is very small relative to the
total reflective area of the concentrator, it may not be necessary to divide it into subfac-
ets. However, in the great majority of cases, subdivision is justified and necessary. The
smaller the subfacets, the closer the mathematical approximations of Section 2.3 match
solar optics theory (see subtitled articles of Section 6.3). The finer the surface division,
however, the more costly the analysis is in terms of time and computer expense. Clearly,
the user should divide the concentrator as finely as economically reasonable. Convolu-
tion options greatly alter the effect that the degree of facet subdivision has on computer
requirements. This dependence was discussed in Section 4.6.4. This information will
likely impact how the user chooses to subdivide the concentrator surface.

Division of a facet is dependent upon division of its projected shape. Circular pro-
jected shapes (radius = FLENG) are divided in the following way. A division parameter,
NSUBF (£100), is specified which divides the circular projection into NSUBF pieces: a cir-
cle of radius Ry where

Ro=FLENG/(2xNSUBF) (6.00)
and NSUBF-1 circular rings of width Ar where
Ar= (FLENG-R0)(NSUBF-1). (6.0)

Each ring is then automatically subdivided into M equally sized angular sectors such
that arc length on the outside of the sector is no greater than the ring width, where

M = INT (2rnb/Ar)y +1 (6.1)
and A0 = 2n/M , (6.2)

where b is the outer radius of the k%" ring and A0 is the angular extent of the sector. As
an example, Figure 6.2 depicts the subdivision of a circular projected shape into “pro-
jected subfacets” for the case NSUBF=4. The division map is not necessarily accurate;
it is only illustrative. The facet itself is divided into subfacets by projecting this division
map up onto the facet surface. A subfacet and its associated projected subfacet are
shaded in the figure. In general, execution time is proportional to the total number of
subfacets analyzed, which is a product of the number of facets on the concentrator by the
number of subfacets per facet (all facets are constrained to be divided similarly). The
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-y
CIRCULAR PROJECTED = ~PROJECTED SUBFACET
SHAPE WITH DIVISION

MAP (NSUBF = 4)

Figure 6.2 Facet of Circular Projected-Shape and Division into Subfacets.

number of radial divisions (NSUBF) must be less than or equal to 100, but the number of
subfacets increases dramatically as NSUBF goes up. Table 1 gives the number of subfac-
ets per facet as a function of NSUBF (for a 14-meter diameter projected shape, i.e.
FLENG = 7 m.) The total number of subfacets increases rapidly as the division parame-
ter NSUBF increases, and the rate of rise increases for larger facets. The user must be
aware that execution time is a strong function of the parameter NSUBF.

Table 1. Number of Subfacets vs. Division Parameter NSUBF for Circular Projected

Shapes (FLENG = 7 meters)

Division Number
Parameter Subfacets
NSUBF N
3 25
6 124
10 372
15 873
25 2500




A rectangular projected shape is shown in Figure 6.3. Observe that the facet coor-
dinate system x-axis lies along the major length (ELENX), while the y-axis lies along the
minor length (ELENY). The length of the projected shape (in the x-direction) is divided
into NX equal sections, and the width (y-direction) is divided into NY equal sections.
This produces (NX) x (NY) subfacets. This particular figure has NX = 4 and NY = 2.

Y
1 2 .(NX+1)

i L— 1

1 I

I i

i |

| :

ELENY | _____ I > L +o—X

| ' :

i ! |

I ! 1

' ! I :

| : I )

. — (NY+1)

ELENX

Figure 6.3 Rectangular Projected Shape and Associated Division Map.
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Triangular projected shapes are divided according to specification of the parame-
ter NSUBF. Each edge of the equilateral triangle is sectioned into NSUBF equal
lengths, and division is continued inward in a manner that produces (NSUBF)x(NSUBF)
equilateral triangles. Figure 6.4 illustrates the case NSUBF=3. Note that the triangle
is oriented such that one edge lies parallel to the x-axis of the facet coordinate system.

Y

NSUBF + 1

FLENG g

Figure 6.4 Triangular Projected Shape and Associated Division Map.

6.3 Facet Contour

The facet in Figure 6.1 has a characteristic contour that is produced by rotation
about the z-axis of a circular arc. Facets of rectangular and circular projected-shape
may have contours similarly produced. More arbitrary facet contours (not describable by
rotating a curve about an axis) may be prescribed with a user-supplied FORTRAN sub-
routine. The parameter IOPT controls the contour options:

IOPT = 1 - parabolic arc, rotated
2 - flat segment, rotated
3 - circular are, rotated
4 - polynomial curve, rotated
5 - curve by table of radius vs. z-displacement, rotated

6 - curve by table of radius vs. z-displacement, rotated, with
user-supplied subfacet normals (only for use on facets of cir-
cular projected shape)

7 - dish contour by user-supplied FORTRAN subroutine
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For IOPT=1, the focal length (FOC) for the parabola is required. For IOPT=3, the
radius (FOC) of the circular arc must be input. For reflectors that can be modeled as
effective parabolic dishes, DEKGEN2 uses Equation 6.3 to compute the effective focal
length, f, given the effective dish radius rg;,, (DISHRAD), and rim angle! n (RIMANG).
This is useful for defining Z of the target coordinate system.

-0.5 v
f=05ry,,(cotn+ [cotzn +1] ) (6.3)

Contour modeling options IOPT=4, 5, and 6 allow evaluation of innovative concen-
trators, such as stretched-membrane reflectors, which have custom shapes described
with an analytically or experimentally obtained table of radius vs. z-displacement.

Effective use of the IOPT parameter demands a good understanding of the impor-
tant subfacet quantities involved in Eq. (2.5). These are: the direction of the ideal nor-
mal N,; the location of a representative point j from which all reflected energy is
assumed to originate; and the area A i of the subfacet element. A few comments on each
of these quantities are in order:

Source-Point Location

All energy reflected from the jth subfacet to the ith target point is treated as
though it comes from point j in Figure 2.5. It is not always clear what location would be
most appropriate for point j, though the subfacet centroid seems reasonable. Calculation
of the centroid for arbitrary curved surfaces is difficult. Fortunately, calculation of the
exact centroid is unnecessary since a good approximation to it is easy to obtain and the
location of the source point j is less critical to results than other subfacet quantities.

Direction of Ideal Normal

An accurate direction for the subfacet normal is vitally important because it deter-
mines the placement of the reflected flux on the target surface. Small deviations in the
normal affect the target flux distribution much more than small deviations in the posi-
tion of the source-point j. To obtain the ideal normal N,, it is necessary to determine a
surface-normal representative of the entire subfacet surface. As described in Appendix
B, this can be obtained by an area-weighted average of the normal-vector over the sur-
face. However, such a calculation is difficult and expensive. Further complications are
introduced for axisymmetric facets whose shape is described by a table of radius vs.
height data and not an analytic function. Thus, approxmate methods must be used in
CIRCEZ2, but efforts are made to make the approximations as accurate as reasonably
possible.

I The rim angle is the angle formed between the rays from the focal point (o the dish vertex and to the edge
of the parabolic dish. Alternatively. parabolic dishes are often defined by 1/d ratios, where d=2 x r;g,. For
these cases tann = 80d

(41/d)*-1
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Subfacet Area

The total energy reflected from subfacet j to a target point { is obtained by calcu-
lating the flux from the source point j to the target point, and then multiplying by the
projection of the subfacet area A; in the direction of the target point. Subfacet area A is
determined in a round-about manner. By way of illustration, in Figure 6.2 the projection
of the curved subfacet onto the x-y plane yields the shaded sector shown. In CIRCE2, a
reverse procedure is used to obtain subfacet area. Given the shaded sector in the x-y
plane, determine the corresponding subfacet, or more exactly, the area quantity A; if the
geometry of the facet surface is specified. To first order, this can be done by choosing a
representative geometric unit normal N, for the subfacet, determining its direction
cosine with the facet coordinate system z-axis, and dividing the area of the projected cir-
cular sector by this quantity. (The geometric normal Ng is not necessarily the same as
the ideal normal N,,. For reasons that will become apparent later, separation of the geo-
metric and ideal normals can be advantageous.) Physically, this procedure has the effect
of modeling the subfacet as a flat element normal to N,.

For flat (planar) facets, calculation of the above three quantities is straightforward
—the facet and projected shape are one and the same. IOPT=2 is the option used for flat
facets, whose subfacets are also flat. Source-point locations are taken to be at the sub-
facet centroids, and the geometric and most probable normals are given by the facet nor-
mal. The area A, is equal to the jth subarea of the discretized projected shape.

For curved facets, the difficulty of calculating the subfacet quantities requires that
approximations be used. The errors between the approximations and exact quantities
increase with increasing surface curvature and decreasing degree of discretization of the
facet. Surface curvature is fixed by the concentrator geometry, but the discretization of
the surface is adjustable, presenting opportunity to affect accuracy of the calculation.

For parabolic (I10PT=1) or spherical (IOPT=3) facet contours, the following
approach is taken to determine subfacet quantities. The approach is explained with ref-
erence to Figure 6.2, but is analogous for facets of triangular and rectangular projected
shapes. First, the centroid of the shaded sector is calculated. The projection of this point
up onto the facet is taken to be the “subfacet centroid.” This is treated as the source-
point for all energy reflected from the subfacet. The analytic surface-normal at this point
is taken to be the ideal normal. The analytic surface-normal is also used as the geomet-
ric normal from which subfacet area A; is calculated.

IOPT=4 allows modeling of facet contour by revolution about the z-axis of a poly-
nomial curve of order NTERMS (<10). (Facets of rectangular and triangular projected
shape are permitted here.) Subfacet normals and source-point locations can be obtained
using a polynomial as the analytic function (as the equations of a parabola and a
circle are used for IOPT=1 and 3, respectively). Usually, the polynomial coefficients
Aj, (ASUB (k)) are obtained from a regression analysis of measured radius vs. z-displace-
ment data. The form of the concentrator profile is given by:

K
2(r) = ZAkrk,lsKslo (6.4)
P
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It is assumed that the z-displacement is a function of the radial position as mea-
sured from the facet center. Note that there is no constant term in the polynomial, con-
straining the vertex of the modeled facet to coincide with the origin of the x-y-z facet
system. The option for parabolic surfaces (IOPT=1) is a special case of the polynomial
option with the only non-zero coefficient being ASUB(2) = 1/(4 f), where f is the focal
length of the parabola. The circular arc that produces a spherical facet cannot be exactly
described with a polynomial. To quantify the level of approximation involved in the var-
ious curve-fitting options (I0PT=4,5), the following investigation is undertaken.

The z-displacements vs. radial location for a 14-m diameter spherical dish with an f/d of
unity (see Example 3, Chapter 8) are listed in Table 2. The 15 data points are fit with a
least-squares proceedure assuming second and fourth order polynomial fits to the data.
The resulting equations, in which the constant terms have been discarded so that z=0 at
r =0 as required, are:

2, (r) = -1.83299 (107%) r + 1.83601 (1072) r® (6.5)

2,(r) = —2.12534 (107°) r + 1.78794 (107%) r* (6.6)
~7.45046 (10°%)r3 + 6.55119 (1075) 4

Table 2. Radius vs. Axial Displacement for a 14m Diameter Spherical Dish (f/d=1)

Point r(m) 2(r) (m)
1 0.0 0.00000000
2 0.5 0.0044646398
3 1.0 0.017862840
4 1.5 0.0402074 38
5 2.0 0.071519911
6 2.5 0.11183047
7 3.0 0.16117819
8 35 0.21961123
9 4.0 0.28718707
10 4.5 0.36397278
11 5.0 0.45004538
12 5.5 0.54549122
13 6.0 0.6504 1137
14 6.5 0.76491237
15 7.0 0.88911659
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Assuming a division parameter of NSUBF=10 for the continuous-surface spherical
dish, the radial locations of subfacet “centroids” are listed in Table 3. Centroidal radii »
are calculated with the following equation.

r=4d(a’+ab+b62)sin(A8/2) |/(3(a+b)Ab ] (6.7)

where a and b are the inner and outer bounding radii and A8 the angular span of the cir-
cular sectors on the x-y plane. These quantities can be calculated from Equations (6.1)
thru (6.4). Heights (z-displacements) at the radii of Table 3 are obtained by various
means. The exact heights, calculated with the equation of a circle (IOPT=3), are com-
pared to those obtained from the IOPT=4 option with 2nd- and 4th- order regression
polynomial fits, Equations (6.5) and (6.6), respectively.

The fourth-order fit obviously performs better than the second-order fit, which
does not have the necessary degrees of freedom to closely follow the spherical shape.
However, this trend cannot be generalized. Since polynomials of higher order tend to
exhibit “wiggliness,” using polynomials of increasingly higher order might yield succes-
sively poorer height and slope quantities. Thus, shapes being analyzed with the polyno-
mial option should be amenable to description with a fairly low-order polynomial.

Table 3. Comparison of IOPT=3, IOPT=4 Options for Spherical Facet Contour

Radial Position

of subfacel Height (m) Height (m) Height (i)
Point centroids (m) Analytic (10PT=3) I0PT=4. 0(2) A% I0PT=4. ()(4) A%
1 0.00000 0.0000000 0.0000000 0.0 (.0000000 0.0
2 (.76987 0.0103858 0.0094709 -10.5 0.0105797 0.05
3 1.47998 0.0391407 0.0375021 4.2 0.0391370 0.00
4 2.21040 0.0873833 0.0856534 2.0 0.0873852 0.00
5 2.94584 0.1553936 0.1539288 0.9 (.1553969 0.00
6 3.68243 0.2432041 0.2422184 0.4 0.2432043 0.00
7 4.41987 0.3510437 0.3505676 -0.1 0.3510413 0.00
8 5.15776 0.4791451 0.4759702 0.0 0.4791417 0.00
9 5.89606 0.6278152 0.62745435 -0.1 0.6278160) 0.00
10 0.63439 .797334 0.7959614 0.2 0.7973381 0.00
3 o2
\/z‘%’;‘f_ﬂﬁ% Z(i:) =0.02¢%
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The IOPT=5 and 6 options (I10PT=6 is restricted to facets of circular projected
shape) are available for modeling reflector contour by interpolating tabular data
(INTERP=0 for linear interpolation and INTERP=1 for cubic interpolation). The table of
radius vs. z-displacement (height) data may be generated by analytic or experimental
means, The table may be read-in from a file or entered interactively during the DEK-
GENZ2 gession. A sample file is presented in Example 3 of Chapter 8 (pp. 85). The maxi-
mum number of points allowable is 99. The data can be in uneven radial increments,
but radius must increase for successive table entries. The first point must be at the facet
vertex (r=2=0) and the last point must be at the outer radius (r=FLENG).

Suppose that 8 non-equally-spaced data points are obtained from direct measure-
ment of a stretched-membrane facet and plotted in Figure 6.5. Employing IOPT=5 and
NSUBF=4 for a circular facet, the heights at the subfacet boundaries are obtained by
either linear (INTERP=0) or cubic (INTERP=1) interpolation of the data. In this exam-
ple, linear interpolation is used and the interpolated heights at the subfacet boundaries
are marked with “X"s.

7. FACET HEIGHT
A ACTUAL FACET SURFACE

MEASURED DISPLACEMENTS —»

LINEAR INTERPOLATION

BETWEEN DATA POINTS \
’,
7,

INTERPOLATED A
DISPLACEMENTS >

[}

]

!

! SUBFACET i

' \«—— INTEGRATION —3!

1 | BOUNDARIES !

: :

' [}

- L 1 e | EACET
l ’
1 2 3 4 - NSUBF

Figure 6.5 Linear Fit to Surface Profile of a Stretched Membrane Facet

For clarity, the geometry of this example was set up so that the X’s lie off the facet
surface by an appreciable amount. More data points, more evenly spaced measure-
ments, or a concentration of measurements about subfacet boundaries, would all result
in interpolated displacements that better approximate the actual facet surface. Also,
using cubic interpolation (INTERP=1) would result in a much better fit. To get a quan-
titative feel, consider again the 14-m diameter spherical dish. Using the 15 data points
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of Table 2, heights at the subfacet-bounding radii are listed in Table 4 for both linear and
cubic interpolations. A comparison to heights obtained by the equation of a sphere
(IOPT=3) is made. Even with this modest number of data points, it is possible with cubic
interpolation to accurately portray the actual facet surface. Nevertheless, since the
number of data points negligibly affects CIRCE2 execution time, it is advisable to
include as many points as possible to maximize accuracy of the representation.

In summary, at least for a circular arc, linear and cubic interpolations with the
IOPT=5 option are respectively more accurate than the IOPT=4 option with ond gnd 4th
order least-squares regression fits —thereby yielding greater accuracy with less demands
on the user.

Table 4. Comparison of IOPT=3, IOPT=5 Options for Spherical Facet Contour.

Radial Position Height (m) Height (m) Height (1n)

Point (m) Analytic (IOPT=3) IOPT=5, LIN A% IOPT=5,CUB A%
1 0.00000 (0.0000000 0.0000000 0.0% 0.0000000 0.00%
2 0.76987 0.0105858 0.0116962 10.5 0.0105857 0.00
3 1.47998 0.0391407 0.0393127 04 0.0391403 0.00
4 2.21040 0.0873833 0.0884825 1.3 0.0873839 0.00
5 2.94584 0.1553936 0.1558326 0.3 0.1553940 0.00
6 3.68243 0.2432041 0.2442671 04 0.2432049 0.00
7 4.41987 0.3510437 0.3516670 0.2 0.3510429 0.00
8 5.15776 0.4791451 0.4801613 0.2 0.4791457 0.00
9 5.89606 0.6278152 0.6286009 0.1 0.6278139 0.00

10 6.63439 0.7973347 0.7982948 0.1 0.7973413 0.00
I

The motivation for IOPT=6 will now be established. Fixing attention on the inter-
polated boundary points A and B of Figure 6.5, assume for the moment that they lie on
the actual facet surface as shown in Figure 6.6. It is desired to obtain a line-weighted-
average normal over the reflector surface from A to B. (Weighting which arises from the
greater circumferential arc length at B than at A will be neglected here, but can be
accounted-for as in the derivation of Equation (B.5) in Appendix B.) In order to reach B
from A along any path, the average direction traveled must be along a vector from A to B,
whose components are given by the slope of the straight-line segment connecting A and
B. Thus, the line-weighted-average tangent vector along the facet surface from A to B
parallels the segment AB. The average normal vector must lie perpendicular to the
average tangent vector, and thus lies perpendicular to the line segment AB.
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Returning to Figure 6.5, in which points A and B lie close to (but in general not on)
the actual facet surface, the average normal vector over the 3rd integration interval is
approximated to be perpendicular to a straight line drawn through the two points. This
normal vector constitutes the geometric normal for IOPT=5,6 and ideal normal for
IOPT=5. Likewise, straight-line connections between all the other interpolated bound-
ary points are made, and a piecewise-linear approximation to the actual facet profile
results. Source points are taken to be at radii marking the centroids of the correspond-
ing projected subfacets in the x—y facet-coordinate plane. Heights of the source points
are linearly interpolated from the heights at the integration boundaries. The IOPT=5,6
options can be substituted for the IOPT=1,3, and 4 cptions when the facet shape is,
respectively, parabolic, spherical, or polynomial. Use of the former options produces no
discontinuities in the facet profile whereas, for IOPT=1,3, and 4, discontinuities exist
because the geometric normals evaluated at subfacet “centroids” generally differ from
the normals evaluated with the above method. Presumably, the IOPT=5 method will be
more accurate if, for the order of interpolation chosen, sufficiently many data points are
supplied to allow accurate estimation of the facet heights at the integration boundaries.

FACET SURFACE

Figure 6.6 Close-up of Section A-B of Figure 6.5.

The IOPT=5 option avoids the problem of discontinuous concentrator profile and
frees constraints on the geometry of analytic surfaces that can be analyzed, and it
allows measured data to be used directly without a regression analysis. Nevertheless,
there are situations that call for user-specification of the ideal surface-normal separately
from the geometric normal. For instance, if the user wants to account for the effect of
increasing circumferential arc-length with radius, IOPT=6 makes this possible by
retaining the IOPT=5 normal as the geometric normal (for profile continuity) while
simultaneously allowing the user to specify a more accurate area-weighted surface-nor-
mal (as in Appendix B). For nonanalytic (measured) surfaces, in many cases the measure-
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ment of surface-normal vs. radius is easier and more accurate than measurement of
z-displacement. Often, displacement is not measured directly but is derived iteratively
from the slope measurements | 17]. If confidence in z-displacement data is low such that
derivation of the all-important ideal normal from this data is to be avoided and accurate
slope information is available, IOPT=6 works best. With this option, the displacement
data is entered as in IOPT=5, but the user separately specifies components of the ideal
normal N, at the subfacet centroids. The geometric profile modeled remains straight-
line segments between heights at subfacet-bounding radii. (Though the geometry may
be modeled with relatively crude displacement data in these cases, the effect on results is
minimal because it is really the subfacet normals that the final results are most sensitive
to, and the user is presumably inputting “good” values for these.)

A measured or estimated ideal subfacet-normal is separately entered by the user
for each of the NSUBF-1 outer integration intervals of the facet. (The innermost sub-
facet is not a circular sector but a circular disk, as explained in Section 6.2. For this
disk, the source-point is assumed to be at the facet vertex (z= r=0.0) and the geometric
and ideal normals lie along the z-axis.) Subfacet boundaries are obtained from Equa-
tions (6.1) and (6.2). DEKGENZ specifies the boundary locations when prompting for the
r (RCOMP) and z (ZCOMP) components of the ideal normal. Components input do not
have to be those of a unit vector. Coordinate axes and correct normal-directions are as
shown in Figure 6.5. Example 3 of Chapter 8 illustrates the use of the option IOPT=6
for defining the geometry of a stretched-membrane reflector. Before using IOPT=6, the
user is cautioned to have a good grasp of the considerations presented here.

The last option available for describing dish contour is IOPT=7, which employs a
user-supplied subroutine to determine the z-displacement and subfacet-normal informa-
tion. This option is only available for single-facet, continuous-surface concentrators
(NFACET=1), but is applicable to rectangular, triangular, and circular projected shapes.
It admits a much larger class of concentrator geometries than can be described by rota-
tion of a curve about the facet z-axis. CIRCE2 calls subroutine USERDISHX(....) to evalu-
ate facet height and normal-direction given the facet-system (x,y) coordinates of each
subfacet centroid. Appendix A lists a sample USERDISH subroutine. This subroutine is
the one that CIRCEZ2 uses by default for IOPT=7, and it must be replaced with a user-
supplied subroutine at compile-time if the user wishes to analyze a unique geometry.
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7 CONCENTRATOR MODELING

Concentrators comprising one |quasi-jcontinuous facet (Figure 7.1), or several dis-
tinct facets (Figure 7.2) can be modeled with CIRCE2.

Figure 7.1 Photograph of the General Electric 7-m parabolic dishes located at
Shenandoah, Georgia.

Figure 7.2 Photograph of a Cummins Power Generation CPG-460 Concentrator.
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Concentrators with up to 350 facets can be modeled with CIRCE2. The parameter
NFACET dictates the number of facets on the concentrator. When a concentrator con-
sists of two or more facets, all facets are assumed to be geometrically similar and to have
the same solar-band specular reflectance REFLEC (x used in Equation 2.5).

When a reflector consists of many facets, it may be beneficial to assemble a free-
formatted facet geometry file that can be read into DEKGEN2. This file would include
for each facet: the facet identification number IDF, the collector-system coordinates of
the facet center, the facet focal length or radius of curvature (FOC), the shading and
blockage factor SBM, the aim-point identifier IDAIM, and the facet rotation angle
IBETA. Asample file is presented in Example 4 of Chapter 8 (pp. 97), with an annotated
guide presented at the bottom of Appendix D.

7.1 Geometry Definition

Concentrator geometry is defined using an absolute X-Y-Z reference frame,
referred to as the “collector coordinate system”. Figure 7.3 helps picture the quanti-
ties needed for modeling faceted concentrators. The coordinates (X(IDF),Y(IDF),Z(IDF))
of the vertex of each facet must be specified, where IDF is the identifying index of the
facet and IDF ranges from 1 to NFACET. The vertex of a facet marks the origin of the x—
y-z facet coordinate system from which the facet’s geometry is established.

AIM POINT
FOR FACET >

\\\ REFLECTED CENTRAL RAY

~——INCOMING CENTRAL RAY

"—_,-—--—-~

IDF " FACET

(~< - = = — L — = = = =% (X, Y, 2) OF VERTEX OF IDF " FACET
\ /
N\ /
CONCENTRATOR — S ~ ,\* Y
-~ -

COLLECTOR COORDINATE SYSTEM

Figure 7.3 Elements of Concentrator Modeling.

The direction of the facet-system z axis is established either internally by CIRCE2
or input by the user, depending upon the choice ICPQR. If ICPQR=0 is chosen, the direc-
tion of the facet axis is determined such that the reflected central ray from the vertex of
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the IDFth facet (assuming it osculates the x-y plane at x=y=z=0) goes through the
aim-point assigned to that facet, assuming the sun to be on-axis (i.e., the concentrator
tracks the sun perfectly such that incoming central rays are parallel to the collector-sys-
tem Z-axis). Each facet may have it’s own uniquely located aim point, or several may
share a common aim point. Thus, the maximum number of aim points that may be
defined is equal to the maximum number of facets, 3560. NAIM specifies the number of
aim points to be input. The location of the IDth aim point (which can be on or off the tar-
get) is specified in collector-system coordinates by (XAIM(ID), YAIM(ID), ZAIM(ID)).
This information may be entered interactively or stored in a file for DEKGENZ2 to read.
Example 2 of Chapter 8 (pp. 81) presents a sample aim-point date file. Each facet must
be assigned an aim point. If only one aim point is specified (NAIM=1), DEKGEN2
assigns all facets that aim point.

If the user chooses to input the facet normals (ICPQR=1) instead of inputing aim
points and letting CIRCEZ2 calculate the normals (ICPQR=0), he may interactively input
the facet identifier (IDF) and the collector-system components (PN, QN, RN) of the vec-
tors (not necessarily unit vectors) that aim the facets. Alternatively, a free-formatted
data file that contains this information may be generated for DEKGENZ2 to read. Note
that for ICPQR=1, aim points are not needed.

The plane containing the facet-system x- and y- axes is established by the orienta-
tion of the facet z-axis, which is determined as stated above. For facets of rectangular
and triangular projected shape, one more piece of information is required: IBETA, which
controls rotational orientation of the facet. Figures 6.3 and 6.4 show the orientation of
rectangular and triangular facets relative to the facet-system x-y frame. The orientation
of the x-y frame on the plane normal to the z-axis determines the rotational orientation
of these (nonaxisymmetric) facets. Rotational orientation of this frame must be defined
relative to some deterministic coordinate frame on the plane. The sun-reflector coordi-
nate system (see Section 4.3) provides such a frame.

The (somewhat cumbersome) method for defining the facet-system x and y
directions with respect to global coordinate directions is explained below.
In many cases, specification of this information can be avoided. If there is
only one subfacet per facet, the rotational orientation of the facet is imma-
terial since the source-point (see the “Source-Point Location” article of
section 6.3) is at the facet-system origin and does not move when the facet
is rotated. Even if there are many subfacets per facet, unless the concen-
trator is made up of a small number (<10) of relatively large facets, facet
rotation will have little effect on the calculated flux distribution, and can
therefore be neglected. Additionally, for facets of circular projected shape,
facet rotation is immaterial. In these instances, a global rotation angle of
IBETA=0 degrees is assigned.

If it is felt that facet rotation will have a significant impact upon results, the fol-
lowing process must be undertaken. Figure 7.4 shows the projected shape of a rectangu-
lar facet. The sun-reflector coordinate system (Section 4.3) at the projected shape’s
centroid is also drawn. The facet-system z-axis and the sun-reflector-system (-axis coin-
cide and point out of the page. Facet rotation about the z-axis is controlled by rotation of
the x-y coordinate frame relative to the sun-reflector -1 system. The amount of rotation
is specified by the parameter IBETA. IBETA is the counterclockwise positive angle
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(measured in degrees) that locates the x- and y- axes of the facet coordinate system rela-
tive to the & and n- axes of the sun-reflector system. IBETA ranges from -90 to
90 degrees, inclusive. A similar procedure is used to orient triangular facets. Example 4

in Chapter 8 illustrates a practical application of facet rotation using the parameter
IBETA.

— FACET COORDINATE SYSTEM

SUN-REFLECTOR COORDINATE SYSTEM

RECTANGULAR PROJECTED SHAPE

Figure 7.4 Relative Orientation of Sun-Reflector and Facet Coordinate Systems.

7.2 Shading and Blocking

Several options exist to account for: 1) shading of the concentrator by the target,
target support structure, and other objects; and 2) blocking of rays on their way to the
target after reflection from the concentrator. These options manifest themselves in a
shading/blocking factor SBM for each facet. Ultimately, each subfacet of the IDFth facet
is assigned the factor of B.:=SBM(IDF) (see Equation © °). Hence, the power reflected
from every subfacet of the IIDFth facet is diminished by tue factor (1-SBM(IDF)). Thus, a
value of SBM=0 indicates no shading or blocking occurs, and a value of SBM=1 indicates
total shading which results in no contribution from the facet. Note: CIRCE2 does not
check for facet self-shading and self-blocking. This saves considerable computer time,
but it is possible that these may occur for some geometry and sun-position combinations.
The user must be aware of the conditions being modeled und use other means (see
ISHAD=2 below) to account for self blocking/shading.

For ISHAD=0, shadowing is assumed to be small and is therefore neglected, i.e.,
SBM=0 for every facet.

For ISHAD=1, shadow factors are computed internally by CIRCE2. The shading

algorithm calculates SBM(IDF) as the overlap of a quadrilateral shadow on a quadrilat-
eral “solar projection” of the IDFth facet [Reference 3, Section 7.4]. The solar projection

71



of a facet is obtained by: 1) first constructing a square projected-shape (in the sense of
Section 6.1) for facets of circular and triangular projected-shape by determining a square
having the same area as the original projected-shape; and 2) finding the projection of the
rectangular projected-shape onto a plane normal to the incident solar central ray and
containing the facet vertex. In general, such a projection will be a quadrilateral. A
shadow is cast onto this same plane by a flat square plate representing the shading
object. The square plate can be located and oriented however the user wishes by the
same procedure used to position a flat rectangular target (Section 5.4.1). The shadow is
the projection of the plate onto the concentrator, based on the sun’s position. Since the
square plate can be arbitrarily oriented, the shadow cast onto the plane is in general a
nonrectangular quadrilateral. The fraction of the facet-quadrilateral that is overlapped
by the shading quadrilateral gives the factor SBM(IDF) or, at the subfacet level it gives
B;. Each facet of the concentrator is checked for overlap in this manner.

In using this option, the user must specify the edge length SHADL of the square
plate that casts the shadow. Alternatively, if a circular flat disk models the shading
object better, the user may specify the radius SHADR of such a disk. The algorithm in
CIRCE2 emulates the circular plate with a square plate of equivalent area. For the spe-
cial case of a single-facet dish of circular projected shape, a true circular shadow of
radius SHADR can be projected onto the center of the facet. The portion of the reflector
that is shaded is then assumed not to exist at all, and SBM for the remainder of the facet
is assigned a value of unity. This is the way to model a circular receiver’s shadow at the
vertex of a parabolic or spherical dish, or to model concentrators like the one in Figure
7.1 (that has a hole at its vertex).

For ISHAD=2, the user can specify the shading factor SBM(IDF) for each facet
individually.

72




8 TUTORIAL

This chapter serves as a tutorial to familiarize the user with some of the more important
capabilities of the CIRCE2/DEKGENZ2 package. Toward this purpose, a variety of illus-
trative examples are covered in detail, with commentary and interpretation of results as
appropriate. Since each example addresses different questions that the user is antici-
pated to have, it is recommended that the user read all of the examples before employing
the software for his specific applications. While studying these examples, Appendix G
serves as a quick-reference directory that points to places in the manual where more
information about the various input parameters and technical terms can be found.

Numerical results for the following examples were obtained with version g.3 of the soft-
ware package run on a SUN SPARCstation (SUN Fortran 1.4, level 02 optimization,
SunOS 4.1.3 operating system).

EXAMPLE 1 Parabolic Dish Concentrator with a Circular Flat Target

Using DEKGEN2 we will build the sun model and collector system from scratch. Run
DEKGEN2 alongside this example to read the actual prompts for which the following
responses are given. Type-in the indicated responses at the terminal and follow along.
Comments about individual responses are listed at the right, following a semi-colon.

% dekg2-g3.x ; Run version g.3 of the DEKGEN2 code.

RESP: <ret> ; Press the “return” key after reading version information
RESP: <ret> ; Press the “return” key after reading disclaimer.
RESP: n ; We're building the data file from scratch.

RESP: EXAMPLE 1 OF CIRCE2 USER'S MANUAL; title of this run

RESP: 001 ; components of sun vector, VS(I),I=1-3, sun is on-axis
with respect to concentrator

RESP: 1000 ; I, solar insolation in W/m?

RESP: 1 ; sunshape descriptor, JSUN, we'll build a custom sun
model with a table of values

RESP: N ; no tabular sunshape data file exists, we will build one

RESP: 22 ; (NTABL =) 22 rows of data for the tabular sunshape, each
containing the sun cone angie RHO (in milliradians) in
the first column and weighting magnitude SVAL (unitless)
in the second column. Data points must be input in order
of increasing cone angle.
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RESP:
RESP:
RESP:
RESP:
RESP :
RESP:
RESP:
RESP:
RESP:
RESP:
RESP:
RESP :
RESP:
RESP:
RESP:
RESP:
RESP:
RESP:
RESP:
RESP:
RESP:
RESP:

RESP:

RESP:

RESP:

RESP:
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.000
.352
.704
.056
.408
.760
112
.464
.816
.168
.520
.872
.224
.576
.928
.280
.632
.984
.336
.688
. 040
.216

o 2.5,

.. 1.5,

2010.
2010.
2008.
1991.
1966.
1935.
1901.
1864.
1814.
1738.
1620.
1365.
884.21
83.487
17.796
.1680
.5224
.1320
.8722
.7584
. 6845
.0000

NN W R YW N YO

o o o o~ N

2.5

1.5

; RHO(1), SVAL(1l)
; RHO(2), SVAL(2)

etc.

; Note that the first data point must correspond to the
; center of the axisymmetric sun disk (RHO= 0.0).

; Data may be separated by either a comma or a blank
; space. Magnitudes here are representative when

; assigned units of W/m’-steradian.

; Intensity of the sun disk is taken to be zero

beyond this cone angle.

; NER, number of concentrator-error distribution func-

ions to be input

; TH(1),SIGR(1),SIGS(1l) describe the 1-D circular-normal

distribution function corresponding to reflector slope
errors (see Section 4.3). Units are degrees, milli-
radans, milliradians, respectively.

; TH(2),SIGR(2),SIGS(2) describe the 1-D circular-normal

distribution function corresponding tomirror specular-
ity. Remember that mirror specularity is often expressed
by the dispersion of the reflected image instead of as a
degree of indeterminacy in surface-normal direction. To
convert dispersion-based specularityerrors to surface-
normal errors for CIRCEZ2, divide the angular dispersion
errors by two before inputting here.

; IDIM. In accordance with the convolution strategy of

Section 4.6.4, since we know nothing about the relative
rms widths of the sunshape or mapped error-cone distri-
butions, we could choose the parameter set IDIM=1/IANLYT
=0/NEWCONV=3 and proceed with the analysis, beingconfi-
dent in the final result (assuming adequate concentrator
and target discretion). Alternatively, if we want to



RESP:

RESP:

RESP :

RESP:

RESP:

RESP:

RESP:

RESP:

RESP:

RESP:

run parametric studies of some sort, or perform a con-
vergence study on concentrator and target discretiza-
tion, then we will want to use the parameter set IDIM=1/
IANLYT=1/NEWCONV=1 to produce a quick run from which we
can determine the relative widths of the sunshape and
mapped error-cone distributions, and subsequently opti-
mize the accuracy and speed of the ensuing simulations.

We will take this to be the case for our example, and
use the parameter set IDIM=1/IANLYT=1/NEWCONV=1 for

this investigatory run.

; IANLYT=1 dictates that convolutions will be performed

analytically. This saves computational resources, but
if the rms widths of the mapped error-cone are narrower
than the rms width (dispersion) of the sunshape,

it is unacceptably accurate and numerical convolution
must be used instead. Since we do not at this point
know the relative widths, the sole purpose of this run
is to determine them.

; NEWCONV. A single convolution is all that is required

to determine the rms width of the sunshape and typical
rms widths of the elliptic-normal mapped error-cone
distribution.

; INCPICK. We choose the value 2 here because it serves

our purposes without requiring estimation of the
concentrator-averaged incidence angle H (though for a
parabolic concentrator, this is easily determined via
Equation 4.18).

SAMPLE TARULAR SUNSHAPE MODEL;title for sun and error cone

parameters data group

1 METER RADIUS FLAT-CIRCULAR TARGET ;title for target parameters data group

45

<ret>

; ITARSH selection for a flat, circular target

; We want to place the target at the dish focus, which

is calculated by Equation (6.3).

; This is the dish rim-angle RIMANG (see concentrator

parameters data group below).

; This is the dish edge-radius DISHRAD in meters.

; The focal length is calculated by DEKGEN2 and printed to

the screen. We round the number to 8.45 for our use
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RESP:

RESP: 0.,0.,8.45

RESP: 0, 0

RESP: 1

RESP: 360

RESP: 1, 25

RESP: 0

here. After recording the number for later use, press
the “return” key to continue.

After reading the message about the default value of
INORM, press the “return” key to continue.

Xo, Yo, 20; target center is located at the focal point

; ALPHA=BETA=0 for an unrotated, untilted target
; RMAX, target radius
; THETAMAX, angular span of the target

; TPTS,RPTS are the number of grid points in the circum-

ferential and radial directions, respectively, which

discretize the circular target. The configuration of the
collector system is such that the flux distribution on
the target will theoretically be axisymmetric. Dividing
the concentrator into a sufficiently largs number of

subfacets will result in a flux distribution predicted
by the numerical model that is essentially axisymmetric.
Thus, it is only necessary to determine the flux distri-
bution along one radial line on the target

; IAPT=0 dictates that no auxiliary aperture is present.

RESP: 14 METER DIA., 45 DEG. RIM-ANGLE PARABOLIC DISH ; title of concentrator/

RESP: 1
RESP: 1
RESP: 1
RESP: 7
RESP: 10
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reflector parameters
data group

; REFLEC is the specular reflection coefficient for solar

radiation. For this investigatory runwe will prescribe
no reflection losses so that we may verify at the end of
the CIRCE2 simulation that all energy is accounted for.

; KORD specifies the facet’s projected shape, which is

circular for a paraboic dish.

; IOPT=1 when the facet has a parabolic contour
; FLENG is the radius of the 14-m diameter parabolic dish.

; NSUBF = 10 results in division of the dish into 372

subfacets according to Table 1, Chapter 6. This ought
to ensure that the flux distribution on the target is
essentially axisymmetric, thus justifyingthe choice of
TPTS=1 above.



RESP: 1

ISHAD=1 specifies that shading by the target is to be
accounted for.

For the special case when the concentrator is made
of one facet, as is the case here, and it is
circular, a special shading algorithm that treats
the concentrator as having a hole in its center, like
that of Figure 7.1, is employed. Read the message
printed on the screen by DEKGEN2 to make sure that
the analysis is consistent with the collection system
you want analyzed.

SHADR. The radius of the shading obstruction (in this
case the circular target) is 1 meter.

Normally, we would choose ICPQR=0 here, but since
the components of the unit normal-vector which
orients the dish are obvious, we choose this option
to familiarize the user with the process of manual
specification of facet-normal data.

We have no previously generated data file.
NFACET=1 for the continuous dish concentrator

(X,Y,2) and FOC, respectively, locate the position of
the dish vertex (in collector-system coordinates)
and define the focal length of this 45 degree
rim-angle parabolic dish (given above when the option to
help locate the target was employed).

After reading the message press the “return” key to
continue.

We have no previously generated file containing facet
normal data.

These PN, QN, RN vector components indicate that the axis
of the parabolic dish points along the Z-axis of the
collector coordinate system.

That's it! DEKGEN2 will name the resulting data file "input” because it will
be used as input data to run CIRCE2. Appendix D lists an annnotated form
of this file in which parameter names are listed alongside the various input
data. It is helpful to use this appendix as a key when examining a data file.

RESP: Y ;
RESP: 1.0 ;
RESP: 1 ;
RESP: n H
RESP: 1 H
RESP: 0, 0, 0, 8.45 ;
RESP: <ret> ;
RESP: N H
RESP: 001 ;
Comment:

Comment:

When CIRCE2 is run it produces an output file called "output." This file
echoes the input data, provides diagnostic and debugging information, and
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Comment:

Comment:

Comment:

1 0.0000
2 0.3520
3 0.7040
4 1.0560
5 1.4080
6 1.7600
7 2.1120
8 2.4640
9 2.8160
10 3.1680
11 3.5200
12 3.8720
13 4.2240
14 4.5760
15  4.9280

lists results. The sections at the ends of Examples 2 and 3 contain informa-
tion that is useful in interpreting output files. A condensed version of out-
put is also created. This file, named “flux”, contains a summary of the the
most important results. The flux file for Example 1 is listed in Appendix E.
It provides a numerical benchmark against which users on different com-
puting platforms can compare their results. Finally, a third file called
“messages” is created which holds special messages pertaining to “unusual
occurances” in the analysis. It should be checked at the end of each run.

To keep track of this analysis we will rename files as follows:

input --> examplel.dat
output --> examplel.out
flux --> examplel .fix

messages--> examplel.msg

From the output file, we find that the rms width of the sunshape is about
2.09 mrad and that the rms width of the 1-D approximation to the 2-D ellip-
tic-normal mapped error-cone is approximately 5.8 mrad. Thus, we have a
relatively wide mapped error-cone. Knowing this, and with a good approxi-
mation to [ being 15 degrees by evaluation of Equation (4.18), the guide-
lines of Section 4.6.4 indicate that the most efficient parameter sets are
IDIM=1/IANLYT=1/NEWCONV=1/INCPICK=1/INCANGL=15 degrees for
parametric and scoping studies where speed is the primary concern but
good accuracy is desired, and IDIM=2/TANLYT=0/NEWCONV=1/
INCPICK=1/INCANGL=15 degrees for final results where accuracy is para-
mount. These sets would be used as appropriate in subsequent analyses of
this concentrator.

Now that a tabular sunshape has been specified, it will be advantageous to
edit the input file produced by DEKGENZ2 to make a sunshape table like
that below. Future runs using this sunshape can be expedited by reading in
this file (we'll name it "sun.dat").

2010.
2010.
2008.
1991.
1966.
1935.
1901.
1864.
1814.
1738.
1620.
1365.2
884.21
83.487
17.796

N W Wb DO OO



16
18
19
20
21
22

< 9 o000 0 U

.2800
.9840
.3360
.6880
.0400
.2160

o o o o PN

.1680
.1320
.8722
.7584
. 6845
.0000
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EXAMPLE 2 Same as EXAMPLE 1, but with a Spherical Dish.

This example is essentially the same as Example 1, but with & spherical dish insted of a
parabolic one, and with a user-specified aim point to orient (aim) the dish (ICPQR=0)
rather than a user-input vector for the dish-axis direction (ICPQR=1). For purposes of
illustration, this example utilizes an aim-point data file that DEKGEN2 reads and
appends to the database. Example 3 illustrates interactive input of aim-point data. The
collector-system coordinates (in meters) of the center of the target are (0,0,8.45). Want-
ing the dish’es aim-point to coincide with the center of the target, we create the following
aim-point data file, which we name “aimpt.daf”:

1
1 0. 0. 8.45

The first row specifies the number of aim points (NAIM) to be defined, and the following
NAIM rows each contain an aim-point identifier ID and its collector-system coordinates
XAIM(ID), YAIM(ID), and ZAIM(ID). The aim points must be numbered consecutively
from 1 to NAIM (.e., ID ranges from 1 to NAIM in the file).

We now begin the DEKGEN2 session:

% dekg2-g3.x ; Run version g.3 of the DEKGEN2 code.

RESP: <ret> ; Press the “return” key after reading version information
RESP: <ret> ; Press the “return” key after reading disclaimer.
RESP: y ; It's faster to modify the old file instead of

creating a new one since there are only a few
differences between Examples 1 and 2.

RESP: dir.examplel/examplel.dat ;pathname and filename for old data file

RESP: Y ; We must change the title to suit the new database.

RESP: EXAMPLE 2 OF CIRCE2 USER MANUAL ; title of this run

RESP: N ; We will keep the sun-parameters data group as is.
(The user may have to press the “return” key several
times to scroll through the data from the old file.)

RESP: 0 ; We will also not alter any of the target parameters.

RESP: Yy ; Since we are going to use a spherical facet instead of

a parabolic one as in Example 1, this is where we must
start changing the database.
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RESP:

RESP:

RESP:

RESP:

RESP:

RESP:

RESP:

RESP:

RESP:

RESP:

RESP:

RESP :

RESP:

82

SPHERICAL DISH, SAME FOCAL LENGTH AND PROJECTED AREA AS IN EXAMPLE 1; title

10

aimpt.dat

; REFLEC, perfect surface-reflectance assumed
; KORD=1 for a facet with a round projected shape
; IOPT=3 for facets having spherical contour

; For facets of circular projected-shape, FLENG specifies

the facet radius. The value here gives this dish the
same projected area as the dish in Example 1.

; NSUBF is the facet division parameter for circular (and

triangular) facets. NSUBF = 10 results in division of
the dish into 372 subfacets according to Table 1,
Chapter 6. This ought to ensure that the flux distribu-
tion on the target is essentially axisymmetric, thus
justifying the default choice of TPTS=1 that is the
result of using the old target parameters.

; Changes is this data group are also necessitated when

changing from a parabolic to a spherical dish.

; ISHAD=1 specifies that shading by the target is to be

accounted for.

; For the special 2n the concentrator is made

up of one facet the case here) and it is also
circular, a special shading algorithm which treats
the concentrator as having a hole in its center, like
that of Figure 7.1, is employed. Read the message
printed on the screen by DEKGEN2 to make sure that
the analysis is consistent with the collection system
you want analyzed.

; SHADR. The radius of the shading obstruction (in this

case the circular target) is 1 meter.

; This choice for ICPQR directs CIRCE2 to internally

calculate normals, i.e. “aim” facets, such that rays
from an overhead sun reflect off the center/vertex of
the facet and strike its specified aim-point.

; We do not have a file containing aim-point data and must

therefore enter the data interactively.

; The file we created that contains the collector-system

coordinates of the aim point was name “Qimpt.dat”.



RESP: n

RESP: 1

RESP: 0,

; We have no previously generated file containing the
facet data.

; NFACET=1 for a continuous dish concentrator.

0, 0, 16.9 ; (X,Y,2) and FOC are respectively the X,Y,2
collector-system coordinates of the vertex of the facet,
and the radius of curvature (R.0.C.) of the spherical
facet. The radius of curvature used here gives this
dish the equivalent focal-length of the parabolic dish
of Example 1 (R.0.C. = 2f).

RESP: <ret> ; Press the “return” key after reading the message about

Comment;:

Comment;:

Comment:

the default value of IBETA for this concentrator.

That’s it! The input file for CIRCE2 has now been generated. To keep it
uniquely identified, it should be renamed to something like “example2.dat”
upon completion of a CIRCE2 analysis.

Upon running CIRCEZ2, the following results summary table is produced. It
is located at the bottom of the output and flux files.

** %% SUMMARY RESULTS ****

CONCENTRATOR SURFACE AREA = 158.008 m?

Ap = SOLAR PROJECTED AREA= 150.796 m?

Ar = Ap REDUCED BY SHADING AND BLOCKING =150.796 m?

I = SOLAR INSOLATION =1000.00 W/m?

NO. OF SUNS IN PEAK = 1671.56

Pideal = MAX INTERCEPTABLE POWER = I*Ap = 0.150796E+06 W
Prefl = PWR REFL FROM CONC. = I*Ar*REFLEC =0.150796E+06 W
Prec = POWER ON RECEIVER (QAGS & QNC79) = 0.150271E+06 W
Ceff CONCENTRATOR EFFNCY = Prefl/Pideal =100.00%

Reff = RECEVR COLLECTION EFF = Prec/Prefl = 99.65%

TOTAL COLLECTOR SYSTM EFFINCY = Ceff*Reff  99.65%

i

I
]

“CONCENTRATOR SURFACE AREA” is obtained by summing the areas of
all the subfacets (=£A ). “SOLAR PROJECTED AREA” Ap is the sum of all
subfacet “solar projections”, where a solar projection is obtained by multiply-
ing a subfacet’s area A ; by the cosine of the angle between the direction-vec-
tor V of the incoming solar central-ray and the subfacet geometric normal
N (- the ideal normal N except when IOPT=6). Thus, solar projected
area changes for different values of the sun-vector parameters SV(i). A4, is
the solar projected area A, reduced by shading and blocking. Note that even
though we have specified a circular shadow of radius 1 m at the vertex of the
disy, the values A, and A, are the same here. This is because the shading
algorithm used for this special shading case effectively removes the part of
the facet that is covered by the shadow. Thus, the area A, is the solar pro-
jection of a paraboloid with a hole in it, not of a regular parabolmd So, in
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this case, the recduced area due to shading is already taken into account in
the calculation of Ap. 1In all other cases of shading, the “sunny” portion of
the concentrator, A,, will be less than the solar projection A,, as expected.
“NO. OF SUNS IN PEAK” is the ratio of the maximum of all fluxes calcu-
lated at the target points to the solar insolation I. All other quantities are
defined in the table.

For circular targets a table of “optical disk efficiency” (see Section 5.2.3) is
produced by CIRCE2. Various collection efficiencies and cumulative distri-
butions are reported. The table corresponding to this example is listed
below.

OPTICAL EFFICIENCY FOR APERTURE DISK:

% OF TOT % OF TOT % OF TOTAL % OF PWR ON

RADIUS (M) RADIUS TGT AREA PWR ON TGT UNSHADED DISH
0.00 0.00 0.00 0.0¢C 0.00
0.04 4.17 0.17 5.41 5.39
0.08 8.33 0.69 16.88 16.82
0.12 12.50 1.56 27.32 27.23
0.17 16.67 2.78 35.10 34.98
0.21 20.83 4.34 41.29 41.15
0.25 25.00 6.25 46.65 46.49
0.29 29.17 8.51 51.48 51.30
0.33 33.33 11.11 55.98 55.78
0.38 37.50 14.06 60.13 59.92
0.42 41.67 17.36 63.84 63.61
0.46 45.83 21.01 67.29 67.05
0.50 50.00 25.00 70.83 70.59
0.54 54.17 29.34 74.46 74.20
0.58 58.33 34.03 77.74 77.47
0.62 62.50 39.06 80.38 80.10
0.67 66.67 44 .44 82.59 82.31
0.71 70.83 50.17 84.95 84.65
0.75 75.00 56.25 87.83 87.53
0.79 79.17 62.67 91.13 90.82
0.83 83.33 69.44 94.34 94.01
0.88 87.50 76.56 96.92 96.59
0.92 91.67 84.03 98.63 98.29
0.96 95.83 91.84 99.57 99.22
1.00 100.00 100.00 100.00 99.65



EXAMPLE 3 Stretched Membrane Dish and Tilted, Rotated, Off-Axis
Flat Semi-Circular Target

This example features a collector system that illustrates some of the coordinate systems
in CIRCE2. Figure 8.1 shows the particular system being modelled. The view is from
beneath the concentrator, facing its convex side, and looking up toward the target as the
concentrator would see it. The lines on the concentrator are solely for aid in visualizing
the curved surface and should not be taken as suggestive of the concentrator's division
into subfacets. In a “conventional” collector design, the target would lie on the Z-axis of
the collector coordinate system. The dish (here the term “dish” is used in the special case
where the concentrator is made up of only one facet) would be aimed or directed along
this axis such that the facet coordinate system z-axis would coincide with the collector
system Z-axis. In this example, however, the systems do not coincide; there is relative
rotation between the two. For convenience, the origins of the two systems are the same
here, though this does not have t: be the case, as will be demonstrated in another exam-
ple. The aperture and target are chosen to demonstrate the meanings of various parame-
ters. For generality, this particular example uses the IOPT=6 method of geometry
description for the stretched-membrane dish, which encompasses the simpler IOPT=5
option. This example, then, also demonstrates the essentials when the choice IOPT=5 is
employed.

Suppose that (as in [17]) surface-normal data is measured at certain radii of an axisym-
metric stretched-membrane concentrator. Also, assume that the data is amenable to a
functional curve fit, or some other interpolation algorithm, which can be used to obtain
values of surface-normal r- and z- components (refer to Figure 6.5) as a function of
radius. Let radius vs. displacement data, either measured directly or derived from the
slope data as in [17], also be available. Then the IOPT=6 option can be used to model the
facet. It should be noted that it is necessary for displacement to be known only at dis-
crete peints, and there is freedom in the location of those points, whereas the slope vs.
radius information must be known as a continuous function of radius if freedom in the
subdivision of the facet is to be maintained. This example will illustrate these points.

Suppose that displacements are obtained at 15 radii as listed in Table 2, Section 6.3.
From this table let’s make the data file called “displ.dat” shown below. Recall that the
first data point must be (,2)=(0,0), the last data point must correspond to the outer
radius of the dish, and that data must be listed in order of increasing radii. Unequal
radial spacing between data points is acceptable.

1 0.0 0.00000000E+00
2 0.5 0.44646398E-02
3 1.0 0.17862840E~01
4 1.5 0.40207438E-01
5 2.0 0.71519911E-01
6 2.5 0.11183047E+00
7 3.0 0.16117819E+00
8 3.5 0.21961123E+00
9 4.0 0.28718707E+00
10 4.5 0.36397278E+00
11 5.0 0.45004538E+00
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Figure 8.2 Close-up of Semi-Circular Target
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Figure 8.1 Collector System for Example 3
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15
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0.54549122E+00
0.65041137E+00
0.76491237E+00
0.88911659E+00

Now let's begin the DEKGENZ2 execution:

% dekg2-g.3 ; Run the DEKGEN2 code.

RESP: <ret> ; Press the “return” key after reading version information

RESP: <ret> ; Press the “return” key after reading disclaimer.

RESP: n ; We’ll build this data file from scratch since this
concentrator will be very different from those in
Examples 1 and 2.

RESP: EXAMPLE 3 OF CIRCEZ2 USER'S MANUAL ; descriptive title of this run.

RESP: 001 ; SV(i), 1i=1-3 are the components of the direction vector
of the sun. In this case an overhead sun is specified.

RESP: 1000. ; I, the sclar insolation in W/m"2

RESP: 1 ; JSUN=1; we elect to define the sun with a table of data

RESP: Y ; Here I want to read in sunshape data from the file

RESP: dir.examplel/sun.dat

RESP:

RESP:

RESP:

RESP:

0,2.5,2.5

0,1.5,1.5

4

generated in Example 1.

;the name of the file containing the required sun data
(The user will have to press the “return” key several
times to scroll through the data being read-in. This
allows the user to check the incoming data.)

NER=2 concentrator error distributions to be input

; TH(1l),SIGR(1l),SIGS(l) same as in Example 1

TH(2),SIGR(2),S5IGS5(2) same as in Example 1

IDIM. We know from Example 1 that the mapped error-cone
is wider than the sunshape. However, since the sun is
not on-axis with the dish and the dish is not parabolic,
a good estimate for ﬂ (see Section 4.6.3) is not at
hand. Then, according to the advice in section 4.6.4,
the most appropriate sets of convolution parameters are:

87



IDIM=1/IANLYT=1/NEWCONV=3 for working results and
IDIM=1/IANLYT=0/NEWCONV=3 for final results. Assuming
that this is a preliminary run, we choose the former
parameter-set for this example.

RESP: 1 ; IANLYT.
RESP: 3 ; NEWCONV,
RESP: SUN.DAT tabular sunshape; descriptive title of sun and error parameters

RESP: ROTATED, CANTED, OFF-AXIS FLAT SEMI-CIRCULAR TARGET; title of target data

RESP: 6

RESP: N

RESP: <ret>

RESP: -6, 4, 15
RESP: -45 60
RESP: 1

RESP: 180
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ITARSH selection for a flat, circular target sector
In this example we do not need the proposed information,
Press the “return” key after reading the message.

The origin of the 1-2-3 target coordinate system
shown in Figure 8.1 and the insert, Figure 8.2, is at
(Xo,Y0,20)=(-6,4,15). (The target is drawn with some
thickness to add perspective.) Figure 8.2 is a
magnified view of the target with the same
orientation as in Figure 8.1.

ALPHA and BETA are the angles that orient the virtual
K-L axis system of the circular target relative to the
1-2-3 target coordinate system. The various coordinate
systems and angles are shown in Figure 8.2. The tilt
angle BETA tilts the L-axis, and the target with it,
60 degrees up from the l-axis of the target system. The
-45 degree rotation ALPHA swings the tilted L-axis and
the K-axis (always constrained to be horizontal)

45 degrees counterclockwise, rotating the target
correspondingly.

The semi-circular target has a radius of RMAX=1,0 meter.

THETAMAX. The positive direction of theta is as
indicated in Figure 8.2. If the parameter THETAMAX had a
90 degree value, the target sector would extend from
the K-axis to the L-axis as in Figure 5.2. Figure 8.2
shows a sector with an angular extent from the positive
K-axis to the negative K-axis (semi-circular target)
corresponding to THETAMAX = 180 degrees.



RESP:

RESP:

RESP:

RESP:

RESP:

RESP:

RESP:

RESP:

RESP:

RESP:

RESP:

RESP :

RESP:

RESP:

5 3 ;
2 ;
-5.27 2.663 13.
-4.485 3.84 13.
-5.546 4.547 13.
-6.331 3.37 13.
14 METER DIAMETER,
0.8 ;
1 ;
6 ;
1 .
Yy H
displ.dat ;
10 H

; TPTS,RPTS. The mesh imposed upon the target by these

parameter values is illustrated in Figure 8.2.
Note the node numbering convention for circular
targets.

IAPT=2 for circular apertures, such as the one depicted
in Figure 8.1. These are defined by specification of an
inscribed square.

825 ; These are the coordinates, referred to the
825 ; collector coordinate system, of the four
213 ; corners of the inscribed square (dashed
213 ; lines)shown in Figure 8.1. Appendix F shows

; how the coordinates were determined.
45 DEGREE RIM-ANGLE MEMBRANE DISH; descriptive title
REFLEC, surface reflectance
KORD=1 for the axisymmetric dish

IOPT. The user will specify displacements and normals
for this custom-curvature dish.

This choice for INTERP, indicating cubic interpolation,
is not costly and is most accurate.

We will read in the displacement data prepared earlier.

We named the displacement data file “displ.dat.”
(The user will have to press the “return” key

to scroll through the data being read-in. This
allows the user to check the incoming data.)

NSUBF, the parameter controlling division of the facet
into subfacets, see Table 1 of Section 6.3.

Comment: The ideal normal at the center of any axisymmetric facet points along the
facet coordinate systein z-axis (refer to Section 6.3). Thus, the subfacet at
the center always has a normal whose r- and z- components are Nr=0.0 and
Nz=1.0. These are internally assigned in DEKGEN2. To get the r- and z-
components for the other subfacets, a variety of options can be exercised as
explained in Section 6.3. With IOPT=6, the user is free to specify the effec-
tive normal over each subfacet. The method by which this normal is
obtained is left to the discretion of the user. Consider the subfacet sector
immediately adjacent to the center, whose inner and outer radii are 0.35 and
1.088889 meters, respectively. (These radii are calculated with equations
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RESP:
RESP:
RESP:
RESP:
RESP:
RESP:
RESP:
RESP:
RESP:

RESP:

RESP:

RESP:

RESP:

RESP:

RESP:

(6.00) and (6.0) and are written to the computer screen by DEKGENZ2.) By
some means! we determine the radial and normal components of this sec-
tor’s effective normal to be Nr = -2.569747E-02 and Nz = 0.9996698. These
are input below, along with the values for the other 8 angular sectors .

-0.02569747
-0.05208606
-0.07848112
~0.1048685
-0.1312636
-0.1576509
-0.1840451
-0.2104357
-0.2368280

0

0

n

1

-6,4,15

n

’

r

’

;

.
4

0.9996698
0.9986426
0.9969156
0.9944861
0.9913475
0.9874949
0.9829178
0.9776077
0.9715516

ISHAD. It is obvious from the sun and target positions
that the target will not shade the concentrator signif-
icantly.

ICPQR. Remember, the sun is always assumed to be over-
head (Sv(i) = {0.,0.,1.}) when the ICPQR = 0 uption
aims facets toward their aim points, even if the
user specifies the sun as being off-axis. Since one
designs conventional collector systems based upon

an on-axis sun, the above option proves to be most
helpful in assisting the designer with geometry
definition. However, since the designer realizes
that the tracking system may not always keep the
collector on-axis with respect to the sun, the
capability exists in CIRCEZ2 to specify off-axis sun
position to quantify effects of tracking

errors. The user may avoid this constraint by choosing
ICPQR=1 and aiming the facets “manually.”

; There is no pre-existing aim-point data file.

; There will be NAIM=1 aim point for this one-facet con-

centrator.
XAIM(1),YAIM(1l),2ZAIM(1). These values will cause the
central reflected ray from the dish vertex to strike the

target at its center of generation (r=0=0).

There is no pre-existing facet data file.

1 For demonstration of the IOPT=6 capability we used displacement data from Table 2 of Section 6.3, which we
know is representative of a spherical facet. In carrying out the demonstration, we use the equation of the sphere
to determine the r- and z- components of the surface-normal at the required locations,
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RESP: 1

RESP: 0 O

RESP:

Comment: Generation of the data file is now complete. Let's look at some of the data
output by CIRCE2 upon execution with this data file. The following are
excerpts from the output file, accompanied by explanatory observations.

<ret>

; NFACET=1 for this one-facet concentrator.

o] ; X(1),Y(1),2(1). The vertex of the dish is at the origin
of the collector coordinate system.

; IBETA=0 for facets of circular projected shape.

output:
FACET COORDS AT CENTER  UNIT NORMAL VECTOR FOCAL LEN/ SHADE AIM  FACET
IDF X Y z PN QN RN RAD OF CRV FACTOR PNT ROT'N
1 0.00 0.00 0.00 -0.1849 0.1232 0.9750 0.0000 0.000 1 0
Observation: The components PN, QN, and RN (referred to the collector coordinate sys-
tem) of the unit normal-vector which orients the dish have been internally
calculated (recall ICPQR=0) and are supplied here in what is otherwise an
echo of the input data. Similarly, if ISHAD=1 the results that appear here
are internally calculated shading factors SBM, and not an echo of the null
shading factors input.
output: UNIT VECTOR ORIENTING FLAT TARGET: 0.3536 -0.3536 0.8660
Observation: These are the components (referred to the collector coordinate system) of a
unit vector representing the direction of the L-axis of the target's virtual
K-L coordinate system.
output: FLAT-TARGET ORIENTATION VECTORS VHORIZ, VORTHOG, AND VNORM:
1 0.7071 0.7071 0.0000
2 0.3536 ~0.3536 0.8660
3 0.6124 ~0.6124 -0.5000
Observation: VHORIZ is the unit vector that marks the direction of the K-axis (which is

constrained to always be horizontal, i.e. in the 1-2 plane of the local target
coordinate system, see Figure 5.1a). VNORM is normal to the target, fac-
ing in a general downward direction (toward the concentrator). VOR-
THOG completes the right-handed orthogonal coordinate system.
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TARGET DEFINITION

NTAG XTA YTA ZTA VMTx VMTy VMTz
1 -0.6000E+01 0.4000E+01 0.1500E+02 0.6124 -0.6124 -0.5000
2 -0.6000E+01 0.4000E+01 0.1500E+02 0.6124 -0.6124 -0.5000
3 -0.6000E+01 0.4000E+01 0.1500E+02 0.6124 -0.6124 -0.5000
4 -0.6000E+01 0.4000E+01 0.1500E+02 0.6124 ~0.6124 -0.5000
5 -0.6000E+01 0.4000E+01 0.1500E+02 0.6124 -0.6124 -0.5000
6 -0.5646E+01 0.4354E+01 0.1500E+02 0.6124 -0.6124 -0.5000
7 -0.5625E+01 0.4125E+01 0.1531E+02 0.6124 -0.6124 -0.5000
8 -0.5823E+01 0.3823E+01 0.1543E+02 0.6124 -0.6124 -0.5000
9 -0.6125E+01 0.3625E+01 0.1531E+02 0.6124 -0.6124 ~0.5000
10 -0.6354E+01 0.3646E+01 0.1500E+02 0.6124 -0.6124 -0.5000
11 -0.5293E+01 0.4707E+01 0.1500E+02 0.6124 -0.6124 -0.5000
12 -0.5250E+01 0.4250E+01 0.1561E+02 0.6124 -0.6124 -0.5000
13 ~0.5646E+01 0.3646E+C1 0.1587E+02 0.6124 -0.6124 -0.5000
14 -0.6250E+01 0.3250E+01 0.1561E+02 0.6124 -0.6124 -0.5000
15 -0.6707E+01 0.3293E+01 0.1500E+02 0.6124 -0.6124 -0.5000

Observation: These are the global (X,Y,Z) coordinates of the target mesh-points and the
target normals at these points.

output: NTAG FLUX (W/cm?)
1 0.305531E+01
2 0.305531E+01
3 0.305531E+01
4 0.305531E+01
5 0.305531E+01
6 0.179380E+01
7 0.179078E+01
8 0.171665E+01
9 0.151087E+01
10 0.145495E+01
11 0.134720E+01
12 0.137470E+01
13 0.133304E+01
14 0.106620E+01
15 0.100657E+01

Observation: List of normally-incident flux at the target points.
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output: ***** FLUX DISTRIBUTION ON TARGET (W/cm?) ***#»
THETA (3)= 0.0000 0.7854 1.5708 2.3562 3.1416
R(1i)
0.0000 3.055E+00 3.055E+00 3.055E+00 3.055E+00 3.055E+00
0.5000 1.794E+00 1.791E+00 1.717E+00 1.511E+01 1.455E+00
1.0000 1.347E+00 1.375E+00 1.333E+00 1.066E+00 1.007E+00

Observation: Normally-incident flux upon each of the target points. R is the radial dis-
tance (meters) from the center of generation of the target and THETA (in
radians) is the polar angle 0. These quantities are illustrated in Figure

8.2.
output: MATRIX INDICATING THE NUMBER OF RAYS CONTRIBUTING TO EACH TARGET POINT
55 55 55 55 55
45 51 50 47 40
217 36 40 31 29

Observation: This "hit map" indicates the number of subfacets whose reflected central-
rays strike a target point. The rows and columns of this matrix corre-
spond to those of the flux-distribution matrix above, i.e. they have the
same R and 0 indices. For example, the point experiencing 51 "hits" is
located at R=0.5 meters and 0=0.7854 radians.

output: INTEGRATED FLUX USING QAGS AND QNC79 FOR FLAT TARGETS = 0.243796E+05 W
POWER MATRIX (HOGAN’S METHOD) : 0.128371E+05 0.110340EE+05
TOTAL POWER ON TARGET (HOGAN’S METHOD)IS 0.238711E+05 WATTS.

Observation: The first line lists the results from the sophisticated Legendre-Gauss/New-
ton-Cotes integration scheme (subroutines QAGS and QNC79) available
for flat targets (see Section 5.2.2). Line 2 contains the results of “star pat-
tern” integration over 3x3 sub-matrices of the flux-distribution matrix (see
Appendix C). These “power matrix” elements are then summed to obtain
total collected power as reported on line 3. The QAGS/QNC79 result is
reported in the summary table (see below) when flat targets are involved.

output:

**%* SUMMARY RESULTS ****
CONCENTRATOR SURFACE AREA = 156.408 m?
Ap = SOLAR PROJECTED AREA= 150.090 m?
Ar = Ap REDUCED BY SHADING AND BLOCKING =150.09C m2
I = SOLAR INSOLATION =1000.00 W/m®

NO. OF SUNS IN PEAK =  30.55

Pideal = MAX INTERCEPTABLE POWER = I*Ap

i

0.150090E+06 W
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Prefl = PWR REFL FROM CONC. = [*Ar*REFLEC =0.120072E+06 W
Prec = POWER ON RECEIVER (QAGS & QNC79) = 0.243796E+05 W
Ceff CONCENTRATOR EFFNCY = Prefl/Pideal =80.00%
Reff RECEVR COLLECTION EFF = Prec/Prefl =20.30%
TOTAL COLLECTOR SYSTM EFFINCY = Ceff*Reff =16.24%

]

Observation: The above is the results summary table located at the bottom of the output
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and flux files. The basis of these quantities is explained near the end of
Example 2. Note that since the reflectivity REFLEC is 0.8, the reflected
power is only 80% of the maximum reflectable power, and the target cap-
tures only 20.3% of this, so that the total system efficiency (which is the
ratio of the collected power to the maximurn reflectable power) is 16.24%.



EXAMPLE 4 Collector System with Hybrid Receiver and Cyclic
Symmetry

For conventional collector systems, in many instances symmetry can be exploited to min-
imize computational time/expense and to get higher resolution of the flux distribution.
Figure 7.2 shows a faceted collector system that is symmetric about a plane through the
truss arm and receiver. The flux distribution produced on this receiver, if it were on-axis
with the sun, would be similarly symmetric. Thus, only half of the receiver need be mod-
elled. This reduces the number of target grid points necessary to fully and uniquely
resolve the flux distribution on the receiver.

The collector system to be analyzed in Example 4 is shown in Figures 8.3, 8.4, and 8.5. It
features a concentrator consisting of four spherical facets of triangular projected shape.
Assume that it is desired to emulate a 10 meter diameter, 25 degree rim-angle parabolic
concentrator with the four facets. The projected area of such a concentrator is 78.54 m?.
Let each of the triangular facets have a projected area equal to 1/4 of this value. Then
the sides of the equilateral triangles have a length of FLENG = 6.73 meters. The three
outer facets will be located symmetrically about the collector Z-axis as shown, their cen-
troids a distance of 2/3 of a facet-height1 from the axis. Thus, their centroids are located
on a radius of R = 3.89 m. The Z-coordinate of the centroids is determined by the para-
bolic formula Z = R%/(4f) where f is the focus of the parabolic concentrator being emu-
lated. In this case, from Equation (6.3), the focus is 11.28 meters and Z is calculated to be
0.34 meters. Using the above formulas and the relations X = Rcos(w) and Y = Rsin(w),
where w is a polar angle assuming the values of 30, 150, and 270 degrees at the centroids
of facets 1, 2, and 3 respectively, one can determine the collector-system coordinates of
the facet centroids. Now, assuming that it is desired to maximize the concentration of
sunlight at the focus of the concentrator, the radius of curvature (R.0.C.) of each facet
should be twice the distance from the facet vertex to the focal point. Thus, R.O.C,; =
ZSqr’c(Xi2 + Yi2 + (f- Zi)2), where i ranges over the four facets. Accordingly, the R.O.C. of
facets 1, 2, and 3 is found to be 23.22 m and that of facet 4, its centroid located at
(X=0,Y=0,Z=0), is found to be 22.56 meters.

The next consideration in building the concentrator is the facet rotation. Figure 8.4
shows a view from above the concentrator. The facet- and sun-reflector coordinate-sys-
tems for each facet are shown. Section 4.3 explains the algorithm by which the & -1
systems are oriented, and Figure 6.4 shows the standard orientation for the x-y axes on a
triangular facet. The rotational orientation of the facet is governed by the rotation angle
IBETA between the & — 1| and the x-y systems. A positive value of IBETA corresponds to
counterclockwise rotation of the x-y system relative to the € — 1} system (see Figure 7.4).
The values of IBETA required to achieve the necessary facet orientations are given in the
figure. Note that for facet 4, IBETA=0, causing the facet- and sun-reflector systems to
coincide .

Finally, the effects of shading must be taken into account. As will be explained below, tiie
target has a maximum radius of 0.5 meters. It produces a circular shadow that is com-
pletely contained within facet 4 of the concentrator. The area of the shadow is 0.79

I In the sense of the base and height dimensions of a triangle.
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Figure 8.5 Four-component
hybrid cavity receiver

Z3

Y
,T_ IBETA = —60°

N

. Figure 8.4 Top-view of concentrator made
Figure 8.3 Collector system of Example 4 up of four triangular facets



square meters, which is approximately 4% of the area of the facet. Thus, the shading fac-
tor for this facet is SBM(4)=0.04.

Using the data file from Example 1 (Appendix D) as a model, the following facet data file,
here named exampled.fac, is produced to be later read into DEKGENZ2:

4

1 3.3690 1.9450 0.3400 23.22 0.00 1 -60
2 -3.3690 1.9450 0.3400 23.22 0.00 1 60
3 0.0000 -3.8900 0.3400 23.22 0.00 1 -60
4 0.0000 0.0000 0.0000 22.56 0.04 1 0

Note that the first line in the data file contains the parameter NFACET, which specifies
the number of facets on the concentrator and the number of lines of data to follow.

The receiver is a hybrid receiver built-up from conical, cylindrical, spherical, and flat-cir-
cular component shapes. The parameter specifications for the hybrid receiver will make
more sense if the reader already understands the commands required to build the indi-
vidual component shapes. The individual generation of each of these geometries is cov-
ered in Sections 5.4.2 to 5.4.5.

With the proposed concentrator, the flux distribution on the axisymmetric cavity receiver
has 1/3 cyclic symmetry. That is, when a curve of constant r and z (hybrid receivers are
generated with an (r,0,2) cylindrical coordinate system) on the receiver surface is tra-
versed, the flux distribution is periodic with a period equal to 120 degrees. Therefore, if
any continuous 120 degree angular section of the receiver is modeled, it will capture a
full period of the flux distribution and is sufficient to uniquely determine the flux distri-
bution over the entire receiver. We will take advantage of this to reduce computational
requirements. Of course, if only 1/3 of the receiver is modeled, the total power output by
CIRCEZ2 corresponds to 1/3 of that on the full receiver. Therefore, the total power col-
lected is obtained by multiplying the calculated power by 3. More details on the building

of the receiver are given in comment lines beside the responses below. Let’s begin by
running DEKGENZ2:

% dekg2-g3.x ; Run the DEKGEN2 code.
RESP: <ret> ; Press the “return” key after reading version information
RESP: <ret> ; Press the “return” key after reading disclaimer.
RESP: N ; We’ll build this data file from scratch.

RESP: EXAMPLE 4 OF CIRCE2 USER’S MANUAL; title descriptive of the analysis

RESP: 001 ; SV(i), i=1-3 are the components of the direction vector
of the sun. In this case an overhead sun is specified.

RESP; 1000 ; I, the solar insolation in W/m"2
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RESP: 1 ;

RESP: Y ;

RESP: dir.examplel/sun.dat

RESP: 2 i
RESP: 0,2.5,2.5 ;
RESP: 0,1.5,1.5 ;
RESP: 2 ;

JSUN=1; we elect to define the sun with a table of data

Here I want to read in sunshape data frcm the file
generated in Example 1.

;the name of the file containing the required sun data
(The user will have to press the “return” key several
times to scroll through the data being read-in. This
allows the user to check the incoming data.)

NER=2 concentrator error distributions to be input

TH(1),SIGR(1),SIGS (1) --same as in Example 1
TH(2),SIGR(2),SIGS (2) --same as in Example 1
IDIM. According to the guidelines in Section 4.6.4, for

a faceted concentrator with less than 15-20 facets, the
best combination of convolution options is the set
IDIM=2/IANLYT=0/NEWCONV=2. This combination is very
accurate, relatively inexpensive, and requires no
knowledge of rms widths of the sunshape and mapped
error-cone distributions or of the concentrator-
averaged incidence angle ﬁ.

RESP: 0 ; IANLYT.
RESP: 2 ; NEWCONV.
RESP: SUN.DAT tabular sunshape; descriptive title of sun and error parameters

RESP: 120 DEG. ANGULAR SECTION OF A FOUR-COMPONENT HYBRID CAVITY RECEIVER; title

RESP: -4 ;

RESP: y ;

RESP: 25 ;

RESP: 5 ;
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ITARSH. This hybrid receiver will be made of 4 differ-~
ent component geometries: cylindrical, spherical,
conical, and flat-circular.

Though we already know it from the calculations above
with equation 6.3, let’s check against DEKGEN2's
computed focal length.

RIMANG, the ejuivalent dish rim-angle of the faceted
concentrator.

DISHRAD, the equivalent dish radius of the faceted
concentrator.



RESP:

RESP:

RESP:

RESP:

RESP:

RESP:

RESP:

RESP:

RESP:

RESP:

RESP:
begin-~

RESP:

<ret> ; As expected, the focal length of such a concentrator is
11.28 meters (rounded). Press “return” after reading.

FOUR-COMPONENT HYBRID RECEIVER #Ah5-x10-P ; descriptive title
<ret> ; Press the “return” key after reading the message.

0, 0, 11.28 i (X0, Yor2,). Spillage will be minimized by positioning
the receiver such that it’s aperture plane is at the
concentrator focus.

0.3 ; This is the radius of the receiver aperture, hence the
bottom radius of the lowermost component, as Figure 8.5
indicates. Frequent reference to this figure will be
required for most of the following.

120 ; KEXT=120 indicatesthat a 1/3 circumferential section of
the receiver will be modeled.

90 ; This value of THETAC centers the 120 degree target-
section about the 2-3 plane of Figure 8.5. The rela-
tive position of the concentrator should result in a
flux pattern that is symmetric about this plane.
(This value of THETAC will be used in generating each of
the component targets individually.)

19 ; KPTS is the number of azimuthal grid-points on the
target mesh. The shape of the concentrator results
in a substantial flux variation in the
azimuthal direction. Since we are only modeling
1/3 of the receiver, 19 points should capture the
variation adequately.

n ; CIRCE2 can output a data file (see Section 3.4) that can
be read directly into the solar-receiver thermal
analysis code AEETES [18]. We have no need for such a
file at this time.

COMPONENT 1 OF HYBRID RECEIVER: INVERTED CONE FRUSTRUM; component 1 title

4 ; ITYPE. The receiver is built from the aperture up,

ning with the frustrum of an inverted cone as the
bottom-most component (see Figure 8.5).

0.5 ; RTOP, the top radius of the conical section (see
Figure 5.8;.
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RESP:

RESP:

RESP:

RESP:

RESP:

RESP:

RESP:

RESP:

RESP:

RESP:

RESP:

RESP:

RESP:

RESP:

RESP:

RESP:

100

0.2 ; LEXT, for conical targets it equals the frustrum height

7 ; LPTS, for this component, is the number of mesh points
to be equally spaced in the slant-direction of the frus-
trum. Since a relatively small percentage of insolation
will fall on this surface, we will avoid unnecessary
resolution here.

COMPONENT 2 OF HYBRID RECEIVER: RIGHT-CIRCULAR CYLINDER; component 2 title

3 ; ITYPE for component 2. This component, the second from
the bottom, has a cylindrical characteristic shape.

0.2 ; LEXT for a cylindrical target section is its height Az
(see Figure 5.6).

15 ; LPTS, the number of grid points to be distributed in a
vertical direction along the cylindrical surface. Since
we expect more flux and larger variation here, we have
doubled the number of grid points from the previous
component .

COMPONENT 3 OF HYBRID RECEIVER: SPHERICAL CONVERGING SECTION; title

1 ; ITYPE for the spherical component, third from the
bottom.
0.5 ; RCURV, the radius of curvature of the spherical target

(see Figure 5.4).

60 ; LEXT, in this case the zenith angle between top and
bottom arcs of the spherical section

15 ; LPTS, in this case the number of mesh points to be
distributed at equal increments of the zenith angle @.

COMPONENT 4 OF HYBRID RECEIVER: TOP CIRCULAR CAP-PLATE; component 4 title
6 ; ITYPE for the flat-circular top component.

15 ; LPTS, for this component, the number of mesh points in
the radial direction (see Figure 5.2).

; INORM for treatment as an internal (cavity) receiver
<ret> ; Designating this receiver as an internal receiver

implies a circular aperture. DEKGEN2Z automatically
generates one using internal logic. Press



the “return” key when ready to proceed.

RESP: “PARABOLIC” CONCENTRATOR MADE UP OF FOUR SPHERICAL TRIANGULAR FACETS; title

RESF: 1.

.
’

REGP: 3 ;
RESP: 3 ;

RESP: 6.73 ;

RESP: 4 ;

RESP: 2 ;

RESP: 0 ;

RESP: n ;

RESP: 1 ;
RESP: 0.,0.,11.28 ;
RESP: y H
RESP: exampled. fac ;

REFLEC, perfect surface-reflectance is assumed

KORD=3 for facets having a triangular projected shape.
IOPT=3 for facets with spherical contour.

. 5
FLENG for triangular facets is the'edge-length of the
facet’s proje~*- 1 shape. This number was derived

at the beginning of this example.

NSUBF in the case of a triangular facet is the number
of divisions along each edge of the triangular
projected-shape. This will cause the facet to be
divided into 4x4=16 equilateral triangles of equal size.

ISHAD. We have already included the shading factors SBM
in the file exampled.fac.

This choice for ICPQR dictates that CIRCE2 internally
calculate normals such that the reflected central rays
from the facet centers strike their respective aim-

points.

We do not have a file containing aim-point data and must
therefore enter the data interactively.

NAIM. Recall from above that the common aim point of
all facets is to be at the “focus” of the concentrator.

XAIM(1), YAIM(1l),ZAIM(1l) arethecollector-systemcoord-
inates of the location of the single aim-point.

We will read-in the facet data file prepared earlier.

Note the warning message supplied by DEKGENZ2.

Comment: An annotated hybrid file for this example is given below. After using it in the
CIRCE2 run we can rename it “example 4.hyb” to identify it with this anal-
ysis. Note that the circular target sector, component #4, when part of a
hybrid receiver is treated as a special case of a cylindrical receiver (see notes
in Sections 5.4.2 and 5.4.6).
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Annotated hybrid file:

FOUR-COMPONENT HYBRID RECEIVER #Ah5-x10-P;receiver description
; IAEETES (AEETES file print-option indicator)
COMPONENT 1 OF HYBRID RECEIVER: INVERTED CONE FUSTRUM;title of comp.l
4 ; ITYPE (ITARSH target-type)
2.09440 0.20000 19 7 ;KEXT(rad), LEXT,KPTS, LPTS
0.00000 0.00000 11.38000 ; (Xo,Yo,Zo)
0.30000 0.50000 1.57080 ;RBOT, RTOP, THETAC(rad)
COMPONENT 2 OF HYBRID RECEIVER: RIGHT-CIRCULAR CYLINDER ;title of comp.2
3 ; ITYPE (ITARSH target-type)
2.09440 0.20000 19 15 ;KEXT(rad), LEXT,KPTS,LPTS
0.00000 0.00000 11.58000 ; (Xo,Yo,Z0O)
0.50000 0.00000 1.57080 ;RADIUS,MNOT_USED, THETAC (rad)
COMPONENT 3 OF HYBRID RECEIVER: SPHERICAL CONVERGING SECTION;title of comp.3
1 ; ITYPE (ITARSH target-type)
2.09440 1.04720 19 15 ;KEXT(rad),LEXT,KPTS, LPTS
0.00000 0.00000 11.68000 ; (Xo,Yo,Z0O)

0.50000 1.04720 1.57080 ;RCURV,PHIC(rad), THETAC (rad)
COMPONENT 4 OF HYBRID RECEIVER: TOP CIRCULAR CAP-PIATE;title of comp.4
6 ; ITYPE (ITARSH target-type)
2.09440 0.25000 19 15 ;KEXT (rad), LEXT,KPTS, LPTS

0.00000 0.00000 12.11301 ; (Xo,Yo,Zo)
0.00000 0.00000 1.57080 ;NOT_USED, NOT_USED, THETAC (rad)

Comment: Delow are listed the summary results tables for the individual components
of the hybrid receiver and for the receiver as a whole. Adding collected pow-
ers and tripling (only 1/3 of the receiver was modeled), the total receiver col-
lection efficiency turns out to be about 99.24%, the other 0.76% of the
reflected power falls outside the aperture.

output: (component 1, inverted cone frustrum)

**%% SUMMARY RESULTS ****

CONCENTRATOR SURFACE AREA = 78.713 m?

Ap = SOLAR PROJECTED AREA= 77.593 m?

Ar = Ap REDUCED BY SHADING AND BLOCKING =76.809 m2

I = SOLAR INSOLATION =1000.00 W/m’

NO. OF SUNS IN PEAK = 0.00

Pideal = MAX INTERCEPTABLE POWER = I*Ap = 0.775933E+05 W
Prefl = PWR REFL FROM CONC. = I*Ar*REFLEC =0.768088E+05 W
Prec = POWER ON RECEIVER (HOGAN’S METHOD) =0.000000E+00 W

Ceff = CONCENTRATOR EFFNCY = Prefl/Pideal = 98.99%
Reff = RECEVR COLLECTION EFF = Prec/Prefl = 0.00%
TOTAL COLLECTOR SYSTM EFFINCY = Ceff*Reff 0.00%
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output: (component 2, right circular cylinder)

**%%x SUMMARY RESULTS ****
CONCENTRATOR SURFACE AREA =
Ap = SOLAR PROJECTED AREA=

78.713 m®

77

.593 m?

Ar = Ap REDUCED BY SHADING AND BLOCKING =76.809 m2
I = SOLAR INSOLATION =1000.00 W/m?

NO. OF SUNS IN PEAK = 17.46

Pideal = MAX INTERCEPTABLE POWER = I*Ap =
Prefl = PWR REFL FROM CONC, = I*Ar*REFLEC =0.765088E+05 W
=0.277068E+03 W

Prec = POWER ON RECEIVER (HOGAN
Ceff CONCENTRATOR EFFNCY = Pr
Reff RECEVR COLLECTION EFF =
TOTAL COLLECTOR SYSTM EFFINCY =

output: (component 3, spherical converging section)

** %% SUMMARY RESULTS ****
CONCENTRATOR SURFACE AREA =
Ap SOLAR PROJECTED AREA=
Ar Ap REDUCED BY SHADING AND

'S METHOD)
efl/Pideal
Prec/Prefl
Ceff*Reff

BLOCKING

I = SOLAR INSOLATION =1000.00 W/m?

NO. OF SUNS IN PEAK = 188,37

Pideal = MAX INTERCEPTABLE POWER = I*Ap

Prefl = PWR REFL FROM CONC. = I
Prec POWER ON RECEIVER (HOGAN
Ceff CONCENTRATOR EFFNCY = Pr
Reff = RECEVR COLLECTION EFF =
TOTAL COLLECTOR SYSTM EFFINCY =

output: (component 4, flat-circular cap plate)

** %% SUMMARY RESULTS ****
CONCENTRATOR SURFACE AREA =
Ap = SOLAR PROJECTED AREA=

*Ar*REFLEC
S METHOD)
efl/Pideal
Prec/Prefl
Ceff*Reff

78
77

78
77

0.775933E+05 W

98.99%
0.36%
0.36%

.713 m?
.593 m?

=76.809 m?

0.775933E+05 W
=0.768088E+05 W
=0.142109E+05 W

98.99%
18.50%
18.31%

.713 m?
.593 m?

Ar = Ap REDUCED BY SHADING AND BLOCKING =76.809 m?
I = SOLAR INSOLATION =1000.00 W/m?

NO. OF SUNS IN PEAK = 201.97
Pideal = MAX INTERCEPTABLE POWE

Prec = POWER ON RECEIVER (QAGS
Ceff = CONCENTRATOR EFFNCY = Pr
Reff = RECEVR COLLECTION EFF =

TOTAL COLLECTOR SYSTM EFFINCY =

R = I*Ap =

& QNC79) =
efl/Pideal
Prec/Prefl
Ceff*Reff

0.775933E+05 W
Prefl = PWR REFL FROM CONC. = I*Ar*REFLEC =0.768088E+05 W

0.109197E+05 W

98.99%
14.22%
14.07%
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output: (aggregate hybrid receiver)

**** SUMMARY RESULTS FOR COMPOSITE HYBRID RECEIVER ****
CONCENTRATOR SURFACE AREA = 78.713 m?

Ap = SOLAR PROJECTED AREA= 77.593 m?

Ar = Ap REDUCED BY SHADING AND BLOCKING =76.809 m?

I = SOLAR INSOLATION =1000.00 W/m?

NO. OF SUNS IN PEAK = 201.97

Pideal = MAX INTERCEPTABLE POWER = I*Ap 0.775933E+05 W
Prefl = PWR REFL FROM CONC. = I*Ar*REFLEC =0.768088E+05 W

Prec = POWER ON RECEIVER =0.254077E+05 W
Ceff = CONCENTRATOR EFFNCY = Prefl/Pideal = 98.99%
Reff = RECEVR COLLECTION EFF = Prec/Prefl = 33.08%

TOTAL COLLECTOR SYSTM EFFINCY = Ceff*Reff 32.74%
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APPENDIX A: Default USERDISH Subroutine (for IOPT=7)

OO0 0000600000006 0600600000000000000000000

subroutine userdish(x, y, zdispl, unormal)
dimension unormal(3)

X,y Coordinates in the x-y-z facet system which locate the
centroid of the projected subfacet (see section 6.2).
These arguments are supplied by the calling routine.

zdispl The height, or z-displacement from the x-y plane, of the
subfacet centroid (i.e., the source-point location for
the subfacet has coordinates {x,y,zdisp} (see section6.3).
This quantity must be supplied to the calling routine.

unormal The unit vector defining the facet normal direction at
the subfacet centroid. This vector must have at least
a small component pointing toward the sun (or energy will
not be reflected). The components (relative to the x-y-z
facet system basis) must be supplied to the calling program.

This example models the 14 m. dia., 8.45 m. focal-length parabolic dish

of Example 1, Chapter 8. For non-axisymmetric facet contour, a 2-D

function for z-displacement in terms of the coordinates (x,y or r,theta)

in the plane must be determined. It is necessary that the function be
single-valued and is highly recommended that it be smooth (have contin-
uous first-order partial and second-order mixed partial derivatives) over

the domain (projected shape). Bicubic spline interpolation would do nicely
(FORTRANY77 source code for this standard technique is presented in,

among other standard references, the book “Numerical Recipes: The Art

of Scientific Computing,” by William H. Press, et. al., Cambridge University
Press, 1986). Such interpolation requires the values of the displacement
(and, optionally, of the partial derivatives) be supplied at the grid points of

a regular rectangular mesh. Either x or r would govern the abscissas of

such a mesh, while y or theta would govern the ordinates, depending upon
which coordinates accomodate the data best. Since, in the general case, this
subroutine asks for interpolated values and not those at the grid points, the
construction of the mesh should be guided by availability of data and accuracy
considerations, not by facet discretization. If working with measured data, the
values at the grid points can be determined by data regression. It is assumed
that there is zero displacement at x=y=0, i.e., the “vertex” of the dish is at the
origin of the facet coordinate system.

focus = 8.45

c___Since this particular dish is axisymmetric, angular position (theta)
c___is immaterial, and the height is only a function of the r coordinate.

zdispl =(x**2 + y**2)/(4.0*focus)
unormal(1) = -x
unormal(2) = -y
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unormal(3) = 2.0*focus
¢___The following subroutine normalizes unormal to be a unit vector.
call unit(unormal)

return
end
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APPENDIX B: Effect of Convolution Options on Numerical
Results and Execution Time

The effect of number and type of convolution(s) on CIRCE2 predictions and execu-
tion times are quantified here. Hopefully, this study will provide the user with general
guidance for choosing appropriate convolution options for his particular application.
Results reported here were obtained on a SUN SPARCstation (SUN Fortran 1.4, level 02
optimization, SunOS 4.1.3 operating system, component of execution time devoted to
system operations not included) with version g.3 of CIRCE2.

The first set of results illustrates the inaccuracies of analytic convolution when the
sunshape distribution is “broader” than the mapped error-cone distribution. As a mea-
sure of broadness, we use the rms width (rmsw) of the sunshape distribution, i.e. its dis-
persion, and the rms widths, i.e standard deviations, in the principal directions of the
mapped error-cone. These quantities are reported in the CIRCE2 output results file (in
general not being known until the completion of an analysis).

Concentrator #1 has geometry similar to that of Example 1, Chapter 8: a continu-
ous-surface parabolic dish having a rim angle of 45 degrees and a rim diameter of 14
meters. It is divided into 372 subfacets (NSUBF=10). One circular-normal error of rms
widths SIGR = SIGS = 0.5 milliradians (mrad) is specified, which resul:< in a much nar-
rower error cone than in Example 1. We use an overhead sun with the same tabular sun-
shape as in the example, and find apostieri that it has an rmsw of 2.09 mrad, and that a
typical! 2-D mapped error-cone has rmsw of 1 mrad (as does its 1-D equivalent if
IDIM=1 has been selected). Thus, the sunshape distribution is about twice as “wide” as
(though correspondingly more shallow than) the mapped error-cone distributions. We
say that the mapped error-cone is “relatively” narrow, meaning “narrow relative to the
sushape”. A 1m. dia. flat-circular target is placed at the focal point of the parabola. A
grid of 25 points equally spaced along a target radial line is used to sample the (azimuth-
ally symmetric) flux distribution. (The small number of target grid points permits high
sensivity of execution-time to convolution operations, thereby allowing isolation of the
relative costs of the various convolution options. Moreover, it is really only the first point,
at the center of the target, that is relevant for the figure of merit (peak flux) used in this
investigation.)

Eight cases are run, encompassing all the combinations of the convolution options
IDIM, IANLYT, and NEWCONYV possible for a single-facet concentrator. The pertinent
results are displayed in Table B.1. The accuracy of the results is judged by conformance
of the peak flux on the target to the result obtained for the “base case” of 2-D numerical
convolution at each subfacet (IDIM=2, IANLYT=0, NEWCONV=3), which is assumed to

I As explained in section 4.6.3, the rms widths of the mapped error-cone vary at different points on the con-
centrator, but they do not vary by more than about 10% from the vertex to the rim of this dish over a wide,
realistic range of input error-cones.
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be most accurate. (This figure of merit isolates the effects of the reflected solar image cal-
culation(s), as opposed to total collected power, which exhibits interdependencies
between the effective sunshape(s) and the target grid.)

Table B.1. Effect of Number and Type of Convolutions for Concentrator 1
{(“Narrow” Error Cone)

Dimen-  Convolution Times Peak Flux A% from CPU Savings
sionality Type Convolved (# of Suns) Base  time (sec.) Factor
Case
2-D numerical 372 30,139 Base 3490 1
Case
2-D analytic 372 45,724 +52% 3.6 969
2-D numerical 1 30,108 0.1% 11.5 303
2-D analytic 1 45,420 +50.7% 1.7 2053
1-D numerical 372 29,863 -0.9% 83.6 42
1-D analytic 372 45,372 +50.5% 31 1126
1-D numerical 1 29,772 -1.2% 1.7 2053
1-D analytic 1 45,074 +49.6% 1.4 2493

The most obvious and striking result of the study is the very large difference in peak
flux when analytic vs. numerical convolution is employed. Irrespective of the other
parameters, the result is about 50% high (as a percentage of the base-case peak flux)
whenever analytic convolution is used. This difference dwarfs the variations due to dif-
ferent selections of the other convolution parameters, and implies that analytic convolu-

tion (IANLYT=1) is unacceptable when the mapped error-cone is narrower than the
sunshape.

Now, from within the group of runs involving numerical convolution, we notice that
“full” convolution (convolution at every subfacet, NEWCONV=3) is prohibitively expen-
sive for the incremental increase in accuracy it provides. One 2-D numerical convolution
provides accuracy to within 0.1% of full convolution in less than 1/300 the CPU time.
This option is also more accurate and less costly than the 1-D approximation with full
convolution. The remaining case of one 1-D numerical convolution is 12X less accurate.
In summary, it may reasonably be concluded that, at least for the case of a relatively nar-
row error-cone, the optimal combination is a single numerical convolution with a 2-D
mapped error-cone (NEWCONV=1, IANLYT=0, IDIM=2).

Returning to Table B.1, we see that the differences between full (372 times) and
minimal (1 time) convolution, all other things being equal, is relatively small (0.7% at
most over the four pairs of runs). Combined with the fact that minimal convolution
requires from 2 to 300 times less CPU than corresponding runs with full convolution, the
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optimal condition? under which to perform the single convolution becomes an important
issue. Though a 0.7% error corresponding to =0 is not very large, if we can considerably
reduce it with little effort, then we can eliminate under most any conditions the need
(and accompanying expense) of multiple effective sunshape calculations.

It would appear that the optimal incidence angle [ under which to perform the
mapping would be the surface-area-weighted angle of incidence for sunrays striking the
concentrator:

u = %juds = }{J.acos (Noe V) dS (B.1)

where S represents the concentrator surface, A the concentrator surface-area, N the
surface normal, V the unit vector pointing toward the sun, and acos( ) the inverse-
cosine function. Unfortunately, the integral does not appear to evaluate, for standard
parabolic and spherical geometries, to a useful (simple) form. However, a good approxi-
mation to U may be obtained for our present application in the following manner: We
take advantage of the fact that the on-axis sun allows V, to be written as 2, the unit vec-
tor in the direction of the dish axis, and that the axisymmetric character of the dish
allows us to write the surface-normal as a function of two space coordinates (r and z),
instead of three. Converting the unit-normal from Cartesian components (see Appendix
A) to r-z components, we get

- ri+ 2f2

Jr +4f2

where # = cosO& + sind9, d=atan(y/x), and r = sz + yz.

N, = (B.2)

The incident angle 1 then becomes simply the inverse-cosine of the z-component of
N We may then approximate | as the inverse-cosine of the z-component of the aver-
age3 normal over the parabolic dish.

* The results in Table B.1 where NEWCONV=1 were obtained using the choice INCPICK:=2, which directs
CIRCE2 to use, in the effective sunshape calculation, the angle of incidence | at the vertex of the first
facet listed in the data file. For this concentrator the resulting angle was ;=0 degrees. Alternatively,
CIRCE2 allows the freedom to input a value of || (the parameter INCANGL introduced in Section 4.6.3)
through which the error-cone is mapped before performing the ensuing convolution with the incident sun-
shape. Thus, | constitues a free variable under which to optimize the single calculated effective sunshape
used in the analysis.

- It is recognized that, over an axisymmetric surface, the area-averaged x- and y- components of the surface-
normal are zero. However, this does not imply that the average r-component of such a vector is zero (and
therefore the average z component unity) because r depends upon the square of the x and y components,
and though both may average to zero, their squared values do not.
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An approximation to the average normal-vector over a generic paraboloid of rim-
radius R and focus f may be obtained by the following process: The average z- and -
components over the concentrator surface turn out to be:

R 2
TP _1¢ .4 s 2nrdr R
N,(R.f) = 4 i (N,e2)dS = 4 { (N, 02) N o2 “ABD (B.3)
and
1 1R 2nrdr =R®
N. (R, = s [(N,e1dS = S [(Nye?) " "= =T (B.4)
(R.N Ai( ) A{( "Noez 3 ARD
The average unit surface-normal, N avg (R, f),is defined here as:
. N.(R,H?+N,(R,)H3
Ny B f) = NrBDIN (R D2 (B.5)

2 -2
24N
Thus, for an on-axis sun, the approximate surface-averaged incidence angle over a para-
bolic concentrator of rim-radius R and focus f is

i (R, =acos (N, ¢2) = acos ([1+ (RIGMZ ) (B.6)

For the concentrator at hand, Equation (B.6) yields |1 = 15 degrees. Supplying this
value for the representative incident-angle parameter INCANGL via the INCPICK=1
option of CIRCEZ2, the following results are obtained:

Table B.2. Concentrator 1, NEWCONV=1/INCPICK=1/INCANGL=15
Dimen-  Convolution Times Peak Flux A% from CPU Savings
sionality Type Convolved (# of Suns) Base time (sec.) Factor
Case
2-D numerical 1 30,137 -0.007% 1.5 303
2-D analytic 1 45,707 +51.7% 1.7 2053
1-D numerical 1 29,857 0.9% 1.7 2053
1-D analytic 1 45,356 +50.5% 1.4 2493

The average difference in peak flux between the single-convolution runs in Table B.1
(where INCPICK=2) and their full-convolution (372 times) counterparts is 0.45%. The
average difference in peak flux between the runs in Table B.2 and their full-convolution
counterparts in Table B.1 is 0.027%. This is a decrease by more than a factor of 16. Indi-
vidually, in all cases the error drops by over an order of magnitude. This benefit, small in
absolute terms because of the small magnitude of the original errors here, becomes more
pronounced as the width of the error-cone increases. For instance, a similar investiga-
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tion with Concentrator 2 (see below) reduces errors from an average of 3.3% to an aver-
age of 0.2% (a factor of 16 reduction), with individual errors falling by no less than a
factor of 10. So, we see that in the more common case of a relatively wide error cone, we
can reduce from a few percent to a few tenths of a percent the difference between calcu-
lating the reflected solar image at every subfacet (NEWCONV=3) and calculating it only
once (NEWCONV=1) at a representative angle of incidence. Since the case of a new sun-
shape calculated at the vertex of each facet (NEWCONV=2) is enveloped here, the follow-
ing holds in general: We can reduce to insignificant the difference between calculating the
reflected solar image at many places on the concentrator (NEWCONV=2,3) and at only
one location (NEWCONV=1) by supplying, via the INCPICK=1 option, an appropriate
angle INCANGL at which to perform the effective-sunshape calculation. Rigorously, such
an angle is the concentrator-averaged angle of incidence of sun rays, \. In practice, an
effective approximation to L may be calculated as the inverse-cosine of the component (in
the direction of the solar central-ray) of the area-weighted unit surface-normal.

To summarize our findings thus far, the conclusion still holds that for the case of a
relatively narrow error cone, the optimal combination is a single numerical convolution
with a 2-D mapped error cone (NEWCONV=1, IANLYT=0, IDIM=2). We may improve
upon this by saying that if one can easily obtain an approximation to the surface-aver-
aged incident angle i, we should take advantage of the extra knowledge by invoking the
option INCPICK=1 and assigning the parameter INCANGL this value. In our investiga-
tion above, when we did this we reduced the percent deviation from full 2-D numerical
convolution from 0.1% to 0.007% at no added CPU cost.

We now proceed to the analysis of Concentrator #2, which is identical to Concentra-
tor 1 except that its error-cone is approximately 3 times broader. Two individual circu-
lar-normal errors of rms widths SIGR(1) = SIGS(1) = 2.5 mrad and SIGR(2) = SIGS(2) =
1.5 mrad contribute to the error cone. The rms widths in the principal directions of the
mapped error-cones vary over the dish by less than +/- 5% about a representative value of
5.7 mrad. Thus, an error-cone 3X wider than in Concentrator 1 translates into a typically
5.7X wider mapped error-cone. Since the sunshape has an rms width of about 2 mrad,
we would classify the mapped error-cone distribution as a relatively wide one. Table B.3
lists the results of eight cases run that encompass all the combinations of the convolution
options IDIM, IANLYT, and NEWCONYV. In accordance with the above findings, the
parameters INCPICK=1 and INCANGL=15 degrees were specified for the single-convo-
lution runs.

Table B.3. Effect of Number and Type of Convolutions for Concentrator 2
(“Wide” Error Cone)

Dimen-  Convolution Times Pcak Flux A% from CPU Savings
sionality Type Convolved (# of Suns) Base time (scc.) Factor
Casc
2-D numerical 372 6459 Base 2550 1
Case
2-D analytic 372 6553 +1.5% 33 773
2-D numerical I 6444 -0.2% 9.3 274
2-D analytic I 6538 +1.2% 1.9 1342
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Table B.3. Effect of Number and Type of Convolutions for Concentrator 2
(“Wide” Error Cone)  (Continued)

1-D numerical 372 6402 -0.9% 69.6 37

1-D analytic 372 6541 +1.3% 29 879
1-D numerical 1 6388 -1.1% 2.0 1275
1-D analytic 1 6527 +1.0% 1.4 1821

It is immediately seen that the agreement between numerical and analytical convo-
lution is much better than in the narrow error-cone simulations of Table B.1. The dis-
crepancies have dropped from an average of about 50% high in those simulations to
about 1.5% high in these. At the same time, analytical convolution is between 1.4 and
772 times faster than its numerical counterpart. Surprisingly, 1-D analytic convolution
is more accurate than 2-D analytic convolution, and a single analytic convolution (either
1-D or 2-D) at the representative incidence angle of [1=15 degrees is better than convolu-
tion at every subfacet®. These outcomes resonate to make the combination of parame-
ters (IDIM=1,JANLYT=1, NEWCONV=1,INCPICK=1,INCANGL=[1) very attractive; full
2-D numerical convolution results were matched within 1% at a savings of over 1800X.
The optimum choice, however, in terms of relative accuracy and execution time, appears to
be a single 2-D numerical convolution at the representative incidence angle | (IDIM=2,1-
ANLYT=0,NEWCONV=1,INCPICK=1,INCANGL=1). (This was exactly the same conclu-
sion reached for Concentrator 1 above with a relatively narrow error cone.) This option
requires 1/274 the run-time of full 2-D numerical convolution and displays accuracy
within 0.2%. Since the total cost is minimal (only 9.3 CPU-seconds), the additional accu-
racy comes cheaply.

The complexion of the study changes sharply, however, when for NEWCONV=1 the
angle U through which the error-cone is mapped is not representative of [i. Table B.4
presents results of simulations where the combination NEWCONV=1/INCPICK=2 is
used?. We see that now the optimal choice is full 1-D numerical convolution; a speedup
of over 36X is realized vs. full 2-D numerical convolution, with a peak flux that matches
to within 1%. A good, slightly less-accurate but much faster alternative is full 1-D ana-
lytic convolution, for which a speedup of nearly 880X is realized vs. full 2-D numerical
convolution, with a peak flux that deviates by only 1.3%. We can conclude that if a fairly
good approximation to | is not available, the optimal combination of convolution param-
eters for a relatively wide error cone is IDIM=1/IANLYT=0/NEWCONV=3. Or, just
slightly less accurate but much faster, analytic convolution may be used in the combina-
tion IDIM=1/IANLYT=1/NEWCONV=3.

4 These are not general trends. They are reversed in the outcomes reported in Table B.4, where the choice
INPICK=2 is used and the single convolution takes place at an angle of incidence of 0 degrees?.
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Table B.4. Concentrator 2, NEWCONV=1/INCPICK=2

Dimen-  Convolution Times Peak Flux A% from CPU Savings
sionality Type Convolved (# of Suns) Base time (sec.) Factor
Case
2-D numerical 1 6254 -3.2% 94 271
2-D analytic 1 6340 -1.8% 1.8 1417
1-D numerical 1 6193 4.1% 2.0 1275
1-D analytic 1 6334 -1.9% 1.4 1821

From the results of this study we may reach another general conclusion: the most
robust® method of convolution is full 1-D numerical convolution (IDIM=1,IANLYT=0,
NEWCONV=3). For both concentrators (wide-cone and narrow-cone), this combination
led to peak fluxes that were within 1% of those calculated with full 2-D numerical convo-
lution, in typically 1/40 the run-time. Additionally, this approach does not require an
estimate for |1, making it automatic to use. However, as we have seen, if a good estimate
for U is available, then single 2-D numerical convolution becomes robust for applications
involving relatively wide error-cones®). In this case, it is much more cost-effective to use
single 2-D numerical convolution. In fact, over the two concentrators, with the value we
derived of |L = 15 degrees, we found an average deviation of about 0.1% in peak flux from
full 2-D numerical convolution, with average run-time reduced by a factor of 290X. We
may conclude: provided a good estimate for W is available, single 2-D numerical convolu-
tion is the best overall method of convolution.

5 Of course, the most robust method of convolution is really full 2-D numerical convolution, but since this is
impractically expensive in most cases, it is discounted from consideration here.

6. We have already determined that it is the best choice for relatively narrow error-cones, whether a good
estimate for [ is available or not.
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APPENDIX C: Hogan’s Improved Method for Integrating Flux
Distributions on Axisymmetric Receivers.
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Sandia National Laboratories
Albuquerque, New Mexico 87185

date: February 19, 1991
to: R. B. Diver, 6217

‘Q\w\ I -

rom: R. E. Hogan and V. J. Romero, 1513

subject: Improved CIRCE2 Integrator for Axisyminetric Geometries

Introduction

The CIRCE computer code! for predicting incident solar flux distributions from point-
focus concentrators has received extensive use in the solar community. It was developed
originally to predict flux distributions on flat targets. Recently, CIRCE was modified
to permit prediction of incident solar flux distrbutions on non-planar and axisymmetric
geometries. The enhanced version of the code is now commonly referred to as CIRCE2.

During the development of a numerical model for reflux solar receivers, the use of CIRCE2
in predicting the total power incident upon the Sandia reflux pool-boiler receiver pointed
out a deficiency in the integrated power computation for axisymmetric geometries. In
particular, the power computed by CIRCE2 on an axisymmetric target is dependent
on the limits of integration. This memo describes the difficulties we encountered using
CIRCE? for axisymmetric geometries and describes our solution.

CIRCE for Flat Targets

The original CIRCE computer code was developed to predict solar flux distributions on
flat targets. Figure 1 shows the form of the array of computed fluxes for a circular target
contained in the CIRCE output file. To calculate the power incident on the target, an
approximation for the integral of these fluxes over the target area is computed using
a Jacobian mapping of the circular target geometry into a rectangular domain. The
integral over the target is then evaluated as a summation of the integrals approximated
using 3x3 (9 functional values) rectangular sub-areas. Figure 1 also shows a typical sub-
area to which an integrating formula can be applied to approximate the value of the
integral. The two different sub-area integrating formulas used in CIRCE to approximate
this integral are

A
I] = ﬁ {lemm + 2 fcarnen + 4 E fml'dcidu} (1)

'Ratzel, A. C. and Boughton, B. D., CIRCE.001: A Computer Code for Analysis of Point-Focus Con-
centralors with Flat Targets, SAND86-1866, February 1987.
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and
A E
]2 = Z's' {20.’ccnler + E :fcornen +6 fmn‘du'dea} ' (2)

where f is the integrand and A is the area of the rectangular sub-area. For this geometry,
fij = Fi;riand A = 4ArAd, because of the circular mapping. Equation (1) is referred to
in the CIRCE output as “Method 1" and Eq. (2) is “Method 2." These are also given in
the Helios manual as Eqgs. (7.1-4b) and (7.1-5b), respectively 2. They are used to compute
the power on all targets that can be analyzed in CIRCE2. For flat targets only, a highly
accurate Legendre-Gauss/Newton-Cotes integration package' (hereafter referred to as the
Legendre-Cotes method) is also employed. Method 1 results from applying Simpson'’s
rule for integration in each direction and is referred to as the “Product Simpson’s Rule
Formula.” Currently in CIRCE, the numerical “error” in the power is calculated as the
difference in the power calculated using Egs. (1) and (2).

6 - 6 6, G4 - Oy
LS} FI! e Fl,j—l Fl,j Fl.i’f'l e Fl N

Ficvjo1 Fievy Ficijer N0 Fian

Ti-1 Fi-l.l

ri F, Fij-v F;  Fijn Fin
Ti+1 F-‘+1.1 Fi+1.j—-1 Fi+1.j F:‘+1,J‘+/1 F.‘+1,N
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Figure 1. Form of flux array in typical CIRCE output and 3X3 sub-area array for an
axisymmetric target.

Enhanced CIRCE for Axisymmetric Targets — CIRCE2

For an axisymmetric target, the incident solar fluxes are circumferentially periodic over
2. If either of the integrating schemes, Eqgs. (1) or (2), is used to calculate the power on
an axisymmetric geometry, the computed power is dependent on the limits of integration.
For instance, the power integrated from 0 to 360° is, in general, not equal to the power
integrated from & to 360+6° with either Egs. (1) or (2). The integrated power on the
axisymmetric target should be independent of the limits of circumferential integration.

To illustrate this problem, apply Egs. (1) and (2) to the (r,8) array of functional values
(product of flux and radius) on an axisymmetric target as shown in Fig. 2. Since the
geometry is axisymmetric and the flux distribution is circumferentially periodic, the

“Biggs, F. and Vittitoe, C. N., The Helios Model for the Optical Behavior of Reflecting Solar Concen-
trators, SAND76-0347, March 1979.
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6, 6, 6, 6, 6,
rn fin fia fis fie fis
ra2 fz.l fz,z fz.s fau fas
ra f 3,1 f: 3,2 fa.a f3.4 fa.s
re fa fm f4.3 Jaa f4,s
rs fi 5,1 f 5,2 fs.s f5,4 f 5,5

Figure 2. Form of CIRCE2 flux array for an axisymmetric target with four intervals
in both r and 8 coordinates.

values for 6 and flux at the starting and ending points, { = 1 and ¢ = 5, respectively,
are the same. Thus, 85 = 61, fis = f11,f25 = f221, etc. Figure 3 shows this periodic
distribution written with repeating subscripts using f;; = f1 5. In Fig. 3, the functional
values are repeated in the circumferential coordinate direction to aid in applying Eq. (1)
with different integration limits. Using Eq. (1), CIRCE2 Method 1 integration scheme,
and integrating from 6, to 6, as shown in Fig. 3, the expression for the integral is

Ioe, = & {2fa+4ha+2fiz+4fia
+8f21 + 1622 + 8f23 + 16 f2,4
+4fa1 +8fs2+4fs3+8f34
+8fi1 +16f42 + 8fe3+ 1644
+2fsn +4fs2+2fsa+ 4S54}, 3)

where A = 4ArAf for a cylindrical target due to the mapping of the cylindrical geometry
onto a rectangular domair.

Again using Eq. (1), CIRCE2 Method 1, and integrating from 6, to 8,, the expression
for the integral is

Loy = & {4hn+2fia+4fis+2ha
+16f2,1 + 822+ 1623 + 8f24
+8f31+4f32+8f33+4fa4
+16f41 + 8f42+16f43 +8f4q
+4fsa+2fs2+4fs3+ 254} (4)

For these integrals to always be equal, assuming arbitrary fluxes, the coefficients of
corresponding f;;'s in Eqs. (3) and (4) must be identical. Clearly, these coefficients
are not equal and the values of the integrals are diflerent. Consequently, the integrals
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6 6. 6 6, 6, 06,
™ fl,l f1.2 f1,3 fia f1.1 fl,z e
r2 far faz fasz fau fon Sa2
ra f 3,1 fa2 fa.s f3.4 f 3,1 f3.2
T4 f4,1 f4.2 f4.3 Jas f4,1 f4.2
rs fsq fs2 [ fsa fsa [ 5,2

Figure 3. Periodic form of flux array for an axisymmetric target with four intervals
in both r and @ coordinates.

are dependent on the choice of integration limits. By subtracting Eqs. (3) and (4), an
expression for the difference, or error, E, in the power can be computed

Ev=1I4 o ~1jo= % {(~fra+f12— fia+ fi4)
+4(=faa + faz = a3+ fod)
+2(~fan + fr2 = fas + fa4)
+4(=fa1 + faz — fas + fa4)
H(=fsp+ fs2— fs3+ fs.4)} (5)

For an arbitrary flux distribution, the difference in power computed with different inte-
gration limits is nonzero. Equation (5) suggests this difference could be zero when the
fluxes are all equal for each discrete r coordinate. Also, if the field were uniform, then
the integrals are independent of integration limits. A similar conclusion is obtained if
Eq. (2) (CIRCE2 Method 2) is used to evaluate the integrals in a similar analysis, though
the error term E, is different.

If the values of the integrals (3) and (4) differ, then what-is the appropriate value of
the integrated power on the target for Method 17 The proposed approach is to take the
average of Egs. (3) and (4) which results in the expression:

M=

(-0, + I5,0,) = & {(05fin+ fra+ fia+ fia+0.5/11)

+4(0.5f21 + fa2+ faa + froa +0.521)
+2(0.5f31 + faa+ fsa+ f34+0.5f31)
+4(0.5f¢1 + foa + oz + fea+0.5f02)
+(0.5f51 + fsa + fs,3+ fou +0.5751)} (6)

DO

The result shown in Eq. (6) is quite interesting because it represents an extended trapa-
zodial integration in the @ coordinate and a Simpson’'s rule integration in the r coordi-
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nate. Equation (6) is also-obtained by averaging the integrating scheme given by Eq. (2)
(CIRCE2 Method 2) in a similar manner.

Numerical Results

To illustrate the application of the proposed method, the integrated power computed with
Eqgs. (1) and (2) with different integration limits is compared with the power computed
using the proposed method, Eq. (6). For this comparison, the solar flux distribution
incident on a 1 m radius circular flat target from a single off-axis (canted) facet reflector
is chosen as an example. This example is part of a 3-facet reflector system presented
as an example problem (Example 2, pg. 28, Reference 1) in the CIRCE manual. A flat
target was chosen because it permits the comparison of computed results with the highly
sophisticated Legendre-Coates integration algorithm.

A comparison of the computed integrated powers is presented in Table 1. To compute
these CIRCE2 results, the circular target was divided into 10 circumferential and 50 radial
intervals. The computed power for Method 1 and Method 2 agree well for the same limits
of integration. However, for different limits of integration, the computed power differs by
approximately 6% for this example. Compared to the power computed with the Legendre-
Coates integration, the power computed with either Method 1 or Method 2 differ by +3%,
depending upon the limits of integration. The magnitude of these errors are unique to
the incident solar flux distribution for this example. However, the agreement between
the power computed with the proposed method and with the Legendre-Coates method
is excellent.

Integration CIRCE2 CIRCE2 Proposed Legendre-
Limits Method 1 Method 2  Method Coates
(°) Eq. (1) Eq. (2) Eq.(6) Method

0-0 49627 49627 48299 43298
36-396 46969 46969 48299 48297

Table 1. Comparison of computed integrated power (W) for CIRCE2 and proposed
integrating method.
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These results suggest several general conclusions on the accuracy of these integration
methods when applied to flat axisymmetric targets.

1. The CIRCE2 error estimate computed as the difference of Methods 1 and 2 is an
inappropriate error indicator for axisymmetric targets.

2. The power computed with either Method 1 or Method 2 is different than the power
computed with the Legendre-Coates integration method.

3. The power computed with either Method 1 or Method 2 is dependent on the limits
of integration.

4. The power computed with the proposed method is identical to the power computed
with the Legendre-Coates integration method.

5. The power computed with the proposed method is independent of the limits of
integration.

Comparisons for axisymmetric non-planar (conical and spherical) geometries also show
the computed power using Methods 1 and 2 depend on the limits of integration. Since
there is no Legendre-Cotes integraton scheme for non-flat targets in CIRCE2, a direct
comparison cannot be made between these methods. However, it is reasonable to as-
sume that, just as for flat targets, the Legendre-Cotes method and the proposed method
proposed will yield essentially identical results, which are independent of the limits of
integration, and which are superior to results obtained using either Methods 1 or 2.

For flat rectangular targets or angular sub-sections of axisymmetric targets, the flux dis-
tributions are rarely periodic with respect to the grid and the question of integration limit
dependence is not applicable. However, for these targets, it is informative to compare
integrated power predicted with these methods. Table 2 shows the computed powers for
a 0.304 m x 0.304 m square target on Test Bed Concentrator No. 1 with an 11x11 grid
of points. In this example, the results of Methods 1 and 2 are high by approximately
the same amount as the proposed method is low when compared to the Legendre-Cotes
results. Thus, it apears that, for any target type CIRCE2 is capable of analyzing, the
proposed integration method is at least as accurate, and for axisymmetric geometries
more accurate, than Methods 1 and 2. Moreover, the proposed method produces results
that agree with the Legendre-Cotes scheme while being far less complex to code and much
less computer-intensive. This makes possible an easy upgrade to the routines in CIRCE2
without implementing the complex Legendre-Cotes package for non-planar axisymmetric
targets.
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CIRCE2 CIRCE2 Proposed Legendre-
Method 1 Method 2  Method Coates
Eq. (1) Eq.(2) Eq.(6) Method

76258 76253 76035 76162

Table 2. Comparison of computed integrated power (W) for CIRCE2 and proposed
integrating method for square target.

Conclusions and Recommendations

We have shown that the integrated power obtained using the Method 1 and 2 integration
schemes in CIRCE2 is dependent on the limits of integration when applied to axisymmet-
ric geometries. An integrating scheme for axisymmetric geometries has been proposed
whose result is independent of the limits of integration. Results computed with the pro-
posed method agree well with results from the sophisticated Legendre-Coates intergration
scheme for the examples cited.

It is recommended that the proposed integration scheme be implemented into CIRCE2
in place of Methods 1 and 2, and that the Legendre-Cotes scheme be retained as a check
for integrated power on flat targets. This modification should be included before the
code is frozen later this year.

reh
Key Words: 2216.330, Solar, CIRCE2, Axisymmetric Receivers

Copy to:

1500 E. H. Barsis

1510 J. C. Cummings
41511 D. K. Gartling

1512 A. C. Ratzel

1513 J. C. Cummings, acting

1513 R. E. Hogan

1513 V. J. Romero

1513 Dayfiles (2)

1514 H. S. Morgan

6216 C. E. Tyner

6216 T. R. Mancini

6217 P. C. Klimas

6210 J. T. Holmes, acting
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APPENDIX D: Annotated "input" File of Example Problem #1

EXAMPLE 1 OF CIRCE2 USER’S MANUAL
SAMPLE TABULAR SUNSHAPE MODEL

; TITLE
; TITLE

0.000000 0.000000 1.000000 ;8V(i),1i=1 to 3 (a unit vector)
1 1000.000 ;JSUN, I
22 ;s NTABL
1 0.0000 0.20106E+04 ;o1 RHO (1) SVAL(1)
2 0.3520 0.20106E+04
3 0.7040 0.20080E+04
4 1.0560 0.19912E+04
5 1.4080 0.19667E+04
6 1.7600 0.19354E+04
7 2.1120 0.19013E+04
8 2.4640 0.18646E+04
9 2.8160 0.18141E+04
10 3.1680 0.17383E+04 . . .
11 3.5200 0.16202E+04 K RHO (K) SVAL (K)
12 3.8720 0.13652E+04
13 4,2240 0.88421E+03
14 4.5760 0.83487E+02
15 4.9280 0.17796E+02
16 5.2800 0.21680E+01
17 5.6320 0.15224E+01
18 5.9840 0.11320E+01
19 6.3360 0.87220E+00
20 6.6880 0.75840E+00
21 7.0400 0.68450E+00 . . .
22 7.2160 0.00000E+0Q0 ;NTABL RHO(NTABL) SVAL(NTABL)
2 1 1 1 ;NER, IDIM, IANLYT, NEWCONV
0.000000 2.500000 2.500000 ;TH(1) SIGR(1l) SIGS(1)
0.000000 1.500000 1.500000 ;TH(2) SIGR(2) SIGS(2)
2 ; INPICK
1 METER RADIUS FLAT-CIRCULAR TARGET ; TITLE
6 ; ITARSH
6.28319 1.00000 1 25 ; THETAMAX (rad), RMAX, TPTS, RPTS
0.00000 0.00000 8.45000 ; (Xo, Yo, Zo)
0.00000 0.00000 0.00000 7ALPHA, BETA, NOT_USED_HERE
0 ; IAPT
0 ; INORM
14 METER DIA., 45 DEG. RIM-ANGLE PARABOLIC DISH ; TITLE
1 1 1.000 ; KORD, IOPT, REFLEC
7.0000 10 ; FLENG, NSUBF
1 1 ; ISHAD, ICPQR
0.00000 0.00000 0.00000 ; SHADING~OBJECT PARAMETERS
0.00000 0.00000 1.00000 ; " " "
1 ; NFACET
1 0.0000 0.0000 0.0000 8.4500 0.000 0 0
{IDF X (IDF) Y (IDF) Z (IDF) FOC(IDF) SBM(IDF) IDAIM(IDF) IBETA (IDF) }
1 0.00000 0.00000 1.00000 ; IDF, PN(IDF), QN(IDF), RN(IDF)
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APPENDIX E: Output “flux” File from Example Problem #1

AR AR RS RS ES SRR AR R SRR RS R RS RRR R SRS REREEEs Rt RRRRRRRRESRREERXER R R 2]

EXAMPLE 1 OF CIRCEZ USER'S MANUAL

LSRR RE R AR ESEEEERREE AR A SRR R R Rl SR RREESREERR R Rt RRRRRRERREERRRERER R X

**** FLUX DISTRIBUTION ON TARGET (W/cm"2) ***«

THETA(]) = 0.0000

R(1)
0.0000 6.334E+02
0.0417 4.992E+02
0.0833 2.469E+02
0.1250 8.026E+01
0.1667 1.856E+01
0.2083 3.372E+00
0.2500 5.192E-01
0.2917 6.828E-02
0.3333 7.532E-03
0.3750 5.529E~-04
0.4167 0.000E+00
0.4583 0.000E+00
0.5000 0.000E+00
0.5417 0.000E+00
0.5833 0.000E+00
0.6250 0.000E+00
0.6667 ".000E+00
0.7083 0.,00E+00
0.7500 0.000E+00
0.7917 0.000E+00
0.8333 0.000E+00
0.8750 0.000E+00
0.9167 0.000E+00
0.9583 0.000E+00
1.0000 0.000E+00

MATRIX INDICATING THE NUMBER OF RAYS CONTRIBUTING TO EACH TARGET POINT:

371
371
371
371
371
371
371
154



=
S

O OO0 O 0O 0O OO0 OO 0O O O o

OPTICAL EFFICIENCY FOR APERTURE DISK:

% OF TOT % OF TOT % OF TOTAL % OF PWR ON
RADIUS (M) RADIUS TGT AREA PWR ON TGT  UNSHADED DISH
0.00 0.00 0.00 0.00 0.00
0.04 4.17 0.17 20.02 20.03
0.08 8.33 0.69 59.03 59.07
0.12 12.50 1.56 86.15 86.20
0.17 16.67 2.78 96.70 96.76
0.21 20.83 4.34 99.39 99.45
0.25 25.00 6.25 99.91 99.97
0.29 29.17 8.51 99.99 100.05
0.33 33.33 11.11 100.00 100.06
0.38 37.50 14.06 100.00 100.06
0.42 41.67 17.36 100.00 100.06
0.46 45.83 21.01 100.00 100.06
0.50 50.00 25.00 100.00 100.06
0.54 54.17 29.34 100.00 100.06
0.58 58.33 34.03 100.00 100.06
0.62 62.50 39.06 100.00 100.06
0.67 66.67 44.44 100.00 100.06
.71 70.83 50.17 100.00 100.06
0.75 75.00 56.25 100.00 100.06
0.79 79.17 62.67 100.00 100.06
0.83 83.33 69.44 100.00 100.06
0.88 87.50 76.56 100.00 100.06
0.92 91.67 84.03 100.00 100.06
0.96 95.83 91.84 100.00 100.06
1.00 100.00 100.00 100.00 100.06
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** %% SUMMARY RESULTS ****

CONCENTRATOR SURFACE AREA =
Ap = SOLAR PROJECTED AREA =
Ar = Ap REDUCED BY SHADING AND BLOCKING =

I = SOLAR INSOLATION = 1000.00 W/M*2
NO. OF SUNS AT PEAK = 6333.65

Pideal = MAX INTERCEPTABLE POWER = I*Ap
Prefl = PWR REFL FROM CONC. = I*Ar*REFLEC

Prec = POWER ON RECEIVER (QAGS & QNC79) =
Ceff = CONCENTRATOR EFFNCY = Prefl/Pideal
Reff = RECEVR COLLECTION EFF = Prec/Prefl

TOTAL COLLECTOR SYSTM EFFINCY = Ceff~*Reff

157.202 M*2
150.796 M"2
150.796 M2

0.150796E+06 W
0.150796E+06 W
0.150885E+06 W
100.00%
100.06%
100.06%

[}
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APPENDIX F: Corner Locations for a Rectangular Aperture

This appendix describes the procedure used to calculate the collector-system coordi-
nates of the corners of a rectangular aperture. The algorithm is applied to the construc-
tion of the circular aperture in Example 3 of Chapter 8, which may be defined by an
inscribed square aperture frame.

The aperture is shown in Figure 8.1. Recall from section 5.4 that the corner points
are numbered in a clockwise manner when viewed from the concentrator. The number-
ing starts in the upper-left corner and proceeds clockwise to the lower-left corner as
depicted in Figures 5.10 and 8.1. Additionally, the line-segment connecting corners 1
and 2 must be horizontal, as must be the segment between corners 3 and 4. (That is, the
Z-coordinates of corners 1 and 2 must be equivalent, and corners 3 and 4 must also have
a mutual Z-coordinate.) However, the plane of the aperture does not have to be horizon-
tal. (Example 3 involves an aperture that is tilted with respect to the global X-Y-Z sys-
tem.) In most cases, the aperture is usually centered about the collector Z-axis and
resides in a horizontal plane normal to this axis. In such cases the coordinates of the
aperture corners are fairly obvious. However, the following procedure may be used to
calculate the corner-point coordinates for tilted apertures (it is assumed that the user
can supply location and orientation information for the aperture plane.)

Referring to the aperture frame depicted in Figure 8.1, let the center of the aperture
of dimensions a x b be specified by some vector V,, originating at the collector coordinate-
system origin, which in this example also coincides with the origin of the facet coordinate
system. (In some cases, the user may know directly the components of V,, but in other
cases they may have to be calculated based upon other known information as illustrated
here.) For simplicity in this example, let the vector point to the target coordinate-system
origin. (If the vector is to point to some grid point on the target, the grid’s coordinates
can be found by performing a minimal run of CIRCE2 (no aperture specified,
NFACET=1NSUBF=1, IDIM=1, IANALYT=1, NEWCONV=1) and obtaining the target
grid coordinates from the output file.) From Example 3 of Chapter 8, we know that the
coordinates of the target-system origin are (-6,4,15). Thus, a unit vector in the direction
of V, is:

d =(-6X +4Y + 15Z)/sqrt((-6)2 + 42 + 152)

where X, ¥, and Z are the unit vectors in the collector-system X, Y, and Z directions,
respectively.

The vector VL can be obtained by multiplying the above unit vector by the scalar D
(distance from the collector-system origin to the aperture). Here we will take this dis-
tance to be 15 meters (approximately 1.6 meters in front of the target). Thus,

V.= (-6X +4Y + 15Z)x15/sqrt(277).
The orientation of the aperture plane is defined by specification of the unit normal #,

which is perpendicular to the plane and faces in the general direction of the concentrator.
(It is assumed that the user has the components rl, r2, and r3 of the # vector, along the
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collector-system X-, Y-, and Z- axes, respectively.) A p-q-r orthogonal cartesian coordinate
system can now be defined subject to the constraint that the p-axis is horizontal (has no
Z-component just like the lines connecting corners 1,2 and 3,4). Here, the p- and q- axes
lie in the aperture plane and are related to the r-axis of the right-handed system by the
vector equation * = p x§. This yields 3 equations for the six unknowns p1, p2, p3, ql,
q2, and q3. Another equation becomes available by requiring the p- and g- axes to be per-
pendicular: p ¢ ¢ = 0. To make this a conventional coordinate system we will want the
magnitudes of p and q to equal unity, which requires a fifth equation specifying one of
them to have unit magnitude, the other then also being constrained to have unit magni-
tude if the cross product of these orthogonal vectors is to yield a unit vector |#|. To
uniquely specify the rotational orientation of the p-q system about 7, one component of
either of their direction vectors must be specified. From the constraint that the p-axis be
horizontal, we get the sixth equation: p3 = 0. After some manipulation, the pertinent
equations for the other components of p andg are, in their most useful form,
q3 = (+) sqrtl(r1)% + (r2)?]

ql = -r1 xr3/q3

q2 = -r2 x r3/q3

pl =-r2/q3

p2 =rl/q3
For simplicity in this example, the aperture plane is taken to be normal to V.. Thatis, 7
= -d. The above equations then yield: g3 = sqrt(52/277), q1 = 90/sqri(52*277), q2 =-60/
sqrt(52*277), pl = 4/sqrt(52), p2 = /sqrt(52), and p3 = 0.

Referring to Figure 8.1, we will now calculate the vector which, when added to V,
points to corner 2 of the aperture frame. In general, it is seen that the vector to corner n

of the aperture frame is given by:

Vin) = Vn,p+Vn g

Vn, (p1X+p2¥) + Vn, (g1X +¢q2Y +¢32)

i

(Vnp-pl+an-q1)X

A~

+ (Vnp‘p2+an-q2)Y

+ (an~q3)Z

From Figure 8.1, for corner 1, Vn = le =-a/2 and Vn, = V1, = b/2; for corner 2, Vnp
= V2p =a/2 and Vn, = V2, = b/2] etc. Now, for our application (the circular aperture of
Example 3, Chapter 8), we have the special case of a square aperture frame inscribed
within the circular aperture. Thus, a = b = . 2R, where R is the radius of the circular
aperture. A radius of 1.0 meter yields a = b = 1.4142 meters. Thus, the vector from the
origin of the p-q-r system to corner point 2 becomes, using V2, = 0.7071 and V2, =
0.7071: V(2)=0.923X + 0.235Y + 0.306Z. As a check, note that the length of V (2) is
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unity, as it should for this example. By an analogous procedure, the vector to corner 1 is
fqund to be: V( 1)=0.138X + -0.942Y + 0.306Z. Then, the relations V(3)=-V (1) and

V4)= V(Z) are employed. Finally, the collector-system coordinates of the nth corner
point are given by the vector sum V, + vV (n) . For corner 2 this becomes: V, + V (2) =
(-5.408 + 0.923)X + (3.605 + 0235 Y + (13.519 +0.306)Z. Thus, the response to the
DEKGENZ2 prompt in Example 3 for the coordinates of corner 2 of the aperiure becomes:
-4.485, 3.84, 13.825. The responses for the other corners are derived similarly.
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APPENDIX G: Quick-Reference Directory

G.1 Glossary Index

Term Page#
Miscellaneous
CONLTA] TAY eviivieiseniiriiintniniiesininisnassnisisiianes reeseisseessassnssasassssssessnnrsssasssassones 15
ideal normal, a.k.a. most-probable normal...........ccocvmnvinnnrinnniisniieniiiicnen 17
BlOPE BITOT..cciitiitiiiiieiireniieeninessritr st seressressessssasesasssossbssrassssssessassaeseansens 17

Distribution Functions

sunshape distribution.......cuiiinns s 15
error cone AiStrIbULION. ..o i viniiieienrneeinsieserercerscrrcssisrensissssannnsssssesssssssssnase 17,31
mapped (projected) error-cone distribution........ccoecevvevirncnresincinnicsisnniininns 32
effective sunshape, a.k.a reflected solar image, ESUN distribution.............. 18, 33
normalized distribution function.......ccuvicieimininisemeseen. 27
1-D circular-normal (a.k.a. “Gaussian”) distribution........cccevveceverersecisrenecesnes 28
2-D elliptic-normal distribution......eeiniccienii e, 29
rmsw (root-mean-squars Width)......ciiemiiimemimmeieessssmssies 28
dispersion, i.e. rmsw for a 1-D circular-normal distribution.........ccceecnee 28
standard deviations, i.e. the rmsw for 2-D ellip.-normal distr.........ccccu.... <9
rmsr (root-mean-square Taditis)......ccccccereiemrrenesssecicosenmnnssessssesesessessesanssnsassass 28
for a 1-D distribution......cevcrcrviereenineieninnrninerinscesinssssssrnssssesssessssassssses 28
for a 2-D distribution......ccceriiseieninnnnriicnnnnnseninrenssiinesssessssssesssesansssssssesane 33
Reference Planes
Reflected-Ray (U-V) reference plane.....ccvoinriniieniinnemnmsimmmoins 20, 32
Reflector (P-Q) reference plane......u i 30, 32
Coordinate Systems
Collector coordinate system, a.k.a. global (absolute) coordinates..........cc.eeeen. 18, 69
Facet coordinate System.. .o 55
Sun-Reflector coordinate system........cciveriniicnnnenennnnn s 19, 29
Target coordinate SYStem......ccccceriiriniciiesicsrisnerssnasssiessisanssssssssmrersssnsssenasassressess 18, 39
K-L parametric coordinate system (lying in the target surface).......cccecerueenene 39, 40
Facet/Subfacet
FACEE.1eveeeseerererrernnestisenesiestesetsstensenenssensssstestsenrenssessassenstassesaesrasssessessnesanssssssassnens 13, 55
Projected SBhAPE........cvevriecriinensisnisnneseseesiisnssnesisrsssesesaanessassasasssssanesssesnesaasanes 55
SUDBFACEL....cc ittt s st esr e e e sassrasana e seseneres st nseraasana e e e 19, 56
projected subfacet.........coiiinincnniininctisnc e srsssae s sesrasaressaeenaene 56
subfacet quantities........cciineinniini s e 60-61
subfacet centroid....cviiiimiiiiiminiiieienssmsesisssessesssnseses 61
Target/Receiver
hybrid FeceiVer... .o ssiss s snsssararesessessesnessnsnsesenes 13, 50
Rt MAP..cinre i e s st st srestsenes 23, 40
PEAK fIUX..cuuiiiiiiniinniniintisininessinensesninenesescesssassenaesesnesssssssssssessssersesssssassnsseasessencs 23



G.2 Parameters Used in DEKGEN2

Sun and Error Parameters
DIPSUN Characteristic width of a 1-D circular-normal sunshape................... [milliradians] 28
I Solar flux iNtenSity. ..o [W/m?] 20, 25
IANLYT Specifies analytic or numerical convolution of effective sunshape.... .cccvrvenrncne 34
IDIM Identifier for dimensionality of effective sunshape .....cccoevvviiviinnee cvviiiinnecinanee 33
INCANGL Concentrator-averaged incidence angle........ccvvivnininicienncssisnns {degrees] 36
INCPICK Qualifier for NEWCONYV = 1 0ption..ccccccccierrvcmsinnmnrmsismiiisinnnnieses senseesvsscssessenne 36
JSUN Sunshape-type specifier and manner of iINPut.....cuciimiimmine: e, 27
NER Number of reflector rrors ... ciiniiicinninii s seseeessssseees 30
NEWCONV Controls number and location of effective sunshape calculations..... ..cccvviveirinnns 35
NTABL Number of values in sunshape table........cciceiiininniiiemine oo 28
RHOEDGE Radius of pillboX SUn...cccccueciiniiiininiiiiiieninnnesssnes [milliradians] 28
RHO Angle with respect to sun central ray......c.iiinnnnnn. {milliradians] 28
SIGR Princ. axis standard deviation of elliptic-normal error distribution  [milliradians] 29-30
SIGS Princ. axis standard deviation of elliptic-normal error distribution  [milliradians] 29-30
SVAL sunshape magnitude function.........ccociin s e 28
SV(3) Components of a vector pointing toward the sun.........ccovvceinisuivinines any 25
TH Rotation angle for elliptic-normal error distribution........ccccecvervnnen. [degrees] 30
Iarget/Receiver Parameters
AC(,j) aperture-corner locations in collector-system coordinates...........cceeevene (m] 51
ALPHA flat target rotation ANIE...........ocveveveeereinveerirereeesneesessanieresserassesarsessssees [degrees] 42
BETA flat target tilt Angle........ccviiicervcrcrinnnicrisirissc s [degrees] 42
IAPT APEItUre deSIZNALON. .....ccvvriicrtrrnretiiniese st snsesistassessens sssssssessesssssins 51
INORM designator for receiving side of target SUIface........cccvveerveenvcericrnreenis veverrereravenes 51
ITARSH Target shape Identfier..........ccvuiiinieiiiniinnein, renensesn cvessresessssessnns 42
KEXT Target dimension in parametric K-direction of target.........c...ccoeervennen. [dependent]  42-50
KPTS Number of subdivisions in K-dir€CtOM......c.ccecrcrierecsrrniimrrsesermrmimvisesne sversesssssesorses 42-50
LEXT Target dimension in parametric L-direction of target..........ccoocvvrveenenan. [dependent]  42-50
LPTS Number of subdivisions in L-direction............ocverveeeseverviresevannne veeresinnes cuessestessenes 42-50
NTART Total number of target grid-points (to be specified for TARSH=2) 41
PHIC ¢ (polar) coordinate to target CeNtEr-POiNL..........coeerererverereresnsserssersasseses [degrees] 46
RADIUS radius of cylindrical target SECLON..........ccevverrereneneresernnnenensaraessessesennne [m] 47
RBOT bottom radius of conical target SECHON. ......vveeevererreeceervereserersressresssnssnens [m] 48
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RCURV radius of curvature of spherical target SeCtON........ccvverveverereeiersennens
RMAX radius Of CIrCUIAr tArgEt SELIOT...ccuvuivierererirceereecreresrrererersssesasessnsaressoraens
RPTS number of grid points ir. the radial direction of circular target..............
RTOP top radius of conical target SECHOMN.....c..uvciverirresrrressiriseeresmesesenrsssesens
THETAC 0 (azimuthal) coordinate at target Center-point..........cceeveeeerseeeerssnsassens
THETAMAX total angular span of circular target SECOL.........ooveeverereieereerrrenseseresssseenes
TPTS number of grid points in theta (azimuthal) direction of circular target
VMTx(i) X-component (in the collector-system basis) of normal at target point i
VMTy(i) Y-component (in the collector-system basis) of normal at target point i
VMTz(i) Z-component (in the collector-system basis) of normal at target point i
XTA(1) collector-system X-coordinate of target point i.......cueecevevieceeenrrerereeanns
YTA() collector-system Y-coordinate of target point i.......coeveeverecernrnrecssennane
ZTA() collector-system Z-coordinate of target point iv.....cveeeererevesnenvarereorens
(X0, Yo, Zo)  collector-system coordinates of target coordinate-system origin..........
Reflector/Facet Parameters
Keyword Description

ASUB(k) Coefficient of the kth term in the polynomial series for [OPT=4...............
DISHRAD  Parabolic-dish radiis ........ccccecueviiiriennnnnniercennneieeninneresssarenesscevenessesnesens
ELENX X extent of rectangular facel.........coccvrecireiinievrennienresernscrs s e sesennes
ELENY Y extent of rectangular faCel.... ... vivneiieerneiresnie e e
FLENG Radius of circular facet or edge-length of triangular facet..............couevune.
FOC Focal length of parabolic facet or radius of curvature for spherical facet
INTERP Designator for order of interpolation for IOPT=5, 6........cccecverrrvveveennnnen
IOPT Identifier for facet CONMOUT.........oevirererenreeireneninr e ersree e assseenenenes
KORD Identifier for facet projected-shape.........cccocvvreriiienierenennene e
NSUBF circular and triangular facet subdivision parameter..........covvevervireernennines
NTERMS Number of terms in the polynomial series for IOPT=4..........ccccccverurrnene
NX Number of subdivisions in x direction for rectangular facet.............. reeres
NY Number of subdivisions in y direction for rectangular facet......................
RCOMP(j)  Radial component of ideal normal at point-j of facet for IOPT =6...........
RIMANG Parabolic dish Him-angle...........coveiiiinennirreneseeee e senns
ZCOMP(j)  Height (value of z) at point j of facet for IOPT = 6........cccovererreveriernennn

[m]
[degrees]
[degrees]

...................

................

................
................

................

................

46
43
43
48

46-49
43
43
41
41
41
41
41
41

18, 39
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Concentrator Parameters

IBETA(IDF) rotation angle fcr facet IDE.........oovivvveninnnninnnersiennninsnnssesesineresessssesssnns [degrees]  70-71
ICPQR Designator for whether facets are aimed by user or internally by CIRCE2 ..............  69-70
ISHAD Designator for how shading/blocking is to be handled.........cccocvnccvvnnices cvvvererrnnns 71
NAIM Number of facet aim-points to be defined if ICPQR =0......ccccccvvrvvniiincees evrrevservnnnes 70
NFACET Number of facets COMPrising the CONCENIALOL. ....ccuevceerrrrreecirenisisesraresasrerns coreresessnaens 69
PN(IDF) X-component (in the collector-system basis) of facet IDE'S axiS.....ccveee coevevveriennas 70
QN(IDF) Y-component (in the collector-system basis) of facet IDF’s axiS......ccoceces weeveererrnnnns 70
RN(IDF) Z-component (in the collector-system basis) of facet IDF’s axis.....c.ccoeeee cvveviecrvenes 70
REFLEC Solar specular reflectivity Of facel........c.coueuvinirrreinnsesesereseseresssensssnsnns ssrsesesssrens 69
SBM(IDF) Shading/blocking factor for facet IDF (input for ISHAD=2)........cccccevcens coerevcreranens 71
SHADL Edge-length for square shadow if ISHAD = 1.........cccocvevinnrenvinenienenecnenens [m] 72
SHADR Radius for circular shadow if ISHAD = L........ccccocvvccinnecnnnnnecsnnenesenne [m] 72
X,Y,Z (IDF)  Collector-system coordinates of center/vertex of IDFth facet................... [m] 69
XAIM(ID) Collector-system X-coordinate of IDth aim-point............ccveerieeecvnreresnenen {m] 70
YAIM(ID) Collector-system Y-coordinate of IDth aim-point............ccceeecreeiennnivneenas [m] 70
ZAIM(ID) Collector-system Z-coordinate of IDth aim-point.........c...cceeveeirerenrenrenens {m] 70
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