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Abstract

The objective of the "Hydrodynamics of Maneuvering Bodies" LDRD project was to de-
velop a Lagrangian, vorticity-based numerical simulation of the fluid dynamics associated
with a maneuvering submarine. Three major tasks were completed. First, a vortex model
to simulate the wake behind a maneuvering submarine was completed, assuming the flow
to be inviscid and of constant density. Several simulations were performed for a dive ma-
neuver, each requiring less than 20 cpu seconds on a workstation. The technical details of
the model and the simulations are described in a separate document, but are reviewed
herein. Second, a gridless method to simulate diffusion processes was developed that has
significant advantages over previous Lagrangian diffusion models. In this model, viscous
diffusion of vorticity is represented by moving vortices at a diffusion velocity, and ex-
panding the vortices as specified by the kinematics for a compressible velocity field. This
work has also been documented previously, and is only reviewed herein. The third major
task completed was the development of a vortex model to describe inviscid internal wave
phenomena, and is the focus of this document. Internal wave phenomena in the stratified
ocean can affect an evolving wake, and thus must be considered for naval applications.

. The vortex model for internal wave phenomena includes a new formulation for the gener-
ation of vorticity due to fluid density variations, and a vortex adaption algorithm that al-
lows solutions to be carried to much longer times than previous investigations. Since
many practical problems require long-time solutions, this new adaption algorithm is a sig-
nificant step toward making vortex methods applicable to practical problems. Several sim-
ulations are described and compared with previous results to validate and show the
advantages of the new model. An overview of this project is also included.
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Executive Summary

Severalissues associatedwiththe evolutionof submarinewakes areof considerableinter-
' est to the navalcommunity.Twoareasof interestarethe detectionof others' submarines,

andstealth operationof ourown. Accordingly,there is a stronginterest in developingnu-
• merical simulation capabilities to gain a better understandingof the complex hydrody-

naraicevolutionof submarinewakes. Withthis motivation,andwith the navalcommunity
in mindas a potential customer,agridless,vorticity-basedmodelwas developedas partof
the LDRDprojectentitled"TheHydrodynamicsof ManeuveringBodies" (FY 92 and93).

The reason that a vorticity-basedmethod was proposedand implementedis that vortex
methods offer the possibilityof performingthe simulationsof interestwhere conventional
numericalmethods(e.g., finiteelement orfinite differencemethods)arenot feasible. Our
success in developingsuch amodel stronglysuggeststhat vortexmethods holdpromisein
this area.A furtherindication of the promiseof vortex methodsis that we are now aware
thata navalresearchlaboratoryis exploringthisapproachwith universityfaculty.

Vortexmethods are significantlyless weU-developedthanconventionalfiniteelement and
finitedifference methods.Thus, there is a wide range of areas that needto be addressedin
the developmentof vortexmethods.The navalcommunityhas focusedmuchof its efforts
on agglomeration methods and implementionof vortex methods on massively parallel
computers.Ourfocus is both more appliedandmorefundamental,and complementaryto
the naval effort. It is more appliedin the sense that we implementeda model to describe
the evolution of the wake behindan actual submarineduringa realistic maneuver[21],
which to the best of our knowledgehas not been accomplishedelsewhere.By necessity,
several simplifying assumptionswereused in the model. Notably,the vorticitygeneration
as a result of density variationsin the ocean (variationsin salinity and temperature)was
omitted, as were the effects of fluidviscosity.Encouragedby the shortexecution times of
the simplifiedmodel (less than 20 seconds on a Sun SPARCworkstation),more funda-
mentalefforts were undertakento include vorticitygenerationand viscous effects for in-
clusion in the submarinemodel.

As a resultof those efforts,a new viscous diffusionmodel, referredto as the non-solenoi-
dal diffusion velocity method, was developed. This workis describedin [14], has been
presentedat arecentAmericanPhysical Society meeting,and hasbeen submittedto a ref-
ereed technical journal. Unlike previous gridless diffusion methods, the non-solenoidal
diffusionvelocity method can actuallybe used to solve diffusionequations,notjust to add
a secondary diffusive effect to flow fields. Thus, the non-solenoidaldiffusion velocity

• method can be appliedin a wide variety of other applicationsin which mass diffusionis
readilydescribed,in additionto diffusionof vorticity.

" A new formulationto include vorticitygenerationwas also developed, includinga new
vortex adaptionalgorithmthatconservescirculation,ensuresmonotonicity,andpreserves
symmetry.The vorticity generationmodel and vortexadaptionalgorithmare describedin
detailin this report.



Althoughwe have not yet obtainedfunding fromthe navalcommunity(largelyas a result
of decreasingnavalbudgets),the accomplishmentsof thisLDRDhave alreadyhadsignif-
icant impactbeyondmeeting the goals of the LDRD. As a directresultof ouraccomplish-
ments, vortex methods are now moreapplicableto practicalproblemsthan ever before.

" Accordingly,we will host a workshop(Feb. 1995) on the use of vortexmethods in engi-
neeringproblems.Invitedparticipantswill includestaff fromacademia,industry, and oth-

, er nationallaboratories.

Additionally,new researchprogramshave been initiated to furtheradvance vortexmeth-
ods beyond existing fluiddynamics capabilities.One areaof interest is in coating flows,
such as thoseused to manufacturephotographicfilm,porousmembranes,special coatings
for glass, and the filling of casting molds.A commoncharacteristicof these flows is that
complex free surface phenomenaare importantto obtaininga defect-free product.The
gridlessnatureof vortexmethods is a naturalapproachto treatfree surfacephenomena(as
discussed in this report),and thus vortex methods arebeing developed for these applica-
tions. Anotherareaof interest is the simulationof combustionprocesses.Towardthis end,
we have establishedcontacts with staff at the CombustionResearch Facility that have a
long historyof outstandingcontributionsin vortexdynamics. Additionally,it appearsthat
ongoing workin the areaof pool firesimulationand smoke transportcould benefitsignifi-
cantly from the advances made in this LDRDproject.Thus, this LDRD has not only pro-
vided capabilities for the intended naval community, but is the basis for several new
researchand applicationprograms.
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Hydrodynamics of Maneuvering Submarines: LDRD Project Overview

The objective of this section is to provide an overall perspective on the three technical ac-
• complishments of this LDRD project. The majority of this report focuses on only one of

these accomplishments: the development of an algorithm to simulate baroclinic vorticity
, generation (which results from variations in fluid density), including a vortex adaption al-

gorithm that greatly extends the allowable simulation times. The other two accomplish-
ments of this LDRD project have already been documented in detail. They are the
simulation of the wake behind a maneuvering submarine [21], and a gridless method to
simulate diffusion processes [14]. Thus, an overall description of the project is lacking,
and is therefore described in this introductory section before proceeding to the technical
description of the baroclinic vorticity algorithm.

1. Objective and Motivation for this LDRD Project

The objective of this LDRD project was to use a Lagrangian, vorticity-based method to
simulate the complex flow associated with a maneuvering submarine. Vorticity-based
methods are particularly well-suited to large scale flows since only rotational regions need
to be resolved. A familiar example is that of a typical boundary layer flow. Vorticity occurs
only in the boundary layer itself, thus only the boundary layer need be resolved. The irro-
tational outer region, which occupies most of the grid in velocity-pressure formulations,
need not be discretized in vorticity-based methods. In problems such as the flow around a
submarine, where the boundary layer thickness is very small compared to the submarine
length (thus requiring many grid points in grid-based methods), the reduced grid require-
ments associated with vorticity-based methods are particularly beneficial.

Similarly, the length scales of the vorticity shed from maneuvering submarines are small
compared to the length over which they persist. A vortex trailing from a diving plane
might be a few feet in diameter, whereas the trail of vortices might persist over miles. In
this case, Lagrangian vortex methods provide an even greater advantage: the vorticity of
interest can be tracked without a grid. Thus, Lagrangian vortex methods have two signifi-
cant advantages over velocity-pressure based formulations. First, fewer grid points are
needed to resolve the flow in terms of its vorticity, and second, a Lagrangian vortex model
requires no grid.

Vorticity-based methods, have received relatively little development effort compared to fi-
nite element and finite difference methods for velocity-pressure formulations of the Navi-
er-Stokes equations. Thus, a significant effort was made in this LDRD to not only develop

" a capability to predict the wake behind a maneuvering submarine, but also to contribute to
the advancement of vorticity-based methods. Advances were made in three areas: 1) a

, fast-executing model was developed for simulating the evolution of the wake behind a
maneuvering submarine, 2) a Lagrangian formulation was developed that includes the ef-
fects of fluid density variations, including an adaption scheme to maintain high resolution
and high accuracy of Lagrangian methods, and 3) a Lagrangian technique was developed
for simulating viscous diffusion of vorticity.



The chronological order of these efforts does not coincide with the order in which they
have been documented. To avoid confusion that might arise because of this, the chronolo-
gy is briefly described.

2. Chronology of Developments

* The wake evolution model and simulations for several submarine maneuvers were com-

pleted first, and are de,c""-_ed in a Sandia Report [21]. Next, the new method to include
density variation effects was formulated and implemented. As discussed below, a new vor-
tex adaption technique had to be developed in order to maintain solution accuracy.

The development of a new adaption technique was unanticipated (and hence, not part Of
the original proposal) since there was evidence in the literature that existing adaption tech-
niques were adequate. We found, however, that the previously developed techniques intro-
duced non-physical features into the solution. Apparently, the non-physical features did
not manifest themselves for the relatively short times considered in previous analyses, but
became important for the longer times of interest to us.

The new adaption scheme resolved the aforementioned loss of accuracy at long simulation
times, but as a result of providing more accurate solutions at later times, an additional un-
expected phenomenon occurred. A conclusion of several previous investigations (e.g.,
Anderson [1], Meng [15]) was that the overall configuration of vorticity did not depend
strongly on the vortex size. However, the previous investigations did not have the benefit
of our adaption model which allows longer simulation times and higher resolution. We
found that, contrary to the results of the previous investigations, the solution depends
strongly on the size of the vortices at simulation times beyond those of the previous inves-
tigations. The phenomenon we observed is that, as the vortex size was reduced from one
simulation to another, additional small-scale features arose in the flow field. Similar obser-

vations were recently reported by Rottman and Stansby [20]. At the large simulation times
of interest, these small-scale features can have a significant effect on the overall configura-
tion of vorticity.

This phenomenon is believed to be a feature of the inviscid equations of motion. As noted
by Dritchel [9], "the nearly inevitable and incessant drive of an inviscid fluid to produce
finer and finer scales of motions prevents any finite algorithm from accurately modeling
even the largest scales of motion for arbitrarily long time." In addition, fluid interfaces in
inviscid vortical flows are believed to achieve infinite curvatures in finite time [20]. In a
real, viscous fluid, viscous diffusion eliminates all scales that are smaller than a certain fi-
nite length. The smallest length scale that exists (i.e., is not eliminated by viscous diffu-

- sion) depends on the relative magnitudes of inertial and viscous terms in the Navier-
Stokes equations, as indicated by the Reynolds number. As the Reynolds number increas-
es, the effect of viscosity decreases relative to inertia, and smaller and smaller length1,

scales are generated, ending in what is referred to as turbulence.

This brings to mind a comparison of Lagrangian vortex methods and Eulerian pressure-
velocity methods. Eulerian methods require "numerical viscosity" for numerical stability.



Lagrangian vortex methods do not require numerical viscosity, and thus provide a more
accurate solution to the inviscid equations. But, as mentioned above, the inviscid equa-
tions generate infinitesimally small scales. This is not apparent in simulations using Eule-
rian methods, since the numerical viscosity required for stability artificially eliminates

• most small scales. Often, the viscosity required for numerical stability is larger than the
actual fluid viscosity [17], casting doubt on the accuracy of the simulation.

Lagrangian vortex methods, on the other hand, attempt to resolve all the small scales since
viscosity is not required for numerical stability. They fail to do so, however, only as a re-
sult of the finiteness of numerical spatial resolution (finite spacing between finite vortices).
However, viscous effects can be simulated more accurately since artificial viscosity does
not influence real viscous effects.

In the flows of interest, simulation times were such that there was sufficient time for rela-
tively small length scales to be generated (it takes a finite time for the production of small
scales to commence). Thus, viscous diffusion had to be included in the Lagrangian diffu-
sion model for this project.

Numerous methods to include viscous diffusion exist (e.g., Chorin [7], Russo [19], Cottet
[8], Fishelov [10]), however, each approach has significant deficiencies that are untenable
for the simulations of interest. A recent approach by Ogami and Akamatsu [16] was par-
ticularly appealing, so we implemented it. However, we quickly found it to be highly inac-
curate. Nonetheless we believed that Ogami and Akamatsu's basic idea was a good one,
and thus embarked on an investigation to find the reason that it was inaccurate. As it
turned out, a relatively simple modification to their proposed method made it highly accu-
rate, but the time taken to develop the new diffusion model was essentially the remainder
of the time allotted to the LDRD project.

Thus, to summarize the history of this project, efforts to include vorticity generation by
variations in fluid density required the development of a new adaption algorithm and a
new method to simulate diffusion in a Lagrangian model. The development of the diffu_
sion model is believed to be a significant technical development in the fluid dynamics sim-
ulation community, and thus its development was documented in a Sandia Report [14],
submitted to the Journal of Computational Physics, and presented at the 1993 American
Physical Society Division of Fluid Dynamics meeting. The initial simulations of the invis-
cid, constant density evolution of the wake behind a maneuvering submarine were docu-
mented earlier, as they were completed [21]. These previously documented results are
reviewed briefly in the following sections. Thereafter, the technical details are presented
for the previously undocumented work regarding the new formulation to describe vorticity

. generation by fluid density variations, including a new vortex adaption algorithm.

. 3. Summary of Simulation of the Wake Behind a Maneuvering
Submarine

We performed several vortex simulations of the evolution of the vortices trailing from the
dive planes on a diving submarine, as described in [21]. As mentioned earlier, the naval
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community has an intense interest in the evolution of the wake behind submarines for pur-
poses of detecting other submerged submarines and in keeping our own submarines unde-
tected. A principal feature of interest is the upwardmotion of the vortices trailing from the
dive planes of a diving submarine. The fluid dynamics of interest are essentially embodied

• in Newton's law that for every action there is an equal and opposite reaction. In the case of
a diving submarine, the reaction to the force pushing the submarine downward is the up-

4 ward motion of the trailing vortices.

The model described in [21] addresses this mechanism, and was used to simulate the wake
evolution associated with several different dive maneuvers of a full-scale submarine. Sig-
nificant differences occurred in the wake evolutions for the different maneuvers, and were

readily interpreted in terms of maneuvers to avoid so as to avoid detection, and features to
watch for when searching for other submarines.

A few details of this model are that a multi-degree-of-freedom dynamics code is used to
predict the hydrodynamic forces on the submarine for a particular trajectory. The strength
of the vortices shed from the dive planes is determhled from well-known relationships be-
tween hydrodynamic forces and the vorticity on control surfaces, including hull vortices.
The paths of these vortices are then tracked using a Lagrangian vortex method.

These types of simulations would not even be considered if a grid-based, velocity-pressure
Navier-Stokes simulation had to be used. The reason for this is that the number of grid

points required would be prohibitively large. Typically, the submarine traveled several
thousand feet (O(103) ft) over the course of the simulation, and the wake typically traveled
several hundred feet (O(102) ft) in the vertical direction. The diameter of trailing vortices
is typically on the order of a foot. In order to resolve vortices of this size, a grid spacing of
1/10 foot would be needed, or (O(10) points per ft, or (O(103) points per ft3)). The number
of grid points would be O(109): (O(103) grid points/ft 3) • (O(103) ft of travel distance) *
(0(10 z) ft (vertical)). (0( 101)ft (horizontal)).

This huge number of grid points could be reduced by a few orders of magnitude (at leas0
by judicious gridding methods, and perhaps, adaptive grid techniques. Nonetheless, there
would still be far too many grid points to consider performing the simulation. On the other
hand, the simulations described in [21] required less than 20 seconds of execution time on
a SPARC workstation. These simulations are not as detailed as typical velocity-pressure
Navier-Stokes simulation, but they demonstrate that they provide a tool for use in engi-
neering analyses where no other practical tools are available.

4. Lagrangian Simulation of Viscous Diffusion

A method to simulate viscous diffusion of vorticity in a Lagrangian reference frame has
long been sought. Without a method to simulate viscous diffusion, vortex methods are es-

• sentially inviscid, which greatly limits their applicability. Moreover, there is controversy
as to whether there is "grid-convergence" of solutions to the inviscid equations for rota-
tional flows, since the equations appear to generate infinitesimally small length-scales that
cannot be resolved numerically. Viscosity in real fluids attenuates the smallest length
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scales, thus allowing convergence of numerical solutions when the grid spacing is on the
order of the smallest length scale of the flow.

A large number of algorithms to simulate Lagrangian diffusion have been developed pre-
• viously, which itself is a testament to the demand for such a model. The principal difficulty

is representing the spatial derivatives in the Laplacian of the vorticity field Veto without
the benefit of a grid. A brief list of previous algorithms begins with the Gaussian random
walk method by Chorin [7], which exploits the isomorphic relationship between diffusion
and Gaussian probability density distribution. However, this method is applicable only for
large Reynolds numbers, and converges slowly ("statistical convergence"). Cottet and
Mas-Gallic [8] include diffusion by convolving the velocity of point vortices with the fun-
damental solution to the diffusion equation,

r2
1 -4nv--_

e
4xvt

where t is time, r is the distance from the vortex center and v is the viscosity. In this meth-
od, vorticity diffuses from one vortex to another. At the edge of a vorticity field, diffusion
into regions where there was initially no vorticity requires that new, zero circulation vorti-
ces be added to act as receptacles for the diffusive flux into irrotational regions. This leads
to a proliferation of vortices, which is undesireable. However, if receptacle vortices are not
added, the method does not conserve circulation [18]. In addition, the use of point vortices
limits the practical application of this method.

Fishelov [10] approximates the Laplacian of the vorticity field by differentiating the core
function of each vortex, and then summing the contributions of each vortex to the Lapla-
cian at each point. This allows the viscous flux from one vortex to another to be calculat-
ed, which also requires the addition of receptacle vortices in order to conserve circulation,
as in the method of Cotter and Mas-Gallic. Russo [19] describes a method in which a
Voronoi grid is determined at each time step depending on the locations of vortices. The
grid readily allows the Laplacian of the vorticity field to be approximated. This method is
stable and conserves circulation, but the computation to generate the grid at each time step
appears to be computationally expensive. We also note that the commonly-used diffusing
core algorithm has been shown to be incorrect [11].

To conclude this brief (and non-exhanstive) list of diffusion methods, the diffusion veloci-
ty algorithm by Ogami and Akamatsu [16] is described. In the diffusion velocity method, a
diffusive flux of vorticity,-vVco, is represented as a convective flux of the local vorticity,
rid00,where the diffusion velocity _d is determined from the relation _a¢o = -vV ¢o.The

" vorticity and its gradient are evaluated using the method by Fishelov [10]. Each vortex is
then convected at the local diffusion velocity to simulate diffusion.

This method has the desirable characteristic that receptacle vortices are not needed, since
there is no exchange of vorticity from one vortex to another. As a result, circulation is con-
served identically. However, upon implementing this method, we found that it yielded ac-
curate results only if the vortices were highly overlapped. For example, if the distance
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between the centers of adjacent vortices is only one-tenth of the core radius (so the vorti-
ces are highly overlapped), reasonable results can be obtained only for short times,
vtl 02 < 1, (v is the viscosity, t is time, and ct is the core size). For longer times, the value
of the vorticity at the core centers is too large, and non-physical wiggles develop in the re-

' gions between vortices. These errors arise even more quickly if the distance between adja-
cent vortices is a single core radius, which is a much more reasonable spacing in terms of

. computational feasibility.

Careful examination of the diffusion velocity method showed that the errors occur because
two important aspec;s of the problem were being omitted. First, the diffusion velocity is
non-solenoidal: V • Ud_ 0. Second, the mathematics of the governing equations require
that, if the circulation of each vortex remains constant as it convects at the diffusion veloc-
ity, then the size of each core must change size according to the local divergence of the
diffusion velocity (see [14] for details). This change of core size is specified by the kine-
matics of the flow field, and can be implemented by solving an additional ordinary differ-
ential equation. Incorporating the expansion of vortices yields the results that no wiggles
arise in the solution field, and that the solution remains accm_te for very long times. Ap-

parently, as vortices become separated, the cores expand just the fight amount to keep the
cores overlapped and, hence, keep the solution smooth. Without core expansion, the solu-
tion rapidly looses smoothness and accuracy as the cores become separated.

We refer to our new technique as the non-solenoidal diffusion velocity method. This meth-
od can be easily incorporated into existing vortex methods. Additionally, the non-solenoi-
dal diffusion velocity method guarantees that circulation is conserved since the circulation
of each vortex never changes. Lastly, the non-solenoidal diffusion velocity method satis-
fies both the dynamics (the diffusion equation) and the kinematics (details associated with
the time-differentiation of the circulation in a reference frame moving at the diffusion ve-
locity).

This method also has far-roaching implications for the simulation of mass diffusion. In
particular, a density field can be represented in terms of small regions of mass with a spec-
ified density distribution, just as a vorticity field is represented in terms of vortices, which
are nothing more than small regions of circulation with a specified vorticity distribution.
In this way, flows involving both mass diffusion and viscous diffusion can be considered,
such as the coating flows described in the Executive Summary.
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Simulation of Incompressible Flows with Variations in Fluid Density

We begin the description of the formulation to simulate flow fields in which motion arises
" as a result of spatial variations in fluid density in a gravitational field. This topic is of inter-

est since submarine wakes can be affected by the combination of gravity and the stratifica-
• tion of the ocean. Recall that the ocean is a stably stratified fluid consisting of layers of

fluid with different densities due to variations of temperature and salinity. The stratifica-
tion is referred to as being stable since, upon being disturbed, the density field will eventu-
ally return to its initial state. The physical mechanism by which the fluid returns to its
initial state is the phenomena commonly referred to as internal waves, which have the
well-known Brunt-Viiis_lii frequency scale. Internal waves are essentially the result of
vorticity which is generated whenever the density gradient is misaligned with the pressure
gradient, which is referred to as baroclinic vorficity generation. The flow induced by the
baroclinieally-generated vorticity returns the fluid to its equilibrium state (in which the
density and pressure gradients are aligned).

We note that the flow being discussed is incompressible even though the fluid density is
not constant. This is due to the fact that the volume of a fluid element does not change with
time, which is the kinematic definition of incompressibility. Even as the volume of a fluid
element remains constant, its density can change as a result of mass diffusion. A signifi-
cant difference between constant density flows and variable density, incompressible flows
is the manner by which vorticity is created. In constant density flows, the only sources of
vorticity are interactions of a viscous fluid with a boundary. In the interior of such flows,
viscosity neither creates nor destroys vorticity, it only re-distributes existing vorticity [2].
As mentioned above, in variable density flows, vorticity can be created in the interior of
the fluid. Thus, incompressible flows with non-constant density are fundamentally differ-
ent from constant density flows.

Three advances were made in the development of a Lagrangian vortex model to simulate
baroclinic flows. First, a new adaption technique was developed to maintain the resolution T_
of the vorticity field. Second, a new formulation of the baroclinic vorticity generation term
in the vorticity equation was derived which does not require that the density gradients be
approximated for fluids in which the density differences are small compared to the average
fluid density. Lastly, convergence characteristics of transient solutions with respect to the
size of vortices were addressed. This last topic has received scant attention in the litera-
ture, with most of the attention being devoted to a different type of convergence. The type
of convergence usually discussed relates to the use of vortices to provide a discrete repre-
sentation of a smooth vorticity field. Convergence in this sense, which has been proven by

o Hald [13], means that as the size of the vortices decreases (keeping their relative overlap
constant), errors (the difference between the true vorticity field and its discrete representa-
tion) decrease. These issues are very important to the development and acceptance of vor-p,

tex methods as useful tools for practical problems.
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As anoverviewof thissection, the following topics aredescribed:

* the governingequationsand vortexmethodbasicsarepresented,includinga description
of the method used to calculate the velocity fieldfrom the vorticity field,

• a new formulationfor the baroclinicvorticitygenerationtermis described,

" • discrete representationsof vorticity fields arediscussed,as relatedto the need for adap-
tion and the newadaptiontechnique,

• several simulationsof a specific flow field arepresentedand compared with previous
simulations, and,

the issue of convergenceof transientsolutionsfor differentcore sizes is discussed.

1. Governing Equations

The flow of interest is assumedto be invi_cidand incompressible.Although the simula-
tions to be shown are two-dimensional,the formulationis developed for three-dimen-
sional flow, the only exception be,ing that the calculation of the baroclinic term is
formulatedfor only two-dimensionalflow.Massdiffusion is assumedto be negligible,so
that if the interface between regions of differentdensity p is initially sharp,it remains
sharpfor all time.Conservationof massof the fluidis given by

Op
0-7+ (_ ° V) p = 0 (1)

where the velocity field is _. The momentumequationis

pLOt+ (_°V)_ = -VP+p_,. (2)

ThefluidpressureisP andthebodyaccelerationis_,whichforthisdiscussionisassumed
tobethedownwardaccelerationduetogravity.Sincethevariationsoffluiddensityinthe
oceanam smallcomparedtotheaveragefluiddensity,thewell-knownBoussinesqap-
proximationcanbeused,inwhichthedensityisapproximatedasp(,t)= po+ p'(_),
wherepoisaconstantreferencedensity,andp'isalocaldeviationfromtheaverage.Sub-
stituting p = p. + p', into Eq. (2),

D_
o (p. + p') _ : - VP + p._ + p'_. (3)

Applying the assumptionof a small densityvariations,IP'[<<Po,to only the left-handside
" of this equationyields the approximateBoussinesqmomentumequation,

D_
po_-y = - VP + p°_ + p'_,. (4)
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Rather than solving the above equation, we wish to solve its vorticity form, since it has a
very simple Lagrangian interpretationwhich will be discussed in the next section. To ob-
tain the vorticity form of the Euler equation, the curl operatoris applied to the entire equa-
tion, and using the definition of vorticity, _ = V x _, yields

= (8.V)_+Vx (P'_')/Po. (s)

The curl of the terms - VP . _ is zero since the curl of the gradient of a scalar_(P)is zero
identically, as is the curl of the constant gravity vector. Noting that for a vector 81 with in-
finitesinj,al length, on which every point moves at the local fluid velocity, the time evolu-
tion of 81 is [2],

dSl
- (81. V) _.dt

Since this is the same form as Eq. (5), except for the last term in Eq. (5), the physical inter-
pretation of Eq. (5) is that the vorticity vector evolves as a fluid vector with a source term
which is proportional to V x (p'_,) /_'o.

If we had not approximated the density variations, the right-hand side of the above equa-
tion would be -V x (VP/p) = Vp x VP/p 2 . A physical interpretation of how the cross
product of the density and pressure gradients can create vorticity is shown in Figure 1. We
note that, with regard to baroclinic vorticity generation, the small-density variation ap-
proximation is equivalent to approximating the pressure gradient as being hydrostatic; i.e.,
vp :

The benefit of the small density variation approximation is that the baroclinic generation
of vorticity can be evaluated without having to know the pressure. Only knowledge of the
density field, which is known, is required to evaluate V x (p'_)/_. Tryggvason [22]
shows that the small density variation approximation is equivalent to the limit of a large
Froude number and a small Atwood number.

The only remaining issue is how to determine the velocity field for use in the vorticity
equation. In principle, the velocity field is determined from the coupled equations,

Ve_ = 0 and VX_ =

where it is seen that the velocity is essentially determined by the inverse operation of the
curl operator, subject to the constraint that the velocity field is solenoidal. A general solu-

- tion to this problem, with velocity boundary conditions _/,, was derived in [24] as,
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FigureI. Generationofvorticitywhen pressuregradientsVP anddensity
gradientsVp arcnotaligned.A fluidelementisshownwhichhas
adensitygradientalongitslongestdimension,asindicatedbythe
shading,where darkershadingindicatesa higherdensity.Ifa
pressuregradientisapplieduniformlyasshown,thedisplacement
of thelessdensefluidwillbe greater,owing to itssmaller
moment ofinertia.Thistypeofmotioninvolvesarotationofthe
fluidelementaboutitscenterofmass,asshown.From another
pointofview,considerthatthecenterofmassisoffsetfromthe
centroidbysome distanceinthedirectionofthedensitygradient,
asshown.Alsorecallthatpressureactsthroughthecentroid,but

' thefluidelementrotatesaboutthecenterofmass.Thus,atorque
isgeneratedon thefluidelementifthepressuregradientisnot
alignedwiththelinebetweenthecentroidandthecenterofmass.
Ineithercase,thefluidelementrotates,indicatingthatvorticityis
generated.

(_)_d f_(_') X (_-_')= dV
J d
v (6)

" [ut,(xl, ') "n (-rt,')] (_:-xb')+8 (.xt,') x ut,(-_l,') x (-_--rb') dS(._b, )
S

whereV isthevolumeofthedomain,S istheboundaryofthedomain,locationson the

boundaryS aredenotedasxl,,andtheunitnormalvectorontheboundaryisft.The coef-

ficient_d is2X fortwo dimensions(d=2),and 41rforthreedimensions(d=3).The two
termsoftheintegrandoftheboundaryintegralrepresenttheinfluenceofthenormalve-

- locityboundaryconditionandthetangentialvelocityboundarycondition,respectively.

Eq.(6)allowsthevelocityfieldtobecalculatedfromavorticityfieldandvelocitybound-t
aryconditions,buttheusermustbe warnedthatarbitraryvorticityfieldsand velocity
boundaryconditionsdonot,ingeneral,compriseawell-posedmathematicalproblem.For

example,Stokestheoremshowsthatthereisa relationshipbetweena vorticityfieldand
thetangentialvelocityboundarycondition,
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' One interpretationof this relationship, for two-dimensions, is that the area integral of the

vorticity must equal the line integral of the tangential velocity on the boundary. For exam-
ple, if the tangential velocity is zero on the entire boundary, then the area integral of the
vorticity field must be zero. If Stokes' theorem is not satisfied, then the problem is not
well-posed.

The area integral of the vorticity is referred to as the circulation, and is used extensively in
the formulation of Lagrangian vortex methods, as discussed next.

2. Lagrangian Vortex Model Formulation

The basis for Lagrangian vortex methods was first described by Helmholtz in 1858. Helm-
holtz' most important finding was that inviscid vorticity transport is equivalent to the
transport of a fluid vector with infinitesimal length, as alluded to previously. This remark-

able finding can be derived by considerin_ a differential fluid volume 8V that is a truncat-
ed cylinder with cross-sectional area dA and outward point normal unit vector _, and
differential length 81, for which 8 V = 8A • 81. Every point in the volume is assumed to
convect at the local fluid velocity, i.e.,

= (8)dt

Kinematical considerations (see [2]) indicate that the time-rate-of-change of the cross-sec-
tional area element 8A is, in indicial notation,

d_A i _uj _uj

- _Ai-_j-SAJ-_i (9)
dt

These relations are used in the time-differentiation of the circulation as in the following
equations.

18



d
if}" = + (°i dtk_ dt _xj JnidA +

A A A

= uj_-_ in idA + -+ :#
A A (lO)

I I=
A A

_rr ]-jLar+ - ofzdA
A

Forincompressible flows, V ° _ -- 0, so that

A A

Substituting the vorticity-form of the Euler equations Eq. (5) into Eq. (11) yields

d__o_dA=_[Vx(p'_)lp°]oSdA (12)
A A

This equation indicates thatas a region of vorticityconvects at the local fluid velocity,the
time-rate-of-change of circulation is given by the area integral of the baroclinic source
term. In practice,this means that the Euler equations arcsatisfied if vorticesare convectcd
at the local fluid velocity while the circulationchanges accordingto the area integralof the
baroclinic source term. This is the principalbasis for vortex methods. In previousmethods
(e.g., [1]), however, the curl operationin the baroclinic term is performed as

Vp'
Vx (p'_) / p, - . (13)

P°

This expressionrequires a representationfor V p', which typically requiressome type of
" approximation; e.g., Vp' (xi) = (P' (xi+ l) -P' (xi-1))/('_i+ 1--_:i-1) " Models that

use this approachhave been developedpreviously.However,this approximationis often
, inaccurate,especially if the densityfieldshave a very small diffusivity,as inthe case of in-

terest.

A formulation that depends only on p' itself can be obtained by applying Stokes' theorem
Eq. (7) to the right-hand side of Eq. (12) to yield
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dtJ "_dA = (P'_') / Po "d_. 04)
A

" This equationallows the time-rate-of-changeof circulationto be calculatedby performing
a line integral, whichgenerally can be performedmoreaccurately than approximatinga

, derivative,then integratingover an area,as requiredin the usual formulation.Moreover,
thisnew formulationallows the simpleinterpretationthat circulationis generatedwhenev-
erthe integration path has a componentparallel to the gravitationalvector.Details of how
to implement this formulation dependon how the vorticity field is discretized,which is
discussednext.

2.1 Discrete Representation of VorticityFields

Two importantaspectsof implementinga Lagrangianvortex method are:1) smooth vor-
ticity fields must be accuratelyrepresented usingfinite regionsof vorticity,and2) the rep-
resentationof the vorticitymustremainaccuratefor long times.

The most common discretizationof vorticity fields was proposedby Chorin[7]. He pro-
posed thatfinite regionsof vorticity be assumedto have a circularshape andto have a ra-
diaUysymmetricdistributionof vorticity,such as shown in Figure2. Chorincalled these
regions vortex"blobs," andthe namehas endured.The entireblob is assumedto convect
at the velocity of the blobcenter, and the blob does not change shape as it convects, nor
does the shape of the vorticitydistributionchange.This is anapproximationsince a region
of fluidsubjectedto shear will, in fact,change shape.Adaptionmethods can deal with this
matter,as discussedbelow, and are moredesirablethan havingto evaluatethe velocity at
every point in the field.

The core radiusfor blobs mustbe specifed, whichis analogous to gridspacingin finiteel-
ement and finite differencemethods. Similarly, a vortieity distributionmust be specified
for eachblob, whichis analogousto interpolationfunctionsused in finitedifferencemeth-
ods orbasis functionsin finite elementmethods.

Chorinaccuratelysimulatedflow arounda cylinderusing this approach,butdidnotevalu-
ate the accuracy of the blob assumption.Subsequently,severalinvestigatorsshowed that
the blob approachis rigorouslyjustifiable.Hald [13] provedthat the trajectories of the
blobs representthe exact trajectoriesof particlesas the numberof blobs increases.Beale
and Majda[3, 4] then showed that vortexblobs areconvergentin the sense that decreas-
ingly smallperturbationsin the locationsof vortexblobs (whichrepresentperturbationsin
the vorticity field) lead to decreasinglysmall perturbationsin the velocity field.Q

Before proceeding,a briefdescriptionis presentedto show how vortex blobs areused to
- represent a vorticity field, and how the vorticity field is used to obtain the velocity field.

Consider the representation of a circular vortex sheet that forms between fluids of different
density. A detailed view of this representation is shown in Figure 3. We seek to represent
the sheet as having a vorticity value of unity everywhere on the sheet. Each blob is as-
sumed to have a core size o of approximately 0.1R, where R is the radius of the circle.
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Figure 3 Vortex blob representation of the vortex sheet on the interface
, between two fluids: a circular region of one fluid in an infinite domain

of another fluid.
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This core size is taken to provide reasonable resolution with respect to the size of the cir-
cle. Each blob is also assumed to have a Gaussian vorticity distribution,

.
_i (_, t) = -_--e (15)

where the subscript i denotes a particularvortex, xi is the center of the i-th vortex, and F i
is the circulation of the i-th vortex. The actual vorticity field is obtained by superposing
the Gaussian fields of the individual vortices,

(._, t) = i=_--------exo2 . (16)

The important feature is that the accuracy of the representation of any vorticity field is de-
termined by how the individual vorticity distributions of blobs overlap one another. For
the desired representation of a circular vortex sheet with vorticity of unity, Figure 4 shows
the vorticity distribution on a circular arc between blob centers as a function of the dis-
tance between blob centers. If the cores are not sufficiently overlapped, then the vorticity
field between blobs contains "wiggles" that differ from the desired value of unity. Ghoni-
em, et al. [12] indicate that if the ratio of the distance between blob centers to that of the
core size is less than unity, then at least second order accuracy in the vorticity field is ob-
tained.

A significant problem in vortex methods is to keep the vortices overlapped throughout the
duration of a simulation. The principal reason that this difficulty arises is that, as men-
tioned previously, the vortex cores are assumed to remain circular, when in fact, the flow
can distort them to a non-circular shapel. For example, cores that deform to become ellip-
tical in shape could remain overlapped, whereas circular cores would become separated,
resulting in non-physical wiggles. An example of this is described in [14].

Several approaches have been attempted. Anderson [ 1] used an initial configuration of
vortices that were overlapped to such a large extent that the cores remain overlapped for a
considerable time. However, at some time, the cores become separated, thus, the initial
configuration determines the allowable simulation time, which is not desirable. Schemes
to adapt the vortex field so as to maintain accuracy for extended periods of time have also
been developed previously (e.g., Meng [15]), but they do not preserve symmetry when it
exists. The basic idea of these previous adaption schemes is that new vortices axe inserted.¢,

between vortices which have become separated. Each new vortex is given 1/3 of the circu-
lation of the adjacent vortices. For example, consider two "parent" vortices that have
equal circulations of unity, and have become separated too far to maintain accuracy. Adap-
tion consists of inserting a new "child" vortex between the two "parent" vortices. Each

1. Thereasonthatcoresareassumedto remaincircularis thatitis muchmoredifficultto calculate
thevelocityfieldofa non-circularvortexthana circularvortex.
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Figure 4 Discrete representations of a circular vortex sheet with uniform vorticity
using collections of discrete vortices: a) 60 vortices, b) 30, c) 15. The main

, figure d) shows the continuous vorticity field in the regions between vortex
centers for the three different numbers of vortices. Since the desired
vorticity distribution is unity everywhere on the interface, only the 60
vortex configuration is acceptable. Figure (e) shows a close-up view of the
30 vortex configuration, in which the variation in vorticity between the
vortex centers is due to lack of core overlap.
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"parent" contributes a circulation of 1/3 to the "child," so that the "parents" and "child"
each have a circulation of 2/3. This algorithm assures conservation of circulation and a re-
gion of uniform circulation remains uniform. However, this algorithm does not maintain a
region of uniform circulation if contiguous intervals require adaption. Similarly, the sim-

" pie adaption algorithm does not preserve symmetry, as shown in Figure 5.

To address these issues, we have developed a new adaption algorithm that is monotonic,4

and preserves symmetry. In the new adaption algorithm, contiguous intervals that require
adaption are considered as a coupled set, rather than separately as in the simple adaption
scheme. As demonstrated in Figure 5, treating one interval at a time leads to loss of sym-
metry (when it exists). It is assumed thateach "parent" vortex in a contiguous interval that
requires adaption will contribute the same fraction f of its circulation r i to new "child"
vortices, and the "child" vortices will have circulations Fc, i equal to the arithmetic mean
of its adjacent "parent" vortices. In equation form, the new circulation values of parent
vortices is

r i = f F i (17)

and the circulation of "child" vortices is

1
Fc, i = _ (F'i + F' i+ 1) (18)

where the i-th child lies at the midpoint between the i-th and i+l-th "parents." Requiring
that the total amount of circulation on the interval remain unchanged yields a value forf

M

f = if I , (19)
M IM-I

r, + (r, +r, +
i=1 i=1

where M is the number of vortices on a contiguous interval to be adapted. When the inter-
val is symmetric in circulation, the denominator equals zero. In this case, only half the in-
terval need be considered.

A limitation of this adaption scheme is associated with the assumption that each original
vortex contributes the same fraction of its circulation to the new vortices. Essentially, the

- stretching on each interval is assumed to be uniform. Thus, the vormx field should be
checked for adaption often so that the locally uniform stretching assumption is appropri-

, ate. As indicated by the simplicity of the algorithm, it is computationally inexpensive, so
we typically adapt the field (if necessary) at each time step. Further details of the adaption
process, such as how the number of vortices increases with time are described below.
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Figure 5 Example of how a simple adaption scheme is non-monotonic and does
. not preserve symmetry. Intervals between vortices are considered

separately, and initially, each vortex on an interval to be adapted has a
circulation of 9. Upon adaption, each existing vortex contributes 1/3 of

. its circulation to the newly inserted vortex. So, on the first interval, the
circulations are 6,6,6. The circulations from subsequent adaption are
shown to result in nonuniform distributions of circulation (non-
monotonic), and the initial symmetry is lost.
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To summarizethis section, it was shownthatthe spacing betweenadjacentvorticesmust
be less thanorequal the core radiiof the vorticesin orderto avoidnon-physicalrepresen-
tationsof a vorticity field. In orderto maintainthis overlapas the field evolves, a new
monotonic,symmetrypreserving,circulationconservingadaptionscheme was developed.

- This adaptionscheme allows essentiallyunlimited simulationtimes and thus, allows the
examinationof previouslyunexplorednonlinearflow regimes, as describednext.

2.2 .TheVortex Method for Baroclinic Flows

Theprevious considerationswereused to formulatea vortexmodel to describethe motion
arisingfrom an unstableconfigurationof two fluids2 with different,non-diffusingdensi-
ties in a gravityfield. Viscous diffusionof vorticitycould be includedusing the non-sole-
noidal diffusion velocity method (we are presently pursuingthis), but the focus of this
formulationis the baroclinicgenerationof vorticity.Thus, each fluidis assumedto be in-
viscid.

An essential feature of this type of flow is that the only location wherenon-zerovorticity
exists is on the interfacebetween the two fluids.This is because the only locationswhere
vordcity is generatedis atlocationswherethedensitygradientis non-zero,all of whichlie
on the interfacebetween the two fluids.

Another importantfeatureof this type of flow is that, for the assumptionsin effect, the
vorticityremainson the interface between the two fluidsfor all time. This simplification
occurssince, in the absenceof mass diffusionandviscous diffusion,the density fieldsand
the vorticity fieldall convect at the local fluidvelocity.Thus,keeping trackingof the vor-
ticity implicitlyspecifiesthe locationof the densityfields. Accordingly,the densitydiffer-
ence acrosseach vortex is always the same.This allows the effects of densityfields to be
knownwithoutexplicitly solving the conservationof massequation.

An example of a discrete vortex representationof the interfacebetween two fluids is
shown in Figure3. The interfaceis discretizedinto arc lengths A_, and a vortex exists at
the centerof each arc interval.Circulationis generatedoneach interval, andis endowedto
the vortexlying onthat interval (even thougha vortexcan extendbeyond the boundsof an
arc length interval, which always occurs as a result of the necessaryconditionthat adja-
cent vortices overlapone another).

A simulationconsists of calculatingthe motionof each vortexdue to the velocity induced
by all the othervortices, and the time evolutionof the circulationof each vortexdue to ba-
roclinicgenerationof vorticity.The motionof the i-th vortexis

2. Thevortexmethoddescribedhereisnotrestrictedtotheconsiderationofonly two rinds.Inprin-

ciple, asmanyfluidsasdesiredcanbeconsidered,althoughcomplexintersectionsofseveralfluids
. wouldpresentconsiderabledifficultysince thedensitydifferenceatthe intersectionpointof several

fluidsis not well-defined.Sucha situationmightbe morereadilydescribedby representingeachre-
gion of differentdensityasa collection of blobsthathaveamassanda densitydistribution.The den-
sitygradientcouldthenbe calculatedusingthemethod developedby Fishelov [10],/.e., differentiate
the corefunctionof each blob,andsuperposethem to representthe derivative.This is the approach
used to calculatevorticityderivatives in the non-solenoidaldiffusionvelocitymethod.
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d--i= a (hi). (2o)

The velocity at an arbitrarypoint (including the vortex locations) is obtained from Eq. (6)
" and the vorticity distribution specified in Eq. (15) (with zero velocity boundary conditions

at infinity for simplicity),

Fi (t) _, el_(,_) = 1 -e . (21)

The time-rate-of-change of the circulation for each vortex is,

dF.
1 +

d-"t"= [ (p') - (P')'] _ "A_/po (22)

where A} is the previously mentioned discrete arc length along the interface. This expres-
sion is an approximation to the closed line integral around A}, with the value of p' being
p'+ on one side of the interface, and p" on the other side, the sign depending on the cho-
sen direction of the integration path. Since the interface is assumed to have zero thickness,
there are no contributions from the integration paths that are perpendicular to the interface
(see Figure 3).

With regard to evaluating Eq. (22), the density difference across the interface is constant,
so the only portion of the fight-hand side that varies with time is the orientation of the lo-
cal arc length A_, with respect to the gravitational vector, as indicated by the vector dot
product of A_ and _. ....

To non-dimensionalize these equations, we use the characteristic length scale, R, of the
disturbance to the density fields to define the dimensionless quantities,

.t*

x = MR A_* = AMR. (23)

,/The density variation is non-dimensional_zed using the reference density, (p') * = p po,
and the dimensionless gravity vector is _ =_/[_1. Using the_,_definitions in Eq. (22) al-
lows the dimen_sionless time l_o_be defined ast'--- t(R/l_l)-'". The dimensionless ve-
locity is then _ = _ (1_1R)-"'.

3. Simulations

.4 The evolution of an initially circular (two-dimensional) region of lower density fluid with-
in an infinite domain of higher density fluid is considered (see Figure 6). Recalling that the
objective of this LDRD work was to develop models for submarine wakes and their inter-
action with the ocean surface, it may not be clear how the motion of a bubble is relevant.
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Figure 6 Two-dimensional, circular bubble of fluid within an infinite domain
of higher density fluid.

The relevance is that baroclinic vordcity generation is important to both types of flows.
For example, as the trailing vortices from a diving submarine convect upward, they dis-
turb the stable stratification of the ocean. That is, the density field is perturbed, and vortic-
ity is generated baroclinically to return the fluid to its equilibrium state. The
baroclinically-generated vorticity will also reduce the upward motion of the trailing vorti-
ces. The evolution of a bubble depends entirely on baroclinic vorticity generation. Thus, if
the bubble flow can be simulated accurately, then the numerical model of baroclinic vor-
ticity generation can be applied to the naval applications of interest. Further, byconsider-
ing bubbles, there is an opportunity to compare the model with previous investigations of
bubble phenomena, (e.g., Collins [6] and Anderson [1]).

Returning to the description of bubble flow, the two fluids are assumed to be non-diffusive
and inviscid, as mentioned previously. Additionally, surface tension effects are also as-
sumed to be negligible 3. The reference density for the problem at hand is taken to be the
density of the fluid at infinity, so that the dimensionless density perturbation for the heavi-
er fluid is P" = 0. For the lower density fluid in the bubble, P = 0.1 is specified. The

radius of the initial circle is specified as R = I m, and the dimensionless core radius of
each vortex is specified as a = 0.1 for the simulations. Some smaller cores are consid-
er.ed and will be ncted as needed. Gravity is assumed to be in the downward direction

= -3, and I_[ = 10 m/s2. These are the same specifications used by Anderson [1],
thus allowing a comparison of the present, new formulation with a previous result.

Our numerical simulation of the bubble evolution is shown in Figure 7 in which the "cap"
structure becomes apparent at the later times shown. To the best of our knowledge, this
structure has not been resolved in previous numerical simulations. Two notable geometric

3. Surfacetensioneffectscanalsobeimplementedinvortexmethods.Somepreviouseffortsinthis
areaareby Tryggvasson[23]andZuftria[25].AnewformulationforsurfacetensionbyBrackbiU,
etal. [5]appearstoprovidean opportunityfora greatlyimprovedapproachwhereinsurfacetension
canbe readilyincorpora_lasa sourceof circulationataninterface.
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, Figure 7 Numerical simulation of the evolution of a bubble of lower density
fluid in an infinite region of higher density fluid. The formation of the
"cap" at later times is evident. Our new vortex adaption technique

. allowed this calculation to be carded out to later times that were
unaccessible to previous investigations. The radius of the initial
interface is 1.0, and the core radii are 0.1.
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Figure 8 The mechanismfor loss of top-bottomsymmetry on an
initially circular bubble. The vorticity at 90-degree
intervals is equal in magnitudebut differentin direction,
as indicated by the rotation directions. The interface
regionabove A-A is pushedupwardandradiallyoutward,
whereas the interface below B-B is pushed upwardand
radially inward, which destroys the initial symmetry of
the system,andleads to furthernonlinearities.

features of the bubble at late-times are the "cap" at the top of the bubble,and the highly
mixed regionbeneath the "cap." These features were _Jso observed in an experimentby
Collins [6] to investigate the evolution of a two-_Amensio_lalbubbleusing a Hele-Shaw-
type apparatus.

The solution shown in Figure7 was calc_lated using the new adaptiontechnique. The
adaptionwas specifiedto maintaino/As < 2.5 where As is the spacingbetweenadjacent
cores, and o is the core radius.Recallfromthe earlierexaminationof vortexspacing,that
good resolutionof a field requiresthat o/As > 1. Thus, the use of o/As < 2.5 as an adap-
tion criterlonshouldyield a very smooth solution.

A naturalquestion is, why does the bubble interface becomes non-circular7Eq. (22)
shows that circulationis generatedwheneverthe interface tangentvector has a vertical
component (since gravity is vertical). Thus, since the tangentvector of the interface is
nonuniform,the vorticitygenerationon the interfaceis nonuniformalongthe bubbleinter-
face. This nonuniformityresults in the immediateloss of circularsymmetry(see Figure8)
and also is the basis forthe nonlinearaspects of the bubbleevolution.

Anotherinteresting aspectof the bubbleevolution is the increase in the length of the inter-
face with time. As shown in Figure9, the interfacelength is initially 2_r,andincreasesby
almosta factorof ten in anelapseddimensionlesstimeof 7. The transientlength for adap-
tion criteriaof o/As= 1.0, 1.5, 2.0, and 2.5 arealso shown in orderto iUustratethe effect
of vortexspacing. The numberof vorticeschangeswithtime in each of these calculations,
as shown in Figure 10.As the interfacelength increases,more vortices areneededin order
to maintainthe specified coreoverlap.
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Figure 9 Increase in the length of the bubble interface versus time for solutions
with adaption criteria of o/As = 1.0, 1.5, 2.0, 2.5. The pre.vious
simulation of this problem by Anderson [1] was terminated at t = 3,
and is indisti,nguishable fi'om the present solutions for that time
interval. For tT> 3, however, the interface length increases much more
rapidly, as shown, which indicates the onset of large nonlinearities.
Differences in the interface lengths for the different spacings are
believed to be a manifestation of the inviscid equations which
incessantly generate smaller length scales for smaller vortex spacings.

31



2000.0

500.0

2.0 4.0 6.0 8.0
Dimensionless Time

Figure 10 Increase in the number of vortices due to adaption for different adaption
criteria.

From another point of view, the shape of the bubble at a dimensionless time of 6 is shown
in Figure 11, for a/As= 1, 1.5, 2.0, and 2.5. Again, the shapes are similar, but clearly not
the same. The result for o/As = 0.5 is also shown to emphasize the need to maintain a/As >
1, as was found earlier to be a constraint to ensure smooth representation of the vorticity
field.

" One might hope that for vortex spacings less than some particular small value, the tran-
sient lengths and shapes would be independent ofvortex spacing. However, as mentioned

, earlier, the inviscid equations are believed to generate length scales as small as the numer-
ical resolution allows. Thus, smaller scales are generated whenever the spacing between
vortices becomes smaller. Thus, different solutions are obtained for different spacings be-
cause there is increased resolution for smaller vortex spacing, and as a result, "conver-
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Figure 11 Bubble geometry at t = 6 for different adaption criteria as shown.
The smoothness of the shapes clearly increases as the distance
between vortices decreases.

gence" in a general sense does not occur. Before addressing this issue further, we examine
Anderson's previously published results for comparison with our solution.

Anderson's simulation [1] was terminated at a dimensionless time of 3, and is reproduced
in Figure 12. The number of vortices is constant for this calculation, so the adaption algo-
rithm was not used, although the new formulation for the baroclinic term was used. This

" solution agrees in terms of the interface shape and length with the results published by
Anderson, indicating that the new formulation of the baroclinic source term is appropriate.

, It is also noted that the adapted calculations discussed previously agr.ee with the overall
shape and transient length of the interface in Anderson's solution for ct = 0.1.
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Figure 12 Reproductionof calculationsby Anderson[1] to simulatethe evolution
of a bubble using a fixed numberof vortices. The lines formed by
connectingthe corecentersindicatethe interfaceshape,and the images.-
of the vortex cores allow the extent,of core overlapto be examined.
Thereis insufficientcore overlapat t = 3. The initial bubbleradiusis
1.0, with core radiiof 0.1.
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Figure 13 Continuation of solution in Figure 12 showing the consequences of
faiii_g to adapt the solution for late times: a non-physical solution
at t = 5. The interface is shown to cross itself, which Is non-
physical and is the result of the loss of core overlap.

These comparisons indicate that the new baroclinic formulation and the adaption algo-
rithm provide accurate results, based on previous calculations, and allow the calculations
to be carried out further than previous results.

To demonstrate the loss of accuracy that occurs if adaption is not performed, Anderson's
solution was continued in time without adaption. Note that, in the reproduction of Ander-
son's solution, the vortices are initially overlapped considerably more than is necessary.
This is to account for increasing separation between vortices as the interface stretches. In
fact, the arc length of the interface increases by approximately 2.5 over the dimensionless
time interval from 0 to 3. To account for this, Anderson specified the initial core overlap to
be o/As *,3, or approximately 3 times more than the amount of overlap required for accu-

. racy. Ostensibly, the factor of 3 is based on the finding that interface increased by approx-
imately 2.5, plus a little more overlap for good measure. However, the interface stretches
non-uniformly, so that at a time of 3, some of the vortices, namely those at the top of the

- bubble, are no longer overlapped. As a result, continuing the solution past t* = 3 results in
a catastrophic loss of accuracy, as shown in Figure 13, where the cores become further
separated and the interface is no longer smooth. The use of our adaption technique pre-
vents this loss of accuracy.
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a) o = 0.05 b) a = 0.1

Figure 14 Bubble shapes at t* = 3 for core radii of a) 0.05 and b) 0.1, with adaption
criteria of 2.5. The solution using the smaller core size has many more
small-scale features than the solution using the larger core size. Similar
findings are also reportedby Rottman and Stansby [20].

The effect of different core sizes is illustrated by simulating the bubble evolution with a =
0.05 (half the previous core size), and an adaption criteriaof a/As = 2.5. The shape of the
bubble at t* = 3 is shown in Figure 14 for two core sizes: ff = 0.05, and a = 0.1. Although
the only difference between the two solutions is the size of the core, there are many more
small-scale features in the solution for a = 0.05. This result is believed to be due to the I

generation of an entire spectrum of length scales by the inviscid Euler equations. The
spectrum of length scales is believed to include infinitesimal length scales, which cannot
be resolved in numerical solutions. As the resolution of a numerical solution increases,
more and more small-scale features will be observed if the numerical method is not diffu-
sive. Since vortex methods are not diffusive, this effect is clearly observed, whereas this
would not be observed in methods that include artificial diffusion, since the diffusion
would attenuatethe small length scale features. Thus, in order to obtain a converged, real-
istic solution, the effects of real viscosity must be included. Nonetheless, the comparison
of the two shapes in Figure 14 conveys the sense that a solution for a particular core size
provides at least a macroscopic representation, so long as details of the small-scale struc-
ture are not of interest.
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4. Summary

A new vortex method was presented which allows the accurate simulation of inviscid,
baroclinic flows. Two features of the method are new. First, a new formulation for the pro-

, duction of circulation is used which has the advantage that the gradient of the density field
is not required; only the density itself is needed, thus eliminating one level of approxima-
tion in the model. To assess the accuracy of the new baroclinic formulation, the evolution
of a bubble of lower density fluid was simulated and compared with a previously pub-
lished simulation by Anderson. The overall shapes and lengths of the bubble interface
were in good agreement, thus indicating that the new formulation is valid.

Second, a new adaption algorithm was formulated which conserves circulation, maintains
monotonic_, and preserves symmetry. This adaption algorithm allows solutions to be
performed to essentially arbitrarytimes without loss of core overlap, whereas previously
results had to be terminated at relatively short times, since an effective adaption model
was not available. T,_e ability to simulate long times is desirable since many practice
problems requirelong simulation times. Adapted short-time solutions of the bubble evolu-
tion were compared with previous solutions, and were in good agreement, indicating that
the adaption did not introduce any new perturbations or inaccuracies. Continuation of
these solutions to late times showed that the flow becomes highly nonlinear, as indicated
by the complex shape of the bubble, and a rapid increase in the length of the bubble inter-
face, which is indicative of chaotic mixing. Thus, the adaption algorithm allows simula-
tions of mixing phenomena and internal wave phenomena at the times that are of interest
for several applications beyond the naval applications that motivated this work.

Convergence of the solutions with respect to spacing of vortices and size of vortices was
also considered, since it is important to be able to demonstrate convergence of numerical
methods. The inviscid Euler equations are believed to generate a spectrum of length-
scales, including infinitesimal scales, which cannot be resolved using numerical methods,
due to the fact that all numerical methods have finite resolution. Thus, in a sense, conver-

gence of numerical solutions to the Euler equations is not a well-posed issue. Nonetheless,
for simulations using a constant core size, solutions appear to converge as the spacing be-
tween vortices is reduced. For decreasing sizes of vortices (with fixed ratio of vortex spac-
ing to core size), the shapes and interface length of the bubble varied considerably. This
would not occur in simulations using many grid-based methods which require artificial
viscosity, which attenuates small scale variations. Lagrangian vol_ex methods, on the oth-
er hand, do not require artificial viscosity, so the generation of small-scales is readily ap-
parent. These findings provide further support for the view that the Euler equations
generate infinitesimal scales.

" The development of this inviscid model, in conjunction with the method to simulate vis-
cous diffusion (also developed for this LDRD), provides a unique, accurate, gridless meth-
od to simulate finite Reynolds number flows. Efforts are underway to examine the
convergence characteristics of the viscous, baroclinic model, where it is believed that con-
verged solutions (with respect to core size and core spacing) can be readily obtained. After
the convergence of this method is demonstrated, vortex methods will be closer than ever
to being used to simulate flows for practical applications.
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