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Abstract

The objective of the “Hydrodynamics of Maneuvering Bodies” LDRD project was to de-
velop a Lagrangian, vorticity-based numerical simulation of the fluid dynamics associated
with a maneuvering submarine. Three major tasks were completed. First, a vortex model
to simulate the wake behind a maneuvering submarine was completed, assuming the flow
to be inviscid and of constant density. Several simulations were performed for a dive ma-
neuver, each requiring less than 20 cpu seconds on a workstation. The technical details of
the model and the simulations are described in a separate document, but are reviewed
herein. Second, a gridless method to simulate diffusion processes was developed that has
significant advantages over previous Lagrangian diffusion models. In this model, viscous
diffusion of vorticity is represented by moving vortices at a diffusion velocity, and ex-
panding the vortices as specified by the kinematics for a compressible velocity field. This
work has also been documented previously, and is only reviewed herein. The third major
task completed was the development of a vortex model to describe inviscid internal wave
phenomena, and is the focus of this document. Internal wave phenomena in the stratified
ocean can affect an evolving wake, and thus must be considered for naval applications.
. The vortex model for internal wave phenomena includes a new formulation for the gener-
ation of vorticity due to fluid density variations, and a vortex adaption algorithm that al-
lows solutions to be carried to much longer times than previous investigations. Since
many practical problems require long-time solutions, this new adaption algorithm is a sig-
nificant step toward making vortex methods applicable to practical problems. Several sim-
ulations are described and compared with previous results to validate and show the
advantages of the new model. An overview of this project is also included.
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Executive Summary

Several issues associated with the evolution of submarine wakes are of considerable inter-
est to the naval community. Two areas of interest are the detection of others’ submarines,
and stealth operation of our own. Accordingly, there is a strong interest in developing nu-
merical simulation capabilities to gain a better understanding of the complex hydrody-
namic evolution of submarine wakes. With this motivation, and with the naval community
in mind as a potential customer, a gridless, vorticity-based model was developed as part of
the LDRD project entitled “The Hydrodynamics of Maneuvering Bodies” (FY 92 and 93).

The reason that a vorticity-based method was proposed and implemented is that vortex
methods offer the possibility of performing the simulations of interest where conventional
numerical methods (e.g., finite element or finite difference methods) are not feasible . Our
success in developing such a model strongly suggests that vortex methods hold promise in
this area. A further indication of the promise of vortex methods is that we are now aware
that a naval research laboratory is exploring this approach with university faculty.

Vortex methods are significantly less well-developed than conventional finite element and
finite difference methods. Thus, there is a wide range of areas that need to be addressed in
the development of vortex methods. The naval community has focused much of its efforts
on agglomeration methods and implemention of vortex methods on massively parallel
computers. Our focus is both more applied and more fundamental, and complementary to
the naval effort. It is more applied in the sense that we implemented a model to describe
the evolution of the wake behind an actual submarine during a realistic maneuver [21],
which to the best of our knowledge has not been accomplished elsewhere. By necessity,
several simplifying assumptions were used in the model. Notably, the vorticity generation
as a result of density variations in the ocean (variations in salinity and temperature) was
omitted, as were the effects of fluid viscosity. Encouraged by the short execution times of
the simplified model (less than 20 seconds on a Sun SPARC workstation), more funda-
mental efforts were undertaken to include vorticity generation and viscous effects for in-
clusion in the submarine model.

As a result of those efforts, a new viscous diffusion model, referred to as the non-solenoi-
dal diffusion velocity method, was developed. This work is described in [14], has been
presented at a recent American Physical Society meeting, and has been submitted to a ref-
ereed technical journal. Unlike previous gridless diffusion methods, the non-solenoidal
diffusion velocity method can actually be used to solve diffusion equations, not just to add
a secondary diffusive effect to flow fields. Thus, the non-solenoidal diffusion velocity
method can be applied in a wide variety of other applications in which mass diffusion is
readily described, in addition to diffusion of vorticity.

A new formulation to include vorticity generation was also developed, including a new
vortex adaption algorithm that conserves circulation, ensures monotonicity, and preserves
symmetry. The vorticity generation model and vortex adaption algorithm are described in
detail in this report.



Although we have not yet obtained funding from the naval community (largely as a result
of decreasing naval budgets), the accomplishments of this LDRD have already had signif-
icant impact beyond meeting the goals of the LDRD. As a direct result of our accomplish-
ments, vortex methods are now more applicable to practical problems than ever before.
Accordingly, we will host a workshop (Feb. 1995) on the use of vortex methods in engi-
neering problems. Invited participants will include staff from academia, industry, and oth-
er national laboratories.

Additionally, new research programs have been initiated to further advance vortex meth-
ods beyond existing fluid dynamics capabilities. One area of interest is in coating flows,
such as those used to manufacture photographic film, porous membranes, special coatings
for glass, and the filling of casting molds. A common characteristic of these flows is that
complex free surface phenomena are important to obtaining a defect-free product. The
gridless nature of vortex methods is a natural approach to treat free surface phenomena (as
discussed in this report), and thus vortex methods are being developed for these applica-
tions. Another area of interest is the simulation of combustion processes. Toward this end,
we have established contacts with staff at the Combustion Research Facility that have a
long history of outstanding contributions in vortex dynamics. Additionally, it appears that
ongoing work in the area of pool fire simulation and smoke transport could benefit signifi-
cantly from the advances made in this LDRD project. Thus, this LDRD has not only pro-
vided capabilities for the intended naval community, but is the basis for several new
research and application programs.
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Hydrodynamics of Maneuvering Submarines: LDRD Project Overview

The objective of this section is to provide an overall perspective on the three technical ac-
complishments of this LDRD project. The majority of this report focuses on osly one of
these accomplishments: the development of an algorithm to simulate baroclinic vorticity
generation (which results from variations in fluid density), including a vortex adaption al-
gorithm that greatly extends the allowable simulation times. The other two accomplish-
ments of this LDRD project have already been documented in detail. They are the
simulation of the wake behind a maneuvering submarine [21], and a gridless method to
simulate diffusion processes [14]. Thus, an overall description of the project is lacking,
and is therefore described in this introductory section before proceeding to the technical
description of the baroclinic vorticity algorithm.

1. Objective and Motivation for this LDRD Project

The objective of this LDRD project was to use a Lagrangian, vorticity-based method to
simulate the complex flow associated with a maneuvering submarine. Vorticity-based
methods are particularly well-suited to large scale flows since only rotational regions need
to be resolved. A familiar example is that of a typical boundary layer flow. Vorticity occurs
only in the boundary layer itself, thus only the boundary layer need be resolved. The irro-
tational outer region, which occupies most of the grid in velocity-pressure formulations,
need not be discretized in vorticity-based methods. In problems such as the flow around a
submarine, where the boundary layer thickness is very small compared to the submarine
length (thus requiring many grid points in grid-based methods), the reduced grid require-
ments associated with vorticity-based methods are particularly beneficial.

Similarly, the length scales of the vorticity shed from maneuvering submarines are small
compared to the length over which they persist. A vortex trailing from a diving plane
might be a few feet in diameter, whereas the trail of vortices might persist over miles. In
this case, Lagrangian vortex methods provide an even greater advantage: the vorticity of
interest can be tracked without a grid. Thus, Lagrangian vortex methods have two signifi-
cant advantages over velocity-pressure based formulations. First, fewer grid points are
needed to resolve the flow in terms of its vorticity, and second, a Lagrangian vortex model
requires no grid.

Vorticity-based methods, have received relatively little development effort compared to fi-
nite element and finite difference methods for velocity-pressure formulations of the Navi-
er-Stokes equations. Thus, a significant effort was made in this LDRD to not only develop
a capability to predict the wake behind a maneuvering submarine, but also to contribute to
the advancement of vorticity-based methods. Advances were made in three areas: 1) a
fast-executing model was developed for simulating the evolution of the wake behind a
maneuvering submarine, 2) a Lagrangian formulation was developed that includes the ef-
fects of fluid density variations, including an adaption scheme to maintain high resolution
and high accuracy of Lagrangian methods, and 3) a Lagrangian technique was developed
for simulating viscous diffusion of vorticity.



The chronological order of these efforts does not coincide with the order in which they
have been documented. To avoid confusion that might arise because of this, the chronolo-
gy is briefly described.

2. Chronology of Developments

The wake evolution model and simulations for several submarine maneuvers were com-
pleted first, and are dec~ ed in a Sandia Report [21]. Next, the new method to include
density variation effects was formulated and implemented. As discussed below, a new vor-
tex adaption technique had to be developed in order to maintain solution accuracy.

The development of a new adaption technique was unanticipated (and hence, not part of
the original proposal) since there was evidence in the literature that existing adaption tech-
niques were adequate. We found, however, that the previously developed techniques intro-
duced non-physical features into the solution. Apparently, the non-physical features did
not manifest themselves for the relatively short times considered in previous analyses, but
became important for the longer times of interest to us.

The new adaption scheme resolved the aforementioned loss of accuracy at long simulation
times, but as a result of providing more accurate solutions at later times, an additional un-
expected phenomenon occurred. A conclusion of several previous investigations (e.g.,
Anderson {1], Meng [15]) was that the overall configuration of vorticity did not depend
strongly on the vortex size. However, the previous investigations did not have the benefit
of our adaption model which allows longer simulation times and higher resolution. We
found that, contrary to the results of the previous investigations, the solution depends
strongly on the size of the vortices at simulation times beyond those of the previous inves-
tigations. The phenomenon we observed is that, as the vortex size was reduced from one
simulation to another, additional small-scale features arose in the flow field. Similar obser-
vations were recently reported by Rottman and Stansby [20]. At the large simulation times
of interest, these small-scale features can have a significant effect on the overall configura-
tion of vorticity.

This phenomenon is believed to be a feature of the inviscid equations of motion. As noted
by Dritchel [9], “the nearly inevitable and incessant drive of an inviscid fluid to produce
finer and finer scales of motions prevents any finite algorithm from accurately modeling
even the largest scales of motion for arbitrarily long time.” In addition, fluid interfaces in
inviscid vortical flows are believed to achieve infinite curvatures in finite time [20]. In a
real, viscous fluid, viscous diffusion eliminates all scales that are smaller than a certain fi-
nite length. The smallest length scale that exists (i.e., is not eliminated by viscous diffu-
sion) depends on the relative magnitudes of inertial and viscous terms in the Navier-
Stokes equations, as indicated by the Reynolds number. As the Reynolds number increas-
es, the effect of viscosity decreases relative to inertia, and smaller and smaller length
scales are generated, ending in what is referred to as turbulence.

This brings to mind a comparison of Lagrangian vortex methods and Eulerian pressure-
velocity methods. Eulerian methods require “numerical viscosity” for numerical stability.



Lagrangian vortex methods do not require numerical viscosity, and thus provide a more
accurate solution to the inviscid equations. But, as mentioned above, the inviscid equa-
tions generate infinitesimally small scales. This is not apparent in simulations using Eule-
rian methods, since the numerical viscosity required for stability artificially eliminates
most small scales. Often, the viscosity required for numerical stability is larger than the
actual fluid viscosity [17], casting doubt on the accuracy of the simulation.

Lagrangian vortex methods, on the other hand, attempt to resoive all the small scales since
viscosity is not required for numerical stability. They fail to do so, however, only as a re-
sult of the finiteness of numerical spatial resolution (finite spacing between finite vortices).
However, viscous effects can be simulated more accurately since artificial viscosity does
not influence real viscous effects.

In the flows of interest, simulation times were such that there was sufficient time for rela-
tively small length scales to be generated (it takes a finite time for the production of small
scales to commence). Thus, viscous diffusion had to be included in the Lagrangian diffu-
sion model for this project.

Numerous methods to include viscous diffusion exist (e.g., Chorin [7], Russo [19], Cottet
[8], Fishelov [10]), however, each approach has significant deficiencies that are untenable
for the simulations of interest. A recent approach by Ogami and Akamatsu [16] was par-
ticularly appealing, so we implemented it. However, we quickly found it to be highly inac-
curate. Nonetheless we believed that Ogami and Akamatsu’s basic idea was a good one,
and thus embarked on an investigation to find the reason that it was inaccurate. As it
turned out, a relatively simple modification to their proposed method made it highly accu-
rate, but the time taken to develop the new diffusion model was essentially the remainder
of the time allotted to the LDRD project.

Thus, to summarize the history of this project, efforts to include vorticity generation by
variations in fluid density required the development of a new adaption algorithm and a
new method to simulate diffusion in a Lagrangian model. The development of the diffu-
sion model is believed to be a significant technical development in the fluid dynamics sim-
ulation community, and thus its development was documented in a Sandia Report [14],
submitted to the Journal of Computational Physics, and presented at the 1993 American
Physical Society Division of Fluid Dynamics meeting. The initial simulations of the invis-
cid, constant density evolution of the wake behind a maneuvering submarine were docu-
mented earlier, as they were completed [21]. These previously documented results are
reviewed briefly in the following sections. Thereafter, the technical details are presented
for the previously undocumented work regarding the new formulation to describe vorticity
generaticn by fluid density variations, including a new vortex adaption algorithm.

3. Summary of Simulation of the Wake Behind a Maneuvering
Submarine

We performed several vortex simulations of the evolution of the vortices trailing from the
dive planes on a diving submarine, as described in [21]. As mentioned earlier, the naval
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community has an intense interest in the evolution of the wake behind submarines for pur-
poses of detecting other submerged submarines and in keeping our own submarines unde-
tected. A principal feature of interest is the upward motion of the vortices trailing from the
dive planes of a diving submarine. The fluid dynamics of interest are essentially embodied
in Newton’s law that for every action there is an equal and opposite reaction. In the case of
a diving submarine, the reaction to the force pushing the submarine downward is the up-
ward motion of the trailing vortices.

The model described in [21] addresses this mechanism, and was used to simulate the wake
evolution associated with several different dive maneuvers of a full-scale submarine. Sig-
nificant differences occurred in the wake evolutions for the different maneuvers, and were
readily interpreted in terms of maneuvers to avoid so as to avoid detection, and features to
watch for when searching for other submarines.

A few details of this model are that a multi-degree-of-freedom dynamics code is used to
predict the hydrodynamic forces on the submarine for a particular trajectory. The strength
of the vortices shed from the dive planes is determined from well-known relationships be-
tween hydrodynamic forces and the vorticity on control surfaces, including hull vortices.
The paths of these vortices are then tracked using a Lagrangian vortex method.

These types of simulations would not even be considered if a grid-based, velocity-pressure
Navier-Stokes simulation had to be used. The reason for this is that the number of grid
points required would be prohibitively large. Typically, the submarine traveled several
thousand feet (0(10°) ft) over the course of the simulation, and the wake typically traveled
several hundred feet (0(10 ) ft) in the vertical direction. The diameter of trailing vortices
is typically on the order of a foot. In order to resolve vortlces of this size, a gnd spacing of
1/10 foot would be needed, or (0(10) poxnts per ft, or (0(10 ) pomts per f3 )). The number
of gnd points would be 0(10 ): (0(10 ) grid pomts/ft )e (0(10 ) ft of travel distance) ¢
(0(102) ft (vertical))* (O(107) ft (horizontal)).

This huge number of grid points could be reduced by a few orders of magnitude (at least)
by judicious gridding methods, and perhaps, adaptive grid techniques. Nonetheless, there
would still be far too many grid points to consider performing the simulation. On the other
hand, the simulations described in [21] required less than 20 seconds of execution time on
a SPARC workstation. These simulations are not as detailed as typical velocity-pressure
Navier-Stokes simulation, but they demonstrate that they provide a tool for use in engi-
neering analyses where no other practical tools are available.

4. Lagrangian Simulation of Viscous Diffusion

A method to simulate viscous diffusion of vorticity in a Lagrangian reference frame has
long been sought. Without a method to simulate viscous diffusion, vortex methods are es-
sentially inviscid, which greatly limits their applicability. Moreover, there is controversy
as to whether there is “grid-convergence” of solutions to the inviscid equations for rota-
tional flows, since the equations appear to generate infinitesimally small length-scales that
cannot be resolved numerically. Viscosity in real fluids attenuates the smallest length
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scales, thus allowing convergence of numerical solutions when the grid spacing is on the
order of the smallest length scale of the flow.

A large number of algorithms to simulate Lagrangian diffusion have been developed pre-
viously, which itself is a testament to the demand for such a model. The pnnmpal difficulty
is representing the spatial derivatives in the Laplacian of the vorticity field V2w without
the benefit of a grid. A brief list of previous algorithms begins with the Gaussian random
walk method by Chorin [7], which exploits the isomorphic relationship between diffusion
and Gaussian probability density distribution. However, this method is applicable only for
large Reynolds numbers, and converges slowly (“statistical convergence”). Cottet and
Mas-Gallic [8] include diffusion by convolving the velocity of point vortices with the fun-
damental solution to the diffusion equation,
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where ¢ is time, r is the distance from the vortex center and v is the viscosity. In this meth-
od, vorticity diffuses from one vortex to another. At the edge of a vorticity field, diffusion
into regions where there was initially no vorticity requires that new, zero circulation vorti-
ces be added to act as receptacles for the diffusive flux into irrotational regions. This leads
to a proliferation of vortices, which is undesireable. However, if receptacle vortices are not
added, the method does not conserve circulation [18]. In addition, the use of point vortices
limits the practical application of this method.

Fishelov [10] approximates the Laplacian of the vorticity field by differentiating the core
function of each vortex, and then summing the contributions of each vortex to the Lapla-
cian at each point. This allows the viscous flux from one vortex to another to be calculat-
ed, which also requires the addition of receptacle vortices in order to conserve circulation,
as in the method of Cottet and Mas-Gallic. Russo [19] describes a method in which a
Voronoi grid is determined at each time step depending on the locations of vortices. The
grid readily allows the Laplacian of the vorticity field to be approximated. This method is
stable and conserves circulation, but the computation to generate the grid at each time step
appears to be computationally expensive. We also note that the commonly-used diffusing
core algorithm has been shown to be incorrect [11].

To conclude this brief (and non-exhaustive) list of diffusion methods, the diffusion veloci-
ty algorithm by Ogami and Akamatsu [16] is described. In the diffusion velocity method, a
diffusive flux of vorticity,~vV w, is represented as a convective flux of the local vorticity,
i ;0, where the diffusion velocity #, is determined from the relation #,0 = —~vV. The
vorticity and its gradient are evaluated using the method by Fishelov [10]. Each vortex is
then convected at the local diffusion velocity to simulate diffusion.

This method has the desirable characteristic that receptacle vortices are not needed, since
there is no exchange of vorticity from one vortex to another. As a result, circulation is con-
served identically. However, upon implementing this method, we found that it yielded ac-
curate results only if the vortices were highly overlapped. For example, if the distance
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between the centers of adjacent vortices is only one-tenth of the core radius (so the vorti-
ces are highly overlapped), reasonable results can be obtained only for short times,
vile’< 1, (v is the viscosity, ¢ is time, and o is the core size). For longer times, the value
of the vorticity at the core centers is too large, and non-physical wiggles develop in the re-
gions between vortices. These errors arise even more quickly if the distance between adja-
cent vortices is a single core radius, which is a much more reasonable spacing in terms of
computational feasibility.

Careful examination of the diffusion velocity method showed that the errors occur because
two important aspec:s of the problem were being omitted. First, the diffusion velocity is
non-solenoidal: V e ii;# 0. Second, the mathematics of the governing equations require
that, if the circulation of each vortex remains constant as it convects at the diffusion veloc-
ity, then the size of each core must change size according to the local divergence of the
diffusion velocity (see [14] for details). This change of core size is specified by the kine-
matics of the flow field, and can be implemented by solving an additional ordinary differ-
ential equation. Incorporating the expansion of vortices yields the results that no wiggles
arise in the solution fieid, and that the solution remains accurate for very long times. Ap-
parently, as vortices become separated, the cores expand just the right amount to keep the
cores overlapped and, hence, keep the solution smooth. Without core expansion, the solu-
tion rapidly looses smoothness and accuracy as the cores become separated.

We refer to our new technique as the non-solenoidal diffusion velocity method. This meth-
od can be easily incorporated into existing vortex methods. Additionally, the non-solenoi-
dal diffusion velocity method guarantees that circulation is conserved since the circulation
of each vortex never changes. Lastly, the non-solenoidal diffusion velocity method satis-
fies both the dynamics (the diffusion equation) and the kinematics (details associated with
the time-differentiation of the circulation in a reference frame moving at the diffusion ve-
locity).

This method also has far-reaching implications for the simulation of mass diffusion. In
particular, a density field can be represented in terms of small regions of mass with a spec-
ified density distribution, just as a vorticity field is represented in terms of vortices, which
are nothing more than small regions of circulation with a specified vorticity distribution.
In this way, flows involving both mass diffusion and viscous diffusion can be considered,
such as the coating flows described in the Executive Summary.
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Simulation of Incompressible Flows with Variations in Fluid Density

We begin the description of the formulation to simulate flow fields in which motion arises
as a result of spatial variations in fluid density in a gravitational field. This topic is of inter-
est since submarine wakes can be affected by the combination of gravity and the stratifica-
tion of the ocean. Recall that the ocean is a stably stratified fluid consisting of layers of
fluid with different densities due to variations of temperature and salinity. The stratifica-
tion is referred to as being stable since, upon being disturbed, the density field will eventu-
ally return to its initial state. The physical mechanism by which the fluid returns to its
initial state is the phenomena commonly referred to as internal waves, which have the
well-known Brunt-Viisild frequency scale. Internal waves are essentially the result of
vorticity which is generated whenever the density gradient is misaligned with the pressure
gradient, which is referred to as baroclinic vorticity generation. The flow induced by the
baroclinically-generated vorticity returns the fluid to its equilibrium state (in which the
density and pressure gradients are aligned).

We note that the flow being discussed is incompressible even though the fluid density is
not constant. This is due to the fact that the volume of a fluid element does not change with
time, which is the kinematic definition of incompressibility. Even as the volume of a fluid
element remains constant, its density can change as a result of mass diffusion. A signifi-
cant difference between constant density flows and variable density, incompressible flows
is the manner by which vorticity is created. In constant density flows, the only sources of
vorticity are interactions of a viscous fluid with a boundary. In the interior of such flows,
viscosity neither creates nor destroys vorticity, it only re-distributes existing vorticity [2].
As mentioned above, in variable density flows, vorticity can be created in the interior of
the fluid. Thus, incompressible flows with non-constant density are fundamentally differ-
ent from constant density flows.

Three advances were made in the development of a Lagrangian vortex model to simulate
baroclinic flows. First, a new adaption technique was developed to maintain the resolution
of the vorticity field. Second, a new formulation of the baroclinic vorticity generation term
in the vorticity equation was derived which does not require that the density gradients be
approximated for fluids in which the density differences are small compared to the average
fluid density. Lastly, convergence characteristics of transient solutions with respect to the
size of vortices were addressed. This last topic has received scant attention in the litera-
ture, with most of the attention being devoted to a different type of convergence. The type
of convergence usually discussed relates to the use of vortices to provide a discrete repre-
sentation of a smooth vorticity field. Convergence in this sense, which has been proven by
Hald [13], means that as the size of the vortices decreases (keeping their relative overlap
constant), errors (the difference between the true vorticity field and its discrete representa-
tion) decrease. These issues are very important to the development and acceptance of vor-
tex methods as useful tools for practical problems.
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As an overview of this section, the following topics are described:

* the governing equations and vortex method basics are presented, including a description
of the method used to calculate the velocity field from the vorticity field,

* a new formulation for the baroclinic vorticity generation term is described,

» discrete representations of vorticity fields are discussed, as related to the need for adap-
tion and the new adaption technique,

* several simulations of a specific flow field are presented and compared with previous
simulations, and,

< the issue of convergence of transient solutions for different core sizes is discussed.

1. Governing Equations

The flow of interest is assumed to be inviscid and incompressible. Although the simula-
tions to be shown are two-dimensional, the formulation is developed for three-dimen-
sicnal flow, the only exception being that the calculation of the baroclinic term is
formulated for only two-dimensional flow. Mass diffusion is assumed to be negligible, so
that if the interface between regions of different density p is initially sharp, it remains
sharp for all time. Conservation of mass of the fluid is given by

ap .. _
'a—t‘*'(u‘V)P'-O m

where the velocity field is . The momentum equation is

p[%+(ﬁovm] =-VP+pg . )
The fluid pressure is P and the body acceleration is g, which for this discussion is assumed
to be the downward acceleration due to gravity. Since the variations of fluid density in the
ocean are small compared to the average fluid density, the well-known Boussinesq ap-
proximation can be used, in which the density is approximated as p (¥) = p.+p'(X),
where p. is a constant reference density, and p' is a local deviation from the average. Sub-
stituting p = p.+p', into Eq. (2),

D-‘ a Y
(Pe+p) 57 = —~VP+pod+p'E. @

Applying the assumption of a small density variations, |p'| « p., to only the left-hand side
of this equation yields the approximate Boussinesq momentum equation,

Dii _ 2 s
Py = ~VP+PE+P'E @
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Rather than solving the above equation, we wish to solve its vorticity form, since it has a
very simple Lagrangian interpretation which will be discussed in the next section. To ob-
tain the vorticity form of the Euler equation, the curl operator is applied to the entire equa-
tion, and using the definition of vorticity, ® = V x &, yields

D®

57 = @V a+Vx (p'/p, (5)

The curl of the terms — VP + p2 is zero since the curl of the gradient of a scalar (P) is zero
identically, as is the curl of the constant gravity vector. Noting that for a vector 6! with in-
finitesimal length, on which every point moves at the local fluid velocity, the time evolu-
tion of ! is [21,

ddl
dr

Since this is the same form as Eq. (5), except for the last term in Eq. (5), the physical inter-
pretation of Eq. (5) is that the vorticity vector evolves as a fluid vector with a source term
which is proportional to V x (p'g)/p..

= (BleV)i.

If we had not approximated the density vanatlons, the right-hand side of the above equa-
tion would be =V x (VP/p) = VpxVP/ p A physical interpretation of how the cross
product of the density and pressure gradients can create vorticity is shown in Figure 1. We
note that, with regard to baroclinic vorticity generation, the small-density variation ap-
proximation is equivalent to approximating the pressure gradient as being hydrostatic; i.e.,
VP = pg.

The benefit of the small density variation approximation is that the baroclinic generation
of vorticity can be evaluated without having to know the pressure. Only knowledge of the
density field, which is known, is required to evaluate V x (p'g)/p. Tryggvason [22]
shows that the small density variation approximation is equivalent to the limit of a large
Froude number and a small Atwood number.

The only remaining issue is how to determine the velocity field for use in the vorticity
equation. In principle, the velocity field is determined from the coupled equations,

Veii =0 and VXii =®

where it is seen that the velocity is essentially determined by the inverse operation of the
curl operator, subject to the constraint that the velocity field is solenoidal. A general solu-
tion to this problem, with velocity boundary conditions #,,, was derived in [24] as,
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Figure 1.

-Vp

Centroid T Center of Mass

Generation of vorticity when pressure gradients VP and density
gradients Vp are not aligned. A fluid element is shown which has
a density gradient along its longest dimension, as indicated by the
shading, where darker shading indicates a higher density. If a
pressure gradient is applied uniformly as shown, the displacement
of the less dense fluid will be greater, owing to its smaller
moment of inertia. This type of motion involves a rotation of the
fluid element about its center of mass, as shown. From another
point of view, consider that the center of mass is offset from the
centroid by some distance in the direction of the density gradient,
as shown. Also recall that pressure acts through the centroid, but
the fluid element rotates about the center of mass. Thus, a torque
is generated on the fluid element if the pressure gradient is not
aligned with the line between the centroid and the center of mass.
In either case, the fluid element rotates, indicating that vorticity is
generated.

mﬂm=jm@”xa‘ﬂdwf)

-
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ds (%,")
x-%1°

where V is the volume of the domain, S is the boundary of the domain, locations on the
boundary S are denoted as X,, and the unit normal vector on the boundary is 7. The coef-
ficient B 4 is 27 for two dimensions (d=2), and 4=n for three dimensions (d=3). The two
terms of the integrand of the boundary integral represent the influence of the normal ve-
locity boundary condition and the tangential velocity boundary condition, respectively.

Eq. (6) allows the velocity field to be calculated from a vorticity field and velocity bound-
ary conditions, but the user must be warned that arbitrary vorticity fields and velocity
boundary conditions do not, in general, comprise a well-posed mathematical problem. For
example, Stokes theorem shows that there is a relationship between a vorticity field and
the tangential velocity boundary condition,
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One interpretation of this relationship, for two-dimensions, is that the area integral of the
vorticity must equal the line integral of the tangential velocity on the boundary. For exam-
ple, if the tangential velocity is zero on the entire boundary, then the area integral of the
vorticity field must be zero. If Stokes’ theorem is not satisfied, then the problem is not
well-posed.

The area integral of the vorticity is referred to as the circulation, and is used extensively in
the formulation of Lagrangian vortex methods, as discussed next.

2. Lagrangian Vortex Model Formulation

The basis for Lagrangian vortex methods was first described by Helmholtz in 1858. Helm-
holtz’ most important finding was that inviscid vorticity transport is equivalent to the
transport of a fluid vector with infinitesimal length, as alluded to previously. This remark-
able finding can be derived by considering a differential fluid volume 8V that is a truncat-
ed cylinder with cross-sectional area dA and cutward pomt normal unit vector #, and
differential length 81, for which 8V = 84 e 81. Every point in the volume is assumed to
convect at the local fluid velocity, i.e.,

dx

i (x). )

Kinematical considergtions (see [2]) indicate that the time-rate-of-change of the cross-sec-
tional area element 8A is, in indicial notation,

asa; _ oy o
—ar = %igz g, )

These relations are used in the time-differentiation of the circulation as in the following
equations.
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10 I A
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For incompressible flows, V e ii = 0, so that
d |~ 0B . iy s o
— D eAdA = [—~+(u0V)w-- (u-V)m]oﬁdA. (11)
dt ot
A A
Substituting the vorticity-form of the Euler equations Eq. (5) into Eq. (11) yields
%j(‘ﬁ *idA = I[Vx (p'8)/p.] »fdA (12)
A A

This equation indicates that as a region of vorticity convects at the local fluid velocity, the
time-rate-of-change of circulation is given by the area integral of the baroclinic source
term. In practice, this means that the Euler equations are satisfied if vortices are convected
at the local fluid velocity while the circulation changes according to the area integral of the
baroclinic source term. This is the principal basis for vortex methods. In previous methods
(e.g., [1]), however, the curl operation in the baroclinic term is performed as
Vp'x3

Vx (p'8)/p. = 5

(13)

This expression requires a representation for Vp’, which typically requires some type of
approximation; e.g., Vp'(%;) = (p" (%;41) =P (X)) (%;41—X;_1). Models that
use this approach have been developed previously. However, this approximation is often
inaccurate, especially if the density fields have a very small diffusivity, as in the case of in-
terest.

A formulation that depends only on p’ itself can be obtained by applying Stokes’ theorem
Eq. (7) to the right-hand side of Eq. (12) to yield

19



%J‘(T)OMA = §(p'§)lp00d6. (14)

This equation allows the time-rate-of-change of circulation to be calculated by performing
a line integral, which generally can be performed more accurately than approximating a
derivative, then integrating over an area, as required in the usual formulation. Moreover,
this new formulation allows the simple interpretation that circulation is generated whenev-
er the integration path has a component parallel to the gravitational vector. Details of how
to implement this formulation depend on how the vorticity field is discretized, which is
discussed next.

2.1 Discrete Representation of Vorticity Fields

Two important aspects of implementing a Lagrangian vortex method are: 1) smooth vor-
ticity fields must be accurately represented using finite regions of vorticity, and 2) the rep-
resentation of the vorticity must remain accurate for long times.

The most common discretization of vorticity fields was proposed by Chorin [7]. He pro-
posed that finite regions of vorticity be assumed to have a circular shape and to have a ra-
dially symmetric distribution of vorticity, such as shown in Figure 2. Chorin called these
regions vortex “blobs,” and the name has endured. The entire blob is assumed to convect
at the velocity of the blob center, and the blob does not change shape as it convects, nor
does the shape of the vorticity distribution change. This is an approximation since a region
of fluid subjected to shear will, in fact, change shape. Adaption methods can deal with this
matter, as discussed below, and are more desirable than having to evaluate the velocity at
every point in the field.

The core radius for blobs must be specifed, which is analogous to grid spacing in finite el-
ement and finite difference methods. Similarly, a vorticity distribution must be specified
for each blob, which is analogous to interpolation functions used in finite difference meth-
ods or basis functions in finite element methods.

Chorin accurately simulated flow around a cylinder using this approach, but did not evalu-
ate the accuracy of the blob assumption. Subsequently, several investigators showed that
the blob approach is rigorously justifiable. Hald [13] proved that the trajectories of the
blobs represent the exact trajectories of particles as the number of blobs increases. Beale
and Majda [3, 4] then showed that vortex blobs are convergent in the sense that decreas-
ingly small perturbations in the locations of vortex blobs (which represent perturbations in
the vorticity field) lead to decreasingly small perturbations in the velocity field.

Before proceeding, a brief description is presented to show how vortex blobs are used to
represent a vorticity field, and how the vorticity field is used to obtain the velocity field.
Consider the representation of a circular vortex sheet that forms between fluids of different
density. A detailed view of this representation is shown in Figure 3. We seek to represent
the sheet as having a vorticity value of unity everywhere on the sheet. Each blob is as-
sumed to have a core size ¢ of approximately 0.1R, where R is the radius of the circle.
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Figure 2  Radially symmetric vorticity distribution assumed for a vortex blob
of core radius ©.

Integration Path
for an Arc Length
Section

Blob Center

Blob Core

Figure 3  Vortex blob representation of the vortex sheet on the interface
between two fluids: a circular region of one fluid in an infinite domain
of another fluid.
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This core size is taken to provide reasonable resolution with respect to the size of the cir-
cle. Each blob is also assumed to have a Gaussian vorticity distribution,

|%-%{
. e— (——0 )
ne’
where the subscript i denotes a particular vortex, X; is the center of the i-th vortex, and T,

is the circulation of the i-th vortex. The actual vorticity field is obtained by superposmg
the Gaussian fields of the individual vortices,

2

©,(x,1) =

15

al I (1) '(l'i;ciif
i=l~1;?-e .

The important feature is that the accuracy of the representation of any vorticity field is de-
termined by how the individual vorticity distributions of blobs overlap one another. For
the desired representation of a circular vortex sheet with vorticity of unity, Figure 4 shows
the vorticity distribution on a circular arc between blob centers as a function of the dis-
tance between blob centers. If the cores are not sufficiently overlapped, then the vorticity
field between blobs contains “wiggles” that differ from the desired value of unity. Ghoni-
em, et al. [12] indicate that if the ratio of the distance between blob centers to that of the
core size is less than unity, then at least second order accuracy in the vorticity field is ob-
tained.

DXt = (16)

A significant problem in vortex methods is to keep the vortices overlapped throughout the
duration of a simulation. The principal reason that this difficulty arises is that, as men-
tioned previously, the vortex cores are assumed to remain circular, when in fact, the flow
can distort them to a non-circular shape For example, cores that deform to become ellip-
tical in shape could remain overlapped, whereas circular cores would become separated,
resulting in non-physical wiggles. An example of this is described in [14].

Several approaches have been attempted. Anderson [1] used an initial configuration of
vortices that were overlapped to such a large extent that the cores remain overlapped for a
considerable time. However, at some time, the cores become separated, thus, the initial
configuration determines the allowable simulation time, which is not desirable. Schemes
to adapt the vortex field so as to maintain accuracy for extended periods of time have also
been developed previously (e.g., Meng [15]), but they do not preserve symmetry when it
exists. The basic idea of these previous adaption schemes is that new vortices are inserted
between vortices which have become separated. Each new vortex is given 1/3 of the circu-
lation of the adjacent vortices. For example, consider two “parent” vortices that have
equal circulations of unity, and have become separated too far to maintain accuracy. Adap-
tion consists of inserting a new “child” vortex between the two “parent” vortices. Each

1. The reason that cores are assumed to remain circular is that it is much more difficult to calculate
the velocity field of a non-circular vortex than a circular vortex.
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Figure 4  Discrete representations of a circular vortex sheet with uniform vorticity
using collections of discrete vortices: a) 60 vortices, b) 30, c) 15. The main
figure d) shows the continuous vorticity field in the regions between vortex
centers for the three different numbers of vortices. Since the desired
vorticity distribution is unity everywhere on the interface, only the 60
vortex configuration is acceptable. Figure () shows a close-up view of the
30 vortex configuration, in which the variation in vorticity between the
vortex centers is due to lack of core overlap.
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“parent” contributes a circulation of 1/3 to the “child,” so that the “parents” and “child”
each have a circulation of 2/3. This algorithm assures conservation of circulation and a re-
gion of uniform circulation remains uniform. However, this algorithm does not maintain a
region of uniform circulation if contiguous intervals require adaption. Similarly, the sim-
ple adaption algorithm does not preserve symmetry, as shown in Figure 5.

To address these issues, we have developed a new adaption algorithm that is monotonic
and preserves symmetry. In the new adaption algorithm, contigucus intervals that require
adaption are considered as a coupled set, rather than separately as in the simple adaption
scheme. As demonstrated in Figure 5, treating one interval at a time leads to loss of sym-
metry (when it exists). It is assumed that each “parent” vortex in a contiguous interval that
requires adaption will contribute the same fraction f of its circulation T'; to new “child”
vortices, and the “child” vortices will have circulations I, ; equal to the ‘arithmetic mean
of its adjacent “parent” vortices. In equation form, the new circulation values of parent
vortices is

', =fT, 17)

and the circulation of “child” vortices is

l ' 1
T, =5+, (18)

[

where the i-th child lies at the midpoint between the i-th and i+1-th “parents.” Requiring
that the total amount of circulation on the interval remain unchanged yields a value for f

f= , (19)

M
2T
7 =_
Y T+ 2 (r;+T,, )
i=1 i=

where M is the number of vortices on a contiguous interval to be adapted. When the inter-
val is symmetric in circulation, the denominator equals zero. In this case, only half the in-
terval need be considered.

A limitation of this adaption scheme is associated with the assumption that each original
vortex contributes the same fraction of its circulation to the new vortices. Essentially, the
stretching on each interval is assumed to be uniform. Thus, the vortex field should be
checked for adaption often so that the locally uniform stretching assumption is appropri-
ate. As indicated by the simplicity of the algorithm, it is computationally inexpensive, so
we typically adapt the field (if necessary) at each time step. Further details of the adaption
process, such as how the number of vortices increases with time are described below.
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Figure §

Example of how a simple adaption scheme is non-monotonic and does
not preserve symmetry. Intervals between vortices are considered
separately, and initially, each vortex on an interval to be adapted has a
circulation of 9. Upon adaption, each existing vortex contributes 1/3 of
its circulation to the newly inserted vortex. So, on the first interval, the
circulations are 6,6,6. The circulations from subsequent adaption are
shown to result in nonuniform distributions of circulation (non-
monotonic), and the initial symmetry is lost.
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To summarize this section, it was shown that the spacing between adjacent vortices must
be less than or equal the core radii of the vortices in order to avoid non-physical represen-
tations of a vorticity field. In order to maintain this overlap as the field evolves, a new
monotonic, Symmetry preserving, circulation conserving adaption scheme was developed.
This adaption scheme allows essentially unlimited simulation times and thus, allows the
examination of previously unexplored nonlinear flow regimes, as described next.

2.2 The Vortex Method for Baroclinic Flows

The previous considerations were used to formulate a vortex model to describe the motion
arising from an unstable configuration of two fluids? with different, non-diffusing densi-
ties in a gravity field. Viscous diffusion of vorticity could be included using the non-sole-
noidal diffusion velocity method (we are presently pursuing this), but the focus of this
formulation is the baroclinic generation of vorticity. Thus, each fluid is assumed to be in-
viscid.

An essential feature of this type of flow is that the only location where non-zero vorticity
exists is on the interface between the two fluids. This is because the only locations where
vorticity is generated is at locations where the density gradient is non-zero, all of which lie
on the interface between the two fluids.

Another important feature of this type of flow is that, for the assumptions in effect, the
vorticity remains on the interface between the two fluids for all time. This simplification
occurs since, in the absence of mass diffusion and viscous diffusion, the density fields and
the vorticity field all convect at the local fluid velocity. Thus, keeping tracking of the vor-
ticity implicitly specifies the location of the density fields. Accordingly, the density differ-
ence across each vortex is always the same. This allows the effects of density fields to be
known without explicitly solving the conservation of mass equation.

An example of a discrete vortex representation of the interface between two fluids is
shown in Figure 3. The interface is discretized into arc lengths A$, and a vortex exists at
the center of each arc interval. Circulation is generated on each interval, and is endowed to
the vortex lying on that interval (even though a vortex can extend beyond the bounds of an
arc length interval, which always occurs as a result of the necessary condition that adja-
cent vortices overlap one another).

A simulation consists of calculating the motion of each vortex due to the velocity induced
by all the other vortices, and the time evolution of the circulation of each vortex due to ba-
roclinic generation of vorticity. The motion of the i-th vortex is

2. The vortex method described here is not restricted to the consideration of only two fluids. In prin-
ciple, as many fluids as desired can be considered, although complex intersections of several fluids
would present considerable difficulty since the density difference at the intersection point of several
fluids is not well-defined. Such a situation might be more readily described by representing each re-
gion of different density as a collection of blobs that have a mass and a density distribution. The den-
sity gradient could then be calculated using the method developed by Fishelov [10], i.e., differentiate
the core function of each blob, and superpose them to represent the derivative. This is the approach
used to calculate vorticity derivatives in the non-solenoidal diffusion velocity method.
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The velocity at an arbitrary point (including the vortex locations) is obtained from Eq. (6)
and the vorticity distribution specified in Eq. (15) (with zero velocity boundary conditions
at infinity for simplicity),
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The time-rate-of-change of the circulation for each vortex is,

dri + -y 2
o = [(p)" = (p')1&eAs/p, 2)

where A§ is the previously mentioned discrete arc length along the interface. This expres-
sion is an approximation to the closed line integral around A§, with the value of p' being
p'" on one side of the interface, and p' on the other side, the sign depending on the cho-
sen direction of the integration path. Since the interface is assumed to have zero thickness,
there are no contributions from the integration paths that are perpendicular to the interface
(see Figure 3).

With regard to evaluating Eq. (22), the density difference across the interface is constant,
so the only portion of the right-hand side that varies with time is the orientation of the lo-
cal arc length A§, with respect to the gravitational vector, as indicated by the vector dot
product of A§ and 3 .

To non-dimensionalize these equations, we use the characteristic length scale, R, of the
disturbance to the density fields to define the dimensionless quantities,

# = %R A} =A¥R. 23)

The density variation is non- dxmensmnal,l_zed using the reference density, (p’ )" = p’lp,
and the dimensionless gravity vectoris g = g/ |2|. Using thesle definitions in Eq. (22) al-
lows the dlmeqsxonlcss time }92 be defined as 1 = t(R/|gl) ~°. The dimensionless ve-
locity isthen # = @ (|2IR)”

3. Simulations

The evolution of an initially circular (two-dimensional) region of lower density fluid with-
in an infinite domain of higher density fluid is considered (see Figure 6). Recalling that the
objective of this LDRD work was to develop models for submarine wakes and their inter-
action with the ocean surface, it may not be clear how the motion of a bubble is relevant.
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Inﬁni Domain

Figure 6  Two-dimensional, circular bubble of fluid within an infinite domain
of higher density fluid.

The relevance is that baroclinic vorticity generation is important to both types of flows.
For example, as the trailing vortices from a diving submarine convect upward, they dis-
turb the stable stratification of the ocean. That is, the density field is perturbed, and vortic-
ity is generated baroclinically to return the fluid to its equilibrium state. The
baroclinically-generated vorticity will also reduce the upward motion of the trailing vorti-
ces. The evolution of a bubble depends entirely on baroclinic vorticity generation. Thus, if
the bubble flow can be simulated accurately, then the numerical model of baroclinic vor-
ticity generation can be applied to the naval applications of interest. Further, byconsider-
ing bubbles, there is an opportunity to compare the model with previous investigations of
bubble phenomena, (e.g., Collins [6] and Anderson [1]).

Returning to the description of bubble flow, the two fluids are assumed to be non-diffusive
and inviscid, as mcntloned previously. Additionally, surface tension effects are also as-
sumed to be ncghglble The reference density for the problem at hand is taken to be the
density of the fluid at infinity, so that the dimensionless density psrturbatlon for the heavi-
er fluidis p' = 0. For the lower density fluid in the bubble, p' = 0.1 is specified. The
radius of the initial circle is specified as R = 1 m, and the dimensionless core radius of
each vortex is specified as 6 = 0.1 for the simulations. Some smaller cores are consid-
ered and will be ncied as needed. Gravity is assumed to be in the downward direction
§ = —J, and |3| = 10 m/s%. These are the same specifications used by Anderson [1],
thus allowing a comparison of the present, new formulation with a previous result.

Our numerical simulation of the bubble evolution is shown in Figure 7 in which the “cap”
structure becomes apparent at the later times shown. To the best of our knowledge, this
structure has not been resolved in previous numerical simulations. Two notable geometric

3. Surface tension effects can also be implemented in vortex methods. Some previous efforts in this
area are by Tryggvasson [23] and Zufiria [25]. A new formulation for surface tension by Brackbill,
et al. [5] appears to provide an opportunity for a greatly improved approach wherein surface tension
can be readily incorporated as a source of circulation at an interface.
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“Cap” regi‘on

y t =6

. Figure 7 Numerical simulation of the evolution of a bubble of lower density
fluid in an infinite region of higher density fluid. The formation of the
“cap” at later times is evident. Our new vortex adaption technique
allowed this calculation to be carried out to later times that were
unaccessible to previous investigations. The radius of the initial
- interface is 1.0, and the core radii are 0.1.
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Figure 8 The mechanism for loss of top-bottom symmetry on an
initially circular bubble. The vorticity at 90-degree
intervals is equal in magnitude but different in direction,
as indicated by the rotation directions. The interface
region above A-A is pushed upward and radially outward,
whereas the interface below B-B is pushed upward and
radially inward, which destroys the initial symmetry of
the system, and leads to further nonlinearities.

features of the bubble at late-times are the “cap” at the top of the bubble, and the highly
mixed region beneath the “cap.” These features were also observed in an experiment by
Collins [6] to investigate the evolution of a two-Zimensional bubble using a Hele-Shaw-
type apparatus.

The solution shown in Figure 7 was calculated using the new adaption technique. The
adaption was specified to maintain 6/As < 2.5 where As is the spacing between adjacent
cores, and O is the core radius. Recall from the earlier examination of vortex spacing, that
good resolution of a field requires that 6/ As > 1. Thus, the use of 6/As <2.5 as an adap-
tion criterion should yield a very smooth solution.

A natural question is, why does the bubble interface becomes non-circular? Eq. (22)
shows that circulation is generated whenever the interface tangent vector has a vertical
component (since gravity is vertical). Thus, since the tangent vector of the interface is
nonuniform, the vorticity generation on the interface is nonuniform along the bubble inter-
face. This nonuniformity results in the immediate loss of circular symmetry (see Figure 8)
and also is the basis for the nonlinear aspects of the bubble evolution.

Another interesting aspect of the bubble evolution is the increase in the length of the inter-
face with time. As shown in Figure 9, the interface length is initially 2%, and increases by
almost a factor of ten in an elapsed dimensionless time of 7. The transient length for adap-
tion criteria of 6/As= 1.0, 1.5, 2.0, and 2.5 are also shown in order to illustrate the effect
of vortex spacing. The number of vortices changes with time in each of these calculations,
as shown in Figure 10. As the interface length increases, more vortices are needed in order
to maintain the specified core overlap.
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Increase in the length of the bubble interface versus time for solutions
with adaption criteria of o/As = 1.0, 1.5, 2.0, 2.5. The prevxous
simulation of this problem by Anderson [1] was temnnated att =3,
and is indistinguishable from the present solutions for that time
interval. For t > 3, however, the interface length increases much more
rapidly, as shown, which indicates the onset of large nonlinearities.
Differences in the interface lengths for the different spacings are
believed to be a manifestation of the inviscid equations which
incessantly generate smaller length scales for smaller vortex spacings.
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Figure 10 Increase in the number of vortices due to adaption for different adaption
criteria.

From another point of view, the shape of the bubble at a dimensionless time of 6 is shown
in Figure 11, for 6/As= 1, 1.5, 2.0, and 2.5. Again, the shapes are similar, but clearly not
the same. The result for 6/As = 0.5 is also shown to emphasize the need to maintain 6/As >
1, as was found earlier to be a constraint to ensure smooth representation of the vorticity
field.

One might hope that for vortex spacings less than some particular small value, the tran-
sient lengths and shapes would be independent ofvortex spacing. However, as mentioned
earlier, the inviscid equations are believed to generate length scales as small as the numer-
ical resolution allows. Thus, smaller scales are generated whenever the spacing between
vortices becomes smaller. Thus, different solutions are obtained for different spacings be-
cause there is increased resolution for smaller vortex spacing, and as a result, “conver-
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Figure 11 Bubble geometry at t* = 6 for different adaption criteria as shown.
The smoothness of the shapes clearly increases as the distance
between vortices decreases.

gence” in a general sense does not occur. Before addressing this issue further, we examine
Anderson’s previously published results for comparison with our solution.

Anderson’s simulation [1] was terminated at a dimensionless time of 3, and is reproduced
in Figure 12. The number of vortices is constant for this calculation, so the adaption algo-
rithm was not used, although the new formulation for the baroclinic term was used. This
solution agrees in terms of the interface shape and length with the results published by
Anderson, indicating that the new formulation of the baroclinic source term is appropriate.
It is also noted that the adapted calculations discussed previously agree with the overall
shape and transient length of the interface in Anderson’s solution for o' =0.1.

33




O,
(=

60

.

0.171 Circulation +0.171

Figure 12 Reproduction of calculations by Anderson [1] to simulate the evolution
of a bubble using a fixed number of vortices. The lines formed by
connecting the core centers indicate the interface shape, and the images- -
of the vortex cores allow the extent of core overlap to be examined.
There is insufficient core overlap at t* = 3. The initial bubble radius is
1.0, with core radii of 0.1.
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Figure 13 Continuation of solution in Figure 12 showing the consequences of
failipg to adapt the solution for late times: a non-physical solution
at t = 5. The interface is shown to cross itself, which is non-
physical and is the result of the loss of core overlap.

These comparisons indicate that the new baroclinic formulation and the adaption algo-
rithm provide accurate results, based on previous calculations, and allow the calculations
to be carried out further than previous results.

To demonstrate the loss of accuracy that occurs if adaption is not performed, Anderson’s
solution was continued in time without adaption. Note that, in the reproduction of Ander-
son’s solution, the vortices are initially overlapped considerably more than is necessary.
This is to account for increasing separation between vortices as the interface stretches. In
fact, the arc length of the interface increases by approximately 2.5 over the dimensionless
time interval from 0 to 3. To account for this, Anderson specified the initial core overlap to
be o/ As = 3, or approximately 3 times more than the amount of overlap required for accu-
racy. Ostensibly, the factor of 3 is based on the finding that interface increased by approx-
imately 2.5, plus a little more overlap for good measure. However, the interface stretches
non-uniformly, so that at a time of 3, some of the vortices, namely those at the top of the
bubble, are no longer overlapped. As a result, continuing the solution past t' =3 results in
a catastrophic loss of accuracy, as shown in Figure 13, where the cores become further
separated and the interface is no longer smooth. The use of our adaption technique pre-
vents this loss of accuracy.
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a)o=0.05 b)o=0.1

Figure 14 Bubble shapes at t* = 3 for core radii of a) 0.05 and b) 0.1, with adaption
criteria of 2.5. The solution using the smaller core size has many more
small-scale features than the solution using the larger core size. Similar
findings are also reported by Rottman and Stansby [20].

The effect of different core sizes is illustrated by simulating the bubble evolution with o =
0.05 (half &he previous core size), and an adaption criteria of 6/As = 2.5. The shape of the
bubble att =3 is shown in Figure 14 for two core sizes: ¢ = 0.05, and o = 0.1. Although
the only difference between the two solutions is the size of the core, there are many more
small-scale features in the solution for ¢ = 0.05. This result is believed to be due to the
generation of an entire spectrum of length scales by the inviscid Euler equations. The
spectrum of length scales is believed to include infinitesimal length scales, which cannot
be resolved in numerical solutions. As the resolution of a numerical solution increases,
more and more small-scale features will be observed if the numerical method is not diffu-
sive. Since vortex methods are not diffusive, this effect is clearly observed, whereas this
would not be observed in methods that include artificial diffusion, since the diffusion
would attenuate the small length scale features. Thus, in order to obtain a converged, real-
istic solution, the effects of real viscosity must be included. Nonetheless, the comparison
of the two shapes in Figure 14 conveys the sense that a solution for a particular core size
provides at least a macroscopic representation, so long as details of the small-scale struc-
ture are not of interest.
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4. Summary

A new vortex method was presented which allows the accurate simulation of inviscid,
baroclinic flows. Two features of the method are new. First, a new formulation for the pro-
duction of circulation is used which has the advantage that the gradient of the density field
is not required; only the density itself is needed, thus eliminating one level of approxima-
tion in the model. To assess the accuracy of the new baroclinic formulation, the evolution
of a bubble of lower density fluid was simulated and compared with a previously pub-
lished simulation by Anderson. The overall shapes and lengths of the bubble interface
were in good agreement, thus indicating that the new formulation is valid.

Second, a new adaption algorithm was formulated which conserves circulation, maintains
monotonicity, and preserves symmetry. This adaption algorithm allows solutions to be
performed to essentially arbitrary times without loss of core overlap, whereas previously
results had to be terminated at relatively short times, since an effective adaption model
was not available. The ability to simulate long times is desirable since many practical
problems require long simulation times. Adapted short-time solutions of the bubble evolu-
tion were compared with previous solutions, and were in good agreement, indicating that
the adaption did not introduce any new perturbations or inaccuracies. Continuation of
these solutions to late times showed that the flow becomes highly nonlinear, as indicated
by the complex shape of the bubble, and a rapid increase in the length of the bubble inter-
face, which is indicative of chaotic mixing. Thus, the adaption algorithm allows simula-
tions of mixing phenomena and internal wave phenomena at the times that are of interest
for several applications beyond the naval applications that motivated this work.

Convergence of the solutions with respect to spacing of vortices and size of vortices was
also considered, since it is important to be able to demonstrate convergence of numerical
methods. The inviscid Euler equations are believed to generate a spectrum of length-
scales, including infinitesimal scales, which cannot be resolved using numerical methods,
due to the fact that all numerical methods have finite resolution. Thus, in a sense, conver-
gence of numerical solutions to the Euler equations is not a well-posed issue. Nonetheless,
for simulations using a constant core size, solutions appear to converge as the spacing be-
tween vortices is reduced. For decreasing sizes of vortices (with fixed ratio of vortex spac-
ing to core size), the shapes and interface length of the bubble varied considerably. This
would not occur in simulations using many grid-based methods which require artificial
viscosity, which attenuates small scale variations. Lagrangian vortex methods, on the oth-
er hand, do not require artificial viscosity, so the generation of small-scales is readily ap-
parent. These findings provide further support for the view that the Euler equations
generate infinitesimal scales.

The development of this inviscid model, in conjunction with the method to simulate vis-
cous diffusion (also developed for this LDRD), provides a unique, accurate, gridless meth-
od to simulate finitt Reynolds number flows. Efforts are underway to examine the
convergence characteristics of the viscous, baroclinic model, where it is believed that con-
verged solutions (with respect to core size and core spacing) can be readily obtained. After
the convergence of this method is demonstrated, vortex methods will be closer than ever
to being used to simulate flows for practical applications.
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