ORNL/TM-12065

OAK RIDGE
NATIONAL
LABORATORY

| Kendalil Square Multiprocessor:
| | Early Experiences and Performance

Thomas H. Dunigan

, ‘L."_J }'“:3’,-;\!‘.).,. it e
MANAGED BY | SN O T De G Uaen
MARTIN MARIETTA ENERGY SYSTEMS, INC. NS UNLinvg o
FOR THE UNITED STATES "
DEPARTMENT OF ENERGY

T IR LR A I A LRI g g e

This report has bes~ reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Techni-

cal Information, P.O. Box 62, Oak Ridge, TN 37831; prices avaliable from (615)
676-8401, FTS 828-8401. ‘

Available to the public from the National Technical Information Service, U.S. .
Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22181,

This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, makes any warranty, expreas or
implied, or assumes any legal liability or responsibility for the accuracy, com-
pleteness, or usefulness of any information, apparatus, product, or process dis-
closed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by
trade name, iradomark, manufacturer, or otherwise, does not necesasarily conasti-
tute or imply Its endorsement, recommendation, or favoring by the United States
Government or any agency thersof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or anv agency thereol.

e - s et S et i

Uy

ORNL/TM-~12065

DE92 013351

Engineering Physics and Mathematics Division

Matheinatical Sciences Section

KENDALL SQUARE MULTIPROCESSOR: EARLY
EXPERIENCES AND PERFORMANCE

Thomas H. Dunigan

Mathematical Sciences Section
Oak Ridge National Laboratory
P.O. Box 2008, Bldg. 6012
Oak Ridge, TN 37831-6367
thd@ornl.gov

Date Published: April 1992

p—

Research was supported by the Applied Mathematical
Sciences Research Program of the Office of Energy Re-
search, U.S. Department of Energy.

Prepared by the
Oak Ridge National Laboratory
Oak Ridge, Tennesser: 37831
managed by
Martin Marietta Energy Systems, Inc.
for the
U.S. DEPARTMENT OF ENERGY
under Contract No. DE-AC05-840R21400

MAQTFR

TWRE W

b ot i N

LY MY IR g I LT e g LA (L T TR AR N Y] n L IR IR L RLA TR O IO R N T L AR ne g il LN "
My e (AT e ‘ i [I

a4

) Contents
1 Imtroduction e e e e 1
2 Implementation S e e 2
3 Single Cell Performance e C e e 4
4 Parallel Performance e e e e e e e .8
5 Early Experiences e 15
6 References e e 17
A Comparative Architectures e e e 19

- i -

A} e e K L TR T [T T R T LRI L (TR R TR (IR T I o [I T T O T TR U TR TERTRY . TR LR

b

[1T I N L

KENDALL SQUARE MULTIPROCESSOR: EARLY
EXPERIENCES AND PERFORMANCE

Thomas H. Dunigan

Abstract

Initial performance results and early experiences are reported for the
Kendall Square Research multiprocessor. The basic architecture of the
shared-memory multiprocessor is described, and computational and I/0
performance is measured for both serial and parallel programs. xperiences
in porting various applications are described. ,

L TR T [T T R T L TR T LI L LN /L N Comngn e s

RO L R

g

1. Introduction

In September of 1991, a Kendall Square Research (KSR) multiprocessor was
installed at Oak Ridge National Laboratory (ORNL). This report describes the
results of this initial field test. The performance of the KSR shared-memory
multiprocessor is compared with other shared-memory and distributed-memory
b multiprecessors, using synthetic benchmarks and real applications. Performance

figures must be considered preliminary, since the KSR system was in its first field
test. '

The KSR multiprocessor runs a modified version of OSF/1 (Mach). To
the user, the KSR system appears like typical UNIX7M, but providing perfor-
mance advantages similar to those provided by the Sequent Symmetry and BBN
TC2000 multiprocessors and providing scalability similar to the Intel iPSC/860
and DELTA. Piped processes and backgrovnd jobs can utilize the multiprocessor
architecture to provide improved throughput and response time.

A programmer on the KSR system is provided with a parallel make and with
automatic parallelization for FORTRAN. The programmer can assist the auto-
matic parallelization (a FORTRAN pre-processor fron: Kuck Associates) with
compiler directives, or can do explicit parallelization using the pthread subrou-

. tine library. The pthread library is provided to the C programmer along with
language extensions to manage shared variables.

Shared Memory

The distinguishing feature of the KSR multiprocessor is its shared-memory ar-
chitecture. Each processor has 32 megabytes of memory. Up to 32 processors are
connected to a slotted, pipelined ring, called a Ring:0. Larger systems are formed
by connecting Ring:0’s to an interconnecting Ring:1, providing up to 1,088 pro-
cessors. The memory of all of the processors is part of a 40-bit virtual address
space managed as a cache, where the ring is used to transport cache lines to
satisfy “cache faults.” Custom CMOS chips manage the cache, ring, and ring-
to-ring routing. The KSR architecture and chip set are designed specifically to
spport a shared-memory multiprocessor. Section 2 and [18] provide more detail

on the actual implementation.

The KSR shared-memory architecture is similar to the bus-based Sequent
systems in that there is one cached address space, but it differs from the Se-
quent in that the Sequent does not have a notion of “local cache,” and the KSR
architecture is extensible beyond 30 processors. The BBN shared-memory multi-

* processors share KSR's extensibility, but under the BBN’s Uniform system there

L IR I TR T mo O T T | BTN LR LTI | LA VT U AL U B | \W" LA T UL TR A (T TRR R A AU RN Y RN \‘H“mwm 1 " ‘w‘ S N A A (L TN

o

. 9.

is no caching, rather a reference to a “remote” shared location will always be
remote, and replication is under software control. KSR differs from the mesh-
based distributed shared-memory systems DASH [14] and PLUS {1] in that these
systems do not provide strongly ordered read/write memory operations. DASH
and PLUS must use explicit synchronization operations when a specific order-
ing is required in accessing a shared location. The KSR memory system is both
sequentially consistent [12] and strongly ordered [4], so ordinary read/write mem-
ory operations can be used to implement synchronizations. The KSR'’s ring-based
memory system is quite similar to MEMNET (2], except that MEMNET still has
a local memory for each processor independent of the ring-based shared memory.
Also, a shared memory location on MEMNET has a “home” location, a feature
not required on the KSR. Delp [2] notes that the ring topology supports broad-
cast and provides an ordering of memory accesses so a coherency protocol is easy
to implement. Both KSR and MEMNET pipeline the ring, sc that more than
one memory transaction may be on the ring at the same time.

Additional details of the implementation of the shared-memory architecture
are provided in Section 2 along with a summary of the processor architecture
and implementation. Section 3 compares the computational performance of a
single KSR processor to other superscalar processors and compares KSR’s UNIX
performance to other UNIX systems. Section 4 measures the parallel perfor-
mance of the KSR multiprocessor and compares it to other shared-memory and
distributed-memory multiprocessors. Section 5 relates our early experiences in
porting various applications to the KSR.

2. Implementation

The KSR ring:0 consists of a 34 slot backplane, populated with 32 processor
boards, or cells. The remaining two slots are used for ring:1 interconnect boards.
Each cell consists of 12 custom CMOS chips. The shared-memory is managed by 4
Cell Interconnect, Units (CIU) and 4 Cache Control Units (CCU). The remaining
chips comprise the four functional units — the Cell Execution unit (CEU), the 30
Megabytes/second (MBs) external I/O unit (XIU), the integer unit (IPU), and
floating point unit (FPU). An instruction pair is executed on each cycle, with one
member of the pair coming from either the CEU or XIU and the other member
being either an FPU or IPU instruction. Thus an address calculation, load/store,
or branch can be executed concurrently with either an integer or floating point
instruction.

Each cell runs at 20 MHz, and the floating point unit supports a pipelined

e L B R L R T TR T I R IR S R UB] Sy LT L R T RN TR R AT T YA TRRS IR AR T LI

- 3.

adder and multiplier for a peak performance rate of 40 Megaflops per cell. Thus
the KSR processor is very similar to other superscalar processors such as the Intel
i860 and the IBM RS/6000 (see Appendix A). The floating point unit uses 64
64-bit registers, and the integer unit has 32 64-bit registers. The CEU uses an
additional set of 32 40-bit address registers. Each cell holds a 256KB data cache
and a 256KB instruction cache, and a 32 Megabyte daughter board is attached to
the back of each processor board. KSR calls the local memory on each processor
cache and refers to the 256 KB data cache as the sub-cache.

The memory of every cell is part of a single 40-bit virtual address space
managed as a hierarchy of caches. If a processor requests a location that is not in
the local data cache then the data is fetched from the on-cell memory. If the data
is not in the on-cell memory, then the data is fetched from the memory of one of
the other cells on the ring(s). In each case the processor is stalled until the data
arrives. The latencies and capacity of each level of the cache hierarchy are listed
in Table 2.1 [18]. The hardware cache (sub-cache) is two-way set associative with
random replacement and write-back and uses a 64-byte cache line. The memory
cache is 16-way set associative with a 128-byte cache line from the ring. Various
options are available for managing a “set-full” in the memory cache [18], and
alternate strategies are still being evaluated.

Memory Latencies
from: [| cycles | capacity
hardware cache 2| 256KB
local memory 18 32MB
ring 0 126 1GB
ring 1 600 34GB

Table 2.1: Vendor-stated memory latencies and capacities.

The programmer or compiler can use a non-blocking pre-fetch instruction (up
to four may be in progress from each processor) and a post-store instruction to
reduce the latency. Synchronization, or locking, is provided by instructions to
lock and unlock a 128-byte subpage.

The KSR configuration at ORNL is a 32 cell-system. An Ethernet and Ex-
abyte 8mm tape drive are connected to the I/O port of cell 1. A Multi-channel
Disk (MCD) controller is attached to cell 3. The MCD has 5 SCSI controllers,
each with two I-gigabyte drives. These drives are presently mounted as indepen-
dent UNIX disk partitions. In the future, the drives can be configured as RAID
arrays and as one logical volume with the files striped across the drives. Ap-
pendix A summarizes the configurations of other machines (BBN TC2000, IBM

L L T T I (T e o LRI T A I TR TT I R IRT T R TR AR S T TR TR (O TN

\w LIRFAR]

4.

RS/6000-530, Intel iPSC/860, and Sequent 80386-Symmetry) used for compari-
son in the following sections. ‘

For the tests described in the following sections, the KSR software release
used was PR1.14. Unless otherwise noted, -O2 optimization was used. Timings
were provided by either the UNIX time command, or by timer calls within the
application. The KSR supports a “global” time-of-day clock with a 10 millisecond
resolution and two sub-microsecond timers on each cell. One timer provides user
time, and the other is a free-running timer. The timers all run at the same
frequency, but the free-running timer is initialized as each cell is started. Each
cell is started serially after cell 1, so all of the free-running timers are offset from
each other. Thus if a process/thread migrates to another cell, timings reported
by the free-running timer cannot be trusted. We used the {ree-running timer
for many of our tests, but we always bound the thread to the cell for the test,
preventing the scheduler from moving it.

3. Single Cell Performance

The single processor performance of the KSR functional units was measured with
several widely used benchmarks. Floating point performance was measured with
the FORTRAN Livermore Loops, SLALOM (version 2) [11], and the 100 x 100
- double-precision LINPACK. As of this writing, KSR FORTRAN codes performed
somewhat faster than the equivalent C programs. As a rough measure of integer
performance the C Dhrystone (version 1) was used. i"igure 3.1 shows the re-
sults of these benchmarks. For comparison, results from the Intel i860 and IBM
RS/6000-530 processor are displayed as well (see Appendix A for configurations
and compiler options). The 20 MHz KSR is competitive with the faster clocked
1860 and 530. The KSR compiles were done with -O2 optimization, except “auto-
inline” was used for LINPACK. Unfortunately, with “auto-inline” the LINPACK
compile takes more than an hour. Without “auto-inline”, the compile still takes
several minutes and performance slows from 15 Mflops to 11 Mflops.

The KSR compilers have not yet been optimized for compile-time speed. The
KSR takes over 6 minutes to compile the 3000-line Livermore Loops FORTRAN
code with -O2 optimization. Compile times for the i860 (a Sun 4/390 cross-
compiler) and the IBM RS/6000-530 are under one minute. A similar disparity
in performance is exhibited by the BYTE benchmark suite, a set of C programs
and shell scripts that exercise various UNIX features including multiple processes,
pipes, and compiles. The time for a BYTE run on the KSR was more than five
minutes, compared with under one minute for the IBM 530. (The BBN TC2000

30 +
B xon e
25 we
R e0oa0
20 ta
Q
o
S 15+
=
10t TR
T‘r'r'r_x_r_rr
b of
5 .
ol
npachd L, leops SLALOMVE dhrystonoe

Figure 3.1: Single processor performance.

ra.: the BYTE suite in 113 seconds, the Sequent Symmetry in 117 seconds.) Some
of the slowness can be attributed to the development stage of the OS and I/0
subsystem. The disk subsystem will eventually support a RAID organization
with striping, but at present each disk i+ a separate UNIX partition.

Basic I/O data rates from the disk subsystem measured with a file system
exerciser (FSX) and simple write/read tests are competitive with data rates {rom
the IBM 530. There was some measurable performance difference if the 1/0 iest
was performed on the cell attached to the disk subsystem. Write times dropped
from nearly 1 Megabtye/second on the I/O cell to 0.31 MBs on other cells. Read
times were about 1 MBs and showed little variation from cell to cell, presumably
due to disk buffer caching, (A 16 Megabyte file was written/read using 16 KB
blocks.) Concurrent 1/O tests, multiple processes writing/reading independent
files on separate disks, showed promising results with a 2.4 MBs aggregate read
rate on four cells — results competitive with concurrent I/O rates on the Intel
hypercube file system (CFS) [7]. More extensive I/O tests will be performed
when the disk system is more optimally configured.

The perforinance of a single KSR processor in executing some simple pro-

" oy R AN A YA " PERTRERRE N I mo G e T oo o '

[T T TR

NI

gy

e

-6 -

cess control primitives is given in Table 3.1, The average time for the creation,
execution, and termination of an empty sub-process using fork()/wait() can be
contrasted with the light weight thread initiate/join. For comparison, the equiv-
alent tests were performed on the BBN TC2000 and Sequent Symmetry. (One
could argue that a simple send/recvon a distributed-memory system is equivalent
to the thread initiate/join. So for further comparison, the time for a send/recv
on the iPSC/860 is about 160 us and about 125 us on the Intel DELTA [8].) The
table also shows the time for a single processor to do a lock/unlock. The KSR,
time is based on using the gsp instruction, using the more general mutex library
call results in an average performance of 12.1 us. Performance of concurrent
lock /unlock tests are described in the next section.

Process Control Primitives (us)
| KSR] BBN] Symmetry
fork/wait 108,000 | 44,000 14,000
thread/join 100 79 26
lock /unlock 3 8 10

Table 3.1: Time for process control primitives on a single processor.

The computational performance of the KSR depends on the effectiveness of
the user’s program in utilizing the memory hierarchy, The large number of reg-
isters and dual instruction streams permit the compiler to generate code to do
computations in one instruction stream while loading and storing data in the
other. The large register set makes it feasible to unroll loops to a greater depth.
A hand-unrolled FORTRAN double-precision (64-bit) matrix multiply achieved
33.3 Mflops.

Data for the registers are fetched from a 256 .KB data cache (sub-cache).
This large cache sustains high performance over larger vector sizes. Figure 3.2
illustrates the performance of a repeated double-precision complex zazpy vector
computation for various vector sizes. The zazpy is repeated 10,000 times on the
same two vectors for various vector sizes. Although this test is not representative
of any application, it does serve to illustrate cache behvior. When the cache cau
no longer contain all of the data, performance drops as data has to be fetched
from the slower main memory. The advantage of the larger cache is evident when
compared with the smaller caches of the i860 (8 KB data cache) and 530 (64
KB data cache). The 256 KB cache actually will hold all of the data for the
100 » 100 LINPACK. Performance for a 128 x 128 matrix drops to 5 Megaflops
for the unmodified FORTRAN code. However, by using a blocked algorithm as
KSR has done for the 1000 x 1000 LINPACK, performance reaches 31 Megaflops

T TR TR 1 g TR T TR TR ITRRIY weoon WAL g e

20 1
KSR 286K0 onche
N—
80 NP cache
5 -
YuaXe¥
St st
10,000 copadl one
+ + } ! |
2000 4000 6000 8000 10000

vector dimension
Figure 3.2: Cache capacity and performance for repeated zaxpy.

on a single processor. {Additional results for the 1000 x 1000 LINPACK are
presented in the next section.)

If the KSR processor fails to find a data item in the local memory, it must issue
a request to the ring to fetch the data from one of the other processors. In the
absence of other activity on the ring, we measured this latency to average about
6.7 microseconds (us). For the BBN T(C2000, a remote access takes less than 2
us, but on the BBN the remote access is not cached to the requesting processor.
By contrast, on the KSR, subsequent references will be local (in the absence of
other exclusive requests for that location from other processors). A remote access
on the iPSC/860 or DELTA would require a send/recv and would take roughly
150 ps. Faulting a large vector from one KSR cell to another, using a 128-byte

. stride, resulted in a data rate of 19.5 MBs. Using the prefetch instruction (up to

four may be in progress at once), the measured data rate increases to 34 MBs. By
comparison, the peak data rate for iPSC/860 is 2.8 MBs, and the measured peak
for the DELTA is about 17 MBs [8]. In the following section we run these memory
tests concurrently on multiple processors and measure both single processor and
aggregate data rates.

LR L TR T " LN S T TR R L RO TR T Rl)

wom

e

o

el

4. Parallel Performance

To measure the parallel performance of the KSR system, we ran a number of the
tests in the previous section concurrently on multiple processors. In addition,
we measured parallel performance of the memory system under various loads.
Parallel tests of various synchronization primitives were conducted as well. The

" parallel tests were conducted using the pthread library and “binding” each thread

to a separate processor.

Concurrent Memory Tests

The prefetch test was run concurrently on independent pairs of processors. There
v;as little or no interference among the pairs, each pair averaged about 30 MBs.
‘The aggregate memory throughput increased linearly to 490 MBs for 16 pairs
(Figure 4.1). The data rate decreases to about 22 MBs if each processor both
fetches and supplies data concurrently. That is, cell 7 is prefetching data in from
cell 141 while cell z — 1 is faulting in data from cell :. The data rate for this test
increases linearly to 731 MBs for 32 cells (Figure 4.1). The linear response and
aggregate data rate are quite good, but these tests were not able to achieve the
vendor-stated peak of 1 GBs.

800

600

400 1 Yos2 3l . e 3-adsd.

Aggragate memory throughput (MB/s)

200 +

L 4 4 : — + } } :
4 8 12 16 20 24 28 32
processors

Figure 4.1: Aggregate memory throughput for concurrent prefetch.

mo [T

WO e gm0

v "'”liul”“"‘ o n\\m‘y‘m’ ENTE 1. IRt AU R L 1! Y T

P

- 9.

To stress the memory subsystem, we measured the average time for doing
an unrestricted update of a shared variable with varying number of processors.
The unrestricted update is unrealistic, since in a real application such an update
would be coordinated with a lock. However, the test is adequate for our intent
of measuring the response of the memory subsystem to a very hot spot. For
comparison, the same test was performed on the BBN and Sequent systems. For
all three machines, the compute time is comparable and increases linearly with
the number of processors (Figure 4.2). Though the Sequent has a slower CPU, its

60

4

x=x+1 {us}

30 +

20 +

10 +

' + 4 — } " s }
4 8 12 16 20 24 28 32
processors

Figure 4.2: Average time for z = z + 1.

memory latency is better than either the BBN or KSR, so the compute times for
this test are comparable. For both the BBN and KSR, the memory subsystem
does not reach saturation until more than four processors are contending for the
shared location. For further comparison, we conducted the hot-spot test on the
distributed memory iPSC/860 and DELTA. Multiple processors send a message
to the owning processor requesting the current value, followed by a message
updating the value. For 32 processors, the average update time was 5.7 ms for
iPSC/860 and 5.9 ms for the DELTA compared to 63 us for the KSR.

To further study the effects of a hot spot in a shared memory, we used the
workload generator described in [16]. An input file to the generator describes
the various workload characteristics for exercising a shared-memory system. One

Sy W B R TR T T R TRT R URCRR TN TU TR CULY U g g g e e s e oo o

LA U AU R RN TT LU

- 10 -

! can specify the r.umber of shared locations, the percentage of shared references

to local references, and whetlier locking is required. We ran the workload using a .
single shared memory location and no locking for various percentages of shared-

to-local references. The occurrence of the shared reference within the wurkload

can be deterministic or probabilistic [16). The tests were run on the KSR, BBN,

and Sequent systems. Figure 4.3 shows the efficiency of each system for a 1%

and 10% shared access ratio using the probabilistic model. Efficiency is mea-

sured as the average time for executing the workload on a single processor (the

“shared” location is local in this case) divided by the average time for executing

the workload concurrently on p processors, T1/T).

1 -
0.8 1
0.6 1
oy
£
£
04 +
0.2 +
— — — e
4 ' } }
5 10 15 20

processors

Figure 4.3: Memory efficiency (Ty/T,) for referencing a shared location as 1%
and 10% of the workload.

Although the three systems performed comparably when the memory subsys-
tems were saturated (Figure 4.2), their behavior under lighter loads is markedly
different. The Sequent shared-bus can easily keep up with the demand from the
workloads. The efficiency for the KSR falls off faster than for the BBN, but
response of the memory subsystems (shape of the curve) are roughly the same.
The KSR has a faster processor and longer remote memory latency than the
BBN which accounts for most of the performance difference. Figure 4.4 are the
same workloads with performance measured as the average time to complete a

e B I G T I T R I (R R N TN TR TR I L L I A R T TE XU NI TR T YR TEANT IR I

- 11 -

2400 {- k
! ‘ e
2200 + K K8h e

e _
8 Symmotry
000<-
2 v
1800 + 1% chared /
e e W% shared e
g 1600 - S
© Ve
1400 +
£ /
® 1200f s . 8 — 4|
2 — — “""‘v - "/' — — — ’
5 1000 +- ya
800 + <
7
600 + e
/7 ‘
400 + ~ o =
— —
200 - X e = T e
o B e S . "
ol o b it —
5 10 15 20
processors

Figure 4.4: Average workload time for referencing a shared location as 1% and
10% of the workload.

workload. The KSR is noticeably slowed in relation to the other two systems,
suggesting the need for coarser-grained applications for the KSR shared-memory
system.

Locks and barriers

Access to a shared location is usually controlled by an atomic locking operation.
A synthetic lock/unlock test was run on the three shared-memory systems to
measure the performance of locking operations on a single lock (Figure 4.5). The
performance of the KSR hardware lock instruction, gsp (blocking version), is
better than the mutez library routine for a few processors, but gsp performance
degrades rapidly for more than 15 processors. The mutez version is thus preferred
and performs well compared to the BBN and Sequent.

The lock controls data access, the barrier controls synchronization of pro-
cesses or threads. Figure 4.6 compares the barrier times for both shared-memory
and distributed-memory systems for varying number of processors. If the bar-
rier is implemented with a single lock, then performance degrades linearly with
the number of processors. The BBN, Sequent, and the KSR (the solid line in
Figure 4.6) use a single-lock barrier. The hypercube and mesh use a spanning

LT L L R A A N g T R LT 1 R R L T 1 N T e e

LR

appe

-12 -

1000 - KSA gop

800 1

600

lock/uniock (us}

400 +

200

5 10 15 20 25
processors

Figure 4.5: Average lock/unlock time for a single lock.

tree to implement the barrier, so performance goes as the log, of the number of
processors. The KSR barrier function also provides an option for a spanning-tree
like implementation. The dashed line in Figure 4.6 shows the iinproved KSR
performance using a tree of width four. (Presumably a similar implementation
for the BBN would improve its barrier performance as well.) The bus-based
Sequent shared-memory system provides the best performance, but the archi-
tecture is not extensible beyond 30 processors. Memory (or message-passing)
latency, bandwidth, and contention account for most of the difference in barrier
performance for the different machines. Since we are using wall-clock time, the
barrier times may also be affected by the OS overhead on one or more processors
on each system. OS timer interrupts typically occur every 10 ms. The timer-
interrupt overhead on the Intel nodes is only about 50 us, but for the UNIX-based
systems (KSR, BBN, and Sequent) the overhead is on the order of 500 yus.

Parallel applications

The next class of benchmarks we used in comparing the KSR with other archi-
tectures consisted of small C applications that utilize shared memory, threads,
barriers, and locks. The applications do simple numeric integration using spatial
decomposition (static allocation), matrix multiply using spatial decomposition

o e I T RN 1IN TR '] Ve e e T R N T I LT L R RO Tt

Mo ey

[Tt

nom

.13 -

900 1

1

700 +

600 1

400 1-

Average bearrier delay (us)

300

200

T

100

T

4 8 12 16 20 24 28 32
processors
Figure 4.8: Average time for a barrier synchronization.

(static allocation), finite difference using chaotic Jacobi iterative method with
static spatial decomposition, a parallel quick sort using a queue-of-tasks model
(dynamic allocation), and solve a linear system using Cholesky factorization (dy-
namic allocation). The codes use explicit parallelization and were easily ported
to the KSR from the Sequent version. The main objective was to compare the
shared-memory architectures running identical source programs (except for the
translation of the calls that manage the parallelism).

Figure 4.7 illustrates the Cholesky performance for the shared-memory mul-
tiprocessors and for the Intel distributed-memory multiprocessors. The shared-
memory code could not be run on the Intel multiprocessors, so the Intel perfor-
mance includes the effects of a different algorithm — the program must explicitly
move portions of the matrix among the various processors. The performance of
the serial code is represented as processor 0 in the figure. The BBN outperformed
the KSR in the parallel (and serial) quick sort and numerical integration. The
quicksort is integer work and the BBN also performed the dhrystones faster than
the KSR (Appendix A). The numerical integration is dominated by floating-point
divides which the KSR does in software and the BBN does in hardware.

The performance of these tests was consistent with the underlying speed of the
individual processors and memory subsystem. In general, the Sequent was slower

[TEENN] L L R L[U L T [TH T S TR TR T /T RO LR} "‘”‘"'\“ i [T AT L TX YRR T I '

LRI TR

myy

- 14 -

12

10 + o BN
K KSR

oy _—

81 D PELTA /

N\
\
\

¢

-y

b N
e ———

" 4 4 ' :

2 4 6 8

processors

Figure 4.7: Megaflops for 400 x 400 double-precision C' Cholesky.

in absolute time, but maintained a higher efficiency (speedup divided by the
number of processors) with increasing processors. The Sequent’s low latency bus
architecture accounts for the high efficiency, but the architecture is not extensible
to more than 30 processors. The KSR was faster than the BBN in most tests and
maintained a higher efficiency. Even though the BBN memory hierarchy has a
lower latency than the KSR ring, the KSR’s ability to “fault” a remote reference
into a local reference results in higher performance for these tests. (A BBN-tuned
application would see that work was assigned to a processor that “owned” the
distributed portions of the global data structures — such tuning is not required
for the KSR, though it too can profit from such tuning.)

To compare the architectures with a larger problem, optimized for each ar-
chitecture, we used th: 1000 x 1000 double precision LINPACK {3]. The KSR
implementation was based on a block algorithm implemented by KSR’s Nick
Camp in FORTRAN with some assembly language. The matrix is manipulated
in groups of columns to optimize the use of the 256 KB cache, and post-store’s
are used to reduce ring latency. Figure 4.8 shows the results over 32 processors
along with results from the iPSC/860 and DELTA. (The Intel implementation
is also based on a block algorithm implemented by Robert van de Geijn.) A
different algorithm is used for 4 or fewer KSR processors, which explains the first

RN T TR R R W m TR LR CE A R NS T R T TR A TR TR TR I T T R I A IR T L win o

"o

[T

.15 -

500 + : ‘ /

450

400 1 ()

300 +

250

Mfiops

200 +
150 /

100 -

4 4 4 4
8 16 24 32
processors

Figure 4.8: Megaflops for 1000 x 1000 double-precision LINPACK.

few data points of the KSR performance curve. The two Intel machines share
the same processor and roughly the same message latency, thus the difference in
their performance is due to the higher bandwidth of the DELTA mesh. The KSR
outperforms the Intel multiprocessors because it has both higher bandwidth and
lower latency. (Performance figures are not available for the BBN and Symme-
try, but since their single-processor performance is low, their parallel performance
would not be competitive for this test.)

5. Early Experiences

As the various benchmark kernels were being developed and tested other users
were working on porting applications to the KSR. The KSR multiprocessor is de-
signed to make porting applications easy and that has been our initial experience,
both for serial and parallel codes. The first parallel application to be ported was a
19,000 line FORTRAN code that calculates energy densities for high temperature
superconducting materials [9]. The code already contained explicit Cray parallcl
micro-tasking directives, so porting to the KSR merely required changing the
names and arguments for thread creation and joining and for lock management.
The parallel version exhibited near linear speedup and achieved 243 Mflops on

oo e s R R T B T TR IR A TR IR T B R LI Rt PR AT R R

e

bk

- 16 -

32 processors.
Serial and parallel versions of a sparse-matrix library (SPARSPAK, [17]) and
a large FORTRAN global climate modeling code are also being ported to the

. KSR. Each of these large FORTRAN applications has usually uncovered one

or more bugs in the -O2 optimization of the FORTRAN compiler. These bugs
were usually fixed quickly. SPARSPAK includes implicit parallel directives for
the Cray and Sequent, and those directives map nicely into corresponding KSR
directives. The climate modeling code also has Cray parallel directives.

A number of UNIX C codes were ported as well, including the Network Time
Protocol (NTP) (15], a variety of hypercube simulators [5], and PVM [10]. Some
of the C codes had to be modified to account for 64-bit long’s. The hypercube
simulators use fork() to create sub-tasks and then use pipes, sockets, or System
V shared memory to communicate among the sub-tasks. Performance for these
simulators was poor, since the scheduler presently runs only one sub-task at a
time.

Hardware reliability has been very good, with only two board failures during
the first four months. The compilers and operating system have improved with
each release, and KSR support has been very responsive. The OS still lacks
several features for full multi-user support, but those features will be available in
the first production release of the OS.

We will continue tracking KSR performance with the new releases and hope
to expand the system to include a second ring. A second ring would permit us to
better understand the extensibility of the architecture. We would like to develop
analytical models of the performance of the memory hierarchy in terms of latency,
hit ratio, and contention. A hardware memory event monitor will be installed on
each cell in early summer. Data from the event monitor will permit us to better
measure architecture and application performance. Finally, the user community
will be expanded, providing more applications and a better understanding of the
ease of use of the KSR multiprocessor.

Acknowledgements

A special thanks to the Advanced Computing Research Facility at Argonne Na-
tional Laboratory for providing access to the BBN TC2000 and Sequent Symme-
try. Arun Nanda of Michigan State University graciously provided source to the
workload program used in [16].

L TN TN LN | R TR "o eemprw om0 e TR TR

o

g

17

6. References

[1] R. Bisiani and M. Ravishankar. PLUS: A distributed shared-memory sys-
tem. In International Symposium on Computcr Architecture, pages 115-124,
1990.

[2] G. S. Delp. The architecture and impelmentation of MEMNET: A high-
speed shared-memory computer communications network. Technical report,
University of Delaware, 1988. Ph.D. Dissertation.

[3] J. Dongarra. Performance of various computers using standard linear equa-
tions software. Technical report, University of Tennessee, January 1991.
CS-89-85.

[4] M. Dubois, C. Scheurich, and F. Griggs. Memory access buffering in mul-
tiprocessors, In 18th International Symposium on Computer Architecture,
pages 434-442, 1986.

[6] T. H. Dunigan. A message-passing multiprocessor sirnulator. Technical re-
port, Oak Ridge National Laboratory, Oak Ridge, TN, 1986. ORNL/TM-
9966. o .

(6] T. H. Dunigan. Hypercube clock synchronization. Technical report, Oak
Ridge National Laboratory, 1991. ORNL/TM-11744.

[7] T. H. Dunigan. Performance of the Intel iPSC/860 and Ncube 6400 hyper-
cubes. Parallel Computing, 17:1285 - 1302, 1991.

[8] T. H. Dunigan. Communication performance of the Intel Touchstone
DELTA mesh. Technical report, Oak Ridge National Laboratory, 1992.
ORNL/TM-11983.

[9] G. A. Geist, M. T. Heath, B. W. Peyton, and P. H. Worley. A Users’ Guide to
PICL A Portable Instrumented Communication Library. Technical report,
Oak Ridge National Laboratory, October 1990. ORNL/TM-11616.

[10] G. A. Geist and V. 8. Sunderam. Network Based Concurrent Computing on
the PVM System. Technical report, Oak Ridge National Laboratory, June
1991. ORNL/TM-11760.

[11] John Qustafsen, Diane Rover, Stephen Elbert, and Michael Carter. The
design of a scalable, fixed-time computer benchmark. Technical report, Ames
Laboratory, 1990.

R W TR T W v IETEIEN , o R L T A R L T N R U TR IRIEEY T TR T A

.18 -

[12] L. Lamport. Solved problems, unsolved problems, and non-problems in con-
currency. Operating Systems Review, 19:34-44, 1985.

[13] R. P. LaRowe and C. S. Ellis. Experimental comparison of memory manage-
ment policies for numa multiprocessors. Technical report, Duke University,
April 1990, CS-1990-10.

[14] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy. The
directory-based cache coherence protocol for the DASH multiprocessor. In
International Symposium on Computer Architecture, pages 148-159, 1990,

[15] D. L. Mills. Network time protocol (version 2) specification and implementa-
tion, Technical report, DARPA Network Working Group, September 1989,
RFC-1119,

[16] A. K. Nanda, H. Shing, T. Tzen, and L. M. Ni. Rcsource contention in
shared-memory multiprocessors: A parameterized performance degradation
model. Parallel and Distributed Computing, 12:313 - 327, 1991.

[17] E. Ng and B. Peyton, Block sparse cholesky algorithms on advanced unipro-
cessor computers. Technical report, Oak Ridge National Laboratory, Oak

Ridge, TN, 1991. ORNL/TM-11960.

[18] Kendall Square Research. KSR1 Principles of Operations. Kendall Square
Research, Waltham, MA, 1991. KSR 8/1/91 Rev 5.5.

[19] R. D. Rettberg, W. R. Crowther, P. P. Carvey, and R. 8. Tomlinson. The
monarch parallel processor hardware design. Computer, 23:18-30, April
1990.

ey m IR TN np o o Wiy [T ' il e [T R T L R I TR TR

. 19 -

A. Comparative Architectures

The KSR is compared with a number of other processors. This appendix sum-

'marizes the architectures and configurations used in this report, The processor
architecture of the IBM RS/6000 and the Intel i860 share several common char-
acteristics with the KSR processor: independent integer and floating point units
and pipelined independent adder/multipliers in the floating point units, The Se-
quent and BBN parallel processors provide contrasting shared-memory architec-
tures. Finally, the Intel distributed-memory parallel processors provide contrast
to KSR's shared-memory model.

BBN TC2000

The BBN TC2000 at Argonne National Laboratory (ANL) is a 45 processor
shared-memory parallel processor, Each processor is a Motorola 88000 running
at 20MHz with 16 MB of memory fronted by a 16KB data cache and a 16KB in-
struction cache. All of the memories are interconnected by a 2-stage 8-way switch,
The system can be expanded up to 512 processors. The Uniform programming
environment (under nX 2,0.6) provides the program with both local and explic-
itly allocated shared memory. The shared memory may be allocated in another
processor’'s memory, and thus a non-uniform memory access (NUMA) mode! is
supported. In the absence of contention, a remote reference typically takes less
than two microseconds, and a single channel of the switch has a bandwidth of
40 MBs [19]. The architecture could be used with other memory management
policies [13]. Compiles on the BBN were done with -O -lus. LINPACK 100 x 100
double-precision was 1.0 Mflops using -OLM -autoinline. Dhrystone (v1.0) was
19.4 Mips.

IBM RS/6000-530

The IBM RS/6000-530 uses a 25 MHz processor with a 64 KB data cache and
a 400 MBs memory bandwidth. The processor has an independent integer and
floating point unit, and the floating point unit has an independent adder and
multiplier. The peak performance is thus 50 Mflops, The workstation used in the
tests was running AIX 3.1 in 16 MB of memory. Compiles used -O optimizations.
LINPACK 100 x 100 double-precision was 11 Mflops {3]. Dhrystone (v1.0) was
23.7 Mips.

A e g W e e L 1 T O I A AL TR 1 1 LT mlwlnmn Coppy

-20 -

Intel iPSC/860 and DELTA

!

?i The Intel iPSC/860 hypercube and DELTA mesh distributed-memory parallel

’ processors both use the 40 MHz i860 processor. The i860 has an 8KB data cache

~and 8 MB of mermory (16 MB on the DELTA) with a memory bandwidth of
160 MBs. The processor has independent integer und floating point units, and
ohe floating point unit has an independent pipelined adder and inultipler for a
peak rate of 64 Mflops. The iPSC/860 has a maximum configuration of 128
processors, The processors are interconnected with a hypncube network with
a latency of about 60 microseconds and a bandwidth of 2.8 MBs per channel
[7). The DELTA is a mesh connected parallel processor located at Cal Tech
with a maximum configuration of 512 processors. The mesh has a latency of
about 50 microseconds and a measured bandwidth of about 17 MBs/channel
[6]. The processors run NX 3.3 and compiles were done with -O3 -Knoieee on a
separate “host” processor, LINPACK 100 x 100 double- precxsxon was 6.5 Mflops
[3]. Dhrystone (v1.0) was 29.4 Mips.

Sequent Symmetry

The 26 processor Sequent Symmetry located at ANL is based on 80386/387 pro-
cessors (16 MHz) with a Weitek 3167 floating point co-processor. Each processor
has a 64KB cache, and 32 MB of memory is shared by all processors on a 54 MBs
bus. The maximum configuration is 30 processors. The processors run Dynix
3.1.2, and compiles were done using -O. LINPACK 100 x 100 double-precision
was 0.37 Mflops [3]. Dhrystone (v1.0) was 3.6 Mips.

System Metrics

KSR [BBN | Seq| 530 [1860 | DELTA
clock rate (MHz) 20 20 16| 26| 40 40
data cache (KB) 256 16 64| 64 8 8
memory size (MB/CPU) 32 16 [32(T)| 16 8 16
memory bandwidth (MBs) 160 ? 71 400 | 160 160
remote mem. bandwith (MBs) 34 40 54 | na. | 2.8 17
remote mem. latency (us) 6.7 2 <1| n.a | 150 150
peak mflops (64-bit) 40 ? 71 50| 64 64
linpack mflops (100 x 100) 15 1 04| 11| 6.5 6.5
dhrystone mips (v1.0) 129 | 194 3.6 237|294 29.4
max processors 1088 | 512 30 | na | 128 512

Table A.1: System metrics for systems used in this report.

) T ' IR o ' e o o omow e oo L] ' [gt MU pog e LR U TR ' RO L o

a7,

38.

39.

40.

41,

42.

43.

44,

45.

48.

47.

48,

.91 -

ORNL/TM-12085
INTERNAL DISTRIBUTION
B. R. Appleton 24-28. R. C, Ward
. T. S. Darland : 29, P, H. Worley
J. J. Dongarra 30. Central Research Library
T. H. Dunigan 31. ORNL Patent Office
G. A. Geist 32, K-25 Plant Library
M. R. Leuze 33. Y-12 Technical Library /
C. E. Oliver ‘ Document Reference Station
R. T. Primm 34. Laboratory Records - RC
. 5. A. Raby 356-36., Luboratory Records Department
R. F. Sincovec
EXTERNAL DISTRIBUTION
Cleve Ashcraft, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seattle,

WA 98124-0346

Donald M. Austin, 6196 EECS Bldg., University of Minnesota, 200 Union St.,
S.E., Minneapolis, MN 55455

Robert G. Babb, Oregon Graduate Institute, CSE Department, 19600 N.W. von
Neumann Drive, Beaverton, OR 97006-1999

Lawrence J. Baker, Exxon Production Research Company, P.O. Box 2189, Hous-
ton, TX 77262-2189

Jesse L. Barlow, Department of Computer Science, Pennsylvania State University,
University Park, PA 16802

Edward H. Barsis, Computer Science and Mathematics, P. O. Box 5800, Sandia
National Laboratories, Albuquerque, NM 87185

Chris Bischof, Mathematics and Computer Science Division, Argonne National
Laboratory, 9700 South Cass Avenue, Argonne, IL 60439

Ake Bjorck, Department of Mathematics, Linkoping University, S-581 83 Linkop-
ing, Sweden

Roger W. Brockett, Wang Professor of Electrical Engineering and Computer Sci-
ence, Division of Applied Sciences, Harvard University, Cambridge, MA 02138

James C. Browne, Department of Computer Science, University of Texas, Austin,
TX 78712

Bill L. Buzbee, Scientific Computing Division, National Center for Atmospheric
Research, P.O. Box 3000, Boulder, CO 80307

Donald A. Calahan, Department of Electrical and Computer Engineering, Univer-
sity of Michigan, Ann Arbor, MI 48109

[5 SR S L

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

-22.

John Cavallini, Acting Director, Scientific Computing Staff, Applied Mathematical
Sciences, Office of Energy Research, U.S. Department of Energy, Washington, DC
20585

Ian Cavers, Department of Computer Science, University of British Columbia,
Vancouver, British Columbia V6T 1W5, Canada

Tony Chan, Department of Mathematics, University of California, Los Angeles,
405 Hilgard Avenue, Los Angeles, CA 90024

Jagdish Chandra, Army Research Office, P.O. Box 12211, Research Triangle Park,
NC 27709

Eleanor Chu, Department of Mathematics and Statistics, University of Guelph,
Guelph, Ontario, Canada N1G 2W1

Melvyn Ciment, National Science Foundation, 1800 G Street N.W., Washington,
DC 20550

Tom Coleman, Department of Computer Science, Cornell University, Ithaca, NY
14853

Paul Concus, Mathematics and Computing, Lawrence Berkeley Laboratory, Berke-
ley, CA 94720

Andy Conn, IBM T. J. Watson Research Center, P.O. Box 218, Yorktown Heights,
NY 10598

John M. Conroy, Supe‘rcomput,er Research Center, 17100 Science Drive, Bowie,
MD 20715-4300

Jane K. Cullum, IBM T. J. Watson Research Center, P.O. Box 218, Yorktown
Heights, NY 10548

George Cybenko, Center for Supercomputing Research and Development, Univer-
sity of Illinois, 104 S. Wright Street, Urbana, IL 61801-2932

George J. Davis, Department of Mathematics, Georgia State University, Atlanta,
GA 30303

Tim A. Davis, Computer and Information Sciences Department, 301 CSE, Uni-
versity of Florida, Gainesville, Florida 32611-2024

John J. Dorning, Department of Nuclear Engineering Physics, Thornton Hall,
McCormick Road, University of Virginia, Charlottesville, VA 22901

Iain Duff, Numerical Analysis Group, Central Computing Department, Atlas Cen-
tre, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX, England

Patricia Eberlein, Department of Computer Sciente, SUNY at Buffalo, Buffalo,
NY 14260

Stanley Eisenstat, Department of Computer Science, Yale University, P.O. Box
2158 Yale Station, New Haven, CT 06520

Howard C. Elman, Computer Science Department, University of Maryland, Col-
lege Park, MD 20742

Albert M. Erisman, Boeing Computer Services, P.O. Box 24346, M /5 7L-21, Seat-
tle, WA 98124-0346

il

il

e g e

g

69.

70.

71

72.

73.
74.

75.

76.

7.

78.

79.

80,

81,

82.

83.

84.

85.

86.

87.

88.

89.

293 -

Geoffrey C. Fox, Northeast Parallel Architectures Center, 111 College Place, Syra-
cuse University, Syracuse, NY 13244-4100

Paul O. Frederickson, NASA Ames Research Center, RIACS, M/S T045-1, Moffett
Field, CA 94035

Robert E. Funderlic, Department of Computer Science, North Carolina State Uni-
versity, Raleigh, NC 27650

K. Gallivan, Computer Science Department, University of Illinois, Urbana, IL
61801

David M. Gay, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974

C. William Gear, Computer Science Department, University of Illinois, Urbana,
IL 61801

W. Morven Gentleman, Division of Electrical Engineering, National Research
Council, Building M-50, Room 344, Montreal Road, Ottawa, Ontario, Canada
K1A OR8

J. Alan George, Vice President, Academic and Provost, Needles Hall, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1

John R. Gilbert, Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo
Alto CA 94304

Gene H. Golub, Department of Computer Science, Stanford University, Stanford,
CA 94305

Joseph F. Grear, Division 8331, Sandia National Laboratories, Livermore, CA
94550

John Gustafson, Ames Laboratory, Iowa State University, Ames, IA 50011

Michael T. Heath, National Center for Supercomputing Applications, 4157 Beck-
man Institute, University of Illinois, 405 North Mathews Avenue, Urbana, IL
61801-2300

Don E. Heller, Physics and Computer Science Department, Shell Development
Co., P.O. Box 481, Houston, TX 77001

Charles J. Holland, Air Force Office of Scientific Research, Building 410, Bolling
Air Force Base, Washington, DC 20332

Robert E. Huddleston, Computation Department, Lawrence Livermore National
Laboratory, P.O. Box 808, Livermore, CA 94550

Ilse Ipsen, Department of Computer Science, Yale University, P.O. Box 2158 Yale
Station, New Haven, CT 06520

Lennart Johnsson, Thinking Machines Inc., 245 Fir.t Street, Cambridge, MA
02142-1214

Harry Jordan, Department of Electrical and Computer Engineering, University of
Colorado, Boulder, CO 80309

Malvyn H. Kalos, Cornell Theory Center, Engineering and Theory Center Bldg.,
Cornell University, Ithaca, NY 14853-3901

Hans Kaper, Mathematics and Computer Science Division, Argonne National Lab-
oratory, 9700 South Cass Avenue, Bldg. 221, Atgonne, IL 60439

o ‘Wlwn . RO T T A T R T e A R R VR K T TR TRGT LA R T ”"‘”“Mm’m‘

e ‘"‘U”‘ ' \“HWH Iy

.94 .

90. Kenneth Kennedy, Department of Computer Science, Rice University, P.O. Box
1892, Houston, TX 77001

\ 91. Thomas Kitchens, Department of Energy, Scientific Computing StafT, Office of
i Energy Research, ER-7, Office G-236 Germantown, Washington, DC 20585

92. Richard Lau, Office of Naval Research, 1030 E. Green Street, Pasadena, CA 91101

93. Alan J. Laub, Department of Electrical and Computer Engineering, University of
California, Santa Barbara, CA 93106

94. Robert L. Launer, Army Research Office, P.O. Box 12211, Research Triangle Park,
NC 27709

95. Charles Lawson, MS 301-490, Jet Propulsion Laboratory, 4800 Oak Grove Drive,
Pasadena, CA 91109

| 96. James E. Leiss, Rt. 2, Box 142C, Broadway, VA 22815

97. John G. Lewis, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seattle,
WA 98124-0346

98. Robert F. Lucas, Supercomputer Research Center, 17100 Science Drive, Bowie,
MD 20715-4300

99. Franklin Luk, Electrical Engineering Department, Cornell University, ithaca, NY
14853

100. Paul C. Messina, Mail Code 158-79, California Institute of Technology, 1201
E. California Blvd., Pasadena, CA 91125 ‘

101. James McGraw, Lawrence Livermore National Laboratory, L-306, P.O. Box 808, .
Livermore, CA 94550
102. Neville Moray, Department of Mechanical and Industrial Engineering, University -

of Illinois, 1206 West Green Street, Urbana, IL 61801
103. Cleve Moler, The Mathworks, 325 Linfield Place, Menlo Park, CA 94025
104. Brent Morris, National Security Agency, Ft. George G. Meade, MD 20755

105. Dianne P. O'Leary, Computer Science Department, University of Maryland, Col-
lege Park, MD 20742

106. James M. Ortega, Department of Applied Mathematics, Thornton Hall, University
of Virginia, Charlottesville, VA 22901

107. Roy P. Pargas, Department of Computer Science, Clemson University, Clemson,
SC 29634-1906

108. Beresford N. Parlett, Department of Mathematics, University of California, Berke-
ley, CA 94720

109. Merrell Patrick, Department of Computer Science, Duke University, Durham, NC
27706

110. Robert J. Plemmons, Departments of Mathematics and Computer Science, Box
7311, Wake Forest University Winston-Salem, NC 27109

111. Jesse Poore, Department of Computer Science, Ayres Hall, University of Ten-
nessee, Knoxville, TN 37996-1301 .

|
[et g

R L 1 O I A L L LT L T O LN L R T O O [N T R . TR U I T T T AT

[T

A

112.
113.
114,
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.

132.

[R I L AT e

- 95 -

Alex Pothen, Department of Computer Science, Pennsylvania State University,
University Park, PA 16802

Yuanchang Qi, IBM European Petroleum Application Center, P.O. Box 585, N-
4040 Hafrsfjord, Norway

Giuseppe Radicati, IBM European Center for Scientific and Engineering Comput-
ing, via del Giorgione 159, 1-00147 Roma, Italy

John K. Reid, Numerical Analysis Group, Central Computing Department, Atlas
Centre, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX, England

Werner C. Rheinboldt, Department of Mathematics and Statistics, University of
Pittsburgh, Pittsburgh, PA 15260

John R. Rice, Computer Science Department, Purdue University, West Lafayette,
IN 47907

Donald J. Ruse, Department of Computer Science, Duke University, Durham, NC
27706

Edward Rothberg, Department of Computer Science, Stanford University, Stan-
ford, CA 94305

Joel Saltz, ICASE, MS 132C, NASA Langley Research Center, Hampton, VA
23665 ~

Ahmed H. Sameh, Center for Supercomputing R&D, 1384 W. Springfield Avenue,
University of Illinois, Urbana, IL 61801

Robert Schreiber, RIACS, Mail Stop 230-5, NASA Ames Research Center, Moffet
Field, CA 94035

Martin H. Schultz, Department of Computer Science, Yale University, P.O. Box
2158 Yale Station, New Haven, CT 06520

David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway, Beaver-
ton, OR 97006

Andy Sherman, Department of Computer Science, Yale University, P.O. Box 2158
Yale Station, New Haven, CT 06520

Kermit Sigmon, Department of Mathematics, University of Florida, Gainesville,
FL 32611

Horst Simon, Mail Stop T045-1, NASA Ames Research Center, Moffett Field, CA
94035

Danny C. Sorensen, Department of Mathematical Sciences, Rice University, P. O. Box
1892, Houston, TX 77251

G. W. Stewart, Computer Science Department, University of Maryland, College
Park, MD 20742

Paul N. Swartztrauber, National Center for Atmospheric Research, P.O. Box 3000,
Boulder, CO 80307

Robert G. Voigt, ICASE, MS 132-C, NASA Langley Research Center, Hampton,
VA 23665

Phuong Vu, Cray Research, Inc., 19607 franz rd., Houston, TX 77084

WM R g g I TERT BT g ey [R T L L T T I NI TR

i} - 26 -

| 133. Mary F. Wheeler, Rice University, Department of Mathematical Sciences, P.O. Box
1892, Houston, TX 77251

" "
ir 134. Andrew B. White, Computing Division, Los Alamos National Laboratory, P.O. Box
! 1663, MS-266, Los Alamos, NM 87546

‘ ‘ 136. David Young, University of Texas, Center for Numerical Analysis, RLM 13.150,
j Austin, TX 78731

136. Office of Assistant Manager for Energy Research and Development, U.S. Depart-
ment of Energy, Oak Ridge Operations Office, P.O. Box 2001 Oak Ridge, TN
37831-8600

137-146, Office of Scientific & Technical Information, P.O. Box 62, Oak Ridge, TN 37831

I A TR IO TR IR Y T TR R R I RN IR R [IRENTIN)

I
WI -

. " f
L T TN D TR I KRR (EET TRTUE TR L T L B T3 TR T T KL] [...H,N!W

T L L T R A NIE I I A [L R R T T TR AU T R T RGN

