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KENDALL SQUARE MULTIPROCESSOR: EARLY
EXPERIENCES AND PERFORMANCE

Thomas H. Dunigan

Abstract

Initial performance results and early experiences are reported for the
Kendall Square Research multiprocessor. The basic architecture of the
shared-memory multiprocessor is described, and computational and I/0
performance is measured for both serial and parallel programs. xperiences
in porting various applications are described. ,
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1. Introduction

In September of 1991, a Kendall Square Research (KSR) multiprocessor was
installed at Oak Ridge National Laboratory (ORNL). This report describes the
results of this initial field test. The performance of the KSR shared-memory
multiprocessor is compared with other shared-memory and distributed-memory
b multiprecessors, using synthetic benchmarks and real applications. Performance

figures must be considered preliminary, since the KSR system was in its first field
test. '

The KSR multiprocessor runs a modified version of OSF/1 (Mach). To
the user, the KSR system appears like typical UNIX7M, but providing perfor-
mance advantages similar to those provided by the Sequent Symmetry and BBN
TC2000 multiprocessors and providing scalability similar to the Intel iPSC/860
and DELTA. Piped processes and backgrovnd jobs can utilize the multiprocessor
architecture to provide improved throughput and response time.

A programmer on the KSR system is provided with a parallel make and with
automatic parallelization for FORTRAN. The programmer can assist the auto-
matic parallelization (a FORTRAN pre-processor fron: Kuck Associates) with
compiler directives, or can do explicit parallelization using the pthread subrou-

. tine library. The pthread library is provided to the C programmer along with
language extensions to manage shared variables.

Shared Memory

The distinguishing feature of the KSR multiprocessor is its shared-memory ar-
chitecture. Each processor has 32 megabytes of memory. Up to 32 processors are
connected to a slotted, pipelined ring, called a Ring:0. Larger systems are formed
by connecting Ring:0’s to an interconnecting Ring:1, providing up to 1,088 pro-
cessors. The memory of all of the processors is part of a 40-bit virtual address
space managed as a cache, where the ring is used to transport cache lines to
satisfy “cache faults.” Custom CMOS chips manage the cache, ring, and ring-
to-ring routing. The KSR architecture and chip set are designed specifically to
spport a shared-memory multiprocessor. Section 2 and [18] provide more detail

on the actual implementation.

The KSR shared-memory architecture is similar to the bus-based Sequent
systems in that there is one cached address space, but it differs from the Se-
quent in that the Sequent does not have a notion of “local cache,” and the KSR
architecture is extensible beyond 30 processors. The BBN shared-memory multi-

* processors share KSR's extensibility, but under the BBN’s Uniform system there
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is no caching, rather a reference to a “remote” shared location will always be
remote, and replication is under software control. KSR differs from the mesh-
based distributed shared-memory systems DASH [14] and PLUS {1] in that these
systems do not provide strongly ordered read/write memory operations. DASH
and PLUS must use explicit synchronization operations when a specific order-
ing is required in accessing a shared location. The KSR memory system is both
sequentially consistent [12] and strongly ordered [4], so ordinary read/write mem-
ory operations can be used to implement synchronizations. The KSR'’s ring-based
memory system is quite similar to MEMNET (2], except that MEMNET still has
a local memory for each processor independent of the ring-based shared memory.
Also, a shared memory location on MEMNET has a “home” location, a feature
not required on the KSR. Delp [2] notes that the ring topology supports broad-
cast and provides an ordering of memory accesses so a coherency protocol is easy
to implement. Both KSR and MEMNET pipeline the ring, sc that more than
one memory transaction may be on the ring at the same time.

Additional details of the implementation of the shared-memory architecture
are provided in Section 2 along with a summary of the processor architecture
and implementation. Section 3 compares the computational performance of a
single KSR processor to other superscalar processors and compares KSR’s UNIX
performance to other UNIX systems. Section 4 measures the parallel perfor-
mance of the KSR multiprocessor and compares it to other shared-memory and
distributed-memory multiprocessors. Section 5 relates our early experiences in
porting various applications to the KSR.

2. Implementation

The KSR ring:0 consists of a 34 slot backplane, populated with 32 processor
boards, or cells. The remaining two slots are used for ring:1 interconnect boards.
Each cell consists of 12 custom CMOS chips. The shared-memory is managed by 4
Cell Interconnect, Units (CIU) and 4 Cache Control Units (CCU). The remaining
chips comprise the four functional units — the Cell Execution unit (CEU), the 30
Megabytes/second (MBs) external I/O unit (XIU), the integer unit (IPU), and
floating point unit (FPU). An instruction pair is executed on each cycle, with one
member of the pair coming from either the CEU or XIU and the other member
being either an FPU or IPU instruction. Thus an address calculation, load/store,
or branch can be executed concurrently with either an integer or floating point
instruction.

Each cell runs at 20 MHz, and the floating point unit supports a pipelined
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adder and multiplier for a peak performance rate of 40 Megaflops per cell. Thus
the KSR processor is very similar to other superscalar processors such as the Intel
i860 and the IBM RS/6000 (see Appendix A). The floating point unit uses 64
64-bit registers, and the integer unit has 32 64-bit registers. The CEU uses an
additional set of 32 40-bit address registers. Each cell holds a 256KB data cache
and a 256KB instruction cache, and a 32 Megabyte daughter board is attached to
the back of each processor board. KSR calls the local memory on each processor
cache and refers to the 256 KB data cache as the sub-cache.

The memory of every cell is part of a single 40-bit virtual address space
managed as a hierarchy of caches. If a processor requests a location that is not in
the local data cache then the data is fetched from the on-cell memory. If the data
is not in the on-cell memory, then the data is fetched from the memory of one of
the other cells on the ring(s). In each case the processor is stalled until the data
arrives. The latencies and capacity of each level of the cache hierarchy are listed
in Table 2.1 [18]. The hardware cache (sub-cache) is two-way set associative with
random replacement and write-back and uses a 64-byte cache line. The memory
cache is 16-way set associative with a 128-byte cache line from the ring. Various
options are available for managing a “set-full” in the memory cache [18], and
alternate strategies are still being evaluated.

Memory Latencies
from: [| cycles | capacity
hardware cache 2| 256KB
local memory 18 32MB
ring 0 126 1GB
ring 1 600 34GB

Table 2.1: Vendor-stated memory latencies and capacities.

The programmer or compiler can use a non-blocking pre-fetch instruction (up
to four may be in progress from each processor) and a post-store instruction to
reduce the latency. Synchronization, or locking, is provided by instructions to
lock and unlock a 128-byte subpage.

The KSR configuration at ORNL is a 32 cell-system. An Ethernet and Ex-
abyte 8mm tape drive are connected to the I/O port of cell 1. A Multi-channel
Disk (MCD) controller is attached to cell 3. The MCD has 5 SCSI controllers,
each with two I-gigabyte drives. These drives are presently mounted as indepen-
dent UNIX disk partitions. In the future, the drives can be configured as RAID
arrays and as one logical volume with the files striped across the drives. Ap-
pendix A summarizes the configurations of other machines (BBN TC2000, IBM
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4.

RS/6000-530, Intel iPSC/860, and Sequent 80386-Symmetry) used for compari-
son in the following sections. ‘

For the tests described in the following sections, the KSR software release
used was PR1.14. Unless otherwise noted, -O2 optimization was used. Timings
were provided by either the UNIX time command, or by timer calls within the
application. The KSR supports a “global” time-of-day clock with a 10 millisecond
resolution and two sub-microsecond timers on each cell. One timer provides user
time, and the other is a free-running timer. The timers all run at the same
frequency, but the free-running timer is initialized as each cell is started. Each
cell is started serially after cell 1, so all of the free-running timers are offset from
each other. Thus if a process/thread migrates to another cell, timings reported
by the free-running timer cannot be trusted. We used the {ree-running timer
for many of our tests, but we always bound the thread to the cell for the test,
preventing the scheduler from moving it.

3. Single Cell Performance

The single processor performance of the KSR functional units was measured with
several widely used benchmarks. Floating point performance was measured with
the FORTRAN Livermore Loops, SLALOM (version 2) [11], and the 100 x 100
- double-precision LINPACK. As of this writing, KSR FORTRAN codes performed
somewhat faster than the equivalent C programs. As a rough measure of integer
performance the C Dhrystone (version 1) was used. i"igure 3.1 shows the re-
sults of these benchmarks. For comparison, results from the Intel i860 and IBM
RS/6000-530 processor are displayed as well (see Appendix A for configurations
and compiler options). The 20 MHz KSR is competitive with the faster clocked
1860 and 530. The KSR compiles were done with -O2 optimization, except “auto-
inline” was used for LINPACK. Unfortunately, with “auto-inline” the LINPACK
compile takes more than an hour. Without “auto-inline”, the compile still takes
several minutes and performance slows from 15 Mflops to 11 Mflops.

The KSR compilers have not yet been optimized for compile-time speed. The
KSR takes over 6 minutes to compile the 3000-line Livermore Loops FORTRAN
code with -O2 optimization. Compile times for the i860 (a Sun 4/390 cross-
compiler) and the IBM RS/6000-530 are under one minute. A similar disparity
in performance is exhibited by the BYTE benchmark suite, a set of C programs
and shell scripts that exercise various UNIX features including multiple processes,
pipes, and compiles. The time for a BYTE run on the KSR was more than five
minutes, compared with under one minute for the IBM 530. (The BBN TC2000
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Figure 3.1: Single processor performance.

ra.: the BYTE suite in 113 seconds, the Sequent Symmetry in 117 seconds.) Some
of the slowness can be attributed to the development stage of the OS and I/0
subsystem. The disk subsystem will eventually support a RAID organization
with striping, but at present each disk i+ a separate UNIX partition.

Basic I/O data rates from the disk subsystem measured with a file system
exerciser (FSX) and simple write/read tests are competitive with data rates {rom
the IBM 530. There was some measurable performance difference if the 1/0 iest
was performed on the cell attached to the disk subsystem. Write times dropped
from nearly 1 Megabtye/second on the I/O cell to 0.31 MBs on other cells. Read
times were about 1 MBs and showed little variation from cell to cell, presumably
due to disk buffer caching, (A 16 Megabyte file was written/read using 16 KB
blocks.) Concurrent 1/O tests, multiple processes writing/reading independent
files on separate disks, showed promising results with a 2.4 MBs aggregate read
rate on four cells — results competitive with concurrent I/O rates on the Intel
hypercube file system (CFS) [7]. More extensive I/O tests will be performed
when the disk system is more optimally configured.

The perforinance of a single KSR processor in executing some simple pro-
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cess control primitives is given in Table 3.1, The average time for the creation,
execution, and termination of an empty sub-process using fork()/wait() can be
contrasted with the light weight thread initiate/join. For comparison, the equiv-
alent tests were performed on the BBN TC2000 and Sequent Symmetry. (One
could argue that a simple send/recvon a distributed-memory system is equivalent
to the thread initiate/join. So for further comparison, the time for a send/recv
on the iPSC/860 is about 160 us and about 125 us on the Intel DELTA [8].) The
table also shows the time for a single processor to do a lock/unlock. The KSR,
time is based on using the gsp instruction, using the more general mutex library
call results in an average performance of 12.1 us. Performance of concurrent
lock /unlock tests are described in the next section.

Process Control Primitives (us)
|  KSR] BBN ] Symmetry
fork/wait 108,000 | 44,000 14,000
thread/join 100 79 26
lock /unlock 3 8 10

Table 3.1: Time for process control primitives on a single processor.

The computational performance of the KSR depends on the effectiveness of
the user’s program in utilizing the memory hierarchy, The large number of reg-
isters and dual instruction streams permit the compiler to generate code to do
computations in one instruction stream while loading and storing data in the
other. The large register set makes it feasible to unroll loops to a greater depth.
A hand-unrolled FORTRAN double-precision (64-bit) matrix multiply achieved
33.3 Mflops.

Data for the registers are fetched from a 256 .KB data cache (sub-cache).
This large cache sustains high performance over larger vector sizes. Figure 3.2
illustrates the performance of a repeated double-precision complex zazpy vector
computation for various vector sizes. The zazpy is repeated 10,000 times on the
same two vectors for various vector sizes. Although this test is not representative
of any application, it does serve to illustrate cache behvior. When the cache cau
no longer contain all of the data, performance drops as data has to be fetched
from the slower main memory. The advantage of the larger cache is evident when
compared with the smaller caches of the i860 (8 KB data cache) and 530 (64
KB data cache). The 256 KB cache actually will hold all of the data for the
100 » 100 LINPACK. Performance for a 128 x 128 matrix drops to 5 Megaflops
for the unmodified FORTRAN code. However, by using a blocked algorithm as
KSR has done for the 1000 x 1000 LINPACK, performance reaches 31 Megaflops
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Figure 3.2: Cache capacity and performance for repeated zaxpy.

on a single processor. {Additional results for the 1000 x 1000 LINPACK are
presented in the next section.)

If the KSR processor fails to find a data item in the local memory, it must issue
a request to the ring to fetch the data from one of the other processors. In the
absence of other activity on the ring, we measured this latency to average about
6.7 microseconds (us). For the BBN T(C2000, a remote access takes less than 2
us, but on the BBN the remote access is not cached to the requesting processor.
By contrast, on the KSR, subsequent references will be local (in the absence of
other exclusive requests for that location from other processors). A remote access
on the iPSC/860 or DELTA would require a send/recv and would take roughly
150 ps. Faulting a large vector from one KSR cell to another, using a 128-byte

. stride, resulted in a data rate of 19.5 MBs. Using the prefetch instruction (up to

four may be in progress at once), the measured data rate increases to 34 MBs. By
comparison, the peak data rate for iPSC/860 is 2.8 MBs, and the measured peak
for the DELTA is about 17 MBs [8]. In the following section we run these memory
tests concurrently on multiple processors and measure both single processor and
aggregate data rates.
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4. Parallel Performance

To measure the parallel performance of the KSR system, we ran a number of the
tests in the previous section concurrently on multiple processors. In addition,
we measured parallel performance of the memory system under various loads.
Parallel tests of various synchronization primitives were conducted as well. The

" parallel tests were conducted using the pthread library and “binding” each thread

to a separate processor.

Concurrent Memory Tests

The prefetch test was run concurrently on independent pairs of processors. There
v;as little or no interference among the pairs, each pair averaged about 30 MBs.
‘The aggregate memory throughput increased linearly to 490 MBs for 16 pairs
(Figure 4.1). The data rate decreases to about 22 MBs if each processor both
fetches and supplies data concurrently. That is, cell 7 is prefetching data in from
cell 141 while cell z — 1 is faulting in data from cell :. The data rate for this test
increases linearly to 731 MBs for 32 cells (Figure 4.1). The linear response and
aggregate data rate are quite good, but these tests were not able to achieve the
vendor-stated peak of 1 GBs.

800

600

400 1 Yos2 3l . e 3-adsd.

Aggragate memory throughput (MB/s)

200 +

L 4 4 : — + } } :
4 8 12 16 20 24 28 32
processors

Figure 4.1: Aggregate memory throughput for concurrent prefetch.
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To stress the memory subsystem, we measured the average time for doing
an unrestricted update of a shared variable with varying number of processors.
The unrestricted update is unrealistic, since in a real application such an update
would be coordinated with a lock. However, the test is adequate for our intent
of measuring the response of the memory subsystem to a very hot spot. For
comparison, the same test was performed on the BBN and Sequent systems. For
all three machines, the compute time is comparable and increases linearly with
the number of processors (Figure 4.2). Though the Sequent has a slower CPU, its

60

4

x=x+1 {us}

30 +

20 +

10 +

' + 4 — } " s }
4 8 12 16 20 24 28 32
processors

Figure 4.2: Average time for z = z + 1.

memory latency is better than either the BBN or KSR, so the compute times for
this test are comparable. For both the BBN and KSR, the memory subsystem
does not reach saturation until more than four processors are contending for the
shared location. For further comparison, we conducted the hot-spot test on the
distributed memory iPSC/860 and DELTA. Multiple processors send a message
to the owning processor requesting the current value, followed by a message
updating the value. For 32 processors, the average update time was 5.7 ms for
iPSC/860 and 5.9 ms for the DELTA compared to 63 us for the KSR.

To further study the effects of a hot spot in a shared memory, we used the
workload generator described in [16]. An input file to the generator describes
the various workload characteristics for exercising a shared-memory system. One
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! can specify the r.umber of shared locations, the percentage of shared references

to local references, and whetlier locking is required. We ran the workload using a .
single shared memory location and no locking for various percentages of shared-

to-local references. The occurrence of the shared reference within the wurkload

can be deterministic or probabilistic [16). The tests were run on the KSR, BBN,

and Sequent systems. Figure 4.3 shows the efficiency of each system for a 1%

and 10% shared access ratio using the probabilistic model. Efficiency is mea-

sured as the average time for executing the workload on a single processor (the

“shared” location is local in this case) divided by the average time for executing

the workload concurrently on p processors, T1/T).

1 -
0.8 1
0.6 1
oy
£
£
04 +
0.2 +
— — — e
4 ' } }
5 10 15 20

processors

Figure 4.3: Memory efficiency (Ty/T,) for referencing a shared location as 1%
and 10% of the workload.

Although the three systems performed comparably when the memory subsys-
tems were saturated (Figure 4.2), their behavior under lighter loads is markedly
different. The Sequent shared-bus can easily keep up with the demand from the
workloads. The efficiency for the KSR falls off faster than for the BBN, but
response of the memory subsystems (shape of the curve) are roughly the same.
The KSR has a faster processor and longer remote memory latency than the
BBN which accounts for most of the performance difference. Figure 4.4 are the
same workloads with performance measured as the average time to complete a
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Figure 4.4: Average workload time for referencing a shared location as 1% and
10% of the workload.

workload. The KSR is noticeably slowed in relation to the other two systems,
suggesting the need for coarser-grained applications for the KSR shared-memory
system.

Locks and barriers

Access to a shared location is usually controlled by an atomic locking operation.
A synthetic lock/unlock test was run on the three shared-memory systems to
measure the performance of locking operations on a single lock (Figure 4.5). The
performance of the KSR hardware lock instruction, gsp (blocking version), is
better than the mutez library routine for a few processors, but gsp performance
degrades rapidly for more than 15 processors. The mutez version is thus preferred
and performs well compared to the BBN and Sequent.

The lock controls data access, the barrier controls synchronization of pro-
cesses or threads. Figure 4.6 compares the barrier times for both shared-memory
and distributed-memory systems for varying number of processors. If the bar-
rier is implemented with a single lock, then performance degrades linearly with
the number of processors. The BBN, Sequent, and the KSR (the solid line in
Figure 4.6) use a single-lock barrier. The hypercube and mesh use a spanning
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400 +

200
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processors

Figure 4.5: Average lock/unlock time for a single lock.

tree to implement the barrier, so performance goes as the log, of the number of
processors. The KSR barrier function also provides an option for a spanning-tree
like implementation. The dashed line in Figure 4.6 shows the iinproved KSR
performance using a tree of width four. (Presumably a similar implementation
for the BBN would improve its barrier performance as well.) The bus-based
Sequent shared-memory system provides the best performance, but the archi-
tecture is not extensible beyond 30 processors. Memory (or message-passing)
latency, bandwidth, and contention account for most of the difference in barrier
performance for the different machines. Since we are using wall-clock time, the
barrier times may also be affected by the OS overhead on one or more processors
on each system. OS timer interrupts typically occur every 10 ms. The timer-
interrupt overhead on the Intel nodes is only about 50 us, but for the UNIX-based
systems (KSR, BBN, and Sequent) the overhead is on the order of 500 yus.

Parallel applications

The next class of benchmarks we used in comparing the KSR with other archi-
tectures consisted of small C applications that utilize shared memory, threads,
barriers, and locks. The applications do simple numeric integration using spatial
decomposition (static allocation), matrix multiply using spatial decomposition
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Figure 4.8: Average time for a barrier synchronization.

(static allocation), finite difference using chaotic Jacobi iterative method with
static spatial decomposition, a parallel quick sort using a queue-of-tasks model
(dynamic allocation), and solve a linear system using Cholesky factorization (dy-
namic allocation). The codes use explicit parallelization and were easily ported
to the KSR from the Sequent version. The main objective was to compare the
shared-memory architectures running identical source programs (except for the
translation of the calls that manage the parallelism).

Figure 4.7 illustrates the Cholesky performance for the shared-memory mul-
tiprocessors and for the Intel distributed-memory multiprocessors. The shared-
memory code could not be run on the Intel multiprocessors, so the Intel perfor-
mance includes the effects of a different algorithm — the program must explicitly
move portions of the matrix among the various processors. The performance of
the serial code is represented as processor 0 in the figure. The BBN outperformed
the KSR in the parallel (and serial) quick sort and numerical integration. The
quicksort is integer work and the BBN also performed the dhrystones faster than
the KSR (Appendix A). The numerical integration is dominated by floating-point
divides which the KSR does in software and the BBN does in hardware.

The performance of these tests was consistent with the underlying speed of the
individual processors and memory subsystem. In general, the Sequent was slower
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Figure 4.7: Megaflops for 400 x 400 double-precision C' Cholesky.

in absolute time, but maintained a higher efficiency (speedup divided by the
number of processors) with increasing processors. The Sequent’s low latency bus
architecture accounts for the high efficiency, but the architecture is not extensible
to more than 30 processors. The KSR was faster than the BBN in most tests and
maintained a higher efficiency. Even though the BBN memory hierarchy has a
lower latency than the KSR ring, the KSR’s ability to “fault” a remote reference
into a local reference results in higher performance for these tests. (A BBN-tuned
application would see that work was assigned to a processor that “owned” the
distributed portions of the global data structures — such tuning is not required
for the KSR, though it too can profit from such tuning.)

To compare the architectures with a larger problem, optimized for each ar-
chitecture, we used th: 1000 x 1000 double precision LINPACK {3]. The KSR
implementation was based on a block algorithm implemented by KSR’s Nick
Camp in FORTRAN with some assembly language. The matrix is manipulated
in groups of columns to optimize the use of the 256 KB cache, and post-store’s
are used to reduce ring latency. Figure 4.8 shows the results over 32 processors
along with results from the iPSC/860 and DELTA. (The Intel implementation
is also based on a block algorithm implemented by Robert van de Geijn.) A
different algorithm is used for 4 or fewer KSR processors, which explains the first
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Figure 4.8: Megaflops for 1000 x 1000 double-precision LINPACK.

few data points of the KSR performance curve. The two Intel machines share
the same processor and roughly the same message latency, thus the difference in
their performance is due to the higher bandwidth of the DELTA mesh. The KSR
outperforms the Intel multiprocessors because it has both higher bandwidth and
lower latency. (Performance figures are not available for the BBN and Symme-
try, but since their single-processor performance is low, their parallel performance
would not be competitive for this test.)

5. Early Experiences

As the various benchmark kernels were being developed and tested other users
were working on porting applications to the KSR. The KSR multiprocessor is de-
signed to make porting applications easy and that has been our initial experience,
both for serial and parallel codes. The first parallel application to be ported was a
19,000 line FORTRAN code that calculates energy densities for high temperature
superconducting materials [9]. The code already contained explicit Cray parallcl
micro-tasking directives, so porting to the KSR merely required changing the
names and arguments for thread creation and joining and for lock management.
The parallel version exhibited near linear speedup and achieved 243 Mflops on
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32 processors.
Serial and parallel versions of a sparse-matrix library (SPARSPAK, [17]) and
a large FORTRAN global climate modeling code are also being ported to the

. KSR. Each of these large FORTRAN applications has usually uncovered one

or more bugs in the -O2 optimization of the FORTRAN compiler. These bugs
were usually fixed quickly. SPARSPAK includes implicit parallel directives for
the Cray and Sequent, and those directives map nicely into corresponding KSR
directives. The climate modeling code also has Cray parallel directives.

A number of UNIX C codes were ported as well, including the Network Time
Protocol (NTP) (15], a variety of hypercube simulators [5], and PVM [10]. Some
of the C codes had to be modified to account for 64-bit long’s. The hypercube
simulators use fork() to create sub-tasks and then use pipes, sockets, or System
V shared memory to communicate among the sub-tasks. Performance for these
simulators was poor, since the scheduler presently runs only one sub-task at a
time.

Hardware reliability has been very good, with only two board failures during
the first four months. The compilers and operating system have improved with
each release, and KSR support has been very responsive. The OS still lacks
several features for full multi-user support, but those features will be available in
the first production release of the OS.

We will continue tracking KSR performance with the new releases and hope
to expand the system to include a second ring. A second ring would permit us to
better understand the extensibility of the architecture. We would like to develop
analytical models of the performance of the memory hierarchy in terms of latency,
hit ratio, and contention. A hardware memory event monitor will be installed on
each cell in early summer. Data from the event monitor will permit us to better
measure architecture and application performance. Finally, the user community
will be expanded, providing more applications and a better understanding of the
ease of use of the KSR multiprocessor.
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A. Comparative Architectures

The KSR is compared with a number of other processors. This appendix sum-

'marizes the architectures and configurations used in this report, The processor
architecture of the IBM RS/6000 and the Intel i860 share several common char-
acteristics with the KSR processor: independent integer and floating point units
and pipelined independent adder/multipliers in the floating point units, The Se-
quent and BBN parallel processors provide contrasting shared-memory architec-
tures. Finally, the Intel distributed-memory parallel processors provide contrast
to KSR's shared-memory model.

BBN TC2000

The BBN TC2000 at Argonne National Laboratory (ANL) is a 45 processor
shared-memory parallel processor, Each processor is a Motorola 88000 running
at 20MHz with 16 MB of memory fronted by a 16KB data cache and a 16KB in-
struction cache. All of the memories are interconnected by a 2-stage 8-way switch,
The system can be expanded up to 512 processors. The Uniform programming
environment (under nX 2,0.6) provides the program with both local and explic-
itly allocated shared memory. The shared memory may be allocated in another
processor’'s memory, and thus a non-uniform memory access (NUMA) mode! is
supported. In the absence of contention, a remote reference typically takes less
than two microseconds, and a single channel of the switch has a bandwidth of
40 MBs [19]. The architecture could be used with other memory management
policies [13]. Compiles on the BBN were done with -O -lus. LINPACK 100 x 100
double-precision was 1.0 Mflops using -OLM -autoinline. Dhrystone (v1.0) was
19.4 Mips.

IBM RS/6000-530

The IBM RS/6000-530 uses a 25 MHz processor with a 64 KB data cache and
a 400 MBs memory bandwidth. The processor has an independent integer and
floating point unit, and the floating point unit has an independent adder and
multiplier. The peak performance is thus 50 Mflops, The workstation used in the
tests was running AIX 3.1 in 16 MB of memory. Compiles used -O optimizations.
LINPACK 100 x 100 double-precision was 11 Mflops {3]. Dhrystone (v1.0) was
23.7 Mips.
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Intel iPSC/860 and DELTA

!

?i The Intel iPSC/860 hypercube and DELTA mesh distributed-memory parallel

’ processors both use the 40 MHz i860 processor. The i860 has an 8KB data cache

~and 8 MB of mermory (16 MB on the DELTA) with a memory bandwidth of
160 MBs. The processor has independent integer und floating point units, and
ohe floating point unit has an independent pipelined adder and inultipler for a
peak rate of 64 Mflops. The iPSC/860 has a maximum configuration of 128
processors, The processors are interconnected with a hypncube network with
a latency of about 60 microseconds and a bandwidth of 2.8 MBs per channel
[7). The DELTA is a mesh connected parallel processor located at Cal Tech
with a maximum configuration of 512 processors. The mesh has a latency of
about 50 microseconds and a measured bandwidth of about 17 MBs/channel
[6]. The processors run NX 3.3 and compiles were done with -O3 -Knoieee on a
separate “host” processor, LINPACK 100 x 100 double- precxsxon was 6.5 Mflops
[3]. Dhrystone (v1.0) was 29.4 Mips.

Sequent Symmetry

The 26 processor Sequent Symmetry located at ANL is based on 80386/387 pro-
cessors (16 MHz) with a Weitek 3167 floating point co-processor. Each processor
has a 64KB cache, and 32 MB of memory is shared by all processors on a 54 MBs
bus. The maximum configuration is 30 processors. The processors run Dynix
3.1.2, and compiles were done using -O. LINPACK 100 x 100 double-precision
was 0.37 Mflops [3]. Dhrystone (v1.0) was 3.6 Mips.

System Metrics

KSR [ BBN | Seq| 530 [ 1860 | DELTA
clock rate (MHz) 20 20 16| 26| 40 40
data cache (KB) 256 16 64| 64 8 8
memory size (MB/CPU) 32 16 [ 32(T)| 16 8 16
memory bandwidth (MBs) 160 ? 71 400 | 160 160
remote mem. bandwith (MBs) 34 40 54 | na. | 2.8 17
remote mem. latency (us) 6.7 2 <1| n.a | 150 150
peak mflops (64-bit) 40 ? 71 50| 64 64
linpack mflops (100 x 100) 15 1 04| 11| 6.5 6.5
dhrystone mips (v1.0) 129 | 194 3.6 237|294 29.4
max processors 1088 | 512 30 | na | 128 512

Table A.1: System metrics for systems used in this report.
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