
iullJill]-f[[ll

I1111_[1111_IIIll_[Inl_mii_

Q

COMMUNICATION LIBRARY FOR RUN-TIME
VISUALIZATION

OF DISTRIBUTED, ASYNCHRONOUS DATA

John Rowlan

Argonne National Laboratory
Mathematics and Computer Science Division

Argonne, IL 60439
rowlan_mcs.anl.gov

Brian T. Wightman
University of Wisconsin

Oshkosh, WI 54901
wightman_sol.acs.uwosh.edu

Abstract

In this paper we present a method for collecting and visualizing

data generated by a parallel computational simulation during run time.
Data distributed across multiple processes is sent across parallel com-
munication lines to a remote workstation, which sorts and queues the

data for visualization. We have implemented our method in a set
of tools called PORTAL (for Parallel architecture data-TrAnsfer Li-
brary). The tools comp.dse generic routines for sending data from

a parallel program (callable from either C or FORTRAN), a semi-
parallel communication scheme currently built upon Unix sockets, and
a real-time connection to the scientific visualization program AVS. Our
method is most valuable when used to examine large datasets that can

be efficiently generated and do not need to be stored on disk. The
PORTAL source libraries, detailed documentation, and a working ex-

ample can be obtained by anonymous ftp from info.mcs.anl.gov from MASTER
the file portal.tar.Z from the directory pub/portal.

Key Words: Scientific visualization, networking, graphics, AVS, sockets,
distributed communication

DISTRIBUTION OF THIS DOCUMENT l$ UNLIMITEQ

1 r....0_,.__.o°..o,.. =.o.,.o,..ili_

| by a contractor of the U.S. Government

| under contract No. W.31-109-ENG-38.
| Accordingly, the U. S. Government retains a
| nonexclusive, royaltY "f._n license to i_Jblish
| or reproduce the published form of ths$

_ cont¢_bution, or allow others to do Io, for

t U. $. Government i_rposes.

1 Background

Many large-scale computational science simulations, such as global cli-
mate modeling, structural biology, and superconductor modeling, are done
on massively parallel supercomputers. These simulations are usuaUy time-
dependent and often generate megabyte-sized (or larger) data, sets at each
time step. A typical program execution might require the generation of

many hundreds or even thousands of timesteps to produce a meaningful
animation. The result can be many terabytes of data.

Such data is often stored on disk to be visualized and reviewed on a

graphics workstation at a later date. This process is often called batch-
mode visuMization, since the visualization occurs after all the data has been
created. Scientific visuMization tools such as AVS are designed to work

in this manner. Modern large-scale computations, however, can produce
amounts of data that are prohibitively expensive to store on magnetic disk.

We have created a set of tools called PORTAL (for Parallel aRchitec-
ture data-TrAnsfer Library) for visualizing data directly as the calculations
occur. The use of these tools avoids the need for large disk storage. Such a

real-time display mechanism can also be used to direct execution parameters

during run time, something that cannot be done in batch-mode visualiza-
tion.

We note that offective visualization also requires careful selection of

graphics parameters, such as viewing angle, object transformations, object

color and other properties. When visualizing static, precomputed datasets,

interactive graphics tools are used to manipulate the image. In a many-
frame, time-dependent visualization such as those described in this paper,

these parameters must be selected before the animation begins• Typically,
a sample dataset is used to select the graphics parameters.

2 Motivation

The development of the PORTAL tools was motivated by our work with
a parallel climate modeling simulation. After successfully implementing a

parallel version of the MM-5 and CCM-2 climate models, we wished to
run the simulation creating a visual animation of the results. Having no

Parallel

PORTAL data

packets AVS
Coroutine

AVS Network

GraphicsWorkstation

Figure 1: Overview of the PORTAL system

tools available to do this during run time, we were forced to write data to
disk. However. since most animations of the climate model required many

thousands of timesteps, at five megabytes per data set, writing each to disk
was impractical.

As an alternative, we decided to send the data directly to an AVS process

over Unix sockets. This approach proved quite successful, and we were able
to create many video animations from the two parallel climate models.

Our initial efforts produced application-specific tools that required sig-
nificant reworking to be applied to different simulations. Subsequently, we
have mad_ a coulmunication library that is extensible and allows the user

to (l_fin_ th_ type and amount of data to be sent.

3 The PORTAL Parallel Data Library

['0 RTA L (._ee Fig. 1) was developed to assist users of parallel programs
to visualize thp results of their computations. To make the tools easy to use,
wp felt it pssontial to remove the burden of socket programming from the

userand toabstractthesockethandlingroutinesfrom theactualmethods
used to controlsockets.We achievedthisobjectiveby providingthe user
witha smallnumber offunctioncallsthatautomaticallypackageand send

datafrom theparallelmachineto theworkstationforvisualization.

Becauseoftheirportabilityand easeofuse,Unix TCP/IP socketswere
selectedasthe transportmechanism tosend datafrom theremote parallel

computationto thevisualizationprocessrunningon a localworkstation.

Although PORTAL was designedwith easeof use as a foremostcon-

sideration,theprogrammer must learnthe PORTAL functioncallsused to
initializethesocketsforsending,initializethereceivingsoftware,appropri-

atelypackagePORTAL datastructures,and sendthe datato thereceiving
machine.These arelistedinTable I.

Table 1. PORTAL function calls

DSAnit_socket-write()
DS_create_atom.handle()

DS_creat e_arr ay_l D_h an dle()
DS_create_array _2D _han dle()
DS _create_array_3 D_han dle()

DS_AVSinit()
DS_send_dat a_vectors()

DS_close_socket_write()

To use PORTAL, a user first calls the DSAnit..socket_write() function,

which opens a communications port to a remote host and takes care of
handshaking.

Next, the program must create handles to the data that the POR-
TAL system will be able to use. These are created with the DS_create-

_datatype_handle() functions. The function DS_create_atom_handle() is used
for atomic data; one-, two-, and three-dimensional data types use DS_create-

_array..nD_handle() (where n e { 1,2,3)).

The receiving program is then told what to expect from the sender or
senders through the DS._init function. This information includes the total
number of processors sending data and the number and type of information

n_in(void)
(

/" Initializethe socketforsending*/
DS_.intt_socket_wdte(&sock,&port,host);

,.,

/" Createa hande forthe three-D dalaseL

DS_create_array...3D_handle(&handle,&DS_REAL,'3D Data',&one,
&XDIM, &YDIM, &ZDIM,
&zero, &zero,&zero,
&XDml, &YDml, &ZDml,
&DS_Z_DIM, &DS_Y_DIM, fracdata);

/" assignthisda_asubsetto the vectordalavector."/
datavector[O]= &handle;

/" NowsendtheAVScoroutinetheappropriateparameters
desa'ibingthe formatandtypeof databeingsent."/

DS_AVSinit(sock,&one,&one,(int')datavector,&one);

/" start the calculationloop*/
for(i- O;i < MAX_i;i++)
{

calculate(&i,fracdata);
/" Sendthedatasetto the receiver"/

DS_send_data_vectors(sock,&one,(int')date.vector,&one, &one);
}

DS_dose_socket_write(&sock); /" closesocket"/
}

Figure 2: Pseudo-code example

DISCLAIMER

This reportwaspreparedas an accountof worksponsoredby an agencyof the UnitedStates
Government.Neitherthe UnitedStatesGovernmentnoranyagencythereof,noranyof their
employees,makesanywarranty,expressor implied,or assumesanylegal liabilityor responsi-
bilityfor theaccuracy,completeness,or usefulnessof anyinformation,apparatus,product,or
processdisclosed,or representsthat its use wouldnot infringeprivatelyownedrights.Refer-
encehereinto anyspecificcommercialproduct,process,or serviceby tradename,trademark,
manufacturer,or otherwisedoes not necessarilyconstituteor implyits endorsement,recom-
mendation,or favoringby the United StatesGovernmentor anyagencythereof.Theviews
and opinionsof authorsexpressedhereindo not necessarilystate or reflect thoseof the
UnitedStatesGovernmentor anyagencythereof.

being sent (e.g., sixty processors, each sending two three-dimensional fields,

one two-dimensional field, and five integers (atoms)).

Before the calculation is begun, a data structure is created to hold the

data that will be sent to the receiver. This is done using the DS_create()
function calls.

i

At present, the only receiving program supported by the PORTAL tools

is AVS. Thus the DS_AVSinit() function is used to send initialization data.

DS..AVSinit() takes a data handle vector and passes the information from
the header needed to configure the AVS module through the socket. The
AVS module then configures itself properly (see Section 5).

After the computation module has calculated its datasets for a particu-

lar time-step, the data is then sent to the receiving workstation by calling

the DS_send_data_vectors() routine and supplying the address of the data
structure. This function returns when it has passed all of the data to the

remote process.

Finally, after all data has been sent, the function DS_close_socket_write()
is called to tell the remote receiving program that the sending program is

disconnecting. This functions calls the appropriate socket commands for
notification of the remote program and the socket commands for closing the
actual socket.

A pseudo-code example of the PORTAL process is shown in Figure 2.

4 Packet Structure

All communication between the parallel nodes and the graphics worksta-

tion is (lone through the use of a data-structure abstraction called a packet
._tructurc.

In PORTAL, these packets are used as the most basic transmission unit;
all communication is of the packet form. The siml)le structure, appending

only tag and length fields to the actual data, adds very little overhead to the
transmission, but allows a remote program to identify, properly sort, and
read all of the data that is sent to it.

The receiving machine is assumed to have no knowledge of the actual
type and order of data being sent. Therefore, all packets have an eight-byte
header, called a tag field, that describes the structure of the packet (see
Table 2).

The first four bytes of the tag field are used to identify the type of data
being sent. The next four bytes represent the length of the data being sent.
Data is sent following the tag field.

There are three types of packets: control packets, AVS initialization

packets,and data packets.Each isspecifiedby the firstfourbytesof the
' tag field.

Control packets are used to open and close sockets, monitor and maintain
connections,definebytefailcounts,and identifyotherfunctionsinternalto
underlyingPORTAL processestocommunicate betweenthemselves.

A VS initializationpacketscontaininformationthatisused to prepare

AVS forincomingdata;thisinformationincludesthe type of data being
sentand the totalnumber ofCPUs sendingdata.

Dala packetsincludeinformationabout theparticularCPU sendingthe

data,a timestamp,arraymajor and minorordering,and thecompositional
relationshipbetweenthedatabeingsentand theoveralldata(thusallowing

a subsetofdatafrom a singlenode tobe properlyreconstructedwithinthe

largerfieldbeingcalculatedby aLlthenodes).Data packetsarealwayssent
inpairs.The firstpacketisa descriptorspecifyingthesendingCPU ID,the
fulldimensionsof the datafieldacrossallnodes,thesubsetof data being

sent,and _rraymajor and minor orderinginformation.The secondpacket
containsthe dataitself.

Table3 shows a typicalseriesof packetssentby PORTAL duringexe-
cutionofa program.

tag field flags possible values

tag control, avn_init, data
12-bits

i | , Jill, iill,i,,,,l,

tag type start, end, header, data
4-bite

ave data ave data, ave header
4-bits

, i

storage type atom, ID, 2D, 3D
4-bits

, , H ,H

data type intl6, int32, real, realS, char
8-blts complex8, complex16, logical
, , , , ,,,, ,,,

length length in bytes of data section

4-_es
, , ,

DATA variable length byte stream
variable

....

Table 2: Packet structure (8-byte tag field followed by data)

_ ,,,,,,

tag tag type avs date Itorage data _ype length DATA
type

At program, eta_cup z
,,

aontrol header none none hello zero no data
control header none none set_fail_count vat fail count:

&VSinic start none none none fixed #CPUs, CPU £d,
numa data packets
to follow

For each data paoket he£ng serifs
,,,,,, , ,

AVSinit none data type type var data header
Qe,

--- ,,

_t:Or all the descriptors are alert, s

AVSinit:. end none none none fixed #CPUe, CPU £,1,
number of packets

Per each data field to be sent within the calculation loops
,, _ ,,,,,,

data etart none none none zero no data

data header none type type zero no data
data data none none none vat DATA field
data end none none none zero no data

..... j ,,,

At program cQm_letions
,, , ,

centre! header none none goodbye zero no data
L

Table 3" Typical packets sent during program execution

5 AVS Implementation

AVS is a popular scientific visualization program in use at Argonne Na-

tional Laboratory. It provides many tools for data visualization but no
support for run-time visualization of large-scale parallel codes. Although
originally designed, and primarily used, as a batch-mode visualization tool

(i.e., on precomputed delta), we felt that AVS could be enhanced to meet
our need for run-time display of data.

In the AVS implementation of PORTAL, the data receiver is package
within an AVS coroutine (called Read Socket). This module understands
the PORTAL socket packet structure; and it reads, sorts, and queues the
incoming PORTAL data packets. Read Socket outputs the data in AVS field
format.

Since the sockets receiving data must be opened before the sending sock-
ets can be opened, the AVS routine is the first process to the started. The
AVS Read Socket module adapts itself to the type of data being sent and

configures its output ports accordingly. However, at startup, the AVS mod-
ule does not know what type of data it will receive, so it must start up in a

wait state until the sending nodes each make a DS_AVSinit() function call.

.After successful receipt of an DS_AVSinit() call from each processor, the
AVS module learns the type of data it will be reading from the sockets,

configures its output ports appropriately, and enters a run state.

Since the AVS module is in a wait state until the module is initialized,

AVS will appear to hang until the remote program starts and has sent the
initialization parameters. Thus the Read Socket module cannot be attached
to an AVS network until the initialization stage has completed. This causes

a problem when saving a network, since the Read Socket module cannot save
its dynamic connections. However, it is a fairly simple matter to build and

saw thp rest of the network, pull the read socket module onto the palette,

start the remote application, and attach a couple of modules once the read

socket module is configured.

Since multiple processors are sending data to the receiving workstation,
and since thes_ transmissions are potentially arriving at different rates, the

AVS module must also queue, tip and synchronize the data packets it receives,

10

i

b

to ensure that all data is ordered correctly.

Synchronizing data is accomplished via a data queue. By the use of a
user tag, which is passed to the DS_send_data_vectors() function, the data
is marked at a certain "time step" and then grouped with other packets

from the same time step. The front item in the queue is not released until
all of the machines have sent data for that time step. This means that if

a processor does not have data for a particular time step, it must send at
least a null packet.

Each queue entry is constructed of an [D marker, a list of machines that
information is still needed from, and the list of data that has been received.

This offers a quick check of whether or not the data can be taken from

the queue and placcd on the output ports of the module by examining the
machine list to see whether there are any machines remaining to read from.

6 Conclusions

PORTAL allows a parallel program to send asynchronous distributed

data to a remote graphics workstation for run-time visualization. Thus, it
can offset the need to store many gigabytes or terabytes of data on disk.
The immediate feedback of a run-time system also offers greater efficiency

in identifying program errors or inaccurate parameters.

7 Future Directions

Future enhancements to the PORTAL package will include feedback from

the graphics package to determine the behavior of the remote module. This
could also be used to enhance the error recovery mechanisms of the system

bv allowing non-acknowledged packets, retries, and reconnects.

Support will also be added for other transport mechanisms including
[PI-3. EUI, and F(_S.

Finally, we plan to port the socket reader module to other graphics

packages, allowing a user to pick a visuafization package that best suits the

tastes or needs of the programmer.

II

tt

t

Acknowledgements

Thiswork was supportedbe theofficeofScientificComputing,U.S.Depart-
ment of Energy,under ContractW-31-109-Eng-38.

References

[I]"AVS Developer'sGuide,"Part320-0011-02Rev B, Release4,Advanced
VisualSystems Inc.,May 1992.

[2]"Sun Network Programming Guide," Part 800-3850-10,ReleaseA,
Chapters 10,11,Sun MicrosystemsInc.,March 27,1990.

12

, I
!

