Szl

I"‘.I

>

or

—_— —_—
]]
—_]

R— L _]
by L]
— o
EFEERE R M=
! EERE
g; == ==
r w
EERE

8l

i

A4

. T

=

ST

VLSS0 P- - g7k 3

Contq405100- -

COMMUNICATION LIBRARY FOR RUN-TIME
VISUALIZATION
OF DISTRIBUTED, ASYNCHRONOUS DATA

John Rowlan
Argonne National Laboratory
Mathematics and Computer Science Division
Argonne, IL 60439
rowlan@mcs.anl.gov

Brian T. Wightman
University of Wisconsin
Oshkosh, W1 54901
wightman@sol.acs.uwosh.edu

Abstract

In this paper we present a method for collecting and visualizing
data generated by a parallel computational simulation during run time.
Data distributed across multiple processes is sent across parallel com-
munication lines to a remote workstation, which sorts and queues the
data for visualization. We have implemented our method in a set
of tools called PORTAL (for Parallel aRchitecture data-TrAnsfer Li-
brary). The tools comprise generic routines for sending data from
a parallel program (callable from either C or FORTRAN), a semi-
parallel communication scheme currently built upon Unix sockets, and
a real-time connection to the scientific visualization program AVS. Our
method is most valuable when used to examine large datasets that can
be efficiently generated and do not need to be stored on disk. The
PORTAL source libraries, detailed documentation, and a working ex-

ample can be obtained by anenymous ftp from info.mcs.anl.gov from

the file portal.tar.Z from the directory pub/portal. ASTER
Key Words: Scientific visualization, networking, graphics, AVS, sockets,
distributed communication

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITER

l ‘
The submitted manuscript has been authored
by a contractor of the U.S. Government
under contract No. W-31-109-ENG-38.
Accordingly, the U. S. Government retains a
nonexclusive, royalty-frae license to publish
or reproduce the published form of this
contribution, or allow others to do so, for
U. S. Government purposes.

1 Background

Many large-scale computational science simulations, such as global cli-
mate modeling, structural biology, and superconductor modeling, are done
on massively parallel supercomputers. These simulations are usually time-
dependent and often generate megabyte-sized (or larger) datasets at each
time step. A typical program execution might require the generation of
many hundreds or even thousands of timesteps to produce a meaningful
animation. The result can be many terabytes of data.

Such data is often stored on disk to be visualized and reviewed on a
graphics workstation at a later date. This process is often called batch-
mode visualization, since the visualization occurs after all the data has been
created. Scientific visualization tools such as AVS are designed to work
in this manner. Modern large-scale computations, however, can produce
amounts of data that are prohibitively expensive to store on magnetic disk.

We have created a set of tools called PORTAL (for Parallel aRchitec-
ture data-TrAnsfer Library) for visualizing data directly as the calculations
occur. The use of these tools avoids the need for large disk storage. Such a
real-time display mechanism can also be used to direct execution parameters

during run time, something that cannot be done in batch-mode visualiza-
tion.

We note that effective visualization also requires careful selection of
graphics parameters, such as viewing angle, object transformations, object
color and other properties. When visualizing static, precomputed datasets,
interactive graphics tools are used to manipulate the image. In a many-
frame, time-dependent visualization such as those described in this paper,
these parameters must be selected before the animation begins. Typically,
a sample dataset is used to select the graphics parameters.

2 Motivation

The development of the PORTAL tools was motivated by our work with
a parallel climate modeling simulation. After successfully implementing a
parallel version of the MM-5 and CCM-2 climate models, we wished to
run the simulation creating a visual animation of the results. Having no

Parallel

PORTAL data
packets [AVS)
'_. Coroutine

AVS Network

\

J
Graphics
Workstation

Figure 1: Gverview of the PORTAL system

tools available to do this during run time, we were forced to write data to
disk. However. since most animations of the climate model required many
thousands of timesteps, at five megabytes per data set, writing each to disk
was impractical.

As an alternative, we decided to send the data directly to an AVS process
over Unix sockets. This approach proved quite successful, and we were able
to create many video animations from the two parallel climate models.

Our initial efforts produced application-specific tools that required sig-
nificant reworking to be applied to different simulations. Subsequently, we
have made a communication library that is extensible and allows the user
to define the type and amount of data to be sent.

3 The PORTAL Parallel Data Library

PORTAL (see Fig. 1) was developed to assist users of parallel prograns
to visualize the results of their computations. To make the tools easy to use,
we felt it essential to remove the burden of socket programming from the

user and to abstract the socket handling routines from the actual methods
used to control sockets. We achieved this objective by providing the user
with a small number of function calls that automatically package and send
data from the parallel machine to the workstation for visualization.

Because of their portability and ease of use, Unix TCP/IP sockets were
selected as the transport mechanism to send data from the remote parallel
computation to the visualization process running on a local workstation.

Although PORTAL was designed with ease of use as a foremost con-
sideration, the programmer must learn the PORTAL function calls used to
initialize the sockets for sending, initialize the receiving software, appropri-
ately package PORTAL data structures, and send the data to the receiving
machine. These are listed in Table 1.

Table 1. PORTAL function calls

DS_init_socket_write()
DS_create_atom_handle()
DS_create_array.1D_handle()
DS_create_array 2D _handle()
DS_create_array_3D handle()
DS_AVSinit()
DS_send_data_vectors()
DS_close_socket_write()

To use PORTAL, a user first calls the DS_init_socket_write() function,
which opens a communications port to a remote host and takes care of
handshaking.

Next, the program must create handles to the data that the POR-
TAL system will be able to use. These are created with the DS._create-
_datatype_handle() functions. The function DS_create_atom_handle() is used
for atomic data; one-, two-, and three-dimensional data types use D5_create-
.array.nD_handle() (where n € {1,2,3}).

The receiving program is then told what to expect from the sender or
senders through the DS.nit function. This information includes the total
number of processors sending data and the number and type of information

main(void)

{
* Initialize the socket for sending */
DS_init_socket_write(&sock, &port, host);

" Create a handle for the three-D dataset.
DS_creats_array_3D_handle(&handie, &DS_REAL,"3D Data",&one,
&XDIM, &YDIM, &ZDIM,
&zero, &zero, &zefo,
&XDm1, &YDmi1, &ZDmi,
&DS_Z DIM, &DS_Y_DIM, fracdata);

" assign this da:a subset to the vector datavector. */
datavector0)] = &handle;

/" Now send the AVS coroutine the appropriate parameters
describing the format and type of data being sent. */
DS_AVSinit(sock, &one, &one, (int")datavector, &one);

" start the calculation loop */
for(l = 0; i < MAX_i; i++)
{
calculate(&i,fracdata);
I Send the dataset to the receiver */
DS_send_data_vectors(sock, &one, (int")datavector, &one, &one),
}

DS_close_socket_write(&sock); " close socket */
}

Figure 2: Pseudo-code example

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence hercin to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed hercin do not necessarily state or reflect those of the
United States Government or any agency thereof.

being sent (e.g., sixty processors, each sending two three-dimensional fields,
one two-dimensional field, and five integers (atoms)).

Before the calculation is begun, a data structure is created to hold the

data that will be sent to the receiver. This is done using the DS_create()
function calls.

At present, the only receiving program supported by the PORTAL tools
is AVS. Thus the DS_AVSinit() function is used to send initialization data.
DS_AVSinit() takes a data handle vector and passes the information from
the header needed to configure the AVS module through the socket. The
AVS module then configures itself properly (see Section 5).

After the computation module has calculated its datasets for a particu-
lar time-step, the data is then sent to the receiving workstation by calling
the DS_send-data_vectors() routine and supplying the address of the data
structure. This function returns when it has passed all of the data to the
remote process.

Finally, after all data has been sent, the function DS_close_socket.write()
is called to tell the remote receiving program that the sending program is
disconnecting. This functions calls the appropriate socket commands for
notification of the remote program and the socket commands for closing the
actual socket.

A pseudo-code example of the PORTAL process is shown in Figure 2.

4 Packet Structure

All communication between the parallel nodes and the graphics worksta-
tion is done through the use of a data-structure abstraction called a packet
structure.

In PORTAL, these packets are used as the most basic transmission unit;
all communication is of the packet form. The simple structure, appending
only tag and length fields to the actual data, adds very little overhead to the
transmission, but allows a remote program to identify, properly sort, and
read all of the data that is sent to it.

The receiving machine is assumed to have no knowledge of the actual
type and order of data being sent. Therefore, all packets have an eight-byte
header, called a tag field, that describes the structure of the packet (see
Table 2).

The first four bytes of the tag field are used to identify the type of data
being sent. The next four bytes represent the length of the data being sent.
Data is sent following the tag field.

There are three types of packets: control packets, AVS initialization
packets, and data packets. Each is specified by the first four bytes of the
tag field.

Control packets are used to open and close sockets, monitor and maintain
connections, define byte fail counts, and identify other functions internal to
underlying PORTAL processes to communicate between themselves.

AVS initialization packets contain information that is used to prepare
AVS for incoming data; this information includes the type of data being
sent and the total number of CPUs sending data.

Data packets include information about the particular CPU sending the
data, a time stamp, array major and minor ordering, and the compositional
relationship between the data being sent and the overall data (thus allowing
a subset of data from a single node to be properly reconstructed within the
larger field being calculated by all the nodes). Data packets are always sent
in pairs. The first packet is a descriptor specifying the sending CPU ID, the
full dimensions of the data field across all nodes, the subset of data being
sent, and array major and minor ordering information. The second packet
contains the data itself.

Table 3 shows a typical series of packets sent by PORTAL during exe-
cution of a program.

-1

tag field flags posaible values

tag control, avse_init, data

12-bits

tag type start, end, header, data

4-bits

avs data avs data, avs header

4-bits

storage type atom, 1D, 2D, 3D

4-bits

data type intl6, int32, real, reals8, char
8-bits complex8, complexl6, logical
length length in bytes of data section
4-bytes

DATA variable length byte stream
variable

Table 2: Packet structure (8-byte tag field followed by data)

tag tag type | ava data | storage data type length DATA
type

At program startup:

control| header none none hello zZexro no data

control| header none none set_fail_ count var fail count

Avsinit| start none none none fixed #CPUs, CPU iaQq,
num data packets
to follow

Por each data packet being sent:

AvSinit none data type type var data header

After all the descriptors are sent:

Avsinit and none none none fixed #CPUs, CPU iaQa,
number of packets

For each data field to be sent within the calculation loop:

d&tl start none none none zZero no data

data header none type type zero no data

data data none none none var DATA field

data end none none none zZero no data

At program completion:

control header none none goodbye zero no data

Table 3: Typical packets sent during program execution

5 AVS Implementation

AVS is a popular scientific visualization program in use at Argonne Na-
tional Laboratory. It provides many tools for data visualization but no
support for run-time visualization of large-scale parallel codes. Although
originally designed, and primarily used, as a batch-mode visualization tool
(i.e., on precomputed data), we felt that AVS could be enhanced to meet
our need for run-time display of data.

In the AVS implementation of PORTAL, the data receiver is package
within an AVS coroutine (called Read Socket). This module understands
the PORTAL socket packet structure; and it reads, sorts, and queues the

incoming PORTAL data packets. Read Socket outputs the datain AVS field
format.

Since the sockets receiving data must be opened before the sending sock-
ets can be opened, the AVS routine is the first process to the started. The
AVS Read Socket module adapts itself to the type of data being sent and
configures its output ports accordingly. However, at startup, the AVS mod-
ule does not know what type of data it will receive, so it must start up in a
wait state until the sending nodes each make a DS_AVSinit() function call.

After successful receipt of an DS_AVSinit() call from each processor, the
AVS module learns the type of data it will be reading from the sockets,
configures its output ports appropriately, and enters a run state.

Since the AVS module is in a wait state until the module is initialized,
AVS will appear to hang until the remote program starts and has sent the
initialization parameters. Thus the Read Socket module cannot be attached
to an AVS network until the initialization stage has completed. This causes
a problem when saving a network, since the Read Socket module cannot save
its dynamic connections. However, it is a fairly simple matter to build and
save the rest of the network, pull the read socket module onto the palette,
start the remote application, and attach a couple of modules once the read
socket module is configured.

Since multiple processors are sending data to the receiving workstation,
and since these transmissions are potentially arriving at different rates, the
AVS module must also queue up and synchronize the data packets it receives,

10

to ensure that all data is ordered correctly.

Synchronizing data is accomplished via a data queue. By the use of a
user tag, which is passed to the DS_send_data_vectors() function, the data
is marked at a certain “time step” and then grouped with other packets
from the same time step. The front item in the queue is not released until
all of the machines have sent data for that time step. This means that if

a processor does not have data for a particular time step, it must send at
least a null packet.

Each queue entry is constructed of an ID marker, a list of machines that
information is still needed from, and the list of data that has been received.
This offers a quick check of whether or not the data can be taken from
the queue and placed on the output ports of the module by examining the
machine list to see whether there are any machines remaining to read from.

6 Conclusions

PORTAL allows a parallel program to send asynchronous distributed
data to a remote graphics workstation for run-time visualization. Thus, it
can offset the need to store many gigabytes or terabytes of data on disk.
The immediate feedback of a run-time system also offers greater efficiency
in identifying program errors or inaccurate parameters.

7 Future Directions

Future enhancements to the PORTAL package will include feedback from
the graphics package to determine the behavior of the remote module. This
could also be used to enhance the error recovery mechanisms of the system
by allowing non-acknowledged packets, retries, and reconnects.

Support will also be added for other transport mechanisms including
[PI-3. EUI, and FCS.

Finally, we plan to port the socket reader module to other graphics

packages, allowing a user to pick a visualization package that best suits the
tastes or needs of the programmer.

11

Acknowledgements

This work was supported be the office of Scientific Computing, U.S. Depart-
ment of Energy, under Contract W-31-109-Eng-38.

References

[1] “AVS Developer’s Guide,” Part 320-0011-02 Rev B, Release 4, Advanced
Visual Systems Inc., May 1992.

[2] “Sun Network Programming Guide,” Part 800-3850-10, Release A,
Chapters 10,11, Sun Microsystems Inc., March 27, 1990.

12

m\\m\é

