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1 Introduction

In recent years, a great deal of emphasis has been placed on quality control of industrial processes. Iil

particular, numerous statistical techniques exist which are designed to continually check an industrial

process for machine or component failure, thereby determining if the process is under control, or if it is

becoming out of contrc!. In this study, we consider a very powerful class of quality control techniques

known as sequential tests.

Sequential tests classify a set of observations in a manner similar to statistical hypothesis tests, but are

characterized by a random sample size. Perhaps the best known sequential test is Wald's sequential

probability ratio test [27]. The sequential probability ratio test (SPRT) is a log likelihood ratio based test

for simple or composite hypotheses. After taking each observation, the SPRT decides whether to accept

the null hypothesis, reject the null hypothesis, or continue sampling. For the purpose of quality control,

an SPRT can be conducted repeatedly over time as incoming observations are received.

The SPRT is only one of several process control techniques which can be formulated as a sum of random

increments inside an interval of the real line. Once the sum leaves the interval of interest, the test is

terminated and a decision is made which characterizes the observations. In this study, we focus attention

on the SPRT; however, the analysis presented here applies equally well to other control techniques based

on sums of random variables (such as cumulative sum control charts).

One important question is how effectively a given sequential test will monitor the process under study.

The effectiveness of a sequential test can be summarized by two performance measures: (1) how long

it will take for the test to make an incorrect decision given the process is either under control or out of

control and (2) how quickly the test will detect failure of a process which is becoming gradually (or
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rapidly) out of control Both performance measures correspond to passage times of a sum of random

increments to some threshold. These times are, in general, quite difficult to compute. Research to date

includes limited results with respect to these performance measures. Namely, several techniques exist

which allow us to approximate the distribution and moments of (1), however, virtually no results exist

which allow us to study (2).

The significance of obtaining these performance measures is emphasized for safety-critical or mission-

critical applications. Such systems often use a high degree of built-in redundancy to increase reliability,

resulting in numerous correlated processes to be monitored. At Argonne National Laboratory (ANL),

expert systems are under development for process control of safety-critical or mission-critical systems, (see

[11]-[13]). These expert systems utilize numerous sequential tests operating both simultaneously and in

sequence for the purpose of detecting and diagnosing component failures of highly redundant systems.

The expert systems were originally developed to monitor ANL's EBR-II nuclear reactor coolant pumps

but have been generalized to include other systems. Current applications of these expert systems include

the nuclear reactor industry, the airline industry, and surgical equipment among others. The research

developed here is motivated by the critical nature of these applications, and is currently being used by the

author and the scientists at ANL as a foundation for design and analysis of the expert systems for process

control.

In this research, we develop a methodology for obtaining performance measures of sequential tests for

process control. This methodology is developed in two stages. First, we formulate a bivariate Markov

model in discrete time with continuous state space. The first parameter of this model tracks the value of

the test statistic over time and the second parameter monitors the state of the process under study. Called

a Markov additive process, the model allows us to study sequential tests under non-i.i.d, process behavior.
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In particular, we can model the behavior of sequential tests for under control processes, gracefully failing

processes, suddenly failing processes, and out of control processes. Second, using stochastic order

relations, we develop a simple computational technique for obtaining passage times of our Markov additive

model. This technique involves discretizing the state space of our model in a particular manner and

studying the resulting Markov chain. We prove that bounds on the first passage time distribution can be

obtained using this method and that these bounds become exact as the number of discrete states increases.

Finally, we use this technique to compute rite performance measures of interest for sequential tests in

process control.

It should be noted that the method developed here for computing first passage times applies to discrete

time Markov additive processes in general and has utility in a variety of contexts. Markov additive

processes (sums of random variables defined on a Markov chain) have been used to study various

applications, including queuing models, dam models, shock models, and insurance risk models. In many

cases, passage times of these models are of interest. With the limited exception of problems having a

discrete state space, no well-established computational techniques exist for obtaining passage times of

Markov additive processes. Therefore, utility of the technique developed here extends well beyond the

area of process control.

In the following section, we review the sequential probability ratio test and state some of its properties.

In Section 3, we formulate a Markov additive model which allows us to study the sequential probability

ratio test under various types of process behavior. Section 4 develops the theoretical results and the

methodological approach that allow us to bound the first passage time distributions of our model. Section

5 illustrates our techniques through numerical examples.
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2 The Sequential Probability Ratio Test

Sequential tests are concerned with characterizing data from some random experiment in a m,'mner similar

to hypothesis testing. A sequentiM test differs from a standard hypothesis test primarily through a random

sample number which depends on the outcome of the experiment. A sequential test may be described as

follows. After collecting each observation, a rule is given for taking one of three actions. The possible

actions are

(1) terminate the test and accept the null hypothesis

(2) terminate the test and reject the null hypothesis

(3) continue sampling

For a more complete development of the SPRT, see Ghosh and Sen [10], Chapter 3. For simplicity,

assume X_, X_.... are independent, identically distributed (i.i.d.) random variables with absolutely

continuous distribution. The following development and an,'dysis presented in this section is valid under

more general conditions and can be done in analogy. Consider the following hypotheses:

Ho: Xl, X2.... have density fo( )

Its: X1, X2.... have density f_( )

The SPRT for the above hypothesis proceeds as follows: select constants a and b with 0<b<a<oo.

Denoting the ith observation by xi, let _ = l'L1 n f_(x.O/fo(xi)represent the likelihood ratio at stage n.

According to the value of _ take the following action:

If X_ < b terminate and accept Ho

If b < X_< a continue sampling

If X_> a terminate and reject Hot

The SPRT is implemented by taking the logarithm of the likelihood ratio 7%. Let Z_= log[ f_(x3/fo(xi)],

and S,, = log X_= El_ _ Z,. Define A = log(a) and B = log(b). Then the SPRT is equivalent to the

following:
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If S,, < B terminate and accept Ho

If B < S, < A continue sampling

If Sn > A terminate and reject Ho

In practice, the values A>0 and B<0 are determined by the desired error probabilities of the test and are

further mentioned below. Clearly, one SPRT is equivalent to a random walk Sn = El_j_ Z_ inside an

interval with So = 0 and two boundaries B and A. Define N = min {n>0: S,, < B or S,, >_A}. Then N

is a stopping time which determines when S, leaves the interval (B,A) thus terminating the test. N is

called the sample number of the test. Several methods exist for approximating the random variable N (see

e.g. Wald [27], Martinsek [17], Bcrk [3], and Siegmund [26]), however, these results are valid only under

the null or alternative hypothesis. The method we cievelop here can be applied to apprgximate the sample

number under more general conditions.

Let or= P{ reject Ho I Ho true} be the type I error probability, i.e. the false alarm probability, and 13=P{

accept Ho I Ha true} be the type II error probability for the SPRT, i.e. the missed alarm probability. A

relationship between a,b, ct, and 13exists which allows one to specify error probabilities for the SPRT and

from that determine the constants a and b. In particular, to ensure that c_ < % and 13< 13ofor some

prespecified values % and [30,Wald's [27] boundaries a and b can be used where

1-13o (2.1a)a -
(Xo

b = _13° (2,1b)
1-%

We now describe the use of the SPRT in quality control. Suppose observations from an incoming process



are i.i.d. Gaussian random variables each with mean Po and variance o2. Furthermore, suppose that when

the mean of an incoming process falls outside the interval [_ - _5,po+ _5],it is considered to be out of

control. Since the SPRT is a one-sided test, it is necessary to simultaneously run two tests. This two-

sided SPRT for process control is given by the following:

I. Ho: X_, X2.... are normally distributed with mean Po, and variance

HI: X1, Xz .... are normally distributed with mean p_= po-8, and variance c 2

II. Ho: XI, X2.... are normally distributed with mean Po, and variance

H_: X_, X2.... are normally distributed with mean p_=lao+_5,and variance 0a

In testing for the mean of a Gaussian population as in tests I and II, the log likelihood ratio Zi is easily

shown to be the following:

(2.2)
Zi = _Pl-PoXi+

202

Let Z_i (Z"_) be the log likelihood ratio increment for test I (II). Similarly, let S_, (San) be the

corresponding SPRT test statistic for tests I (II). Then Z_i(Zni) can be obtained by using p_= po-_5( p_=

lao+5) in expression (2.2).

The log likelihood ratios ZX_and zn_ then serve as the respective increments for the SPRT test statistics

in tests I and II. When a test decides Ho, its corresponding SPRT sum skn for k=I,lI is set to 0 and a new

test begins. It' either SPRT decides H_, the testing terminates and the process is determined out of control.

The key issue addressed in this research is that of determining how well a sequential test will monitor the

process under study. One primary performance measure of interest for sequential tests is the amount of
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time needed for the test to exceed the threshold A. This time until the first Ht decision is referred to in

the control literature as the run length. For an SPRT used in process control, the run length corresponds

to the first time a test decides H_. The run length of the SPRT is a critical performance measure for

examining the behavior of the test under various types of process behavior. The run length under i.i.d.

observations has been addressed for both one- -and two-sided cumulative sum (CUSUM) sequential tests

(see Btihm and Hackl [6], Reynolds [23], Brooks and Evans [7], Woodall [29], [30], and Waldmann [28]).

However, of primary interest is the behavior of the sequential test when the process under study consists

of non-i.i.d, observations. Specifically, we would like to know the run length of the SPRT under various

types of process failure, i.e. when the mean of the process is changing over time. No such results exist

for the SPRT, and only a few exist for cumulative sum tests. Existing results are limited to rough

approximations (see Bagshaw and Johnson [1]).

3 The Sequential Probability Ratio Test as a Markov Additive Process

In this section, we propose a model which allows us to study the one-sided SPRT under various types of

process behavior. When the incoming observations are i.i.d., the increments of the SPRT are also i.i.d.

and the SPRT test statistic Sn = Z_<i_,,Z_forms a Markov process. Suppose the observations are no longer

i.i.d, but the increments Zi;i=l,2 .... are allowed to vary in distribution based on the progress of a finite

Markov chain {Dn,n _20}. In other words, we let Dn;n=l,2,... represent the mean of the incoming process

Xn at time n and consider the bivariate Markov process {(Sn, Dn); n=0,1,2 .... } The resulting bivariate

Markov process is called a Markov additive process. A formal definition is included in the following

subsection.
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3.1 Definition of a Markov Additive Process

In general, a Markov additive process (MAP) is an additive function Sn of a Markov process Dn so that

the pair (Sn, D_) forms a bivariate Markov process. More practically, an MAP consists of some additive

r,'mdom variable S, which depends incrementally on the progress of a finite Markov chain. The following

defhlition, contributed to Keilson and Rao [15], formally defines a Markov additive process in discrete

time.

Definition 1: A two dimensional Markov process (Sn,D,) for n=0,1,2 .... is said to be a Markov additive

process in discrete time if it satisfies the following criteria:

(i) {D,,n >0} is a finite Markov chain on state space {0,1 ....R} governed by a transition

probability matrix B = {b_}

(ii) S, is a sum Sn = So + )-',i_ Z, dependent on the chain in such a way that if the ith

transition takes the chain {Dn,n >0} from state r to state s, the increment Zi has c.d.f. P{Z_

< t} = 7_(t).

MAPs have been used to model a wide variety of situations. Examples include queuing, dam, shock and

insurance risk models (see e.g. [14], [15]). The following section develops a Markov additive model for

the one-sided SPRT which allows the process under study to vary in some characteristic manner.

3.2 Model Formulation

As noted in Section 2, the sequential probability ratio test is simply a sum Sn =EI_ 7_,,with So = 0 inside

an interval (B,A), where Zk is a linear function of the incoming process Xk. Suppose {D,,n ___0} is a

Markov chain which represents the mean of incoming process Xn so that the X, are normally distributed

with variance 0.2 and mean specified by D, for n=l,2 .... For the test of the mean of i.i.d. Gaussian



observations proposed in Section 2, Z. = (p_ - po)X./o 2 + (_2 _ p 2)/(2o2). Therefore, if Xn is gaussian

with mean v ,andvariance o2, Z. is gaussian with mean (Pl - _lo)v/_ + Qao2- P_2)/(2oz) and variance (p_ -

_1o)2/_. In this case, it is easy to see that the pair (S.,Dn) is a Markov Additive Process in discrete time

with Z. having continuous state space. The transition function of the bivariate Markov process (S.,D_)

is

. Oo-la_), + Ih-I_o.-P{ S_.I<t,D.. 1=siS. =w,D =r } = b,y.b(_[t-w-_ _l) (3.1)

where v, is the process mean corresponding to Dn+t= s, and _(.) represents the cumulative distribution

function for a standard normal random variable.

Modeling the SPRT in this way allows us to study a variety of process behaviors. For example, by setting

R=0 so that the state space of D_ is g]={0}, we can model the case where X_,X2.... are i.i.d. By letting Dn

e g2= {0,1....R} be a pure birth process with corresponding means {Vo,V_....VR}and VRan absorbing state,

we can model a process whose mean is increasing up to some critical value. For R=I and vo < v_ we

can model a rapid change in the mean of an incoming process. For large R and v0 < v_ < ...< VRwe can

model a gradual increase in the mean of a process. A variety of other types of process behavior can be

modeled in this way. However, from a practical point of view and as verified through discussions with

the engineers at ANL, it will suffice to study process failure as described by the three types mentioned

here. The transition diagrams of D_ for each of these three examples are shown in Figure 1.

3.3 Performance Measures

Under the three types of process behavior shown in Figure 1, we would like to know how quickly the

SPRT for process control will decide H_, thus determining the process to be out of control. Therefore,

we would like obtain first passage times of the process (S_,D_) to the absorbing boundary {S,>A }. In case

9
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I a) No Process Failure b) Sudden Process Failure

q 1-q q 1-q q 1

c) Graceful Process Failure

Figure 1. Transition Diagram of {Dn: n > 0} for Three Types of Process Behaviors

a, the trivial case where the incoming observations are i.i.d., the passage time of Sn to A will

enable us to compute the frequency of false alarms, i.e. how often the SPRT will decide the

process is out of control given that it is actually under control. In cases b and c, first passage

times to the boundary {S,,>_A}yield information about how quickly the SPRT will detect a

change in the process mean. The run length is given by the passage time TA where

TA = min{n: S,_>A) (3.2)

However, direct computation of passage times has, in general, proven to be a difficult problem.

The majority of research involving passage times of Markov Additive processes has been mostly

of theoretical interest. For example, Miller [18] studies convexity properties of boundary

10



problems for MAP's. Keilson and Wishart [16] derive a central limit theorem for such

processes. _inlar [8],[9] derives several properties of MAP's such as a strong Markov property.

Ney and Nummelin [19],[20] study the large deviations properties of such processes. Sadowsky

[25] derives a data dependent extension of Wald's identity for MAP's. No methods exist,

however, specifically for computing transient performance measures of Markov additive processes

in general. Only when Zi has a discrete state space can such measures be easily obtained. In

this limited case, passage times can be computed by considering the resulting bivariate Markov

Chain and using well-known methods. In the following section, we develop a method for

computing passage times of the more general problem.

4 Passage Times for Markov Additive Processes

In this section, we consider discretizing the state space of Z_ for i=1,2.... so that we can use well-

established methods to compute first passage time distributions of the resulting Markov chain. Brook and

Evans [7] proposed discretizing the state space as a method for approximating the run length distribution

in a one-sided CUSUM test and Woodall [30] extended this technique to a two-sided test. However, this

method provides no means to assess the accuracy of the resulting approximation. The following

development proposes a method for discretizing the state space of a Markov Additive Process so that

bounds on first passage times can be obtained. The next subsection presents the notation that will be used

throughout the analysis. Subsection 4.2 defines the concepts needed in the development and states

previously proved results. Subsection 4.3 develops the theory for obtaining first passage time bounds. In

Subsection 4.4, we present a method for discretizing the state space and in Subsection 4.5, we prove

convergence results which demonstrate asymptotic exactness of the method.

11



4.1 Notation

Throughout the analysis, we will let the superscripts U and L be used to denote random variables which

provide upper and lower bounds, respectively, on the quantity of interest (e.g. ZtJl, and ZLiwill denote

upper and lower bounds for Zi). The following notation will be used throughout the entire analysis:

Dn; n=0,1,2 .... a finite Markov chain on f2 = {0,1,2 ....R}, with Do = do

Zi_ R; i=0,1,2 .... a sequence of absolutely continuous random variables with the property

that if the Markov chain's ith transition is from state r to state s, then the c.d.f, if Z_

is W,_( )

zU_eR; i=0,1,2 .... a sequence of random variables with the property that if the Markov

chain's ith transition is from state r to state s, then the c.d.f, if zUt is 7,.-I() where

1-_,(t) > 1-W_.(t) for all te R, and all r,sE

ZL_eR; i=0,1,2 .... a sequence of random variables with the property that if the Markov

chain's ith transition is from state r to state s, then the c.d.f, if zL_ is 1-'_,() where

1-I'_(t) < 1-W_,(t) for all te R, and all r,se

S,,= _._ Zi

Un= Zi_ zUi

Ln = _.m zLI

G_f2 a subset of the state space of the Markov chain D,

TL,.n= min{n • Ln _>A }, given (Lo = x,Do = do )

TS_, = min{n : Sn > A}, given (So = x,Do = do )

TU,_ = min {n • Un > A}, given (Uo = x,Do = do )

TL_ = min{n : L, < B}, given (Lo = x,Do = do )

TS,m= min{n : Sn <B}, given (So = x,Do = do )

TU,m = min{n ' U, < B}, given (Uo = x,Do = do )

12
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4.2 Definitions and Existing Results

The bounds on first passage time distribution to be developed later are based on the concept of stochastic

order relations. In this subsection, we review the definition and basic properties of stochastic ordering of

random variables. The proofs can be found in Ross [24].

Definition 2: Given random variables X, and Y defined on R, X is said to be stochastically larger than

Y if P{X > t} > P{Y > t} for all t_R, and the relation is denoted by X >t Y.

Lemma 1" If X >t Y, then E[X] > E[Y].

Lemma 2: X >,t Y iff E[f(X)] > E[f(Y)] for all nondecreasing functions f.

Lemma 3: If F and G are distribution functions with 1-F(a) > 1-G(a) for all a, then there exists random

variables X and Y having c.d.f. F and G respectively so that P{ X > Y} = 1.

4.3 Development of Bounds for First Passage Times

From Section 4.1 and the definition of an MAP in Section 3, it is easy to verify that (Sn,D_), (L_,D_), and

(Un,D_) are all Markov additive processes in discrete time which have the same underlying Markov chain

{Dn, n>0}. The following lemma establishes an order relation between the three processes.

Lemma 4: For (Sn,D,), CL,,D_), and (U,,D,) as defined in Section 4.1.

zUi >--st Zi _st zLi (4.1)

13
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Proof: From the construction of the processes {L,, n_>0}, and {Un, n>_0}, it follows that if the ith

transition of the Markov chain takes the chain from state r to state s, then I-7,_(t)_>l-(p_(t) > 1-F,_(t) for

all t. The result follows immediately since this is true for any r,se fZ. Q.E.D.

The next lemma demonstrates conditional independence of the increments Z_ of a Markov Additive

process given the progress of the underlying Markov chain {Dn, n>0}

Lemma 5: For a Markov Additive Process as defined in Section 4.1, Z,,+Iis conditionally independent

P{ Zn.l< tlZn,D_,D_.I ] =P{ Z ,I< t lDn,Dn,_) (4.2)

of Z,, givcn Dn and D,+_. In other words,

Proof: The proof follows from definition 4.1, part 2. Q.E.D.

Lemma 6: Given Zu, Z_, and zt'i as defined in Section 4.1 with ZU_>-,tZ_>-,tZt'l for i=l,2,...n, then for

any componentwise nondecreasing function f(), f(Zul,ZU2,...zU,0 ->stf(Zl,7-a..... Z,) >st f(zL1,z_ ....Zt.n)•

Proof: Lemma 3 implies that for zUl _ Z_ ---,tzL we can define a U'i= dzUi and a L*i =d zL| with the

property that P{U*__>Z_>_L*_}= 1. Suppose we are given Do = do, DI = d_..... Dn = _. Then the

sequences U'l, Z_, and L*_ i=l,2 ....n are sequences of independent random variables. Using this and the

assumption that f is a componentwise nondecreasing function, we obtain

{f(L*I,L*2 ....L*_)>tlDo=do,Dl=dl .....Dn=dn}::>{f(Zi,Z2....Zn) > tlDo=do,Dl=dl .....Dn=dn}

=_{f(U*l,U*2 ....U*_) > tlDo=do,Dl=dl .....Dn=d_}

almost surely. Therefore,

14



P{ f(L*_,L*2....L*.)>tlDo=do,Dt=d_ ..... D.=d.} _<P{f(Z,,Z 2....Z.) > tlDo=do,D_=d_.....D.=d.}

-<P{f(U*I,U*2....U*.) > tl DO = do,Dl=d 1..... D.=d.}.

Using Lemma 3 and unconditioning gives

L L
P[f(Z1 ,Z2 ,..,Z_L)>t]= _ P[f(ztL,z_r,,.z.L>tldo,..d.lP[ do,..d.]

d,....a,

= _ P[f(L,',L2",..L_*)>tldo,..d, lP[do,..d,]
do,.,d"

<-_, P[f(Z,,..Z)>ttdo,..d_]P[do,.._]
a,,.A,

<- P U,',U;,..tV)>tldo,..d]Prdo,..dA
do,..d

=__,p[f(Z,v,Z 2v,..Z v)>tldo,..d.]P[do,..d_]
do,..d,

=P[f(Z f ,7__v,..Z.V)>t)

Q.E.D.

Lemma 6 gives upper and lower bounds on the first passage time distribution to either A>0 or B<0 for

Markov Additive processes.

, Theorem 1: Given ZUl, Zt, and zL_ as defined above with ZU_->,tZl >,t zLI for i=1,2 ....n, and the first

passage times TLxA, zSxn, TtJxA, TLxB, TsxB, TU,j3with x e (B,A), then

T_ s z (4.3a)_<, T,_ _<, TS,

and T_ >_, Ts >>_,T_ (4.3b)

Proof: The proof is divided into two cases.

Case 1 First passage time to A>0. We note that, the first passage time
't

TS,_ = min{n: Sn>AI SO= 0, Do = do} =_ {TSxA> n} = {max_k__Sk < AI So = 0, DO= do}.

15



Let f(x_.xz....x,) = max_,_, { _o_ta x). Clearly f ( ) is a componentwise nondecreasing function.

The first passage time {TU,a>nJ={f(zUl,zU 2....Zu_)<A},

{TS,.,>n}={f(Zl,Z2 ....Z,)<A}, and

{TL,a>n} = {f(ZLl,Z_ ....ZL,)<A}.

Lemma 4 implies that

P{f(Zul,ZU 2....ZU_)< A} _>P{f(Z_,Z 2....Z _) <A}>_ P{f(ZLI,Z'_ ....Z_) < A),

so we have the relation p{Tu,a> n}_<P {TS,a> n} <_P{TL,a>n}.

Case 2 First passage time to B<0. We note that, the first passage time

TS,,_= rain{n: Sn-<BISo = 0, Do = do} =* {'I'S_ > n} = {minla_ Sk > BI So = 0, Do= do}.

Let f(xl,x2 ....x,) = minj,a._ {_o_i,a x) Again f( ) is a componentwise nondecreasing function. Then

the first passage time

{TUxn>n}={f(ZtJi,ZU2....ZU.) > B },

{TS_n>n}={f(Z1,Z2....Z.) > B},and

{T_n>n} = {f(zL,,zL2....Z_.)>B}.

SO,Lcmma 4 impliesthat

P {f(Zo_,ZO2....zu.)>B}-<P{f(Zi,Zz....Z.)>B}<_5'{f(ZL_,Z_....ZL.)>B},

SO we havetherelationP{TU_m>n}>_P {TSxB>n} >_p{TL_>n}. Q.E.D.

4.4 Method for Bounding First Passage Times

Theorems 1 and 2 yield a method for bounding the first passage distribution of the sum S. which has

absolutely continuous increments Z_, i=1,2 .... , and is defined on the Markov Chain {D., n_>0}. By

16



constructing discrete-valued random variables ZUiand ZL_so that zU__t Z_>t ZL_we can use tile well-

established finite state Markov chain methods to find the first passage time distributions of the

corresponding MAP's (Un,Dn), and (Ln,Dn) which will provide the desired bounds. An illustration of the

order relationship between zUi, Z_, and ZLI is given in Figt:re 2.

0.9

0,8o
:,,w_.0.7 .....
o , - ....... LIpper Bound

0, 6 l '

',
u. 0,5 Lower Bound
I"1

0,4 "--*_ Zo,,,,,,,

_: 0,3
:3

0.2

0.1 L ;t____-;Z,_

-5 0 5 10 15

!

Figure 2. Relationship between the Survival Functions of the Upper Bound Z U, the Lower
Bound Z I", and Z

Constructing the discrete random variables zU_and ZL is straightforward. To this end, let _ be a real-

valued uniformly bounded continuous random variable with I_l _<L. Consider, the first passage time TS_

where E[TS_] < oo. We partition tile interval [-L,L] into M disjoint intervals _, k=l,2 ....M so that [,.JkEk

= [-L,L], and define probabilities 13,= P{Zi e Ek}, k=l,2...M. The values pk;k=l,2 ....M become the

probabilities of being in each discrete state and since Z_is continuous, this partitioning of the state space

is the same for both discrete random variables zU_ and ZL_. The difference between the two discrete

random variables is the values assigned to each of the M discrete states. In particular, for Zt'_<_tZ <_tzU_,
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divide the interval [-L, L] into M intervals each of length w = 2L/M, so that

F-,k= (ak, bk] = (-L+w(k-1), -L+wk] for k=l,2 ....M

and let Z"l = ak with probability Pk and Zu, = bk with probability _. This discretization procedure is

illustrated in Figure 3.

-L L

Zi" [ Pl P2 P3 [ P4 [ ..... PM-1 [ PM {

L
Z i • a 1 a2 a 3 a4 a 5 ..... aM. 1 aM

U
Z i ' bl b2 b3 b4 ..... bM. 2 bM-1 bM

Figure 3. Method for Discretizing the State Space of Z, to Bound First Passage Times

Note that by defining another discrete random variable whose values lie in the middle of each

interval ER, k=l,2,...M the resulting process would yield a first passage time distribution (mean)

in between that for the process ZUi and Zt', and may yield a good approximation for Z_.

This technique can be used as easily for the Markov Additive case as for the case where the Z_

are i.i.d. Assuming Z i is uniformly bounded for any transition of the Markov chain (i.e Fr_(-Im)

= 0 and F_(Lrs) = 1 for some L_, and all r,s _ f_), then let L = max,, s {L_} and discretize the

state space of each c.d.f, as in Figure 3.

Computation of first passage time distributions for the discrete-valued Markov chains is straightforward.
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The first passage time to a recurrent subset of states can be computed by making the subset absorbing,

and utilizing the following method. Given a finite Markov chain with transition probability matrix P and

initial distribution ._._,suppose the state space consists of a set T of transient states, so that P has the

following structure:

p = P_ 0 (4.4)
- R O

where P1 is an r x r matrix corresponding to the subset of recurrent states. Let M = ( I- Q)_ denote the

fundamental matrix, and let T denote the set of transient states. Then for i,jeT, Nij;i,j_T is the number

of times, starting from i, that state j is visited before the process leaves T.

It is well known that M = [ E[Nij] ] for i,jtsT (see, e.g. Bhat [6]). Let e denote a column vector of all l's.

Then the expected first passage time to the subset Tc after starting in some state in T according to the

initial distribution L_:l]i_'r is given by ..._rM e the expected number of visits to all states in T before

leaving the transient set. The distribution of the passage time to Tc, denoted here by N, is given by

= rcro "e (4.5)P{N>n} .-o_. -

Therefore, to compute bounds on the distribution of the run length for an SPRT, we use the Markov

chains (L_, DO and (Un, D,) constructed by discretizing the state space of Zt as in Figure 3, set T = {i '

i < A } and use equation (4.7).

The approach taken here is an extension of the one developed for the computing the run length of a one-

sided CUSUM test by Brook and Evans [7], and of a two-sided CUSUM test by Woodall [30]. Since the

CUSUM test is a random walk in the interval [0,A), Brook and Evans [7] proposed dividing this interval
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into M subintervals of equal length, and placing a discrete state in the center of each interwd and assigning

it a probability associated with being in that interval. Analysis of the corresponding discrete Markov chain

gives their approximation to the run length distribution of the CIJSUM procedure. Their approach

provides no assessment of the accuracy of the approximation. The method developed here modifies their

technique so that actual bounds on run length distribution can be obtained, and generalizes their approach

to non-i.i.d, process behavior. Furthermore, in the following section we prove that the bounds obtained

by the method developed here approach the exact distribution asymptotically.

4.5 Convergence Results

The above method requires that the number of discrete states M in the approximation be specified. It is

therefore of useful to know how tight the bounds on the first passage distribution are for a given M. Let

::::,ddenote convergence in distribution. The following Theorem proves that the bounds become exact as

the number of discrete states approaches ,,,,.

Theorem 3: For Tu,.A= rain{n: Un >--A } and TL,.A= min{n:Ln > A}, Tu,.A:=_d TsxAand Tt'xA::_d TSxA as

the number of discrete states M--->_,.

Proof: The result is proven for Tu,.Ausing a standard coupling argument. Suppose we have M discrete

states. Let lc denote the indicator function on a set C. Define a process

Z¢i= _k (wk - L) I {w(k-l)-L < Zi S wk-l,}

with Z_0= x, Un¢ = _. Z_i, and TuA¢ = rain{n: UCn>A}. Then clearly

P{Z_I= wk-L} = P{ZUi = wk-L} for all k=l,2 ....M

and so T%A ='_ Tu,.A. NOW suppose w(j-1)-L < __< wj-L for some j _ {1,2....M}. Then we have

IZl Z¢il < w = 2L/M.
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Since Z_is uniformly bounded by L < ,,,,, given e>0 we can find Mo = _-2L/e.]so that for all M > Mo,

IZ_- Z'tl < w < e. Therefore, Z_ _Z_ as M--_, pointwise (almost surely). Therefore, since TS,,_is finite

a.s., T#ua--_ TS,a a.s. Finally since T#UA=d Ts , then TU,_ :=_ TS,.Aas M---_ . The proof of TL_Ais

identical and uses an analogous coupled process. Q.E.D.

Theorem 3 ensures that as the number of discrete state in the approximation becomes very large, the

passage time distribution will converge to the exact distribution. The following result demonstrates a

monotonic relationship between the bounds as they converge.

Theorem 4: Let TU_ (M) and TL,_(M) denote the upper and lower bound passage times when M

discrete states are used in the approximation. Consider file subsequence n(M) = 2M for M=l,2 ..... Then

TLxA (n(M)) >-TL (n(M+l)) , Tu_ (n(M)) < Tu,,A (n(M+l)), TUxn(n(M)) _>TU,n (n(M+l)) , and Tt'xn

(n(M)) _<TL_B(n(M+l) a.s. for all M=l,2 ....

Proof: The result will be proven for Tu,,A (n(M)). The proof for the other three cases is analogous.

Let w,_> be the interval width when M discrete states are used. As before, define a process

Z*i(n(M)) = Yk':,O,_ ( -L+wk ) I (.t_wo,-,><za_.,,,,,k)"

Then P{Z*i(n(M))=-L+wk) = P{ZUi(n(M))=-L+wk} for all k=l,2 ....n(M). Now suppose

-L+w,,e,l>(j-1)< Zi-< -L+w,o_j for some j e {1,2....n(M)}.

Then Z*i(n(M)) = -L+wn_j. Looking at n(M+l), n(M+!) = 2n(M), and w,_> = 2w, t_+_) so each interval

is divided in half. Based on the value of Z_, there are two possibilities for Z*i(n(M+l)).

(1) If 7_flies in the upper half of the interval (-L+w,0_>(j-1),-L+w,_)j]. Specifically,

L+2w.on+l)(j-lr2 ) < Zi< -L+2w.o_+l:j, then Z*i(n(M+l)) = -L+2w.ea+l:j = Z*i(n(M)), or
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(2) If Z_ lies in the lower half of the interwd (-L+w,_)(j-1) ,-L+wncM_j],or we have

L+2wnt_.l)(j- 1) < Zi-<-L+2w,_+t)( j- 1/2), then

Z*l(n(M+ 1)) = -L+2wnt_.l)( j- 1/2) < Z*t(n(M)).

So Z*l(n(M+ 1)) __.Z*j(n(M))a.s. Therefore,ZUi(n(M+ 1)) 5,t ZtJt(n(M)) and applying Theorem 1 gives the

desired result. Q.E.D.

5 Numerical Results

We can now obtain bounds on the run length of the SPRT for various types of process behavior. In

particular, we are interested in the run length of the SPRT under (1) no process failure, (2) rapid process

failure, and (3) graceful process failure. The first performance measure gives us the time to a false

decision by the SPRT, while the second and third tell us how quickly the test will detect a failing process.

Figures 4 and 5 plot upper and lower bounds on the run length for the one sided SPRT with Po = 0, pl=

1,oa = 0.5, and oto = _ = 0.01. Figure 4 plots the run length distribution under no process failure with

M = 50. The bounds on the run length distribution mimic one another in shape and remain quite close

together yielding accurate information about the actual run length distribution of an SPRT.

Figure 5 demonstrates the mean run length as a function of discrete state space size M. Figure 5a plots

mean run length under no process failure. The bounds are compared against a Monte Carlo simulation

estimate based on the importance sampling method of Siegmund[26]. Figures 5b and 5c plot the expected

run length under rapid process failure and graceful process failure, respectively. The bounds are compared

against straightforward Monte Carlo simulation. The models for rapid process failure and graceful process

failure were formulated as in Figure 3, where q was selected so that the mean time until the mean reaches
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its critical level VR would correspond to a rate of failure commonly found in the nuclear reactor

applications at ANL.

c"
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_'_ , I'------- I: _------ _1----_----_o_ 0

0 200 400 600 800 1000
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Figure 4. Run Length of the SPRT Under No Process Failure

Figure 5 demonstrates that the more quickly a process fails, the shorter the run length of an SPRT. For

example, the mean run length of an SPRT under no process failure is 1424. This value decreases to 25

for a gracefully failing process and to 12 for a rapidly failing process. This is to be expected since an H_

decision by the SPRT becomes more likely as the mean of an incoming process increases.

Figure 5 also indicates convergence of the bounds to the exact value as M becomes very large. The

numerical results also suggest that a longer mean run length for the original problem will yield slower

convergence of the bounds to the exact solution. For example, under no process failure, M>120 is

required to reach within 15% of the simulated mean run length for the upper and lower bounds. For

gracefully failing and rapidly failing processes the bounds become within 15% of the simulated value for

M>50, and M>40, respectively.
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Figure 5. Bounds on the Expected Run Length of the SPRT under Three Process Behaviors as a
Function of Discrete State Space Size

6 Conclusion

In this work, we develop a useful technique for computing performance measures of sequential tests in

process control and illustrate these methods through numerical examples. Development of this technique
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has been motivated largely by the following: (1) a need to assess the performance of process control

techniques for safety-critical or mission-critical applications, and (2) the desire to characterize these

performance metrics in a variety of scenarios. The methods developed here serve as a basis for the design

and performance analysis of expert systems for process control. These unique expert systems utilize

numerous sequential tests running both simultaneously and in sequence for the purpose of detecting and

diagnosing failures of process signals from highly redundant systems.

In the process of developing this methodology, we extend the current research in several ways. First, we

formulate a Markov additive model for the SPRT which allows us to study the behavior of sequential tests

under various non-i.i.d, process behavior, including under control ,'"_cesses, slowly failing processes,

rapidly failing processes, and out of control processes. Using this innovative model, the performance

measures of interest can be viewed as passage times of a Markov additive process.

Second, using stochastic order relations, we develop a technique for computing bounds on first passage

time distributions of Markov additive processes. The technique is based on discretizing the state space

of the original process in a particular manner, and can be used to obtain performance measures of interest

not only in process control, but also in a variety of other contexts. In particular, passage times of Markov

additive processes are of interest in many applications, and no established techniques exist for obtaining

such performance measures i_1general. The method developed here provides a straightforward technique

for obtaining not only moments, but the distribution of these performance measures.

Finally, the techniques developed here for passage times of the sequential probability ratio test can be

extended to include other performance measures, and other applications. For example, the approach

developed here may be used to compute the sample number and operating characteristic (the probability
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a test decides H_)of sequential tests under non-i.i.d, process behavior. Furthermore, sequential tests for

correlated processes, such as Markov sequences or autoregressive processes, have been the focus of recent

research. The methodology developed here can be generalized for the purpose of analyzing such tests.

These issues are subjects of current and future research.
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