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1 Introduction

In recent years, a great deal of emphasis has been placed on quality control of industrial processes. In
particular, numerous statistical techniques exist which are designed to continually check an industrial
process for machine or component failure, thereby determining if the process is under control, or if it is
becoming out of contrcl. In this study, we consider a very powerful class of quality control techniques

known as scquential tests,

Scquential tests classify a set of observations in a manner similar to statistical hypothesis tests, but are
characterized by a random sample size. Perhaps the best known sequential test is Wald's sequential
probability ratio test [27]. The sequential probability ratio test (SPRT) is a log likelihood ratio based test
for simple or composite hypotheses. After taking each observation, the SPRT decides whether to accept
the null hypothesis, reject the null hypothesis, or continue sampling. For the purpose of quality control,

an SPRT can be conducted repeatedly over time as incoming observations are received.

The SPRT is only one of several process control techniques which can be formulated as a sum of random
increments inside an interval of the real line. Once the sum leaves the interval of interest, the test is
terminated and a decision is made which characterizes the observations. In this study, we focus attention
on the SPRT; however, the analysis presented here applies equally Well to other controi techniques based

on sums of random variables (such as cumulative sum control charts).

One important question is how effectively a given sequential test will monitor the process under study.
The effectiveness of a sequential test can be summarized by two performance measures: (1) how long
it will take for the test to make an incorrect decjsion given the process is either under control or out of

control and (2) how quickly the test will detect failure of a process which is becoming gradually (or
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rapidly) out of control Both performance measures correspond to passage times of a sum of random
increments to some threshold. These times are, in general, quite difficult to compute. Research to date
includes limited results with respect to these performance measures. Namely, several techniques exist
which allow us to approximate the distribution and moments of (1), however, virtually no results exist

which allow us to study (2).

The significance of obtaining these performance measures is emphasized for safety-critical or mission-
critical applications. Such systems often usc a high degree of built-in redundancy to increase reliability,
resulting in numerous correlated processes to be monitored. At Argonne National Laboratory (ANL),
expert systems are under development for process control of safety-critical or mission-critical systems, (see
[11]-[13]). These expert systems utilize numerous sequential tests operating both simultaneously and in
scquence for the purpose of detecting and diagnosing component failures of highly redundant systems.
The expert systems were originally developed to monitor ANL’s EBR-II nuclear reactor coolant pumps
but have been generalized to include other systems. Current applications of these expert systems include
the nuclear reactor industry, the airline industry, and surgical equipment among others. The research
developed here is motivated by the critical nature of these applications, and is currently being used by the
author and the scientists at ANL as a foundation for design and analysis of the expert systems for process

control.

In this rescarch, we develop a methodology for obtaining performance measures of sequential tests for
process control. This methodology is developed in two stages. First, we formulate a bivariate Markov
model in discrete time with continuous state space. The first parameter of this model tracks the value of
the test statistic over time and the second parameter monitors the state of the process under study. Called

a Markov additive process, the model allows us to study sequential tests under non-i.i.d. process behavior.




In particular, we can model the behavior of sequential tests for under control processes, gracefully failing
processes, suddenly failing processes, and out of control processes. Second, using stochastic order
relations, we develop a simple computational technique for obtaining passage times of our Markov additive
model. This technique involves discretizing the state space of our model in a particular manner and
studying the resulting Markov chain. We prove that bounds on the first passage time distribution can be
obtained using this method and that these bounds become exact as the number of discrete states increases.
Finally, we use this technique to compute tiic performance measures of interest for sequential tests in

process control.

It should be noted that the method developed here for computing first passage times applics to discrete
time Markov additive processes in general and has utility in a varicty of contexts. Markov additive
processcs (sums of random variables defined on a Markov chain) have been used to study various
appiications, including queuing models, dam models, shock models, and insurance risk models. In many
cases, passage times of these models are of intcrest. With the limited exception of problems having a
discrete state space, no well-established computational techniques exist for obtaining passage times of
Markov additive processes. Therefore, utility of the technique developed here extends well beyond the

area of process control.

In the following section, we review the sequential probability ratio test and state some of its propertics.
In Section 3, we formulate a Markov additive model which allows us to study the sequential probability
ratio test under various types of process behavior. Section 4 develops the theoretical results and the
methodological approach that allow us to bound the first passage time distributions of our model. Section

5 illustrates our techniques through numerical examples.



2 The Sequential Probability Ratio Test

Scquential tests are concerned with characterizing data from some random experiment in a manner similar
to hypothesis testing. A sequential test differs from a standard hypothesis test primarily through a random
sample number which depends on the outcome of the experiment. A sequential test may be described as
follows. After collecting each observation, a rule is given for taking one of three actions. The possible
actions are

(1) terminate the test and accept the null hypothesis
(2) terminate the test and reject the null hypothesis

(3) continue sampling

For a more complete development of the SPRT, see Ghosh and Sen [10], Chapter 3. For simplicity,
assume X,, X,,... arc independent, identically distributed (i.i.d.) random variables with absolutely
continuous distribution. The following development and analysis presented in this section is valid under
more general conditions and can be done in analogy.  Consider the following hypotheses:

Hy: X,, X,,... have density fi( )
H;: X,, X,,... have density f,( )

The SPRT for the above hypothesis proceeds as follows: select constants a and b with (O<b<a<eo,
Denoting the ith observation by x,, let A, = IT..," f,(x)/fo(x;) represent the likelihood ratio at stage n.

According to the value of A, take the following action:

If A, <b terminate and accept H,
If b<A,<a continue sampling
If A, 2a terminate and reject Hg,

The SPRT is implemented by taking the logarithm of the likelihood ratio A,. Let Z; = log[ f,(x)/fo(x)],
and S, = log A= Z,,, Z. Define A = log(a) and B = log(b). Then the SPRT is equivalent to the

i

following:



If S,.< B terminate and accept H,
If B <S,< A continuc sampling

If S, 2 A terminate and reject Hy

In practice, the values A>0 and B<0 are determined by the desired error probabilities of the test and are
further mentioned below. Clearly, one SPRT is equivalent to a random walk S, = X,4., Z inside an
interval with S, = 0 and two boundaries B and A. Dcfine N = min {n>0: S, £ B or S, 2 A}. Then N
is a stopping time which determincs when S, leaves the interval (B,A) thus terminating the test. N is
called the sample number of the test. Several methods exist for approximating the random variable N (see
e.g. Wald [27], Martinsek [17], Berk [3], and Siegmund [26]), however, these results arc valid only under
the null or alternative hypothesis. The method we develop here can be applied to approximate the sample

number under more general conditions.

Let o= P{ reject Hy | H, true} be the type I error probability. i.e. the false alarm probability, and B=P{
accept Hy | H, true} be the type II error probability for the SPRT, i.e. the missed alarm probability. A
relationship between a,b, o, and B exists which allows one to specify error probabilities for the SPRT and
from that determine the constants a and b. In particular, to ensure that o < o and B < B, for some

prespecified values oy and B,, Wald’s [27] boundaries a and b can be used where

2o B (2.1a)
go
= 0
b = (2.1b)

We now describe the usc of the SPRT in quality control. Suppose observations from an incoming process
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are i.i.d. Gaussian random variables cach with mean p, and variance 6®. Furthermore, suppose that when
the mean of an incoming process falls outside the interval [py - 8,10 + 8], it is considered to be oui of
control. Since the SPRT is a one-sided test, it is necessary to simultaneously run two tests. This two-

sided SPRT for process control is given by the following:

I Hy: X, X,,... are normally distributed with mean p,, and variance o’

H,: X,, X,,... arc normally distributed with mean p,= py-8, and variance o’

IL. Hy: X,, X,,... are normally distributed with mean p,, and variance ©°

H,: X,, X,,... are normally distributed with mean p,=p4+9, and variance o’

In testing for the mean of a Gaussian population as in tests I and II, the log likelihood ratio Z; is easily

shown to be the following:

2 2
7 = B —POX‘.'&pO—pl (2.2)

Let Z. (Z") be the log likelihood ratio increment for test I (II). Similarly, let S', (S") be the
corresponding SPRT test statistic for tests I (II). Then Z\ (Z") can be obtained by using p,= py-6 (p,=

Ho+d) in expression (2.2).
The log likelihood ratios Z\ and Z"; then serve as the respective increments for the SPRT test statistics
in tests I and II. When a test decides H,, its corresponding SPRT sum S¥, for k=I,1I is set to 0 and a new

test begins. If cither SPRY decides H,, the testing terminates and the process is determined out of control.

The key issue addressed in this research is that of determining how well a sequential test will monitor the

process under study. One primary performance measure of interest for sequential tests is the amount of
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time needed for the test to exceed the threshold A, This time until the first H, decision is referred to in
the control literature as the run length. For an SPRT uscd in process control, the run length corresponds
to the first time a test decides H,. The run length of the SPRT is a critical performance measure for
examining the behavior of the test under various types of process behavior. The run length under i.id.
observations has been addressed for both one- and two-sided cumulative sum (CUSUM) sequential tests
(sce Bshm and Hackl [6], Reynolds [23], Brooks and Evans [7], Woodall {29], [30], and Waldmann [28]).
However, of primary interest is the behavior of the sequential test when the process under study consists
of non-i.i.d. observations. Specifically, we would like to know the run length of the SPRT under various
types of process failure, i.c. when the mean of the process is changing over time. No such results exist
for the SPRT, and only a few exist for cumulative sum tests. Existing results are limited to rough

approximations (scc Bagshaw and Johnson {1]).

3 The Sequential Probability Ratio Test as a Markov Additive Process

In this scction, we propose a model which allows us to study the one-sided SPRT under various types of
process behavior. When the incoming observations are i.i.d., the increments of the SPRT are also i.i.d.
and the SPRT test statistic S, = Z,4, Z; forms a Markov process. Suppose the observations are no longer
i.i.d. but the increments Z;i=1,2,... are allowed to vary in distribution based on the progress of a finite
Markov chain {D_,n 20}. In other words, we let D,;n=1,2,... represent the mean of the incoming process
X, at time n and consider the bivariate Markov process {(S,, D,); n=0,1,2,...} The resulting bivariatc
Markov process is called a Markov additive process. A formal definition is included in the following

subsection.
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3.1 Definition of a Markov Additive Process

In gencral, a Markov additive process (MAP) is an additive function S, of a Markov process D, so that
the pair (S,, D,) forms a bivariate Markov process. Morc practically, an MAP consists of some additive
random variable S, which depends incrementally on the progress of a finite Markov chain. The following
definition, contributed to Keilson and Rao [15], formally defines a Markov additive process in discrete
time.

Definition 1: A two dimensional Markov process (S,,D,) for n=0,1,2,... is said to be a Markov additive
process in discrete time if it satisfics the following criteria:

(i) {D,n 20} is a finitc Markov chain on state space {0,1,...R}) governed by a transition

probability matrix B = {b}

(ii) S, is a sum S, = Sy + X, Z; dependent on the chain in such a way that if the ith
transition takes the chain {D,,n =0} from state r to state s, the increment Z, has c.d.f. P{Z,
<t} = %00,
MAPs have been used to model a wide variety of situations. Examples include queuing, dam, shock and
insurance risk models (see e.g. [14], [15]). The following section develops a Markov additive model for

the onc-sided SPRT which allows the process under study to vary in some characteristic manner.

3.2 Model Formulation

As noted in Section 2, the sequential probability ratio test is simply a sum S, =Z, 4., Z, with S; = 0 inside
an interval (B,A), where Z, is a linear function of the incoming process X,. Suppose {D,n =0} is a
Markov chain which represents the mean of incoming process X, so that the X, are normally distributed

with variance o® and mean specified by D, for n=1,2,... For the test of the mean of i.i.d. Gaussian
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observations proposed in Section 2, Z, = (p, - Po)X/0* + (1 - W )/(20%). Therefore, if X, is gaussian
with mcan v and variance o2, Z, is gaussian with mean (3, - p)V/6® + (52 - 1,1)/(26?) and variance (y, -
Ho)Y/o?. In this case, it is easy to see that the pair (S,,D,) is a Markov Additive Process in discrete time
with Z, having continuous state space. The transition function of the bivariate Markov process (S,,D,)

is

P{S ,<t,D, =sIS =w,D, =r} = b d( o [t_w__(-"o'pl)".*-ﬂ]) (3.1
n n rs ‘/P,_*IIT 0.) 20_)

where v, is the process mean corresponding to D,,, = s, and &®(.) represents the cumulative distribution

function for a standard normal random variable.

Modecling the SPRT in this way allows us to study a variety of process behaviors. For example, by setting
R=0 so that the state space of D, is Q={0}, we can modecl the case where X;,X,,... are i.i.d. By letting D,
e Q= {0,1,..R} be a pure birth process with corresponding means {V,,v,,...vg} and vg an absorbing state,
we can model a process whose mean is increasing up to some critical value. For R=1 and v, < v, we
can model a rapid change in the mean of an incoming process. For large R and v, < v, <...< vg we can
model a gradual increase in the mean of a process. A variety of other types of process behavior can be
modeled in this way. However, from a practical point of view and as verified through discussions with
the engineers at ANL, it will suffice to study process failure as described by the three types mentioned

here. The transition diagrams of D, for each of these three examples are shown in Figure 1.

3.3 Performance Measures

Under the three types of process behavior shown in Figure 1, we would like to know how quickly the
SPRT for process control will decide H,, thus determining the process to be out of control.  Therefore,

we would like obtain first passage times of the process (S,,D,) to the absorbing boundary {S,2A}. In case

9
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a) No Process Failure b) Sudden Process Failure

1-q

¢) Graceful Process Failure

Figure 1. Transition Diagram of {D,: n = 0} for Three Types of Process Behaviors

a, the trivial case where the incoming observations are i.i.d., the passage time of S, to A will
enable us to compute the frequency of false alarms, i.e. how often the SPRT will decide the
process is out of control given that it is actually under control. In cases b and c, first passage
times to the boundary {S,2A} yield information about how quickly the SPRT will detect a
change in the process mean. The run length is given by the passage time T, where
T, = min{n: S, A} 3.2)

However, direct computation of passage times has, in general, proven to be a difficult problem.
The majority of research involving passage times of Markov Additive processes has been mostly

of theoretical interest. For example, Miller [18] studies convexity properties of boundary

10
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prldblcms for MAP’s. Keilson and Wishart [16] derive a central limit thzorem for such
processes. Cinlar [8],[9] derives several properties of MAP’s such as a strong Markov property.
Ney and Nummelin [19],[20] study the large deviations properties of such processes. Sadowsky
[25] derives a data dependent extension of Wald’s identity for MAP’s. No methods exist,
however, specifically for computiiig transient performance measures of Markov additive processes
in general. Only when Z; has a discrete state space can such measures be easily obtained. In
this limited case, passage times can be computed by considering the resulting bivariate Markov
Chain and using weil-known methods. In the following section, we develop a method for

computing passage times of the more general problem.

4 Passage Times for Markov Additive Processes

In this section, we consider discretizing the state space of Z for i=1,2,... so that we can use well-
established methods to compute first passage time distributions of the resulting Markov chain. Brook and
Evans [7] proposed discretizing the state space as a method for approximating the run length distribution
in a one-sided CUSUM test and Woodall [30] extended this technique to a two-sided test. However, this
method provides no means to assess the accuracy of the resulting approximation. The following
development proposes a method for discretizing the state space of a Markov Additive Process so that
bounds on first passage times can be obtained. The next subsection presents the notation that will be used
throughout the analysis. Subsection 4.2 defines the concepts needed in the development and states
previously proved results. Subsection 4.3 develops the theory for obtaining first passage time bounds. In
Subsection 4.4, we present a method for discretizing the state space and in Subsection 4.5, we prove

convergence results which demonstrate asymptotic exactness of the method.

11
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4.1 Notation

Throughout the analysis, we will let the superscripts U and L be used to denote random variables which
provide upper and lower bounds, respectively, on the quantity of interest (e.g. ZY, and Z% will denote
upper and lower bounds for Z;). The following notation will be used throughout the entire analysis:
D,; n=0,1,2,... a finite Markov chain on Q = {0,1,2,..R}, with D, = d,
ZeR,; i=0,1,2,... a sequence of absolutely continuous random variables with the property
that if the Markov chain’s ith transition is from state r to state s, then the c.d.f. if Z,
is W ()
ZUeR,; i=0,1,2,... a scquence of random variables with the property that if the Markov
chain’s ith transition is from state r to state s, then the c.d.f. if Z"; is %,( ) where
1-%() 2 1-P (1) for all teR, and all r,se 2
Z“eR; i=0,1,2,... a sequence of random variables with the property that if the Markov
chain’s ith transition is from state r to state s, then the c.d.f. if Z" is I',( ) where

1-T',(t) < 1-¥ (1) for all teR, and all r,se Q

Sn = z\ﬂl Zi
U,= Xy Zui
Ln = Zis:: ZLi

GcQ a subset of the state space of the Markov chain D,
TY, =min{n: L, > A}, given (Lo = x,Dy= d;)
T5, =min{n: S, 2 A}, given (S, = x,Dy = d,)
TV 4 = min{n : U, 2 A}, given (Uy = x,Dy = d,)
T'.s = min{n : L, < B}, given (L, = x,D, = d,)
TSs = min{n: S, <B}, given (S, = x,Dy= d,)

TV, = min{n : U, < B}, given (Uy = x,D, = dy)

12



4.2 Definitions and Existing Results

The bounds on first passage time distribution to be developed later are based on the concept of stochastic
order relations. In this subsection, we review the definition and basic properties of stochastic ordering of

random variables. The proofs can be found in Ross [24].

Definition 2: Given random variables X, and Y defined on R, X is said to be stochastically larger than

Y if P{X >t} 2 P{Y >t} for all teR, and the relation is denoted by X 2, Y.
Lemma 1: If X 2, Y, then E[X] 2 E[Y].
Lemma 2: X 2, Y iff E[f(X)] = E[f(Y)] for all nondecreasing functions f.

Lemma 3: If F and G are distribution functions with 1-F(a) 2 1-G(a) for all a, then there exists random

variables X and Y having c.d.f. F and G respectively sothat P{ X 2Y} = L.

4.3 Development of Bounds for First Passage Times

From Section 4.1 and the definition of an MAP in Section 3, it is easy to verify that (S,,D,), (L,,D,), and
(U,,D,) are all Markov additive processes in discrete time which have the same underlying Markov chain

{D,, n=0}. The following lemma cstablishes an order relation between the three processes.

Lemma 4: For (S,,D), (L,,D,), and (U,D,) as defined in Section 4.1.

z%2,722,74 @1
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Proof: From the construction of the processes {L,, n20}, and (U,, n20}, it follows that if the ith
transition of the Markov chain takes the chain from state r to state s, then 1-x (1)21-@(t) 2 1-T"(t) for

all t. The result follows immediately since this is true for any r,se Q. Q.E.D.

The next lemma demonstrates conditional independence of the increments Z; of a Markov Additive

process given the progress of the underlying Markov chain (D, n>0}

Lemma §: For a Markov Additive Process as defined in Section 4.1, Z ., is conditionally independent

P{z,<t1Z,D,.D,, )=P(Z

nel = n+l

<t1D,.D,. ) 4.2)

of Z, given D, and D,,,. In other words,

Proof: The proof follows from definition 4.1, part 2. Q.E.D.

Lemma 6: Given ZY, Z, and Z\, as defined in Section 4.1 with 2", 2, Z, 2, Z" for i=1,2,...n, then for

any componentwise nondecreasing function f( ), £(Z",,2%...Z%) 2, £2,,2,,...Z;) 2, §(Z",Z",..Z").

Proof: Lemma 3 implies that for Z¥, >, Z 2, Z" we can define a U*=*Z", and a L*=*Z" with the
property that P{U*>Z>L*} = 1. Suppose we are given D; = dy, D, = d;, ..., D, = d,. Then the
sequences U*, Z, and L*, i=1,2,...n are sequences of independent random variables. Using this and the
assumption that f is a componentwise nondecreasing function, we obtain
{f(L*,,L*,,.. L*)>tID=d,,D,=d,,...D,=d, ) ={f(Z,,Z,,..Z,) > tIDy=d,,D,=d,,....D;=d,}
= {f(U*,,U*,,..U*) > tIDy=dy, D =d,,....D;=d,}

almost surely. Therefore,

14



P{f(L*,,L*,,..L* )>tIDy=do,D,=d,,....D,=d,} SP([(Z,,Z,...Z,) > tIDy=dy,D,=d,,....D,=d. }

<P(f(U*,U*,,..U*) > tl D, = d,,D,=d,,....D,=d. }.

Using Lemma 3 and unconditioning gives

PIZ 2 . 2>0= Y, PIRZ! 2.2 51d,,..d,\Pld,y,.d,)
:SIP[]‘(L;-L;,~.L,,')>tldo...dn]P[dO,..dn]
sdg P(Z,..Z)>!d,,.dP(d,.d,)
Sg PIAU," U, ..U Y>0d,,..d )Pd,,..d,]

i

=Y plfz’ 2.2, )>td,,..d \Pld,,.d,]
d,,.d,

—PIAZ 2, 2y

Q.E.D.

Lemma 6 gives upper and lower bounds on the first passage time distribution to either A>0 or B<O for

Markov Additive processes.

Theorem 1: Given Z', Z, and Z', as defined above with ZY, 2, Z, 2, Z", for i=1,2,...n, and the first

passage times T",, TS, TV A, T 5, TS5, TV 3 with x € (B,A), then

§
T
s

L
t t TM’
t TIB

Ts

S L {

IV A

T <
and T 2

L "

Proof: The proof is divided into two cases.

Case 1 First passage time to A>0. We note that, the first passage time

(4.3a)
(4.3b)

TS, = min{n: S,2Al S, = 0, Dy = dy} = {T5,, > n) = (max 4, S, < Al Sy =0, Dy = dy}.

15



Let f(X,%5,..,Xy) = MaX, g { EOS,Q x,}. Clcarly f () is a componentwise nondecreasing function.
The first passage time {TY ,>n}={{(Z",Z%,..Z" )<A},
(T8 >n}=({(Z,,Z,,..Z,)<A}, and
(TY,>n} = (f(Z",Z",,..Z" )<A).
Lemma 4 implies that
P(f(z",Z",..2°) < A} = P({(Z,,Z,...2 ;) <A}= P{{(Z",Z",,..Z") < A},

so we have the relation P{TY,> n}< P {T5,,> n} <P{T",> n}.

Case 2 First passage time to B<0. We note that, the first passage time
TSz = min{n: S,<BI S, = 0, Dy = dy} = {T5 > n) = (min g, S, > Bl S; =0, Dy = dy}.
Let f(x,,x,,..,X,) = min,; 4, { ):Dsm xj} Again f( ) isacomponentwise nondecreasing function. Then
the first passage time
(TV g>n}={f(Z",,2",...2") > B},
(TS g>n)={f(Z,,Z,,..Z,) > B}, and
(T“y>n) = (f(Z",Z",...Z")>B].
So, Lemma 4 implies that
P{f(Z",,Z"%,..Z"° )>B)}<P{{(Z,,Z,,.. Z)>B)<P{f(Z".Z",,..Z")>B},

so we have the relation P{TY ;> n}= P {TS;> n} 2P{T" 3> n}. Q.E.D.

4.4 Method for Bounding First Passage Times

Theorems 1 and 2 yield a method for bounding the first passage distribution of the sum S, which has

absolutely continuous increments Z, i=1,2,..., and is defined on the Markov Chain {D,, n20}. By
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construcling discrete-valued random variables Z¥; and ZY so that ZY, >, Z, 2, Z" we can usc the well-
cstablished finitc state Markov chain methods to find the first passage time distributions of the
corresponding MAP’s (U_,D,), and (L,,D,) which will provide the desired bounds. An illustration of the

order relationship between ZY, Z, and Z" is given in Figure 2.

A i St T IR Upper Bound
o] l\ : PP

-— — — Lower Bound

0.4 | \;S““': ———— 7

Survival Function
[
o

03 !
l“ — .
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t

Figure 2. Relationship between the Survival Functions of the Upper Bound ZY, the Lower
Bound Z*, and Z

Constructing the discrete random variables Z", and Z" is straightforward. To this end, let Z, be a rcal-
valued uniformly bounded continuous random variable with IZ1 < L. Consider, the first passage time T,
where E[TS,,] < oo, We partition tie interval [-L,L] into M disjoint intervals E,, k=1,2,...M so that \U,E,
= [-L,L], and define probabilitics p, = P{Z, € E,}, k=1,2..M. The values p;k=1,2,...M become the
probabilitics of being in each discrete state and since %, is continuous, this partitioning of the state space
is the same for both discrete random variables Z% and Z. The difference between the two discrete

random variables is the values assigned to each of the M discrete states. In particular, for ZLi SaZ S zv,
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divide the interval [-L, L] into M intervals each of length w = 2LL/M, so that
E, = (a,, b,] = (-L+w(k-1), -L+wk] for k=1,2,...M
and let Z" = a, with probability p, and Z", = b, with probability p,. This discretization procedure is

illustrated in Figurc 3.

-L L
pl p2 p3 p4 pM-l pM

7. | | | | L ... | | |

! ! I l f [ I I -

L

Z,: a a a3 a4 ds e AM-1 M

U b b
z.: by hy b3 by - bm2 DM M

Figure 3. Method for Discretizing the State Space of Z, to Bound First Passage Times

Note that by defining another discrete random variable whose values lie in the middle of each
interval E,, k=1,2,..M the resulting process would yield a first passage time distribution (mean)

in between that for the process Z', and Z" and may yield a good approximation for Z,.

This technique can be used as easily for the Markov Additive case as for the case where the Z,
are i.i.d. Assuming Z, is uniformly bounded for any transition of the Markov chain (i.e I'((-L,))
= 0 and I' (L) = 1 for some L, and all r;s € Q), then let L = max_; {L;} and discretize the

state space of each c.d.f. as in Figure 3.

Computation of first passage time distributions for the discrete-valued Markov chains is straightforward.
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The first passage time to a recurrent subsct of states can be computed by making the subsct absorbing,
and utilizing the following method. Given a {inite Markov chain with transition probability matrix P and
initial distribution 1, suppose the state space consists of a sct T of transient states, so that P has the

following structure:

=1

o] [=]

} 4.4)

where P, is an r x r matrix corresponding to the subset of recurrent states. Let M = ( 1- Q)" denote the
fundamental matrix, and let T denote the set of transient states. Then for ije T, Ni,je T is the number

of times, starting from i, that state j is visited before the process leaves T.

It is well known that M = [ E[N;] ] for i,je T (see, e.g. Bhat [6]). Let ¢ denote a column vector of all 1's.
Then the expected first passage time to the subset T after starting in some state in T according to the
initial distribution [m),};c7 is given by m,T M e the expected number of visits to all states in T before

leaving the transient set. The distribution of the passage time to T, denoted here by N, is given by

P(N>n} =n’Q"e (4.5)

Therefore, to compute bounds on the distribution of the run length for an SPRT, we use the Markov
chains (L,, D,) and (U,, D,) constructed by discretizing the state space of Z, as in Figure 3, set T = {i :

i < A} and use equation (4.7).
The approach taken here is an extension of the one developed for the computing the run length of a one-

sided CUSUM test by Brook and Evans [7], and of a two-sided CUSUM test by Woodall [30]. Since the

CUSUM test is a random walk in the interval [0,A), Brook and Evans [7] proposed dividing this interval
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int‘o M subintervals of equal length, and placing a discrete state in the center of each interval and assigning
it a probability associated with being in that interval, Analysis of the corresponding discrete Markov chain
gives their approximation to the run length distribution of the CUSUM procedure. Their approach
providcs no assessment of the accuracy of the approximation. The method developed here modifics their
technique so that actual bounds on run length distribution can be obtained, and generalizes their approach
to non-i.i.d. process behavior. Furthermore, in the following section we prove that the bounds obtained

by thec method developed here approach the exact distribution asymptotically.

4.5 Convergence Results

The above method requires that the number of discrete states M in the approximation be specified. It is
therefore of useful to know how tight the bounds on the first passage distribution are for a given M. Let
=>4 denote convergence in distribution. The following Theorem proves that the bounds become exact as

the number of discrete states approaches oo.

Theorem 3: For TV, = min{n: U, > A } and T",, = min{n:L, 2 A}, TV,=" T, and T",=*T%,, as

the number of discrete states M—yeo,

Proof: The result is proven for TV, using a standard coupling argument. Suppose we have M discrete
states. Let I denote the indicator function on a set C. Define a process
2 =%, (Wk - DT ugiyt <z swiety
with 2% =x, U= ¥, 2", and Ty,* = min{n: U*, =A}. Then clearly
P(Z' = wk-L} = P(Z', = wk-L} for all k=1,2,..M
and so T, = TV,. Now suppose w(j-1)-L < Z< wj-L for some j € {1,2,..M}. Then we have

1Z, - Z*) < w = 2L/M.
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Since Z, is uniformly bounded by L < o, given >0 we can find M, = [2L/] so that for all M > M,,
1Z, - Z*| < w < €. Therefore, Z*, -2, as M—oo pointwisc (almost surely). Therefore, since T°,, is finite
as., T',— TS, as. Finally since T*;, =* TS, then TV,, = T, as M—eo . The proof of T, is

identical and uses an analogous coupled process. Q.E.D.

Theorem 3 cnsures that as the number of discrete state in the approximation bccomes very large, the
passage time distribution will converge to the exact distribution. The following result demonstrates a

monotonic relationship between the bounds as they converge.

Theorem 4: Let TY,, (M) and T (M) denote thc upper and lower bound passage times when M
discrete states are uscd in the approximation. Consider the subsequence n(M) = 2M for M=1,2,.... Then
Th o, (M) = Ty (((M+1)) , TV, (M) S TV, (n(M+1)), Tg (n(M)) = TV (n(M+1)) , and T'g

(n(M)) € T+ 5 (n(M+1) ass. for all M=1,2,...

Proof: The result will be proven for TV, (n(M)) . The proof for the other three cases is analogous.
Let w,q, be the interval width when M discrete states are uscd. As before, define a process
Z* (M) = Ty cnppy C-LAWK ) T fiaty < zi s -Lowk)-
Then P{Z* (n(M))= -L+wk]} = P(Z"(n(M)) = -L+wk]} for all k=1,2,..n(M). Now suppose
-L+Woag(-1) < ZS -L+W,q,j for some j e {1,2,..n(M)}.
Then Z*(n(M)) = -L+W,qqj. Looking at n(M+1), n(M+!) = 2n(M), and Wy, = 2W, o141y SO €ach interval
is divided in half. Based on the value of Z, there are two possibilities for Z*,(n(M+1)).
(1) If Z lies in the upper half of the interval (-L+w,p,(j-1),-L+w,jl. Specifically,

L+2Woo1)(j-1/2) < ZS -L42W,mp)s then Z¥(n(M+1)) = -L+2W, a0 = Z*(n(M)), or
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(2) If Z lics in the lower half of the interval (-L+w,a,(-1) ,-L+w, 4], Or we have
L+2Wn(M,1)(j-1) < le -L+2WH(M+1)G-1/2)‘ mEn

Z* (n(M+1)) = -L+2w, 4,1y~ 1/2) < Z*(n(M)).

So Z*(n(M+1)) <Z*(n(M)) a.s. Therefore,Z"(n(M+1)) <, Z¥,(n(M)) and applying Theorem 1 gives the

desired result. Q.E.D.

5 Numerical Results

We can now obtain bounds on the run length of the SPRT for various types of process behavior. In
particular, we are interested in the run length of the SPRT under (1) no process failure, (2) rapid process
failure, and (3) graceful process failure. The first performance measure gives us the time to a false

decision by the SPRT, while the second and third tell us how quickly the test will detect a failing process.

Figures 4 and S plot upper and lower bounds on the run length for the one sided SPRT with p, = 0, p,=
1,6 = 0.5, and 0, = B, = 0.01. Figure 4 plots the run length distribution under no process failure with
M = 50. The bounds on the run length distribution mimic one another in shape and remain quite close

together yielding accurate information about the actual run length distribution of an SPRT.

Figure 5 demonstrates the mean run length as a function of discrete state space size M. Figure Sa plots
mean run length under no process failure. The bounds are compared against a Monte Carlo simulation
estimate based on the importance sampling method of Siegmund[26]. Figures 5b and Sc plot the expected
run length under rapid process failure and graceful process failure, respectively. The bounds are compared
against straightforward Monte Carlo simulation. The models for rapid process failure and graceful process

failure were formulated as in Figure 3, where q was selected so that the mean time until the mean reaches
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its critical level vz would correspond to a rate of failure commonly found in the nuclear reactor

applications at ANL,
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Figure 4. Run Length of the SPRT Under No Process Failure
Figure 5 demonstrates that the more quickly a process fails, the shorter the run length of an SPRT. For
example, the mean run length of an SPRT under no process failure is 1424, This value decreases to 25

for a gracefully failing process and to 12 for a rapidly failing process. This is to be expected since an H,

decision by the SPRT becomes more likely as the mean of an incoming process increases.

Figure 5 also indicates convergence of the bounds to the exact value as M becomes very large. The
numerical results also suggest that a longer mean run length for the original problem will yield slower
convergence of the bounds to the exact solution. For example, under no process failure, M2120 is
required to reach within 15% of the simulated mean run length for the upper and lower bounds. For
gracefully failing and rapidly failing processes the bounds become within 15% of the simulated value for

M2>50, and M240, respectively,
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Figure 5. Bounds on the Expected Run Length of the SPRT under Three Process Behaviors as a
Function of Discrete State Space Size

6 Conclusion

In this work, we develop a useful technique for computing performance measures of sequential tests in

process control and illustrate these methods through numerical examples. Development of this technique
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ha;s been motivated largely by the following: (1) a nced to assess the performance of process control
techniques for safety-critical or mission-critical applications, and (2) the desire to characterize these
performance metrics in a variety of scenarios. The methods devcloped here serve as a basis for the design
and performance analysis of expert systems for process control. These unique expert systems utilize
numerous sequential tests running both simultaneously and in sequence for the purpose of detecting and

diagnosing failures of process signals from highly redundant systems.

In the process of developing this methodology, we extend the current research in several ways. First, we
formulate a Markov additive model for the SPRT which allows us to study the bchavior of sequential tests
under various non-i.i.d. process behavior, including under control ~=cesses, slowly failing processes,
rapidly failing processes, and out of control processes. Using this innovative model, the performance

measures of interest can be viewed as passage times of a Markov additive process.

Second, using stochastic order relations, we develop a technique for computing bounds on first passage
time distributions of Markov additive processes. The technique is based on discretizing the state space
of the original process in a particular manner, and can be used to obtain performance measures of interest
not only in process control, but also in a variety of other contexts. In particular, passage times of Markov
additive processes are of interest in many applications, and no established techniques exist for obtaining
such performance measures in general. The method develuped here provides a straightforward technique

for obtaining not only moments, but the distribution of these performance measures.

Finally, the techniques developed here for passage times of the sequential probability ratio test can be
extended to include other perforrnance measures, and other applications. For example, the approach

developed here may be used to compute the sample number and operating characteristic (the probability
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a test decides H,) of sequential tests under non-i.i.d. process bchavior. Furthermore, sequential tests for
correlated processes, such as Markov sequences or autoregressive processes, have been the focus of recent
research. The methodology developed here can be generalized for the purpose of analyzing such tests.

These issues are subjects of current and future research.
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