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NONLINEAR ANALYSIS OF HYDRAULIC BUCKLING IN,VI'ABILITY

OF ANS INVOLUTE FUEL PLATF__

W. K. Sartory

ABSTRACT

The hydraulic buckling instability of the involute fuel plates and hydraulic coolant channels in
the Advanced Neutron Source (ANS) uranium fission reactor is analyzed nonlinearly using the
commercial ABAQUS finite element computer program for the fuel plates in conjunction with a
user-written element for the two-dimensional fluid flow in the coolant channels.

This methodology has been used for several purposes, including determination of the effect
of the aluminum-clad plate plastic behavior and the effect of three-dimensional plate temperature
distributions on hydraulic buckling. The present report concentrates on a study of the effect of
hydraulic channel imperfections on buckling. The specific form of imperfection considered is an
error in fluid channel thickness that is uniform within any one channel but that varies from one
channel to the next.

The calculated bifurcation (linear buckling) coolant velocity is about 45 m/s, whereas the
present design coolant velocity is 25 m/s. At the design velocity, the calculated fluid-induced plate
deflection due to the imperfection is somewhat less in magnitude and opposite in direction from
the imperfection itself.

1. INTRODUCTION

The Advanced Neutron Source 1 (ANS) is a highly enriched uranium fission reactor presently

under design at the Oak Ridge National Laboratory to produce neutrons for research use. One

primary objective is to achieve a high neutron flux. To meet this objective, a small reactor core

with a high fission heating density is required, which leads the designers to seek high coolant

velocities to remove the heat.

Since the work of Stromquist and Sisman in 1948,2 it has been known that very high flow

velocities past fuel plates can cause the plates to deform, buckle, and collapse. Excessive fuel

plate deformation can impede coolant flow and heat removal and thus must be avoided in the
Q

reactor design. For the ANS, both analytical and experimental 3 work is under way to ensure that

the plate deformation remains within satisfactory limits.
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An interesting explanation of the flow-induced buckling was proposed by Miller, 4 who

coupled a simplified plate deformation equation with a one-dimensional Bernoulli's equation for

the fluid. He argued that if a small perturbation (because of an initial plate imperfection or any

other source) caused two adjacent plates to move closer together at some location, then the fluid

velocity between them at that location would increase. According to Bernoulli's equation, the fluid

pressure between the plates would then drop, tending to force the plates even closer together. At

a certain critical velocity, the fluid forces tending toward plate collapse would exceed the elastic

forces tending to hold the plates in their design configuration, and the plates would buckle.

Miller studied both flat and uniformly curved cylindrical plates* with different boundary

conditions along their supported edges. Patterned after the successful High Flux Isotope Reactor, 5

the ANS will use fuel plates with an involute shape (see Fig. 1). Gwaltney and Luttrell 6 therefore

extended Miller's theory to involute plates by coupling elastic finite-element models of the plates

with Bernoulli's equation for the fluid. They found that the involute plates were much more stable

than flat plates of the same span because of the stiffening effect of their curvature, but not as

stable as cylindrical plates with the same average curvature.

More detailed fluid modeling was carried out, for example, by Scavuzzo 7 and by Smissaert 8

for flat plates.

For involute plates, Sartory 9 used a combination of Galerkin's method and the method of

lines to develop a linearized (infinitesimal perturbation) model (including detailed

two-dimensional modeling of the fluid flow) that was used to predict both the buckling threshold

and natural vibrational frequencies and mode shapes for the fluid-plate system.

Since the publication of Ref. (9), a variety of more complicated requirements have appeared

that require a more flexible computational approach. For example, (1) the effect of detailed

three-dimensional temperature profiles within the fuel plate on hydraulic buckling and (2) the

effect of plastic behavior and of large (noninfinitesimal) imperfections in the fluid channel

dimensionz on plate deflection need to be determined. Ali of these complications in plate

o

*There is a conflict in terminology here. In solid mechanics, a plate is understood to be fiat, and
a curved plate is called a shell. In nuclear design practice, the term fuel plate is used regardless of
curvature. In the present report, the curved involute fuel plates of the ANS and similar curved fuel
plates of other reactors will be referred to either as plates or shells.
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Fig. 1. Illustration of arrayof involute fuel plates in cylindricalsidewalls.The side plate radii,
a and b, are referred to in this report as the inner and outer radii of the involute, respectively. The• inset shows the direction of the c_axis.
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modeling are readily treated by finite element structural analysis programs that are commercially

available. The program ABAQUS was, therefore, chosen for the present work. However,

ABAQUS lacks a specialized two-dimensional hydraulic channel fluid element, so a hydraulic

channel user element was written and coupled to a standdrd ABAQUS curved-shell element to

provide the necessary capability.

ill
rl _lll ....



2. HYDRAULIC CHANNEL ELEMENT

The two-dimensional fluid equations used in the present work may be obtained by mass and

• momentum balances on a rectangular differential element of a thin channel with curvature

ignored• The equations are as follows:

" aphv I aphv2
aph + + - 0 , (1)
at a_ az

aphvl+ aphvt2 + aphv_v2_._h__..__.lp(v2+v2½trZvt, (2)& Oa az Oa

where p is the (constant) fluid density, h is the channel thickness, t is time, v I and v2 are the

transverse and axial components of fluid velocity averaged through the thickness of the channel, c_

and z are the transverse and axial coordinates (c_is actually an arclength coordinate that curves

out along the midsurface of the involute channel), p is the fluid pressure, and f is the Fanning

friction factor• Because the Fanning friction factor varies only weakly with the local Reynolds

number, it has been treated both as an approximate constant and as a prescribed function of the

unknown channel thickness and velocities in different phases of the present work. In this

derivation, f will be treated as a constant for simplification, but the numerical results presented

allow for perturbations off due to perturbations of coolant velocity and channel thickness.

Equations (1)-(3) are strictly applicable to an uncurved channel geometry; they do not

capture any effect of the involute shape of the ANS channels in the fluid behavior. It is expected

that the uncurved channel approximation will be satisfactory as long as the average channel

thickness is much smaller than the average channel radius of curvature. One effect that is notably

omitted is the centrifugal force because of fluid flowing around the curved involute. Adding such

a centrifugal term in future work may prove worthwhile. In addition, the two-dimensional

approximation involves omission of some effects that have never been studied in detail.

5
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ABAQUS solves nonlinear equations using Newton's method, which involves repeated application

of a linearized perturbation about an (arbitrary but known) approximate solution for each variable.

Thus we introduce the following perturbations:

vI = v"1 + vi' , (4) •

m

v2 =v 2 + v2' , (5)

p__+p,, (6)

where the barred quantities are the known current approximations to the solution, and the primed

quantities are the unknown infinitesimal Newton corrections to the solution• In addition, the fluid

channel thickness, h, is related to the displacements of the surrounding shells in the present work by

the approximate equation:

m m m m

h --ho. _ • (_ - x,,y_- y_,z_- _,) (7)
+ _ " (x'2 - x't, Y'2 - Y't, Z'2 - Z't) '

where ht is the unperturbed fluid channel thickness, Ji is the local unperturbed normal vector to the

fluid channel midsurface, _ is the x-component of the known current estimate of the shell deflection

for shell-2, x' 2 is the x-component of the unknown infinitesimal correction to the shell deflection for

shell-2, and the tripiets in parentheses are representations of 3-vectors that are used to form dot

products with the normal.

In the present work, Eq. (7) is applied node-by-node as if corresponding nodes for the fluid

channel and for the two plates always lie along the same perpendicular through the channel. That

condition is exactly correct at the root of the involute but gradually accumulates an error for nodes

away from the root. Because the resulting error goes to zero as the channel and plate thicknesses go to

zero,thiscanbe interpretedas a partof the thin-channel approximation. Equations (4)--(7) are

substituted into Eqs. (1)--(3). Terms that are of order 0 or 1 with respect to primed quantities are

collected, and quantities that are of higher order are discarded in accordance with the rules of

perturbation theory. If Newton's iteration converges, then the higher order terms become smaller as the
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iteration proceeds and will become negligible if the iteration is carded far enough. If Newton's method

fails to converge, ti_enthe iteration must be discarded in any case. The resulting steady-state

perturbation equations are as follows:

,'--7 - -+ + + . pvl-_-_ + p_v l'

+ +p-_h =-toby-=+ph--_.-+p,,,_ +pv,_l, (8)

. p v l' . pvI h' + p . ph v1'

+ + =- +ph..-_v2 +

_ah, _, _h,+.lpci,'+_=b'_,'+ pr2"-&vl + a_ + a_

+fp(_,'+;,b -'_,',,,'+fp(_,'+_,b-_,;e,'

o¢

_,_,-_-_ _,_,* P *_ *fP(_',_* ], (9)



where

h' = _ • (x'= - x't , Y'2 - Y't , z, 2 _ z,t) . (12)

To formulate a f'mite element perturbation stiffness equation, we first arrange the nodal degrees of

freedom in some convenient order in a column vector, as follows:

rlllr3 lit" _' ' lR,' '11[ '_



"l_°,sl, I
I

• Y ,sZ. I

Z_, Jl, I

_ Ix, sl,

• i_y, sl, I

_) Ir.,zi, I

v'l./:, z

v'2,._, l

P',.n, I

{A'} = ' x',a, z
I

Y,d,l

Z°, a2, l

_}lg, _, 1

_}ly. "=.1

_*t, :2. I

,4)'z,a,. (13)

where x', y ', z' denote the shell displacement variables; ¢'x, ¢'y, ¢'z denote the shell rotational

degrees of freedom; the subscript sl refers to the shell on the convex side of the fluid element; f/

refers to the fluid element; s2 refers to the shell on the concave side of the fluid element; and the last

numeric subscript refers to the node index that runs from 1 to 8 for the 8-node isoparametric

quadralateral element. (The shell rotational degrees of freedom are included above for completeness,

but they play no pag in the coupling to the fluid in the present model and may be omitted from the

fluid stiffness equation.) By introducing a matrix of interpolation functions,

IN(r,s)l, (14)

we can convert the nodal degrees of freedom into a vector of interpolated variables. In F-xi.(14), r and

. s are the local element isoparametric spacial coordinates. The interpolation functions for the 8-node

quadralateral element used in the present work are given, for example, by Bathe. '° Because the fluid

. differential equations involve both the fluid variables and their first derivatives, it is convenient to
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introducea vector consisting of the zeroth derivative and the two first partialderivatives.Using t._

fluid pressure,p', as an example, we form the following equation:

f.

p/

aa

op--
&

] i

• (is)

where the vertical dots refer to the other fluid and shell variables.This vector of derivatives plays a

role in the present formulation that is analogous to the strain vector in elastic finite element

formulations. (Not ali of these derivatives are actually needed for ali of the variables for the present
=

formulation.) To obtain the derivatives, we introduce (1) a derivative operator matrix [D] that

i differentiates the interpolation function with respect to the local coordinates (r, s) and (2) an array [J]
of Jaeobians that converts the local derivatives into derivativeswith respect to the global channel

i coordinates (ct, z).
Next we form a matri';, lC], containing the coefficients of the primed quantities in Eqs. (8) to

(10) arranged in an order consistent with the vector Eq. (15). Then the system of F-xlS.(8) to (10) can

he expressed approximately in the form

[C][J] [D][N(r, s)]lA/} , {b} , (16)

I where {b} is the column vector consisting of the right-hand side of Eqs. (8) to (10). To use Galerkin'smethod with F-xi.(16), we multiply from the left by an away [Nf(r, s)] of Galerkin weighting fu||ctions

of the same form as the interpolation functions and integrate over the element to obtain the element

stiffness formulation

I ...... SlI _S,, " _'
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[JL"J{,'_) ,= {Bl. (17)

q

The above formulation does not capture aLIof the steps needed to couple the fluid to the

surrounding shells because it includes only the fluid equations. In addition, the shell equilibrium

equations must be modified to include the fluid force on the shell given by

. (18)

where [N'] is an array of Galerkin weighting functions, p is the fluid pressure, dA is a differential

element of shell surface area (treated as a vector with the direction of the shell normal), and the

integral is over the wetted surface of the shell element. Introducing barred and primed quantities as

perturbations as before and deleting high-order terms,

-" (19)
fft' fft f frM-lpa fft lp_ t -- "* + t t+ t t ,

The first term on the right hand side of Eq. (19) is the ordinarypressure loading, and the second term

is usually referred to as a pressure stiffness and must be added to the stiffness matrix because riA' is a

function of the unknown shell nodal deflection corrections. Both the first and second terms occur

normally in ordinary pressure loading in geometrically nonlinear structural mechanics. Thus, ABAQUS

has facilities for calcatlating and assembling those terms. The ABAQUS facilities are used in the

present work by introducing a dummy element to pick up the known fluid pressure estimate, p, from

ABAQUS and transfer it to a user-written pressure loading subroutine in the form required by

ABAQUS. The third term, however, does not normally occur in structural mechanics, but it is needed

here because the correction to the fluid pressure, p', is an unknown. It is therefore calculated and

loaded into the stiffness matrix as a part of the fluid element formulation.

To help clarify iaow the parts of the fluid stiffness element matrix fit together, refer to the

" schematic diagram of the matrix in Fig. 2. To achieve the form shown in Fig. 2, we must rearrange

!
!
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I I
sl-sl , fl -sl , s2-sl

! !

t sl fl ' '

- , ft -ft , s2 -ft
I I

t .
! !

sl - s2 , fl - s2 , s2 - s2
I I
I I m

Fig. 2. Sketch of the user element stiffness matrix including fluid and shell terms; si is shell-

1; fl is fluid channel; s2 is shell-2.

the order of the degrees of freedom from that shown in Eq. (13) to run through the nodal index first,

i.e.: (x'a. 1, x',l. 2.... ).

Figure 2 deals with one fluid element, which we refer to in the following discussion as fluid

element 1 or fluid-1, and with the two shell elements that enclose it, which we refer to as shell-1 and

shell-2.

In Fig. 2, the submatrix sl-sl represents the stiffnesses that are internal to shell-1 (the

counterclockwise shell). These stiffnesses are left blank (zero) in the fluid element. When the elements

are assembled, these blanks are filled in by ABAQUS with shell stiffnesses.

The submatrix ft-sl represents forces originating in fluid-1 and acting on shell-1. These include in

the present model only normal pressure forces and are obtained from the third term of Eq. (19).

The submatrix s2-sl represents direct mechanical forces by sheU-2 to shell-1 and is zero.

The submatrix sl-ft represents the effect of the deflection of shell-I on the motion of fluid-1. In

the present model, this effect occurs solely through the fluid channel thickness variable, h, in

Eqs. (1)-(3). When Eq. (12) is substituted into Eqs. (8)-(10) and the usual Galerkin integrals are

evaluated, the elements of submatrix sl-fl are obtained.

"Ehesubmatrix ft-ft represents fluid-fluid interactions and is obtained directly from the linearized

form of Eqs. (8)-(10).

Tlae submatrix s2-fl represents the effect of the deflection of shell-2 on the motion of fluid-1 and

is the counterpart of sl-fl discussed above.

The submatrix sl-s2 is the counterpart of submatrix s2-sl and is zero.

The submatrix ft-s2 represents fluid pressure forces on shell-2 and is obtained in the same way as

submalxix fl-sl above.

The submatrix s2-s2 is the stiffness matrix for sheU-2. Its value is left as zero in the fluid matrix

and is filled in by ABAQUS when the shell element is assembled.

1
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The layout of the right-hand-side vector is analogous to the stiffness matrix. The shell terms are

entirely supplied by ABAQUS at assembly time, and the fluid terms a,'e supplied in the user fluid

element subroutine. The dimension of the fluid element stiffness matrix is [8(6 + 3 + 6)] × [8(6 + 3 +

6)] = 120 × 120 where 8 is the number of nodes, 6 is the number of shell degrees of freedom pert

node, and 3 is the munber of fluid degrees of freedom per node. If, however, the shell rotationai

degrees of freedom are omitted, the fluid element stiffness matrix dimension is reduced to 72 × 72.

The complete fluid-shell structure is actually made up of hundreds of fuel plates and hundreds of

fluid channels, and it is not feasible to include all of them in an analysis. Following Miller, 4 we

assunJe that, for the most unstable form of disturbance, the shell deflection is periodic around the ring

of the fuel element with a period of two shells and two fluid channels. Thus, we model with finite

elements just two of the shells and two of the channels, and we impose periodic boundary conditions

that couple fluid-2 back to shell-1. A complication in such a periodic boundary con_tion is that the

angular orientation of shell-1 is slightly different from that of the unmodeled sheU-3 that it replaces in

the periodicity condition. Thus, some rotation of the displacements of shell-1 and of the forces on

shell-1 is necessary when it is used to replace shell-3. It was found in the present work that the most

convenient method of handling this rotation was to lay out the finite element grid so that the two

shells and two fluid channels that are modeled all overlay one another. Then, only one fluid element

need be developed, and that element incorporates a built-in rotation whenever reference is made to

displacements or to forces from either adjoining shell.



3. BOUNDARY CONDITIONS

, The fluid inlet flow is assumed to be guided straight into the cimnnel by ducting or vanes, so the

transverse velocity, v1, is zero at the inlet.

. At the channel entrance, the fluid pressure is related to the fluid axial velocity by the modified

Bernoulli equation

p + (1 . C,Jpv2-p. .  pv. 2 (20)

where p and Vz are the pressure and axial velocity just inside the channel entrance, p, and v, are the

pressure and axial velocity in the entrance plenum just upstream of the entrance contraction, and Ce is

a contraction loss coefficient. In the ANS, the fuel plate leading edges will be rounded, so the value

Cc = 0.04 recommended by Vennard _ is used in the present work. ABAQUS includes the capability

for nonlinear user-written boundary condition subroutines, so Eq. (20) can be implemented.

At the channel exit, there is a sudden expansion in cross section. At a sudden expansion in a

single channel, the Borda-Camot n equation is usually recommended:

I 2 I 2 1

where p and v2 are the fluid pressure and axial velocity just upstream of the expansion, and p# and v#

are the pressure and axial velocity in the exit plenum downstream of the expansion.

Associated with this equation is a standard derivation. 12A fundamental assumption of the

derivation is (1) at a channel section located an infinitesimal distance downstream of the expansion,

the fluid pressure is uniform across the section and (2) the fluid pressure in the upstream channel

drops smoothly to the section pressure as the expansion is approached. Borda's assumption is also the

basis of the theory of jet pumps and ejectors in which two fluid streams traveling at different velocities

are introduced into a common channel. Applying Borda's assumption to the present two-channel

geometry, we conclude that the pressure is equal and uniform at the exit of the two channels. In

incompressible hydrodynamics, the fluid pressure need only be specified within an additive constant.

15
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Thus it is convenient in the present analysis to set the uniform channel exit pressure to zero and to

measure ali pressures relative to that point.

The lateral edges of the fuel plates are built into nonpermeable sidewalls. The corresponding

transverse fluid velocity boundary condition is taken as zero.

Note that the additional condition of a zero axial velocity at the lateral channel edges is omitted.

In a real channel, viscous turbulent boundary layers (with a thickness on the order of the channel

thickness) will develop at the edges, and the axial velocity will drop to zero at the surface within the

boundary layer. The real turbulent edge effects are quite complicated and involve secondary flows. The

present equations (which do not incorporate viscosity or a detailed study of turbulence) are not capable

of resolving the fluid edge effects, so the condition of zero axial velocity must be omitted.

The boundary conditions applied to the solid shell elements consist mainly of periodicity

constraints on the edges of the sidewall segments to simulate modeling of a segment of a complete

circular ring of fuel plates. Because ABAQUS uses global Cartesian coordinates for the displacements

by default, it is necessary to rotate the local coordinates along the edges so that they are aligned with

the local radial and azimuthal directions before applying these constraints.

These periodicity boundaryconditions leave the shell assembly free with respect to rigid body

rotation about the axis of the assembly and with respect to rigid body displacement axially. To

constrain these motions and erLsure that the structure is statically determinate, one node on one of the

sidewalls must be constrained against azimuthal and axial motion. The other sidewall is allowed free

rotation about the axis in accordance with the ANS design configuration.

Figure 3 shows the f'mite element grid used for the present calculations. The grid appears

foreshortened because of the viewing angle chosen for this figure. The actual dimensions are given in

the next section. Ordy the shell elements (not the fluid elements) are plotted by ABAQUS.

Furthermore, the two involute plates included in the grid overlay one another as discussed earlier. Thus

ali that can be seen is one involute plate and the segments of the sidewall rings that are attached to

both ends. Each involute plate is divided into 16 × 32 8-node isoparametric curved shell elements.

There are 37,812 degrees of freedom in this model. The running time is about 70 min per Newton

iteration on an IBM RISC/6000 Model 320H workstation.

,t

, rl I_ n ,' ' ' '"' I_1
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Fig. 3. F'mite element grid. Only one plate is vis_le; the fluid elements are not shown.



4. ANALYSIS OF AN IMPERFECT CHANNEL

For the present study, the following nominal dimensions and properties were used.

involute inner radius = 175 mm
involute outer radius = 235 mm

plate length = 527 mm
plate thickness = 1.27 mm
fluid channel thickness = 1.27 mm (nominal)

fluid density = 1096.65 kg/m 3 (heavy water)
fluid viscosity = 6.53 x 10TMPa.s
plate elastic modulus = 6.89 x 101°Pa (aluminum)
plate Poisson's ratio = 0.33

One reason for developing a nonlinear fluid finite element was to analyze a fuel e!.ement that

included a noninfmitesimal imperfection. The imperfection of interest consists of an error in fluid

channel thickness relative to the nominal value given above. For the imperfect fuel element, we take

the unperturbed thickness, ho, of fluid channel 1 to be (1.27 mm + 8) and the thickness of fluid

channel 2 to be (1.27 mm - 8), where 8 is varied during the study. Note that 8 is assumed constant

along the length and width of one channel in the present study, whereas a real imperfection would

likely have a complicated spacial distribution. Because we impose periodic boundary conditions in this

work, the channel thickness imperfection is implicitly assumed to alternate at +8 around the remainder

of the ring.

In analyzing the present problem, we begin with the perfect structure at a fluid velocity well
_

below the buckling velocity, for which the solution is zero perturbation. In the first load step, the

i imperfection (8) is increased to its target value. This increase is accomplished by setting the value of 8
proportional to a dummy time, which ABAQUS defines as running from 0 to 1.0 during the first step,

and which is passed along to the user (fluid) element subroutine. In the second load step, time runs
a from 1.0 to 2.0, 8 i_ held fixed, and the nominal fluid velocity (before perturbation) is adjusted

+ (linearly in time) from its low starting value to a value above the linear buckling limit. ABAQUS then
I

i controls the dummy time increments to the largest values consistent with continued convergence of
Newton's method. As the buckling threshhold is approached, these increments get smaller and smaller.

Q
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5. NONLINEAR DEFLECTION RESULTS

Relevant results of the analyses are presented in Fig. 4, which shows the maximum plate

deflection anywhere on the two-plate structure plotted against the nominal coolant velocity for values

of the imperfection of 8 = 0%, 1%, 10% and 30% of the nominal fluid gap.

• For _ = 0%, the horizontal axis is always a solution (although not always a stable one). In

addition, at a velocity of about 45 m/s, a bifurcation occurs. Rising out of the bifurc_ation is a second

branch of the solution that curves back to the left. Thus, at a coolant velocity of 40 m/s, for example,

at least two solutions exist, one of zero deflection and one with a maximum deflection of about

0.00045 m (about 35% of the fluid gap).

For an imperfection of 8 = 1%, the calculated deflection for low velocities is close to the

horizontal axis, but as the bifurcation velocity is approached, the 8 = 1% line curves up sharply,

reaching an inf'mite slope at a nominal coolant velocity of about 44 m/s. Thereafter, the 1% line

doubles back to the left, close to the 8 = 0% line.

For values of _iof 10% and 30% of the fluid gap, the deflection at low coolant velocity is much

larger, but qualitatively the lines are similar to the 1% line. In particular, ali three deflection curves for

an imperfect structure include a point of infinite slope.

At the point of infinite slope, there is a possible (differential) change in deflection without any

change in velocity or in imperfection. At such a point, the differential stiffne_ of the fluid-shell

assembly drops to zero. (The negative stiffness caused by the fluid interaction just offsets the positive

elastic stiffness of the plates.) A wide line is drawn on Fig. 4 approximately through the points of

infinite slope. Below and to the left of the wide line, the net stiffness is positive so that if a shell is

perturbed from its equilibrium position by a small amountand then released, elastic forces will retum

it to equilibrium. Above and to the right of the wide line, the net stiffness is negative, and if a shell is

perturbed from its equilibrium position (using the buckling mode shape) the dominant fluid forces will

drive it further from equilibrium. Thus, the wide line is the nonlinear stability boundary.

If we take the maximum credible imperfection to be 10% and the maximum allowable nominal

velocity to be 25 na/s, then the maximum plate deflection induced by the fluid is about 0.03 mm. Note

that the 10% imperfection amounts to 0.127 mm for the channel or 0.0635 mm for each plate. Thus,

the maximum fluid-induced deflection is less than half of the imperfection at 25 m/s. Furthermore, the

• fluid-induced deflection is directed opposite to the imperfection. That is, if the imperfection acts to

partially close up a channel, the fluid-induced deflection acts to open it up again.

21
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Fig. 4. Maximum deflection over the complete structure plotted against nominal coolant velocity
for several values of imperfection.
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Note that the response to the imperfection calculated in this report is the opposite of the response

to a perturbation discussed by Miller. 4 Miller argues that if a perturbation tends to close up a channel,

" the fluid forces will make the plates move still closer. However, in the present work, if _

imperfection tends to close up the channel, the fluid forces will tend to open it. (Swinson t3has also
l,

concluded that in a channel with a uniform imperfection that tends to close the channel, the fluid

forces will tend to open it.) The key distinction is between a localized perturbation in a long channel

as envisioned by Miller, and a uniformimperfection that extends the entire length of the channel as

assumed in this work.

In the present work, we begin with a uniform imperfectionthat, let us say, tends to close the

channel. Then the fluid forces begin to produce a (buckling) perturbation that tends to open the

channel. But the buckling perturbation is mainly localized near the entrance (see Fig. 5) and therefore

follows Miller's theory. That is, the opening up of the channel near the entrance by the buckling

perturbation produces local fluid forces that tend to open the channel still further (near the entrance),

and the process feeds on itself and leads on to plate collapse if the fluid velocity is high enough.

Figure 4 shows only the deflection for one of the plates. When the plotted deflection is small

(compared to the fluid gap), the deflection of the opposite plate is approximately equal in magnitude

and opposite in direction. When the plotted deflection is large, the deflection of the opposite plate is

about half of that plotted. (As the deflection and fluid forces become large, nonlinear effects tend to

increase the stiffness of the plate that is put into membrane tension and to decrease the stiffness of the

plate that is put into membrane compression.)

The plate mode shape deflection is typically g:eatest near the fluid entrance (see Fig. 5). An axial

section of the plot usually shows no zeros for this lowest buckling mode. A transverse section plot

shows an S-shape with one interior zero. This S-shape is the characteristic response of the involute

plates even to a uniform pressure loading and has also been obtained experimentally. _4

li
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Fig. 5. Illustration of the mode shape plotted as a deformed grid plot for an imperfection of
10% and a nominal coolant velocity of 40 m/s. The plate deflection is magnified 100 times for this t_

illustration. The plates are plotted as if they overlayed one another in the undeformed state. The
fluid entrance is at the left.

=|l



6. SUMMARY AND CONCLUSIONS

The hydraulic buckling instability of the involute fuel plates and coolant channels of the ANS

nuclear reactor is analyzed nonlinearly using the commercial ABAQUS structural finite element

program along with a user-written hydraulic channel element for the fluid. Particular attention is given

to the effect of an imperfection in the fluid channels. The imperfection studied consists of an error in

channel thickness that is uniform within any one channel but that varies from one channel to the next.

The family of curves giving the fuel plate deflection vs coolant velocity and imperfection magnitude

shows a bifurcation point at about 45 m/s coolant velocity. At the design coolant velocity of 25 m/s,

the maximum predicted fluid-induced deflection of the plates is smaller than the magnitude of the

imperfection itself and opposite in direction.

The uniformly distributed imperfection studied herein is not believed to be the most dangerous

form. Rather, an imperfection shape close to the buckling mode shape is expected to be more

dangerous. The buckling mode shape exhibits a plate deflection that is greatest near the fluid entrance.

25
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