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NONLINEAR ANALYSIS OF HYDRAULIC BUCKLING INSTABILITY
OF ANS INVOLUTE FUEL PLATES

W. K. Sartory

ABSTRACT

The hydraulic buckling instability of the involute fuel plates and hydraulic coolant channels in
the Advanced Neutron Source (ANS) uranium fission reactor is analyzed nonlinearly using the
commercial ABAQUS finite element computer program for the fuel plates in conjunction with a
user-written element for the two-dimensional fluid flow in the coolant channels.

This methodology has been used for several purposes, including determination of the effect
of the aluminum-clad plate plastic behavior and the effect of three-dimensional plate temperature
distributions on hydraulic buckling. The present report concentrates on a study of the effect of
hydraulic channel imperfections on buckling. The specific form of imperfection considered is an
error in fluid channel thickness that is uniform within any one channel but that varies from one
channel to the next.

The calculated bifurcation (linear buckling) coolant velocity is about 45 m/s, whereas the
present design coolant velocity is 25 m/s. At the design velocity, the calculated fluid-induced plate
deflection due to the imperfection is somewhat less in magnitude and opposite in direction from
the imperfection itself.

1. INTRODUCTION

The Advanced Neutron Source' (ANS) is a highly enriched uranium fission reactor presently
under design at the Oak Ridge National Laboratory to produce neutrons for research use. One
primary objective is to achieve a high neutron flux. To meet this objective, a small reactor core
with a high fission heating density is required, which leads the designers to seek high coolant
velocities to remove the heat.

Since the work of Stromquist and Sisman in 1948,2 it has been known that very high flow
velocities past fuel plates can cause the plates to deform, buckle, and collapse. Excessive fuel
plate deformation can impede coolant flow and heat removal and thus must be avoided in the
reactor design. For the ANS, both analytical and experimental® work is under way to ensure that

the plate deformation remains within satisfactory limits.
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An interesting explanation of the flow-induced buckling was proposed by Miller,* who
coupled a simplified plate deformation equation with a one-dimensional Bernoulli’s equation for
the fluid. He argued that if a small perturbation (because of an initial plate imperfection or any
other source) caused two adjacent plates to move closer together at some location, then the fluid
velocity between them at that location would increase. According to Bernoulli’s equation, the fluid
pressure between the plates would then drop, tending to force the plates even closer together. At
a certain critical velocity, the fluid forces tending toward plate collapse would exceed the elastic
forces tending to huld the plates in their design configuration, and the plates would buckle.

Miller studied both flat and uniformly curved cylindrical plates’ with different boundary
conditions along their supported edges. Patterned after the successful High Flux Isotope Reactor,’
the ANS will use fuel plates with an involute shape (see Fig. 1). Gwaltney and Luttrell® therefore
extended Miller’s theory to involute plates by coupling elastic finite-element models of the plates
with Bernoulli’s equation for the fluid. They found that the involute plates were much more stable
than flat plates of the same span because of the stiffening effect of their curvature, but not as
stable as cylindrical plates with the same average curvature.

More detailed fluid modeling was carried out, for example, by Scavuzzo’ and by Smissaert®
for flat plates.

For involute plates, Sartory9 used a combination of Galerkin’s method and the method of
lines to develop a linearized (infinitesimal perturbation) model (including detailed
two-dimensional modeling of the fluid flow) that was used to predict both the buckling threshold
and natural vibrational frequencies and mode shapes for the fluid-plate system.

Since the publication of Ref. (9), a variety of more complicated requirements have appeared
that require a more flexible computational approach. For example, (1) the effect of detailed
three-dimensional temperature profiles within the fuel plate on hydraulic buckling and (2) the
effect of plastic behavior and of large (noninfinitesimal) imperfections in the fluid channel

dimensions on plate deflection need to be determined. All of these complications in plate

*There is a conflict in terminology here. In solid mechanics, a plate is understood to be flat, and
a curved plate is called a shell. In nuclear design practice, the term fuel plate is used regardless of
curvature. In the present report, the curved involute fuel plates of the ANS and simiiar curved fuel
plates of other reactors will be referred to either as plates or shells.
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modeling are readily treated by finite element structural analysis programs that are commercially
available. The program ABAQUS was, therefore, chosen for the present work. However,
ABAQUS lacks a specialized two-dimensional hydraulic channel fluid element, so a hydraulic
channel user element was written and coupled to a standard ABAQUS curved-shell element to

provide the necessary capability.
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2. HYDRAULIC CHANNEL ELEMENT

The two-dimensional fluid equations used in the present work may be obtained by mass and
momentum balances on a rectangular differential element of a thin channel with curvature

ignored. The equations are as follows:

oph | ophv, . ophv, _ 0, ¢))
ot da oz

dphv, dphv}  dphvyy,
+ + -
ot Oa oz

= 'h% 'fP(Vlz + sz)mvl ’ @
«

dphv, Oph dphv,® 3)
it it \c R =—h§£—fp(v12+v22)"“‘v2,

ot da 0z 0z

where p is the (constant) fluid density, 4 is the channel thickness, ¢ is time, v, and v, are the
transverse and axial comporents of fluid velocity averaged through the thickness of the channel,
and z are the transverse and axial coordinates (« is actually an arclength coordinate that curves
out along the midsurface of the involute channel), p is the fluid pressure, and f is the Fanning
friction factor. Because the Fanning friction factor varies only weakly with the local Reynolds
number, it has been treated both as an approximate constant and as a prescribed function of the
unknown channel thickness and velocities in different phases of the present work. In this
derivation, f will be treated as a constant for simplification, but the numerical results presented
allow for perturbations of f due to perturbations of coolant velocity and channel thickness.

Equations (1)-(3) are strictly applicable to an uncurved channel geometry; they do not
capture any effect of the involute shape of the ANS channels in the fluid behavior. It is expected
that the uncurved channel approximation will be satisfactory as long as the average channel
thickness is much smaller than the average channel radius of curvature. One effect that is notably
omitted is the centrifugal force because of fluid flowing around the curved involute. Adding such
a centrifugal term in future work may prove worthwhile. In addition, the two-dimensional

approximation involves omission of some effects that have never been studied in detail.
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ABAQUS solves nonlinear equations using Newton’s method, which involves repeated application
of a linearized perturbation about an (arbitrary but known) approximate solution for each variable.
Thus we introduce the following perturbations:

=%+, 4
v, =V, vV, (5)
p=§+p', 0

where the barred quantities are the known current approximations to the solution, and the primed
quantities are the unknown infinitesimal Newton corrections to the solution. In addition, the fluid
channel thickness, A, is related to the displacements of the surrounding shells in the present work by
the approximate equation:

h=ho+ﬁ-(i-2-fl,;2_y-l’zz_zl) (7)
+8 - (x'Z - xlp y'z - y'p zlz - zll) ’

where A, is the unperturbed fluid channel thickness, A is the local unperturbed normal vector to the

fluid channel midsurface, x, is the x-component of the known current estimate of the shell deflection

for shell-2, x', is the x-component of the unknown infinitesimal correction to the shell deflection for

shell-2, and the tripiets in parentheses are representations of 3-vectors that are used to form dot
products with the normal.

In the present work, Eq. (7) is applied node-by-node as if corresponding nodes for the fluid
channel and for the two plates always lie along the same perpendicular through the channel. That
condition is exactly correct at the root of the involute but gradually accumulates an error for nodes
away from the root. Because the resulting error goes to zero as the channel and plate thicknesses go to
zero, this can be interpreted as a part of the thin-channel approximation. Equations (4)—(7) are
substituted into Egs. (1)~(3). Terms that are of order O or 1 with respect to primed quantities are
collected, and quantities that are of higher crder are discarded in accordance with the rules of

perturbation theory. If Newton’s iteration converges, then the higher order terms become smaller as the
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iteration proceeds and will become negligible if the iteration is carried far enough. If Newton’s method
fails to converge, tiien the iteration must be discarded in any case. The resulting steady-state

perturbation equations are as follows:
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h" = ﬁ * (xlz - x’l » ylz - y’l » z'z b Z'l) . (12)

To formulate a finite element perturbation stiffness equation, we first arrange the nodal degrees of

freedom in some convenient order in a column vector, as follows:



v

(a') = {x

{ <.b',_ 2,8 (13)

where x’, y’, z* denote the shell displacement variables; ¢’,, ¢’,, ¢’, denote the shell rotational
degrees of freedom; the subscript s/ refers to the shell on the convex side of the fluid element; f7
refers to the fluid element; 52 refers to the shell on the concave side of the fluid element; and the last
numeric subscript refers to the node index that runs from 1 to 8 for the 8-node isoparametric
quadralateral element. (The shell rotational degrees of freedom are included above for completeness,
but they play no par: in the coupling to the fluid in the present model and may be omitted from the
fluid stiffness equation.) By introducing a matrix of interpolation functions,

IN(r, )], (14)

we can convert the nodal degrees of freedom into a vector of interpolated variables. In Eq. (14), r and
s are the local element isoparametric spacial coordinates. The interpolation functions for the 8-node
qQuadralateral element used in the present work are given, for example, by Bathe.'® Because the fluid

differential equations involve both the fluid variables and their first derivatives, it is convenient to
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introduce a vector consisting of the zeroth derivative and the two first partial derivatives. Using the

fluid pressure, p’, as an example, we form the following equation:

[ . )

(15)

where the vertical dots refer 10 the other fluid and shell variables. This vector of derivatives plays a
role in the present formulation that is analogous to the strain vector in elastic finite element
formulations. (Not all of these derivatives are actually needed for all of the variables for the present
formulation.) To obtain the derivatives, we introduce (1) a derivative operator matrix [D] that
differentiates the interpolation function with respect to the local coordinates (r, s) and (2) an array [J]
of Jacobians that converts the local derivatives into derivatives with respect to the global channel
coordinates (o, z).

Next we form a matri%, [C], containing the coefficients of the primed quantities in Egs. (8) to
(10) arranged in an order consistent with the vector Eq. (15). Then the system of Egs. (8) to (10) can

be expressed approximately in the form

[CIVIID]ING, $)){A} = {b} , (16)

where {b} is the column vector consisting of the right-hand side of Egs. (8) to (10). To use Galerkin's
method with Eq. (16), we multiply from the left by an array [N'(r, s)) of Galerkin weighting functions
of the same form as the interpolation functions and integrate over the element to obtain the element
stitffness formulation
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[K1{A"} = {B} . a”n

The above formulation does not capture all of the steps needed to couple the fluid to the
surrounding shells because it includes only the fluid equations. In addition, the shell equilibrium
equations must be modified to include the fluid force on the shell given by

ff[Nth , (18)

Y
where [N'] is an array of Galerkin weighting functions, p is the fluid pressure, dA is a differential

element of shell surface area (treated as a vector with the direction of the shell normal), and the
integral is over the wetted surface of the shell element. Introducing barred and primed quantities as
perturbations as before and deleting high-order terms,

ff[N‘]de "’ff[N‘]ﬁdz +ff[N‘M' + ff[N']P'dj ) (19)

The first term on the right hand side of Eq. (19) is the ordinary pressure loading, and the second term
is usually referred to as a pressure stiffness and must be added to the stiffness matrix because dA’ is a
function of the unknown shell nodal deflection corrections. Both the first and second terms occur
nomally in ordinary pressure loading in geometrically nonlinear structural mechanics. Thus, ABAQUS
has facilities for calculating and assembling those terms. The ABAQUS facilities are used in the
present work by inti'oducing a dummy element to pick up the known fluid pressure estimate, p, from
ABAQUS and transfer it to a user-written pressure loading subroutine in the form required by
ABAQUS. The third term, however, does not normally occur in structural mechanics, but it is needed
here because the correction to the fluid pressure, p’, is an unknown. It is therefore calculated and
loaded into the stiffniess matrix as a part of the fluid element formulation.

To help clarify how the parts of the fluid stiffness elemeni matrix fit together, refer to the

schematic diagram of the matrix in Fig. 2. To achieve the form shown in Fig. 2, we must rearrange
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Fig. 2. Sketch of the user element stiffness matrix including fluid and shell terms; s/ is sheli-
1; /1 is fluid channel; s2 is shell-2.

the order of the degrees of freedom from that shown in Eq. (13) to run through the nodal index first,
R 6 RS 2P §

Figure 2 deals with one fluid element, which we refer to in the following discussion as fluid
element 1 or fluid-1, and with the two shell elements that enclose it, which we refer to as shell-1 and
shell-2.

In Fig. 2, the submatrix s/-s] represents the stiffnesses that are internal to shell-1 (the
counterclockwise shell). These stiffnesses are left blank (zero) in the fluid element. When the elements
are assembled, these blanks are filled in by ABAQUS with shell stiffnesses.

The submatrix f/-s/ represents forces originating in fluid-1 and acting on shell-1. These include in
the present model only normal pressure forces and are obtained from the third term of Eq. (19).

The submatrix s2-s] represents direct mechanical forces by shell-2 to shell-1 and is zero.

The submatrix s/-fI represents the effect of the deflection of shell-1 on the motion of fluid-1. In
the present model, this effect occurs solely through the fluid channel thickness variable, A, in
Egs. (1)~(3). When Eq. (12) is substituted into Egs. (8)-(10) and the usual Galerkin integrals are
evaluated, the elements of submatrix s/-fI are obtained.

The submatrix fI-fI represents fluid-fluid interactions and is obtained directly from the linearized
form of Eqgs. (8)—(10).

The submatrix s2-fI represents the effect of the deflection of shell-2 on the motion of fluid-1 and
is the counterpart of s/-fI discussed above.

The submatrix s/-52 is the counterpart of submatrix s2-s/ and is zero.

The submatrix fI1-s2 represents fluid pressure forces on shell-2 and is obtained in the same way as
submatrix fI-sI above.

The submatrix s2-s2 is the stiffness matrix for shell-2. Its value is left as zero in the fluid matrix
and is filled in by ABAQUS when the shell element is assembled.
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The layout of the right-hand-side vector is analogous to the stiffness matrix. The shell terms are
entirely supplied by ABAQUS at assembly time, and the fluid terms ase supplied in the user fluid
element subroutine. The dimension of the fluid element stiffness matrix is [8(6 + 3 + 6)] x [8(6 + 3 +
6)] = 120 x 120 where 8 is the number of nodes, 6 is the number of shell degrees of freedom per
node, and 3 is the number of fluid degrees of freedom per node. If, however, the shell rotationai
degrees of freedom are omitted, the fluid element stiffness matrix dimension is reduced to 72 x 72.

The complete fluid-shell structure is actually made up of hundreds of fuel plates and hundreds of
fluid channels, and it is not feasible to include all of them in an analysis. Following Miller,* we
assunie that, for the most unstable form of disturbance, the shell deflection is periodic around the ring
of the fuel element with a period of two shells and two fluid channels. Thus, we model with finiie
elements just two of the shells and two of the channels, and we impose periodic boundary conditions
that couple fluid-2 back to shell-1. A complication in such a periodic boundary concition is that the
angular orientation of shell-1 is slightly different from that of the unmodeled sheli-3 that it néplaces in
the periodicity condition. Thus, some rotation of the displacements of shell-1 and of the forces on
shell-1 is necessary when it is used to replace shell-3. It was found in the present work that the most
convenient method of handling this rotation was to lay out the finite element grid so that the two
shells and two fluid channels that are modeled all overlay one another. Then, only one fluid element
need be developed, and that element incorporates a built-in rotation whenever reference is made to

displacements or to forces from either adjoining shell.



3. BOUNDARY CONDITIONS

The fluid inlet flow is assumed to be guided straight into the channel by ducting or vanes, so the
transverse velocity, v,, is zero at the inlet.

At the channel entrance, the fluid pressure is related to the fluid axial velocity by the modified
Bemoulli equation

P+ %(1 + C‘,)pvz2 =p, + -il,-pv,l2 (20)

where p and v, are the pressure and axial velocity just inside the channel entrance, p, and v, are the
pressure and axial velocity in the entrance plenum just upstream of the entrance contraction, and C, is
a contraction loss coefficient. In the ANS, the fuel plate leading edges will be rounded, so the value
C. = 0.04 recommended by Vennard" is used in the present work. ABAQUS includes the capability
for nonlinear user-written boundary condition subroutines, so Eq. (20) can be implemented.

At the channel exit, there is a sudden expansion in cross section. At a sudden expansion in a
single channel, the Borda-Camot" equation is usually recommended:

1 2 1 2 1
P+ 5PV =Py oPVa * 2P0z - v, @1

where p and v, are the fluid pressure and axial velocity just upstream of the expansion, and p, and v,
are the pressure and axial velocity in the exit plenum downstream of the expansion.

Associated with this equation is a standard derivation.'> A fundamental assumption of the
derivation is (1) at a channel section located an infinitesimal distance downstream of the expansion,
the fluid pressure is uniform across the section and (2) the fluid pressure in the upstream channel
drops smoothly to the section pressure as the expansion is approached. Borda’s assumption is also the
basis of the theory of jet pumps and ejectors in which two fluid streams traveling at different velocities
are introduced into a common channel. Applying Borda’s assumption to the present two-channel
geometry, we conclude that the pressure is equal and uniform at the exit of the two channels. In

incompressible hydrodynamics, the fluid pressure need only be specified within an additive constant.

15
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Thus it is convenient in the present analysis to set the uniform channel exit pressure to zero and to
measure all pressures relative to that point.

The lateral edges of the fuel plates are built into nonpermeable sidewalls. The corresponding
transverse fluid velocity boundary condition is taken as zero.

Note that the additional condition of a zero axial velocity at the lateral channel edges is omitted.
In a real channel, viscous turbulent boundary layers (with a thickness on the order of the channel
thickness) will develop at the edges, and the axial velocity will drop to zero at the surface within the
boundary layer. The real turbulent edge effects are quite complicated and involve secondary flows. The
present equaiions (which do not incorporate viscosity or a detailed study of turbulence) are not capable
of resolving the fluid edge effects, so the condition of zero axial velocity must be omitted.

The boundary conditions applied to the solid shell elements consist mainly of periodicity
constraints on the edges of the sidewall segments to simulate modeling of a segment of a complete
circular ring of fuel plates. Because ABAQUS uses global Cartesian coordinates for the displacements
by default, it is necessary to rotate the local coordinates along the edges so that they are aligned with
the local radial and azimuthal directions before applying these constraints.

These periodicity boundary conditions leave the shell assembly free with respect to rigid body
rotation about the axis of the assembly and with respect to rigid body displacement axially. To
constrain these motions and ensure that the structure is statically determinate, one node on one of the
sidewalls must be constrained against azimuthal and axial motion. The other sidewall is allowed free
rotation about the axis in accordance with the ANS design configuration.

Figure 3 shows the finite element grid used for the present calculations. The grid appears
foreshortened because of the viewing angle chosen for this figure. The actual dimensions are given in
the next section. Only the shell elements (not the fluid elements) are plotted by ABAQUS.
Furthermore, the two involute plates included in the grid overlay one another as discussed earlier. Thus
all that can be seen is one involute plate and the segments of the sidewall rings that are attached to
both ends. Each involute plate is divided into 16 x 32 8-node isoparametric curved shell elements.
There are 37,812 degrees of freedom in this model. The running time is about 70 min per Newton
iteration on an IBM RISC/6000 Model 320H workstation.
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Fig. 3. Finite element grid. Only one plate is visible; the fluid elements are not shown.
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4. ANALYSIS OF AN IMPERFECT CHANNEL

For the present study, the following nominal dimensions and properties were used.

involute inner radius = 175 mm

involute outer radius = 235 mm

plate length = 527 mm

plate thickness = 1.27 mm

fluid channel thickness = 1.27 mm (nominal)

fluid density = 1096.65 kg/m® (heavy water)
fluid viscosity =6.53 x 10™ Pas

plate elastic modulus = 6.89 x 10' Pa (aluminum)
plate Poisson’s ratio = (.33

One reason for developing a nonlinear fluid finite element was to analyze a fuel element that
included a noninfinitesimal imperfection. The imperfection of interest consists of an error in fluid
channel thickness relative to the nominal value given above. For the imperfect fuel element, we take
the unperturbed thickness, h,, of fluid channel 1 to be (1.27 mm + 3) and the thickness of fluid
channel 2 to be (1.27 mm - §), where § is varied during the study. Note that § is assumed constant
along the length and width of one channel in the present study, whereas a real imperfection would
likely have a complicated spacial distribution. Because we impose periodic boundary conditions in this
work, the channel thickness imperfection is implicitly assumed to alternate at £ around the remainder
of the ring.

In analyzing the present problem, we begin with the perfect structure at a fluid velocity well
below the buckling velocity, for which the solution is zero perturbation. In the first load step, the
imperfection (J) is increased to its target value. This increase is accomplished by setting the value of &
proportional to a dummy time, which ABAQUS defines as running from 0 to 1.0 during the first step,
and which is passed along to the user (fluid) element subroutine. In the second load step, time runs
from 1.0 to 2.0, d is held fixed, and the nominal fluid velocity (before perturbation) is adjusted
(linearly in time) from its low starting value to a value above the linear buckling limit. ABAQUS then
controls the dummy time increments to the largest values consistent with continued convergence of

Newton’s method. As the buckling threshhold is approached, these increments get smaller and smaller.

19
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5. NONLINEAR DEFLECTION RESULTS

Relevant results of the analyses are presented in Fig. 4, which shows the maximum plate
deflection anywhere on the two-plate structure plotted against the nominal coolant velocity for values
of the imperfection of & = 0%, 1%, 10% and 30% of the nominal fluid gap.

For & = 0%, the horizontal axis is always a solution (although not always a stable one). In
addition, at a velocity of about 45 m/s, a bifurcation occurs, Rising out of the bifurcation is a second
branch of the solution that curves back to the left. Thus, at a coolant velocity of 40 m/s, for example,
at least two solutions exist, one of zero deflection and one with a maximum deflection of about
0.00045 m (about 35% of the fluid gap).

For an imperfection of 8 = 1%, the calculated deflection for low velocities is close to the
horizontal axis, but as the bifurcation velocity is approached, the 8 = 1% line curves up sharply,
reaching an infinite slope at a nominal coolant velocity of about 44 m/s. Thereafter, the 1% line
doubles back to the left, close to the 8 = 0% line.

For values of 8 of 10% and 30% of the fluid gap, the deflection at low coolant velocity is much
larger, but qualitatively the lines are similar to the 1% line. In particular, all three defleciion curves for
an imperfect structure include a point of infinite slope.

At the point of infinite slope, there is a possible (differential) change in deflection without any
change in velocity or in imperfection. At such a point, the differential stiffness of the fluid-shell
assembly drops to zero. (The negative stiffness caused by the fluid interaction just offsets the positive
elastic stiffness of the plates.) A wide line is drawn on Fig. 4 approximately through the points of
infinite slope. Below and to the left of the wide line, the net stiffness is positive so that if a shell is
perturbed from its equilibrium position by a small amount and then released, elastic forces will retum
it to equilibrium. Above and to the right of the wide line, the net stiffness is negative, and if a shell is
perturbed from its equilibrium position (using the buckling mode shape) the dominant fluid forces will
drive it further from equilibrium. Thus, the wide line is the nonlinear stability boundary.

If we take the maximum credible imperfection to be 10% and the maximum allowable nominal
velocity to be 25 m/s, then the maximum plate deflection induced by the fluid is about 0.03 mm. Note
that the 10% imperfection amounts to 0.127 mm for the channel or 0.0635 mm for each plate. Thus,
the maximum fluid-induced deflection is less than half of the imperfection at 25 m/s. Furthermore, the
fluid-induced deflection is directed opposite to the imperfection. That is, if the imperfection acts to
partially close up a channel, the fluid-induced deflection acts to open it up again.
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Fig. 4. Maximum deflection over the complete structure plotted against nominal coolant velocity
for several values of imperfection.
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Note that the response to the imperfection calculated in this report is the opposite of the response
to a perturbation discussed by Miller. Miller argues that if a perturbation tends to close up a channel,
the fluid forces will make the plates move still closer. However, in the present work, if ths
imperfection tends to close up the channel, the fluid forces will tend to open it. (Swinson'? has also
concluded that in a channel with a uniform imperfection that tends to close the channel, the fluid
forces will tend to open it.) The key distinction is between a localized perturobation in a long channel
as envisioned by Miller, and a uniform imperfection that extends the entire length of the channel as
assumed in this work.

In the present work, we begin with a uniform imperfection that, let us say, tends to close the
channel. Then the fluid forces begin to produce a (buckling) perturbation that tends to open the
channel. But the buckling perturbation is mainly localized near the entrance (see Fig. 5) and therefore
follows Miller’s theory. That is, the opening up of the channel near the entrance by the buckling
perturbation produces local fluid forces that tend to open the channel still further (near the entrance),
and the process feeds on itself and leads on to plate collapse if the fluid velocity is high enough.

Figure 4 shows only the deflection for one of the plates. When the plotted deflection is small
(compared to the fluid gap), the deflection of the opposite plate is approximately equal in magnitude
and opposite in direction. When the plotted deflection is large, the deflection of the opposite plate is
about half of that plotted. (As the deflection and fluid forces become large, nonlinear effects tend to
increase the stiffness of the plate that is put intoc membrane tension and to decrease the stiffness of the
plate that is put into membrane compression.)

The plate mode shape deflection is typically g:eatest near the fluid entrance (see Fig. 5). An axial
section of the plot usually shows no zeros for this lowest buckling mode. A transverse section plot
shows an S-shape with one interior zero. This S-shape is the characteristic response of the involute

plates even to a uniform pressure loading and has also been obtained experimentally.'
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Fig. 5. Illustration of the mode shape plotted as a deformed grid plot for an imperfection of
10% and a nominal coolant velocity of 40 m/s. The plate deflection is magnified 100 times for this
illustration. The plates are plotted as if they overlayed one another in the undeformed state. The
fluid entrance is at the left.



6. SUMMARY AND CONCLUSIONS

The hydraulic buckling instability of the involute fuel plates and coolant channels of the ANS
nuclear reactor is analyzed nonlinearly using the commercial ABAQUS structural finite element
program along with a user-written hydraulic channel element for the fluid. Particular attention is given
to the effect of an imperfection in the fluid channels. The imperfection studied consists of an error in
channel thickness that is uniform within any one channel but that varies from one channel to the next.
The family of curves giving the fuel plate deflection vs coolant velocity and imperfection magnitude
shows a bifurcation point at about 45 m/s coolant velocity. At the design coolant velocity of 25 m/s,
the maximum predicted fluid-induced deflection of the plates is smaller than the magnitude of the
imperfection itself and opposite in direction.

The uniforinly distributed imperfection studied herein is not believed to be the most dangerous
form, Rather, an imperfection shape close to the buckling mode shape is expected to be more
dangerous. The buckling mode shape exhibits a plate deflection that is greatest near the fluid entrance.
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