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Preface

This 1993 Annual Report from Pacific Northwest Laboratory (PNL) to the U.S. Department of
Energy (DCE) describes research in environment and health conducted during fiscal year (FY) 1993.
This year, the report consists of four parts, each in a separate volume.

The four parts of the report are oriented to particular segments of the PNL program, describing
research performed for the DOE Office of Health and Environmental Research (OHER) in the Office
of Energy Research. In some instances, the volumes report on research funded by other DOE
components or by other governmental entities under interagency agreements. Each part consists of
project reports authored by scientists from several PNL research departments, reflecting the
multidisciplinary nature of the research effort.

The parts of the 1993 Annual Report are as follows:

Part 1: Biomedical Sciences J.F. Park, Program Manager
A.L. Brooks, Repori Coordinator
C.C. Lumetta, Editor

Part 2. Environmental Sciences R.E. Wildung, Program Manager
L.K. Grove, Editor

Part 3: Atmospheric Sciences W.R. Barchet, Program Manager
B.V. Johnston, Editor

Part 4: Physical Sciences L.A. Braby, Program Manager
S.L. Downs, Editor

Activities of the scientists whose work is described in this annual report are broader in scope than
the articles indicate. PNL staff have responded to numerous requests from DOE during the year for
planning, for service on various task groups, and for special assistance.

Credit for this annual report goes to the many scientists who performed the research and wrote the
individual project reports, to the program managers who directed the research and coordinated the
technical progress reports, to the editors who edited the individual project reports and assembled the
four parts, and to Ray Baalman, editor in chief, who directed the total effort.

T. S. Tenforde
Manager, Health and Environmental Research Program
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Foreword

This report summarizes FY 1993 progress in biological and general life sciences research programs
conducted for the Department of Energy’s Office of Health and Environmental Research (OHER) at
Pacific Northwest Laboratory (PNL). This research provides knowledge of fundamental principles
necessary to identify, understand, and anticipate the long-term health consequences of exposure to
energy-related radiation and chemicals. Our emphasis is to understand the mechanisms involved in
radiation- and chemically induced damage. Through this understanding, the health risks associated
with exposure to effluents from energy-related technologies can be better defined, and the uncertainty
associated with those risks decreased.

The sequence of this report of PNL research reflects the OHER programmatic structure. The
Biological Research section contains reports of studies using laboratory animals, in vitro cell systems,
and molecular biological systems. This research includes studies of the impact of radiation, radionu-
clides, and chemicals on biological responses at all levels of biological organization. The General Life
Sciences Research section reports research conducted for the OHER human genome program.

Biological Research

The progress in several life-span studies in rats and dogs on the effects of inhaled radioactive
materials including radon, 238Pu0,, 3°Pu0,, and 2**Pu(NO,), is reviewed. Recent research has
produced important new information on the induction of tumors by internally deposited radiactive
materials in organs other than the primary target organ (lung).

Because many of the life-span studies using experimental animals are in the late phase of
completion, it is essential to ensure that we do not lose valuable data or experimental materials
generated by these studies. To this end, the “National Radiobiology Archives” (NRA) project is being
conducted as a comprehensive effort to gather, organize, and catalog data, documents, and tissues
related to life-span radiobiology studies for future research and analyses. New developments in the
NRA project also are found in this report.

The animal studies on cancer induction from radon are the core of an extensive research program.
This program characterizes each step in the exposure-dose-response pathway of radon. We are
combining in vivo and in vitro methods with up-to-date exposure systems and modern cytogenetic and
molecular techniques to understand the mechanisms involved in each step between exposure and the
induction of cancer. We also hope to reduce the uncertainty involved in extrapolating the information
to risk assessment: Such improvement in basic mechanistic understanding will aid in risk assessment
and extrapolation between damage produced by radon progeny in mine and home environments.

The relationship between site and type of initial DNA damage and the development of molecular
changes, mutations, chromosome damage, and cell transformation contributes to an understanding of
the disease process. Chemical- and radiation-effects studies are being conducted using molecular
techniques to understand the sites of radiation-induced damage, the types of products produced, and the
binding of carcinogenic chemicals to the DNA. The influence that primary, secondary, and tertiary
DNA structure has on the induction and location of DNA damage and binding is being determined.
This report includes reviews of these studies and outlines important progress as well as future
directions.



General Life Sciences Research

Researchers at PNL have developed a computer information system to graphically display and
manipulate the vast amounts of information in genome databases. GnomeView is an interface to data
bases rather than a data repository, integrating information across databases and between different
levels in the mapping hierarchy.

Laboratory-Wide Effort

Biomedical research at PNL is an interdisciplinary effort requiring scientific contributions from
many research departments throughout the laboratory. Personnel in the Life Sciences Center are the
principal contributors to this report.

Additional information on the PNL research efforts can be obtained by requesting reprints from the
list of publications.
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Inhaled Plutonium in Dogs

Principal Investigator: J. F. Park

Other Investigators: R. L. Buschbom, G. E. Dagle, E. S. Gilbert, G. J. Powers,

C. R. Watson, and R. E. Weller

Technical Assistance: R. F. Flores, B. B. Kimsey, and B. G. Moore

These projects (Inhaled Plutonium Oxide in Dogs, Inhaled Plutonium Nitrate in Dogs) are concerned
with long-term experiments to determine the life-span dose-effect relationships of inhaled *°PuQ,,
28py0,, and 2Pu(NO,), in beagles. This report describes dose-effect relationships in the tracheobron-
chial lymph nodes of beagle dogs receiving a single exposure of **PuQ, aerosols to obtain dose-level
groups of 20 dogs with mean initial lung depositions (ILDs) of 0.12, 0.69, 2.7, 11, 41, and 213 kBq.
Lung tumors were the primary plutonium-exposure-related causes of death in dogs with ILDs > 0.82
kBq. Fifty-one of 116 plutonium exposed dogs had lung tumors; however, tumors directly attributable
to plutonium deposition in the tracheobronchial lymph nodes were not observed. Although plutonium-
induced tumors of the thoracic lymph nodes were not detected, marked lymph node atrophy and
lymphopenia, indicating damage to the hemolymphatic system, were observed in dogs with ILDs >
0.82 kBq as compared to control dogs. In the lowest dose-level group exhibiting lymphopenia,
lymphocyte concentrations were first observed to be lower in exposed animals than those of controls 3
years after exposure, 10 years earlier than the median survival time of the group. At 3 years after
exposure, the mean cumulative dose to the tracheobronchial lymph nodes of dogs with mean ILDs of
0.69 kBq was 4.8 Gy, the mean dose rate was 2.92 Gy/yr, and the concentration of plutonium in the
tracheobronchial lymph nodes was 133 Bq/g. There was a direct relationship between plutonium body
burden and activity in the testes, but no relationship existed between plutonium activity in the testes and
the occurrence of testicular neoplasia in male dogs. At long times after inhalation, plutonium in the
testes was between 0.0001% and 0.03% of projected ILD, depending on the form of plutonium. Those

percentages are similar to those previously reported for dogs, primates, and human subjects.

To determine the life-span dose-effect rela-
tionships of inhaled plutonium, 18-month-old
beagle dogs were exposed to aerosols of 2*PuQ,,
28pu0,, or *Pu(NQ,),. The production of the
aerosol, the aerosol exposures, and chemical
characterization of the aerosols have been pub-
lished previously (Dagle er al. 1993; Park et al.
1993). The experimental design of the studies,
including the aerosol form, number of animals,
and initial deposition can be found in Table 1 for
29pyQ,, Table 2 for ?*Pu0,, and Table 3 for

2Pu(NQ,),. The Pacific Northwest Laboratory
Annual Report for 1989 to the DOE Office of
Energy Research, Part I, summarizes the results
of the Z*PuQ, study, and the results of the
28py0, study are summarized in the Annual
Report for 1990. The Appendix at the back of
this volume provides mortality information for
the dogs assigned to the ?Pu(NO,), study. The
last dog in the **Pu(NQ,), study died in 1992.
Lung tumors were the primary *°PuO,-related
cause of death in dose-level groups that had



TABLE 1. Life-Span Dose-Effect Studies with Iinhaled 2*PuQ, in Beagles'®

Exposure-Level Number of Dogs Initial Lung Degosition‘b)

Group Male Female kBg'c) Ba/g Lung!®)
Control 10 10 0 0
1 10 11 0.12 + 0.05 0.93 + 0.39
2 1 1" 0.69 ES 0.14 6.2 + 1.3
3 11 10 2.7 + 0.05 23 + 4
4 12 12 11 * 2 95 + 17
5 10 10 41 + 6 349 + 46
6 3 5 213 + 120 2130 + 1160
67 69

(a) Exposed in 1970 and 1971,

(b) Estimated from external thorax counts at 2 and 4 weeks after exposure, and from estimated lung weights
{0.011 x body weight).

{c) Mean + 95% confidence intervals around mean.

TABLE 2. Life-Span Dose-Effect Studies with Inhaled ***Pu0, in Beagles")

Exposure-Level Number of Dogs Initial Lung Dgposition“’)

Group Male

Fernale kBg'®! Ba/g Lung!®
Control 10 10 0 o]
1 10 10 0061 + 0.036 048 : 028
2 1 10 0.67 + 0.2 59 % 1.2
3 12 10 29 + 0.4 26+ 3
4 10 10 13 & 3 106 + 21
5 10 10 51 & 10 403 : 68
6 z 6 192 + 51 1661 : 443
70 66

{a) Exposed in 1973 and 1974.

{b) Estimated from external thorax counts at 2 and 4 weeks after exposure, and from estimated lung weights
{0.011 x body weight).

{c) Mean + 95% confidence intervals around mean.

TABLE 3. Life-Span Dose-Effect Studies with Inhaled 2°Pu0,(NO,), in Beagles'®

Exposure-Level Number of Dogs Initial Lung Deposition™

Group Male Female kBq'c! Bq/g Lung'®
Control 10 10 o] (o]
1 10 10 0.062 + 0.033 0.48 + 0.26
2 10 10 0.32 + 0.€ 26 0.6
3 10 10 2.2 + 0.31 9 + 4
4 10 10 1 + 1 91 + 16
5 10 10 63 + 1 518 + 106
6 6 3 2202 + 84 1722 + 747
66 63

(a) Exposed in 1976 and 1977.

(b) Estimated from external thorax counts at 2 and 4 weeks after exposure, and from estimated lung weights

{0.011 x body weight).

{c) Mean + 95% confidence intervals around mean.




initial lung depositions (ILDs) of 23 Bg/g of lung
or greater. This year, because lymphopenia is an
early deterministic effect of inhaled *°Pu0O,, we
focused on evaluating dose-effect relationships of
inhaled #°Pu0O, deposited in the tracheobronchial
lymph nodes, and on the effects of internally de-
posited plutonium on the risk of testicular cancer
in male beagle dogs exposed to inhaled aerosols
of ®Pu0,, **Pu0,, and **Pu(NO;),.

Dose to Tracheobronchial Lymph
Nodes from Inhaled #*°Pu0,

Radiation doses to the thoracic lymph nodes
were estimated by the following method: Pluto-
nium content in the thoracic lymph nodes at the
time of death for each dog was expressed as
percent ILD, determined by in vivo counting to
obtain a thoracic lymph node retention function
fitted by nonlinear regression. The thoracic
lymph node retention equation is

y = 42.6 (1-e%004)

where y = percent ILD in the thoracic lymph nodes
t = days after exposure.

Cumulative radiation dose to the thoracic lymph
nodes was estimated by integrating the thoracic
lymph node retention function and multiplying
by the appropriate factors. The equation used to
calcuiate the cumulative radiation dose is

D = [(1.38 x 10%) (5.15) (L)/(W)}{0.426[t +
(£°°%41-1)/0.00044]}

where D = dose in Gy
1.38 x 10 = conversion factor for converting

Bq to Gy
5.15 = alpha energy for Pu in MeV
L = ILD in Bq

W = lymph node weight in grams
= (0.000098) (body weight at exposure
in grams)
t = days over which the dose was
accumulated.

Cumulative radiation dose to the tracheobronchi-
al lymph nodes continued to increase throughout
the lifetime of the dog.

Dose rates were estimated instantaneously
after exposure when lymphopenic events were
observed. Those dose rates were estimated by
taking the derivative of the cumulative dose
equation and evaluating this derivative at the day
the increase occurred. The equation used to
calculate the dose rate is

DR = ((1.38 x 10%) (5.15) (L)/(W)]
[0.426(1-¢ 000 x)]

where DR = dose rate in Gy/day
1.38 x 10° = conversion factor for converting

Bq to Gy
5.15 = alpha energy for ®°Pu in MeV
L = ILD in Bq
W = lymph node weight in grams
= (0.000098) (body weight at

exposure in grams)
x = days when lymphopenic
event was observed.

For the fit for the thoracic lymph node retention
function, we used the data from 128 dogs ex-
posed to ®*PuO,. The ILD was estimated by in
vivo whole-body counting and the lymph node
retention determined at sacrifice. In 19 cases,
the final body burden was higher than ILD; in
these cases, final body burden was used in place
of the ILD for the calculation. Figure 1 shows
the thoracic lymph node retention function and
the observed values.

At the four highest exposure levels (> = 23
Bq/g), the tracheobronchial lymph nodes were
essentially replaced with scar tissue in those dogs
that died or were euthanatized more than one
year after exposure. The lymphoid tissue was
uniformly obliterated by scar tissue in each of
the three tracheobronchial lymph nodes at the
two highest exposure levels (> = 345 Bq/g);
there were only very small foci of lymphocytes
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FIGURE 1. Thoracic Lymph Node Retention of inhaled 2*®*Pu0, Determined by [(final lymph node burden of plutonium)/(initial

lung deposition of plutonium)] x 100

in the capsular areas of a few tracheobronchial
lymph nodes in dogs that died early or were
assigned to an exposure level of = 95 Bq/g.
The center of the scar tissue tended to be hypo-
cellular and associated with yellow pigmentation
that was believed to represent a mixture of in-
haled particulates (including plutonium) and
hemosiderin. Autoradiographs showed heavy
concentrations of alpha stars associated with
yellow pigment in the center of the scar tissue.
Marked to extreme scar tissue was present in
one or more tracheobronchial lymph nodes from
15 dogs with ILDs = 23 Bg/g, from 4 dogs with
burdens projected to be = 6.2 Bg/g, and from 1
dog with ILDs < 1. The scar tissue was similar
to that found at the higher exposure levels, and
was associated with lympoid atrophy, pigment
deposition, and autoradiographic evidence of
alpha stars. Very small to moderate amounts of
scar tissue were present in one or more tracheo-
bronchial lymph nodes in the remaining dogs
from the = 23-Bq/g level, in all but two dogs

from the = 6.2-Bq/g level, and in six dogs from
those with exposure levels < 1. Autoradio-
graphs showed alpha activity in these areas of
scar tissue, and a similar incidence of lymphoid
atrophy. The average severity and incidence of
pigment in tracheobronchial iymph nodes tended
to remain constant in all exposure levels, and in
the control group. No tumors were associated
with any of the tracheobronchial lymph nodes in
these studies.

Hematologic Effects

No deaths were associated with tracheobron-
chial lymph node damage, although 58% of the
dogs in this study showed hematologic evidence
of significant lymphopenia. Lymphopenia,
indicating hemolymphatic damage, was observed
in all but the lowest dose-level group.

Blood samples from fasted dogs were collect-
ed every three to four months, during the lives of
the animals, from the external jugular vein using
potassium EDTA as the anticoagulant. Leuko-




cyte, erythrocyte, and hemoglobin concentra-
tions, volume of packed red cells, and red cell
corpuscular indices were determined using a
Coulter Counter model S. Smears for leukocyte
differential cell counts were made on a Platt
blood-film centrifuge, stained with Wright-Giem-
sa stain, and a differential count was made on the
basis of a minimum of 200 leukocytes counted
by two technologists.

Hematologic variables for all exposed dogs
were compared to those of the cohort control
group. Lymphocyte values for a lifetime blood
parameter fo: the control dogs were determined
from blood samples usually drawn at irregular
time intervals; the time intervals generally varied
from dog to dog. The technique of smoothing by
splines was used to deal with the problem of
irregular time intervals. Monthly values for each
parameter were estimated by fitting a spline
function to the observed data. Using these
spline-smoothed values for each parameter,
percentiles (Sth, 10th, 25th, 50th, 75th, 90th,

and 95th) were calculated for each month of age
in the controls. Individual values between the
5th and 95th percentiles were defined as normal
for any given age. A parameter baseline value
for each control dog was determined by averag-
ing the values of the parameters for months 17,
18, and 19. The baseline value was subtracted
from the monthly values, divided by the baseline
value, and multiplied by 100 to calculate the
percent change for each month. Percent-change
percentiles were calculated for each month of
age. For control dogs, any percent change in
blood lymphocytes between the 5th and 95th
percentiles was defined as normal (Figure 2).
The normal range of percent changes was
used to determine when a blood lymphocyte
parameter for an exposed dog was abnormal.
The percent change in a parameter value was
calculated at each age that a blood sample was
taken from an exposed dog. Percent changes in
a parameter for an exposed dog were calculated
by subtracting the dog’s parameter baseline value
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FIGURE 2. Graph Showing Smoothed Percentiles of Lymphocytes by Age in Control Dogs




from the dog’s parameter value, dividing by the
dog’s parameter baseline value, and multiplying
by 100. Parameter baseline value for an exposed
dog was calculated by averaging the values of the
parameter one month before exposure, at expo-
sure, and one month after exposure. The percent
change at each age was compared to the normal
percent-change range at that age. If the percent
change was outside the normal range for two
consecutive measurements, then the parameter
was classified as abnormal at the age of the first
abnormal value. The representative pattern of
intermittent lymphopenia in a dog exposed to
»9puQ, illustrated in Figure 3 shows that an
abnormal parameter was classified as normal
again when two consecutive values were within
the normal range. Using this method, we were
able to determine the time after exposure when
values for a parameter became abnormal with
respect to the control dogs, and when, if at all,
the values returned to normal.

Significant hematologic manifestations of the
dose from inhaled *°PuQ, were restricted pri-
marily to such effects on lymphocytes, with the
exception of the highest dose-level dogs, which
demonstrated a modest neutropenia. Sixty-seven
of 116 dogs (58 %) enrolled in this study exhibit-
ed some degree of significant lymphopenia dur-
ing their lives. Although there was considerable
individual-to-individual variability, when exam-
ined on a case-by-case basis, exposed dogs could
be assigned to one of three groups: 1) dogs that
never showed lymphopenia; 2) dogs that showed
intermittent lymphopenia; and 3) dogs that con-
sistently showed lymphopenia. Forty-nine dogs
never showed lymphopenia, 38 dogs showed
intermittent lymphopenia, and 29 dogs were
classified as consistently lymphopenic. Dogs
categorized as consistently lymphopenic were
characterized by percent changes outside the
normal range for two consecutive measurements
and failure to achieve two consecutive values
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FIGURE 3. Representative Pattern of Intermittent Lymphopenia in a Dog Exposed to **Pu0,




within the normal range for the remainder of
their lives. Animals with intermittent lymphope-
nia showed irregular cycles of percent change
outside the normal range for two consecutive
measurements, followed by a return to normal
characterized by two consecutive values within
the normal range. Nonlymphopenic dogs did not
exhibit percent changes outside the normal range
for two consecutive measurements at any time
during their lives. Summary statistics for the
three groups of dogs are presented in Table 4.
The nonparametric Wilcoxon Two-Sample Test
indicated that significant differences existed
between lymphopenic dogs and intermittently
lymphopenic dogs with regard to ILD, time-to-
effect, time-to-nadir, and degree of lymphopenia.
Linear regression analysis revealed moderate
correlation between reduction in lymphocyte
values and ILD, both in magnitude and time of

appearance after exposure (Table 5). Summary
statistics for dose and dose rates for dogs with
lymphopenia and intermittent lymphopenia are
given in Table 6. Application of the nonparame-
tric Wilcoxon Two-Sample Test to these dose
and dose-rate data showed that significant differ-
ences existed between the two groups of lympho-
penic dogs.

Lymphopenia was observed in dose-level
groups with a cumulative dose to the tracheo-
bronchial lymph nodes of 4.8 Gy and higher
(Table 7). Cumulative radiation dose to the
tracheobronchial lymph nodes for the mean ILD
for each dose-level group with lymphopenia was
calculated to the time after exposure for each
dose-level group when the median lymphocyte
values were first observed to fall outside the
reference range of the control group at the same
time after exposure (Table 7). At a dose level of

TABLE 4. Summary Statistics of Lymphopenia Data for 119 Beagles Exposed to °Pu0, By Inhalation

Intermittently

Nonlymphopenic Lymphopenic'® Lymphopenic'®!
(n = 49) (n = 38) (n = 29)

Variable Mean + SE Mean t+ SE Mean + SE
ILD 0.8 + 0.15 12.6 £ 2.15 74.4 + 20.15
T, (months) no 219 + 2.9 10.8 £ 1.6
L, (cells 4) no 1.68 + 0.05 1.33 £ 0.06
Ty {months) no 41.7 £ 3.6 295 + 3.6
Ly (cells i) no 1.21 £ 0.05 0.81 + 0.04
Cy (%) no 62.3 £ 1.3 69.3 + 1.7
T, {(months} no 73.6 £ 4.7 no
L, (cells/u) no 1.29 + 0.05 no

{a, b) Means for all parameters are significantly different at P<0.05.

No No observation.
ILD  Initial lung deposition.

T, Time to first effact (months post-exposure).

Ly Lymphocyte count at time of first effact {celis x 10%u).
T Time to lowest lymphocyte count {nadir).

Ly Lymphocyte count at nadir (cells x 10%/u).

Cy Percent change in lymphocyte count at nadir.

T, Time to second cycle of lymphopenia.

L, Lymphocyte count at time of second cycle (celis x 10%/u).




TABLE 6. Correlation Coefficients of Initial Lung Burden on Time-Course and Lymphocyte
Concentrations in Beagles Exposed to ***Pu0, by Inhalation

Lymphopenic Dogs

Intermittently Lymphopenic Dogs

Variable T, Ty Ly
LILD -0.63 -0.79 -0.43
LILD = log - initial lung deposition (nCi)

= time to first effect
Ty = time to lowest lymphocyte count {nadir)

Tw T

-0.56 -0.60 -0.36

Ly = lymphocyte count at nadir (cells x 10%/u)
T, = time to second cycle of lymphopenia.
TABLE 6. Summary Statistics of Dose and Dose-Rate Data for 66 Beagles with Lymphopenia Due to Inhaled *°Pu0,
Lymphopenic Intermittently Lymphopenic
(n = 28) (n = 38)

Variable Mean + SE Median Mean + SE Median
D, (Gy) 239 1+ 6.8 16.4 196 + 4.6 9.4
DR, (Gy/day) 0.16  + 0.03% 0.18 0.06 + 0.01 0.06
Dy (Gy) 149.1 + 20.3" 112.0 79.5 + 19.4 50.5
DRy (Gy/day) 042 <+ o0.07% 0.34 0.12 + 0.02 0.09
D, (Gy) no 230.0 + 41.7 133.4
DR, (Gy/day) no 019 1+ 0.04 0.13

(a) Means significantly different, P < 0.05.
no = no observation.

D, = cumulative radiation dose at first effect.
DR, = dose rate at first effect.

D, = cumulative dose at nadir.

DRy = dose rate at nadir.

D, = cumulative dose at second cycle.

DR, = dose rate at second cycle.

= 0.69 kBq, lymphopenia was not observed
until 3 years after exposure, 10 years earlier than
the mean survival time of the group. The dose
rate to the tracheobronchial lymph nodes when
lymphocyte concentrations first decreased was
2.92 Gy/yr or higher for all dose-level groups
but the lowest (see Table 7). The mean plutoni-
um concentration in the tracheobronchial lymph
nodes at time of death for these dose-level
groups was > 133 Bq/g per lymph node; these
animals developed lymphopenia at some point in
their lives.

Testicular Neoplasia

Plutonium Activity in the Testes

The amount of plutonium translocated to
the testes was determined radiochemically by
liquid-scintillation alpha counting using a previ-
ously described method. There was a direct
correlation between ILD (Bq) and the amount of
plutonium in the testes (Bq/g) (Figure 4). The
slope of the relationship was 0.35, 0.89, and
0.91 for *°Pu0,, ?*Pu0,, and Z*Pu(NQ,),,



TABLE 7. Frequency of Lymphopenia in Dogs Exposed to #*Pu0,

Cum. Dose

Exposure No. Mos. Total Dose Rate
Group Dogs kBq pele L) ilo) nid Ll N (Gy) {Gy/day)

1 21 0.12 149 - 21 21 8.8 0.003

2 22 0.69 183 5 17 85 17 54.9 0.018

3 21 2,73 16 3 8 10 11 10 3.8 0.015

4 24 11.80 13 4 19 1 23 1 10.7 0.053

5 20 40.88 7 14 6 20 1.4 0.106

6 8 213.30 4 8 - 8 - 21.8 0.356

Total 116 29 38 49 67 49

{a) Post exposure.

{b) Lymphopenic.

{c) Intermittently lymphopenic.

{d) Nonlymphopenic.

(e) includes lymphopenic and intermittently lymphopenic.

respectively. At long times after inhalation,
plutonium in the testes was between 0.0001 %
and 0.03% of projected ILD, depending on the
physicochemical form of plutonium (Figure 5).
Those percentages are similar to those previously
reported in dogs, primates, and human subjects.

Biological Effects

Male dogs, both control and plutonium-
exposed, that were evaluated for the risk of
testicular cancer had neoplasms diagnosed either
before death by histologic examination of testes
that were surgically removed due to the presence
of a palpable mass, or following death or eutha-
nasia of the animal for humane reasons. Prior to
surgical extirpation of affected testes or euthana-
sia, a blood sample was obtained from animals,
following an overnight fast, for measurement of
testosterone and estradiol 17-beta concentrations.
The dogs were euthanatized by exsanguination
via carotid artery catheterization following anes-
thesia with pentobarbital sodium given intrave-
nously. The prostate, testes, and some other
organs were removed, and the excess tissue was

trimmed away and examined, measured,
weighed, and fixed in 10% neutral buffered
formalin. Tumor volumes were calculated using
the following formula:

\Y
where V
r

4,18
volume in cm®
radius of the lesion.

it

Five-micrometer sections of both neoplastic and
adjacent testicular tissue were cut and stained
with hematoxylin and eosin according to stan-
dard histologic techniques. All tissues utilized in
this study were examined by one pathologist.
The criteria for histopathologic diagnosis were
adapted from Nielsen and Lein (1974) and Moul-
ton (1978).

One hundred sixty-six cases of testicular
neoplasia occurred among 105 dogs that were
from 7.5 to 17.7 years of age at the time of diag-
nosis. There was no relationship between pluto-
nium body burden or activity in the testes and
the occurrence of testicular neoplasia. The 166
testicular neoplasias comprised 113 interstitial
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beta concentrations, and serum testosterone-to-
estradiol ratio were evaluated in 39 dogs with
testicular neoplasms and in 5 clinically normal,
sexually intact, age-matched cohorts. Serum
hormone concentrations did not differ signifi-
cantly among tumor types or between dogs with
neoplasms and age-matched cohorts, implying
that androgen production by the testes is not
reduced by prolonged exposure to alpha-particle
irradiation.

Although the incidence of testicular neopla-
sia is higher in the dog than in any other species,
this study failed to demonstrate any statistically
meaningful association between internal deposi-
tion of plutonium and testicular neoplasia over
the life span of these animals. Based on these
observations in an animal model, it could be
inferred that, in human subjects, the risk of
testicular cancer or genetic damage from inter-
nally deposited plutonium is negligible, despite
the long retention periods for plutonium in the
testes.

1
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National Radiobiology Archives

Principal Investigator: C. R. Watson

Other Investigators: S. K. Smith, E. K. Ligotke, J. C. Prather,
L.G. Smith, and M. T. Karagianes

The National Radiobiology Archives (NRA) project is a comprehensive effort to gather, organize,
and catalog data, documents, and tissues related to completed radiobiology studies. This archiving
activity will provide future researchers with information for statistical analyses to compare results of
these and other studies. The NRA also will provide materials for application of advanced molecular
biology techniques to address questions, such as those related to DNA modification, that could not have
been considered when these studies were performed.

Many investigations have been conducted
into the biological effects of ionizing radiation.
The focus has been on understanding the nature
of human health effects and on guantifying
dose-response relationships. When acute
effects of large doses had been adequately
characterized, attention shifted to effects of
lower doses and lower dose rates. This focus
led to initiation of life-span studies of experi-
mental animals in several laboratories support-
ed by the US Atomic Energy Commission
(AEC), now the Department of Energy (DOE).
As DOE radiobiology studies are completed,
the National Radiobiology Archives (NRA) will
continue to integrate and preserve this unique
body of information and materials, and will
continue to encourage and simplify its use.

The NRA project concentrated initially on
studies of beagle dogs exposed to ionizing
radiation at five DOE-supported laboratories.
The project now includes similar studies using
other species and at other laboratories. Three
major activities are associated with this project:

1. NRA implements an interlaboratory
computerized information system containing a
summarized dose-and-effects database, a collec-
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tion inventory database, and a bibliographic
database. During the past year, database struc-
tures were redesigned to utilize an upgrade in
database management system software. The
information system now includes records from
nine laboratories on approximately 7000 beagle
dogs (Table 1), 30,000 mice, and more than
200 nonhuman primates. An introduction to
the system is available on DOS diskette.

2. NRA establishes a document archives of
research materials such as logbooks, clinical
notes, radiographic films, and pathologists’
observations. The first major collection of
documents and radiographs was donated by the
University of California at Davis (UC Davis).

3. NRA establishes a specimen archives
for research materials such as tissue samples or
histopathology blocks and slides. Tissue speci-
mens, histopathology blocks and slides, serial
radiographs, and extensive clinical records
from more than 1000 dogs from UC Davis are
organized and available. In addition, two
groups of investigators have harvested brain
specimens from selected aged dogs to analyze
for indicators of Alzheimer’s disease.



TABLE 1. Major Life-Span Beagle Studies Being Incorporated into the National Radiobiology Archives

Dates of
NRA Study iD{8) Exposures
1-1 1961-1974
1-2 1963-1970
1-3 1964-1963
1-4 1964-1963
1-6 1966-1966
1-6 1966-1976
1-7 19711974
1-8 1971-1973
1.8 1972-1978
1-10 1973
1-11 1976-1978
112 1976-1978
1-13 1976-1980
1-14 19771979
21 1962-1968
2-2 19681-1969
2-3 1964-1969
2-4 1964-1969
31 19686
3-2 1967
3-3 1960-1964
3-4 1961-1963
3-6 1968-1978
3-8 1968-1977
4-1 1969-1982
4-2 1967
4-3 1970.1972
4-4 1972-1976
4-6 1976-1977
6-1 1966-1967
6-2 1968-1967
6-3 1968-1967
6-4 19671971
6-6 1968-1969
6-6 1969-1971
6-7 18701971
6-8 18701974
6-8 1972-1876
510 1972-197%
6-11 1972-197%6
6-12 1973-1978
6-13 1974.1876
6-14 1977-1979
5-16 1977-1979
6-18 1877-1979
6-17 1977-1978
6-18 1979-1983
6-19 1979-1982
8-3 1967-1873
Total 1962-1983

Description of Study

23%py,, |V injection

naﬂl, IV injection

228Ry, 1V injection

2287, |V Injection

90g;, IV Injection

M1 am, 1V Injection

249¢¢, 1V injection

2¢4, |V injection

23%py,, 1V injection (juvenile)
Z“E', 1V injection

239p,, 1V injection (aged}
2284, {V injection {juvenile)
226, 1V injection (aged)
224R4 1V injection (muitiple)

X ray, whole body (fractionated)
°°Sr. ingested |in utero to 640 days)
908y, IV injaction

228g,, 1V injection (multiple)

°°sn Transplacental

90Sr, SC Injection (multiple, various ages)

‘“Ce, IV injsction

1374, IV Injection

Gamma ray, whole body (continuous to death)

Gamma ray, whole body {(continuous to predetermined dose)

2:“"'PUO,, Inhalation
238p,,0,, Inhalation
23%py0,, Inhalation
2“Puoz. inhalation
23%p,(NO,) 4, Inhalation

05/C1,, Inhalation

144CoCly, Inhalation

91ycl,, Inhalation

Mice (FAP)‘M. inhaiation

137¢4Cl, 1V injection

90y (FAP), Inhatation

9y (FAP), Inhelation

90g; (FAP), Inhalation

144c4 (FAP), Inhalation {juvenilel

1444 FAP), Inhalstion (agsd)

144c (FAP), Inhalation (multiple}
7“Pu0,, Inhalation (3.0 ym}

238p,0,, Inhalation (1.6 ym)

23%py0,, Inhalation (0.76 um)
239py0,, Inhalation (1.6 pm)

2:“‘PuO-‘,, Inhalation (3.0 ym)

239p0,, Inhalation (multiple, 0.76 um)
239py0,, Inhalstion {juvenile, 1.6 ym)
239py0,, Inhalation (aged, 1.6 um)
Gamma ray, whole body, F3 and F, generations

Number of
Life-Span Animals

286
164
89
24
29
17
36
36
7%
6
34
63
33
128

360
483

46
336

63
28
49
8b
an
343

36
22
1386
138
148

63
70
54
126
66
101
108
124
64
64
38
84
84

108

(a) Code designations indicate laboratory and study numbers; 3-6, for example, is a code that indicates laboratory 3
(ANLI), study 6. Laboratory codes: 1, U of Utah; 2, UC Davis; 3, ANL; 4, PNL; &, ITRI; 8 CSU. Study numbers:

(b}

arbitrarily assigned by NRA.

FAP: radionuclide was adsorbed to an insoluble fused aluminosilicate vector aerosol.
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Radiobiology Studies

Nearly 40 years ago, the US AEC began
life-span radiation-effect studies in beagles;
these closely related experiments are now com-
ing to fruition. The studies, conducted at the
University of Utah (U of Utah), UC Davis,
Argonne National Laboratory (ANL), Pacific
Northwest Laboratory (PNL), and the Inhala-
tion Toxicology Research Institute (ITRI) were
summarized by Roy Thompson (1989). His
book, Life-Span Effects of lonizing Radiation in
the Beagle Dog, became the initial focus of
NRA activities. Another multigeneration study
in beagle dogs was conducted by the Food and
Drug Administration at Colorado State Univer-
sity (CSU). Information from CSU about ef-
fects of gamma rays also is being included in
the NRA. There also have been many life-span
studies of rodents, notably those conducted at

Oak Ridge National Laboratory (ORNL),
ANL, Brookhaven National Laboratory (BNL),
and PNL. In addition, a series of long-term
metabolism studies in nonhuman primates were
initiated at the University of Rochester (UR)
and continued at Lawrence Berkeley Labora-
tory (LBL).

The beagle experiments currently available
from NRA are listed in Table 1, showing the
NRA laboratory-study code, the dates of animal
exposure, the nature of exposures (including
duration and frequency), and the number of
animals held for life-span observation. Table 2
summarizes similar information about rodent
and nonhuman primate studies. Information is
available on 7061 life-span beagles, 32,226
mice, and 236 nonhuman primates.

As previously noted, three tasks are associ-
ated with integrating and preserving informa-
tion from these studies. The computerized

TABLE 2. Major Life-Span Studies Being incorporated into the National Radiobiology Archives

NRA Study Dates of Number of
iple) Exposures Description of Study Life-Span Animals
Mice:
71 1977 Gamma ray, singfe exposure at 10 wk, BALB/c & RFM females 4,728
7-2 1987 Gamma ray, single exposure at 10 wk, C3Hf & CE7LB/8, both sexes 6,037
7-3 <1979 'Cs, gamma rays, single exposure at 10 wk, RFM, both sexes 19,200
9-1 1982-1987 X or gamma rays, fractionated, various ages, C67BL/6 & CBA/Ca males 3,261
9-2 1986-1989 Low dose neutron ieukemogenesis
Total 1977-1987 32,228

Nonhuman Primates:

8-0 Controls
81 1864-1982 -T2
8-2 1873-1986 »py
8-3 1960-1982 "Am
8-4 1986-1986 TNp
8-6 1978 py
Total 1964-1986

43
89
27
30

192

{a} Laboratory codes: 8, LBL; 7, ORNL; 9, BNL. Study numbers: arbitrarily assigned by NRA.

156



information system provides electronic access
to summary data on each animal, to document
and specimen collection catalogs, and to biblio-
graphic citations about the studies; the docu-
ment archives house and preserve nonbiological
materials; and the specimen archives house and
preserve biological materials.

Advisory Committee

The NRA is guided by the National Radio-
biology Archives Advisory Committee
(NRAAC) consisting of five external advisors:
Stephen A. Benjamin, CSU (dog studies); J. A.
Louis Dubeau, University of Southern Califor-
nia (molecular biology); Kenneth L. Jackson,
University of Washington (radiobiology);
Elizabeth Sandager, Peabody Museum (archi-
vist); and Philip R. Watson, Oregon State
University (databases).

The committee also includes the following
nine participating (or internal) advisors: Bruce
B. Boecker, ITRI; Ronald E. Filipy, Washing-
ton State University, Tri-Cities; David
Thomassen, DOE; Thomas E. Fritz, ANL;
Scott C. Miller, U of Utah; James F. Park,
PNL; Otto G. Raabe, UC Davis; Roy C.
Thompson, PNL, and Michael J. Fry, ORNL.

Information System

Computer database technology is essential
to integrating this broad and diverse collection
of information. The NRA is developing sever-
al interrelated databases, each of which follows
the relational model. There are three major
databases: the dose-effects summary, the
collection inventory, and the bibliography.
These systems are on IBM-compatible PC
systems at PNL using the Paradox database
management system.

Dose-Effects Summary. The computerized
summary database contains dose to and effect
on each significant tissue in each animal. The
summary database has six major tables:
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LAB: describing each laboratory
STUDY:  describing each study (as shown
in Tables 1 and 2)

GROUP:  describing groups of animals
within each study

ANIMAL: summarizing each animal

TEFFECT: effect (and diagnosis dates) ob-
served in each significant tissue
category

TDOSE:  dose to each significant tissue

category at diagnosis dates in
TEFFECT.

The summary database also includes labo-
ratory-specific supporting tables for informa-
tion such as serial hematological determinations
or clinical observations. Progress toward
populating the summary database is shown in
Table 3.

The TEFFECT summary table is based on
standardization of clinicians’ and pathologists’
terminology through SNODOG, an adaptation
of the Systematized Nomenclature of Medicine
(SNOMED). This year, two documents were
published describing the SNODOG glossary
and the frequency of usage of its terms in the
beagle studies (Watson 1993a, 1993b).

Collection Inventory. The collection inven-
tory database contains information about each
bar-code label affixed to materials (or contain-
ers of materials) in NRA collections. The
database defines materials and tracks location
of items for rapid retrieval. More than 15,000
items related to 4500 animals currently are
managed by this system.

Bibliography. The bibliographic database
uses the collection inventory database’s bar-
code label system to identify reference materi-
als. Location information about materials is
stored in the collection inventory database, and
bibliographic citations are stored in the bibliog-
raphy system. The bibliography system in-
cludes more than 2000 items of a supporting
nature, including animal-specific documents.



TABLE 3. Progress Toward Populating the Summary Database

Status of NRA Database Tables't!

NRA Lab and

Study 1D'8) LAB STUDY

GROUP

ANIMAL

TEFFECT TDOSE LAB SPECIFIC

1-1t0 1-14
21

2-2to 2-04
3-1 to 3-03
3-4

3-5, 3-06
4-1, 4-02
4-3 to 4-056
6-1 to 5-19
6-1 to 6-3
6-4 to 6-5
7-1,7-2
7-3

8-3

9-1

9-2

MMM TMTTMMMMMTMTTTTT M
OO0 VOO0 00O0
OV O0OO0OTOOOODODOOOOO

C c c

Cc Cc C

OO0 vV ODVOTVO
(¢}
b
(¢]

0
(¢]
(o]
(9}

|
]
P

(Detailed information was discarded by University of Rochester; NRA has reprints of results and

10-1 to 10-61

study definition records only.)

Number of

Records: 9 126 645

19,883

63,318 7,911 > 250,000

{a) Laboratory Codes: 1, U of Utah; 2, UC Davis; 3, ANL; 4, PNL; 5, ITRI; 6, LBL; 7, ORNL; 8, CSU; 9, BNL;
10, University of Rochester. Study numbers are defined in Tables 1 and 2.

(b) Status Codes:

C, Complete: database records are complets; all significant fields have complete information.
F, Final: database records are complete and reviewed by investigator.

I, Incomplete: database tables are partially filled with representative rows.

P, Partial: database records are partially complete; some fields have no information.

An introduction to the NRA information
system is available as a standalone application
that can be self-loaded from diskette onto a
DOS-based microcomputer. The documenta-
tion accompanying the application, "National
Radiobiology Archives Distributed Access
User’s Manual,” explains usage and extensively
describes fields (Watson ef al. 1991; Smith et
al. 1992). This document and software are an
important summary of the meta-data (informa-
tion-describing data) collected. The introduct-
ory subset diskettes are distributed in response
to requests for information about the NRA.
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Document Archives

The research document archives collects
detailed research findings associated with each
study. Materials include handwritten "raw"
data such as exposure logbooks, clinical notes,
laboratory analysis forms, hematological pro-
files, and animal-care observations. A signifi-
cant class of research documents from
these studies comprises photographic film,
autoradiographs, radiographs, and photo-
graphs. "Summarized" data, usually reduced
to computer files or publication reprints, also
are included. Each document (or document
container such as a folder) is given a bar-coded




accession-number label and stored in a con-
trolled environment. Material is catalogued in
the bibliographic database for rapid selection
and retrieval.

The first contribution to the document ar-
chives is the extensive collection of supportive
documentation that provided the basis for Ra-
dioactivity and Health: A History, by J. Newell
Stannard (1988); about 60 boxes have been
accessioned. In addition, clinical and radio-
graphic records were donated by the UC Davis
in June 1992. In 1990, documents from the U
of Utah such as clinical records, radiographs,
photographs, and autoradiography prepara-
tions, as well as specimens such as organs,
histology blocks, and slides, were accessioned;
these materials will remain in Utah pending
completion of the studies.

Specimen Archives

The biological specimen archives contain
collected research materials such as tissues pre-
served in formalin or alcohol, tissue samples
embedded in paraffin or plastic for histopath-
ological analysis, microscope slides, and radio-
graphic tilms. Many materials are radioactive
and associated with hazardous materials such as
formalin, alcohol, or paraffin. A building has
been renovated to serve as the repository of
these specimens. The building contains a
specimen-manipulation laboratory, storage
bays, and an automatic fire-suppression system.
Materials are nominated for donation to the
NRA by an institution which recognizes that
specific completed studies are worthy of con-
sideration for archival preservation.

Collaborations and Retrievals
Cooperation of participating institutions
and investigators is essential to achieve goals of

the NRA project. Collaboration has been
excellent with the nine institutions that have
donated information and materials. NRA staff
have participated in, or have been invited to
participate in, several site visits; collaborative
projects were initiated, and these laboratory
directors serve on the NRAAC.
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The NRA encourages analysis of studies
that examine previous information from a new
perspective by applying different analytical
approaches, or by comparing results of studies
performed at different institutions. The NRA
collaborated with investigators at UC Davis to
obtain brain specimens of dogs whose clinical
records indicated Alzheimer-like symptoms.
NRA staff retrieved tissues and provided labo-
ratory facilities, and the UC Davis team pre-
pared histopathology slides for staining and
interpretation. In addition, the NRA specimen
archives supplied histopathology slides of
control beagle stomach to the veterinary school
at UC Davis and brain specimens to the Uni-
versity of Tennessee. The information system
responded to several requests for detailed data
subsets.

A subcommittee of the NRAAC met in De-
cember 1991 to plan a collaborative database
combining information from 1096 control
beagles. The NRA is coordinating publication
of this reference set to provide baseline infor-
mation for comparison with experimental
groups. A consortium of biostatisticians from
ANL, ITRI, and PNL will analyze this control
beagle subset.

Collaboration with the Europeans

A similar archiving task has been initiated
by the Commission of European Commuinities
(CEC). The European Radiation Biology
Archive (ERAD) is being developed for the
European Late Effects Program (EULEP) by
Dr. Georg Gerber. The NRA is actively coop-
erating with Dr. Gerber to coordinate database
design with the goal of eventual integration.
Agreement on computer hardware and database
management software was reached, and the
database structures are being merged. Ex-
change of typical data files and merger of
descriptive information is planned for spring
of 1994.

Rodent Workshop

The NRA conducted a workshop focused
on long-term radiobiology studies in rodents.
Representatives of ANL, BNL, ITRI, ORNL,




and PNL met in August along with NRAAC
members to review the scope of the studies and
discuss availability of information and speci-
mens for archiving. The synopsis of the work-
shop will include tables defining the major
studies.

Future Activities

The NRA will continue the orderly access-
ioning of life-span beagle-study information,
and shipment of selected specimens and docu-
ments to PNL. While these studies are being
completed, NRA will play an increasing role in
facilitating analyses that cut across studies and
species. For example, NRA will compile and
publish a combined data set of control beagles,
Because most rodent-based radiobiology studies
involved thousands of animals, access to origi-
nal, unpublished data from them is limited.
Therefore, the NRA will continue to solicit
details about additional rodent studies, initially
those conducted at ANL, BNL, ORNL, and
PNL. The NRA will work closely with the
interlaboratory consortium of statisticians
developing techniques for comparing and com-
bining information from the beagle studies.
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Low-Level 239Pu02 Life-Span Studies

Principal Investigator: C. L. Sanders
Other Investigators: K. E. Lauhala, B. G. Moore

This report concentrates 0. the influence of sex and strain on the frequency of 239Pu02-induced lung
cancer in rats. The data illustrate that there are sex and strain differences reflected in the induction of
adenomatous and squamous metaplasia and lung cancer. Male Wistar rats have a higher incidence of
adenomatous metaplasia than female rats, When exposed to similar total radiation doses, the absolute
risk for the induction of lung tumors in male Wistar rats (730 lung tumors/ 10* rat-Gy) was again much
higher than observed in females (81 lung tumors/ 10* rat-Gy). This result contrasts markedly to the
inductior of squamous metaplasia; the male Wistar rat is much less sensitive than female rats for this
endpoint. Wistar rats (both male and female) were less sensitive for 239Pqu—induced cancer than
were F344 or Long-Evans rats. We also are reporting on formation of cancers in the nose following
23%pyQ, inhalation. The crude incidence of nasal cancers in exposed female Wistar rats was low, but
showed that there were 7 tumors in 2515 animal exposed to 2>?Pu0, and a single tumor in the 1232
control animals. These studies illustrate the importance of considering tissues at risk, | ~»:a0onal
factors, and genetic background in evaluation of risk from lung cancer from inhaled 239t’qu.

Gender and Strain Comparison of Crude incidences of adenomatous metaplasia
Pulmonary Carcinogenesis are shown in Table 2. This table provides

The following mix of exposed and sham- evidence of a sex difference in sensitivity for
exposed young adult rats were examined for the induction of adenomatous metaplasia; the
lung and nasai tumors in the upper respiratory male animals showed a higher incidence than
tract after inhalation of high-fired 23°Pu0,: observed in females. Table 3 contains data on
3157 female and 198 male Wistar rats, 200 the influence of gender and strain on the induc-
female F344 rats, and .92 female Long-Evans tion of squamous metaplasia. Tables 4, S, and
rats. Lung-cancer incidenc2 and type in these 6 all are related to the induction of lung cancer;
rodents were compared in similar dose groups in Table 4, the crude-incidence data is present-
(Table 1). ed. These data are converted to relative risk in

Table 1 illustrates that all the strains and Table 5 by using the observed background for
sexes had similar initial 2°PuO, lung deposi- female Wistar and female F344 rats and assign-
tions (ILDs). Female Long-Evans rats had the ing an indicence of 0.1 to the remaining ani-
lowest calculated lung doses ~bserved in this mals that had no observed lung tumors in the
study (low-dose group: 0.57 £ 0.17 Gy; high- controls. The high background level observed
dose group: 26.1 + 7.7 Gy). These lung in the F344 rats resulted in a low relative risk
doses were, however, within a factor of two of value for these animals, especially at the high
the highest doses observed for female F344 total doses. In Table 6, the data is expressed as
rats, with a low dose of 0.98 + 0.20 and high absolute risk for lung-tumor induction by in-
of 37.1 £ 6.7. haled 2*°Pu0,.
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TABLE 1. Dosimetric Data for Gender and Strain of Life-Span Rat Following Inhalation of 2°PuQ,. Values are means *
standard deviation (number of animals).

ILD, kBg
Low-Dose Group

High-Dose Group

Lung Dose, Gy
Low-Dose Group

High-Dose Group

Lung Weight as %
Body Weight

Female F344

0.23 + 0.04 (80)
3.69 + 0.38(60)

0.98 + 0.20
37.1t = 6.7

0.62

Eemale Long-Evans

0.21 + 0.05(72)
3.67 + 0.78 (60)

0.57 + 0.7
26.1 = 7.7

0.74

Eemals Wistar

0.26 £+ 0.06(111)
4.87 + 1.35 (65)

0.76 + 0.18
344 + 7.3

0.60

Male Wistar

0.28 + 0.12(78)
4.49 + 1.01(60)

0.70 + 0.33
28.2 + 7.3

0.50

TABLE 2. Incidence of Adenomatous Mataplasia in the Lung for Gender and Strain of Rat Following Inhalation of #°Pu0,

Crude Incidence of Adenomatous Metaplasia, %

Mean Lung Dose

Range, Gy

Female F344 Female Long-Evans Female Wistar Male Wistar
0 3.3 0 0.0956 0
0.57-0.98 25.0 1141 2.7 12.8
25-37 60.0 63.3 58.6 80.0

TABLE 3. incidence of Squamous Metaplasia in the Lung for Gender and Strain of Rat Following Inhalation of 2**Pu0,

Mean Lung Dose

Crude Incidence of Squamous Metaplasia, %

Range, Gy Female F344 Female Long-Evans Female Wistar Male Wistar
0 (4] 0 (o] 0
0.57-0.98 0 0 (o} 1.3
25-37 61.7 28.3 64.6 18.3

TABLE 4. Incidence of Lung Tumors for Gender and Strain of Rat Following inhalation of 2**Pu0,. Each tumor was
evaluated separately in rats with multiple lung tumors.

Mean Lung Dose

Range, Gy

Crude Incidence of Lung Tumors, %

Female F344 Female Long-Evans Female Wistar Male Wistar
0 1.7 o] 0.095 0
0.567-0.98 20.0 8.3 0.46 6.4
25-37 118.3 81.7 70.7 118.3
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TABLE 6. Relative Risk of Lung Tumors for Gender and Strain of Rat Foliowing Inhalation of ?°Pu0,. Each tumor was
evaluated separately in rats with multiple lung tumors. Spontaneous lung tumors were assumed to be 0.1% for the
determination of relative risk in those groups with nil lung tumaors in controls,

Relative Risk
Mean Lung Dose
Range, Gy Female F344 Female Long-Evans Female Wistar Male Wistar
(o} 1 1 1 1
0.567-0.98 12 110 4.6 51
25-37 48 550 750 830

TABLE 6. Absolute Risk of Lung Tumors for Gender and Strain of Rat Following Inhalation of 2**Pu0,. Each tumor was
evaluated separately in rats with multiple lung tumors. Spontaneous lung tumors were assumed to be 0.1% for the
determination of relative risk in those groups with nil lung tumors in controls.

Absolute Risk (Lung Tumors per 10* Rat-Gy)

Mean Lung Dose

Range, Gy Female F344 Female Long-Evans Female Wistar Male Wistar
0 0 0 0 0
0.57-0.98 1900 1900 81 730
25-37 220 210 210 300

Survival times were similar in control, low- mous metaplasia was found in 62% to 65% of
dose, and high-dose groups for both genders high-dose female F344 and Wistar rats, but
and all strains. Differences in epithelial meta- only in 18% to 28% of high-dose female Long-
plasias and lung-tumor responses were seen Evans and male Wistar rats (Table 3). The
among both genders and all strains. Adenoma- incidence of lung tumors in F344 rats was
tous metaplasia was considerably higher in 1.7% in controls, 20% in the low-dose group,
control and low-dose groups of F344 rats than and 118.3% in the high-dose group. The
in Wistar rats. In male Wistar and female incidence of lung tumors in female Wistar rats
Long-Evans rats, adenomatous metaplasia was was 0.095% in controls, 0.46% in the low-dose
not found in control rats; it was, however, group, and 71 % in the high-dose group. About
found at a higher incidence in the low-dose half of all lung tumors in both genders and all
groups of F344, Long-Evans, and male Wistar strains were considered to be the primary cause
rats than in female Wistar rats (Table 2). The of death.
sex differences are demonstrated by the fact Because of the differences in sample size,
that the male Wistar rat appeared much more and the small number of tumors observed in
sensitive to the induction of squamous metapla- most control groups and the single tumor ob-
sia than the female Wistar rat. A strain differ- served in the small sample (60 animals) of
ence also is evidenced by the female Long-Ev- F344 female controls (Table 4), it is difficult to
ans rat being less sensitive to the induc tion of draw many conclusions concerning the relative
squamous metaplasia than either female F344 risk for lung-cancer induction as a function of
or the Wistar rats. gender or strain. By assigning the same spon-

Squamous metaplasia was not found in taneous lung-tumor incidence to all groups that
control or low-dose groups of any strain or had zero lung tumors, relative risk values were
gender, except in one male Wistar rat. Squa- determined (Table 5) which suggest that the
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male Wistar rat is more sensitive to the induc-
tion of tumors than the female, and that the
Long-Evans rats are the most sensitive among
the different strains.

Absolute risk of lung tumors (Table 6) was
similar in the low-dose group for female F344
and female Long-Evans rats, both being much
greater than for female Wistar rats. As was
observed for relative risk, the absolute risk for
male Wistar rats in the low-dose group was
nearly tenfold higher than for female Wistar
rats. Absolute risk of lung tumors in the high-
dose group was similar for all genders and
strains. The adenomatous tumor phenotype
predominated in the F344 strain, while the
squamous tumor phenotype predominated in the
Wistar strain. Risk of squamous tumors was
similar for both strains. Overall, the female
F344 rat appears more than tenfold more sen-
sitive than the {female Wistar rat to lung-tumor
formation at low to moderate doses from in-
haled *°Pu0,, evidenced by an increased inci-
dence of adenomatous phenotype tumors.

The variability in lung-tumor response
among the strains and genders of the rat follow-
ing inhalation of #°PuQ, complicates the use of
the rat lung mode! in applying and/or project-
ing risk of lung cancer to humans. The cause
for differences in lung-tumor response among

strains and genders requires additional
research, but may be due to such factors as
genetic susceptibility, hormones, and diet.

Nasal and Oral Carcinoma

Nine oral squamous cell carcinomas were
distributed proportionately among control and
exposed Wistar rats of both genders; these
tumors all appeared to be associated with mal-
occlusion of incisor teeth. No oral carcinomas
were found in F344 or Long-Evans rats.

A small number of inhaled ?*Pu0O, particles
were retained in subepithelial regions of the
larynx and nasal cavity. No tumors were found
originating from the trachea or larynx. One
nasal-cavity tumor was found in a control fe-
male Wistar rat (0.095%) while five tumors
were found in exposed female Wistar rats
(0.24%) (Table 7). Two nasal-cavity tumors
were found in exposed female Long-Evans rats
(1.5%), while no nasal cavity tumors were
found in control Long-Evans rats, or in control
or exposed female F344 or male Wistar rats.
Thus, in 2515 exposed rates, there were 7 nasal
tumors, and in the 1232 control animals, only a
single tumor was observed. The association
found between inhaled 2°PuQ? radiation dose
and tumor formation in the upper respiratory
tract, especially in the nose, requires additional
research.

TABLE 7. Tumor Incidence in the Nasal Cavity of the Rat Following Inhalation of #*Pu0,

Gender/Strain

Female Wistar
Male Wistar
Female F344

Female Long-Evans

Exposed

Controls Female Wistar
Male Wistar
Female F344

Female Long-Evans

umber of Rats

2105
138
140

132

2515

1052
60
60

80

1232

Crude Incidence

of Tumors, % Total Tumors

0.24 5
[0} 0
(o] 0

15 2

0.28 7

0.095 1
0 0]
0 0

0. 0

0.08 1
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Genotoxicity of Inhaled Energy Effluents

Principal Investigator: A. L. Brooks

Other Investigators: K. M. Groch, J. D. Saffer, and G. E. Dagle

The interaction of cellular and genetic damage induced by low- and high-LET radiation with damage
induced by chemicals is being studied to identify health risks associated with the nuclear industry and
nuclear waste sites. This project has three objectives: 1) to provide cellular and molecular techniques
that can be used to help understand the risks associated with inhalation of complex mixtures; 2) to
conduct mechanistic studies using chromosome aberrations; and 3) to understand the molecular
mechanisms which result in interaction between damage induced by radiation and that from exposure to
chemicals. To evaluate the risk from inhaled complex mixtures, we have developed a model to expose
cells directly to vapor-phase materials associated with the nuclear waste tanks. To continue the
mechanistic studies associated with chromosome aberrations, it was necessary to develop probes with
which to “paint” the chromosomes of rat cells by using fluorescent in sifu hybridization (FISH)
techniques. With these probes in hand, we now hope to determine the relationship between the
frequency and type of chromosome aberrations measured in respiratory tract cells at early times after
clastogenic exposure and the development of lung cancer. To understand the interaction between
radiation and chemicals, it is necessary to define the changes induced by the radiation and determine
how these changes in gene expression influence the processing of damage induced by chemical
exposure.

Methods formation. Biological data from the vapor-
phase materials will be combined with chemical
Model Exposure Systems for evaluation to generate a first cut at determining
Airway Epithelium the potential for long-term risk from vapor-
The model we developed was similar to that phase exposure. We will determine which
developed to expose cells to vapor-phase mate- chemical or chemical class in the mixture has
rials (Zamora et al. 1983); we at Pacific North- the most cellular and genetic toxicology infor-
west Laboratory will work with Westinghouse mation. We will conduct short-term tests on
Hanford Company to obtain vapor-phase sam- this chemical, comparing the results to those
ples from waste tanks to test for biological determined for the complex mixture. Such
activity. The criteria for the model system studies will provide preliminary data that will
were 1) the ability to use normal lung epithelial be important in long-term worker protection
cells; 2) the capacity to develop dose-response during the waste cleanup efforts.
relationships either as a function of concentra-
tion or time of exposure; and 3) the capacity to Mechanisms Invoived in Chromosome
measure a variety of cellular endpoints, includ- Aberration Production
ing cell membrane disruption, chromosomal During 1993, we worked with Drs. Jim
aberrations, cell survival, and neoplastic trans- Tucker and John Breneman of Lawrence Liver-
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more National Laboratory (LLNL), Livermore,
California, to develop molecular probes to
“paint” the chromosomes of selected rat chro-
mosomes using a method previously developed
for mouse chromosomes (Breneman ef al.
1993). These probes were designed to include
the following traits: to label enough of the rat
genome to be useful in dosimetry and translo-
cation studies needed to follow the development
of tumors; to identify the X and Y chromo-
somes to enable gender identification of rat
cells in tumor models; and to be able to locate
important oncogenes and tumor-suppressor
genes in the rat karyotype (Szpirer et al. 1985,
1988). Now that we have the probes, we will
use them to track radiation- or chemically
induced chromosome translocations in rat cells.

Interactions Between Radiation
and Chemicals

Identification of the gene activation and
protein induction by small radiation doses is
essential to understand the interactions between
radiation and chemical damage. This objective
is a major goal in this portion of the study. We
are using radiation and other clastogenic agents
to determine if radiation can induce genes to
produce RNA that results in new proteins, if
these proteins are related to DNA repair, and
which if any of these proteins are involved in
repair of DNA damage. Studics have been
initiated to identify the genes that change their
expression after low doses of radiation. We
are using the differential display method (Liang
and Pardee 1992), which screens hundreds of
RNAs at once to identify genes that change
expression after radiation exposure.

Results and Discussion

Model Exposure Systems for
Airway Epithelium

Preliminary experiments were required for
developing the model system. These experi-
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ments involved a Fischer rat lung epithelial cell
(LEC) line (Li et al. 1983) cultured on poly-
merized rat tail collagen. The studies had three
goals: 1) to determine how long the cells could
live on collagen gels without culture medium;
2) to determine the rate of growth during medi-
um deprivation; and 3) to determine if the cells
would return to normal growth patterns after
being removed and plated under normal culture
conditions.

To assess the effects of withdrawing the
culture medium (Ham’s F-12 containing 10%
FBS) from the LEC, 5 x 10° cells were plated
onto collagen gels in T-75 flasks and incubated
overnight at 37° C in a humidified incubator
with 5% CO,. Twenty-four hours after plating,
the tissue culture medium was removed and the
cultures returned to the incubator. At 4 and 24
hours later, the collagen matrix was dissolved
in collagenase (200 units/ml) and total cell
yield and intact cells (as judged by trypan blue
exclusion) quantified. In two separate experi-
ments, withdrawing medium for up to 24 hours
had little effect on cell numbers or morphologic
viability (Figure 1). It was observed, however,
that plating LEC onto collagen gels down-
regulated the proliferation of these cells as
compared to similar cells cultured on a tissue
culture substrate (Figure 2).

To assess whether the collagen-induced
cellular quiescence was reversible, 5 x 10° cells
were plated onto either collagen gels or tissue
culture plastic and incubated as described pre-
viously. Twelve hours later, the cells on the
collagen gels were removed with collagenase,
pelleted, and transferred to plastic tissue culture
dishes. Subsequent cell counts indicated that
the collagen-induced quiescent was reversible
(Figure 3). The system seems to be adequate
for studies involving cell survival, micronuclei
induction, and chromosome aberrations. The
cells will be exposed to organic vapors and
these endpoints measured.
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FIGURE 1. Effect of Withdrawing Medium on the Growth
and Viability as Measured by Trypan Blue Exclusion of
LEC Cells Cultured on Collagen Gels (closad symbols:
with medium; open symbols: without medium; squares:
experiment 1; circles: expariment 2)

Mechanisms involved in Chromosome
Aberration Production

To develop chromosome-specific probes for
fluorescent in situ hybridization (FISH) “paint-
ing" techniques, it is necessary to have a large
source of primary cells in culture; therefore,
we established primary cultures of rat skin
fibroblasts. The cells were harvested after four
passages and 2.4 x 10® cells were mailed to Dr.
Tucker at LLNL. Dr, Tucker’s team treated
the cells with colcemid to accumulate meta-
phase cells, isolated chromosomes from the
dividing cells, and sorted individual chromo-
somes on a flow cytometer. The methods that
were used for developing these chromosome-
specific DNA probes have been published
previously (Breneman ef al. 1993). Briefly,
small pools of each chromosome were dena-
tured, then hybridized with degenerate oligonu-
cleotide primers (DOP); next, a polymerase
chain reaction (PCR) was conducted. Using
these methods, it was possibie to develop
probes for rat chromosomes 1, 2, 4, 10, X, and
Y. The identification of the chromosomes that
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FIGURE 2. Changes in Cell Population Numbers as a Function of Time After Plating LEC Ceils on Either Plastic with Medium
or Collagen Without Medium {open circle: celis cultured on tissue culture-treated plastic; closed symbols: cells cuitured on

collagen gels; circles: experiment 1; squares: experiment 2)
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FIGURE 3. Growth of Cells that Were Cultured with Medium on Plastic or Collagen Without Medium, then Transferred to
Plastic with Medium (solid line: precultured on collagen gels; dashed line: precultured on tigsue culture-treated plastic). The
figure shows that the cells are delayed in their growth but resume normal growth after being returned to normal culture

conditions.

are painted is still tentative, because G-banding
has not yet been done. Examples of cells
stained with and without the FISH technique
are shown in Figure 4. The chromosome
stained in Figure 4A was tentatively identified
as chromosome 1; Figure 4B shows the X
chromosome. These chromosome probes will
be very useful in studying cancer induction in
rats, and will provide tools that can be used to
better understand the role that chromosome
aberrations play during the induction and pro-
gression phases of cancer development.

Interactions Between Radiation
and Chemicals

Changes in gene expression can be sensitive
indicators of cellular responses. In most analy-
ses of RNA expression, a particular gene prod-
uct is detected using a gene-specific molecular
probe. Methods such as northern blots and
RNA protection studies are very powerful, but
are limited to the one gene (or sometimes a
few) for which probes are used within one
assay. Examining other genes requires prepar-
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ing separate probes and performing additional
assays.

In order to perform a comprehensive analy-
sis of radiation-induced cellular changes at the
RNA level, we have begun to use the differen-
tial display PCR (ddPCR) method (Liang and
Pardee 1992). In brief, a subset of mRNAs are
reverse-transcribed to cDNA using a primer
that anneals to the poly(A) tail plus two addi-
tional bases (e.g., 5°-T,,CC would define those
RNAs that end with GGA, ). These cDNAs
are then amplified by PCR using a short arbi-
trary upstream primer resulting in a distinctly
sized fragment from each cDNA. In compar-
ing exposed and control cells, a change in the
amount of any resulting band would indicate
that the mRNA represented by that band has
altered expression.

Exponentially growing Chinese hamster
ovary (CHO-K1) cells were exposed to “Co
gamma rays, resulting in doses of 0, 0.01, 0.1,
and 1.0 Gy. The RNA isolated from these
cells has been screened for differential expres-
sion. Approximately one-quarter of the






mRNAs within the cell have been examined,
revealing two candidates with altered expres-
sion. Both of these candidates are affected by
doses as low as 0.01 Gy. We have shown that
genes identified by ddPCR can rapidly be
confirmed by northern analysis or by ribonucle-
ase protection assay. Furthermore, we have
demonstrated that these genes can be cloned
and sequenced easily. This characterization is
now in progress for the candidate genes identi-
fied in this work. As these genes are identified
then, we can characterize the role they play in
altering the response of chromosomes and
DNA to priming doses and subsequent chal-
lenge doses of radiation or chemicals. With
this characterization, it will be possible to
determine which if any of these genes are
involved in DNA repair, and if overexpression
of these genes alters the response to radiation
and chemicals given alone and in combination.
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Moiecular Events During Tumor Initiation

Principal Investigator: D. L. Springer

Other Investigators: B. D. Thrall, D. B. Mann, and A. O. Murad

This project’s primary objective is to test the hypothesis that chromatin structure influences the
sites of adduction by carcinogens. These studies will contribute to our understanding of adduct-induced
structural changes, and determine whether structural changes influence expression of genes associated
with tumorigenesis. For this research, we have studied the binding of benzo[a]pyrene diolepoxide
(BPDE) to DNA reconstituted with histone octamers to determine the effect that nucleosome structure
has on covalent adduct formation. Reconstitution of a plasmid containing the somatic 5SS rRNA gene
from Xenopus borealis resulted in characteristic nucleosome structure as determined by micrococcal
nuclease digestion, shifted migration on agarose gels, and hydroxyl radical footprinting. Formation of
covalent adducts by BPDE occurred initially at a slower rate in nucleosomal DNA than in naked
plasmid, but after 120 min, the total adduction levels (adducts/plasmid) were equal. Analysis of
adduction at the sequence level by primer extension indicated that after a 120-min BPDE reaction, the
degree of adduction within the 5S rRNA nucleosome was suppressed by approximately 50% compared
to naked DNA. Additionally, sequences near the dyad of the nucleosome, where known modulations
in minor groove width occur, were the least susceptible to adduction. Comparison of the rotational
setting and BPDE binding indicated that guanines near the histone core were as susceptible to adduction
as guanines on the outer nucleosome surface. These results indicate that the structural features of DNA
assembled into nucleosomes contribute to the susceptibility of the DNA to modification by BPDE.

Benzo[a]pyrene-7,8-diol-9, 10-epoxide the DNA and histone cores approximately
(BPDE), the ultimate carcinogenic metabolite every 10 base pairs (bp), and histones H3 and
of benzo[a]pyrene, covalently binds to DNA H4 make contact with the DNA within 30 bp of
predominantly at guanine residues. Covalent either side of the center (dyad) of the nucleo-
adduct formation by BPDE interferes with a some. In addition, the helical periodicity of
number of cellular processes, including DNA DNA varies throughout the nucleosome, with
replication and transcription, and is thought to the central three turns of the helix having a
be a critical event in tumor initiation. The periodicity of 10.7 bp and the outer turns hav-
primary target of covalent modification is ing a 10.0-bp periodicity (Thoma 1992). It is
through trans addition of (+)-anti-BPDE to conceivabie that the DNA-histone contact
the exocyclic amine group of guanines, points due to periodicity of nucleosomal DNA

Because most DNA in eukaryotic cells is would alter the susceptibility of particular bases
closely associated with histones, an accurate to carcinogen damage. Indeed, in a study by
understanding of carcinogen binding to DNA Gale et al. (1987), ultraviolet (UV)-induced
must consider the role of nucleosome structure. pyrimidine dimer formation in nucleosomes
In the nucleosome, contact points exist between was not uniform, but was maximal at bases
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farthest from the histone core, resulting in an
average 10.3-bp repeat pattern of damage.
Studies with the bulky aflatoxin-derived adduct
also demonstrated that binding was suppressed
up to 2.4 times in nucleosomal DNA compared
with naked DNA, again setting a precedent for
examining the influence of nucleosome struc-
ture on covalent binding by bulky carcinogens
(Moyer et al. 1989).

Naked and nucleosomal DNA from genom-
ic sources were bound, to similar degrees, by
BPDE (MaclLeod er al. 1989); however, both
the rate of adduction and types of adducts
produced varied. Binding of BPDE to DNA
also was influenced by DNA sequence (Thrall
et al. 1992), with preference for modification
of guanines flanked by 3 guanines. However,
the influence of the nucleosome on the se-
quence specificity of BPDE binding is un-
known. To explore sequence specificity, we
used a plasmid containing the 5S rRNA gene,
which forms a highly positioned nucleosome in
vitro, and examined the effect of nucleosome
assembly on the sequence-related patterns of
BPDE modification.

Methods and Results

For these studies, we prepared the plasmid
pGEM-5S, which contains the 5S rRNA gene,
in large quantities. Core histones were isolated
from chick erythrocytes using hydroxyapatite
and, in a stepwise salt dialysis method, recon-
stituted with pGEM-5S to form nucleosomes.
Micrococcal digestion, restriction enzyme
digestion, and gel retardation assays all sub-
stantiated that the nucleosome formed as ex-
pected; polyacrylamide gel electrophoresis
demonstrated that the core histones were intact
as octamers. Naked and reconstituted plasmid
DNA were incubated with *H-(+)-anti-BPDE
under conditions that yielded approximately
three adducts/plasmid. After extensive cleanup
of the DNA, the adduction levels were calculat-
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ed based on radioactivity measurements and
UV estimates of DNA concentration.

The influence of nucleosome structure on
the rate of total covalent adduct formation by
BPDE indicated that the initial rate (5- to 30-
min reaction time) of covalent adduct formation
in the reconstituted sample was suppressed (by
22% to 30%) compared to the naked DNA;
however, after the reaction was complete
(120 min), the total adduction levels for both
naked and reconstituted samples were approxi-
mately equal.

To determine the effect of nucleosome
structure on the sequence-specific binding
patterns of BPDE within the 5S nucleosome,
we used blockage of a DNA polymerase
(Sequenase) during primer extension as an
indication of adduction patterns. Nonadducted
DNA did not produce polymerase blockage;
however, a comparison of dideoxy sequencing
ladders and the bands produced by primer
extension of the 120-min adducted samples
demonstrated that polymerase blockage oc-
curred one base prior to modified guanines.
Densitometric analysis of these bands revealed
that, in regions outside of the 3~ edge of the
nucleosome, the relative degree and pattern of
polymerase blockage were similar in both
naked and nucleosomal DNA.

Within the 58 nucleosome, however, the
degree of polymerase blockage, and thus the
amount of adduction, was suppressed in the
reconstituted sample by approximately S0 %
(Figure 1). This pattern of BPDE binding was
consistent with the position of the 5S nucleo-
some, because the positions in which adduct
formation were suppressed corresponded with
the 37 portion of the nucleosome. These re-
sults demonstrate that nucleosome structure
inhibits BPDE binding, and provide additional
evidence for the presence of a positioned 5§
nucleosome in the plasmid.




Naked

Reconstituted

FIGURE 1. Analysis of Binding Within the 5S Nuclecsome by Primer Extension. Adduct formation by BPDE after a 120-min
reaction with sither naked (N) or reconstituted (R) DNA was determined by primer extension. The numbering refers to
Densitometric scans of the lanes are shown to the right of the
figure. The 3’ end of the nucleosome begins at approximately base +78.

guanine position relative to the start of the 5S gene {+ 1.

To determine whether there were differenc-
es in susceptibility to BPDE modification with-
in the nucleosome, we conducted primer exten-
sion on naked and reconstituted samples reacted
with BPDE for varying times. The degree of
protection by the nucleosome (expressed as
percent of adduction for the equivalent sites in
naked DNA) relative to the position of the
guanine (distance from the nucleosome dyad) is
shown in Figure 2. Samples reacted for 120
min with BPDE showed a 50% to 60% de-
crease in binding throughout the nucleosome;
the binding level at the edge of the nucleosome
(see arrow in Figure 2) approached that of
naked DNA.
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In the 15- and 30-min reaction samples,
adduct formation in the reconstituted sample
also was suppressed. However, the amount of
suppression of binding in these samples was
progressively greater near the dyad of the
nucleosome compared to the binding at the
fringes. Surprisingly, the adduction levels on
the fringes of, and immediately outside, the
nucleosome were enhanced relative to those of
the naked DNA; in future studies, we will
explore the factors responsible for these differ-
ences in distribution of binding.

In addition to sequence-specific adduct
locations, it was important to determine the
rotational setting—the position of the guanines

: e




160 -
140
120 -
100
80

N PO
o O O
T B B

0

® A
A LA
A
®
e O
0 o
gt

BPDE Binding (% of Naked DNA)

T T 1 1T T 1T T T 1
-10 0 1020304050 60 70 80 90

Position from Nucleosomal Dyad (Bases)

FIGURE 2. Relationship Betwean Reaction Time and Region of the Nucleosome. Samples that were reacted with BPDE for
varying times were analyzed by primer extension. The degree cf inhibition of binding at individual guanines within the
nucleosome, expressed as a percentage of the corresponding site in naked DNA, is plotted versus the position of the
guanine in samples reacted with BPDE for 15 min {circles), 30 min (triangles) or 120 min (squares). The arrow indicates the

approximate position of the 3’ edge of the nucleosome.

on the DNA helix within the nucleosome. For
this determination, we performed hydroxy}
radical footprinting on a 300-bp restriction
fragment containing the 5SS rRNA gene. Cleav-
age of nucleosomal DNA by hydroxyl radicals
is known to occur more intensely in regions
where the minor groove of the DNA is facing
away from the histone octamer. In these exper-
iments, hydroxy! radical cleavage of nucleo-
somal DNA resulted in a characteristic pattern
of protection approximately every 10 bp, while
cleavage of the naked DNA sample was ran-
dom. Analysis of the positions of most intense
cleavage revealed a strong cut site at about the
start of the 5S gene in both the naked and
reconstituted samples; we interpret this to be a
native structural characteristic of the DNA.
Within the approximately two-base resolution
of these experiments, these results reveal that
both the translational position and rotational
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setting of the 5S nucleosome concur with peak
intensities corresponding to bases -15, -5, +6,
+17, +27, +37, +47, and +57 surrounding
the presumed position of the nucleosomal dyad
(base +10).

We hypothesized that the guanines closest
to the histone cores would have the least poten-
tial for adduction because of steric hindrance.
Therefore, we compared the positions of the
guanines on the DNA helix within the nucleo-
some with the relative BPDE binding (Figure
3). The positions of the guanines were deduced
from the intensity of cleavage by hydroxyl
radicals; the relative degree of BPDE binding
was determined by primer extension. Within
the resolution of the data from hydroxyl radical
footprinting, we did not find a correlation
between the average adduction of guanines and
the sensitivity of the guanines to cleavage by
hydroxyi radicals. For example, a region of
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represented in Panel B, relative to the first guanine in the 5S gene (base 2).

the position of the guanines in panel B.

Note that the X axis in panel C corresponds to

eight consecutive guanines (Figure 3C, bases
-41 to -48) showed a bias for greater adduction
of the 5 guanines, yet these guanines appeared
to be nearest the histone cores. Similar incon-
sistencies between adduction level and rotation-
al setting occurred throughout the 5S nucleo-
some; in general no apparent correlation exists
between the position of the guanine relative to
the histone cores and the frequency for covalent
adduct formation.
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Within a local sequence context, however,
covalent binding of BPDE to a particular gua-
nine is influenced significantly by flanking
bases. For example, the potential for a particu-
lar guanine to be modified by BPDE is en-
hanced by the presence of 3 “ flanking guanines
(Thrall et al. 1992). The patterns of adduction
in the poly dG8 region (Figure 3C, bases -41 to
-48) observed in nucleosomal DNA in this
study also demonstrate this nearest-neighbor



effect, and is nearly identical to patterns we
have reported previously for this same se-
quence in naked DNA (Thrall ef al. 1992).
Thus, on a local sequence scale, the nearest-
neighbor effects on BPDE binding are not
significantly altered within the nucleosome.

Discussion

By examining the pattern of binding at
early time points during the reaction with
BPDE, it became apparent that sequences
surrounding the dyad of the 5S nucleosome
were less susceptible to covalent binding than
either naked DNA or fringe regions of the
nucleosome. Because most BPDE adducts are
thought to lie within the minor groove, these
results suggest that the minor groove is less
accessible near the dyad than on the fringe of
the nucleosome. Aflatoxin binding to nucleo-
somal DNA is restricted to within the central
100 bases of the nucleosome; similarly, the
formation of pyrimidine dimers from UV irra-
diation is lowest in the region of the nucleo-
some dyad. Studies using hydroxyl radical
footprinting have shown that the average helical
repeat of DNA in the 5SS nucleosome is 10.18
bp; however, the central 30 bp of DNA in the
5S nucleosome is overwound to a periodicity of
10.7 bp while the DNA outside this region has
a 10.0-bp periodicity (Thoma 1992). This
overwinding is consistent with a narrowing of
the minor groove of the DNA around the nucle-
osomal dyad, which may be important to the
formation of BPDE adducts.

The sequences surrounding the dyad of the
nucleosome are also thought to contain bends
that contribute to the positioning of the histone
octamer, and these structural elements also may
be important to DNA adduct formation. Inter-
estingly, we found enhanced BPDE binding
after early reaction times in regions immediate-
ly outside the 5S nucleosome. Although fur-
ther studies are needed to explain this pattern,
nucleosomes can induce bending of linker DNA
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even in the absence of histone H1, a phenome-
non that may affect the level of BPDE binding
(Yao et al. 1991).

Comparison of the degree of BPDE binding
by primer extension and the binding results
obtained by hydroxyl radical footprinting
showed that the degree of binding did not
correlate with the position of the guanines on
the DNA helix (Thrall et al. in press). For yet
unknown reasons, this finding contrasts results
found for pyrimidine dimers in genomic nucle-
osomes (Gale and Smerdon 1988). Damage to
nucleosomes by UV shows a 10.3-bp periodici
ty, possibly because of preferential modifica-
tion of bases farthest from the histone core.
Formation of pyrimidine dimers requires sig-
nificant perturbation of the DNA helix, unlike
the major adduct formed by BPDE, which
results in minimal perturbation in the helix
(Cosman er al. 1992). Thus, damage to bases
near the histone-DNA interface may be ener-
getically more favorable with BPDE than with
UV. However, NMR and energy-minimization
studies (Cosman ef al. 1992) suggest that the
major adduct structure from BPDE does re-
quire a widening of the minor groove. For this
widening to occur without significant energy
input, it may be that normal thermodynamic
fluctuations in minor groove widths are re-
quired for formation of an initial BPDE-DNA
complex. Possibly, histone cores do not limit
access of BPDE to the minor groove of the
DNA, but rather restrict the thermodynamic
flexibility of the minor groove, and therefore
inhibit the formation of the initial BPDE-DNA
complex that leads to covalent binding.

Although additional studies are required to
discern the mechanisms involved, the patterns
of adduction observed in this study correlate
with known structural variations of the DNA
within the 5S nucleosome, and with the pro-
posed mechanisms of BPDE binding. Further
studies to determine the sites of adduction and
enzymatic processing, as well as the role of



nucleosome structure of critical genes involved
in tumor initiation, will be particularly impor-
tant in the future.
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Biochemistry of Free Radical-induced DNA Damage

Principal Investigator: A. F. Fuciarelli

Other Investigators: E. C. Sisk and J. D. Zimbrick

Exposure of DNA to free radical-generating agents, such as ionizing radiation and selected
chemicals, results in a multiplicity of molecular damage that can also be characterized in terms of its
spatial distribution along the DNA molecule. We are using specific free radical-induced purine and
pyrimidine products as molecular probes of DNA damage in an effort to increase our understanding of
the mechanisms underlying free radical damage to cells and the impact of these lesions on biochemical
processes. We have examined electron migration along DNA as a potential mechanism by which
radiation-induced damage can be manifested distal to the sites of initial energy deposition. Our data
suggest that electron migration along DNA is significantly influenced by the DNA base sequence and
that migration can occur preferentially in the 5 to 3 direction along DNA. Migration along 7 base
pairs in oligonucleotides containing guanine bases was observed for oligonucleotides irradiated in
solution, which compares to average migration distances of 6 to 10 bases for Escherichia coli DNA
irradiated in solution and 5.5 base pairs for Escherichia coli DNA irradiated in cells. Our continued
efforts will provide information regarding the contribution of electron transfer along DNA to formation
of locally multiply damaged sites created in DNA by exposure to ionizing radiation. These studies
contribute to basic knowledge regarding mechanisms underlying DNA damage, and complement
studies in repair, mutagenesis, transformation, and cell death.

Electrons in Radiation-Induced mechanism underlying the distribution of radia-
DNA Damage tion damage.

Absorption of energy following exposure of Migration of unsolvated electrons, generated
aqueous solutions to ionizing radiation initiates by direct ionization of DNA, has been exam-
a cascade of events involving ionization and ined using several spectroscopic methods (re-
energy exchange between excess electrons and viewed by Fuciarelli er al. 1993b; Beach et al.
molecules within the solvent. The electrons 1993a). Measurements of long-range migration
produced during these events evolve through distances following irradiation range from
several intermediate states, from the quasi-free, 33,000 base pairs in hydrated DNA samples to
unsolvated electrons ejected on the time scale 100 to 300 base pairs in dry or frozen samples
of 1016 s, to solvated electrons present at 109 s of DNA. Intermediate migration distances of
after energy absorption. Solvated and unsol- 17 base pairs and 25 base pairs also have been
vated electrons can be captured by purine and reported in irradiated dry DNA preparations
pyrimidine bases in DNA and these electrons and irradiated frozen DNA solutions, respec-
can subsequently "tunnel" along DNA in the tively. Radiation-induced short-range migra-
overlapping pi_e]gctron system created by the tion over 1 to 3 base pairs and 2 to 6 base pairs
stacked bases. Migration of electrons along also have been reported in frozen preparations
DNA is an important, but not well understood, of hydrated DNA.
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In aqueous samples of DNA, electron mi-
gration is technically more difficult to study
compared with DNA in the solid state, and it is
the solvated electron, captured by DNA bases
from solution, that is the species under investi-
gation. An electron trap of sufficient reduction
potential must be located in close proximity to
DNA to facilitate measurement of migration
distances. Both the low capture efficiency
(electron affinity) and the inability to attain
high concentrations of the electron traps in the
vicinity of DNA bases have compromised
accurate measurement of electron migration
distances. These limitations were partially
solved in studies which used intercalators of
sufficiently high reduction potential (i.e., nitra-
crine and related basic nitroacridines) to suc-
cessfully reveal average electron migration
distances of 3 base pairs in aqueous DNA
solutions (Anderson et al. 1991). However,
electron transfer to other sites on DNA, instead
of transfer to the electron trap in solution, can
be a potential limitation in this approach.

5-Bromouracil as an Indicator of
Electron Interactions in DNA

To overcome the practical limitations of
techniques utilizing electron-affinic compounds
as traps to assess electron migration in aqueous
DNA solutions, 5-bromouracil (5-BrU) incor-
porated directly into DNA has been proposed
as a molecular indicator of electron migration
(Beach et al. in press; Fuciarelli e al. in
press). In aqueous solution, interaction of 5-
BrU with solvated electrons results in release of
bromide ions and formation of a highly reactive
5-uracilyl radical capable of capturing hydro-
gen atoms from substrates in the irradiated
solution. In irradiated solutions of 5-BrU,
release of bromide ion (Zimbrick ef al. 1969)
and formation of uracil (Fuciarelli et al.
submitted®) occur in a quantitative manner; that
is, within experimental error all solvated elec-
trons formed during water radiolysis yield

d-Uracil (nmol)
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bromide ions and uracil. In a series of experi-
ments in which we used deuterated water and
deuterated t-butanol (t-butanol is used to scav-
enge hydroxyl radicals formed during water
radiolysis), we demonstrated that hydrogen
atom donation can occur from different sources
depending upon whether 5-BrU is irradiated as
a monomer in solution or as another base incor-
porated into DNA (Fuciarelli ef al. submitted®).
When irradiated as a monomer, 5-BrU captures
a hydrogen atom from t-butanol. This was ob-
served by irradiating solutions of 5-BrU con-
taining deuterated t-butanol and using gas
chromatography-mass spectrometry methods to
demonstrate the presence of a deuterated uracil
derivative with a molecular mass 1 a.m.u.
greater than that observed for uracil due to the
presence of a deuteron (Figure 1).

8 " .
dyp t-butanol/Nitrogen
| ® 50U
6 W DNA
4r ]
1
o . SN ,
0 100 200 300
Dose (Gy)
FIGURE 1. 5-Bromouracil as an Indicator of Electron

Interactions. Yields of uracil from solutions of 5-BrU (1
mM) or an oligonucleotide [5 "-(BrUAAA);-3 "} (200
ug/ml) saturated with nitrogen containing 0.4 M deuterat-
ed t-butanol are plotted as a function of radiation dose.
The radiation chemical yield of uracil in solutions contain-
ing 6-BrU is 0.28 umol J', which corresponds to that of
the solvated electron. Yields of uracil are fower in
oligonucleotides. Using deuterated t-butanoi, we demon-
strated that the proton captured by the uracilyl radical
intermediate comes from t-butanol in solutions of 5-BrU
and from other components of the oligonucleotide, such
as the deoxyribose sugar, in irradiated oligonucleotide
solutions.




However, when 5-BrU-containing oligonuc-
leotides are irradiated in their double-stranded
forms, the hydrogen atom is captured from the
DNA molecule because solutions containing
deuterated t-butanol resulted in low levels of
deuterated uracil (Fuciarelli et al. submitted®).
This latter observation is consistent with the
hypothesis that hydrogen atom donation may
occur from the 2 carbon of the 5 deoxy-
nucleoside in DNA rather than from other
substrates in solution. Molecular models of the
orientation of the bromine atom on the 5-BrU
moiety in DNA and the hydrogen atom on the
27 carbon of the 5 “-adjacent deoxyribose indi-
cate that these atoms are very close to each
other in DNA, thereby facilitating hydrogen
atom donation. In a more general sense, these
data reveal that radiation chemistry occurring
in DNA can be quite different than the chemis-
try that one might expect based upon data from
monomers.

Radiation chemical studies utilizing DNA
bases or nucleosides homogeneously distributed
in aqueous solution rev:-aled quantitative reac-
tion of 5-BrU with hydrated electrons (Fuci-
arelli er al. submitted®). On the other hand, 5-
BrU incorporated into DNA using automated
syn- thesis techniques (Fuciarelli et al. in
press), or by substituting 5-BrU for thymine in
growth medium (Beach e al. in press; Beach er
al. submitted), led to substantially lower radia-
tion chemical yields. For example, the concen-
tration of hydrated electrons generated from
water radiolysis in aqueous solution exposed to
500 Gy is 135 um, assuming a radiation chem-
ical yield of 0.27 umol J! for the solvated elec-
tron. The yield of bromide from DNA extract-
ed from cells grown in medium in which 5-BrU
was substituted for thymine and irradiated to
500 Gy in aqueous solution was 27 um, which
represents 20% of the total yield of electrons
(Beach er al. in press). Radiation chemical
yields for uracil formation in aqueous samples
of 5-BrU-containing oligonucleotides range
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from 0.206 umol J*' (representing approximate-
ly 78% of the electrons generated from water
radiolysis) for double-stranded oligonucleotides
containing guanine base spacers between 5-BrU
molecules down to 0.0099 umol J! for double-
stranded oligonucleotides containing adenine
base spacers between 5-BrU molecules (Fuci-
arelli et al. in press). Decreased product yields
in DNA parallel data revealing that measured
rate constants for the reaction of hydrated
electrons with polynucleotides are approximate-
ly an order of magnitude lower than those mea-
sured for the free bases (Shragge er al. 1971).
This decrease in reaction rates could reflect a
combination of charge repulsion of the hydrat-
ed electron by the negatively charged phosphate
groups on DNA, decreased collisional frequen-
cy of electrons with DNA, decreased fraction
of electrons interacting in each collision, and
increased structural shielding due to base stack-
ing in duplex DNA.

Effects of DNA Base Sequence on
Electron Migration

DNA base sequence potentially can have a
significant influence on the maximum distance
over which electrons can migrate along DNA,
and reactions involving mixtures of DNA bases
with solvated electrons provide some prelimi-
nary insights in this regard. Additionally, in
native DNA, it was hypothesized that the trans-
fer of an electron along the helix axis competes
with proton transfer processes, including both
intra-base pair transfer occurring in the direc-
tion perpendicular to the helix axis and extra-
base pair transfer from bulk water (Steenken
1992). These insights provide some indication
that DNA base sequence could have a signifi-
cant influence on the ability of the electron to
migration along DNA.

To examine the effects of base sequence and
DNA conformation on electron migration, a set
of oligonucleotides containing 5-BrU at select-
ed positions with 3 base (guanine, cytosine,




thymine, or adenine) spacers (e.g., [BrU-
(GGG),]5) were exposed to ionizing radiation in
their single-stranded form, or alternatively, in
their double-stranded form following annealing
with appropriate complementary sequences.
Differences in uracil yields, as measured by gas
chromatography-mass spectrometry, suggested
that electron migration occurred to different
extents, in oligonucleotides containing different
base sequences. In irradiated single-stranded
oligonucleotides, the yield of uracil decreased
in the following order: A>T> >C=G (Fig-
ure 2A). However, in irradiated double-strand-
ed oligonucleotides, the yield of uracil de-
creased in the following order: G>C=T>A
(Figure 2B). The mechanisms underlying these
results may be due to electron transfer-induced
changes in the acidity/basicity, which leads to
corresponding changes in the protonation and

charge state of the molecules (Steenken 1992).
In addition to differences in the chemical reac-
tivity of a molecule (or radical) for its various
protonation states, the source of the proton is
also an important consideration. For example,
in aqueous solutions of nucleobases, the proton
exchange partner is bulk water. However, in
DNA, extra-pair hydrogen bonds between the
O and N heteroatoms are involved with water
molecules in the hydration shell of the DNA
and, in the case of double-stranded segments
of DNA, the complementary base in the oppo-
site strand can be an important source for intra-
pair proton transfer reactions (Steenken 1992).
Electron migration along DNA can therefore be
influenced by competing proton transfer reac-
tions occurring within DNA base pairs and
between DNA and bulk solvent.
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FIGURE 2. Effects of DNA Base Sequence on Electron Migration. Yields of uracil from samples of oligonucleotides 5 -

[BrU(X),315-3 * (where X

adenine, guanine, thymine, or cytosine) saturated with nitrogen and irradiated with ®°Co gamma

rays in aqueous solution containing 0.4 M t-butanol are plotted as a function of radiation dose in the single-stranded (A) or
double-stranded (B) conformation. Oligonucleotides containing 5-BrU were constructed using solid phase synthesis. Yields
are identified by symbols labeled with the 5-BrU-containing st-.iid.
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Migration Distances Along DNA in
Irradiated Solutions

The distance over which the electron would
migrate was determined using a series of oligo-
nucleotides containing 5-BrU at selected posi-
tions with guanine spacers (i.e., [BrU(G).l,,
where n=3, 5, 7, 9). Oligonucleotides con-
taining only guanine were used in accordance
with data illustrated in Figure 2B, which reveal
that these samples, annealed with their com-
plements, had the greatest uracil yield for
double-stranded oligonucleotides. Gas chroma-
tography-mass spectrometry was used to
measure 5-BrU destruction as a function of
radiation dose, and linear regression analysis
was used to calculate the radiation chemical
yield of 5-BrU destruction. Slopes of the
regression lines then were plotted as a function
of the number of guanine bases in the spacer
region separating the 5-BrU moieties. A sig-
nificantly lower amount of 5-BrU destruction
was evident for oligonucleotides with 9 base
spacers compared to oligonucleotides having 3,
5, or 7 base spacers (Figure 3). This obser-
vation suggested that the average distance for
migration does not extend beyond 3 to 4 bases
assuming that migration occurs as efficiently in
either direction along the DNA molecule. The
migration distance could increase to ° bases if
migration proceeds in only one direction.

In another series of experiments, different
amounts of 5-BrU were substituted for thymine
in medium used to grow Escherichia coli cells,
and average electron migration distances were
assessed in Escherichia coli DNA extracted
and irradiated in solution, or irradiated in cells
(Beach et al. in press). Bromide ion release
was assayed using x-ray fluorescence spectrom-
etry (which actually measures bromine atoms)
following irradiation. By varying the amount
of 5-BrU in the medium, hence the amount
incorporated into the DNA, the average dis-
tance between 5-BrU molecules was systemati-
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Relative BrU Destruction from
Slopes of Dose-Yield Curves
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FIGURE 3. Migration Distance for Electrons in a Se-
quence Containing Guanine Residues in 5-BrU-Substitut-
od Oligonucleotides. Relative destruction of 5-BrU in
double-stranded oligonucleotides 5 "-[Bri(G),15-3 * (where
n=3, 5, 7, or 9) is plotted as a function of the number of
guanines between 5-BrU molecules. Samples were
irradiated in aqueous solution containing 0.4 M t-butanol.
Data represent relative slopes of dose-yield curves.

cally changed and, because the number of 5-
BrU/electron reactions was monitored by the
amount of bromine released, the maximum
average electron migration distance along the
5-BrU-DNA could be estimated. Using this
approach, the maximum average electron mi-
gration distance in aqueous solutions of 5-BrU-
substituted DNA was 6.5 to 10 base pairs.
Similar methods revealed charge migration in
5-BrU-substituted DNA in irradiated Escherich-
ia coli cells and the maximum average migra-
tion distance was 5 to 6 base pairs (Figure 4).

Preferential Migration of Electrons in
the 5° to 3° Direction Along DNA
Analysis of the extent of radiolytic destruc-
tion of 5-BrU revealed that electron migration
occurred efficiently over a distance of 3 to 4
guanine bases assuming that migration could
occur as efficiently in the 5” to 3 direction as
in the 37 to 5~ direction. The migration dis-
tance could increase to 7 bases if migration
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FIGURE 4. Average Migration Distance of Electrons in 5-
BrU-Substituted DNA Irradiated in Escherichia coli Cells.
Radiation-induced release of bromide as a function of
approximate 5-BrU substitution for Escherichia coli cells
irradiated under nitrogen in aqueous solutions containing
0.1 M t-butanol. The fower curve contains the control
data and the upper curve is control-subtracted. The
arrows running through the upper part of the graph mark
the maximum number of base distances an electron
would have to travel in order to reach a 5-BrU molecule,
assuming only intrastrand electron migration and assum-
ing that the electron could migrate in either direction.

proceeded preferentially in only one direction.
To determine whether electron migration could
occur preferentially in one direction along
DNA, we synthesized oligonucleotides in
which electrons were permitted to move only in
one direction. Cytosine acts as an electron sink
(Figure 2), therefore, electrons would be un-
able to migrate past them. Oligonucleotides of
the following sequence were synthesized: 5 -
CCC(G),BrUC-3" and 5°-CBrU(G),CCC-3",
which permit electrons to migrate only in the
5°to 37, or 3" to 5 direction, respectively.
Appropriate complimentary oligonucleotides
were synthesized, annealed to create double-
stranded DNA, and used for irradiations. Sub-
sequent gas chromatography-mass spectromet-
ric analysis for uracil formation revealed a
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significant radiation chemical yield of uracil in
5°-CCC(G),BrUC-3", but very little uracil was
formed in 5 "-CBrU(G),CCC-3 (Figure 5).
Greater uracil yields in 5-CCC(G),BrUC-3"
suggested that electrons are capable of prefer-
ential migration along DNA containing a seg-
ment of guanine bases in the 5 to 3 direction.
Computer simulation of the relationship be-
tween the guanine base immediately adjacent to
5-BrU and the 5-BrU molecule indicates that
this preferential migration occurs because of
greater overlap of the pi-electron clouds of the
DNA bases (Figure 6). This simulation implies
that solvated electrons resulting from water
radiolysis, once captured by the purines and
pyrimidines in DNA, can move along the
DNA in the pi-electron cloud created by the
stacked DNA bases.
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FIGURE 6. Preferential Migration Direction for Elaectrons
in DNA. Oligonucleotides 5 "-CCC(G),BrUC-3 " and 6 "-
CBrU(G),CCC-3 ", specifically designed to permit electron
migration inthe 6° to 3" or 3" to 5° direction, respec-
tively, were annealed to appropriate complementary DNA
strands, saturated with nitrogen, and irradiated in aque-
ous solution containing 0.4 M t-butanol. Uracil yields, as
measured by gas chromatography-mass spectrometry
methodology, are greater for the oligonucleotide contain-
ing 5-BrU 3 ° to the guanine tract, suggestinga 5’ to 3~
direction for migration of the electron along DNA.




Consequences of Electron Migration
as a Component of Radiation-Induced
DNA Damage

Electron migration is an important process
underlying the distribution of radiation damage
in DNA, and could help to explain how a non-
random distribution of DNA damage occurs
following energy deposition by stochastic pro-
cesses. The contribution of solvated electrons
to free radical-induced damage to DNA repre-
sents a uniquely different mechanism leading to
oxidative DNA damage than that of other phys-
ical agents such as ultrasonic cavitation (Fucia-
relli et al. submitted®) or chemical agents such
as hydrogen peroxide (Blakely et al. 1990).
Additionally, the distribution of DNA damage
is considerably different with these agents;
ionizing radiation creates locally multiply
damaged sites and hydrogen peroxide exposure

leads to formation of singly damaged sites
along the DNA. In cells, singly damaged sites
on DNA would be much easier to repair by
enzymatic processes than multiply damaged
sites, such as those generated by exposure to
ionizing radiation. Multiply damage sites in
DNA demand a significantly more complex
form of enzymatic processing for repair. In-
creased radiosensitivity of cells containing 5-
BrU-substituted DNA (Kinsella er al. 1984)
could be a consequence of electron migration
along the DNA. Increased radiosensitivity
potentially could result from increased produc-
tion of double-strand breaks as a result of
migration of radiation damage along one strand
of DNA to a position located opposite a single-
strand break in the complementary strand with-
in a locally multiply damaged site. However,
alternative mechanisms leading to production of

3' GUA

5' 5-BrU

FIGURE 6. Differential Overlap of pi-Electron Clouds in DNA. The orientation of guanine and 5-BrU were simulated using

computer techniques depending upon whether the guanine is 5° (A) or 3 (B) to the 5-BrU. If the guanine moiety is 5" to
the 5-BrU, then more overlap of the pi-electron cloud occurs. This may explain why the radiation-induced vyieid of uracil is
greater in 5 -CCC(G),BrUC-3 " than in 5 "-CBrU(G),CCC-3 ' as illustrated in Figure 5.
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a single-strand break on the opposite strand to
that containing 5-BrU involving a radical trans-
fer reaction of the reactive uracilyl radical
cannot be discounted.
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Radon Hazards in Homes

Principal Investigator: F. T. Cross

Other Investigators: R. L. Buschbom, G. E. Dagle, K. M. Gideon,
R. A. Gies, and G. Singh®

Technical Assistance: C. R. Petty

Histopathological data have been compiled on rats exposed to 80 working-level months (WLM; see
footnote d, Table 1) of radon progeny, at 10- and 100-working-level (WL; see footnote d, Table 1)
concentrations, in combination with uranium ore dust. The possibility that risks are diminished with
protracted low-level radon exposures is not evident in the raw tumor data at 80 WLM and at 10- and
100-WL concentrations. Histopathological data on rats exposed to 80 WLM at 10-WL concentrations
show a significant (P < 0.05) increase in lung tumor incidence (3%) from that of contro) rats
(approximately zero); no significant exposure-related changes occurred in the nose, larynx, or trachea
when rats were tracked throughout their lives. Statistical risk and carcinogenesis modeling compari-
sons with histopathological data for 80-WLM exposures at 100-WL concentrations are currently
underway. Collaborative studies were initiated with Dr. G. Singh® to clarify the histogenesis of
radon-induced lung tumors. Preliminary findings suggest that there are differences in the histogenesis

of radon- vs. plutonium-induced rat lung tumors.

Lung cancer incidence and deaths from de-
generative lung disease are significant among
uranium miners, but the cause-effect relation-
ships for these diseases are based on data insuffi-
cient to determine risks of environmental radon
exposures. More recent data on humans suggest
that radon also is implicated in other organ dis-
eases, although confirmatory data are lacking in
animal systems. This project previously identi-
fied agents or combinations of agents (both
chemical and radiological), and their exposure
levels, that produced respiratory tract and other
organ lesions in mine-simulation experiments.
The project’s current emphasis is on the develop-
ment of lung carcinoma and collaborative mecha-
nistic data for environmental exposures.

Wistar Rat Exposure Protocols

The 6000 Series (1000-working-level, WL)
and 7000 Series (100-WL) mine-simulation ex-
periments (Table 1) were designed to develop the
relationships between response and exposure to
radon progeny (at two rates of exposure), and to
carnotite uranium ore dust. The 8000 Series
(100-WL) mine-simulation experiments (Table 2)
were designed to extend the exposure-response
relationships to cumulative exposure levels com-
parable to current conditions in uranium mines,
and to lifetime environmental exposures. The
9000 Series mine-simulation experiments (Ta-
ble 3) continued the "low-dose" studies at expo-
sure rates comparable to former occupational
working levels (10 WL). These experiments

(a) Department of Veterans Affairs Medical Center (DVAMC), Pittsburgh, Pennsylvania




TABLE 1. Exposure-Response Relationship Study for Radon-Progeny Carcinogenesis
in Rats (6000 and 7000 Series Experiments)

Number of Animals'®

8000 Series 7000 Series Exposure Regimen(b"” Total Exposure, wim'd)

64 0 1000 WL radon progeny 10,240
16 mg/m? uranium ore dust

66 32 1000 WL radon progeny 65120
16 mg/m? uranium ore dust

66 32 1000 WL radon progeny 2560
16 mg/m? uranium ore dust

656 32 1000 WL radon progeny 1280
15 mg/m? uranium ore dust

88 64 1000 WL radon progeny 640
18 mg/m? uranium ore dust

162 128 1000 WL radon progeny 320
15 mg/m? uranium ore dust

64 96 Controls

(a) Number of animals is sufficient to detect the predicted incidence of lung tumors at the 0.05 to 0.1 level
of significance, assuming linearity of response between 0 and 9200 WLM (see footnote d) and 0.13%

spontaneous incidence.
(b) Exposure rate, 30 hr/wk; planned periodic sacrifice.

(c) Study is repeated at 100-WL (see footnote d) rate (without periodic sacrifice) to augment previous limited

exposure-rate data (7000 Series experiments).

{d) Working level (WL) is defined as any combination of the short-lived radon progeny in 1 liter of air that will
result in the ultimate emission of 1.3 x 10® MeV of potential alpha energy. Working-level month {WLM) is an
exposure equivalent to 170 hours at a 1-WL concentration. Previous exposure at 900 WL for 84 hr/wk to

9200 WLM produced an 80% incidence of carcinoma.

help to evaluate the hypothesis that sublinear risk
relationships exist at low exposure levels and low
exposure rates. In addition, concurrent expo-
sures to varying levels of uranium ore dust also
test the hypothesis that irritants (both specific
and nonspecific) act synergistically with radiation
exposures. The exposures of 6000, 7000, and
8000 Series animals are complete. Exposures of
9000 Series animals were suspended with the
80-WLM and 15-mg/m’ ore-dust exposures to
allow analyses of existing data.

Exposures of rats to uranium ore dust alone
(10,000 Series experiments, Table 4) are com-
plete. The ore-dust studies reported last year
(Cross et al. 1993) addressed the potential link of

silica exposures to lung cancer. Exposures of
rats to radon progeny, uranium ore dust, and
cigarette-smoke mixtures (initiation-promotion-
initiation [IPI; 11,000 Series, Table 5] experi-
ments) are complete. This study continues with
an investigation of the IPI relationships of radon
and cigarette-smoke exposures. Exposures of fe-
male rats (12,000 Series experiments, Table 6)
are also complete. This study continues with a
comparison to risk data obtained from exposures
of male animals using mine-simulation aerosols.
Tables 1 through 6 present the actual numbers of
animals (including serially sacrificed animals)
used at each exposure level.
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TABLE 2. Low Exposure-Response Relationship Study for Radon Progeny
Carcinogenesis in Rats (8000 Series Experiments)

Number of Animals'® Exposure Ragimen(bl Total Expasure, wimte!

96 100 WL radon progeny, 156 mg/m?® uranium ore dust 640'¥

396 100 WL radon progeny, 15 mg/m® uranium ore dust 320"

192 100 WL radon progeny, 16 mg/m? uranium ore dust 160

384 100 WL radon progeny, 15 mg/m?® uranium ore dust 80

480 100 WL radon progeny, 18 mg/m? uranium ore dust 40

544 100 WL radon progeny, 15 mg/m? uranium ore dust 20

192 Controls

{a) Number of animals is sufficient to detect lung tumors at the 0.05 to 0.1 level of significance, assuming linearity of
response between O and 640 WLM (see footnote c¢) and 0.13% spontaneous incidence.

(b} Exposure rate, S0 hr/wk; planned periodic sacrifice.

{c) Previous exposures indicated a tumor incidence of 16% at 640 WLM. Working level (WL) is defined as any
combination of the short-lived radon progeny in 1 liter of air that will result in the ultimate emission of *.3 x 10°
MeV of potential alpha energy. Working-level month (WLM) is an exposure equivalent to 170 hours at a 1-WL
concentration.

(d) Repeat exposure is for normalization with Table 1 data.

TABLE 3. Ultralow Exposure-Rate Study for Radon Progeny Carcinogenesis in Rats (3000 Series Experiments)

Number of Animals'® (b}

Exposure Regimen Total Exposure, WLM'®!

64 10 WL radon progeny, 15 mg/m?> uranium ore dust 320
64 10 WL radon progeny, 3 mg/m? uranium ore dust 320
384 10 WL radon progeny, 15 mg/m? uranium ore dust 80
3g4 10 WL radon progeny, 3 mg/m? uranium ore dust 80
512 10 WL radon progeny, 15 mg/m? uranium ore dust 20
512 10 WL radon progeny, 3 mg/m? uranium ore dust 20
192 Controls

{a) Number of animals is sufficient to detect lung tumors at the 0.05 to 0.1 lavel of significance, assuming linearity of
response between O and 640 WLM (WLM, see footnote c; tumor incidence is approximately 16% at 640 WLM) and
0.13% spontaneous incidence.

{b) Exposure rate, 90 hr/wk; planned periodic sacrifice.

(c} Working level (WL) is defined as any combination of the short-lived radon progeny in 1 liter of air that will result in the
ultimate emission of 1.3 x 10° MeV of potential alpha energy. Working-level month (WLM) is an exposure equivalent
to 170 hours at a 1-WL concentration.
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TABLE 4. Control Study for Uranium-Ore-
Dust Carcinogenesis in Rats (10,000 Series
Experiments)

Number of
Animals Exposure Regimen'®
96 15 mg/m? uranium ore dust
64 Sham-exposed controls

(a) Exposures, 12 to 18 months at 72
hr/wk; planned periodic sacrifice

Rat Respiratory Tract Pathology
Histopathology was completed on 9000-Series
life-span rats exposed to 80 WLM and 15 mg/m?
of uranium ore dust. Changes related to radon-
progeny exposure included a 3% incidence of
primary lung tumors; no primary lung tumors
were found in control rats (Table 7). There were

no significant exposure-related changes in the
nose, larynx, or trachea. It is unclear whether
the minimal increases in the incidence of tumors
of the skin, kidneys, adrenals, and intestines
were also related to exposure.

The lungs of the radon-progeny-exposed rats
had small disseminated foci of alveolar
macrophages with phagocytosed uranium ore
dust. Focal interstitial reaction, with increased
prominence of alveolar epithelium and thickened
alveolar septa, was present in 106 (29%) of the
exposed rats compared with 14 (18%) of the
control rats; the group average severity in ex-
posed and control rats was 0.2 and 0.1®, respec-
tively. An increased incidence of adenomatosis,
composed of a focal proliferation of alveolar
epithelial cells without disruption of normal
architecture, was present in 36 (10%) of the
exposed rats compared with one in the control
group rats. A very small nodule of squamous

TABLE 6. Initiation-Promotion-Initiation {IPl) Protocol for Radon (R}, Dust (D), and Cigarette-Smoke (S} Inhalation Exposure

of Rats {11,000 Series Experiments)!®

Duration of Exposure, weeks

Goup © 4 8 171 21 25
1 R+ D-mrrerrmeneneas >
2 R+D----- > R+D->
3 R+ D-mr > 8- > R+D->
4 R4 D---emeemeemmnnan D> Semmrmnee e >
5 TP P I, OR—— >
6 D-cmmmermmees > G s >

(a) Moderately low concentrations of uranium ore dust (D) accompany radon exposures as the carrier aerosol for radon
progeny; sham-exposed control animals {not shown) are included in each exposure group. Ten animals from each
exposed or sham-exposed group of 64 rats are killed at 25, 62, and 78 weeks to evaluate developing lesions. Radon-
progeny exposures: 100 WL {see footnote b), 320 cumulative WLM; uranium-ore-dust concentration: 5 mg/m?,
cigarette smoke exposures from Kentucky 1R4F cigarettes: 1 hr/day, & days/week, for 17 weeks.

(b) Working level (WL} is defined as any combination of the short-lived radon progeny in 1 liter of air that will result in the
ultimate emission of 1.3 x 10° MeVof potential alpha energy. Working-level month (WLM) is an exposure equivalent to

170 hours at a 1-WL concentration.

(a) Lesions were graded on a scale of 1 through S: | = very slight; 2 = slight; 3 = moderate; 4 = marked; and 5 = extreme.



TABLE 6. Exposure of Female Rats to Radon
Progeny and Uranium Ore Dust (12,000 Series
Experiments)

Number of Animals  Exposure Regimenm

96 100 WL radon progeny;
640 WLM
5 mg/m?® uranium ore dust

96 Sham-exposed controls

(a) Exposure rate, 72 hr/wk; planned periodic
sacrifice. Working level (WL} is defined as any
combination of the short-lived radon progeny in 1
liter of air that will result in the ultimate emission of
1.3 x 10° MeV of potential alpha energy. Working-
level month (WLM) is an exposure equivalent to
170 hours at a 1-WL concentration.

metaplasia also was present in the periphery of a
lung lobe from an exposed rat. One exposed rat
had two separate primary tumors, and of the five
adenocarcinomas, one was fatal (a papillary ade-
nocarcinoma). Two of the three epidermoid car-
cinomas also were fatal; however, none of the
lung tumors had metastasized to regional lymph
nodes or systemic organs.

Mediastinal lymph nodes had an accumu-
lation of phagocytosed uranium ore dust that
generally replaced medullary areas of the node
and was associated with a diffuse hyperplasia of

the cortex, with small lymphocytes. Macro-
phages with phagocytosed uranium ore dust and
hyperplastic lymphocytes were present in perino-
dal areas in the more severely affected lymph
nodes; fibrosis, composed of strands of mature
collagen fibers, was present in the medullary
areas. Cystic degeneration and hemorrhage
generally occurred in lymph nodes without heavy
dust accumulation, and presumably in nodes not
draining the lungs. A primary hemangiosarcoma
in a mediastinal lymph node of an exposed rat
was not associated with a heavy deposition of
uranium ore dust.

The nose, larynx, and trachea had no lesions
clearly related to radon-progeny exposure. Focal
chronic infiltration, composed of lymphocytes
beneath the surface epithelium, was frequently
observed in both exposed and control rats. Very
small amounts of focal squamous metaplasia was
observed in the larynx of one rat, and in the
trachea of three exposed rats. Epithelial hyper-
plasia was present in the larynx of three exposed
rats and one control rat, as well as the trachea of
one exposed and one control rat. Metastatic
calcification was common in the tracheal mucosa
of both exposed and control rats, and generally
correlated with metastatic calcification in the
lung, and with chronic nephropathy. A nasal
adenocarcinoma was present in one exposed rat;
a squamous carcinoma was present in the nose of
a control rat.

TABLE 7. Summary of Primary Tumors of the Respiratory Tract in Life-Span Animals (9000 Series Experiments).

Extrathoracic Tumors!® Lung Tumors
Nominal No. of
Nominal Ore Dust No. Animals Adeno- Animals
Exposure, Concen., Laryn- Animals to be Ade- Adeno- Epidermoid squamous Sar- with Lung
WLM mg/m® _Nasal gea! Trachea! Examined Examined noma carcinoma  Carcinoma Cercinorna  coma!®’  Tumors %
80 16 1/348l®)  0/203  0/333 366 0 3 5 3 0 0 3.0
320'¢! 3 0/60 o/3e 0/48 81 ] ] ] 1 ) 1 18
320 16 0/60 0/41 0/48 62 0 1 4 4 1 [e] 19
Controls 1/108 0/680 0/99 110 [¢] [o] [v] o 0 o]

{a) One mesothelioma in mediastinum, considered a primary tumor of the lung.
(b} Number tumors/number examined.

(c) One oropharyngeal squamous carcinoma, considered related to radon-progeny exposure; found in tissue not routinely
sectioned for histopathology.
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Statistical risk and carcinogenesis modeling
comparisons with histopathological data for 80-
WLM exposures at 100-WL concentrations (Ta-
ble 8) currently are underway.

Coliaborative Studies

The histopathologic features of radon-induced
lung tumors in rats were discussed at the Joint
BETG/EULEP Workshop on Lung Pathology in
Paris, October 12-13, 1992, This workshop was
organized jointly by the Biological Effects Task
Group (BETG; G.E. Dagle, PNL co-chair) and
by the European Late Effects Projects group
(EULEP; R. Masse, COGEMA® co-chair).
The purposes of the workshop were to compare
histopathologic features of lung tumors in the rat
following exposure to ionizing radiation, and to
review future research priorities for radiation-in-
duced carcinogenesis. (Dagle et al. 1993).

Although the diagnostic criteria currently in
use were agreed upon by the participants of the
workshop, it was uncertain whether alpha-
irradiation from radon and from actinides affect
the same target cells or regions in the rat lung.
Current evidence indicated that alveolar epitheli-
al Type II cells were the most frequent target

cells for the long-lived actinides; target cells
were not specifically identified for radon expo-
sure. Other possible target cells listed in the
workshop report included cells arising from
bronchi, bronchioles, the bronchiolar-alveolar
junction, endothelium, mesenchyme, and meso-
thelium.

Because a high priority was given at the
workshop for research needs to identify the
target cells of alpha irradiation, collaborative
studies were initiated with Dr. G. Singh to study
the histogenesis of radon-induced lung tumors.
It should be noted that the dose distribution from
radon exposure in the respiratory tract is differ-
ent from that produced by the long-lived acti-
nides. This difference could possibly lead to a
different histogenesis of the lung tumors.

In preliminary studies with Dr. Singh, lung
sections from eight rats with radon-induced lung
tumors were stained with monoclonal antibodies
against Clara cell antigen or anti-rat surfactant
antibodies for alveolar epithelial Type II cells.
Surfactant was the principal antigen stained in
cells forming lung tumors, suggesting that alveo-
lar epithelial cells may be the principal cell type
in lung tumors induced with radon as well as

TABLE 8. Current Summary of Primary Tumors of the Respiratory Tract in Life-Span Animals (8000 Series Experiments)

Extrathoracic Tumors'®!

Lung Tumors

Nominal No. of
Nominal Ore Dust No. Animals
Exposure, Concen., Laryn- Animals to be
WLM mg/m3  Nasal  geal  Yracheal Examined  Exsmined
20 16 o0/238'®  o/168 0/230 248 280
a0l 16 0/288 0187  0/278 308 168
80 16 2/344 0211 0/327 3682 [o]
160 16 0/181 0197 0/168 171 [¢]
320 16 0/74 0/68 0/69 77 o
640 16 0/72 0/44 [Jaa) 768 [’]
Controls 0/122 or/g8 01186 127 46
(a)

radon progeny-exposure related.
(b) Number tumors/number examined.
{c)

routinely sectioned for histopathology.

Adeno- Animals

Ade- Adenc Epidermoid squamous Sar- with Lung
_homa_  carcinoma  Carcinoms Carcinoms  coma!®  Tumors %

1 1 1 ¢} 0 1.2

[¢] 4 1 1 1 2.3

o] 7 7 0 1 4.1

4 b 1 o 1 6.4

0o 1 (o} o 1 2.8

6 3 2 1 0 13

0 [¢] 1 0 o] 0.8

One malignant hemangiopericytoma, one malignant fibrous histiocytoma, and two malignant mesotheliomas considered

One malignant oropharyngeal hemangiosarcoma, considered radon progeny-exposure related; found in tissue not

(a) Compagnie Générale des Matieres Nucléaires (COGEMA) in France.
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with the long-lived actinides. In contrast to de-
scribed changes in the long-lived actinide-in-
duced lesions, however, there were prominent
areas of Clara cell proliferation in the radon-
exposed rats, and some evidence of Clara cell
antigen expression in lung tumors. These pre-
liminary findings support the hypothesis that rat
lung tumors, which can have a varied phenotypic
expression that could include bronchiolar as well
as alveolar epithelium, arise from indifferent
epithelial cells at the bronchiolar-alveolar
junction.
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Mechanisms of Radon Injury

Principal Investigator: F. T. Cross

Other Investigators: E. W. Fleck,'” R. A. Gies, R. F. Jostes, L. H. Lutze,®
R. P. Schneider, G. L. Stiegler, and L. C. Stillwell

Technical Assistance: C. R. Petty

In this project, we collaboratively conduct dosimetric, molecular, cellular, and whole-animal
research relevant to understanding the mechanisms of radon and radon-progeny injury to the respirato-
ry tract. The work in FY 1993 specifically addressed the role of suppressor genes in radon-induced
cancers, and the molecular basis of radon-induced mutations in Chinese hamster ovary (CHO) cells and
the Big Blue™ transgenic mouse system. Mutations of the p53 tumor suppressor gene in archived
radon-induced rat lung adenocarcinomas were lower then suspected based on the frequency of altered
p53 protein in human lung cancer. Southern blot and polymerase chain reaction (PCR) exon analysis
of radon-induced CHO-hypoxanthine guanine phosphoribosy! transferase (HPRT) mutations were
completed. The gross molecular spectrum of radon-induced mutations showed a marked increase in the
frequency of deletions relative to that observed in the spontaneous spectrum, but no difference between
radon and that obtained with 300-cGy x rays. Twelve lac/ mutations, which are currently undergoing
sequence analysis, were isolated from lung tissue of a Big Blue™ transgenic mouse following inhalation
exposures to 960 working-level months (WLM; see footnote a, Table 3) of radon progeny.

Suppressor Gene Studies analyzed for mutations with polymerase chain
In collaboration with Dr. R.P. Schneider at reaction (PCR) and DNA sequence analysis.
Pacific Northwest Laboratory (PNL), we exam- As a prelude to this work, we first ascertained
ined the mutations and expression of the p53 the structure of the rat p53 gene and the base
tumor suppressor gene in radon-induced lung sequence of introns near the splice junction
adenocarcinomas in rats from previous life- sites. This enabled us to synthesize PCR prim-
span radon-exposure experiments at PNL. ers with intron sequences for amplification of
Mutations of p53 were investigated because specific exon sequences. We previously re-
they are the most commonly observed genetic ported that rat pS3 lacks intron 6 found in the
alterations in human cancers (Levin et al. mouse, human, and Xenopus genes (Schneider
1991) and because they have been generally et al. 1993).
observed in chemically induced rodent tumors. Exons 4 through 9 were amplified and
Tissues available for this study were forma- screened for mutations with single-strand con-
lin-fixed for varying lengths of time (weeks or formational polymorphism (SSCP) analysis
months) and embedded in paraffin. DNA was using RNA transcripts of the amplicons. This
extracted from 25-um sections of the tissue, screening revealed seven potential mutants in
and individual exons were amplified and then exons 5 through 7, the most frequently mutated

(a) Whitman College, Walla Walla, Washington.
(b) University of California, San Francisco, California. 55



region in the human gene. However, analysis
of the base sequence of these exons revealed
only one mutation (Table 1), an A-to-T trans-
version in codon 290 in exon 7, which corre-
sponds to exon 8 in humans and mice. The
frequency of mutations was lower than expect-
ed; therefore, we are also directly analyzing the
sequence of amplicons of exons 5, 6, and 7
from 10 of the tumors in case the SSCP analy-
sis did not detect some mutations. The analysis
of exon 6 is not complete, but we have found
no additional mutations in exons 5 and 7 from
10 tumors. We have learned that direct se-
quencing of PCR products by cycle sequencing
and automated methods is more efficient than
screening by SSCP and then sequencing.

This lower-than-expected incidence of pS53
mutations agrees with another study on plutoni-
um-induced lung carcinomas in rats at the In-
halation Toxicology Research Institute, Albu-
querque, New Mexico (G. Kelly, personal
communication). Unlike in humans, mutations
of p53 may, therefore, occur only rarely in rats
except in some forms of chemically induced
cancer.

In Vitro Radon Studies
The PNL in vitro radon cell-exposure sys-
tem was extensively employed in PNL experi-

ments as well as in several collaborative experi-
ments with other laboratories. The collabora-
tion with Dr. E. W. Fleck, Whitman College
(Walla Walla, Washington), on molecular
analysis of radon-induced CHO-HPRT muta-
tions using Southern biot and PCR exon analy-
sis was completed; all exons except the first
were evaluated. Our preliminary work was
published in 1992 (Jostes ef al. 1992); the
completed study will be published soon (Jostes
et al. in press).

The gross molecular spectrum of radon-
induced mutations evaluated by these two
methodologies indicated a marked difference
from the spontaneous spectrum, but no signifi-
cant differences from that obtained with 300
cGy of x rays. A clustering of deletion break-
points was noted in the 3 half of the hprt
gene. Figure | represents the deletion break-
point locations determined in our study. It is
unknown whether the skewed distributions
observed in our laboratory and elsewhere
represent differential sensitivity of gene regions
resulting from the conformational structure of
the chromatin, impaired regional repair,
increased misrepair, or other factors not
considered.

To relate cellular damage to radon exposure,
it is necessary to determine hit probabilities for

TABLE 1. Preliminary Results from Analyzing Rat Lung Adenocarcinomas for p&3 Mutation 8!

Exons 4 5 7 8 9
Number of 19 19 21 16 15
Tumors

Analyzed

Number of 0 0 e 0 o]
Mutants

{a) The exons were individually amglified by PCR and analyzed by SSCP,

the mutation was verified by DNA sequence analysis.
(b) Codon 290, AAA - ATA.
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FIGURE 1. Deletion Breakpoint Locations in Radon-induced CHO-HPRT Mutants with Altered Southern Blot Banding
Patterns. The upper line represents 30 kbp of hamster hprt gene containing exons 2 through 9. The use of PCR and
Southern blot analysis asllows the placement of the deletion extent and endpoints on a genetic map of the hamster hprt. The
alphanumerics next to each deletion represent the strain designation. The brackets represent the uncertainty of location of
the endpoint; the dark line represents the extent of the deletion. A left or right arrow represents a deletion that extends
outside the hprt or into the poorly defined region between exons 1 and 2.

alpha particles to the cell nucleus. Table 2
presents these calculations for alpha traversals
of CHO cell nuclei irradiated in PNL’s in vitro
radon suspension system. At the dose (Do) of
0.61 Gy (the dose at which 37% of the cells
survive), the average number of traversals was
1.5. This value is closer to that observed with
other cells alpha-irradiated in suspension at the
Oak Ridge National Laboratory (Ford and
Terzaghi-Howe 1993; average number of tra-
versals = ~1.0), and is in contrast with that
observed with planar alpha sources and plated
cells at the Los Alamos National Laboratory
(Raju er al. 1991; range = 2.1 to 6.1 travers-
als). These data in toto support the perception
that cell geometry is an important consideration
in alpha-particle toxicity.
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In Vivo Radon Studies

Radon mutation studies in animals included
inhalation exposures of Big Blue™ transgenic
mice to mixtures of radon progeny and uranium
ore dust per the protocol of Table 3. We initi-
ated mutation frequency determination and mo-
lecular analysis of the transgenic target se-
quence in collaboration with Drs. L. H. Lutze
(University of California, San Francisco
[UCSF]) and K. Winegar (Stanford Research
Institute [SRI]), and Drs. R. F. Jostes and
G. L. Stiegler (PNL). We have isolated 12
lacl mutations, which are currently undergoing
sequence analysis, from the lung tissues of a
mouse exposed to 960 WLM. Mutation fre-
quency information will provide the relative
mutational damage incurred in the various



TABLE 2. Hit Probabilities for Alpha Traversals
of CHO Cell Nuclei irradiated in PNL's Radon
Suspension System!®

Number of Hits Probability
(o] 23%
1 34%
2 25%
3 12%
=4 6%
Average number of hits = 1.6

(a) Calculations are for a Do = 0.61 Gy, cell diame-

ter = 12.8 ym, and nucleus diameter = 6.5 ym;
radon decay product activity attached to cells is
included in the calculations.

tissues after in vivo radon exposure. Sequence
analysis of mutations from the different tissues
will provide information on whether the initial
lesions are processed differently, resulting in
different spectra of damage at the base-pair
level, and whether the process of nonhomolo-
gous recombination, which we have found is
used to rejoin radon-induced double-strand
breaks in cells in culture, also is observed in
cells in intact tissues.
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In Vivo/In Vitro Radon-Induced Cellular Damage

Principal Investigator: A. L. Brooks

Other Investigators: F. T. Cross, K. M. Groch, R. F. Jostes, and M. A. Khan

Major research efforts are being conducted, both in vitro with model cellular and molecular
systems and in vivo in whole animals, to understand the health effects of inhaled radon and its progeny.
This project provides important links relating the data from mechanistic model studies to those derived
from animal studies, and renders both types of data more useful in predicting health hazards from
radon-progeny exposure in homes. The current studies have been designed to define the relationships
between inhalation exposure and radiation dose to the cells of the respiratory tract. This goal is
accomplished by comparing cellular damage induced by alpha particles both in vivo and in vitro.

Animals and cells in culture were exposed to radon and radon progeny. Cellular damage was
determined in deep-lung fibroblasts using the micronucleus assay. Research reported last year indicated
that it was possible to use in vivo/in vitro dose-response data on micronuclei frequency to estimate the
dose from inhalation exposure. It was determined that an exposure of 1 working-level month (WLM) in
vivo caused the same amount of chromosome damage as would be induced by a 0.78-mGy in vitro
dose. To further define these relationships and enable extrapolation to other species or exposure
conditions, it is necessary to understand how physical and biological variables affect the response.

We have addressed several of these variables, including the influence of species, the repair of
radon-induced damage, and the influence of aerosol characteristics on deposition, dose, and damage.
In vivo exposure of rats and Chinese hamsters resulted in 0.58 and 1.80 micronuclei/1000 cell/WLM,
respectively. The frequency of micronuclei decreased as a function of time after the end of the
inhalation, with an estimated half-life of 30 days for both species. In vitro comparisons between rat
and human cells indicated that the frequency of micronuclei in both celil lines increased linearly with
dose, with slopes of 757 and 130 micronuclei/1000 cells/Gy. The relative biological effectiveness
(RBE) of radon exposure with respect to “Co was determined using two different cell lines: Chinese
hamster ovary cells (CHO) and primary cultures of rat lung fibroblasts. The RBE for radon-induced
micronuclei was 12.0 and 9.6 for CHO and rat lung fibroblasts, respectively.

Finally, the influence of different carrier aerosols was evaluated to determine how their charac-
teristics altered dose and damage in deep-lung fibroblasts per WLM for inhalation exposure to radon
and its progeny. Rats were exposed to either a wax aerosol with 0.2 u aerodynamic diameter
(AMAD) or to uranium-ore dust, AMAD 0.5 ¢ + 2.0. The standard deviation of the wax aerosol is
being characterized. The rats exposed to this carrier had more than 2.5 times the amount of chromo-
some damage in the deep-lung cells per WLM than the animals exposed to uranium-ore-dust aerosols.

This research is addressing the following and its progeny”) to help provide a mechanistic
basic radiobiological questions associated with understanding of the action of radon on
inhalation of radon (herein taken to mean “radon respiratory-tract cells, and to develop better
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estimates of the risk from indoor radon
exposure:

1. How do low-level exposures and exposure
rates influence cancer risk?

2. What is the relationship between exposure
and dose to respiratory cells?

3. How does the unattached fraction influence
the distribution of dose and damage in the
respiratory tract?

4. What is the relative biological effectiveness
(RBE) for radon-induced damage with
respect to low-LET radiation?

The current report provides information on
the last three of these biological questions.
Induced chromosome aberrations have been used
to detect radiation dose from internally deposited
radioactive materials following both experimental
and environmental exposure. If chromosome
damage is to be a useful indicator of dose, it is
essential that damage be measured in the cells at
risk or in surrogate cells that receive similar
doses. Micronuclei provide a rapid measure of
chromosome damage and also are used to evalu-
ate damage in cells exposed either in the whole
animal or under well-defined culture conditions.

Experimental Design and Methods

The frequency of micronuclei was measured
in rat lung fibroblasts after the methods of Khan
and Heddle (1992). Animals or cells were ex-
posed either in vitro (Jostes et al. 1990) to radon
in suspension cultures or after graded exposures
to radon by in vivo (Cross et al. 1984) inhala-
tion exposures. Additional studies were conduct-
ed and exposure-response relationships deter-
mined using fibroblasts isolated from Chinese
hamsters after inhalation of radon. The change
in aberration frequency was measured as a func-
tion of time after the exposure in both rats and
Chinese hamsters. Animals were sacrificed at 0,

15, and 30 days after inhalation of radon and
cells placed in culture for 72 hours. The cultures
were treated with cytochalasin B to block cytoki-
nesis, then micronuclei frequency determined.

Studies on the sensitivity of lung cells for the
induction of micronuclei by radon were done by
comparing micronuclei induced by in vitro radon
exposure of primary cultures of rat deep-lung
fibroblast cells to primary human tracheal-
bronchial cells.

The RBE was evaluated by first determining
that there was no difference in responses for
cells exposed to ®Co in vitro and in vivo using
rat lung fibroblasts. Comparisons of the induced
frequency of micronuclei then were made using
both rat lung fibroblasts and CHO cells exposed
in vitro to either radon or Co.

The influence of aerosol carrier was deter-
mined by evaluation of micronuclei in rat lung
fibroblasts following inhalation of radon using
either wax or uranium-ore-dust carrier aerosols.
All cells were scored on coded slides for the
induction of micronuclei.

Results and Discussion

Influence of Species (/n Vivo)

The results of the in vivo micronuclei studies
that compare rats and Chinese hamsters are
shown in Figure 1. The frequency of micronu-
clei per 1000 binucleated cells per WLM are
plotted for the two species and illustrate that, per
WLM, Chinese hamsters are three times more
sensitive to the induction of micronucliei in the
fibroblasts than are rats. This observation is
interesting, because the rat is much more sensi-
tive to the induction of lung tumors than the
Syrian hamster (Cross et al. 1981). Information
is needed to determine if the Syrian hamster is
similar to the rat or the Chinese hamster for the
induction of initial chromosome damage. It may
be necessary to grow epithelial cells from the
different species to resolve this difference. The
current data show that, per WLM, more damage
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FIGURE 1. The Induction of Micronuclei per WLM Exposure
in Pnmary Cultures of Lung Fibroblast from Rats and Chi-
nese Hamsters Following Inhalation of Radon

is present in the hamster lung than in the rat, and
that differences in sensitivity to the induction of
cancer may not be related to the amount of initial
chromosome damage induced.

Influence of Species (/n Vitro)

The comparison of the response of human
cells with rodent cells for the induction of micro-
nuclei helps determine the influence of species
and is essential for between-species extrapola-
tion. Preliminary data have been derived by
comparing dose-response relationships for pri-
mary human tracheal-bronchial epithelial cells
with primary cultures of rat lung fibroblasts for
the frequency of micronuclei induced by expo-
sure to radon. Dose to the cell nuclei was calcu-
lated for each cell line using the methods of
Jostes er al. (1991). At the time the in vitro
radon exposure started, a fraction of the cell
population was in the growth phase. The fre-
quency of micronuclei increased linearly with
dose (Figure 2), with a slope of 130 and 757
micronuclei/ 1000 binucleated cells/Gy for the
human and rat cells, respectively. This shows
that the human epithelial cells had less chromo-
some damage per unit of dose than rat fibro-
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blasts. It is essential to expand this comparison
to epithelial cells from additional experimental
animal species.

Repair of Radon-Induced Damage

Repair of high-LET-induced cellular damage
has been demonstrated using specialized systems
such as premature chromosome condensation.
We are reporting here on the loss of cells with
chromosome damage from a cell population as a
function of time after radon exposure. This loss
is a form of tissue repair and may be critical to
understanding how long damaged cells can re-
main in a cell population to interact with other
insults during the multiple steps involved during
cancer induction. Figure 3 illustrates the loss of
micronuclei or chromosome aberrations from the
rat or Chinese hamster deep-lung fibroblasts or
from rat tracheal-epithelial cells as a function of
time after in vivo inhalation exposure. The graph
shows a solid line that represents a 30-day half-
time for retention of cells with damage, and it
seems that the data can be represented by this
solid line. These results could be explained if
cell turnover time in thege two tissues was close
to 30 days, and if cells with micronuclei or
chromosome aberrations were eliminated as cells
divide.

RBE for Radon-induced Micronuclei

To estimate RBE, it is necessary to have a
direct comparison of the dose-response relation-
ships for radon relative to low-LET radiation; we
have used “'Co in this comparison. It is first
essential to determine if there are influences of
cell isolation on the response measured after
either in vitro or in vivo exposure. Either rats
were exposed to “'Co and cells isolated for evalu-
ation of chromosome damage, or the cells were
isolated then exposed to ®Co and the frequency
of micronuclei determined. The results of this
study are shown in Figure 4. No difference in
the dose-response relationship was observed as
a function of in vivo or in vitro exposure condi-
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tions. After this was established, it was possible
to compare the slopes of the lines derived from
exposure of cells in vitro to either radon or ®Co,
and to suggest that similar relationships would be
observed in the animal. Figure S shows the re-
sults of these studies for both CHO cells and
primary rat lung fibroblasts; the RBE for the two
systems was 12.0 and 9.6, respectively. Such
information suggests that there is little difference
between the RBE derived using these two cell
types. Understanding RBE relationships will
make it possible to relate data from radon expo-
sure to the large data base that exists for low-
LET radiation.

Preliminary studies have been conducted to
determine if changing the carrier aerosol will
change the dose and damage in the deep lung per
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FIGURE 4. The Induction of Micronuclei in Primary Rat Lung Fibroblasts Following ®*Co Exposure Either /n Vitro or In Vivo

WLM of exposure. A wax aerosol that is still
being characterized was generated as a carrier
aerosol. Following inhalation of radon with this
erosol, the frequency of micronuclei/1000
cells/WLM was 2.5 times that seen when the rats
were exposed using a uranium-ore-dust aerosol.
The smaller and more uniform size of the wax
aerosol seems to have a marked influence on the
amount of dose delivered per WLM of exposure.
The frequency of micronuclei induced for ani-
mals exposed to the different aerosol carriers per
WLM is illustrated in Figure 6.

Summary

Studies have been conducted that demon-
strate the usefulness of cellular damage as bio-
markers of radiation dose to the lung. These
studies demonstrate how exposure can be con-
verted to dose, and include evaluation of the
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effect of species on primary damage induced in
cells. The rate of loss of micronuciei from the
lung-cell populations has been measured as an
indication of tissue repair. The derivation of an
RBE for the induction of micronuclei in two
different cell types provides an estimate of the
difference in initial damage from high- and low-
LET radiation. Finally, the role of aerosol type
on dose and cytogenetic damage in the deep lung
has been determined. Approaches such as these
help validate the usefulness of micronuclei and
chromosome aberrations as markers of radiation
dose, and will determine how cellular and molec-
ular changes can be used to extrapolate data be-
tween species and improve our understanding of
the risk associated with the inhalation of radon.

This report forms a basis for directions in the
future. Studies are being conducted to compare
the response of epithelial cells from different
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species with that in fibroblasts in the deep lung
to provide a better link of the short-term data to
that for the induction of cancer. Additional
information is being derived on the influence of
aerosol characteristics on the deposition and
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damage from inhaled radon. This work will
provide links that will make it possible to extrap-
olate data from the mine to the home environ-
ment.
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Dosimetry and Aerosol Technology of Radon Progeny

Principal Investigator: A. C. James

Other Investigators: A. Birchall, K. D. Thrall, T. E. Hui, J. K. Briant,
P. K. Hopke®, and P. T. Wasiolek'

These projects (Dosimetry of Radon Progeny and Aerosol Technology Development) develop and
validate cellular dosimetry, microdosimetry of cellular components, and physiologically plausible
biokinetic tissue models, and the application of these models to provide a coherent and comprehensive
assessment of human cancer risks from exposures to radon and thoron progeny. This year we have
focused on examining the practical implications of the dosimetry model recently adopted by the
International Commission on Radiological Protection for comparing lung-cancer risks as a function of
environmental conditions. We have collaborated with the Department of Chemistry, Clarkson
University, in interpreting their measurements of the complete activity-size distribution of radon-
progeny aerosols in normally occupied homes in terms of (1) the variability of equivalent dose rate to
the lungs per unit radon gas concentration; (2) the significance of the so-called radon-progeny "cluster"
aerosol, which is intermediate in size between the classical "unattached” and "attached" aerosol modes;
and (3) the effects of air cleaning on lung dose. On a more fundamental level, we have analyzed the
uncertainties involved in specifying the effective dose per unit exposure for uranium miners, and have
compared the lung-cancer risk coefficient given by dosimetry with the best estimate from uranium-
miner epidemiology. This comparison implies that use of the recommended ICRP risk-weighting
factors results in an overestimate of lung-cancer risk for an adult male exposed at a moderately high
dose rate by about a factor of three. Furthermore, if this implication is accepted for radon-progeny
exposure, then it should also be considered for all alpha-emitting radionuclides. We propose that, in
terms of alpha dose delivered at moderate dose rate to the sensitive lung tissues, the most likely
estimate of the absolute lung-cancer risk coefficient is about 0.05 per Gy. In the area of physiological-
ly based pharmacokinetic (PBPK) modeling, we have used experimental animal data to develop a
model of dose to the human testes from periodic exposure to elevated concentrations of airborne radon
and its progeny.

By improving and applying models relating providing practical guidance on issues of envi-
lung and other tissue doses to conditions of ronmental monitoring and radiological control.
exposure, these projects serve as a focus for These projects serve as core components of the
integrating findings from the OHER Radon PNL Radon Research Program, which is directed
Research Program as a whole into a coherent and toward an integrated understanding of radon-
comprehensive assessment of the risks of radon- induced effects from the molecular/cellular level,
induced cancer in the human population, and for through laboratory animals, to the human. Our

(a) Visiting Scientist from the National Radiological Protection Board (NRF!,) in the United Kingdom.
(b) Department of Chemistry, Clarkson University, Potsdam, NY 13699,
(c) Current address: Department of Physics, New Mexico Tech., Socorro, NM 87801.
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goal is to provide a coordinating dosimetric link
between knowledge of the mechanisms of action
of alpha particles at the cellular and tissue levels
in vitro and in animals, the growing epidemio-
logic database on radon-associated cancer risks
in the human, and mechanistic models for pro-
jecting cancer risks down to the low exposure
rates generally encountered in homes. The
development of mechanistic models of the rate
processes determining the development and
expression of lung and other cancers founded on
animal experimentation and human epidemiolog-
ic experience with radon exposure will have
broad application to radiological protection and
risk assessment; the benefits will extend beyond
the immediate need for a firm and defensible
basis for optimizing control of radon risks in
homes.

Finalization of the New ICRP
Lung Dosimetry Model

During FY 1993, A. C. James, A. Birchall,
T. E. Hui, and J. K. Briant participated in the
work of finalizing the International Commission
on Radiological Protection’s (ICRP’s) report on
a "Human Respiratory Tract Model for Radio-
logical Protection," and several of its annexes.
This work included an assessment of the modeled
effective dose to the lungs and upper respiratory
tract for an underground uranium miner, and for
various subjects exposed to radon and thoron
progeny in the home or in an indoor workplace.
Our assessment assisted the Commission in their
deliberations on the most defensible method of
apportioning the lung-cancer risk coefficient for
radiological protection purposes between doses
received by target cells in bronchial, bronchiolar,
and alveolar tissue. Equal apportionment will be
recommended in the final report on the new lung
model. This report was adopted by the Commis-
sion at its meeting in April, 1993, and will be
published as ICRP Publication 66 in 1994 (ICRP
in press).
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Comparison with Previous Models
Figure 1 compares the regionally apportioned
lung dose conversion factor (DCF) for exposure
to radon-progeny potential alpha energy, in mGy
per working-level month (WLM), given as a
function of particle size by the new ICRP model
with values modeled previously for bronchial-
target cells (NRC 1991; N. H. Harley, personal
communication 1991). The regionally appor-
tioned dose is significantly lower than that cal-
culated by NRC (1991) for bronchial epithelium,
most notably for "unattached" radon progeny
(which are actually progeny atoms associated
with a small cluster of other atoms or molecules
to form a particle of about 0.001 um in diame-
ter), and for progeny "clusters" (of about 0.01
pm in diameter). For the unattached progeny,
the regionally-apportioned dose is about twofold
lower than that for bronchial epithelium obtained
by Harley. For the progeny clusters, the region-
ally apportioned dose is similar to Harley’s
bronchial values, but this is up to about 30%
higher for progeny attached to submicron-
sized particles.
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Analysis of Uncertainty in Effective
Dose for Uranium Miners

We have carried out a detailed examination of
the underlying assumptions made in evaluating
the effective dose for uranium miners using the
new ICRP respiratory tract model (Birchall and
James in press). We estimated the magnitude of
uncertainty or variability in key parameters of
the model, and represented the probability of
each parameter value by a rectangular, normal,
or lognormal distribution, as appropriate. In this
way, uncertainties were quantified both in envi-
ronmental parameters (e.g., radon-progeny
activity-size distribution and degree of hygro-
scopic particle growth) and in respiratory tract
model parameters (e.g., breathing rate, regional
particle deposition, mucous thickness, depth of
target cells, and the apportionment of radiation
detriment between secretory or basal cells in
bronchial epithelium and between the bronchial,
bronchiolar, and alveolar-interstitial regions of
the fungs).

Figure 2 shows the results of performing
Latin Hypercube analyses of the frequency distri-
bution of calculated effective dose per unit expo-
sure (E/P,, expressed in mSv/WLM) for a urani-
um miner when the dosimetric modeling parame-
ters were selected at random from their respec-
tive likelihood distributions. Two frequency
distributions were studied: (a) that centered on
ICRP’s recommended regional apportionment of
radiation detriment equally between bronchial,
bronchiolar, and alveolar-interstitial target cells
(ICRP in press), and (b) that centered on the
estimated baseline regional distribution of spon-
taneous (non-radon induced) lung cancers in the
general population. For comparison, Figure 2
also shows the current "best estimate" of §
mSv/WLM, which will be recommended by
ICRP as being equivalent to the projected life-
time lung-cancer risk from occupational exposure
to radon progeny based on the uraiti*m miner
epidemiologic data (ICRP 1994). It is seen that
the overall likelihood of a risk coefficient < §
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FIGURE 2. Frequency Distribution of Effective Dose per
Unit Exposure (E/P,} Generated by Varying All Parameters
and Assumptions in the Dosimetry Calculation. Distribu-
tions are shown separately for regional apportionments
centered on the ICRP recommendation of
0.333:0.333:0.333, and regional apportionment inferred
from natural lung-cancer incidence.

mSv/WLM being obtained from the recommend-
ed methods of lung dosimetry is on the order of
1%. Calculated DCFs in this range are found to
arise only from extreme values (or unlikely
combinations) of input parameters.

Implications for Alpha-Emitter
Risk-Weighting Factors

We have not attempted to analyze directly the
uncertainties in each of ICRP’s recommended
dosimetric risk-weighting factors, which are also
required to specify the effective dose. These
additional parameters are: (1) the radiation
weighting factor, wy, of 20 for alpha particles;
(2) the tissue weighting factor, wy of 0.12 for
the lungs; (3) the total detriment coefficient at
high dose rate, DE,;, of 0.112 per Sv (based on
the Japanese atomic bomb-survivor studies); and
(4) the dose and dose-rate effectiveness factor,
DDREF, of 2 (assumed to apply for all expo-
sures at moderate or low dose rates). The rec-
ommended values were used to calculate the
distributions of E/P, shown in Figure 2.

For ICRP’s recommended equal apportion-
ment of radiation detriment between bronchial,



bronchiolar, and alveolar-interstitial tissues, the
arithmetic mean of calculated £/P, is found to be
17.2 mSv/WLM. However, the direct combina-
tion of central estimates of each of the input
dosimetric parameters gives a lower modal esti-
mate for E/P, of 13.4 mSv/WLM. It is reason-
able to take an intermediate rounded value of
approximately 15 mSv/WLM to be the "best
estimate" of the DCF for uranium miners based
on ICRP’s forthcoming dosimetric recommenda-
tions. The corresponding lifetime risk coeffi-
cient for exposure of a uranium miner that is
implied by ICRP’s dosimetric methodology is
8.4 10* per WLM. However, the recommended
value of the risk coefficient estimated directly
from epidemiology of uranium miners is 2.8 10*
per WLM (ICRP 1994). In other words, use of
ICRP’s dosimetric risk-weighting factors wouid
seem to result in an overestimate of the observed
risk of lung cancer from occupational radon-
progeny exposure by a factor of three.

It is useful to consider the excess lifetime risk
of lung cancer directly in terms of lung dose
(strictly speaking, an absorbed dose that has been
adjusted by the regional weighting factors) with a
composite risk factor, (= w;"® w;* DE,, /
DDREF). If the ICRP recommended values for
each of the primary risk-weighting factors are
used, then the value of Q is 0.1344 Gy,
However, if the epidemiologic risk estimate of
2.8 10* is taken, together with the best estimate
of E/P, of 15 mSv/WLM, i.e., a regionally
weighted lung dose of 6.25 mGy/WLM, then
this implies a value of @ of approximately 0.05
Gy'. Furthermore, if this implication is accept-
ed for radon-progeny exposure, then it also must
be considered for any alpha-emitting radionu-
clide in the lungs, since Q is not specific to radon
progeny.

Relating Lung Dose-Rate to Radon
Gas Concentration in a Home

In practice, exposure to radon progeny in the
home is controlled in relation to the measured
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indoor concentration of radon gas. To assess the
attendant risks of indoor exposure, it is first
necessary to translate exposure to radon gas into
an equivalent dose to the lungs from the radon
progeny. In a series of 208 measurements car-
ried out by Clarkson University over three sum-
mer months in a single, normally occupied home
in Arnprior, Ontario (Hopke er al. 1993), the
mean equilibrium factor, F, between radon and
its progeny was found to be 0.45, with a tempo-
ral standard deviation of + 0.18. We have
analyzed the resulting variability in lung dose-
rate per unit radon concentration using the new
ICRP lung model with Clarkson University’s
measurements of the complete activity-size distri-
bution of radon progeny potential alpha energy.

In order to compare the calculated £/P, in-
doors with the ICRP recommended value of 5
mSv/WLM for a uranium miner, we have nor-
malized the indoor dose by the factor 5/17.2,
i.e., 0.29, which is the quotient of the epidemio-
logic-derived and mean dosimetric-derived coef-
ficients. The average effective dose-rate per
unit radon gas concentration obtained from the
208 indoor aerosol size measurements was 39
pSv/y per Bq(**Rn)/m?, with a temporal stan-
dard deviation of + 16 uSv/y per Bq(**Rn)/m’
(assuming 80% occupancy). The lung dose rate
was correlated with the measured fraction of
potential alpha energy associated with particles
smaller than 15 nm diameter, f (15), which may
consist of both unattached progeny (of about 1
nm diameter) and larger "clusters" of airborne
molecules that are associated with a single
progeny atom. The mean regression of the dose
conversion factor (DCF) on the ultrafine frac-
tion, f,(15), of the potential alpha-energy concen-
tration (PAEC) was given by

DCF{An)=24+62{15)
in uSv/y (effective dose rate) per Bq(®**Rn)/m°,

with a coefficient of determination, r?, of 0.22.
In this particular home, the variability of the



equilibrium factor was a greater contributor to
the observed variation in the dose conversion
factor with respect to radon gas concentration.
In terms of exposure to potential alpha energy,
the average dose conversion factor was 7.9
mSv/WLM, with a relatively small temporal
standard deviation of + 2.0 mSv/WLM.,

Figure 3 compares the variability of the DCF
relative to the radon gas concentration found in
two additional, normally occupied homes in
Princeton, New Jersey (Wasiolek et al. 1992),
with the regression on the ultrafine fraction of
potential alpha-energy concentration (PAEC),
f,(15), found in the Arnprior home. On the
average, the DCF with respect to radon gas
concentration is lower in both of the Princeton
homes. So is that with respect to potential alpha
energy, which was found to be 5.5 + 0.6 and
5.5 + 0.8 in November, 1990, and February,
1991, respectively, in home #1, and 7.0 + 2.0
in April, 1991 in home #2. One out of three
occupants of both Princeton homes was a ciga-
rette smoker, whereas there were no smokers in
the Arnprior home.
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FIGURE 3. Variability of the Dose Conversion Factor (DCF)
for Etfective Dose-Rate per Unit Radon Gas Concentration
in Normally Occupied Homes. Results labeled #1 (a) and
{b) were obtained in two different periods of study in a
Princeton, New Jersey, home. Results labeled #2 relate to
a different home in Princeton, and the line shows the
regression relationship found from 208 measurements in a
Canadian home. Values shown are the means t 1 stan-
dard deviation of individual measurements over time.
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These data (together with that still being
analyzed from another home in Parishville, New
York) represent the only systematic studies of the
variability of exposure-dose conversion factors in
normally occupied homes that are available
worldwide. Although substantial, the database
does not yet include a representative cross-sec-
tion of U.S. homes, nor a systematic study of
seasonal factors in different climatic regions of
the U.S. Furthermore, the ability to extrapolate
lung cancer risks to homes from the uranium-
miner epidemiologic studies is severely ham-
pered by a lack of comparable information on the
exposure environment in mines.

Dosimetric Significance of
Radon Progeny Clusters

Figure 4 shows the contributions to the over-
all DCF made by various components of the
radon-progeny particle-size spectrum, taken from
measurements made over extended time periods.
The first size-bin represents "unattached" proge-
ny, with a median particle diameter of 0.9 nm.
The second and third size-bins together represent
progeny "clusters," with median diameters of 2.8
nm and 9 nm, respectively. The three remaining
size-bins together represent the "attached" proge-
ny aerosol, consisting of larger particles. In
calculating DCFs for these attached progeny, we
have assumed that the vector particles are hygro-
scopic to the extent that they grow by a factor of
1.5 within the respiratory tract (Li 1993).

On the average, and in all three homes stud-
ied, radon-progeny "cluster" particles were
found to contribute significantly to the overall
DCF. Their contribution was found to be at
least as large as that from the classical "unat-
tached" fraction. The mean fractional contribu-
tion of progeny clusters was 35% and 22%
during the two separate periods of study in the
first Princeton home, 35% in the second Prince-
ton home, and 39% averaged over the three
months of study in the Arnprior home.



(a)

A #1, Nov'so
#1, Fet'91

s T w0 a0

Median Particle Diameter, nm

DCF(Rn), uSv/y per Bg/m’

NN NS
P e T e

T T

0. 28

-]

(b)
15
] @ €, Aprsl
#3, May-Jul'91
-
B
g
E. 104
§
-~
g
2
4
0 ¥ ) T T - L B v
09 28 9 28 90 280

Median Particle Diameter, nm

FIGURE 4. Contributions to Overall Dose Conversion Factor (DCF) According to Radon-Progeny Particle Size. The data are
taken from (a) two studies in one home in Princeton, New Jersey, and (b) a study in a second Princeton home (#2) and a
third home in Arnprior, Ontario (#3). Values shown are means + 1 standard deviation of individual measurements over

extended periods of time.

Effectiveness of Air Cleaning

Radon-Progeny Concentration

Figure 5 shows the effects of three different
types of air-cleaning devices on the PAEC car-
ried by (a) unattached progeny, (b) progeny
clusters, and (c) attached progeny. The measure-
ments were made in the Arnprior home by
Hopke er al. (1993). In our analysis here, the
PAEC has been normalized to the concentration
of radon gas at the time of measurement. The
devices tested were (1) the NO-RAD air ionizer
system, with a 2.8 m* min" fan (Moeller et al.
1988); (2) an electronic (electrostatic) air clean-
er, with 2 3.9 m® min fan; and (3) a high-effi-
ciency room air filter, operated at a filtration rate
of either 4.3 or 2.3 m’ min’. Figure 5(a) shows
that the ionizer/fan had the greatest effect in
removing airborne unattached progeny, followed
closely by the high-efficiency filter. As expect-
ed, the electronic air cleaner was only marginally
effective in reducing the concentration of unat-
tached progeny. In the case of progeny clusters
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(Figure 5[b]), the ionizer/fan device appeared to
increase the airborne PAEC, whereas high-effi-
ciency filtration gave a major reduction, and the
electric cleaner a moderate reduction in airborne
PAEC. Both high-efficiency filtration and elec-
trostatic air cleaning produced a major reduction
in the airborne PAEC of attached progeny,
whereas the ionizer/fan device was less effective.

Effective Dose Rate

Figure 6 shows the measured effects of each
of these air-cleaning devices on the DCF calcu-
lated with respect to the radon gas concentration.
On the average, the DCF was reduced from the
value of 39 uSv/y per Bq*?Rn)/m’ in the ab-
sence of air cleaning, to 33 uSv/y per
Bq(**Rn)/m® by the ionizer/fan device, 22 uSv/y
per Bq(**Rn)/m® by the electronic air cleaner,
and 13 uSv/y per Bq(**Rn)/m’ by high-efficien-
cy filtration. Clearly, the different filtration
characteristics of these three air cleaners shown
in Figure 5 implies that both their relative and
absolute effectiveness for dose reduction in a
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FIGURE 5. Cumulative Frequency Distribution of Airborne
Potential Alpha-Energy Concentration (PAEC) (Normalized
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unattached radon progeny, (b) for progeny clusters, and (c)
for attached progeny. Values shown in the legend and
marked by the arrows in the graph are means * 95%
confidence intervals.
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particular home environment will depend on the
distribution of PAEC between unattached, clus-
tered, and attached radon progeny. In the home
studied here, the relatively high proportion of
PAEC normally present in the form of progeny
clusters (39%) was a factor in achieving a three-
fold dose reduction by high-efficiency filtration.

Modeling Dose to the Human
Testes from Radon and Progeny

In the area of physiologically based pharma-
cokinetic (PBPK) modeling, we have used exper-
imental animal data to develop a model of the
uptake and retention of radon and its progeny in
the human testes that results from periodic expo-
sure to elevated concentrations of airborne radon
and progeny (Figure 7). Based on this research,
we prepared a report addressing testicular dose
on behalf of British Nuclear Fuels PLC (BNFL),
which was used by them in the early stages of a
precedent-setting case in the English High Court.
Our study countered a claim made by the plain-
tiffs that paternal preconception irradiation (PPI)
of the testes in uranium miners by radon progeny
had been linked with the occurrence of childhood
leukemia in their offspring (McLaughlin ef al.
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FIGURE 7. Modeled Build-Up of Alpha Activity in the
Testes of an Underground Uranium Miner at Elliot Lake,
Ontario, During a Working Shift, and Its Subsequent Decay

1992). This input on behalf of DOE/OHER
enabled BNFL’s legal counsel to firmly dismiss
the claim, which could have confused the argu-
ments later in the case concerning the plausibility
of the PPI hypothesis founded only on a statisti-
cally weak study of childhood leukemia among
children born near the Sellafield fuel reprocess-
ing works.
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GnomeView: Beta Test Version

Principal Investigator: R. J. Douthart

Other Investigators: J. E. Pelkey and G. S. Thomas

GnomeView is a graphical user’s interface to information generated by the Human Genome Project.
GnomeView integrates information from different data sources into comprehensive graphical
representations (maps) of the human genome. Currently, three different databases are integrated: the
Human Genome Data Bank (GDB), the GenBank DNA Sequence Database, and On-Line Mammalian
Inheritance in Man (OMIM). Two of the databases, GDB and GenBank, are abstracted into local
versions residing on an internal database management system (DBMS), which is accessed in response
to queries. The third database, OMIM, is accessed remotely during run time. GnomeView has been in
beta testing at several universities and genome laboratories since April 1993.

The central data-organization theme of
GnomeView (Douthart et al. 1993; Pelkey et al.
1993) is the genomic map. GnomeView utilizes
the db_VISTA (Raima 1990) database manage-
ment system (DBMS) to store, organize, and
assemble information objects (map_objects) that
constitute genomic maps. GnomeView is not a
repository database per se, but uses information
obtained from databases such as GenBank and
the Human Genome Data Base (GDB) to obtain
information about map_objects.

A dominant theme during the development of
the GnomeView interface has been the preserva-
tion of the pictorial quality of the genomic map.
The human genome effort will produce hundreds
of thousands of map_objects, making pictorial
map representation increasingly more difficult.
Pictorial representations possibly may be aban-
doned as the increasing number of map_objects
also increases the complexity of the representa-
tions; if this situation occurs, insights conveyed
by such representations regarding genomic topol-
ogy and the relationships between different maps
and map_objects may be lost.

GnomeView employs object-density mapping,
false color, zooming, progressive disclosure,

77

label-overwrite avoidance, and other techniques
to preserve pictorial map representations (Douth-
art et al. in press). These graphic representa-
tions can be interrogated to obtain detailed object
lists and other information obtained from the
databases as a result of user queries.

Beta Testing

GnomeView entered extended beta testing in
1993. The purpose of the beta test was to moni-
tor usage and acceptance of the interfaces, and to
elicit feedback on bugs found and on improve-
ments desired. During this period of beta test-
ing, the system and its user’s manual have been
available to scientists electronically free of
charge. The beta testing terminated in Septem-
ber 1993. A number of electronic-mail address-
es were established to facilitate the test, and
although the trial has been officially terminated,
these addresses are still being maintained:

gv-help@gnome.pnl.gov. Inquiries sent to
this address receive a personal answer by a
member of the GnomeView development
team. General information questions and
comments are handled at this address.



gv-bug@gnome.pnl.gov. Notification of bugs Database Access

and suggestions for improvements are re- The unique aspects of GnomeView are its
ceived from the user community at this ad- emphasis on graphical methods of scientific
dress. visualization and user interaction. To expedite
development and entry into beta testing, local
gv-request@gnome.pnl.gov. An automated abstractions of both GDB and GenBank are made
response to messages sent to this address into GnomeView's local DBMS. Only OMIM is
gives instructions on how to obtain accessed when appropriate during run time.
GnomeView and its user’s manual electroni- OMIM s accessed via the WAIS utility, which is
cally. A log is kept of the addresses of the in the public domain. Constant updating and
requesters. Specific information is asked redistribution has proven to be unnecessarily
about the potential user’s site, but is not a time-consuming. Distribution of a utility for
mandatory prerequisite for receiving the updating on-site, while feasible, does not solve
interface. the problem of the ever-increasing demands on
disk space for local storage of database abstrac-
gv-stat@gnome.pnl.gov. Every time a re- tions that are approaching an exponential in-
quester uses GnomeView, a signal is sent to crease in size. Virtually all the GnomeView beta
this address. Vital information about actual test sites expressed the desire for on-line access
usage is tallied by this mechanism. Table 1 to all databases at *n time.
summarizes usage during the period of ex-
tended beta testing. The requests are from Future Directions
leading genome and molecular biology labora- Recent trends in the development of databases
tories around the world. Usage, however, most pertinent to GnomeView include conversion
was far from evenly distributed. More than to a standard relational DBMS and implementing
90% of the usage was from 19 sites that used a server-client methodology for user access.
GnomeView regularly during the beta test Server centers are being established with client
period. These data indicate that not only was access to numerous databases and analytical
beta testing successful, but that a small user’s tools. An important center for client access to
group is beginning to form. databases integrated in the GnomeView interface

TABLE 1. Beta Test Request and Logon Tallies, 1993

April May June July Aug. Sept. oct.!® Nov. Totals
Requests 1 45 11 10 38 8 3 2 118
Stats (usage) 31 65 68 106 101 175 91 67 704

(a) Because slectronic-mail addresses have been maintained even after beta testing was terminated, requests have continued
to be tracked.
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is being established at Oak Ridge National Labo-
ratory. These developments make on-line access
from GnomeView much more desirable and
easier to develop than in the past.

Since GnomeView's inception, the option of
eventual on-line database access was always
considered. The front and back ends are reason-
ably isolated such that decoupling from the inter-
nal DBMS and the substitution of on-line access
can be done without undue difficulty. Feedback
from the beta test sites indicates that on-line
access of all databases is an absolute prerequisite
for a product version of the interface.

The GnomeView internal DBMS was origi-
nally devised for the creation of hybrid maps
between different mapping levels, for the storage
of user input maps and map_objects, and for the
creation of hybrid maps consisting of user-de-
fined and database-defined map_objects. The
internal DBMS, therefore, will be retained in the
product version, even though it will no longer be
used to house local abstractions of GDB and
GenBank.
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Appendix

Dose-Effect Studies with Inhaled Plutonium in Beagles

On the following pages (A.3-A.11), data are presented for all dogs assigned to current life-span dose-
effect studies with inhaled *°Pu(NO,),. Data from dogs exposed to inhaled **PuO, or **Pu0, did not
change from the previous year and were omitted from this appendix. Information is presented on the
estimated initial lung deposition, based on external thorax counts and on estimated lung weights
(0.011 x body weight) at time of exposure. Information is also provided on the current interpretation
of the most prominent clinicopathological features associated with the death of animals. These data
represent information currently available, and are presented as reference material for scientists who
desire to follow in detail the progress of these experiments.
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INHALED PLUTONIUM NITRATE IN DOGS

INHALATION EXPOSURE

DEATH INFORMATION

INITIAL
ALVEGLAR DEPOSITION
DOG BIRTH 8Q/6 BQ/
DOSE GROUP IDENT DATE BQ LUNG KG
CONTROL 1356 M 5/11/74 0.00 0.00
CONTROL 1365 M 5/14/74 0.00 0.00
CONTROL 1376 F 6/17/74 0.00 0.00
CONTROL 1393 M 6/22/74 0.00 0.00
CONTROL 1408 M 7/07/74 0.00 0.00
CONTROL 1418 M 7/16/74 0.00 0.00
CONTROL 1425 M 7/17/74 0.00 0.00
CONTROL 1455 F 8/05/74 0.00 0.00
CONTROL 1483 F 9/03/74 0.00 0.00
CONTROL 1516 F 10/05/74 0.00 0.00
CONTROL 1525 M 10/12/74 0.00 0.00
CONTROL 1526 M 10/12/74 0.00 0.00
CONTROL 1528 F 10/29/74 0.00 0.00
CONTROL 1543 M 11/03/74 0.00 0.00
CONTROL 1563 F 8/06/75 0.00 0.00
CONTROL 1572 F 8/08/75 0.00 0.00
CONTROL 1577 M 9/08/75 0.00 0.00
CONTROL 1584 F 9/12/75 0.00 0.00
CONTROL 1584 F 9/13/75 0.00 0.00
CONTROL 1633 F 4/12/76 0.00 0.00

weT
(x6)

13.0

10.2

12.3
10.6

15.6

10.8
10.6
16.0
12.0

10.2

13.9

11.8

AGE
(#0)

20.
20.
19.
21.
21.
23.
23.
20.
21.
20.
21.
21.
20.
20.
18.
19.
18.
19.
1.

18.

3

2

1

EXPO DEATH MONTHS  AGE

DATE DATE POST INH (MO) COMMENTS ON DEAD DOGS
1/20/76 4/07/87 134.5 154.9 Hypothyroidism

1/20/76 7/16/88  143.8 170.1 Pneumonia

1/20/78 S/Ii/BO 51.7 70.8 Pngumonié

4/20/76  6/19/87  133.9 155.9 Pneumonia

4/20/76  7/17/88 158.9  180.3 Herniated Vertebral Diéc
6/23/76  8/26/83  158.1 181.4 Adenoma, Pituitary

6/23/76  8/02/82 73.3 96.5 Epileptic Seizures
4/20/76  8/20/87 136.0 156.5 Pyometra

6/23/76 12/20/91 185.9 207.5 Heart Failure

6/23/76  2/24/92 188.1 208.7 Carcinoma, Thyroid

7/22/76 11/14/87 135.8 157.1 Transitional Cafcinoma. Ufethra
7/22/76  8/28/90 169.2 190.5 Seborrheic Dermatitis

7/22/76  4/06/87 128.5 149.2 Cerebral Hemorrhage

7/22/16  8/12/86 120.7 141.3 Herniated Vertebral Disc
3/15/77  2/10/92 178.9 197.2 Adenocarcinoma, Ovary

4/19/77 2/01/90 153.5 172.8 Heart Failure

3/15/77  4/04/90 156.6 174.9 Hemangioma, Spieen (Rupfured)
4/19/77 11/29/88 139.4 158.6 Carcinoma, Thyroid ‘
4/19/77 11/02/90 162.5 181.7 Pneumonia; Hepatocef1ur Carcinoma
11/07/77 11/10/86 108.1 126.9 Carcinoma, Thyroid




t'v

INHALED PLUTONIUM NITRATE IN DOGS

ALVED{:;T;Q;OSITION INHALATION EXPOSURE DEATH INFORMATION

D06  BIRTH BQ/6 BQ/ W6T AGE  EXPO DEATH  MONTHS  AGE
DOSE GROUP IDENT  DATE LUNG KG (k6) (M0)  DATE DATE  POST INH (MO) COMMENTS ON DEAD DOGS
CONTROL-SAC 1388 M 6/22/74 0.00 0.00 12.0 2.9 4/20/76 9/11/81 64.7  86.7 Sacrificed
CONTROL-SAC 1405 M 7/05/74 0.00 0.00 10.3 21.5 4/20/76 8/13/84 93.8 121.3 Heart Base Tumor
CONTOOL-SAC 1450 F 7/23/74 0.00 0.00 13.7 20.9 4/20/76 11/04/81 66.5  87.4 Sacrificed
CONTROL-SAC 1509 M 9/26/74 0.00 0.00 11.7 20.9 6/22/76 10/30/86  124.3 145.1 Sacrificed
CONTROL-SAC 1608 M 9/20/75 0.00 0.00 12.0 17.8 3/15/77 2/14/91  167.0 184.8 Rhabdomyosarcoma, Oral Cavity
CONTROL-SAC 1638 F 4/22/76 0.00 0.00 9.1 18.5 11/07/77 9/08/87  118.0 136.5 Sacrificed | |
VEWICLE 1361 M 5/14/74 0.00 0.00 14.0 21.0 2/12/76 4/04/83  157.7 178.7 Heart Failure
VEHICLE 1381 F 6/21/74 0.00 0.00 8.7 19.7 2/12/76 12/05/83  165.7 185.5 Mammary Tumbr
VEHICLE 1392 M 6/22/74 0.00 0.00 12.8 22.0 4/22/76 1/16/90 164.8 186.8 Sebaceous Carcmoma Skin (Lung Metastasxs)
VEHICLE - 1406 M 7/05/74 0.00 0.00 15.5 21.6 '4/22/76 1/21/88 141.0 162.6 Mahgnant Melanoma 0ra1 Cav1ty N
VEHICLE 1412 F 7/15/74 000  0.00 89 19.0 2/12/76 7/06/89 160.8 179.7 Mammary Tumor S
VEHICLE 1421 M 7/16/74 0.00 0.00 13.0 23.5 6/29/76 2/26/88  139.8 163.4 Mastocytoma
VEHICLE 1457 F 8/05/74 0.00 0.00 11.5 20.6 4/22/76 11/07/89  162.5 183.1 Hypothyroidism :
VEHICLE 1491 F 9/05/74 0.00 0.00 8.6 21.8 6/29/76 5/10/89  154.3 176.1 Mammary Tumor
VEHICLE 1504 F v9/26/74 0.00 0.00 10.2 2i.1 B/28/76 2/22/89 151.8 172.9 Mal1gnant Lymphoma
VEHICLE 1514 M 9/26/74 0.00 6.00' 13'4' 21.1 | 6/29/75 8/06/82 73.2 Q4.3 Mahgnant Lymphoma -
VEHICLE 1524 M 10/12/74 0.00 0.00 12.1 21.5 7/27/76 3/27/83‘ 140.0  161.5 Uremic 3yndrome '
VEHIQLE 1531 F 10/29/74 0.00 0.00 8.8 20.9 7/27/76 9)15/91 1816 zoz,s ‘Malignant Melanoma‘fOral Cavxty”;i'  : o
VEHICLE 1542 M 11/03/74 0.00 0.00 12.5 20.8 7/27/76 5/01/89 153.1' BUAK) Ma]lgnant Lymphoma ;f“‘"’°” S
VEHICLE M 00 0.00 14, 9 5/05/77 ' 152.5 172.4 |

1566

9/06/75

.00

19.

1/18/%0

Helignant Lymphona.
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INHALED FLUTONIUM NITRATE IN DOGS

INHALATION EXPOSURE

DEATH INFURMATION

INITIAL

ALVEOLAR DEPOSITION

D06 BIRTH BO/6 BO/

DOSE GROUP IDENT DATE  BQ  LUNG K&
VEHICLE 1578 M 9/08/75 o 0.00  0.00
VEHICLE 1593 F 9/13/75 0 0.00 0.00
VEHICLE 1601 F 9/15/75 0 000  0.00
VEHICLE 1620 M 2/29/76 0 000  0.00
VEHICLE 1634 F 4/12/76 0 0.00  0.00
VEHICLE 1651 F 4/26/76 0 000  0.00
LOWEST 1416 M 7/16/74 0 0.00  0.00
LOWEST 1458 F 8/05/74 0 0.00 0.00
LOWEST 1465 F 8/19/74 154  1.24  13.65
LOWEST 1466 F 8/19/74 191  1.38  15.18
LOWEST 1470 F 8/21/74 114 1.06  11.71
LOWEST 1489 F 9/05/74 0 0.00 0.00
LOWEST 1501 M 9/08/74 0 0.00  0.00
LOWEST 1513 M 9/26/74 0 0.00  0.00
LOWEST 1515 M 9/26/74 0 0.00  0.00
LOWEST 1519 M 10/05/74 84  0.64  7.09
LOWEST 1520 M 10/05/74 a7 037 409
LOWEST 1570 F 9/08/75 67  0.60  6.57
LoWEST 1573 M 9/08/75 0 0.00  0.00
LOWEST 0 0.00  0.00

1581 M 9/10/75

weT
(Ks)

10.2

11.0

11.3

12.6

12.5
11.6
11.7
11.8
11.4
10.2
11.7

16.3

AGE
(w0)

19.
19.
19.
21.]
19.
19.
22.
21.
21.
21.
21.
20.
20.
19.
19.
19.
19.
19.
19.

19.

]

7

6

i

2

EXPO DEATH  MONTHS  AGE
DATE DATE  POST INH (MO) COMMENTS ON DEAD DOGS
5/05/77  2/13/9%0 153.3 ;73.2»_Uremic Syndrqme
5/05/77 12/31/80  163.9 '133:6"Urémkb'éyanéﬁéf“f
5/05/77 4/08/s0 1551 174.8 'ufemiclsyndgpmg,l' o
12/01/77 1/06/87 109.2 130.2 Herniated Vertebral Disc
12/01/77 11/05/92  179.2  198.8 Adeqoma; Pifuéfa;y“A o
12/01/77 11/11/92  179.4 198.5 Granulosa, Cell Tumor, Ovary
5/20/76  2/15/90  164.3 187.0 Heart Failure o
5/20/76  9/21/89  160.1 181.6 Malignant Pheochromdéytdha;'Adrenal E
5/20/76 5/16/89  155.9 176.9 ufemig Syndrome
5/20/76  1/04/90  163.5 164.5 Uremic Syndrome
5/20/76  4/09/84  94.7 115.5 Meningioma
5/20/76 8/04/84 98.5 119;0 :Cafcjnoma,,Esbphagﬁs '
5/20/76  1/03/84 91.5 111.8 ’Catcinéma.'Thyrpid |
5/20/76 10/08/90 1726 192.4 Hepatitis: Lung Tunor
5/20/76 12/06/90  174.6 194.3 Carcinoma, ufethra{_Hepggo;el1g15r”carcinoma
5/20/76  7/13/90  163.8 189.2 Uremic Syndrome J
5/20/76  5/21/90  168.0 187.5 hachHbég; BiTe Duct
419/77 §/19/87  122.0 141;3:3F1bros;rcqm§;‘sﬁp@agh o
4/19/77  9/06/90 1so,s‘v,179.9:'eas;riclujlatgtiﬁn'n'f”'7”" o
1114 1307 Hemangiosarcoma, Spleen

4/18/77

7/31/86
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INHALED PLUTONIUM NITRATE IN DOGS

INHALATION EXPCSURE

DEATH INFORMATION

INITIAL

ALVEOLAR DEPGSITION

D0G  BIRTH B/6 BO/

DOSE GROUP IDENT  DATE BQ  LUNG K6
LOWEST 1583 F 9/12/75 139  1.42  15.67
LOWEST 1592 F 9/13/75 142 0.3  10.25
LOMEST 1596 M 8/13/75 0 0.00 0.00
LOWEST 1600 F 9/14/75 44 0.35 3.83
LOWEST | 1603 M 9/14/75 61 0.39 4.24
LOWEST 1606 F 9/20/75 194  1.31  14.36
LOWEST-SAC 1335 M 4/16/74 178  1.41  15.48
LOWEST-SAC 1339 F  5/01/74 74 0.70 7.67
LOWEST-SAC 1351 M 5/10/74 248  2.21  24.30
LOW 1415 M 7/15/74 8  0.71 7.80
LOW 1417 M 7/16/74 395  3.33  36.59
LOW 123 M 717774 356 3.08 33.90
LOW 1472 F 8/21/74 374 4.04  44.49
Low 1484 F 9/03/74 401  4.14  45.54
LOW 1487 F 9/03/74 222 1.77  19.47
Low 1490 F 9/05/74 581  5.45  59.92
Low 1503 F 9/26/74 324  2.94  32.38
LOW 1507 M 9/26/74 165 1.2l 13.31
LoW  15657‘ 9/06/75 283  2.30  25.31
LoW k’,1557‘ 370 2.81  30.86

" 9/06/75

weT
(ke)

8.
13.
13.
11.
14.
13.

11.

10.

10.

11.

10.
12.
11.

12.

9

9

9

AGE
(M0)

19.2
19.2
19.2
19.2
19.2
19.0
18.0
17.5
17.2
22.2
22.1
22.1
21.0
20.5
20.5
20.5
19.8

19.8

19.4

19.4

EXPO DEATH  MONTHS  AGE
DATE DATE  POST INH (MO) COMMENTS ON DEAD DO6S
4/19/77 10/13/83 149.8 169.0 Carcinoma, Thyroid
4/19/77 10/17/89  149.8 169.1 Prewmonia
41877 7/02/91  170.4 189.6 Senility: Carcinoma, Bile Duct
4/19/77 6/27/90  158.3 177. Uremic‘Syndrome' | .
4/18/77 12/26/90  164.2  183. Uremic Syndrome
4/19/77  ©/22/90  158.1 177. :Hemangiasareom;;:sbjeéﬁ:'“' “
10/16/75 11/13/75 0.9  18.9 Sacrificed '
10/16/75 11/13/75 0.9 18.4 Sacrificed
10/16/75 11/13/75 0.9 18.1 Sacrificed o
5/20/76 12/27/89 163.3  185. “Trahsitiqna] Carcinéhé, Urinéry Bladder
5/20/76 |10/05/89  160.5 182.7 Malignant Lymphoma o
5/20/76 6/27/89 1572 179.4 Panophthalmitis
5/20/76 11/22/89 162.1 183.1 Uremic Syndrome; Cércinoma.'aile Duct
5/20/76 10/26/90  173.2 193.7 Malignant Lymphoma
5/20/76  7/05/90  169.5 190.0 Gastric Dilatation
5/20/76 10/19/88  149.0 169.5 Manﬁéry Tumor
5/20/76 12/13/84  102.8 122.6 Carcinoma, Thyroid
5/20/76 ©6/07/88  144.6  164.4 Ma]ignanf'Melanoha. Oral Cé&ifyr
4/19/77 9/28/85 101.3 >120.. Hemaﬁgiés§r§pma.15plgeﬁ_'t.'v.
4/19/}7  Fephrfti§v:fv:f>

6/15/90

157.

177.
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INHALED PLUTONIUM NITRATE IN DOGS

INHALATION EXPOSURE

DEATH INFORMATION

INITIAL

ALVEOLAR DEPOSITION

D06 BIRTH BQ/6 B8Q/

DOSE GROUP IDENT DATE BQ LUNG K6
Low 1575 M 9/08/75 100 0.63 6.94
LOW 1579 M 9/09/75 308 1.98 21.83
LOW 1580 F 9/10/75 335 2.62 28.87
LOW 1585 F 8/12/75 301 2.14 23.50
LOW 1590 F 9/13/75 228 1.62 17.81
LOW 1591 M 9/13/75 423 2.48 27.31
LOW 1599 F 9/14/75 381 3.43 37.73
LOW 1602 M 9/14/75 553 3.31 36.37
LOW 1607 M 9/20/75 167 1.27 13.94
MED-LOW 1363 M 5/14/74 3144 28.30 311.28
MED-LOW 1380 M 6/17/74 2339 15.75 173.24
MED-LOW 1386 M 6/21/74 1266 7.73 84.98
MED-LOW 1391 M 6/22/74 1991 10.77 118.49
MED-LOW 1413 F 7/15/74 1090 8.85 97.36
MED-LOW 1422 F 7/17/74 3656 44.32 487.51
MED-LOW 1427 F 7/17/74 2518 23.36 256.96
MED-LOW 1439 F 7/20/74 1962 15.12 166.31
MED-LOW 1444 F 7/22/74 1831 15.55 171.10
MED-LOW 1456 F 8/05/74 2248 27.25 299.75
MED-LOW 1523 F 10/12/74 2041 17.50 192.50

weT
(ks)

14.
14.
11.
12.
12.
15.
10.
15.
12.

10.

13.
14.
16.
11.

7.

9.
11.

10.

10.

4

1

6

AGE
(M0

)

19.4

19.
19.
19.
19.
19.
19.
18.
19.

20.

19.
22.
21.
18.
18.
2i.
21.
21.
20.

21.

,

3

EXPO DEATH  MONTHS  AGE

DATE DATE pOST INH (MO) COMMENTS ON DEAD DOGS
4/19/77 12/28/87 128.3 147.6 Transitional Carcinoma, Urethra

4/19/77 6/05/90 157.5 176.9 Hepatoce11u1af Carcin&ma ) |
4/19/77 1/06/92 176.6 195.9 Transitional Carciﬁoma. Urinary Bladder
4/19/77 8/31/88  148.4 167.6 Carcinoma, Thyroid

4/18/77 3/18/87 118.9 138.1 Mammary Tumor

4/19/77 8/15/89 147.9 167.1 Malignant Lvmphoma
4/19/77  3/12/86 106.7 125.9 Carcinoma, Adrenal

4/19/77 8/10/86 111.7 130.9 Epileptis Seizures

4/19/77 7/26/88 135.2 154.2 Hepatocellular Carcinoma

1/20/76 5/12/87 135.7 155.9 Pneumonia; tarcinoma, Adrenal; Adenoma, Bile

Duct

1/20/76  5/24/87 136.1 155.2 Pneumonia

4/20/76  1/04/86 116.5 138.5 Hemangiosarcoma, Spleen

4/20/76  7/22/8S 111.0 133.0 Carcinoma, Thyroid; Lung Tumor

1/20/76  3/01/85 109.3 127.5 Malignant Lymphoma

1/20/76  7/11/8C 173.7 191.8 Lung Tumor; Adenoma, Bile Duct

4/20/76 8/23/89 160.1 181.2 Malignant Melanoma, Oral Cavity
4/20/76 3/30/88 143.3 164.3 Malignant Lymphoma

4/20/76  5/17/90 168.9 189.8 Transitional Carcinoma, Urinary Bladdér
4/20/76  4/21/87 132.0 152.5 Pneumonia

7/22/716 12/21/90 173.0 194.3 Hélignant Melanoma, 0r$1 Cavfty
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INHALED PLUTONIUM NITRATE IN DOGS

INHALATION EXPOSURE

DEATH INFORMATION

INITIAL

ALVEOLAR DEPOSITION

DOG  BIRTH BA/6 BQ/

DOSE 6ROUP IDENT  DATE BQ  LUNG K&
MED-LOW 1530 F 10/29/74 2646  30.84  339.21
MED-LOW 1540 M 10/30/74 2015 12.05  132.57
MED-LOW '1sea n 19/08/75 1702 11.63  127.94
MED-LOW 1569 F 9/08/75 2152  20.81  228.93
MED-LOW 1574 M 9/08/75 1715  14.43  158.76
Mén-Lou 1582 F 9/12/75 2095  20.93  230.25
MED-LOW 1587 M 9/12/75 1947 1264 139.08
MED-LOW 1595 M 9/13/75 1850  12.37  136.03
MED-LOW 1604 M 9/14/75 3145  32.86  361.49
MED-LOW-SAC 1336 M 4/16/74 759 535  58.83
MED-LOW-SAC 1341 F 5/10/74 632  6.29  69.19
MED-LOW-SAC 1384 F 5/10/74 1531  13.64  150.07
MED-LOW-SAC 1359 M 5/14/74 1850  11.68  128.47
MED-LOW-SAC 1375 F 6/1?/74 1850  15.29  168.18
MED-LOW-SAC 1389 M 6/22/74 989  9.08  99.86
MED-LOW-SAC 1390 M 6/22/74 1582  12.28  135.1
MED-LOW-SAC 1407 F 7/07/74 1850  21.29  234.18
MED-LOW-SAC 1445 F 7/22/74 1252 8.8  97.82
MED-Luu-sAc 1522 F 10/12/74 2880  27.56  303.17
1529 F 10/29/74 1586  13.86  152.48

MED-LOW-SAC

ver
(x8)

7.
15.

13.

14.

13.
12.
10.
10.
14.
11.
11.

12.

10.

8
2

3

AGE

18.
18.
18.
18.
18.
18.
18.
17.
17.
20.
19.
21.
21.
18.
21.
21.

20.

0
0
0
2
2
2
1

7/22/76

EXPO DEATH  MONTHS  AGE
DATE DATE  POST INH (MO) COMMENTS ON DEAD DOGS
7/22/16  S/17/86 121.9  142.6 Bone Tumor; Lung Tumor
722076 11/25/85 1240 1449 Lung Twor
3/15/77 12/02/86  116.56  134.9 Preunonia
3/15/77  9/27/87 126.4  144.5 Lung Tumor
3/15/77  7/14/90  160.0 178.2 Lung Tumor
3/15/77 ~8/12/88 136.9  155.0 Mannary.Tumbr;FCafcinomé; Q;IQ‘buct
3/15/77 1/14/86  106.0 124.1 Hemangiosarcoma, Subcutis: LunQFTumﬁr
3/15/77 ° 1/09/90  153.9 171.9 Uremic Syndromé
3/15/77  4/03/90 156.6 174.6 Encephalapathy ‘
10/16/75 11/13/75 0.9 18.9 Sacrificed
10/16/75 11/13/75 0.9 18.1 Sacrificed
10/16/75 11/14/75 1.0 18.2 Sacrificed
1/20/76  1/23/76 0.1 20.3 Sacrificed
1/20/76  1/23/76 0.1 19.2 Sacrificed
4/20/76 5/04/76 0.5 22.4 Sacrificed
4/20/76  5/04/76 0.5 22.4 Sacrificed
1/20/76  1/23/76 0.1 18.6 Sacrificed
4/20/76  5/05/76 0.5 21.5 Sacrificed
772276 10/18/76 2.9 24.2 Sacrificed
10/19/76 2.9 23.7' sacrificéd



6’V

INHALED PLUTONIUM NITRATE IN DOGS

IRHALATION EXPOSURE

DEATH INFORMATION

INITIAL

ALVEOLAR DEPOSITION

D06  BIRTH BQ/G 8O/

DOSE GROUP IDENT  DATE BQ  LUNG K&
MED-LOW-SAC 1539 M 10/30/74 2398  17.58  193.41
MED-LOW-SAC 1564 F 9/06/75 1478  15.64  172.01
MED-LOM-SAC 1571 F 9/08/75 2533  23.25  255.82
MED-LON-SAC 1576 M 9/08/75 2601  19.71  216.79
MED-LOW-SAC 1588 M 9/12/75 1833  12.86  141.48
MED-LOW-SAC 1589 F 9/13/75 1526  13.09  143.95
MED-LOW-SAC 1598 F 9/14/75 3448  42.94  472.38
MED-LOW-SAC 1605 F 9/20/75 932  7.71  84.76
MEDIUM 1362 M 5/14/74 9879  63.25  695.70
MEDTUM 1364 M 5/14/74 17145 135.54  1490.94
MEDIUM 1379 M 6/17/74 10280  61.89  680.82
MEDIUM 1385 M 6/21/74 13794 79.36 873.01
MEDTUM 1387 F 6/22/74 12769 181.37 1995.11
MEDIUM 1404 M 7/05/74 9620  51.44  565.88
MEDIUM 1408 F 7/07/74 12240 115.30 1268.35
MEDIUM 1414 F 7/15/74 8610  92.08 1012.93
MEDIUM 1428 F 7/17/74 13986 116.65 1283.12
MEDIUM 1446 F 7/22/74 13099 112.34 1235.73
MEDIUM 1521 F 10/12/74 7570  61.45  675.91
1534 M 10/28/74 10900 76.23 838.48

MEDIUM

weT
(k6)

12.
8.
9.

12.

10.

11.

11.
15.

15.

17.

10.
10.
11.

13.

4

6

9

AGE
(w0)

20.
18.
18.
18.
18.
18.
8.

17.

20.
19.
19.
19.
21.
18.
18.
21.
21.
21.

20.

7
3

2

EXPO DEATH  MONTHS  AGE

DATE DATE  POST INH (MO) COMMENTS ON DEAD DOGS
7/22/76 10/20/76 3.0 23.7 Sacrificed
s 32078 122 30.4 sacrifiggd 
s 38 122 30.4 Sacrificed
3/15/77  3/17/82  60.1  78.3 Sacrificed
3/15/77 3/22/78 12.2  30.3 Sa;rifiped
3/15/77 6/08/82  62.8  80.8 Sacrificed; Lung Tumor
3/15/17 3/10/82  $9.8  77.8 Sacrificed
3/15/77  3/24/82 60.3 78.1 Sacrificed

1/20/76 12/20/88 155.0 175.2 Bone Tumor; Hepatbﬁél]u]ar Carcinoma;

Carcinoma, Bile Duct; Lung Tumors

1/20/76  8/02/84  102.4 122.6 Lung Tumor B

1/20/76 1/20/88 1440 163.1 Carcinoﬁa,'ailélouct: Lung Tumo%; Bone Tumér
1/20/76  7/12/84  101.7 120.7 Bone Tumor: Lung Tumor

1/20/76 8/13/80 54.8  73.7 Bone Tumor
4/20/76  2/03/86 935 115.0 Pleuritis

1/20/76 10/12/83  92.7 111.2 Bone Tumor

1/20/76 8/14/86 126.8  145.0 Bone Tumor; ang Tump}; Carcinoma, Bile Duct
4/20/76 10/28/85 114.3  135.4 Boné Tumbr;'iﬁnngumorv
4/20/76 8/10/86  123.7 1446 ‘Pyo@eérA;hAdéﬁéma. Bile Duct
7/22/76  6/07/85  106.5 i27.s Bbﬁe Tquf{ LuSQ_Tgmor

7/22/76  5/26/85 klOﬁﬁl 126.9 Heart Fé?ipfgf”jf -
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INHALED PLUTONIUM NITRATE IN DOGS

INHALATION EXPOSURE

DEATH INFORMATION

INITIAL

ALVEOLAR DEPOSITION

DOG  BIRTH BO/6 BO/

DOSE GROUP IDENT  DATE  BQ  LUNG K
MEDIUM 1535 F 10/30/74 12758 115.98 1275.76
MEDIUM 1618 F 2/29/76 10233  88.65  975.14
NEDIUM 1637 M 4/12/76 7100 56.62  622.80
MEDIUM 1639 F 4/22/76 9188  78.80  866.78
MEDIUM 1640 M 4/22/76 11344 85.94 945.35
MEDIUM 1645 F 4/23/76 9520  77.28  850.04
MEDIUM 1647 M 4/23/76 10863  98.75  1086.28
MEDIUM 1656 M 4/26/76 7816 62.88 691.67
MED-HIGH 1419 M 7/16/74 57683 524.39 5768.30
NED-HIGH 1429 M 7/17/74 50312 370.27 4072.95
MED-HIGH 1459 F 8/05/74 97865 926.75 10194.27
MED-HIGH 1471 F 8/21/74 92781 795.72  8752.94
MED-HIGH 1485 F 9/03/74 86210 955.76 10513.41
MED-HIGH 1492 F 9/05/74 91516 875.75 9633.24
MED-HIGH 1498 F 9/08/74 74666 678.78  7466.60
MED-HIGH 1502 F 9/26/74 111289 717.53 7892.81
MED-HIGH 1508 M 9/26/74 63503 395.41 4349.53
MED-HIGH  ISIZ M 9/26/74 89192 526.52 S791.70
MED-HIGH 1613 F 2/23/76  SSIA8 47747  5252.20

621 49343 358.86 3047.

MED-HIGH

1621

2/29/76

46

weT
(k6)

10.

12.
11.
10.
11.
10.

12.

10.

0

.5

.4

AGE
(M0)

20.
20.
18.
18.

18.

18.
18.
23.
23.
22.
2.
21.
21.
21.
20.
20.
20.
20.

20.

7
3

]

EXPO DEATH  MONTHS  AGE

DATE DATE  POST INH (M0) COMMENTS ON DEAD DOGS
7/22/76 10/06/86  122.5 143.2 Bone Tumor; Lung Tumor
W/OI/77 712/88  140.1 1604 Bone Tumor
11/07/77 11/28/88  132.7 151.6 Lung Tumor
11/07/77 12/24/89  145.5 164.1 Radiétion.Pﬁeumonitiég‘Lu;g Tuﬁqr
11/07/77 * 3/20/84  76.4  94.9 Lung Tumor R
11/07/77  8/07/86 1050 123.5 Lung Tumor
1/07/77 1/13/90  146.2 1647 Lung Tumor; Carcinoma, Bile Duct
11/07/77 1/02/91 157.8 176.2 Pneumqnfa: Lung Tumor |
6/23/76 10/22/82  76.0 99.2 Bone Tumor: Lung Tumor
6/23/76 5/29/81  59.2  82.4 jaone‘Tumor{’LungvTum¢r 
6/23/76:' 9/25/80 511 73.7 Radiation Pn¢qm§ﬁi£ig{"

6/23/76 50179  34.2  56.3 Radiation Preumonitis

6/23/76 12/30/80  54.2  75.9 Bone Tumor -

6/23/76 10/16/80  51.8 73.4 Bone Tumor

6/23/76  4/09/82 69.5 91.0 Bone Tumor; Lung TUmpr;:

6/23/76 1/21/81 55.0 75.9 Bone Tumor; LunéiTL&or

6/23/76 1/24/80  43.0  63.9 Bone Tumor o

6/23/76 12/23/79 42.0 ' 62.9 Bone Tumor
11/07/77 1/21/88  62.5 8.7 Bone Tumor
11/07/77 844 1047 ‘Bone Tumor: Lung Tumor

11/19/84
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INHALED PLUTONIUM NITRATE IN DOGS

INITIAL
ALVEOLAR DEPOSITION INHALATION EXPOSURE DEATH INFORMATION
D06 BIRTH 8q/6 BQ/ WGT  AGE EXPO DEATH MONTHS  AGE
DOSE GROUP IDENT DATE BQ LUNG KG (k6) (M0) DATE DATE POST INH (MO) COMMENTS ON DEAD DOGS

MED-HIGH 1636 M 4/12/76 44851 302.03 3322.33 13.5 18.9 11/07/77 5/03/83  65.8  84.7 Bone Tumor
MED-HIGH 1641 M 4/22/76 4771 36652 403174 117 18.5 11/07/77 6/28/85 9:1.'7 1102 Lung Tumor
Meu—}nﬁm’ﬂt“ 1645 F 4/23/76 39255 346.47 381114 10.3 18.5 11/07/77 1/11/82  60.1 © 78.6 Bone Tumor
MED-HIGH 1648 M 4/23/76 30014 21655 2382.10 12.6 18.5 11/07/77 7/11/85  92.1 110.5 Bone Tupor: Lung Tumor
MED-HIGH 1652 F 4/26/76 48822 452.89 4981.79 9.8 18.4 11/07/77 7/20/83  68.4  86.8 Bonme Tumor; Lung Tumor
MED-HIGH 1655 M 4/26/76 40481 432.95 4762.42 8.5 18.4 11/07/77 3/18/85  88.3 106.7 Lung Tumor: Bome Tumor
MED-HIGH 1659 F 4/29/76 36641 254.28 2797.06 13.1 18.3 11/07/77 8/19/83  63.4  87.7 Bone Tumor

MED-HIGH 1660 M 4/29/76 56149 392.65 4319.15 13.0 18.3 11/07/77 9/05/84 81.9 100.2 Bone Tumor; Lung Tumor

MED-HIGH-SAC 13229 F 4/16/74 13420 123.23 1355.55 9.9 18.0 10/16/75 11/14/75 1.0 19.0 Sacrificed
MED-HIGH-SAC 1346 M 5/10/74 24272 158.74 1746.19 13.9 17.2 10/16/75 11/14/75 1.0 18.2 Sacrificed
MED-HIGH-SAC 134i F 5/10/74 25463 257.21 2829.27 9.0 17.2 10/16/75 11/14/75 1.0 18.2 Sacrificed
HIGH 1420 M 7/16/74 142080 1254.02 13794.17 10.3 23.3 6/23/76 7/12/78 24.6 47.9 Radiation Pneumonitis
HIGH | 1424 M 7/17/74 284204 2609.77 28707.52 9.9 23.2 6/23/7i6 8/31/77 14.3 37.5 Radiation Pneumonitis
HIGH 1510 F 9/26/74 257860 2056.30 22619.33 11.4 20.9 6/23/76 11/09/77 16.6 37.5 Radiation Pneumonitis
HIGH 1517 F 10/05/74 191845 1797.899 19777.84 9.7 20.6 6/23/76 11/02/77 16.3 36.9 Radiation Pneumonitis

HIGH 1518 M 10/05/74 131905 1142.03 12562.38 10.5 20.6 6/23/76 12/18/79 41.8 62.4 Radiation Pneumonitis; Lung Tumor
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