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THE GENERALIZED ACCESSIBILITY AND SPECTRAL GAP
OF LOWER HYBRID WAVES IN TOKAMAKS

, Hironori Takahashi

Princeton Plasma Physics Laboratory, Princeton University
P.O. Box 451,_Princeton, New Jersey 08544

ABSTRACT

The generalized accessibility of lower hybrid waves, primarily in the current drive regime
of tokamak plasmas, which may include shifting, either upward or downward, of the parallel

refractive index (nil), is investigated, based upon a cold plasma dispersion relation and vari-
ous geometrical constraint (G.C.) relations imposed on the behavior of nil. It is shown that
nil upshifting can be bounded and insufficient to bridge a large spectral gap to cause wave
damping, depending upon whether the G.C. relation allows the oblique resonance to occur.

The traditional nil upshifting mechanism caused by the pitch angle of maz-.etic field lines is
shown to lead to contradictions with experimental observations. An upshifting mechanism
brought about by the density gradient along field lines is proposed, which is not inconsistent
with experimental observations, and provides plausible explanations to some unresolved issues
of lower hybrid wave theory, including generation of 'seed electrons.'

I. INTRODUCTION

The efficacy of Lower ttybrid Current Drive 1 (LHCD) in driving a bulk of the plasma
current in the tokamak has been well established (see review articles2--4). The emphasis in the
application of LHCD has recently turned to subtle modifications of the radial profile of the
plasma, current for enhanced plasma performance. '_-(aControlled current profile modifications
are thought to be achievable by allowing waves to propagate to a desired location, damp,
and generate a current there. Thorough understanding of wave propagation arid damping
mechanisms is essential in achieving these goals.

The term, 'accessibility,' originally referred to the question of whether or not the lower hy-
brid resonance layer was reachable, i.e., whether or not waves having a, wavelength imposed by
an antenna can propagate unhindered to a location where the lower hybrid resonance condition
is met arid ion heating is thought to occur. As the scope of research involving lower hybrid
waves broadened to include conditions under which no lower hybrid resonance exists within

the plasma, such as electron heating regime and current drive regime, 3 the same term came to
mean whether tile plasma center is reachable. In the context of current profile modifications,
the accessibility now means whether or not any specified point within the plasma is reachable.
There are usually some constraints imposed upon some aspects of the waves in determining the

" accessibility. The accessibility analysis is classified in this article depending upon constraints
placed on the wavelength parallel to the magnetic field lines: in tile 'classical' accessibility,
the parallel wavelength is assumed fixed, e.g., through the periodicity or boundary conditions,



and in the 'generalized' accessibility, changes in the parallel wavelength is permitted. This ar-
ticle is concerned mostly with the generalized accessibility, but its relationship to the classical
accessibility is also examined.

In a simple-minded picture of the classical accessibility involving the lower hybrid resonance,
the resonance is a special condition that occurs at, a specific location in an inhomogeneous
plasma, and waves launched from the plasma edge propagate through intervening regions to
reach the resonance layer where thewaves are absorbed. An examination of the cold plasma
dispersion relation shows, however, a resonance exists, in the form of an 'oblique' resonance,
everywhere in the intervening regions between (almost) the plasma edge and the lower hybrid
resonance layer. The lower hybrid resonance is simply a limiting form of the oblique resonance
that occurs at a right angle to the magnetic field lines. The oblique resonance is, however,
precluded under the constraints of the widely employed classical accessibility analysis, because
the obliqueness requires both the parallel and perpendicular wavelengths to become very short
while maintaining a fixed ratio between them. Perhaps for this reason, the notion of the
oblique resonance has remained obscure. The oblique resonance can occur in the generalized
accessibility depending upon conditions.

It is traditionally assum.ed ill the analysis of lower hybrid wave propagation in an inho-
mogeneous tokamak plasma that no variations in zero-order parameters occur in the toroidal
direction, and the toroidal mode nunlber of waves (i.e., the nuinber of whole wavelengths)
is an 'invariant of the motion.' Magnetic field lines in the tokamak are generally not in the
purely toroidal direction because of the presence of poloidal fields. The component, nil, of
the refractive index vector parallel to the magnetic field direction therefore does not have to
remain fixed. The invariance of toroidal mode number nevertheless imposes a constraint on

the manner nil varies, because the tokamak magnetic geometry ties the toroidal and parallel
components of the refractive index vector. A significant feature of this 'geometrical constraint,'
recognized by Schuss, et al. 1° (in a cylindrical geometry analysis), is that nil can increase ('up-
shift') or decrease ('d:ownshift'), if the perpendicular refractive index, rz±, which is usually

much larger than-'rzl!, becor?ies rotated about the field line, and projects a component in the
parallel direction. Determination of lower hybrid wave propagation and damping in an inho-
" ' _s _ tracing analysis. 11" , mogeneous plasma must usually rely on numerical techmque_ such as rav
Upshifting and downshifting of 7_11have been demonstrated in theoretical analyses 2a2-16 using
the ray tracing technique in the tokamak geometry. It will be shown in the present article that
the geometrical constraint arising from the toroidal mode number invariance can also allow an
oblique resonance to occur. This global constraint on the waves will, however, prove 1o lead to
predictions that are in contradiction with experimental observat.ions. A new local geometrical
constraint will be introduced, and its ramifications on some unresolved issues of lower hybrid

wave theory will be discussed.

There is an aspect of wave damping mechanism that has not been fully understood. The °
lower hybrid waves in the current drive regime are theoreticall) expected to damp through
Landau damping by resonantly interacting with electrons that are moving at speeds near the
wave phase speed parallel to the confining magnetic field. The spectrum of waves launched
into a tokamak plasma by a.n LHCD wave antenna ('grill') has, however, a phase speed often



much greater than the thermal speed of electrons, and there are few electrons that are resonant
with the waves. This gap between the parallel phase speed of, launched waves and electron

thermal speed is commonly known as the 'spectral gap.' Upshifting of nil may be able to fill
, this gap, and cause the waves to damp. Although a. direct experimental confirmation of nil

upshifting is difficult, it has nevertheless become widely accepted as an explanation for how
the lower hybrid waves damp in spite of the spectral gap. The spectral gap can be large or

_ small depending upon the wave phase speed and electron temperature. Implicit in invoking
nil upshifting to explain the wavedamping under any conditions is an assumption that the nil
upshifting can be arbitrarily large to fill a spectral gap of any size. If there is a limit to the
upshifting, the explanation can fail under some circumstances.

Some steps of the development of lower hybrid wave propagation theory will be revisited,
first, to introduce some definitions and features of plasmas under consideration, and, second,
to clarify the connection between the classical and generalized accessibilities. Waves in a cold
plasma in LHCD regime are then examined in terms of wave normal surfaces. The oblique res-
onance is a distinguishing feature of a lemniscoid wave normal surface that characterizes lower
hybrid waves. Relationships between the oblique resonance and some well-known concepts in
the lower hybrid theory, such as the electrostatic approximation, are examined. An analytical
expression is derived for the global geometrical constraint based upon the toroidal mode num-
ber invariance. The electrostatic approximation and geometrical constraint are solved together
to arrive at a range of solutions admissible under the combined requirements of the dispersion
relation and toroidal mode nulnber invariance. The 'adnlissible solutions' will show that char-

acters of wave propagation are qualitatively different depending upon the realizability of the

oblique resonance. When the oblique resollance is realizable, 'l_llupshifting is unlimited, and
_ s", Furthermore, toroidal reflection of waves iscan in principle bridge si)ectral gaps of a.nv ._lzc.

possible. When the oblique resonmlce is unrealizable, there is an upper bound to nil upshift-
ing, and spectral gaps may not. be filled depending upon conditions. An analytical expression
for the bound to the nil ,q)sllifting, when it exists, is derived. Notions of 'wave domain' and
'damping domain' are introduced. The gap between the two domains, which may exist when

upshif:_,lg is bounded, is a spectral gap that cannot be bridged through nil upshifting.

The analytical expression, rel)orted earlier in a simpler t'orm 17 and derived in detail in the

present article, for admissible solutions shows that 7_11upsttifting cazl be bounded or unbounded,
depending primarily upon the plasnm density (in a dimensionless sense) and the pitc h angle of
magnetic field lines. As an example of a tokamak that has a small aspect ratio and consequently
a large field-line pitch angle, TORE SUPRA is considered. It operates at comparatively high
densities. It has unbounded 7_11upshifting over most of the plasrna volume. Shaping of the
plasma cross section also results, to a lesser extent, in a large field-line pitch angle. The PBX-
M tokamak, with a medium aspect ratio, operates with or without cross-sectional shaping,

- (:_ •and at moderate densities. It lla.s bounded nil upshifting, but. the upp :,l bound can range from
• being nearly sufficient to insufficient for wave damping. The TRIAM-1M tokamak represents

an opposite extreme' it, has a large aspect ratio, small plaslna current, and high toroidal field,
and consequently a small field-line pitch angle. It also operates at low densities. Essentmlly no

nil upshifting occurs and no wave damping is theoretically expected. In all of these toka.maks,
however, there was experimental evidence that a current was driven by LHCD. The TRIAM-



1M discharges were in fact entirely sustained by LHCD. The nil upshifting caused by the pitch
angle of field lines will thus lead to.contradictions with experimental evidence.

The oblique resonance carl be realizable, and nil upshifting can be unbounded, when there is
a sufficiently large density gradient along magnetic field lines. The total density gradient must,
be 'tilted' into a direction parallel to field lines by an angle commensurate with the obliq_le
resonance angle. A key assumption here is that the component of the refractive index vector
in a direction perpendicular to the density gradient vector remains invariant. It was shown
by Briggs and Parker is in a plane-stratified geometry that there is a 'new absorption layer'
when the density gradient is tilted from the perpendicular to the field lines. We will show that
their 'new absorption layer' is actually a manifestation of the oblique resonance, and that the

density gradient tilting will lead to 'r_llupshifting in the tokamak geometry. The density gradient
along the field lines may be present in the equilibrium state under special circumstances, or
may be produced locally and temporarily by density fluctuations or MHD perturbations. Tilt
angles large enough to make the oblique resonance realizable can be produced easily when the
perpendicular gradient is also reduced under these conditions. This nil upshifting mechanism
is thus a candidate to explain experimentally observed lower hybrid wave damping in tile face
of spectral gaps.

Past ion heating and currellt d "_' ""rlxe/xp(,tlments, and more recent profile modification ex-

periments have left some fundamentab'issues of' lower hvbI'._ wave physics unresolved. They
" of heating, 3include among others the lack of consistent observation" io'_l and tile existence of

a density limit in the current drive etficacy. In connection witll possible mechanisIns to fill
the spectral gap, the existence of 'seed electrons' is oftell postulated, but the origin of these
electrons has remained unspecified. We will disc_lss l_ow the notion of the oblique resonance

and the proposed 7_,11upshifting nlectlanism based upon t lie parallel density gradient may offer

plausible qualitative explanations to these issues. !

In Sec. II, model plasmas are described with parameters spanning a wide range of LHCD
experiments in tokamaks. In Sec. III, nature of the solutions to a (:.old plasma dispersion

"_erelation are discussed. In S.c. III-A, deliilitions ot' the dielectric tensor elements are given.
Their spatial variations are examined. Ill Sec. III-13, tile classical accessibility of waves with

a fixed nil into an inhomogeneous plasma is discussed. In Sec. Ill-C, the notions of wave
normal surfaces and oblique resonance are introduced. In Sec. III-D, the notions of inverse
wave normal surfaces and electrostatic aI_proximation are discussed. In Sec. IV, a constraint

placed on 7_,11,arising from the toroidal mode IlUiill:)erinvaria|lce assuml)tion, is derived. In
Sec. V, a concept of the range of solutions, admissible under the combined requirements of the
dispersion relation and geometrical constraint relation, is discussed. In Sec. V-A, a geometrical
interpretation of the admissible solutions is given. In S_c. V-B, an analytical expression fox"
the range of admissible solutions is derived. In Sec. V-C, a notion of the wave domain is
introduced. The spectral gap and wave damping are discussed. In Sec. V-D 7e.llupshifting
caused by the parallel density gradient is proposed. In Sec. VI, a summary and discussion are
presented.



II. PLASMA MODELS

Model plasmas are employed to obtain numerical examples. We consider for most part a
• bean-shaped model plasma, similar to plasmas in LHCD experiments on the PBX-M tokamak.

This model plasma., referred to as 'PBXM,' is representative of tokamaks in which nil upshifting
is bounded according to the 'traditional' mechanism based upon the field-line pitch angle, but
the upper bound of nil is large enough for the waves to satisfy (or nearly satisfy) the damping
conditions. Detailed calculations based upon equilibria reconstructed for experimental plasmas
in this tokamak is reported elsewhere. 19 A second model, referred to as 'TRIAM,' is a circular
plasma similar to those sustained entirely by LHCD (i.e., no inductive drive) in the TRIAM-

1M tokamak, 2° and is representative of tokamaks in which the nfl upshifting is severely limited,
and wave damping through traditional nil upshifting is highly unlikely. A third model, referred
to as 'SUPRA,' is a circular plasma similar to those found in the TORE SUPRA tokamak, 16

and is representative of tokamaks in which traditional nil upshifting is unbounded over most
of tile plasma cross section. Some basic parameters of the models are tabulated in Table I.
Numerical examples discussed in later sections are based upon these sets of parameters unless
specifically stated otherwise.

Table 1" Parameters of Plasma Models-I

TRIAM PBXM SUPRA ' "[,nits

Be, 7 1.5 3.9 T
n_(O) 2 3 4 1019/rn3
7_(0) 0.6 1.5 1 keV

./'w 8.'2 4.6 3.7 GHz

• Ip 40 180 1,600 kA
Ro 0.84 1.65 '2.40 m

ap 0.12 0.3 0.8 m
I _4 7.0 5.5 3.0 rn

_t q_d,q_ 15 8.3 3.3
9r

' R,naj 0.96 1.95 3.20 m
' _rg" 297 395 446

[ n__ 1.8 '2.1 1.8

The major and minor radial coordinates are R,_aj a,nd 7',_i_, respectively. The plasma
major radius is designated by R0. For the circular pla,smas, the minor radius is designated

by %. The aspect ratio is defined by A - R0/ap. The electron density is assumed to have
a parabolic profile in the normalized minor radius, nc(r,_i,_) = nc(0)(1 -(r,_in/ap)2). The
electron temperature is assumed to have a profile of a parabola raised to the power of 2, T_ =

• T_(0)(1- (r,_,_/ap)2) 2. For the bean-shaped plasma, the 'minor radius' refers to the plasma
half-width along the midplane, and the profiles are specified along the midplane. The plasma
ion species is chosen to be deuterium for all model plasmas, but the choice is inconsequential

, in the present analysis.

We classify properties of a model into three categories, and refer to each of them by a



specific term. We refer to tile electron density and temperature, and the intensity (but not
the direction) of the total magnetic.field (BT) as 'plasma properties.' We also regard the wave
frequency (fw) as a plasma property, because we make the density and magnetic field intensity
dimensionless using the wave angular frequency (w = 2rrf_). The plasma properties determine
the local dispersion relation and wave damping. The pitch angle between the magnetic field
vector and the toroidal direction plays an important role in determining the geometrical con-

straint on nil shifting. We refer to parameters that influence the angle as 'magnetic geometry'
properties. They include the plasma current (Ip) and toroidal magnetic field (Be) as well as
geometrical properties of the plasma, such as the plasma shape, and aspect ratio. Finally, we
refer to the major radial location gT(Rmaj) of the t,HCD grill, and the toroidal mode number

9r . gr
(N_{T),or equivalently the toroidal refr ctiv index('4,' - Ne, c is the speed
of light in free space, imposed by the grill as 'boundary conditions.' Shown in Table II are some
dimensional and dimensionless characteristic frequencies based upon the plasma properties on
the geometrical axis. Maximum values within the pla.sma volume of some elements of the
dielectric tensor are also included in the table. The definitions of these quantities will be given
in Sec. III.

Table 2: Parameters of Plasma Models-II

TRIAM PBXM SI_PRA Units
*" 9w o.,_ 4.6 '2 3 101°rad/sec

"v_ 2.5 3.1 3.6 1011rad/sec
w_ 12 2.6 6.9 15 '1rad/sec

WLH 4.1 3.3 7.4 l09 rad/sec
w q., 20 4.4 16 109 rad/sec

c@_/w 4.9 11 15
w_/co 24 9.1 30

WLH/w 0.08 0.11 0.32
w:j,,,/w 0.39 0.15 0.69

("v / _"_ )2 0.0,1 1.4 0.27
IPl Ira

,q' 1.04 2.40 1.24

PI/,5' '2'2 49 196

The pitch angle, (t, between magnetic tield lines a11dtile toroidal direction will be needed in
our analysis. The variation along the midplane of the pitclL angle, (t -- arctan Bo/B¢, where Bo
is the poloidal magnetic field, is plotted in Fig. 1 for all three model plasmas. For the PBXM
model plasma, the angle was taken from typical eqtlilit)rium calculations. For the TRIAM and
SUPRA model plasmas, the angle was calculated from an assulned parabolic radial profile of
the safety factor, q(r_,_i,,), with q(0) = 1. No Shafi'anov shift was included in these calculations.
We note that the pitch angle is larger oll ttw outboard side tlmn on the inboard side for the
both circular plasmas (TRIAM and SUPRA), but the angle is comparable on either side for
the bean-shaped plasma (PBXM). We note also that the pitch angle is far greater for the
SUPRA plasma than for the TRIAM plasma, because the SUPRA model has a much smaller
aspect ratio as well as a much smaller q_gg_. The pitch angle for the PBXM model plasma is

6



enhanced compared to that for a circular plasma. (not shown) in the same tokamak because of
shaping.

• i0 i l ,

Fig. 1: The variation along the midplane of the
SUPRA

8. t_..-_.., magnitude of magnetic field-line pitch angle is

/. shown for the three model plasmas. The angle for

v / _ the SUPRA model is nmch greater than that forv 6' PBXM

' -- / / PBXN the TRIAM model, because the SUPRA model

< has a much smaller aspect ratio as well as a much
x:: 4,

smaller qedge. Tile angle for the PBXM model

_ plasma (bean-shaped) is large compared to that

2 for a similar circular discharge (not shown) be-

cause of shaping.
0 I 11''

R a R R + a
0 p 0 0 p

Major Radius

III. DISPERSION RELATIONS

We will largely follow the nomenclature used by Stix 21'22 in revisiting some steps of the
development of the theory of lower hybrid wave propagation. The purpose of tt_is section
is primarily to introduce tile notion of the oblique resollance and to clarify the relationship
between the classical and generalized accessibilities. The definitions of terms and symbols,
which will be needed in later sections, are also stated.

A. Dielectric Tensor Elements

Elements of the dielectric tensor for a cold homogeneous plasma, made of electrons and
i, ions of a single species, and immersed in a. uniform maglmtic field, are defined as,

_,2 2

R _ 1 - 7:_+ wPi
(_ - _.'_)(_+ _i)'

,2 , ,2

L - 1 - ";m + _vi
(_ + ,_)(_ - _'_i)'
, 2 2

P - 1 - wP_+ wvi
_2 '

,q= 1
_ _(R+ L),

" D = _(R- L), (1)



2
where oop, -- q_n,/(eoms) is the square of the plasma frequency, and w, = q,B/ms is the
cyclotron frequency, in which the.subscript s stands for either the electron (e) or ion (i)
species, e0 is the vacuum permittivity, n, is the number density of the species ,s, rn, is the mass
of a particle of the species s, and q, is the magnitude 1 of the electronic charge on a particle

, 2 1/c@,_ where theof the species s. The lower hybrid frequency is l./W2LU- 1/(co2i + ',.opi) + ,

square of the gm (geometrical mean) gyrofrequencv, is defined by ,ajm2_- coce¢oci.Some of these
frequencies are evaluated at the geometrical center of the plasma,, and are tabulated in Table I
for the three model plasmas. The maximum magnitudes of P, ,5' and P/S encountered within
the plasma are also tabulated there.

The full expressions in Eq. 1 are used for all numerical calculations presented in this paper.
For analytic evaluations in the current drive regime far away from the lower hybrid resonance

,2 _2 . ,2 (aO2 2condition., approximate expressions valid for wei << << _.c_, << wp_ and co_coci.<< w 2 are
useful, and are given by,

P = _";;,,

co 2

S- 1+
cc

2

D = %'_ (2)
CUtMce

These expressions are valid everywhere in the model plasmas except near their periphery. For
conditions close to, or iIIcltl(lillg the lower hybrid resonance, l.he expression for S should be
replaced by ,q'= 1 + ( _)_/,.',,,)- -(,::,i =

Variations along the Inidl_lal_' of the dielectric tensor elernents are shown in Fig, 2 for the
PBXM model plasma. \:aria_i_l_s along al:ly other plasnm diameter are qtmlitatively similar,
and regions of different cllaracleristics referred to in later sections are roughly of either 'ring-
shaped, or 'disc-shaped' zo_l,.'s. \'aria ti_ms of the tensor _1:m(nts for the SUPRA and TRIAM
model plasmas (not. showz:) are qualitatively similar to tilose for the PBXM plasma, except
that the maximum values allaiI_cd by the individual elements are quite different (see 'fable I
for the maximum values of soI_l_'t_ei'tirlent elements and ttl .ll ratio).

We note that ,g' is sigIli[icaIltly greater than unity for tile PBXM model plasma, unlike
the other two model l)laslnas: (,lcctrons are not as 'stroll,,lv,,. llmgnetized' in the PBXM model
plasma as they are in the or tiers (see Table I). The plasnla density plays a more important role

,2 ,2 . -_in the PBXM model pla.snm lllall in the others through tile_.7,¢./cc_cterm in ,q'(see Eq. 2). We
also note that L < 0 over n_ost of the plasma voh_me for t,l_ePBXM and SUPRA plasmas, but
that L > 0 everywhere for TIIlAM plasma. The TRIAM rnodel plasma is in a region of the
parameter space that is qualitatively different from that oCCUl)iedby the others.

It is a feature common to all of these model plasnms that the lower hybrid resonance

condition (S = 0) is not satisfied anywhere inside the plasn_a. This feature is in fact a

_Wedeviate from St.ix'snomenclature and sign convent.ionhere: q., is a signedquantity, and w_.is a negative
quantity in his definitions.



characteristic of the lower hybrid current drive regime (in contrast to the lower hybrid ion
heating regime): densities are low enough, or frequencies are high enough (WLH/W << 1), that
the lower hybrid resonance does not occur inside the plasma (see Table II).

I ! I
15'

Fig. 2' Variations of cold plasma dielectric

10. tensor elements along the midplane are shown

for the PBXM model plasma. Tile P cllrve is

5. shown divided by 10. P = -113 and S = 2.4

at, their respective maxinmm magnitude. The

._ 0 value of S deviates significantly from unity,

indicating that the electrons are 'weakly mag-
o, netized.'-5.

•m L

-10'

I I t

i 35 I. 50 1 . 65 ! . 80 .95

R [m]

B. Classical Accessibility

In the framework of usual lower hybrid wave propagation theory, a dispersion relation
written for a homogeneous plasma is assumed valid locally at, each point in an inhomogeneous
plasma. It has been a common practice to solve the dispersion relation for n± 2 for a given
value of rZll,and present the solution as a function of position (or a plasma parameter, often

the density). The presentation is useful for examining how far waves of a given and fixed nil
(i.e., non-upshifting) can penetrate into an inhomogeneous plasma. This is the classical wave
accessibility question. A form of the of cold plasma dispersion relation useful for answering
the question is given by, 21'2'_

a477 L4 -- a27_tL2 Jr"a 0 --- O,

a,! _- _q.',

a,2- R L + PS- (P + 5')nil2,

ao = P(RL- 2,5'nll2 + nil4). (3)

Variations along the midplane of the real-valued solutions of Eq. 3 for n± 2 (denoted as

n2v in the figure) are shown in Fig. 3 tbr a set of nil values for the PBXM model plasma.
For the lowest three values, nil = 2.1,'2.45 and 2.70, zlo real-valued solutions are found in a
plasma central region. The deepest (smallest 'minor radius') poillts t,o which waves propagate
are 'turning points' (indicated, e.g., by 'M' on the curves for nil = 2.70). These are points at
which the given value of nil satisfies the mode conversion condition. The domain in which real

• solutions are found is greater on the inboard side on account of a higher magnetic field there.
For waves with a sufficiently high nil (e.g., the curves for n,ii = 2.75), there are no turning
points, and the entire plasma, volume is 'accessible' to the waves.



Diagrams, such as the one in Fig. 3, show how far a wave can penetrate into the plasma.

if the wave retains the original 7_11with which it was launched at the plasma edge. It is also
useful to be able to evaluate, through simple calculations, the value of nil that is needed for a
wave to penetrate to any given point in an inhomogeneous plasma, or equivalently, the value

of nil that satisfies the mode conversion condition at each point in space.

Fig. 3: The classical accessibility of' the PBXM

, , , model plasnm is shown. Only two curves, with
n : 2.75

nil = 2.75 and n.ii = 2.70 (only the one on the

200 inboard side), reach the plasma center. The

other curves 'turn around' at a point short

_.7_ of the plasma center. The turning point of

n 2 100 a wave (e.g., 'M' on nil - 2.70 curves) is a
PP point at which tile mode conversion condition

is satisfied, and the wave changes its character

from the lower hybrid wave (the larger nj. 2

0 segment) to the fast, wave (the smaller n j_2

c c segment). The fast wave is cutoff (i.e., n_L2 _<

JSO I i!. ?s l 1._:,s_ ,,._c, ', vs O) under solne conditions (e.g., 'C' on nil =
R lml 2.7.5 curves).

pThe condition that solutions to Eet. 3 be real-valueci is tl'_emode conversion condition, and
is given in its general form by a_- 4a4a0 >__0. The condition can be re-written in terms of a
polynomial in nil 2 as,

b4nll4 - b27_11"e+ bo - O,

b4 = (t' -S) 2,

/,2= - I' + + P -
bo = (1_L - P,5')2. (4)

This polynomial has two solution branches for nil2 which can be written in terms of the dielectric
tensor elements only. Both solutions are complex-valued, and no mode conversion occurs in
the thin peripheral region outside the so-called critical layer (see below). In the central plasma

region the branch that results in a positive value for _Zll'2 is to be takeIl. The solution yields
a numerical value at each point in space when the tensor elements are evaluated there. We

designate this value by (nllMC) ', and write,

c ,2 + - t,o)
("Zll ) = '2lq (5)

Variations of nilMe' along the midplane are shown in Fig. 4 for the three model plasmas. The
PBXM model plasma represents a comparatively 'inaccessible' situation, while any wave with

a nil value only slightly above unity can access the TRIAM model plasma interior.

An approximate expression for nilMc was derived 1)3;Stix. 23 Except for a thin plasma
edge region, conditions, P < 0, L < 0 and -S/P << 1, hold (see Fig. 2), and nilMc ,_

10



x/_+ v_(RL/P). With an identity, RL/P = (S 2- D:)/P, and a further restriction, S 2 << D2,

an expression identical to Stix% result, nilMc _ _ + V/((- D2/P), is obtained. Noting
-D2/P = S- 1, if the simple expressions for dielectric tensor elements, Eq. 2, are used, a
simple mode conversion condition is given by:,

, ll + 1). (6)

Waves with an nil value greater than nilMc evaluated at a plasma interior point can propagate
to that point (under an implicit assumption that simple monotonic density and magnetic field
profiles lead to monotonically increasing nilMc leading to the point). As S tends to unity, nil MC

also tends to unity. We note that this expression depends only on the parameter, (wvc/Wce)2.
The approximation given by Eq. 6 results in nearly identical va.lues as the exact expression in
Eq. 5 for any of the three model plasmas.

Fig. 4: The variation along the midplane of the

value of nil, designated as nilMe, that satisfies the

local mode conversion condition, is shown for the

2 three model plasmas. In order for a wave to reach

_:_. any midplane point in a model plasma, the wave

=- nmst possess nil equal to, or greater than, nilMc

: pertinent to that point.

R a R R * a
0 p 0 0 p

Major Radius

There may be points on a curve in Fig. 3 a,t which n±2 becomes zero (e.g, points indicated
9 " .by 'C' on the curves labeled nil = _._5) The condition for this to happen (:an be found by

setting to zero the coefficient, a0, defined in Eq. 3. The resulting equation involves only nil2
and dielectric tensor elements. We designate the value of nil that satisfies the equation by
nilfC. It is given by,

FC )2(?_11 - _" (7)

The point is customarily called a fast wa,ve 'cut-off' point.

A turning point, if one exists, and the plasma edge divide each solution curve in Fig. 3
into two sections: the upper (larger n_k2) and lower (smaller n±2) sections are often referred to
as the slow waves (or lower hybrid waves) and fast waves, respectively. For waves with large

nil, there are no turning points within the plasma, the real-valued solutions are represented
by a pair of disconnected curves (see, e.g., curves for nil = 2.75): the upper curve represents

_'The same result has been obtained by other researchers.
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the slow waves and the lower curve represents fast waves. The lower hybrid waves propagate

everywhere inside the plasma (except in a very thin layer at the plasma edge--see below),

and the fast waves may also propagate in a central region. For waves with still larger nil , the

domain of propagation of the fast waves shrinks and finally disappears. It is interesting to
note that these 'two' waves, slow and fast, waves, discussed here comprise a single branch of

the solution to the cold plasma dispersion relation (see below).

It is the variation with nll of tile wave penetration depth that is proposed as a tool for
controlled modification of the current profile. In addition to the accessibility, however, wave

damping must also be considered. Waves may penetrate to a desired location, but may not

damp there because of a too low electron temperature. Waves may also damp 'prematurely'

before reaching a desired location, if the electron temperature is too high.

C. Wave Normal Surfaces and Oblique Resonance

The conventional dispersion relation calculations shown in Fig. 3 are useful for assessing

the classical accessibility, and for providing quantitative information on n± for a given value of

nil. The form of representation is not convenient, however, when the notion of a fixed nil wave

is abandoned, and the concept of nil shifting, either upwa, rd or downward, is introduced. It also
r .(.._gives little information on the nature of waves. We explol here another form of representation:

the dispersion relation is expressed at a given point, iIl space (i.e., for a given set of plasma

parameters) in terms of' _ " 'wave normal suriaces.

The cold plasma dispersion relation given in Eq. 3 can be written in terms of the magnitude

of normalized phase velocity w_clor. ,, - irph, where uUT,h -- kw/(1,'2c) and /,: - k', and the
zenith angle between the phase velocity and magllet, lc fi =ld vectors, (,,. The zenith angle is the

angle of a vector measured from the local magnetic field vector in the plane that contains both

vectors. The phase velocity is normalized by the speed of light in free space. The equation
can be written as, 21'22

Aolt '1- A2 U2 Av A4 = O,

A4 = ,5'cos 'e(,_ + P sill 2(,,

A2 -- RLsin 2 C,,_+ P,5'(1 +cos 2 (,_),

A0 - PRL. (8)

Solutions to this equation can be represented in terms of wave normal surfaces.

A wave normal surface is the locus traced by the tip of the normalized wave phase velocity

vector as the wave propagation zenith angle is varied. A wave normal surface is a. three-

dimensional (3D)surface of revolution about its vertical axis, which is the parallel component,

Ull, of the normalized phase velocity vector 3, and is symmetric about the plane, ull = 0. Two

aFollowing a perhaps unfortunate but widely-accepted convention, we earlier used the term 'parallel phase
speed,' to mean the quantity, w/kll, where kll is the parallel component of the wave vector, /_, rather than the

parallel component of the phase velocity vector, o0/k, as defined here. The latter quantity is Wkll/k'
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types of the wave normal surface are encountered in the LHCD field, and are the spheroid and
'dumbbel' lemniscoid (or a rotated 'figure eight'). A lemniscoid wave normal surface is depicted

in Fig. 5. Only the upper half (ull >_0) of the rotated 'figure eight' is shown in its vertical cross
• section. The topological genus of wave normal surfaces have been used to classify the type of

solutions to the cold plasma dispersion relation in the Clemmow-Mullaly-Allis (CMA) diagram.
In the diagram the parameter space is divided by 'bounding surfaces' into various 'bounded

• volumes' in which the wave normal surfaces remain topologically the same. The topological
characteristics obey a set of well-defined rules22; for example, tile two surfaces never intersect
each other, and if they touch each other, they do so only either at the 'north and south poles'
or along the 'equator' of the surfaces. Classifications of wave types based upon the topology of
wave normal surfaces are less prone to confusion caused by semantics (such as 'fast'or 'slow'
waves).

Fig. 5: The lemniscoid wave normal surface
_ >. , %

/ (upper half only) is shown by a solid curve

for a mid-radius point on tile inboard side

& (R = 1.5 m, z = 0 m) for the PBXM model

_0.2- plasma. A lenmiscoid wave normal surface

=_ : k___Q _ possesses a resonance at an ol)lique angle _es, .
2 0.1 \/_ ,t The part of tile surface near tile resonance, up

/_' to the mode conversion point (MC) is usually
_b ,,,..

Sl_ _ve_ referred to as 'slow waves, and the remain-
I )

-0.2 -0.1 0 0. i 0... ing part, as 'fast, waves.' The locus of constant
Pe]_p. Phase Speed

nil = 2.7 is shown in dashed line, The inter-
sections of tile solid curve and dashed line are

the 'l,wo' solutions shown in Fig. 3.

Variations ot' the dielectric tensor eletnenl, s near l,]le l)lasma edge on the inboard (small
R,,_=j) side are shown in Fig. 6 for the PBXM model plasma (a greatly magnified edge region
of Fig. 9)_. Each horizontal division icptc,¢nts""s_ 1 crn. Conditioils, P = 0 and L = 0 (each
indicated by a short vertical dashed line), divide the plasma into three regions labeled, '6a,'
'7,' and '8a.' These conditions are two of the bounding surfaces of the CMA diagram. The
labels used here correspond to those used by Stix 2l''22in identifying bounded volumes of the
CMA diagram (see Figs. 2-1 and 2-2 of the references cited). Associated with each bounded
volume there are up to two wave normal surfaces, which are sketched in the insets of Fig. 6
(without. the scale to indicate their size). Each curve in tile insets represents a 2-D vertical

\ :_t_cal ax s. a curvecross section of a 3D figure of rotation aboul the "e" ' i The shape of in detail
may change (e.g., from circle to ellipse), but its topological characteristics remains unchanged
at different points within each bounded w)lume.

We note P > 0 within a very thin (ring) region, '6a,' at the plasma edge. The region is
• only 1.3 mm in width on either the inboard or outboard side of the PBXM model plasma. The

corresponding number is 1.7 mm for the SUPRA model plasma, and 2.,.5mm for the TRIAM
model plasma. Each of the two branches of the dispersion relation has a wave normal surface
that is topologically a spheroid. The surfaces shown in Inset (a) of Fig. 6 are for a point 1 mm
from the inboard edge of the plasma, (Rmaj = 1.351 m). The outer wave normal surface ('faster'
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wave) has a left-handed polarization (L) for parallel propagation and an ordinary polarization

(O) for perpendicular propagation..The inner wave normal surface ('slower' wave) has a right-

handed (R) polarization for parallel propagation, and an extraordinary (X) polarization for

perpendicular propagation. A spheroid surface (not shown) corresponding to the speed of light

in free space would intervene between the two surfaces, but lie very close to the inner surface.

At the plasma edge (in vacuum), the two surfaces become identical, and at the bounding

surface, P = 0, they touch each other at the 'north and south poles.' The surface is often

called the 'critical layer.'

2

/ _' (c) Fig. 6: The region near the inboard edge of
1 tile PBXM model plasma is divided into three

p__0_"-_ T_0 'bounded volumes,' designated as '6a,' '7' and

a'p "Jl_' '8a,' by 'boundirlg surfaces,'P = 0and L = 0,/101--_ of the CMA diagram. In each bounded volume

_1 ili6_a.' .._ thetopologyofwave normalsurfaces isshown"-_ "',,:'am' the volume, '6a,' has two solution branches, each

_..x_-_/f._ L(b)_ with a spheroid wave normal surface, the volume,

(a) ____,((_/)_.._\ _ '7,' has two branches, one with a spheroid surface

x and the other with a lelnniscoid surface. The vol-

ume, '8a,' has only one brmlch with a lenmiscoid

surface. In the insets, letters, 'L,' 'R,' 'O,' and

'X' refer to the polarization of' the wave electric
field.

Within the next thin region, '7,' at the plasma edge (as well as in '6a'), we note L > 0. The

region is 1.6 cm in width on the inboard side, and 1.2 cm on the outboard side, for the PBXM

model plasma. The corresponding numbers are more substantial for the SUPRA model plasma,
and are 7.5 cm and 4.0 cm, respectively. For the TIIIAM model plasma, L > 0 everywhere,

and the entire plasma interior belongs to the region, '7.' One solution in this region, labeled

'L-X,' still has a spheroid wave normal surface ('O' and 'X' labels were interchanged at the

critical layer), and the other has a lemniscoid sllrface. The surfaces shown in Inset (b) of

Fig. 6 are for a point 1 cm from the inboard edge of the plasma (R,,_,j = 1.36 m). A spheroid

surface corresponding to the speed of light in free space intervenes between the two surfaces,

and is shown by a dashed curve. The curve helps to gauge the phase speed: the spheroid and

lemniscoid branches represent waves travelling faster (u > 1) or slower (u < 1) than the speed

of light, respectively. At the bounding surface, L = 0, which is a cut-off, the L-X wave normal

surface disappears. Within the remaining central region, '8a,' P < 0 and L < 0. Note that

this region occupies most of the plasma volume for the PBXM and SUPRA model plasmas.

It is interesting to note that there is only one l)ranch, which has a lelnniscoid wave normal

surface, to the solution of the dispersion relation in this region.

Except in the very thin region, '6a,' at the plasma edge, waves concerned in the conventional

LHCD theory are everywhere characterized by a lemniscoid wave normal surface. An example
of the lemniscoid wave normal surface in the bounded volume, 'Sa,' was shown earlier in Fig. 5.
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A lemniscoid surface has a resonance at an obliqu.'- zenith angle, Cr_s < zr/2, and the phase

speed tends to zero there (or, equivalently, both 7_11and n± tend to infinity). The surface shown

here (and also in Inset (c) of Fig. 6) is for a mid-radius point on the inboard side (R = 1.5 m,

• z = 0 m) in the PBXM model plasma, and the resonant angle is Cr_s = 81.6 deg. The R wave

normal surface in the bounded volume, '7,' in Inset (b) of Fig. 6 is a lemniscoid, but has a

much smaller resonance angle (¢_s = 68 deg at 1 cm from the plasma edge for the P BXM

• model plasma), than in the '8a' volume.

200 i l I !

Fig. 7' The variation of a dimensionless 'density,'

-P/S, along the midplane is shown for the three

lSO model plasmas. The PBXM and TRIAM plasmas

are low 'density' plasmas, and the SUPRA plasma

100 is a high 'density' plasma. Low 'density' plasmas
' have a small oblique resonance angle, and high

'density' plaslna have a large resonance angle.
50

0

R - a R R a
0 p 0 0 p

Major Radius

In the bounded volume, '6a,' the classical accessibility representation shown in Fig. 3 has

two solutions with a purely imaginary n± value, and has no counter-parts among wave normal

surfaces shown in Fig. 6. This is a consequence of the choice made in Fig. 3 of a fixed nil that
is significantly greater than unity. In the. bounded volume, '7,' the classical representation has

a solution with a real n± value, which corresponds to the lemniscoid solution, and another

solution with a purely imaginary n± value, which has no counter-part wave normal surface. In

the bounded volume, 'Sa,' the classical representation has two solutions with a real-valued n±,

which corresponds to the single lemniscoid wave normal surface there. It may seem peculiar

that the 'two' solutions belong to the same wave normal surface. The apparent conflict can be

resolved by plotting the trajectory of constant nil together with the wave normal surface. The
normalized phase velocity and refractive index vectors have a vector reciprocal relationship,

i.e., ff = (ff)-_" in terms of vector components, ull = nll/(nll 2 + n± 2) and u± = n±/(nll 2 + n±2).
The trajectory is represented by two spheres tangent to each other at the origin, and is shown

by a dashed curve in Fig. 5 (only the upper sphere is shown in its vertical cross section).

The intersections of the solid curve (wave normal surface) and dashed trajectory are the 'two'

solutions shown in Fig. 3: the intersection with a greater value of u is the fast wave and the

one with a smaller value of u is the slow wave. At the turning point, (in space) for the chosen

value of nil , the dashed trajectory becomes tangent to the wave normal surface at the mode
conversion point (in ff space) designated by 'MC' in Fig. 5, and the two solutions coalesce.

• The wave propagation angle at this point is designated as _'A4c'in tile figure.

There are two types of propagating waves (R-X and L-O) in the bounded volume, '6a,'
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and one type (L-X) in the volume, '7,' that are absent in the classical representation of the
accessibility. Roles played by these waves, if any, have been little explored in the conventional
LHCD theory. These waves have phase speeds comparable to (and slightly below), or greater
than the speed of light in free space, and will interact little with electrons. They can, however,
carry energy away into plasma peripheral regions as 'surface waves,' and can be important
from a power balance point of view. In early LHCD experiments, grills consisting of only

a few large waveguides were used, and the nil spectrum of electric field generated by the
waveguides ('waveguide' spectrum) extended to values well below unity. Modern grills with
a large number of small waveguides have a sharply defined peak in the waveguide spectrum

centered around a desired 7z[Ivalue. But the overall size of tile grill (rather than the width
of individual waveguides) defines another characteristic scale length that nmst be rer)resented

by a spectrum of low nil values. Even the modern grills thus have a waveguide spectrum
extending to small nil values. The so-called Brambilla spectrurn 24 refers only to that part of
the waveguide power spectrum that is carried away by propagating waves having n,l[> 1. The
waves, missing in the classical accessibility representation, do not therefore manifest themselves
in the Brambilla spectrum. (Those waves, that are considered in the conventiom'.l theory, but

have small grill-launched r_ll (see, for example, 7_11= 2.1 curve in Fig. 3) and thus have poor
accessibility, remain in the plasma periphery, and may also be regarded as a form of 'surface
waves.' The surface waves discussed in the present paragraph are, however, distinct from these
poor accessibility waves.) Diagrams used extensively in the classical accessibility analysis, such
as the one shown in I?ig. 3, appear to depict 'two' waves, and thus give a false impression that
the complete solutions to the bi-quadratic dispersion relation are represented.

The dispersion relation in polar form, Eq. S, readily yields the condition for the oblique

resonance. By setting A,t = 0, and thereby allowing one solution for 7ellto tend to infinity, we
obtain,

P

tan'2¢_,_= ,_" (9)

This resonance 4 was first described by Allis 2s (see also Stix21'22). The right-hand side (RHS)
of this equation, which determines the resonance angle, can be regarded as a dimensionless
'density,' and is plotted in Fig. 7 for all three model plasmas. The PBXM model plasma has
significantly lower dimensionless densities than the SUPRA model l)lasma. An examination of
the numbers in Table II and Fig. 2, shows that these low dimensionless densities are in part
a result of high values of S'. High S values are in turn a result of' high ratio, (,_p_/,,)2 (see
Eq. 2). The oblique resonance angle, ¢_, is plotted in Fig. 8 for all three model plasmas. The
deviation of the resonance angle from a right angle (7r/2) is an important factor, together with

the geometrical constraint angle (see below), in determining the na,ture of wave propagatiorl.
The deviation is more than three times greater for the SUPRA model plasma ttlan for the
TRIAM model plasma.

4It is curious to note that the singular nature of the dispersion relation under this condition has been

recognized in subsequent publications by many aui,hors, it is seldom referred to _s a 'resonance.'
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D. Inverse Wave Normal Surfaces and Electrostatic Approxima-
tion

Tile dispersion relatioil call also be expressed in terms of the magnitude and zenith angle

of the refractive index veclor. H = ff and (,_, respectively. This 'polar' form of tile equation
is written as,

A41_'t - A2n 2 q- A0 = 0. (10)

This equation, governiilg t tl_' refractive index, n, is a 'reciprocal' of the earlier equation, Eq. 8,

governing the normalized l_llasc speed, u, where the coefficients, A0 through A4, were also
defined.

The solution to tt_c full t'ollrtll degree dispersion relation, [';q. 10, at a mid-radius point on

the inboard mid-plane, l,',,,,a = 1.5 m and Z = 0 m, of the PBXM model plasma, is shown in

Fig. 9 (top inset) in t,he fot'Zll of tllree-dimensional (3D)surfaces in the refractive index space,

(n_, ny, n_.). The solution surfaces, which extend to +oc, are a figure of revolution about the

nz axis. The axis is aligned willl the direction of the local magnetic field line, i.e., nil _--n., and

its scale is exaggerated five-fold for clarity of presentation. The surfaces are also symmetric

about the n. = 0 plane. Surfaces, such as these, are the 'reciprocal' of wave normal surfaces,
and are sometimes called 'inverse wave normal surfaces.' The 'bottom' of the upper surface (or

the 'top' of the lower surface) is at the values of n± for which the mode conversion condition

(see Eq. 5) is satisfied for the set of plasma parameters at this spatial location. The solution
in the vicinity of the mode conversion will be discussed in more detail in a later section. The

solution surfaces at large values of n± (or nil ) asymptotically approach a pair of conical surfaces
r :L

that are joined at the vertex. Fhese asymptotic cones are shown in Fig. 9 (bottom inset).

An approximate form of the dispersion relation, known as the 'electrostatic approximation,'

is used frequently in lower hybrid theories, and is given by,

Snj_2 + Phil 2 = 0. (11 )
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This is an equation that describes the asymptotic cones of the full solution surfaces. The
vertex half-angle of either cone equals the oblique resonance angle at this spatial location. The
oblique resonances of a lemniscoid wave normal surface thus correspond to the asymptotic
cones of an inverse wave normal surface. The cones do not represent the solution for small

values of n± (or nil).

Fig. 9 Solutions to the full fourth degree (up-

per picture) and E.A. (lower picture) disper-

°0 soretosreshownthreartvedes5.n space, (n_, ny, nz). The surfaces, which ex-

tend to 4-oo, are a figure of revolution about

the nz axis. The axis is aligned with the direc-

-40 n tion of local magnetic field line, i.e., nil -- nz,

_× Y and its scale is exaggerated five-fold for clar-

ity of presentation. Tile surfaces are also sym-

30U=_ metric about the nz = 0 plane. A 'gap' in the
middle of the full solution is caused by mode

s.n=0 conversion.

- 3040_.
40 -40 n

The solutions to a homogeneous cold plasma dispersion relation are represented as surfaces
of revolution about the local magnetic field line, and have no preferred azimuthal angles about
the field line. The dispersion relation can be well represented in two dimensions without a
loss of information. But directional preferences may arise through other reasons: for example,
a ray tracing analysis introduces the direction of the inhornogeneity of a parameter into the
problem. In the present analysis, it will be a constraint imposed by, the requirement of the
invariance of toroidal mode number that introduces a directional preference.

IV. GEOMETRICAL CONSTRAINT RELATION

It is usually assumed in LHCD analyses in the toroidal geometry that the plasma is ax-
isymmetric: there are no variations in zero order parameters in tile toroidal direction. An
immediate consequence of the toroidal symmetry assumption is that the toroidal mode num-
ber, i.e., tile number of whole wave periods around the torus, is invariant as waves propagate
through tile plasma. This assumption of the toroidal mode number invariance is commonly
adopted in ray tracing analyses.

The wavelength must become shorter in regions of a smaller major radius in order to
accommodate the same number of wave periods within a shorter toroidal circumference. The

gr

toroidal mode number, N_ r, imposed by the grill located at Rmaj, is related to the toroidal
g_ of the refractive index vector at the grill, through n¢ (WRmaj).component, n¢,
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The constancy of the mode number (N¢ = 5,_r) then requires the toroidal refractive index,
n¢ = cN¢/(wRmaj), to be inversely proportional to the major radius, i.e.,

9r

/_m_j gr (12)

This is a most basic toroidal effect, and will be called a 'wedge effect' for short in this article
t

in reference to the ever narrower width of a wedge toward its apex.

A greater toroidal effect is the geometrical constraint relationship between nil and n± arising
from the same invariance requirement. We designate a unit vector in the toroidal direction
by (_, and the magnetic field vector by_ -- Bb, where B is the magnitude of the field, and
b is a unit vector in the direction of B. Geometrical relationships among q_, b, and ff are
shown in Fig. 10. We consider a point, O, on a magnetic flux surface, and a local right-handed
coordinate system, (x,y,z), about the point. The x-axis is perpendicular to the flux surface,
and points into the volume enclosed by the flux surface. The y- and z-axes are in the plane
tangent to the flux surface ('tangent plane'). Tile z-axis is aligned with the local magnetic
field direction. The orientation of a vector with respect to i_is defined by a set of azimuthal

and zenith angles, ri'll,:,azimuthal angle, X, is the angle that a plane between the vector of
interest and b makes with respect to the quarter plane defined by the positive x and z axes,
and ranges over -Tr < X _<7r. A positive azimuthal angle is measured from the positive x-axis
toward the positive y-axis, and a negative azimuthal angle is measured from the positive x-axis

toward the negative y-axis. The zenith angle, q', is the angle that the vector of interest makes
with respect to b in the plane containing both vectors, and ranges over 0 _<C -< 7r. Note that
tile term, 'azimuthal,' and the associated symbol, \, are used here to nlean the angle about a
local magnetic field line. It should not. be confused with a commoilly used term, 'azimuthal'
angle, of a spatial point in the plasma poloidal cross, e(tion uses,' . (We will tile term, 'poloidal'
angle for the coordinate of a spatial point.)

The refractive index vector, if, can thus be designated by (nx,ny,n:), or by (n,(_,\_).
^

Waves propagate inward when i_. > 0, or -7r/2 < X,, < 7r/2. The toroidal unit vector, 4),
can be designated by (0, (_,j,_z), or by (1, (t, Xt). From the definition of the local coordinate il
system chosen, \t is either +rr/2 or -;r/'2, depending upon whether [5 lies on the positive or
negative y-axis side of t), respectively. The relative location of these two unit vectors is in turn
determined by the relative sense of the toroidal magnetic field and plasma current. It can
be shown that when the toroidal field and plasma current are 'co-parallel,' Xt = +rr/2, and
when they are 'counter-parallel,' Xt = -rr/2. The statement applies regardless of the spatial
location considered. Under a usual current drive situation, the plasma current is assisted by an
LHCD driven current (or the entire plasma current is an I_IICI) driven current). Electrons are
expected to be transported by waves in the direction opposite from that of the I)lasma current
under these circumstances. The wave spectrum imposed by the grill must have an appropriate

" sign: _'__ < 0 for the co-parallel current, and ndJ,_ > 0 for the counter-parallel current. Unless
9r

toroidal reflection of waves occurs, 7ellmust have the same sign as rl,,_ everywhere inside the
. plasma. For the co-parallel current, 7r/2 < _,_ _< 7r, and for the counter-parallel current,

0 _<q'. < 7r/2. The vectors shown in Fig. 10 depict a wave propagating inward in a tokamak
with a counter-parallel current.
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In Fig. 10 the toroidal refractive index, 'n.,, consists of two contributions, one involving rill
and the other involving n±,

ne = nil cos (t + n j_sin Xn sin X'tsin (t. (13)

We note that nil may be either positive or negative in general, but n± is either positive or
zero by the convention adopted here. This equation states that, if nil is to become arbitrarily
large, while holding n_ finite, nil and n± must both tend to infinity, and make contributions
to n_ having the opposite signs. Only an oblique resonance can satisfy these requirements.
The magnetic field-line pitch angle is (,'t<< re2, and sin (t >_0 and cos (t >_0. We substitute
sin Xt = +l, and solve the above equation for 'n.iito obtain,

nil = _ + n± sin X,_tan (_t, (14)
COS (_'t

where the plus sign is for the counter-parallel plasma, current, and the minus sign is for the
co-parallel plasma current. We will call this constraint relationship arising out of the magnetic
geometry of the tokamak as 'geometrical constraint.' The term will be abbreviated as 'G.C.'

Z

A

Fig. 10: Geometrical relationships

among the refractive index vector, if,

unit vectors in the magnetic field direc-

tion, b, and in the toroidal direction, &,

_--"-- are shown graphically. The magnetic

surface is in the plane of the page, and

Y -- waves propagating inwar(l are depicted.

_...... ,/.% n IICOS_t
".-.2 \

n _ sin Z n
ni sin Xnsin Z tsin _t

Noting that nil -- n. and rtj_sin(_ - n_, the above equation can also be written as,
n. = n,_/cos _t 4- ny tan _t. This is a linear relationship between n_. and ny, independent of
n_, and can thus be represented as a plane in the if-space tilted by an angle, %,:. Since
tan%_ = dn./dn._ = tan(t, the tilt angle from the horizontal in the if-space is simply the
magnetic field line pitch angle in the physical space, %c = _t. We also define the degree of
tilt measured from the vertical by the zenith angle that the plane makes with respect to the
vertical axis (7_.-axis) in the n,j- n_ cross-sectional plane,

Cg¢o= rr/2- _t. (1.5)
e

The G.C. plane intersects the nil axis at,

ilu,@ ?__bn - - (16) '
COS _t '

where ne is given by Eq. 12. The nil-axis intercept represents the 'wedge effect.'
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V. GENERALIZED ACCESSIBILITY

A. Geometrical Interpretation of Admissible Solutions

The dispersion relation and G.C. relation must be satisfied simultaneously by n, _n, and

X_ at every spatial point. In the present analytical treatment, we will leave one of the three

parameters indeterminate, and obtain a range of solutions that is 'admissible.' Ray tracing

calculations can determine not only all three parameters, but also the power carried by the

wave. Nevertheless, solutions that are not allowed in the present analysis cannot be solutions

of a ray tracing calculation, because both analyses are founded on the same set of assumptions.

Many qualitative observations useful in interpreting results from ray tracing calculations and
experiments can be made from an examination of admissible solutions.

In Fig. 11, the E.A. dispersion relation and G.C. relation are represented by two surfaces

in a 3D if-space. Only the upper half (nz = nil _> 0) of the space is shown. The intersection of
the surfaces represents sinmltaneous solutions to the E.A. and G.C. relations. A case without

a poloidal field (zero field-line pitch angle) is considered here. The G.C. plane is therefore

horizontal, and the intersection is a circle. There are no preferred azimuthal directions of

propagation in this case. Lower hybrid wave propagation in the classical accessibility can also

be described by these surfaces.

The same set ot' surfaces is shown in Fig. 12 fox' a case with a poloidal field (finite field-

line pitch angle). Both pitch angle and oblique resonance angle are modest in this plasma.

Consequently, the tilt of the (;.C. plane off the horizontal is weak, and the E.A. cone has a

narrow vertex angle. Under tlmse circumstances, the oblique resonance zenith angle is inside

the G.C. zenith angle ((_,,_ < (o_,,), and the oblique resonance is not an admissible solution.
The G.C. plane also intersects only the upper E.A. cone.

Fig. 11 The upper E.A. cone and G.C. plane are

shown: the cone is for a mid-radius point on the

inboard midplane (Rmaj = 1.50 m and z = 0 m)

of the PBXM model plasma, and the G.C. plane

is for a case without a poloidal field (zero field-line

:.,0 pitch angle). A wave with 7_,_= 2.1 is assumed to
5*r_

be launched from the plasma edge in the outboard

._c midplane. The G.C. plane is horizontal, and the
0 intersection of these surfaces is a circle.

40
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The intersection of the E.A. cone and G.C. plane is a planar space curve,, which is an ellipse

in its own plane. The space curve is presented in the same 3D 77-space in Fig. 13. A vector
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drawn from the origin to any point on the curve represents an admissible solution. A few such

vectors are indicated by solid and broken lines in the figure. Projections of the solution space

curve and vectors onto (a) nx-n,_ plane, (b) n,_-n: plane, and (c) n,x-ny plane are shown in

Fig. 14.

Fig. 12 The upper E.A. cone and G.C. plane are

shown: the both are for a mid-radius point on the

inboard midplane (R,naj = 1.50 m and z = 0 m)

of the PBXM model plasma. The G.C. plane now

represents a case with a poloidal field (finite field-

30 line pitch angle). The toroidal magnetic field is

S*nz in the positive toroidal direction, and the plasma

0 4o current, is counter-parallel to the field. A wave

with a positive nil value (he = 2.1) is assumed to

-4o 0 ny be launched from the plasma edge in the outboard
midplane. The G.C. plane is therefore tilted up-

ward toward the positive ny direction (a choice of

the plus sign in Eq. 14). The intersection of the

surfaces is an ellipse.

Fig. 13 Tile intersection of the upper E.A. cone

and G.C. plane is shown for the same condi-

tions as in Fig. 12. Tile solution curve is an

ellipse ill its own tilted plane. A few vectors

drawn from the origin to points on the curve

_*n are indicated by solid and broken lines. The

t' origin of the vector space is located on the

t_ottom of the 'box.' These vectors represent

admissible solutions.

An examination of the solution space curve reveals a number of qualitative but useful

characteristics of the solution at this spatial location. The solution curve is in a tilted plane,

and nil of admissible solutions is no longer a single value as it was in Fig. 11. The _'11 value
of the actual solution depends on the wave's azimuthal angle of propagation. The azimuthal

angle can in general vary as the wave propagates, because plasma properties vary in directions

perpendicular to the field lines, and components of the 77-vector in these directions are also

allowed to vary. (This holds true in a tokamak geometry, but not necessarily so in a simple

plane-stratified geometry.) The azimuthal angle is undetermined, and a specific value of n, ii

is unknown in the present analysis. But a range of nil values is now shown to be admissible:

nil can now upshift or downshift. In the present case, however, the solution curve is finite
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in its spatial extent, and there is an upper bound to nil upshifting, and a lower bound to
nil downshifting. All admissible.solutions have a positive nil, and no waves travelling in the
negative toroidal direction can be present; toroidal reflection of waves is not permitted. We
note also that waves of all azimuthal angles of propagation (-Tr < X,__<7r) are admitted (see
Fig. 14c). But those waves with largest nil values propagate in, or near, the tangent plane in
the positive 9-direction (X7_'_ +7r/2), i.e., in the positive poloidal direction (see Fig. 14a and

" b). We recall that the tilt of the solution curve in this direction is a consequence of the choice
of a counter-parallel plasma current direction. At locations at which the G.C. plane zenith
angle is greater than, but close to, the E.A. cone zenith angle, tile ellipse is highly elongated,

and waves with large 7_11values propagate in a narrow range of azimuthal angle along the local
magnetic surface.

The solution surfaces are shown in Fig. 15 for the SUPRA model plasma. Both upper and
lower halves of the if-space are shown. The magnetic field-line pitch angle and oblique resonance
angle are both large in this plasma. Consequently, the G.C. plane is tilted significantly off the
horizontal, and the E.A. cone has a wide vertex angle. Under these circumstances, the oblique
resonance zenith angle is outside the G.C. zenith angle ((_¢_ > (.q_o),and the oblique resonance
is now an admissible solution. The G.C. plane also intersects both upper and lower E.A. cones.

!
i Fig. 14 The solution space curve and vectors of Fig. 1:_ are shown here

/

i in projections onto: (a) 1_- 7_: plane, (b) "v--I_: plane, and (c) 7_.--7t v'"' plane,

_'22_L_ 2

t
Ict

Tile intersections of the G.C. plane and E.A. cones are two planar space curves, which are
a hyperbola in their own plane. Ttle space curves are plesent d in tile same 3I) if-space in
Fig. 16. A vector drawn from tile origin to any point on either of the curves represents an
admissible solution. A few such vectors are indicated by solid and broken lines in tile figure.
The origin of the vector space is at, the cezlter of tile 'box' sllown in tile figure. Projections of
the space curves onto (a) 7_r--T_: plane, (b) r_,j- r/: plane, and (c) 'l_.- 77!/plane are shown in
Fig. 17.

• The nature of"wa.ve propagation is qualitatively different, betweell tile conditions described

in Fig. 12 and Fig. 1,5. The origin of the difference is whether or not the oblique resonance is
• an admissible solution, or the resonance is 'realizable' at the spatial point under consideration.

Transitions between the two sets of conditions can take place within a plasma (e.g., the SLIPRA

model plasma).
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The hyperbolic solution curves are infinite in their spatial extent, and thus the range of

admissible values of nil is also infinite. There is no upper bound to nil upshifting imposed by

the G.C. relation. Admissible solutions now include both positive and negative nil , and waves
travelling in either toroidal direction carl be present. This suggests the possibility of toroidal

reflection of waves. (The solution curves, representing positively and negatively travelling

waves, do not touch each other, and wave reflection, if it indeed occurs, may therefore have

to involve some non-adiabatic processes. Such processes may be provided, e.g., by density

fluctuations. The subject is, however, beyond the scope of this article.) The reflected waves,

travelling in the negative direction and possibly driving a current in the unwanted direction,

can exist even in a perfectly uni-directional wave spectrum launched by an ideal grill, and are

different from 'reverse waves' that are inevitably present in tile spectrum of a real-life grill with

an imperfect directivity s.

Fig. 15 The upper and lower E.A. cones, and

G.C. plane are shown for a mid-radius point

on the outboard midplane (l_,n<,j = 3.20 m

and z = 0 m) of the SIrPRA nlodel plasma.

20 A wave with a positiw" nil valm, (he, - 21.8)

s*n " is assumed to be launched fronl th(, l)lasma

z 0. edge in the outboard midplane. The intersec-

lions of the G.('. plane alld E.A. cones are a

-20 hyperbola.

-('( O n
Y

i

Waves characterized by hyperbolic solution curves propagate witllill two discrete ranges of

"' ' • ',s propagaling in ttle positive toroidal directionazimuthal angle (se_, t'lg. 17a) one for wa_(,

and another for waves lraveling in the negative toroidal directioil. \Vitllitl each range, waves

with large nil values t)ropagal.e in a 'beam-like' manner within two ilarrowly defined ranges of

azimuthal angle (see Fig. 17a and b). [inlike waves described by a,ll elliptic solution curve,

these wave,'s propagate at all angle to magnetic surfaces. Waves wilh small nil values n;ay

convert to the fast waves alld nmy not be adequately descril)ed by tile I:;.A. dispersion relation

(see below).

(',onsider a wave at a l)oint (r-'= Fl) in space which has a specific ret'ractiw' iildex vector

(ff --- HI )" \¥hcll this wave t)ropagates to a neighboring point (Fe), it assunws in general a

different refractive index vector (n2). The change in ff is diclated by cllanges in tile dispersion

and G.('.. relations, and 1)y local gradients of tile plastna parameters. For exaIlll)h', ff may be

'SWehave unfortunately adopted the terln, 'backward waves.' in earlier publicalions lr'''a to mean this un-
wanted part of a real grill sl_ecl.rum. We will henceforth use the term, 'rew:rse waves.' for this purpose, and,
following a more common usage, reserve the ternl, 'backward waves,' to nlean waves having the phase and
group velocities in an opposite direction.
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rotated through an azim_lthal angle under the action of gradients as well as through a zenith

angle under changing dispersion. If 772is close to the oblique resonance at. the new point,

the change in the refracti,,e index vector (_ff - ffl - if2) can be large for an arbitrarily small

• change in position (3_'--- 71 -72). (Reference to Figs. 16 and 17 is helpful in this discussion.)

The fundamental requirement of the WKB approximation can thus be violated wherever the

oblique resonance is realizable.

Fig. 16 The intersections of the E.A. cones and i

G.C. plane are shown for the same conditions as

in Fig. 15. The intersections are two planar space

curves, which are a hyperbola in their own plane.

A few vectors drawn from the origin to points

s*nz on the curves are indicated by solid and broken
lines. The origin of the vector space is located at

the center of the 'box.' These vectors represent
admissible solutions.

n V

N_-_ Fig. 17 The solution space curve and vectors of Fig. 16 are shown here

in projections onto: (a) n_.- n_ plane, (b) ny- n: plane, and (c) n,_:-ny

_"' plane.

/
/ (b)

Both the magnetic field-line pitch angle and oblique resonance angle are small in the TRIAM

model plasma. (We recall that the lenmiscoid wave normal surface in this model plasma belongs
to the bounded volume, '7' and has an oblique resonance quite far from the perpendicular.)

C,onseq_iently, the G.C. plane, is nearly horizontal, and the E.A. cone tins a narrow vertex angle.

• These surfaces are qualitatively the same as those shown in Fig. 13. The admissible solution

curves are nearly a circle. There are no preferred azimuthal directions, and waves travel nearly

isotropically in the plane perpeiMicular to the local field line. The range of admissible nil

" is very small, and the extent of nil upshifting o1"downshifting is severly limited under these
conditions.
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The full fourth degree dispersion relation and G.C. relation are represented in a 3D 'if-
space in Fig. 18 in order to examine solutions for small values of n± (or nil). (See Fig. 9
for comparison of the full and approximate solutions.) A part of the upper half space near
the origin is shown in an expanded scale. The salient feature in the middle of the otherwise
cone-like surface represents the fast wave solution. Intersections of the full dispersion relation
surface and G.C. plane can be quite complex in this region. A 2D vertical cross section of
these surfaces is shown in Fig. 19. The cross section is along the tangent plane: the x-axis of
the local coordinate system, which is perpendicular to a magnetic flux surface and pointing
'radially' into the volume enclosed by the surface, comes out of the plane of the page. The
positive axis denoted by npp in the figure is the positive nv-axis.

Fig. 18 The full dispersion relation surface and

G.C. plane are shown for a mid-radius point

on the inboard midplane (Rmaj = 1.50 m and

Z = 0) in the PBXM model plasma. Only the

upper half space is shown. The salient feature

is in tile middle of the otherwise cone-like surface
5*n

z

represents the fast wave solution.
1!

-15

:.
),

0

- _

The two thick curves iI1 Fig. 19 represent the full dispersion relation. The bottom of the
upper curve, or the top of' l(_w(,rcurve (indicated, e.g., by 'M' on the lower curve), is determined
by the mode conversioll ¢'t,x_¢li_loll. and the value of nil there is given by Eq. 5. At the intercept
of the dispersion relatioll ctlrx'¢,s ailcl nil axis (indicated, e.g., by '(',' on the lower curve), the

" '_s clltoff condition given bv Eq. 7. Broken lines through thevalue of nil satlsfic., llle fast wave
origin represent the I';.A. ('(_ll_'s. Tile solid line through the point, 'P,' represents the G.C.
plane. The intercept i)oiI_t. "IL" reflects the 'wedge effect,' and nil there is given by Eq. 14. A
space curve passing throllgl_ 1)oints. 'a' and 'b,' represents the simultaneous solutions to the
full dispersion relation and (1.('. relation. When the 7_ll-axis intercept, 'P,' of the G.C. plane,
is smaller in magnitude than 7tll at the fast wave cutoff (nilw@ < n,ll/:C), there are propagating
fast waves. The solution curve is now an ellipse-like curve truncated at the bottom. The

points, 'a' and 'b,' in Fig. 19 defiile the range of admissible nil. In particular, the value of nil
at the point, 'a,' is the upper bound of the nil upshifting. It is thus this tilting of the G.C.
plane that can produce a fat" inox'e significant nil upshifting than the 'wedge effect.'

We use Fig. 19 to describe transitions between the two sets of conditions shown in Fig. 12
and Fig. 1,5. If the tilt of the G.C. plane fi'om the horizontal becomes stronger (Cy_obecomes
smaller), the point, 'a,' would move upward along the upper dispersion relation curve, and the

range of admissible nil would become larger. Finally, it would disappear to +co, when Cg_o
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exactly equals (,'re,. The point, 'a,' would reappear at -co, and move upward along the lower

dispersion curve into finite nil regions, as ¢geo becomes smaller than (r_s. (Waves may become

damped, as nil becomes large. Thus, toroidal reflection of waves, if it indeed occurs, must take
. place in a time scale short compared with Landau damping time scale.)

81t Fig. 19 A 2D vertical cross section along the

tangent plane of the 3D surfaces in the previ-

ous figure is shown. The nx-axis comes out ofthe plane of the page, and the positive npp

_. _4.,, / npp axis is tile positiw_ ny-aXis. The two thick

curves represent the full dispersion relation.-50 i\ 5o Broken lines through the origin represent the

'" / "]" \ E.A. cones. Tile solid lille, through an nil-

intercept point, 'P,' represents the G.C. plane.

'b,' is the simultaneous solution to the full dis-

persion relation and G.C. relation.

We summarize this s_ll,s(,ct ion. When the component of the if-vector that is perpendicular

to the magnetic field liiw is l)llrelv in the direction of density inhomogeneity (i.e., perpendicular

to the magnetic surface), i llis vector component has no projection onto the toroidal direction.

When this vector compo_,e1_l is rotated about the field line through an azimuthal angle, it

casts a finite projectioll (_I_lo tile toroidal direction. In order to maintain the toroidal mode

number invariant, the CoIl_l)oI_cIll of the g-vector that is parallel to the magnetic field line

must also cast a compeI_salil_g amount of projection onto the toroidal direction. When the

perpendicular component ca_ts a large projection onto the toroidal direction, the parallel

component also casts a larg(' compensating projection. This is the central feature of the

nil upshifting mechanisnl (l(.scribed by Schuss, el al. 1° In the present study, it was shown
furthermore that, for largr (,1_ough projections, the zenith angle of wave propagation can now

match that of the ol)li(itl(' r(,sotlance when tlle wave prot)agate at some azimutt_al angles.

The oblique resonance tl_('z, t_econles realizable, and the nature of wave propagation becomes

qualitatively different, lIl a later section, we will describe another mechanism through which

the perpendicular coml)o_ent of the 77-vector and density gradient vector become 'misaligned'
with each other, and/,. Ul)shifting can occur.

B. Bounds of nil Shifting

A simultaneous solutioz_ to the E.A. dispersion relation, Eq. 11, and G.C. relation, Eq. 14,

can be obtained analytically. Solving these equations for 7_11as a function of the wave propa-

. gation azimuthal angle, X_, we obtain,

n¢ 1 (17)
nil = (_)1 + gsin XT_'
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where the plus sign is for the co-parallel plasma current, and the minus sign is for the counter-
parallel plasma current. The 'g-factor' in this equation defined by,

tan (_e,_
g-

tan (.geo'

= (tan G)V_- P/S) (18)

is the tangent ratio of the oblique resonance zenith angle to the tilt zenith angle of the G.C.
plane, and is a positive quantity. Equation 17 gives the value of nil anywhere in the plasma
under the electrostatic approximation, but only if the azimuthal angle, X%,is specified.

The sufficient condition that nil be bounded for all azimuthal angles is given by,

g < 1. (19)

When nil is bounded, the extreme nil shifting occurs in the tangent plane. Note that there is
a. preferred poloidal direction for the extreme nil upshift or downshift, and that the direction
depends on the relative sense of the toroidal field and plasma current. Such preferences have
been demonstrated in ray tracing calculations by Bernabei, et al., 2_ and provided foundation
for experimenting different poloidal locations of the antenna. For a co-pa,'allel plasma current,
the extreme upshift occurs in the positive y-direction (_ = +7r/2), and the extreme downshift
occurs in the negative y-direction (X'n = -7r/2). For a counter-parallel plasma current, the
extreme upshift occurs in the negative y-directioll (,_,_ = --re/2), and the extreme downshift
occurs in the positive y-direction (\_ = +7r/2). The values of the extreme nil are given by,

',_, ) 1 (20)
nlluv'd_ = (cos G 1 4- g"

The minus sign in the denominator corresponds to the extreme upshift (nll_P), and the plus
sign to the extreme downshift (nile'_) for either a co- or counter-parallel plasma current.

1.6 _ I I

1.4 I:ig. 20 The 'g-fact, or, _ which is the tangent ra-

tio of the zenith angle of the oblique resonance

1.2 to the zenith angle of the G.(-.',.plane tilt, is plot-

_.0 -- • ted along the midplane. For both PBXM and

TRIAM model plasmas, g < 1, and nil upshiftgo.8

• is bounded everywhere. For the SUPRA model

0._, plasma g > 1 over a major part. of the plasma

0.4 volume, and llrl[ upshift can be unbounded.

0.2

R - a R R ap0 p 0 0 ,
Major Radius

b

The solution for nil becomes infinite when the denominator of Eq. 17 vanishes, which can
happen only if g _> 1. The G.C. relation thus does not limit nil, when g _> 1. But this is a
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necessary condition for unbounded nil. There may be other mechanisms that limit nil. The
solution becomes infinite at azimuthal angles of propagation specific to the spatial point under
consideration. The angles are given by,

" 1
sin k_ = +-, (21)

g

where the plus sign is for a counter-parallel plasma current, and the minus sign is for a co-
parallel plasma current. (In ray tracing calculations, a 'truly unbounded ray' will be obtained
only if the angle )(_ happens to be realized. Solutions for nil in tile vicinity of the angle will,
however, be very large.)

Variation along the midplane of the g-factor defined in Eq. 18 is shown in Fig. 20 for the
three model plasmas. For both PBXM and TRIAM model plasmas, nil is bounded everywhere !

inside the plasma (the maximum g value occurs in the midplane for a simple density profile).

For the SUPRA model plasma, nil upshifting can be unbounded over most of the plasma
volume. Using the approxirnate expressions for the dielectric tensor elements, Eq. 2, we write
-P/S _ (oJpe/co)2/(1 +(oJpe/oJc_)2). We note that tan(,= Bo/B4), and that usually Icos it _ 1.
Using also Eq. 12 for the 'wedge effect', we write the upper bound of nil upshifting, normalized
by the toroidal refractive index at the grill, as

g r

7z[[_*p I_maj 1

92
(134, 1 + (_,,_/_c_) _

(22)

This is the approximate result reported earlier. 17

The simple analytic form for the g-factor in Eq. 22 clearly stlows under what conditions

strong nil upshifting can be expected"

• a large magnetic field-line pitch angle, Bo/Bq_,

• a large normalized density, (a_;_/_) 2, and

• to a lesser extent, a strong 'electron magnetization,' or small _ ' /oJc_)2_ LUpe

We used earlier the term, 'dimensionless density,' to mean combined effects of the second and

third items in the form, (a,'p_/o_)2/(1 + (_v_/a_)2). Some results of ray tracing calculations
are immediately understandable in terms of these expectations. For example, in comparison
with the PBXM model plasma, the SUPRA model plasma shows 16 stronger nil upshifting,

' due to its smaller aspect ratio that leads to larger magnetic field-line pitch angles, and its

larger normalized density. The PBXM model plasma also has weak upshifting, because its low
• toroidal magnetic field results in a weak electron magnetization. The PBXM model plasma,

which is bean-shaped, shows stronger upshifting than a circular plasma in the same tokamak,
because the shaping results in larger field-line pitch angles.
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C. Wave Domain and Unbridgeable Spectral Gap

In previous and this sections, several formuli were developed for delimiting a range of n N
in which some specific characteristics hold. They are the mode conversion (Eq. 5), fast wave

cutoff (Eq. 7), lower limit of ult downshifting, and the upper limit of nil upshifting (Eq. 20).
Variations of these bounds along the midplane are plotted in Fig. 21 for tile PBXM model

plasma. The 'wedge effect' is also indicated (Eq. 12). The wave launched by the grill is
gv

n¢ = 2.1. These bounds are simultaneously applicable, and thus the lowest upper bound and

highest lower bound define an admissible range of nil at each point in space. A variation of

the admissible range of nil as a function of position defines a 'wave dotnain.'

8 I I I I

I
Fig. 21: Various bounds ol17111is plotted along

us the midplane for the PBXM model plasma:s
the upper bound of 7_11upshifting (US), lower

u/kus bound of nil downshifting (DS), mode con-

n ._./.... _ version (MC) and fast wave cutoff (FC.) are
Ii4 ..--- '

shown. The 'wedge offect' (WF) is also in-
__,,E /" \ / ",
-'--- _...._.... \ dicated. The wave launchod liy the grill is

2 _ 7_'"= 2.1.D57

I I t
I 35 1.50 1.65 1.8[: ,.95

R Ira]

Waves with a, high nil value will damp strongly through electron Landau clamping. The
condition that the wave pliase Sl)( :(1 be a.'(" certain niultiple, ,\, oI' tlle electron ihermal speed

can be expressed as,

drop C

1_11 - Av_ (23)

For the phase speed equal to three times the thermal speed (X = 3), the damping is strong.

The damping is exponentially weaker at a higher phase speed. Six tinles the thermal speed

(l - 6) may somewhat arbitrarily be taken as a limit of minimal but finite damping.

The wave domain for a plasma with bounded nil upshifting is a closed volume in a 3D

space defined by nil and the spatial coordinates in the plasma cross section. A constant

Landau damping (LD) condition can be represented 1)5' a surface in the same 3D space. A
cross section of the wave domain and three Landau damping surfaces through the midplane

is shown in Fig. 2'2 for the PBXM model plasma with the grill-defined n_( = 2.1. The lower

hybrid waves exist, within the entire wave domain, but the fast waves exist only regions below

the fast wave cutoff. The wave don iain is larger on the inboard side than on the outboard side,

but effects of wave damping on electrons are expected to be homogenized on each magnetic
flux surface. The broken lines labeled A = 3, t = 4 and A = 6 represent Landau damping

surfaces, Eq. 23, for strong, weak and minimal damping, respectively. Overlapping of the wave
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domain and minimal damping surface (region above A = 6 curve) indicates that the waves

are marginally damped. The spectral gap, between the wave spectrum and thermal part of

the electron parallel velocity distribution, can barely be bridged in this plasma, even if the

• maximum possible nil upshifting indeed takes place.

8 , , , t, J •l , ,
e

' /'¢'x , LD , , ' Fig. 22: Tile wave domain (WD) and Landau

i "__'.ll,]i_ ' 4 " * '_

• k=1 ,
- - ' ' damping surfaces (LD) are shown ill a 2D cross

6 " - _ e i

,' ,' section for the PBXM model plasma. The fast

;_= wave cutoff is also shown bv a broken line. A

n space eonlmon to tile wave domain and inte-

It4" /,T kk._6/g¢." "_ \ riot of a damping curve is tile damping zone

2,_ Z__.._ (DZ).

0 I I I

F_ Ira]

Variations of the upper bound of nil upslfifting, "wedge effect,' and four Landau damping
surfaces (A = 3,4, 6 and 10) are shown in Fig. 23 for the TRIAM model plasma with the grill-

defined n_g_ = 1.8. The maximum possible 7ell upshifting is extremely., weak for this plasma,4
because of small pitch angles and low densities. The nmximurn possible nil is not large enough

by a big margin to cause the waves to damp anywhere within the plasina. For a Landau

•s_" domain, A 14 is required. There is thus a hugedamping surface to intei_cct tile wave =

spectral gap that cannot be bridged for this model plasma This conclusion, which is a direct

and inevitable consequence of the assurned invariance of the toroidal mode number, is, however,:t

!:! in contradiction to an experit_wntal fact: the current in the TIIlAM-IM tokamak was driven

entirely by LHCD in t lw experilneIlt emulated by the model plasma.
I

12 _ , _ I , I ._ - ,
' _ a i !

' _ _ _ LD ' , ,
t i _ • • oo !
' i _ " )_=3 ," , ,i i l • l

_0- ' , ' " " ' ' ' Fig. 23: Variations of the upper bound of 1;11i t ', t e !

' ' ' ' ' ' up tifting dg ffe 1 l_aldau (larll_-, _ ,, ,' , , S I , We e e ct, all( 1 t

_- ' , , 4 " ' ,' l'ng surfaces (LD) showll for tile TRIAMare

.... nlodel plasma. For a Landau damping surface[l • i

, "- 6 . "" ,' to intersect the wave domai, for this l)lasnm,
t, . . . .

• " I = 14 is required.
4

"" , 10 - "

" " .... -"" . 'Jpsh!ft

Wedge Ef[ect

I ',

0.72 0.78 0.84 0.90 0 96

R Ira]
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For the SUPRA model plasma, the requirement of the toroidal Inode number invariance

does not impose an upper bound to nil upshift over most of the plasma volume. But ray tracing
calculations by Kupfer and Moreau 16 showed the presence of an upper bound to a chaotic ray

distribution along a magnetic flux surface at some mid-range radius (not specified). The bound

cannot, however, be due to the invariance requirement (assuming that the chosen flux surface

belonged to a region with 9 :> 1).
4

D. nil Upshifting caused by Parallel Density Gradient

We have shown in previous subsections that rill upshifting produced by the finite pitch angle
of magnetic field lines can be bounded and insufficient to explain experimentally observed wave

damping. The geometrical interpretation in terms of 'tilting' of the G.C. plane introduced in

those subsections suggests that there may be other physical mechanisms that lead to such

tilting. We introduce in this subsection an 7_11upshifting mechaIfiSm that is caused by the
density gradient along" magnetic field lines. Such a gradient may exist locally in the plasma

equilibrium state trader special circumstances, or inay arise temporarily and locally clue to

MHD perturbations or density fluctuations.

In linear experimental devices, the plasma density varies predominantly in the radial di-

rection perpendicular to magnetic field lines. But it is often the case tllat there are also small

'_ parallel density gradient on lower hybriddensity variations along the field lines. Lffects of a .

wave propagation were examined theoretically by Briggs and Pal'ker Is in connection with an

experimental study of resoilance cones. They considered a i_lane-stratified condition in which

the density gradiellt was uniformly 'tilted' froIll a direction perpendicular to uniform field lines

(/3. V'n_ 5¢ 0), and found that waves were absorbed at a "new' absorption layer some 'distance'

(in tei'ms of the density) away from the lower hybrid resonance layer. The distance was related

to the magnitude of the density gradient tilt. These effects were also investigated experimen-

tally by Bellan and Porkolab 28 in a study of resollance cones. The 'linage' of a periodic antenna

structure was carried along the characteristics thal ran essentially parallel to each other in the

presence of only a weak parallel density gradienl. Tlw characteristics becanw 'bunched' as the

parallel density gradieilt was increased .... ttw l:)eI'iodicity of the image becaine progressively

smaller as the wave prot)agated axially into a regioll of lower densities. \Ve will show that the

'new' absorption layer in the analysis of Briggs and Parker is a mailifestation of the oblique

resonance, and furtherInore tllat a density gradient along field lines can lead to 7ellupshifting

in a nlore complex tokamak geometry.

We collsider a plane-stratified plasma in tt_e next several paragraphs: the magnetic field

is uniform, and the density rises moIlotonically from zero at the plaslna edge to values high

enough to satisfy the lower hybrid resonance condition in an interior point. By 'inverse Fourier

transforming' Eq. 11, we write the differential equation governing t lw wave potential, _, of

lower hybrid waves as,

O O

V_L(SV'±_) + _(P_--_z_) = 0, (24) "

where V.L -- .?O/Osv + _10/0!I. The magnetic field is in the z-direction. The density gradient
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has components both in tile x- and z-directions: the gradient vector is in tile z-x plane, and

is tilted by an angle, a, measured from the x-direction. Positive values of o is in the direction

going from the positive z-axis toward the positive x-axis.

. Fig. 24 Surfaces of the E.A. dispersion re-
lation and G.C. relation are shown in the

_'"c (ha, rib,nc)-space for a 'low density' point, A,i at. which tile density gradient is 'tilted' from a
direction perpendicular to tile magnetic field.

-so Tile dispersion relation is represented by a

pair of tilted cones, and the G.C. relation is

00 a horizontal plane. The intersection of these

surfaces is an ellipse with its center displaced

_w'/_i % in the negative ha-axis direction.

2000
l_ a

We define a right-handed rectangular coordinate system, (h, i_,b), tllat is rotated from the

original coordinate system, (5",_),3,), about the !/-axis by a. Ttle !I- an(l b-axes are aligned

with each other. We also designate by _ the azimuthal angle about the c-axis. It ranges over

-re < __< rr, and its positive values are measured froIn the positive a-axis toward the positive

b-axis. Transfornfing the derivatives through O/&r = cos aO/Oa + sin c_O/Oc, O/Oy = O/Ob,

and O/Oz = cos aO/Oc- sin e,O/Oa, the governing equation in the new coordinate system is,

O O_ 02 _ 02_ 0 ?)_ 02

O(----7((:aa + 'cc ,"77_.Od+ + o.o , - o, (25)

where

Ca,, = .q'cos 2 ct -t- P sin 2 o,

£bb _ ,q',

_ -- Pcos _ a + Ssin 2a,

e_ -- (S - P) sin a cos a. (26)

Components of the refractive index vector in the two coordinate systems are related through

a transformation: n_ = n_cosa-n, sina, nb = n v, and n_ = 7_.cos<__+n_.sina. Because

no plasma properties vary in the b- and c-directions, we may use Fourier analysis in these

directions, and write _(a,b,c) = 90(a)exp-i(nb + n_). We obtaill an ordinary differential

equation,

. d d_o

- - _d_o - da %_o) + %_ _aa ) = 0. (27)da(%,,-7[-a-a) ebb,Z_2o .2 i,,_( d ( d_o
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This is an equation identical _ to the one obtained by Briggs and Parker, TM except that we

extend the analysis to a 3D £space, and consider a range of rib. (Tiles, considered a 2D space,

and hence a specific value of nb = 0, or _ = 0 or rr.) They have shown, in a manner analogous to

Stix's analysis of the lower hybrid resonance, 23 that wave absorption through mode conversion

occurs where the coefficient of the highest order derivative term vanishes, i.e., _ = 0, or

rr/2- c_ = arctan vf(- P/S). But this is identical to the condition under which the oblique ,i

resonance occurs, Eq. 9: when the zenith angle, 7r/2- c_, that the density gradient makes with

respect to the z-axis equals the oblique resonance zenith angle, Cres = arctan _- P/S), wave
absorption occurs.

Fig. 25 Surfaces of tim E.A. dispersion relation
and C,C. relation are shown for a medium

200 density' point, B. The dispersion relation is

represented bv a pair of tilted cones with a
"0 5"n

c vertex angle wider than that for cones shown

-200 in Fig. 24. The intersection of these surfaces is

a t)art of a hyt)erbola in the ilegative na half-
:_j,-_,: space. The condition shown here correspond

.. to the 'new' absorption layer of Briggs and
Parker.

200(
-2000

.)
2 {30 0

When effects of the inhomogeneity on the dielectric tensor elements lhemselves, i.e., dc=,_/da

and de,,_/da terms, are ne lected (i.e._g .... a homogeneous dispersion relation is used, but effects

of the tilted density gradient is included), the E.A. dist)ersion relatioll is given by,

2 (bbll_ 2(,.,._, + + _._cn_+ 2_,._n.7_.,.= O. (28)

Because no plasma 1)rol)erties vary in tile c-direction, we may assunle l.llat the refractive index

component, 7_., reIllaiIls constant as waves propagate. The geonwtrical constraint relation is

then given by,

n_ - n-cos o- 7*_sin ¢_= nO., (29)

where n ° is a constant.

Tile dispersion relation and G.C. relation at'e plotted in Figs. 24 through 26 for three spatial

locations, A, B, and C, that are progressively closer to the lower hybrid resonance layer. The

E.A. dispersion relation in the new coordinate system is a tilted colic (as seen most evidently

in Fig. 24) and the geometrical constraint relation is a horizontal plane in these figures. As in

the analysis in the previous sections, the intersection of these surfaces represents admissible

6Equation (5) of the cited reference is written as a partial differential equation. From the context, however,
an ordinary differential equation is appropriate.
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solutions. At the point, A, tile tilt zenith angle is greater than tlle cone vertex angle, i.e.,

_'/2 - o > _res, and the intersection of these surfaces is an ellipse with its center displaced in

the negative a-axis direction. Finite solutions exist ibr the entire range of ( at this point: all

. components of the if-vector, including in particular nil, are therefore bounded for all values
of (. Points at which the solution curve intersects tile "b = 0 plane, indicated by 'b's' in the

figure, are the solutions obtained by Briggs and Parker is in their 2D analysis. They termed

• these solutions two 'modes,' although they are in fact the 'same' wave propagating at two

different azimuthal angles. The qualitative behavior of these points as the density varies was

sketched in Fig. 3 of the cited reference. The vertex angle of the tilted cones becomes wider

at, interior points. One of the 'h !)niilts' moves toward large negative n_ values, and then

disappears to ,_ = -o<_. At the point, B, 77/2-o = (_, and the intersection consists of that

part of a hyperbola in the negative n,, half-space (Fig. 25). Admissit)le solutions are found

only over a limited range of _ at this point. The 'new' absorption la,¢i of Briggs and Parker

corresponds to this point. They showed that one of the 'modes' propagates through the layer,

and the other is absorbed at the layer. At the point, (', 77/2 - o < <_,_, and the intersection

is a hyperbola (Fig. 26). Admissible solutiozls are found over two disconnected ranges of ( at

this point. At all locations t)etween the point, C. and the lower hyl)rid resonance layer, the

solutions are (lualitatively th( _ same as tllose at C. but the two halv(,s of the hyperbola are

closer together. At. the hybrid resonance (nol shown), the two '1) i)oiilts ' will coalesce at the

t.0/ ,0 Briggs and Parker staled tllat waves are reflectedpoint,,,_ = _./ tanc_, ,_, = O. and ,c = ,..

at tile lower hybrid layer (in the presence of a tilted density gradient ).

l'ig, 26 Surfaces of th(' E.A. dispersion r(,la-

lion a.(! (;.('. r_'latioll ar_, sl_ow, for a "high

.:_ d,nsitv' t)oim, (' '1"t,' (lisl)('rsio, r,,lat.ion is

represented i)y a l)air of tilt_,d co,es with a

• vertex angl_' wi(t(,r thal_ l llal for cones shown

in Fig. 2,1 or 25. Th(, inl('rsrrl ioll of these sur-

fact's is a hyl)('rt)ola.

The above allalysis in a l)lane-stratified geometry is not globally al)l)li('al)l(' to tokamaks,

but may t)e al_l)roxiImately applical)le locally to the t(_l<al[lal< geol_wtry. \'V(' asstlrne that, the

geometrical constraiIlt condition is that the component of ttle if-vector in a direction perpen-

dicular to the local (ietlsity gradient remains invariant. The foregoing az_alysis I_as been made

in the (n,, ,_,,c)-Sl)ace in order to show its relationship to the results of Briggs ant1 Parker. _s

. But transformatio, back to the (,_, "u, _,)-space makes the connectio_ to the results obtained

in earlier sections clear: the dispersion relation is still a l)air of straighl (o_es as in the previous

sections, but, the (;.('. relation is now a plane tilted in the x-z (ratl_er tl_a_ y-z) plane. The new



G.C. relation causes nil upshifting in a manner analogous to the G.C. relation that described

the toroidal mode number invarian_. Tile tilt angle can also become sufficiently large to make

upshifting unbounded for some azimuthal angles of propagation. In tile tokamak geometry,

these unbounded 'admissible' solutions carl actually be 'realized,' because the if-vector rotates

about the field line and carl attain these azimuthal angles as waves propagate. (In the plane-

stratified geometry considered above, unbounded solutions call occur only at a single point in

space, because nb and n_ are given, and the if-vector does not rotate.)

The condition for the unbounded nil can be written as,

0n_ 5

"_l >- V/(- - _). (30)I l/Iv .1.

Here, we consider again the right-handed local coordinate system. (J', fl. z), described in Sec. IV:

the z-axis is perpendicular to tlw local magnetic surface pointing into tile volume enclosed by

the surface, the z-axis is in tile surface, aligned with the local nm.gtletic field, and the y-axis is

also in the surface, pointillg nearly in the poloidal direction. The equilibrium density gradient

is in the positive a'-direction. Tl_e density gradient tilt angle is a - arctan((On_/Oz)/lYrzn_]),

where - + A large tilt angle can res_lt eitlwr from a large
local parallel density gradient. (,r a snmll local perpeIldicular gradiezlt.

. ()

Fig. 27 The minimum parallel density gradi-

_i ent along magnetic field lines llee(_led to satisfy

"_ the unbounded Ull upslliftillg condition. The

.. parallel gradient is norlnalized by the average

;_7.'; radial gradient, 7t_(0)/a_,. A large parallel gra-
dient may occur in t.he equilil_rium profile un-

;_ der special circumstances. The needed gradi-

is generated in the perpendicular protiles, e.g.,

by a density perturbation.

[_C! a P ,7 _i: D

When the perpendicular deIlsity gradient in the deIlominator of I:kl. 30 is t tw radial gradient

of a parabolic equilibriunl dexisily profile, the parallel densily gradient lleeded for unbounded

nil upshifting, normalized by tlw average radial density gradieill is,

a t, i On_ 2rmi,, ,q'

> - 7;). .(lp

value of J(-- 5'/P) is 7, 14, and 21()f, for tlw NIrPI{A, PBXM and TRIAMThe minirrlum

model plasmas, respectively (see Table 2). Variations along the nlidl)lane of the RHS of this

v

inequality is shown in Fig. 27. A parallel density gradient, that is a signi[icant fraction of the
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average radial gradient, is needed to satisfy the unbounded 7_llupshiftiilg condition. Although

little experimental evidence exists, it is generally believed l.hal rapid transport of heat and

particles makes it difficult to maintain a large density gradient along field lines. Large parallel

. gradients may exist, however, under some special circumstances (.see discussion in Sec. VI).

Density perturbations can alter the local density gradient. In a lillear theory of drift waves

• or ballooning mode, the parallel wave number of the perturbation is zero, and there is no

parallel density gradient. In electrostatic turbulence, mode coupling broadens the parallel

wave number spectrum, 2'_ and the parallel density gradient becomes tinite. The gradient is

theoretically expected to be small, [O,,_/O:r[ ,,, [O,z_/Ot,,] >> [?),,_/i-)z[, although there have been

no measurements of the parallel gradient. A significant tilt of t]l(, dellsity gradient vector is

then generated, only if the perpendicular gradient is small. When tile l)erturbation amplitude

is large enough, fi/n_ ,,_ A,./A_, where A_ -= n_/(d,_e/d:r) is the 'radial' gradient scale length,

and A_ is the radial wave length of the perturbation, the local radial l)rofile call become (nearly)

fiat. There are in general specific locations at which the "poloidal' profile is also (nearly) fiat,

but at which the parallel gradient remains finite. At such points, lhe tilt angle becomes large,

and upshifting can become unlimited. Density fluctuations tllat exist commonly in tokamaks

and other devices can thus provide an 7,11Ilpshiftitlg mechai_is_ii.

VI. SUMMARY AND DISCUSSION

Characteristics of lower llvbrid wave propagation were stu_li¢'d ill coIlIlectioll with the lower

hybrid currenl drive (LH('I))in tokanlaks throllgll an analysis of a ('old l)lasnm dispersion

relation and various geometrical coIlst taint ((',.('.) relal lolls.

The dispersion relation has solutio_ls for iov,,er hybrid waves wit ll a I'eSOll_tIlCe tllat occurs

at an aligle obli(lue to ttle tnagneti(' tield lilies. 'l'lw ol)liquelless ot' tile resonall('e angle means

that both parallel (1,ll) alld l)erl)eIldicular (1,1)conll)Onenls ot" llw r('l'ra_'t ix'(, index vector mu_sl
tend to inlinil.>" at tile resorlancc. 'File ot)li¢lue resonance (,xists (_early)(,verx'wllere within the

pla.sma, but occurs at a sp(,ciIic reso_a_lc(" a_gle (l(,t_'rnline(l t)y plasl_la paranl('ters at. each

location. The wsona_lce a_gle is larger at l_igher di_nensio_less "(tel_siti('s,' a_(l tends to a right

angle as the lower l_ybrid resona_ce contlilion is approached.

\¥1wther or _ol the oblique resona_ce ¢,a_ actually occur det)('_¢ls on Ill<' (;.(:. relation

invoked in the a_lalvsis. I_ tile widely eXnl)loye<l "classical' accessil,ililv a_alysis, tl_e G.('.

relation is lh(, i_lvaria_ce of _11I)°stulated as a 'l)ou_darv con¢!itio_.' 'l'lw ol)lique reso_ance is

thus precluded from the oulset, al_(l tl_e lower l_vl))'id resonances' is tl_¢, o_llv resonan(e relevant

in tt_e analysis. Perhaps for this reasons, tlw _otio_ of t[_(' (_bli(lue r¢,so_a_ce has remained

• ' s" .' blique resonance thatobscure [-_tll l l_e lower hybrid reSollallC(, is a high (l(ll. 11"_,li_lil of tlt¢, o

. occurs exaclly at, a right a_gle to tlw magnetic field li_ws. I_ I1_¢'"g¢,l_eraliz¢,d' accessibility

analysis, a less stri_genl constrainl is placed upo_ _tll" _l'l_¢_'°bli(lu¢' reso_anc¢, n iav thus occur,
and alter qualitatively the nature of wave propagation. Two diI[er(,_ll (l.('. relations l_ave

' been .stud_(:d" in the context of the gt'_mral_z_:""(t accessibility. A 'lradil ional' G.('. relation is

a global constraint used extensively in ray tracing calculatio_s, a_d a.ssun_es t l_e invariance
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of the toroidal mode number. A new C. '.' '., ( relation l)roposed in tl_is article l)ostulates the

invariance of tile component of the refractive index vector in a dix'e('tioll l)ert)endicular to the

local density gradient. Each of these assumptions leads to tiw invariaIlce ofa different linear

combination of nil and 71.L.

g ° ,Sol lng the dispersion relation and a G.C relation simultmleously, I)ut without specifying

the azimuthal angle (about the local magnetic field line)of wave t)rol)agation, leads to the no-

tion of 'admissible' solutions. Many qualitatiw_ but useful understandillg of wave propagation

can be obtained from an examination of adndssible solutions: for exatnple, limits of shifting

of nil, either upward or downward, can be assessed from them. Eitlwr (1.('. relation allows nil

shifting. The physical basis for 7,11shifting is the pit(:h angle of IIlagtletic field lines for the
'traditional" G.C. relation, and is the density gradient along tlw field lilws for tile 'new' G.(':.

relation. When the oblique r(.sonance is t'ealizable, 'nil _apshiftit_g call 1,(' llnlinfited, and toroidal
reflection of waves may also occur. \¥hell the oblique resonance is ll()l reallzabl, upshifting is
bounded, and toroidal reflection cannot occur.

It is comInonly believed that lower hybrid waves can danlI) in spile of spectral gaps, because

nil upshifting bridges, them. Large spectral gaps cannol, however, be I_ri{lged by. 1_11tipshifting, if

it, is to be bounde.d. Waw' (laIlll)ixlg throtlgtl )tll upshifting, sllould not til(.ll occtlr ill the presence

of a large enough, spectral gap. It was sh()wll (hro_lgll an atlalvsis usill,,.,, l_)o(M t)lasnms that this

theoretical expectatioll leads Io conlradict ion to experimental ('\'i(l('tlce. it' tile "1raditio_al' (;.('.

relation is er_ployed. For the TI/IAM n_o(ltq l)las_m, theslowt'sl i)ossil,l( ' waves were t)redicl(,(l

to propagate at speeds t'ourte('_ times ll_e electron tl_t,rn_al Sl)(,('(l. a_,l a large unbritlgeable

spectral ga I) existed. I_ ll_e (:as(' of l)l}X-Nl toka_mk, there w(,r(, coxl,litio_s _ider which "II

upshifting was l)redicted to I)e loo s(,ver('lv limil('(I to 1)ridge the Sl)('('lral gal). l)_l(,Xl)eriuwntal

evide_('e ret)ort('(l elsewhere tr showed thal a ('urr(,l_t was (triv('_ I,v l,ll('l). "l'l_s. nil t_l)sl_i!'ting

thro_@l the l)itch a_gl(' of field lines can_ot t,e lh(' ()_lv _w('l_a_is_ l]_) l('a(!s Io lower hvl)ri(l

wave damping, and may possil)ly b(, a _('('l_a)_ist_ it_at)l)lical)l(' l(, t l_(,s(, ('Xl)('ri_wnts.

Parallel (le_lsity gra(tie_ts )_mv I)e l)rese_t i_ tile equilil)riu_ slat(' llll(ler sl)ecial cir('unv

stances, or n_av be pro(lu('(,d by ('o_nn()_Iv observed (t('_sits" tlt_('ttlalit,tts. 'l']_(' l)rol)osed _11

Ul)shifting tnecl_a_isn_ 1)as('d _1)o_ tl_(' l)arallel de_sits" gra(li(')_l is a ('_(li(lal(, l() explain ex-

perimenlallv ol)serve(I lower t_yl)ri(l wave (la_l)it_g i_ t l_(' fa('(' o1' sl_(,('_r,tl <al)S.

Past ion l_eating and ('ul'rent (trive ('xl)('rit_w)lts. and n_()r(' re('(,)_t I)l'()til(' _(,(lifi('ation ex-

perin_enls t_ave left sot_w t'unda_wntal issues of low(,r hvbri(l way(, l)l_ysi('s _nr(,solve(l. Ttwv
include the lack of consistent observal i()_)of i()_ heat i_g, :_a)_d t h(' (,-<ist(')_('(, ()f a (l(q_sit v linfil i)_

the current driv(, ellicacv. I)_ co_necli()_ with l)ossibl(' nw('l_a_is)_> t() till If,' sp('('t ral gap, Ill('

• 's • of "see(l electro)_s" is often postulat('d I)ut Ill(' origit_ ot' ll_(,s(' (,l(,('tr(,)ls llas r(,mai)_('(t( x_. t(nce

UnSl)e(,ified. Tl_e proposed )_11Ul)shit'ti_g n_e('l_a_is))) ))lay offer l)la_sit)l, ' (l_,,,_l,_i ix'(' (,xpla_a-
tions to tl_es(? issues. Th(' following dis('_ssio_ in lhe remain(l('r of tl_is s(,('t iot_ is i_ part based

Ul)On fin(li_gs of tlw pr(,sent articl(' and i_ l)art ()_ (,()nj(,ctur('.

Ix)wer hyl)rid waves re_ai)_ l)(;rfectly cotl(,re)ll ill ll_(, t(,roi(lal (lir(,('ti()_ i_ a_ id(,aliz(,(l
tokamak with a )effect axisy)nnwtry, a)_(I tlw toroi(lal _o(1(, _n_l)er t_av I,(, t.ak(,_ as stri(,tlv

invariant. I)ensity flu('tuatio_s _nav re(tuc(' t l_(, (:oherenc(' i_ real toka_aks, a_(l th(' glol)al
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constraint relation may become less strictly applicable. In the presence of fluctuations of larger

amplitudes, a local constraint relation may become more appropriate. Density fluctuations

have been measured in tokamaks 3°-32 with relative amplitude ranging from a fraction of one

, percent, to several tens of percent, depending upon the radial location within the plasma and

the size of the tokamak. The parallel gradient has never been measured, but is tlleoretically

believed to be quite small. Nevertheless, large tilting of the density gradient can occur wherever

' the perpendicular gradient, is significantly reduced or vanishes. We will discuss below how the

proposed upshifting mechanism, if it, indeed occurs, may be able to explain qualitatively some
of the unresolved issues.

Consider a toroidal geometry with or without poloidal magnetic fields. The density is

high enough to satisfy tile lower hybrid resonance condition at an interior point, and density

fluctuations also exist. Fluctuations of ever smaller amplitudes are then suffice to satisfy the

unbounded nil uprhifting condition (i.e., the tilt ang;e equals rr/2- ¢',.c,) as the lower hybrid

resonance layer is approached. Unbounded upshifting leads to strong electron Landau damping.

Waves nlay then be damped out by electron Landall damping before they come sufficiently

close to the lower hybrid layer to be damped by perpendicular ion I,andau damping or to

be absorbed through mode conversion. The proposed 7_.1[Ul)shifting mechanism is thus not
ince,lsistenl with the lack of observation of reproducible ion heatiIlg and with the lack of

observa_ioll :_of nlode conversion prodllcts.

Tlle density limit of L[tC_I) t'as been observed r in rnally l ol<amaks. Several theses have

been advallced to explain the limit, for example, in terms of nlodecoilversion to warm plasma

waves I)\" Sver(lrllp ai_d Bellan, 33 and ill terms of wave absorption 1,v a minority species by

Alladio, el al. :u \Ve propose here that toroidal reflection of waves Ilia 3" play a role in reducing

tlw currellt (lrive efficacy at lligh densities: [tuctuations of smaller a1_ll)litudes will suf[ice to
salisfv llle cozlditioll for toroidal wave reflection.

Ii was ret_orted by NlcWillialns, et al., 3r' that strong lower ll\'l_rid waw" damping was ob-

served iIl the II{\:INE TOI/1,:S device in the preseIlce of a large spectral gap and strong density

fluctuatioIls (bTt_/'l_, --, 0.1). Tile device had no rolational l,rallsl'orlll, and the spectral gap

could nol }lave been bridged by the "traditional' 7,11Ul)shiftixlg nlecllaIlism. The experiment
was cozlducled close to tile lower hybrid resonance, and the density gradient tilt angle required

to produce I_ll_ounded _il upshifting was therefore small. A [luct_alil_g Imrallel density gradi-
e_t tl_a! is only about two percent of tl_e equilibriu_n radial ¢le_lsily gr_dient would be enough

Io creale such a lilt a_gle, even _o reductio_s it_ tile perpendicular gradient occur. The propsed

_w¢'ha_is_ is lhus nol i,lconsiste_t witl_ the experime_tal observalio_s. (Using reported num-

bers, Ho = (}.556 _n, av = 0.1 m, I3,e,= 0.1 T, w = '2re x 70 Mllz, w_'_,' = 14.3, and under the

assun_ptio_l o1' a helium plasma witll a parabolic densily profile wilt_ _,(0) = 3.10_s/rn :_, we

ol_tain ,,'I,/t/-; "_ 0.65 and q'_._ _ 88.9 (leg at the plasma cent, er. \Vllell ll_e (le_sity gradient tilt

• mlgle, _ = 2deg, is assumed. Figs. 24 lhroug[_ 26 describe co_diliol_s il_ IRVINE T()tlUS at
1 him, 1.5 nm_ and 4 mm from the l_lasnm edge, respectively, l_Ix,rior l_oi_ts are qualitatively

similar to ltle last case.)

In discussio_ of spectral gap issues, ll_e noliol_ of "seed elecl.ro_ls" is common. If tl_ere

rSee an article by Sverdrup and Bellanaa for an extensive list of earlier publications on this subject.
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is a 'tail' electron population, no matter how small, that fills tile spectral gap between the

thermal electron population and the wave spectrum, waves will deplete the population by

carrying away the tail electrons to higher energies. The t,ail population is then replenished

from the thermal population. The process thus effectively keeps 'drawing out a tail' of the

thermal population. An important 'gap' in this explanation is the fact that the source of

the original tail electron population is unspecified. The proposed nil upshifting mechanism is

compatible with generation of such seed electrons. Fluctuations of a large 'amplitude' (in the

sense of creating a strong density gradient tilt angle), which may occur only infrequently and

at discrete spatial locations, can cause unbounded nil upshifting, temporarily and locally, in
otherwise bounded upshifting circumstances. Strong upshifting causes waves to interact with

the thermal population, and create a tail population. Such tail electrons may survive for a

finite time period after the large-amplitude fluctuations disappear, and may also be transported

away from tl_eir birth places. Those waves that experience only bounded nil upshifting can
now interact with the tail electrons.

There may be other circunlstances in which a strong parallel dellsity gradient is generated in

the equilibrium state. For example, a Marfe a6 is a poloidally localized region of high densities, I

and there are parallel density gradients along field lines tlmt _:nt z tile region. Interaction of

an LHCD antenna with the plasnla inav also generate a localized regioll of altered densities in

the immediate vicinity of the structure: a ponderomotive force of t l_c antenna near-field may

generate a region of lower densities, a7 leading to a finite I)arallel graclicllt and at the same time

to a reduced perpeildicular gradient, or arcing may generate a regioll of higher densities.

• e_Ih: proposed 7ell upshifting illocllanism tnust be corroborate,.1 by experimental evidence.
Interpretation of ex1")'<Iun_ntal"_ l<."sulls will require lneasuremeIlts of fl/Ictuations and statistical

analysis tools. Scatterillg of lower Ilvbrid waves by density fluctllatioils has been considered

analvticallv_ . 1)y AIldrews a11d I)<_'I'klns.':_8alld llas recently b(:'en iiicl:l(Icd in ray tracing calcu-

lations I)y \:aliala, et al.. :_9a il(t I)y lglJat, (,t al. "t° hi sucll an allalb'sis, l lie choice of 'boundary

conditions' is crucial: wave scatterillg willie preserving the toroi<lal 111ode number will lead

to a test of tile 'traditional' upsllifting lnecllanism, and wave scattcrillg while preserving the

component of the refractive index w'ctor in a direction peq:_e_Mi<:ular to the density gradient

will lead to a lesl of l l_c "I_ew' Ul)sl_ift,ing n_echanism.

Finally, efforts to resolve spectral gap's' ,'.. _.su(-:s must iI_clude effecls oilier than _11upshifting.

The spectral gap is room in velocity space between the wave Sl)Octrun_ ancl (a few times) the

parallel electron therInal ,l)ccd. I{oon_ cat_ be filled witl_ _x:ax,(,, .,s ...... s 1)\' extending downward the

imposed wave sp_ectrulll,, as is thought to occur in tim nil Ul)shift ing hypottmsis, or it can be

filled by electrons brought in fron_ <Is, _ he_< in velocity space I>5' so_e _echanism. The reverse-

runni_g portion of a grill-i_nposed spectrum has been proposed l_v 'l'akahashi, et al. _a_ and

by Colborn, et al., 4_ as a possible mechanism to fill with fast eh.,ctrot_s the spectral gap that

remains unbridged after the rnaxinmm possible _allupshifting. Any role ])layed by suprathermal
electrons that may naturally be present in tokamak plasmas sl_<ml<lalso be investigated. 4'2 It

is also noted tl_at the applicability of the ray tracing theory itself to lower l_vbrid waves has

been examined by Pereverzev. 4a

4O
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