EPARED FOR THE U.S. DEPARTMENT OF ENERGY, |
UNDER CONTRACT DE-AC02-76-CHO-3073 R ——

sl 2z

~ PPPL-2947 PPPL-2947
' UC-420,426,427

THE GENERALIZED ACCESSIBILITY AND SPECTRAL GAP
.OF LOWER HYBRID WAVES IN TOKAMAKS

BY

H. TAKAHASHI

MARCH, 1994

| PRINCETON
PLASMA PHYSICS
| LABORATORY

i i
| mwnmuummtm-

"t ,..mmeu SRR 1T 1T
|ﬂ|f M" ' "ﬂﬂll'ﬂﬂﬂ " ‘ 0 e T s st Y i i

I 18

b A

— -

“ .'.PRINCETON UNIVERS,ITY, PRINCETON, ,-NE_W JERSEY




NOTICE

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof,
nor any of their employees, makes any warranty, express or implied, or assumes any
legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would
not infringe privately owned rights. Reference herein to any specific commercial
produce, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government or any agency thereof. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.

NOTICE

This report has been reproduced from the best available copy.
Available in paper copy and microfiche.

Number of pages in this report: 45

DOE and DOE contractors can obtain copies of this report from:

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831,
(615) 576-8401.

This report is publicly available from the:

National Technical Information Service
Department of Commerce
5285 Port Royal Road
Springfield, Virginia 22161
(703) 487-4650



THE GENERALIZED ACCESSIBILITY AND SPECTRAL GAP
OF LOWER HYBRID WAVES IN TOKAMAKS

Hironori Takahashi
Princeton Plasma Physics Laboratory, Princeton University
P.O. Box 451,/Princeton, New Jersey 08544

ABSTRACT

The generalized accessibility of lower hybrid waves, primarily in the current drive regime
of tokamak plasmas, which may include shifting, either upward or downward, of the parallel
refractive index (n), is investigated, based upon a cold plasma dispersion relation and vari-
ous geometrical constraint (G.C.) relations imposed on the behavior of n. It is shown that
n) upshifting can be bounded and insufficient to bridge a large spectral gap to cause wave
damping, depending upon whether the G.C. relation allows the oblique resonance to occur.
The traditional n|| upshifting mechanism caused by the pitch angle of magretic field lines is
shown to lead to contradictions with experimental observations. An upshifting mechanism
brought about by the density gradient along field lines is proposed, which is not inconsistent
with experimental observations, and provides plausible explanations to some unresolved issues
of lower hybrid wave theory, including generation of ‘seed electrons.’

I. INTRODUCTION

The efficacy of Lower Hybrid Current Drive! (LHCD) in driving a bulk of the plasma
current in the tokamak has been well established (see review articles*). The emphasis in the
application of LHCD has recently turned to subtle modifications of the radial profile of the
plasma current for enhanced plasma performance.” Controlled current profile modifications
are thought to be achievable by allowing waves to propagate to a desired location, damp,
and generate a current there. Thorough understanding of wave propagation and damping
mechanisms is essential in achieving these goals.

The term, ‘accessibility,” originally referred to the question of whether or not the lower hy-
brid resonance layer was reachable, i.e., whether or not waves having a wavelength imposed by
an antenna can propagate unhindered to a location where the lower hybrid resonance condition
is met and ion heating is thought to occur. As the scope of research involving lower hybrid
waves broadened to include conditions under which no lower hybrid resonance exists within
the plasma, such as electron heating regime and current drive regime,® the same term came to
mean whether the plasma center is reachable. In the context of current profile modifications,
the accessibility now means whether or not any specified point within the plasma is reachable.
There are usually some constraints imposed upon some aspects of the waves in determining the
accessibility. The accessibility analysis is classified in this article depending upon constraints
placed on the wavelength parallel to the magnetic field lines: in the ‘classical’ accessibility,
the parallel wavelength is assumed fixed, e.g., through the periodicity or boundary conditions,
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and in the ‘generalized’ accessibility, changes in the parallel wavelength is permitted. This ar-
ticle is concerned mostly with the generalized accessibility, but its relationship to the classical
accessibility is also examined.

In a simple-minded picture of the classical accessibility involving the lower hybrid resonance,
the resonance is a special condition that occurs at a specific location in an inhomogeneous
plasma, and waves launched from the plasma edge propagate through intervening regions to
reach the resonance layer where the waves are absorbed. An examination of the cold plasma
dispersion relation shows, however, a resonance exists, in the form of an ‘oblique’ resonance,
everywhere in the intervening regions between (almost) the plasma edge and the lower hybrid
resonance layer. The lower hybrid resonance is simply a limiting form of the oblique resonance
that occurs at a right angle to the magnetic field lines. The oblique resonance is, however,
precluded under the constraints of the widely employed classical accessibility analysis, because
the obliqueness requires both the parallel and perpendicular wavelengths to become very short
while maintaining a fixed ratio between them. Perhaps for this reason, the notion of the
oblique resonance has remained obscure. The oblique resonance can occur in the generalized
accessibility depending upon conditions.

It is traditionally assumed in the analysis of lower hybrid wave propagation in an inho-
mogeneous tokamak plasma that no variations in zero-order parameters occur in the toroidal
direction, and the toroidal mode number of waves (i.e., the number of whole wavelengths)
is an ‘invariant of the motion.” Magnetic field lines in the tokamak are generally not in the
purely toroidal direction because of the presence of poloidal fields. The component, ny, of
the refractive index vector parallel to the magnetic field direction therefore does not have to
remain fixed. The invariance of toroidal mode number nevertheless imposes a constraint on
the manner n) varies, because the tokamak magnetic geometry ties the toroidal and parallel
components of the refractive index vector. A significant feature of this ‘geometrical constraint,’
recognized by Schuss, et al.'® (in a cylindrical geometry analysis), is that n) can increase (‘up-
shift’) or decrease (‘downshift’), if the perpendicular refractive index, ny, which is usually
much larger than 7i), beconies rotated about the field line, and projects a component in the
parallel direction. Determination of lower hybrid wave propagation and damping in an 1nho-
_ mogeneous plasma must usually rely on numerical techniques such as ray tracing analysis.!!
Upshifting and downshifting of nj have been demonstrated in theoretical analyses®'?>"' using
the ray tracing technique in the tokamak geometry. It will be shown in the present article that
the geometrical constraint arising {from the toroidal mode number invariance can also allow an
oblique resonance to occur. This global constraint on the waves will. however, prove to lead to
predictions that are in contradiction with experimental observations. A new local geometrical
constraint will be introduced, and its ramifications on some unresolved issues of lower hybrid
wave theory will be discussed.

There is an aspect of wave damping mechanism that has not been fully understood. The
lower hybrid waves in the current drive regime are theoreticall* expected to damp through
Landau damping by resonantly interacting with electrons that are moving at speeds near the
wave phase speed parallel to the confining magnetic field. The spectrum of waves launched
into a tokamak plasma by an LHCD wave antenna (‘grill’) has, however, a phase speed often




much greater than the thermal speed of electrons, and there are few electrons that are resonant
with the waves. This gap between the parallel phase speed of launched waves and electron
thermal speed is commonly known as the ‘spectral gap.” Upshifting of n; may be able to fill
this gap, and cause the waves to damp. Although a direct experimental confirmation of nj
upshifting is difficult, it has nevertheless become widely accepted as an explanation for how
the lower hybrid waves damp in spite of the spectral gap. The spectral gap can be large or
small depending upon the wave phase speed and electron temperature. Implicit in invoking
ny upshifting to explain the wave damping under any conditions is an assumption that the n
upshifting can be arbitrarily large to fill a spectral gap of any size. If there is a limit to the
upshifting, the explanation can fail under some circumstances.

Some steps of the development of lower hybrid wave propagation theory will be revisited,
first, to introduce some definitions and features of plasmas under consideration, and, second,
to clarify the connection between the classical and generalized accessibilities. Waves in a cold
plasma in LHCD regime are then examined in terms of wave normal surfaces. The oblique res-
onance is a distinguishing feature of a lemniscoid wave normal surface that characterizes lower
hybrid waves. Relationships between the oblique resonance and some well-known concepts in
the lower hybrid theory, such as the electrostatic approximation, are examined. An analytical
expression is derived for the global geometrical constraint based upon the toroidal mode num-
ber invariance. The electrostatic approximation and geometrical constraint are solved together
to arrive at a range of solutions admissible under the combined requirements of the dispersion
relation and toroidal mode number invariance. The ‘admissible solutions’ will show that char-
acters of wave propagation are qualitatively different depending upon the realizability of the
oblique resonance. When the oblique resonance is realizable, »); upshifting is unlirited, and
can in principle bridge spectral gaps of any size. Furthermore, toroidal reflection of waves is
possible. When the oblique resonance is unrealizable, there is an upper bound to n) upshift-
ing, and spectral gaps may not be filled depending upon conditions. An analytical expression
for the bound to the n npshifting, when it exists, is derived. Notions of ‘wave domain’ and
‘damping domain’ are introduced. The gap between the two domains, which may exist when
upshifting is bounded. is a spectral gap that cannot be bridged through n) upshifting.

The analytical expression, reported earlier in a simpler form'” and derived in detail in the
present article, for admissible solutions shows that n) upshifting can be bounded or unbounded,
depending primarily upon the plasma density (in a dimensionless sense) and the pitch angle of
magnetic field lines. As an example of a tokamak that has a small aspect ratio and consequently
a large field-line pitch angle, TORE SUPRA is considered. It operates at comparatively high
densities. It has unbounded ny upshifting over most of the plasma volume. Shaping of the
plasma cross section also results, to a lesser extent, in a large field-line pitch angle. The PBX-
M tokamak, with a medium aspect ratio, operates with or without cross-sectional shaping,
and at moderate densities. It has bounded nj upshifting, but the upper bound can range from
being nearly sufficient to insufficient for wave damping. The TRIAM-1M tokamak represents
an opposite extreme: it has a large aspect ratio, small plasma current, and high toroidal field,
and consequently a small field-line pitch angle. It also operates at low densities. Essentially no
ny; upshifting occurs and no wave damping is theoretically expected. In all of these tokamaks,
however, there was experimental evidence that a current was driven by LHCD. The TRIAM-



1M discharges were in fact entirely sustained by LHCD. The n); upshifting caused by the pitch
angle of field lines will thus lead to.contradictions with experimental evidence.

The oblique resonance can be realizable, and n); upshifting can be unbounded, when there is
a sufficiently large density gradient along magnetic field lines. The total density gradient must
be ‘tilted’ into a direction parallel to field lines by an angle commensurate with the obligne
resonance angle. A key assumption here is that the component of the refractive index vector
in a direction perpendicular to the density gradient vector remains invariant. It was shown
by Briggs and Parker'® in a plane-stratified geometry that there is a ‘new absorption layer’
when the density gradient is tilted from the perpendicular to the field lines. We will show that
their ‘new absorption layer’ is actually a manifestation of the oblique resonance, and that the
density gradient tilting will lead to nj upshifting in the tokamak geometry. The density gradient
along the field lines may be present in the equilibrium state under special circumstances, or
may be produced locally and temporarily by density fluctuations or MHD perturbations. Tilt
angles large enough to make the oblique resonance realizable can be produced easily when the
perpendicular gradient is also reduced under these conditions. This n) upshifting mechanism
is thus a candidate to explain experimentally observed lower hybrid wave damping in the face
of spectral gaps.

Past ion heating and current drivéyexperiments. and more recent profile modification ex-
periments have left some fundamental);issues of lower hybrtd wave physics unresolved. They
include among others the lack of consistent observation of ion heating,” and the existence of
a density limit in the current drive efficacy. In connection with possible mechanisms to fill
the spectral gap, the existence of ‘seed electrons’ is often postulated, but the origin of these
electrons has remained unspecified. We will discuss how the notion of the oblique resonance
and the proposed n) upshifting mechanism based upon the parallel density gradient may offer
plausible qualitative explanations to these issues.

In Sec. 11, model plasmas are described with parameters spanning a wide range of LHCD
experiments in tokamaks. In Sec. I1I, nature of the solutions to a cold plasma dispersion
relation are discussed. In Sec. III-A, definitions of the dielectric tensor elements are given.
Their spatial variations are examined. In Sec. II1-B, the classical accessibility of waves with
a fixed ny into an inhomogeneous plasma is discussed. In Sec. II-C, the notions of wave
normal surfaces and oblique resonance are introduced. In Sec. I1I-D, the notions of inverse
wave normal surfaces and electrostatic approximation are discussed. In Sec. 1V, a constraint
placed on nyj, arising from the toroidal mode number invariance assumption, is derived. In
Sec. V., a concept of the range of solutions, admissible under the combined requirements of the
dispersion relation and geometrical constraint relation, is discussed. In Sec. V-A, a geometrical
interpretation of the admissible solutions is given. In Sec. V-B, an analytical expression for
the range of admissible solutions is derived. In Sec. V-C, a notion of the wave domain is
introduced. The spectral gap and wave damping are discussed. In Sec. V-D ny upshifting
caused by the parallel density gradient is proposed. In Sec. VI, a summary and discussion are
presented.




II. PLASMA MODELS

Model plasmas are employed to obtain numerical examples. We consider for most part a
bean-shaped model plasma, similar to plasmas in LHCD experiments on the PBX-M tokamak.
This model plasma, referred to as ‘PBXM,’ is representative of tokamaks in which nj upshifting
is bounded according to the ‘traditional’ mechanism based upon the field-line pitch angle , but
the upper bound of n is large enough for the waves to satisfy (or nearly satisfy) the damping
conditions. Detailed calculations based upon equilibria reconstructed for experimental plasmas
in this tokamak is reported elsewhere.!® A second model, referred to as ‘TRIAM,’ is a circular
plasma similar to those sustained entirely by LHCD (i.e., no inductive drive) in the TRIAM-
1M tokamak,? and is representative of tokamaks in which the nj upshifting is severely limited,
and wave damping through traditional n); upshifting is highly unlikely. A third model, referred
to as ‘SUPRA,’ is a circular plasma similar to those found in the TORE SUPRA tokamak,'®
and is representative of tokamaks in which traditional n) upshifting is unbounded over most
of the plasma cross section. Some basic parameters of the models are tabulated in Table I.
Numerical examples discussed in later sections are based upon these sets of parameters unless
specifically stated otherwise.

Table 1: Parameters of Plasma Models -1

TRIAM PBXM SUPRA Units
By 7 1.5 3.9 T
n.(0) 2 3 4 10" /m?
T.(0) 0.6 1.5 | keV
fw 8.2 4.6 3.7 GHz
I, 40 180 1,600 kA
Ro 0.84 1.65 2.40 m
ap 0.12 0.3 0.8 m
A 7.0 5.5 3.0 m
Gedge 15 8.3 3.3
Ry 0.96 1.95 3.20 m
3 297 395 446
nir 1.8 2.1 1.8

The major and minor radial coordinates are R,.,; and 7., respectively. The plasma
major radius is designated by Ry. For the circular plasmas. the minor radius is designated
by a,. The aspect ratio is defined by A = Ry/a,. The electron density is assumed to have
a parabolic profile in the normalized minor radius, ne(rmin) = ne(0)(1 = (Tmin/ay)?). The
electron temperature is assumed to have a profile of a parabola raised to the power of 2, T, =
T.(0)(1 — (rmin/ap)?)? For the bean-shaped plasma, the ‘minor radius’ refers to the plasma
half-width along the midplane, and the profiles are specified along the midplane. The plasma
jon species is chosen to be deuterium for all model plasmas, but the choice is inconsequential
in the present analysis.

We classify properties of a model into three categories, and refer to each of them by a

5)



specific term. We refer to the electron density and temperature, and the intensity (but not
the direction) of the total magnetic.field (Br) as ‘plasma properties.” We also regard the wave
frequency (f,) as a plasma property, because we make the density and magnetic field intensity
dimensionless using the wave angular frequency (w = 27 f,,). The plasma properties determine
the local dispersion relation and wave damping. The pitch angle between the magnetic field
vector and the toroidal direction plays an important role in determining the geometrical con-
straint on n) shifting. We refer to parameters that influence the angle as ‘magnetic geometry’
properties. They include the plasma current (I,) and toroidal magnetic field (By) as well as
geometrical properties of the plasma, such as the plasma shape, and aspect ratio. Finally, we
refer to the major radial location (R ) of the LHCD grill, and the toroidal mode number

maj :
(NJ"), or equivalently the toroidal refractive index (n}" = NJ c/(wh},.)), where c is the speed
of light in free space, imposed by the grill as ‘boundary conditions.” Shown in Table II are some
dimensional and dimensionless characteristic frequencies based upon the plasma properties on
the geometrical axis. Maximum values within the plasma volume of some elements of the

dielectric tensor are also included in the table. The definitions of these quantities will be given
in Sec. IIL.

Table 2: Parameters of Plasma Models -1

TRIAM PBXM SUPRA Units

w 5.2 4.6 2.3 10'%ad/sec

Whe 2.5 3.1 3.6 10" rad/sec

Wee 12 2.6 6.9 17 'rad/sec

WLH 4.1 3.3 74 10° rad/sec

Wom 20 4.4 16 10° rad/sec
Wye [w 4.9 11 15
Wee Jw 24 9.1 30
Wiy Jw 0.08 0.11 0.32
Wom @ 0.39 0.15 0.69
(6pe /e )? 0.04 1.4 27
|P| 23 113 235
S 1.04 2.140 1.24
1P| /S 22 19 196

The pitch angle, (;, between magnetic field lines and the toroidal direction will be needed in
our analysis. The variation along the midplane of the pitch angle, ¢, = arctan By/ By, where By
is the poloidal magnetic field, is plotted in Fig. 1 for all three model plasmas. For the PBXM
model plasma, the angle was taken from typical equilibrium calculations. For the TRIAM and
SUPRA model plasmas, the angle was calculated from an assumed parabolic radial profile of
the safety factor, ¢(rmin), with ¢(0) = 1. No Shafranov shift was included in these calculations.
We note that the pitch angle is larger on the outboard side than on the inboard side for the
both circular plasmas (TRIAM and SUPRA), but the angle is comparable on either side for
the bean-shaped plasma (PBXM). We note also that the pitch angle is far greater for the
SUPRA plasma than for the TRIAM plasma, because the SUPRA model has a much smaller
aspect ratio as well as a much smaller geqge. The pitch angle for the PBXM model plasma is

6



enhanced compared to that for a circular plasma (not shown) in the same tokamak because of
shaping.

10 —+

Fig. 1. The variation along the midplane of the
SUPRA | magnitude of magnetic field-line pitch angle is
shown for the three model plasmas. The angle for
the SUPRA model is much greater than that for
the TRIAM model, because the SUPRA model
has a much smaller aspect ratio as well as a much

smaller geq4e. The angle for the PBXM model

Pitch Angle (deg)

plasma (bean-shaped) is large compared to that
for a similar circular discharge (not shown) be-
cause of shaping.

R - a R R + a
0 p Q _ 0 P
Major Radius

III. DISPERSION RELATIONS

We will largely follow the nomenclature used by Stix?'?2 in revisiting some steps of the

development of the theory of lower hybrid wave propagation. The purpose of this section
is primarily to introduce the notion of the oblique resonance and to clarify the relationship
between the classical and generalized accessibilities. The definitions of terms and symbols,
which will be needed in later sections, are also stated.

A. Dielectric Tensor Elements

Elements of the dielectric tensor for a cold homogeneous plasma, made of electrons and
ions of a single species, and immersed in a uniform magnetic field, are defined as,

2 2
wy)r + w])i

R=1- .
(w - wce)(“" + wci)
L=1- “pe T
(W + wee)(w — Wei)
P=1- “pe + +£§~’-

w2

1

D=3(R-1L) (1)




where w2, = ¢ln,/(egm,) is the square of the plasma frequency, and w, = ¢,B/m, is the
cyclotron frequency, in which the .subscript s stands for either the electron (e) or ion (i)
species, €g is the vacuum permittivity, n, is the number density of the species s, m; is the mass
of a particle of the species s, and ¢, is the magnitude! of the electronic charge on a particle
of the species s. The lower hybrid frequency is 1/w}y = 1/(w} 4+ w?) + 1/w? , where the
square of the gm (geometrical mean) gyrofrequency is defined by w2, = weewei. Some of these
frequencies are evaluated at the geometrical center of the plasma, and are tabulated in Table I
for the three model plasmas. The maximum magnitudes of P, S and P/S encountered within
the plasma are also tabulated there.

The full expressions in Eq. 1 are used for all numerical calculations presented in this paper.
For analytic evaluations in the current drive regime far away from the lower hybrid resonance
condition, approximate expressions valid for w? < w? € w?, w* K Wl and wewe; K w* are
useful, and are given by,

(.«.'2
}') [ re

w?’
2
w?,
‘,;v —_ pe
S=1+ 5
ce
2
w
D = B2 (2)
WWee
These expressions are valid evervwhere in the model plasmas except near their periphery. For
conditions close to, or including the lower hybrid resonance, the expression for S should be
- ’ 2
replaced by S = 1 4 (wy fwir ) = (wp/w) = 1+ (wpe/wee P (1 = weewei/w?).

Variations along the midplane of the dielectric tensor elements are shown in Fig. 2 for the
PBXM model plasma. Variations along any other plasma diameter are qualitatively similar,
and regions of different characteristics referred to in later sections are roughly of either ‘ring-
shaped,’ or ‘disc-shaped’ zones. Variations of the tensor elements for the SUPRA and TRIAM
model plasmas (not shown) are qualitatively similar to those for the PBXM plasma, except
that the maximum values attained by the individual elements are quite different (see Table I
for the maximum values of some pertinent elements and their ratio).

We note that S is significantly greater than unity for the PBXM model plasma, unlike
the other two model plasmas: clectrons are not as ‘strongly magnetized’ in the PBXM model
plasma as they are in the others (see Table 1). The plasma density plays a more important role
in the PBXM model plasma than in the others through the w? /w? termin S (see Eq. 2). We
also note that L < 0 over most of the plasma volume for the PBXM and SUPRA plasmas, but
that L > 0 everywhere for TRIAM plasma. The TRIAM model plasma is in a region of the
parameter space that is qualitatively different from that occupied by the others.

It is a feature common to all of these model plasmas that the lower hybrid resonance
condition (S = 0) is not satisfied anywhere inside the plasma. This feature is in fact a

1We deviate from Stix's nomenclature and sign convention here: ¢, is a signed quantity, and w, is a negative
quantity in his definitions.



characteristic of the lower hybrid current drive regime (in contrast to the lower hybrid ion
heating regime): densities are low enough, or frequencies are high enough (wygy/w << 1), that
the lower hybrid resonance does not occur inside the plasma (see Table II).

154 1
R Fig. 2: Variations of cold plasma dielectric

5 10t , 4 tensor elements along the midplane are shown
% D for the PBXM model plasma. The P curve is
E 5] 1 shown divided by 10. P = ~113 and S = 2.4
7 5 at their respective maximum magnitude. The
% 0 value of S deviates significantly from unity,
5 indicating that the electrons are ‘weakly mag-
% sl 1 netized.’
a L

~104 P/10

1.35 1.50 1.65 1.80 1.95
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B. Classical Accessibility

In the framework of usual lower hybrid wave propagation theory, a dispersion relation
written for a homogeneous plasma is assumed valid locally at each point in an inhomogeneous
plasma. It has been a common practice to solve the dispersion relation for n? for a given
value of ny, and present the solution as a function of position (or a plasma parameter, often
the density). The presentation is useful for examining how far waves of a given and fixed n
(i.e., non-upshifting) can penetrate into an inhomogeneous plasma. This is the classical wave
accessibility question. A form of the of cold plasma dispersion relation useful for answering
the question is given by, %1%

amn it —am P+ ap =0,

Cl4 E AS',
a3 = RL+ PS — (P + 8)n)2,
ap = P(RL - 2571”2 + 7?-”4). (3)

Variations along the midplane of the real-valued solutions of Eq. 3 for n;? (denoted as
n’f)p in the figure) are shown in Fig. 3 for a set of n)| values for the PBXM model plasma.
For the lowest three values, ny = 2.1,2.45 and 2.70, no rcal-valued solutions are found in a
plasma central region. The deepest (smallest ‘minor radius’) points to which waves propagate
are ‘turning points’ (indicated, e.g., by ‘M’ on the curves for ny = 2.70). These are points at
which the given value of nj satisfies the mode conversion condition. The domain in which real
solutions are found is greater on the inboard side on account of a higher magnetic field there.
For waves with a sufficiently high n) (e.g., the curves for n = 2.75), there are no turning
points, and the entire plasma volume is ‘accessible’ to the waves.




Diagrams, such as the one in Fig. 3, show how far a wave can penetrate into the plasma.
if the wave retains the original 7, with which it was launched at the plasma edge. 1t is also
useful to be able to evaluate, through simple calculations, the value of n) that is needed for a
wave to penetrate to any given point in an inhomogeneous plasma, or equivalently, the value
of n| that satisfies the mode conversion condition at each point in space.

Fig. 3: The classical accessibility of the PBXM
model plasma is shown. Only two curves, with

ny = 2.75 and nj = 2.70 (only the one on the
inboard side), reach the plasma center. The
other curves ‘turn around’ at a point short
of the plasma center. The turning point of
a wave (e.g., ‘M’ on n = 2.70 curves) is a
point at which the mode conversion condition

is satisfied, and the wave changes its character

from the lower hybrid wave (the larger n,?

segment) to the fast wave (the smaller n *

segment). The fast wave is cutoffl (i.e., n 2% <

1.35 1.50 1.65 180 1,95 0) under some conditions (e.g., ‘C" on n =

R (m} 2.75 curves).

The condition that solutions to Eq. 3 be real-valued is the mode conversion condition, and
is given in its general form by a2 — 4asay > 0. The condition can be re-written in terms of a
polynomial in n? as,

[)47‘1H4 — b271||2 + by = 0,
by = (P —8)%,
by = 2((RL — PS)(P 4+ S)+2PS(P - 5)).
bo = (RL — PS)*. (4)

This polynomial has two solution branches for nj? which can be written in terms of the dielectric
tensor elements only. Both solutions are complex-valued, and no mode conversion occurs in
the thin peripheral region outside the so-called critical layer (see below). In the central plasma
region the branch that results in a positive value for n)* is to be taken. The solution yields
a numerical value at each point in space when the tensor elements are evaluated there. We
designate this value by (7‘1.“M(’"\,2. and write,

MCy2 = b + \ﬂbg —d (’4[’0)‘
- 2[)4

(’I’I.H (5)
Variations of n™“ along the midplane are shown in Fig. 4 for the three model plasmas. The
PBXM model plasma represents a comparatively ‘inaccessible’ situation, while any wave with
a n) value only slightly above unity can access the TRIAM model plasma interior.

MC 3

An approximate expression for ny was derived by Stix.?® Except for a thin plasma
edge region, conditions, P < 0, L < 0 and —S/P < 1, hold (see Fig. 2), and n“M° ~
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V'S + \/ERL/P). With an identity, RL/P = (S?— D?)/P, and a further restriction, S? <« D?,

an expression identical to Stix's result, nM¢ ~ VS + \/( — D?/P), is obtained. Noting
—D?*/P = S — 1, if the simple expressions for dielectric tensor elements, Eq. 2, are used, a
simple mode conversion condition is given by?,

nMC VS + /(S - 1. (6)

Waves with an n|| value greater than n”MC evaluated at a plasma interior point can propagate
to that point (under an implicit assumption that simpie monotonic density and magnetic field
profiles lead to monotonically increasing n”MC leading to the point). As S tends to unity, n”Mc
also tends to unity. We note that this expression depends only on the parameter, (wpe/wee)?.
The approximation given by Eq. 6 results in nearly identical values as the exact expression in
Eq. 5 for any of the three model plasmas.

Fig. 4: The variation along the midplane of the
value of n, designated as ny™¢, that satisfies the
local mode conversion condition, is shown for the
three model plasmas. In order for a wave to reach
any midplane point in a model plasma, the wave

must possess n equal to, or greater than, ny McC

pertinent to that point.

R . a R E + a
0 4] ) o 0 p
Major Radius
There may be points on a curve in Fig. 3 at which n? becomes zero (e.g, points indicated
by ‘C” on the curves labeled nj = 2.75). The condition for this to happen can be found by
setting to zero the coefficient, ag, defined in Eq. 3. The resulting equation involves only n?
and dielectric tensor elements. We designate the value of n) that satisfies the equation by
nHFC. It is given by,

(") = R. (7)

The point is customarily called a fast wave ‘cut-ofl” point.

A turning point, if one exists, and the plasma edge divide each solution curve in Fig. 3
into two sections: the upper (larger n,?) and lower (smaller n ) ?) sections are often referred to
as the slow waves (or lower hybrid waves) and fast waves, respectively. For waves with large

ny, there are no turning points within the plasma, the real-valued solutions are represented
by a pair of disconnected curves (see, e.g., curves for n) = 2.75): the upper curve represents

?The same result has been obtained by other researchers.
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the slow waves and the lower curve represents fast waves. The lower hybrid waves propagate
everywhere inside the plasma (except in a very thin layer at the plasma edge —see below),
and the fast waves may also propagate in a central region. For waves with still larger nj, the
domain of propagation of the fast waves shrinks and finally disappears. It is interesting to
note that these ‘two’ waves, slow and fast waves, discussed here comprise a single branch of
the solution to the cold plasma dispersion relation (see below).

It is the variation with nj of the wave penetration depth that is proposed as a tool for
controlled modification of the current profile. In addition to the accessibility, however, wave
damping must also be considered. Waves may penetrate to a desired location, but may not
damp there because of a too low electron temperature. Waves may also damp ‘prematurely’
before reaching a desired location, if the electron temperature is too high.

C. Wave Normal Surfaces and Oblique Resonance

The conventional dispersion relation calculations shown in Fig. 3 are useful for assessing
the classical accessibility, and for providing quantitative information on n, for a given value of
nj. The form of representation is not convenient, however, when the notion of a fixed n) wave
is abandoned, and the concept of n) shifting, either upward or downward, is introduced. It also
gives little information on the nature of waves. We explore here another form of representation:
the dispersion relation is expressed at a given point in space (i.e., for a given set of plasma
parameters) in terms of ‘wave normal surfaces.’

The cold plasma dispersion relation given in Eq. 3 can be written in terms of the magnitude
of normalized phase velocity vector, u = |i,|, where ), = l::w/(k'zc) and k = E, and the
zenith angle between the phase velocity and magnetic field vectors, ¢,. The zenith angle is the
angle of a vector measured from the local magnetic field vector in the plane that contains both
vectors. The phase velocity is normalized by the speed of light in free space. The equation
can be written as,2!?2

Agu' — Agu? + Ay =0,
Ay = Scos*(, + P sin® ¢,
Ay = RLsin? ¢, + PS(1 4 cos? (),
Ao = PRL. (8)

|

Solutions to this equation can be represented in terms of wave normal surfaces.

A wave normal surface is the locus traced by the tip of the normalized wave phase velocity
vector as the wave propagation zenith angle is varied. A wave normal surface is a three-
dimensional (3D) surface of revolution about its vertical axis. which is the parallel component,
uj|, of the normalized phase velocity vector®, and is symmetric about the plane, u = 0. Two

3Following a perhaps unfortunate but widely-accepted convention, we earlier used the term ‘parallel phase
speed,” to mean the quantity, w/kj, where k) is the parallel component of the wave vector, k, rather than the

parallel component of the phase velocity vector, w/I;, as defined here. The latter quantity is wky/k”.
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types of the wave normal surface are encountered in the LHCD field, and are the spheroid and
‘dumbbel’ lemniscoid (or a rotated ‘figure eight’). A lemniscoid wave normal surface is depicted
in Fig. 5. Only the upper half (v > 0) of the rotated ‘figure eight’ is shown in its vertical cross
section. The topological genus of wave normal surfaces have been used to classify the type of
solutions to the cold plasma dispersion relation in the Clemmow-Mullaly-Allis (CMA) diagram.
In the diagram the parameter space is divided by ‘bounding surfaces’ into various ‘bounded
volumes’ in which the wave normal surfaces remain topologically the same. The topological
characteristics obey a set of well-defined rules?; for example, the two surfaces never intersect
each other, and if they touch each other, they do so only either at the ‘north and south poles’
or along the ‘equator’ of the surfaces. Classifications of wave types based upon the topology of
wave normal surfaces are less prone to confusion caused by semantics (such as ‘fast’ or ‘slow’
waves).

Fig. 5: The lemniscoid wave normal surface

(upper half only) is shown by a solid curve

o
w
+

for a mid-radius point on the inboard side
(R=15m, : = 0m) for the PBXM model
plasma. A lemniscoid wave normal surface

<
N

possesses a resonance at an oblique angle, Cres.

The part of the surface near the resonance, up

(=]
o
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to the mode conversion point (MC) is usually

referred to as ‘slow waves,” and the remain-

Slow Wave
;

AT TR 0 0.1 G.2 ing part as ‘fast waves.” The locus of constant

Perp. Phase Speed PR . . .
= 2T71s shown in dashed line. The inter-
sections of the solid curve and dashed line are

the ‘two’ solutions shown in Fig. 3.

Variations of the dielectric tensor elements near the plasma edge on the inboard (small
Rinaj) side are shown in Fig. 6 for the PBXM model plasma (a greatly magnified edge region
of Fig. 2). Each horizontal division represents 1 cm. Conditions, I = 0 and L = 0 (each
indicated by a short vertical dashed line), divide the plasma into three regions labeled, ‘6a,’
‘7, and ‘8a.” These conditions are two of the bounding surfaces of the CMA diagram. The
labels used here correspond to those used by Stix?!'?2 in identifying bounded volumes of the
CMA diagram (see Figs. 2-1 and 2-2 of the references cited). Associated with each bounded
volume there are up to two wave normal surfaces. which are sketched in the insets of Fig. 6
(without the scale to indicate their size). Each curve in the insets represents a 2-D vertical
cross section of a 3D figure of rotation about the vertical axis. The shape of a curve in detail
may change (e.g., from circle to ellipse), but its topological characteristics remains unchanged
at different points within each bounded volume.

We note P > 0 within a very thin (ring) region, ‘6a,” at the plasma edge. The region is
only 1.3 mm in width on either the inboard or outboard side of the PBXM model plasma. The
corresponding number is 1.7 mm for the SUPRA model plasma, and 2.5 mm for the TRIAM
model plasma. Each of the two branches of the dispersion relation has a wave normal surface
that is topologically a spheroid. The surfaces shown in Inset (a) of Fig. 6 are for a point 1 mm
from the inboard edge of the plasma (R.,,; = 1.351 m). The outer wave normal surface (‘faster’
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wave) has a left-handed polarization (L) for parallel propagation and an ordinary polarization
(O) for perpendicular propagation. The inner wave normal surface (‘slower’ wave) has a right-
handed (R) polarization for parallel propagation, and an extraordinary (X) polarization for
perpendicular propagation. A spheroid surface (not shown) corresponding to the speed of light
in free space would intervene between the two surfaces, but lie very close to the inner surface.
At the plasma edge (in vacuum), the two surfaces become identical, and at the bounding
surface, P = 0, they touch each other at the ‘north and south poles.” The surface is often
called the ‘critical layer.’ ’

Fig. 6: The region near the inboard edge of
the PBXM model plasma is divided into three
‘bounded volumes,” designated as ‘6a,” ‘7’ and

‘8a,” by ‘bounding surfaces,” P = 0 and L = 0,
of the CMA diagram. In each bounded volume
the topology of wave normal surfaces is shown:

the volume, ‘6a,” has two solution branches, each
with a spheroid wave normal surface, the volume,
“7." has two branches, one with a spheroid surface
and the other with a lemniscoid surface. The vol-

ume, ‘8a,’ has only one branch with a lemniscoid

surface. In the insets, letters, ‘L,” ‘R,” ‘O,” and

‘X" refer to the polarization of the wave electric
field.

Within the next thin region, ‘7, at the plasma edge (as well as in ‘6a’), we note L > 0. The
region is 1.6 cm in width on the inboard side, and 1.2 cm on the outboard side, for the PBXM
model plasma. The corresponding numbers are more substantial for the SUPRA model plasma,
and are 7.5 cm and 4.0 cm, respectively. For the TRIAM model plasma, L > 0 everywhere,
and the entire plasma interior belongs to the region, ‘7. One solution in this region, labeled
‘L-X,” still has a spheroid wave normal surface (‘O’ and ‘X’ labels were interchanged at the
critical layer), and the other has a lemniscoid surface. The surfaces shown in Inset (b) of
Fig. 6 are for a point | cm from the inboard edge of the plasma (R,.; = 1.36 m). A spheroid
surface corresponding to the speed of light in free space intervenes between the two surfaces,
and is shown by a dashed curve. The curve helps to gauge the phase speed: the spheroid and
lemniscoid branches represent waves travelling faster (v > 1) or slower (v < 1) than the speed
of light, respectively. At the bounding surface, L = 0, which is a cut-off, the L-X wave normal
surface disappears. Within the remaining central region, ‘8a,” P < 0 and L < 0. Note that
this region occupies most of the plasma volume for the PBXM and SUPRA model plasmas.
It is interesting to note that there is only one branch, which has a lemniscoid wave normal
surface, to the solution of the dispersion relation in this region.

Except in the very thin region, ‘6a,” at the plasma edge, waves concerned in the conventional
LHCD theory are everywhere characterized by a lemniscoid wave normal surface. An example
of the lemniscoid wave normal surface in the bounded volume, ‘8a,” was shown earlier in Fig. 5.
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A lemniscoid surface has a resonance at an oblique ~enith angle, (e, < 7/2, and the phase
speed tends to zero there (or, equivalently, both n) and n, tend to infinity). The surface shown
here (and also in Inset (c) of Fig. 6) is for a mid-radius point on the inboard side (R = 1.5 m,
z =0 m) in the PBXM model plasma, and the resonant angle is (,.s = 81.6 deg. The R wave
normal surface in the bounded volume, ‘7," in Inset (b) of Fig. 6 is a lemniscoid, but has a
much smaller resonance angle ((,., = 68 deg at 1 cm from the plasma edge for the PBXM
model plasma), than in the ‘8a’ volume.

200
Fig. 7: The variation of a dimensionless ‘density,’
SUPRA
—P/S, along the midplane is shown for the three
1504
model plasmas. The PBXM and TRIAM plasmas
are low ‘density’ plasmas, and the SUPRA plasma
2 oot 1 is a high ‘density’ plasma. Low ‘density’ plasmas
' have a small oblique resonance angle, and high
o ‘density’ plasma have a large resonance angle.
504
TRIAM
0 + +
R - a R R + a
0 p 0 0 p

Major Radius

In the bounded volume, ‘6a,” the classical accessibility representation shown in Fig. 3 has
two solutions with a purely imaginary n; value. and has no counter-parts among wave normal
surfaces shown in Fig. 6. This is a consequence of the choice made in Fig. 3 of a fixed n| that
is significantly greater than unity. In tlic bounded volume, ‘7,” the classical representation has
a solution with a real ny value, which corresponds to the lemniscoid solution, and another
solution with a purely imaginary n, value, which has no counter-part wave normal surface. In
the bounded volume, ‘8a,” the classical representation has two solutions with a real-valued n |,
which corresponds to the single lemniscoid wave normal surface there. It may seem peculiar
that the ‘two’ solutions belong to the same wave normal surface. The apparent conflict can be
resolved by plotting the trajectory of constant n together with the wave normal surface. The
normalized phase velocity and refractive index vectors have a vector reciprocal relationship,
ie., @ = (f)"": in terms of vector components, u) = n”/(n”'2 +n,;?) and vy = n.L/(n”'2 +ny?).
The trajectory is represented by two spheres tangent to each other at the origin, and is shown
by a dashed curve in Fig. 5 (only the upper sphere is shown in its vertical cross section).
The intersections of the solid curve (wave normal surface) and dashed trajectory are the ‘two’
solutions shown in Fig. 3: the intersection with a greater value of u is the fast wave and the
one with a smaller value of u is the slow wave. At the turning point (in space) for the chosen
value of n, the dashed trajectory becomes tangent to the wave normal surface at the mode
conversion point (in @ space) designated by ‘MC’ in Fig. 5, and the two solutions coalesce.
The wave propagation angle at this point is designated as (y¢ in the figure.

There are two types of propagating waves (R-X and L-O) in the bounded volume, ‘6a,’
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and one type (L-X) in the volume, ‘7, that are absent in the classical representation of the
accessibility. Roles played by these waves, if any, have been little explored in the conventional
LHCD theory. These waves have phase speeds comparable to (and slightly below), or greater
than the speed of light in free space, and will interact little with electrons. They can, however,
carry energy away into plasma peripheral regions as ‘surface waves,” and can be important
from a power balance point of view. In early LHCD experiments, grills consisting of only
a few large waveguides were used, and the n) spectrum of electric field generated by the
waveguides (‘waveguide’ spectrum) extended to values well below unity. Modern grills with
a large number of small waveguides have a sharply defined peak in the waveguide spectrum
centered around a desired nj| value. But the overall size of the grill (rather than the width
of individual waveguides) defines another characteristic scale length that must be represented
by a spectrum of low nj values. Even the modern grills thus have a waveguide spectrum
extending to small n) values. The so-called Brambilla spectrum?®! refers only to that part of
the waveguide power spectrum that is carried away by propagating waves having n > 1. The
waves, missing in the classical accessibility representation, do not therefore manifest themselves
in the Brambilla spectrum. (Those waves, that are considered in the conventionel theory, but
have small grill-launched n (see, for example, n) = 2.1 curve in I'ig. 3) and thus have poor
accessibility, remain in the plasma periphery, and may also be regarded as a form of ‘surface
waves.” The surface waves discussed in the present paragraph are, however, distinct from these
poor accessibility waves.) Diagrams used extensively in the classical accessibility analysis, such
as the one shown in Fig. 3, appear to depict ‘two’ waves, and thus give a false impression that
the complete solutions to the bi-quadratic dispersion relation are represented.

The dispersion relation in polar form, Eq. 8, readily yields the condition for the oblique
resonance. By setting Ay = 0, and thereby allowing one solution for n| to tend to infinity, we
obtain,

o)

tan® Cres = _'27 (9)
This resonance® was first described by Allis®® (see also Stix*'*?). The right-hand side (RHS)
of this equation, which determines the resonance angle, can be regarded as a dimensionless
‘density,” and is plotied in Fig. 7 for all three model plasmas. The PBXM model plasma has
significantly lower dimensionless densities than the SUPRA model plasma. An examination of
the numbers in Table 11 and Fig. 2, shows that these low dimensionless densities are in part
a result of high values of S. High S values are in turn a result of high ratio, (wpe/wee)? (see
Eq. 2). The oblique resonance angle, (s, is plotted in Fig. 8 for all three model plasmas. The
deviation of the resonance angle from a right angle (7/2) is an important factor, together with
the geometrical constraint angle (see below), in determining the nature of wave propagation.
The deviation is more than three times greater for the SUPRA model plasma than for the

TRIAM model plasma.

41t is curious to note that the singular nature of the dispersion relation under this condition has been
recognized in subsequent publications by many authors, it is seldom referred to as a ‘resonance.’
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Fig. 8: The variation of the oblique resonance an-

SUPRA

gle along the midplane for the three model plas-
mas. The deviation of the resonance angle from
a right angle (x/2) is an important factor, to-
gether with the geometrical constraint angle, in
determining the nature of wave propagation. The
deviation is more than three times greater for
the SUPRA model plasma than for the TRIAM
model plasma.
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D. Inverse Wave Normal Surfaces and Electrostatic Approxima-
tion

The dispersion relation can also be expressed in terms of the magnitude and zenith angle
of the refractive index vector. n = |ii| and (,, respectively. This ‘polar’ form of the equation
is written as,

At = An* 4+ Ay =0. (10)

This equation, governing the refractive index, n, is a ‘reciprocal’ of the earlier equation, Eq. 8,
governing the normalized phasc speed, u, where the coefficients, Ay through A4, were also

defined.

The solution to the full fourth degree dispersion relation, Iiq. 10, at a mid-radius point on
the inboard mid-plane. 1¢,,,, = 1.5 m and Z = 0 m, of the PBXM model plasma, is shown in
Fig. 9 (top inset) in the form of three-dimensional (3D) surfaces in the refractive index space,
(nz, ny, n:). The solution surfaces, which extend to £oo, are a figure of revolution about the
n, axis. The axis is aligned with the direction of the local magnetic field line, i.e., n = n., and
its scale is exaggerated five-fold for clarity of presentation. The surfaces are also symmetric
about the n, = 0 plane. Surfaces, such as these, are the ‘reciprocal’ of wave normal surfaces,
and are sometimes called "inverse wave normal surfaces.” The ‘bottom’ of the upper surface (or
the ‘top’ of the lower surface) is at the values of n for which the mode conversion condition
(see Eq. 5) is satisfied for the set of plasma parameters at this spatial location. The solution
in the vicinity of the mode conversion will be discussed in more detail in a later section. The
solution surfaces at large values of n (or nj) asymptotically approach a pair of conical surfaces
that are joined at the vertex. These asymptotic cones are shown in Fig. 9 (bottom inset).

An approximate form of the dispersion relation, known as the ‘electrostatic approximation,’
is used frequently in lower hybrid theories, and is given by,

S?lJ_2+Pn||2=O. (11)
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This is an equation that describes the asymptotic cones of the full solution surfaces. The
vertex half-angle of either cone equals the oblique resonance angle at this spatial location. The
oblique resonances of a lemniscoid wave normal surface thus correspond to the asymptotic
cones of an inverse wave normal surface. The cones do not represent the solution for small
values of n, (or n).

Fig. 9 Solutions to the full fourth degree (up-
per picture) and E.A. (lower picture) disper-
sion relations are shown in the refractive index
space, (ng, ny, n;). The surfaces, which ex-
tend to +oo, are a figure of revolution about
the n, axis. The axis is aligned with the direc-

tion of local magnetic field line, ie., n = n,,

and its scale is exaggerated five-fold for clar-
ity of presentation. The surfaces are also sym-
metric about the n, = 0 plane. A ‘gap’ in the
middle of the full solution is caused by mode
conversion.

The so'utions to a homogeneous cold plasma dispersion relation are represented as surfaces
of revolution about the local magnetic field line, and have no preferred azimuthal angles about
the field line. The dispersion relation can be well represented in two dimensions without a
loss of information. But directional preferences may arise through other reasons: for example,
a ray tracing analysis introduces the direction of the inhomogeneity of a parameter into the
problem. In the present analysis, it will be a constraint imposed by the requirement of the
invariance of toroidal mode number that introduces a directional preference.

IV. GEOMETRICAL CONSTRAINT RELATION

It is usually assumed in LHCD analyses in the toroidal geometry that the plasma is ax-
isymmetric: there are no variations in zero order parameters in the toroidal direction. An
immediate consequence of the toroidal symmetry assumption is that the toroidal mode num-
ber, i.e., the number of whole wave periods around the torus, is invariant as waves propagate
through the plasma. This assumption of the toroidal mode number invariance is commonly
adopted in ray tracing analyses.

The wavelength must become shorter in regions of a smaller major radius in order to
accommodate the same number of wave periods within a shorter toroidal circumference. The
toroidal mode number, NY", imposed by the grill located at R? ., is related to the toroidal

component, ny, of the refractive index vector at the grill, through ny = cNJ' [(wRi ;).
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The constancy of the mode number (N, = NJ") then requires the toroidal refractive index,
ng = cNy/(wRmaj), to be inversely proportional to the major radius, i.e.,

ﬂaj gr

This is a most basic toroidal effect, and will be called a ‘wedge effect’ for short in this article
in reference to the ever narrower width of a wedge toward its apex.

A greater toroidal effect is the geometrical constraint relationship between nj; and n_ arising
from the same invariance requirement. We designate a unit vector in the toroidal direction
by ¢>, and the magnetlc field vector by B Bb, where B is the magnitude of the field, and
b is a unit vector in the direction of B. Geometrical relationships among qS, b and 7 are
shown in Fig. 10. We consider a point, O, on a magnetic flux surface, and a local right-handed
coordinate system, (z,y, 2), about the point. The z-axis is perpendicular to the flux surface,
and points into the volume enclosed by the flux surface. The y- and z-axes are in the plane
tangent to the flux surface (‘tangent plane’). The z-axis is aligned with the local magnetic
field direction. The orientation of a vector with respect to b is defined by a set of azimuthal
and zenith angles. The azimuthal angle, x, is the angle that a plane between the vector of
interest and b makes with respect to the quarter plane defined by the positive x and z axes,
and ranges over —7 < y < 7. A positive azimuthal angle is measured from the positive x-axis
toward the positive y-axis, and a negative azimuthal angle is measured from the positive x-axis
toward the negative y-axis. The zenith angle, ¢, is the angle that the vector of interest makes
with respect to b in the plane containing both vectors, and ranges over 0 < ¢ < 7. Note that
the term, ‘azimuthal,” and the associated symbol, \, are used here to mean the angle about a
local magnetic field line. It should not be confused with a commonly used term, ‘azimuthal’
angle, of a spatial point in the plasma poloidal cross section. (We will use the term, ‘poloidal’
angle for the coordinate of a spatial point.)

The refractive index vector, 7, can thus be designated by (n,,n,,n.), or by (n,Cn, \n).
Waves propagate inward when ny > 0, or =7/2 < \n < 7/2. The toroidal unit vector, qAb,
can be designated by (0, @J,cpy), or by (1,(;,\¢). From the definition of the local coordinate
system chosen, \, is either +7/2 or —7/2, depending upon whether ¢ lies on the positive or
negative y-axis side of b, respectively. The relative location of these two unit vectors is in turn
determined by the relative sense of the toroidal magnetic field and plasma current. It can
be shown that when the toroidal field and plasma current are ‘co-parallel,” x;, = +7/2, and
when they are ‘counter-parallel,” y; = —n/2. The statement applies regardless of the spatial
location considered. Under a usual current drive situation, the plasma current is assisted by an
LHCD driven current (or the entire plasma current is an LHCD driven current). Electrons are
expected to be transported by waves in the direction opposite from that of the plasma current
under these circumstances. The wave spectrum imposed by the grill must have an appropriate
sign: ny < 0 for the co-parallel current, and nj" > 0 for the counter-parallel current. Unless
toroidal reflection of waves occurs, n; must have the same sign as nj" everywhere inside the
plasma. For the co-parallel current, 7/2 < ¢, < 7, and for the counter-parallel current,
0 < ¢, < m/2. The vectors shown in Fig. 10 depict a wave propagating inward in a tokamak
with a counter-parallel current.
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In Fig. 10 the toroidal refractive index, ng4, consists of two contributions, one involving n)
and the other involving n,

Ny = Ny cos (¢ + n o sin x, sin x; sin ¢;. (13)

We note that n| may be either positive or negative in general, but n, is either positive or
zero by the convention adopted here. This equation states that, if ) is to become arbitrarily
large, while holding ny finite, n| and n, must both tend to infinity, and make contributions
to ny having the opposite signs. Only an oblique resonance can satisfy these requirements.
The magnetic field-line pitch angle is ¢; <« 7/2, and sin(; > 0 and cos ¢, > 0. We substitute
sin x; = %1, and solve the above equation for n) to obtain,

n . .
n)| = ¢ + ny sin x, tan (;, (14)
€Os (;
where the plus sign is for the counter-parallel plasma current, and the minus sign is for the
co-parallel plasma current. We will call this constraint relationship arising out of the magnetic
geometry of the tokamak as ‘geometrical constraint.” The term will be abbreviated as ‘G.C.’

Fig. 10:  Geometrical relationships
among the refractive index vector, 7,
unit vectors in the magnetic field direc-
tion, b, and in the toroidal direction, ¢,

~—. are shown graphically. The magnetic
™ surface is in the plane of the page, and
y N waves propagating inward are depicted.
n,sinX, . , .
n, sinX,sinX sing,
Noting that n; = n, and nysin(, = n,, the above equation can also be written as,
n. = ng/cos(, £ n,tan ;. This is a linear relationship between n, and n,, independent of

ng, and can thus be represented as a plane in the 7-space tilted by an angle, a,. Since
tana, = dn./dn, = tan(, the tilt angle from the horizontal in the ii-space is simply the
magnetic field line pitch angle in the physical space, a,. = ;. We also define the degree of
tilt measured from the vertical by the zenith angle that the plane makes with respect to the
vertical axis (n.-axis) in the n,-n, cross-sectional plane,

Cgea = 7r/(Z_CI‘ (15)

The G.C. plane intersects the n) axis at,

, n
n“u'dg = ¢ (16)
where ng is given by Eq. 12. The nj-axis intercept represents the ‘wedge effect.’
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V. GENERALIZED ACCESSIBILITY

A. Geometrical Interpretation of Admissible Solutions

The dispersion relation and G.C. relation must be satisfied simultaneously by n, (., and
Xn at every spatial point. In the present analytical treatment, we will leave one of the three
parameters indeterminate, and obtain a range of solutions that is ‘admissible.” Ray tracing
calculations can determine not only all three parameters, but also the power carried by the
wave. Nevertheless, solutions that are not allowed in the present analysis cannot be solutions
of a ray tracing calculation, because both analyses are founded on the same set of assumptions.
Many qualitative observations useful in interpreting results from ray tracing calculations and
experiments can be made from an examination of admissible solutions.

In Fig. 11, the E.A. dispersion relation and G.C. relation are represented by two surfaces
in a 3D 7i-space. Only the upper half (n, = n) > 0) of the space is shown. The intersection of
the surfaces represents simultaneous solutions to the E.A. and G.C. relations. A case without
a poloidal field (zero field-line pitch angle) is considered here. The G.C. plane is therefore
horizontal, and the intersection is a circle. There are no preferred azimuthal directions of
propagation in this case. Lower hybrid wave propagation in the classical accessibility can also
be described by these surfaces.

The same set of surfaces is shown in Fig. 12 for a case with a poloidal field (finite field-
line pitch angle). Both pitch angle and oblique resonance angle are modest in this plasma.
Consequently, the tilt of the G.C". plane off the horizontal is weak, and the E.A. cone has a
narrow vertex angle. Under these circumstances, the oblique resonance zenith angle is inside
the G.C. zenith angle ((res < (geo). and the oblique resonance is not an admissible solution.
The G.C. plane also intersects only the upper E.A. cone.

Fig. 11 The upper E.A. cone and G.C.. plane are
shown: the cone is for a mid-radius point on the
inboard midplane {Ryq; = 1.50 m and z = 0 m)
of the PBXM model plasma, and the G.C. plane
is for a case without a poloidal field (zero field-line
pitch angle). A wave with n, = 2.1 is assumed to
be launched from the plasma edge in the outboard
midplane. The G.C. plane is horizontal, and the

intersection of these surfaces is a circle.

The intersection of the .A. cone and G.C. plane is a planar space curve, which is an ellipse
in its own plane. The space curve is presented in the same 3D 7i-space in Fig. 13. A vector
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drawn from the origin to any point on the curve represents an admissible solution. A few such
vectors are indicated by solid and broken lines in the figure. Projections of the solution space
curve and vectors onto (a) n;—-n, plane, (b) n,-n. plane, and (c) n, -n, plane are shown in
Fig. 14.

Fig. 12 The upper E.A. cone and G.C. plane are
shown: the both are for a mid-radius point on the
inboard midplane (Rmq; = 1.50 m and z = 0 m)
of the PBXM model plasma. The G.C. plane now
represents a case with a poloidal field (finite field-
line pitch angle). The toroidal magnetic field is
in the positive toroidal direction, and the plasma
current is counter-parallel to the field. A wave
with a positive n value (ngy = 2.1) is assumed to
be launched from the plasma edge in the outboard

midplane. The G.C. plane is therefore tilted up-
ward toward the positive n, direction (a choice of
the plus sign in Eq. 14). The intersection of the
surfaces is an ellipse.

Fig. 13 The intersection of the upper E.A. cone
and G.C. plane is shown for the same condi-
tions as in Fig. 12. The solution curve is an
ellipse in its own tilted plane. A few vectors
drawn from the origin to points on the curve
are indicated by solid and broken lines. The
origin of the vector space is located on the
bottom of the ‘box." These vectors represent
admissible solutions.

An examination of the solution space curve reveals a number of qualitative but useful
characteristics of the solution at this spatial location. The solution curve is in a tilted plane,
and n of admissible solutions is no longer a single value as it was in Fig. 11. The ny value
of the actual solution depends on the wave's azimuthal angle of propagation. The azimuthal
angle can in general vary as the wave propagates, because plasma properties vary in directions
perpendicular to the field lines, and components of the ©-vector in these directions are also
allowed to vary. (This holds true in a tokamak geometry, but not necessarily so in a simple
plane-stratified geometry.) The azimuthal angle is undetermined, and a specific value of ny
is unknown in the present analysis. But a range of nj values is now shown to be admissible:
ny| can now upshift or downshift. In the present case, however, the solution curve is finite
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in its spatial extent, and there is an upper bound to nj upshifting, and a lower bound to
n); downshifting. All admissible solutions have a positive n);, and no waves travelling in the
negative toroidal direction can be present; toroidal reflection of waves is not permitted. We
note also that waves of all azimuthal angles of propagation (-7 < v, < 7) are admitted (see
Fig. 14c). But those waves with largest n) values propagate in, or near, the tangent plane in
the positive y-direction (y, ~ +7/2), i.e., in the positive poloidal direction (see Fig. 14a and
b). We recall that the tilt of the solution curve in this direction is a consequence of the choice
of a counter-parallel plasma current direction. At locations at which the G.C. plane zenith
angle is greater than, but close to, the E.A. cone zenith angle, the ellipse is highly elongated,
and waves with large n) values propagate in a narrow range of azimuthal angle along the local
magnetic surface.

The solution surfaces are shown in Fig. 15 for the SUPRA model plasma. Both upper and
lower halves of the ri-space are shown. The magnetic field-line pitch angle and oblique resonance
angle are both large in this plasma. Consequently, the G.C. plane is tilted significantly off the
horizontal, and the E.A. cone has a wide vertex angle. Under these circumstances, the oblique
resonance zenith angle is outside the G.C. zenith angle ((yes > Cgeo), and the oblique resonance
is now an admissible solution. The G.('. plane also intersects both upper and lower E.A. cones.

ﬂ Fig. 14 The solution space curve and vectors of Fig. 13 are shown here

in projections onto: {a) n, -n. plane, (b} n, -~ n; plane, and (¢} ny - ny

plane.

The intersections of the G.('. plane and E.A. cones are two planar space curves, which are
a hyperbola in their own plane. The space curves are presented in the same 3D 7ni-space in
Fig. 16. A vector drawn from the origin to any point on either of the curves represents an
admissible solution. A few such vectors are indicated by solid and broken lines in the figure.
The origin of the vector space is at the center of the ‘box’ shown in the figure. Projections of
the space curves onto (a) n, -n. plane, (b) n, -n. plane, and (¢) n, -n, plane are shown in

Fig. 17.

The nature of wave propagation is qualitatively different between the conditions described
in Fig. 12 and Fig. 15. The origin of the difference is whether or not the oblique resonance is
an admissible solution, or the resonance is ‘realizable’ at the spatial point under consideration.
Transitions between the two sets of conditions can take place within a plasma (e.g., the SUPRA
model plasma).




The hyperbolic solution curves are infinite in their spatial extent, and thus the range of
admissible values of n)| is also infinite. There is no upper bound to n) upshifting imposed by
the G.C. relation. Admissible solutions now include both positive and negative n);, and waves
travelling in either toroidal direction can be present. This suggests the possibility of toroidal
reflection of waves. (The solution curves, representing positively and negatively travelling
waves, do not touch each other, and wave reflection, if it indeed occurs, may therefore have
to involve some non-adiabatic processes. Such processes may be provided, e.g., by density
fluctuations. The subject is, however, beyond the scope of this article.) The reflected waves,
travelling in the negative direction and possibly driving a current in the unwanted direction,
can exist even in a perfectly uni-directional wave spectrum launched by an ideal grill, and are
different from ‘reverse waves’ that are inevitably present in the spectrum of a real-life grill with
an imperfect directivity®.

Fig. 15 The upper and lower E.A. cones, and
G.C. plane are shown for a mid-radius point
on the outboard midplane (R,.; = 3.20 m
and z = 0 m) of the SUPRA model plasma.
A wave with a positive ny value (n, = 21.8)
is assumed to be launched from the plasma

edge in the outboard midplane. The intersec-

tions of the (i.(". plane and E.A. cones are a

0 hyperbola.

Waves characterized by hyperbolic solution curves propagate within two discrete ranges of
azimuthal angle (see Fig. 17a): one for waves propagating in the positive toroidal direction
and another for waves traveling in the negative toroidal direction. Within each range, waves
with large n)| values propagate in a *beam-like” manner within two narrowly defined ranges of
azimuthal angle (see Ilig. 17a and b). Unlike waves described by an elliptic solution curve,
these waves propagale at an angle to magnetic surfaces. Waves with small ny values may
convert to the fast waves and may not be adequately described by the IZ.A. dispersion relation
(see below).

- —
0

Clonsider a wave at a point (F = ) in space which has a specific refractive index vector
(i = ;). When this wave propagates to a neighboring point (), it assumes in general a
different refractive index vector (1i3). The change in 17 is dictated by changes in the dispersion
and G.C. relations, and by local gradients of the plasma parameters. For example, 17 may be

SWe have unfortunately adopted the term, ‘backward waves.” in earlier publications'™*% to mean this un-
wanted part of a real grill spectrum. We will henceforth use the term, ‘reverse waves.” for this purpose. and,
following a more common usage, reserve the term, ‘backward waves,’ to mean waves having the phase and

group velocities in an opposite direction.




rotated through an azimuthal angle under the action of gradients as well as through a zenith
angle under changing dispersion. If 75 is close to the oblique resonance at the new point,
the change in the refractive index vector (677 = 7 — i) can be large for an arbitrarily small
change in position (67 = 7; — 7). (Reference to Figs. 16 and 17 is helpful in this discussion.)
The fundamental requirement. of the WKB approximation can thus be violated wherever the
oblique resonance is realizable.

Fig. 16 The intersections of the E.A. cones and
G.C. plane are shown for the same conditions as
in Fig. 15. The intersections are two planar space
curves, which are a hyperbola in their own plane.
A few vectors drawn from the origin to points
S+n on the curves are indicated by solid and broken
lines. The origin of the vector space is located at
the center of the ‘box.” These vectors represent

admissible solutions.

\/ Fig. 17 The solution space curve and vectors of Fig. 16 are shown here
in projections onto: (a) ny - n, plane, (b) ny -n. plane, and (c) ny -ny
L ] plane.
/ [
N (9

Both the magretic field-line pitch angle and oblique resonance angle are small in the TRIAM
model plasma. (We recall that the lemniscoid wave normal surface in this model plasma belongs
to the bounded volume, *7." and has an oblique resonance quite far from the perpendicular.)
Consequently, the G.C. plane is nearly horizontal, and the E.A. cone has a narrow vertex angle.
These surfaces are qualitatively the same as those shown in Fig. 13. The admissible solution
curves are nearly a circle. There are no preferred azimuthal directions, and waves travel nearly
isotropically in the plane perpendicular to the local field line. The range of admissible n
is very small, and the extent of ») upshifting or downshifting is severly limited under these

conditions.
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The full fourth degree dispersion relation and G.C. relation are represented in a 3D 7i-
space in Fig. 18 in order to examine solutions for small values of n, (or n). (See Fig. 9
for comparison of the full and approximate solutions.) A part of the upper half space near
the origin is shown in an expanded scale. The salient feature in the middle of the otherwise
cone-like surface represents the fast wave solution. Intersections of the full dispersion relation
surface and G.C. plane can be quite complex in this region. A 2D vertical cross section of
these surfaces is shown in Fig. 19. The cross section is along the tangent plane: the x-axis of
the local coordinate system, which is perpendicular to a magnetic flux surface and pointing
‘radially’ into the volume enclosed by the surface, comes out of the plane of the page. The
positive axis denoted by n,, in the figure is the positive n,-axis.

Fig. 18 The full dispersion relation surface and
G.C. plane are shown for a mid-radius point
on the inboard midplane (Ryq; = 1.50 m and
Z = 0) in the PBXM model plasma. Only the
upper half space is shown. The salient feature
in the middle of the otherwise cone-like surface

represents the fast wave solution.

The two thick curves in Flig. 19 represent the full dispersion relation. The bottom of the
upper curve, or the top ol lower curve (indicated, e.g., by ‘M’ on the lower curve), is determined
by the mode conversion condition. and the value of 1 there is given by Iiq. 5. At the intercept
of the dispersion relation curves and ny axis (indicated, e.g., by ‘C" on the lower curve), the
value of n satisfies the fast wave cutoff condition given by Eq. 7. Broken lines through the
origin represent the I5.A. cones. The solid line through the point, ‘P,” represents the G.C.
plane. The intercept point. "P." reflects the ‘wedge effect,” and ny there is given by Eq. 14. A
space curve passing through points. ‘a’ and ‘b,’ represents the simultaneous solutions to the
full dispersion relation and G.C'. relation. When the n-axis intercept, ‘P," of the G.C. plane,
is smaller in magnitude than 1 at the fast wave cutoff (n® < n;"'“), there are propagating
fast waves. The solution curve is now an ellipse-like curve truncated at the bottom. The
points, ‘a’ and ‘b," in Fig. 19 define the range of admissible n;. In particular, the value of n
at the point, ‘a,” is the upper bound of the ny upshifting. It is thus this tilting of the G.C.
plane that can produce a far more significant n) upshifting than the ‘wedge effect.’

We use Fig. 19 to describe transitions between the two sets of conditions shown in Fig. 12
and Fig. 15. If the tilt of the G.C. plane from the horizontal becomes stronger ((ge, becomes
smaller), the point, ‘a,” would move upward along the upper dispersion relation curve, and the
range of admissible ] would become larger. Finally, it would disappear to +o0, when (ge,
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exactly equals (re;. The point, ‘a,” would reappear at —oo, and move upward along the lower
dispersion curve into finite n)| regions, as (4, becomes smaller than (,.;. (Waves may become
damped, as nj becomes large. Thus, toroidal reflection of waves, if it indeed occurs, must take
place in a time scale short compared with Landau damping time scale.)

Fig. 19 A 2D vertical cross section along the
tangent plane of the 3D surfaces in the previ-
ous figure is shown. The n;-axis comes out of
the plane of the page, and the positive npp
axis is the positive ny-axis. The two thick

curves represent the full dispersion relation.

Broken lines through the origin represent the
E.A. cones. The solid line, through an ny-
intercept point, ‘P,’ represents the G.C. plane.
A space curve passing through points, ‘a’ and
‘h," is the simultaneous solution to the full dis-

persion relation and G.C. relation.

We summarize this subsection. When the component of the 7i-vector that is perpendicular
to the magnetic field line is purely in the direction of density inhomogeneity (i.e., perpendicular
to the magnetic surface). this vector component has no projection onto the toroidal direction.
When this vector component is rotated about the field line through an azimuthal angle, it
casts a finite projection on to the toroidal direction. In crder to maintain the toroidal mode
number invariant, the component of the fi-vector that is parallel to the magnetic field line
must also cast a compensating amount of projection onto the toroidal direction. When the
perpendicular component casts a large projection onto the toroidal direction, the parallel
component also casts a large compensating projection. This is the central feature of the
n); upshifting mechanism described by Schuss, et al.!’ In the present study, it was shown
furthermore that, for large enough projections, the zenith angle of wave propagation can now
match that of the oblique resonance when the wave propagate at some azimuthal angles.
The oblique resonance then hecomes realizable, and the nature of wave propagation becomes
qualitatively different. In a later section, we will describe another mechanism through which
the perpendicular component of the 7i-vector and density gradient vector become ‘misaligned’
with each other, and » upshifting can occur.

B. Bounds of » Shifting

A simultaneous solution to the E.A. dispersion relation, Eq. 11, and G.C. relation, Eq. 14,
can be obtained analytically. Solving these equations for n) as a function of the wave propa-
gation azimuthal angle, \,,, we obtain,

Ny 1

0= , 17
i (cosCt)ligsirlxn (17
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where the plus sign is for the co-parallel plasma current, and the minus sign is for the counter-
parallel plasma current. The ‘g-factor’ in this equation defined by,

tan Cres
- 3
tan (geo

= (tan ¢ )y/( = P/S) (18)

is the tangent ratio of the oblique resonance zenith angle to the tilt zenith angle of the G.C.
plane, and is a positive quantity. Equation 17 gives the value of n| anywhere in the plasma
under the electrostatic approximation, but only if the azimuthal angle, x,, is specified.

9

The sufficient condition that n) be bounded for all azimuthal angles is given by,
g <1 (19)

When n| is bounded, the extreme n| shifting occurs in the tangent plane. Note that there is
a preferred poloidal direction for the extreme nj upshift or downshift, and that the direction
depends on the relative sense of the toroidal field and plasma current. Such preferences have
been demonstrated in ray tracing calculations by Bernabei, et al.,2” and provided foundation
for experimenting different poloidal locations of the antenna. For a co-parallel plasma current,
the extreme upshift occurs in the positive y-direction (v, = +7/2), and the extreme downshift
occurs in the negative y-direction (y, = —n/2). For a counter-parallel plasma current, the
extreme upshift occurs in the negative y-direction (y, = —n/2), and the extreme downshift
occurs in the positive y-direction (\n, = +7/2). The values of the extreme n are given by,

Ny, 1
cos( ' 1+g

up,dn

=

(20)

The minus sign in the denominator corresponds to the extreme upshift (n)*?), and the plus
sign to the extreme downshift (n“d”) for either a co- or counter-parallel plasma current.

1.6 —

- ] Fig. 20 The ‘g-factor,” which is the tangent ra-
SUPRA tio of the zenith angle of the oblique resonance

1.21 1

to the zenith angle of the G.C. plane tilt, is plot-
1.04— — /— _— - — +  ted along the midplane. For both PBXM and
TRIAM model plasmas, g < 1, and ny upshift

PBXM is bounded everywhere. For the SUPRA model
b.o plasma g > 1 over a major part of the plasma
0.4t L volume, and ny upshift can be unbounded.
0.2 TRIAM
0 ’
R - a R K + a
4] p 0 0 o]

Major Radius

The solution for n; becomes infinite when the denominator of I2q. 17 vanishes, which can
happen only if g > 1. The G.C. relation thus does not limit nj, when g > 1. But this is a

28



necessary condition for unbounded n;. There may be other mechanisms that limit n. The
solution becomes infinite at azimuthal angles of propagation specific to the spatial point under
consideration. The angles are given by,

. 1
siny, = *-, 21
p (21)

where the plus sign is for a counter-parallel plasma current, and the minus sign is for a co-
parallel plasma current. (In ray tracing calculations, a ‘truly unbounded ray’ will be obtained
only if the angle x° happens to be realized. Solutions for n) in the vicinity of the angle will,
however, be very large.)

Variation along the midplane of the g-factor defined in Eq. 18 is shown in Fig. 20 for the
three model plasmas. For both PBXM and TRIAM model plasmas, n is bounded everywhere
inside the plasma (the maximum g value occurs in the midplane for a simple density profile).
For the SUPRA model plasma, n upshifting can be unbounded over most of the plasma
volume. Using the approximate expressions for the dielectric tensor elements, Eq. 2, we write
—P/S = (wpe/w)? /(1 + (wpe/wee)?). We note that tan ¢, = By/ By, and that usually |cos ;| = 1
Using also Eq. 12 for the ‘wedge effect’, we write the upper bound of n) upshifting, normalized
by the toroidal refractive index at the grill, as

gT‘
ny P o (Rma]-) l
ng’ Rpuj' 1—g’
(""‘Pe/w)'z

_Bﬂ)?______..._
Brj, 1 + (Wpe/wcc)2 ‘

g* =

(22)

This is the approximate result reported earlier.'”

The simple analytic form for the g-factor in Eq. 22 clearly shows under what conditions
strong ny; upshifting can be expected:

¢ a large magnetic field-line pitch angle, By/ B,
e a large normalized density, (wpe/w)?, and

o to a lesser extent, a strong ‘electron magnetization,” or small {w,, /we.)*.

We used earlier the term, ‘dimensionless density,” to mean combined effects of the second and
third items in the form, (wp/w)?/(1 + (wpe/wee)?). Some results of ray tracing calculations
are immediately understandable in terms of these expectations. For example, in comparison
with the PBXM model plasma, the SUPRA model plasma shows'® stronger ny upshifting,
due to its smaller aspect ratio that leads to larger magnetic field-line pitch angles, and its
larger normalized density. The PBXM model plasma also has weak upshifting, because its low
toroidal magnetic field results in a weak electron magnetization. The PBXM model plasma,
which is bean-shaped, shows stronger upshifting than a circular plasma in the same tokamak,
because the shaping results in larger field-line pitch angles.
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C. Wave Domain and Unbridgeable Spectral Gap

In previous and this sections, several formuli were developed for delimiting a range of n
in which some specific characteristics hold. They are the mode conversion (Eq. 5), fast wave
cutoff (Eq. 7), lower limit of n downshifting, and the upper limit of n upshifting (Eq. 20).
Variations of these bounds along the midplane are plotted in Fig. 21 for the PBXM model
plasma. The ‘wedge effect’ is also indicated (Eq. 12). The wave launched by the grill is
ny = 2.1. These bounds are simultaneously applicable, and thus the lowest upper bound and
highest lower bound define an admissible range of n| at each point in space. A variation of
the admissible range of n) as a function of position defines a ‘wave domain.’

Fig. 21: Various bounds on ny is plotted along
the midplane for the PBXM model plasma:
the upper bound of nj upshifting (US), lower
bound of n downshifting (DS), mode con-
version (MC), and fast wave cutofl (FC) are
shown. The ‘wedge effect’ (WE) is also in-
dicated. The wave launched by the grill is

nf’o" =2.1.

Waves with a high n) value will damp strongly through electron Landau damping. The
condition that the wave phase speed be a certain multiple, A, of the electron thermal speed
can be expressed as,

Lodmp _ C 9
n = —. 23
I o (23)
For the phase speed equal to three times the thermal speed (A = 3), the damping is strong.
The damping is exponentially weaker at a higher phase speed. Six times the thermal speed
(A = 6) may somewhat arbitrarily be taken as a limit of minimal but {inite damping.

The wave domain for a plasma with bounded n) upshifting is a closed volume in a 3D
space defined by n) and the spatial coordinates in the plasma cross section. A constant
Landau damping (LD) condition can be represented by a surface in the same 3D space. A
cross section of the wave domain and three Landau damping surfaces through the midplane
is shown in Fig. 22 for the PBXM model plasma with the grill-defined n}" = 2.1. The lower
hybrid waves exist within the entire wave domain, but the fast waves exist only regions below
the fast wave cutoff. The wave domain is larger on the inboard side than on the outboard side,
but effects of wave damping on electrons are expected to be homogenized on each magnetic
flux surface. The broken lines labeled A = 3, A = 4 and A = 6 represent Landau damping
surfaces, Eq. 23, for strong, weak and minimal damping, respectively. Overlapping of the wave
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domain and minimal damping surface (region above A = 6 curve) indicates that the waves
are marginally damped. The spectral gap, between the wave spectrum and thermal part of
the electron parallel velocity distribution, can barely be bridged in this plasma, even if the
maximum possible nj upshifting indeed takes place.

Fig. 22. The wave domain (WD) and Landau
damping surfaces (LD) are shown in a 2D cross
section for the PBXM model plasma. The fast
wave cutoff is also shown by a broken line. A
space common to the wave domain and inte-
rior of a damping curve is the damping zone
(DZ).

B oImj

Variations of the upper bound of ny upshifting, "wedge effect,” and four Landau damping
surfaces (A = 3,4,6 and 10) are shown in Fig. 23 for the TRIAM model plasma with the grill-
defined n = 1.8. The maximum possible n| upshifting is extremely weak for this plasma,
because of small pitch angles and low densities. The maximum possible ny is not large enough
by a big margin to cause the waves to damp anywhere within the plasma. For a Landau
damping surface to intersect the wave domain, A = 14 is required. There is thus a huge
spectral gap that cannot be bridged for this model plasma. This conclusion, which is a direct
and inevitable consequence of the assumed invariance of the toroidal mode number, is, however,
in contradiction to an experimental fact: the current in the TRIAM-1M tokamak was driven

entirely by LHCD in the experiment emulated by the model plasma.
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For the SUPRA model plasma, the requirement of the toroidal mode number invariance
does not impose an upper bound to 'n“ upshift over most of the plasma volume. But ray tracing
calculations by Kupfer and Moreau'® showed the presence of an upper bound to a chaotic ray
distribution along a magnetic flux surface at some mid-range radius (not specified). The bound
cannot, however, be due to the invariance requirement (assuming that the chosen flux surface
belonged to a region with g > 1).

D. n; Upshifting caused by Parallel Density Gradient

We have shown in previous subsections that n) upshifting produced by the finite pitch angle
of magnetic field lines can be bounded and insufficient to explain experimentally observed wave
damping. The geometrical interpretation in terms of ‘tilting’ of the (G.C. plane introduced in
those subsections suggests that there may be other physical mechanisms that lead to such
tilting. We introduce in this subsection an n) upshifting mechanism that is caused by the
density gradient along magnetic field lines. Such a gradient may exist locally in the plasma
equilibrium state under special circumstances. or may arise temporarily and locally due to
MHD perturbations or density fluctuations.

In linear experimental devices, the plasma density varies predominantly in the radial di-
rection perpendicular to magnetic field lines. But it is often the case that there are also small
density variations along the field lines. Effects of a parallel density gradient on lower hybrid
wave propagation were examined theoretically by Briggs and Parker'® in connection with an
experimental study of resonance cones. They considered a plane-stratified condition in which
the density gradient was uniformly ‘tilted’ from a direction perpendicular to uniform field lines
(E -Vn. # 0), and found that waves were absorbed at a ‘new’ absorption layer some *distance’
(in terms of the density) away from the lower hvbrid resonance layer. The distance was related
to the magnitude of the density gradient tilt. These effects were also investigated experimen-
tally by Bellan and Porkolab?® in a study of resonance cones. The ‘image’ of a periodic antenna
structure was carried along the characteristics that ran essentially parallel to each other in the
presence of only a weak parallel density gradient. The characteristics became ‘*bunched’ as the
parallel density gradient was increased — the periodicity of the image became progressively
smaller as the wave propagated axially into a region of lower densities. We will show that the
‘new’ absorption layer in the analysis of Briggs and Parker is a manifestation of the oblique
resonance, and furthermore that a density gradient along field lines can lead to n| upshifting
in a more complex tokamak geometry.

We consider a plane-stratified plasma in the next several paragraphs: the magnetic field
is uniform, and the density rises monotonically from zero at the plasma edge to values high
enough to satisfy the lower hybrid resonance condition in an interior point. By ‘inverse Fourier
transforming’ Eq. 11, we write the differential equation governing the wave potential, ¢, of
lower hybrid waves as,

VL(SV.p) + f (P 0 ~¢) =0, (24)

where V| = #0/0x + §0/0y. The magnetic field is in the z-direction. The density gradient
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has components both in the x- and z-directions: the gradient vector is in the z-z plane, and
is tilted by an angle, a, measured from the z-direction. Positive values of « is in the direction
going from the positive z-axis toward the positive x-axis.

Fig. 24 Surfaces of the E.A. dispersion re-
lation and G.C. relation are shown in the
(ng,ny,n.)-space for a ‘low density' point, A,
at which the density gradient is ‘tilted’ from a

e direction perpendicular to the magnetic field.
w50 The dispersion relation is represented by a
pair of tilted cones, and the G.C. relation is

2000 a horizontal plane. The intersection of these
. surfaces is an ellipse with its center displaced

in the negative n,-axis direction.

We define a right-handed rectangular coordinate system, (a, b, ¢). that is rotated from the
original coordinate system, (Z,7,2), about the y-axis by a. The y- and b-axes are aligned
with each other. We also designate by £ the azimuthal angle about the c-axis. It ranges over
-7 < € < 7, and its positive values are measured from the positive «-axis toward the positive
b-axis. Transforming the derivatives through d/dx = cos ad/da + sin ad/dec, 3]y = 3/0b,
and /0= = cos ad/Jec — sin ad/da. the governing equation in the new coordinate system is,

d o 0* 9% d J d*e
Tﬂ—(funTi)—*_ﬁbb'T‘f'-l'fcc: i+—((z1072)+fac' ir/ :0« (25)
da da ab? dc da dc dadc
where

€ = Scos?a + Psina,

€y = S.

€ee = Pcos?a + Ssin’ a.

€ac = (S — P)sinacosa. (26)

Components of the refractive index vector in the two coordinate systems are related through
a transformation: n, = nycosa — n,sina, n, = n,, and n. = n,cosa + n,sina. Because
no plasma properties vary in the b- and c-directions, we may usc Fourier analysis in these
directions, and write @(a,b,c) = po(a)exp —i(ny + n.). We obtain an ordinary differential
equation,

d d . , .od dyp
%’ 6aa_(%;)) - ﬁbb"tf‘Po - fccni"PU - znc(:l;(('ac*r’()) + (»ac‘“(jag) =0. (2‘)




This is an equation identical® to the one obtained by Briggs and Parker,'® except that we
extend the analysis to a 3D 7i-space, and consider a range of ny. (They considered a 2D space,
and hence a specific value of n, = 0, 0r ¢ = 0 or 7.) They have shown, in a manner analogous to
Stix’s analysis of the lower hybrid resonance,?® that wave absorption through mode conversion
occurs where the coefficient of the highest order derivative term vanishes, i.e., ¢,, = 0, or
/2 — a = arctan \/(- — P/S). But this is identical to the condition under which the oblique
resonance occurs, Eq. 9: when the zenith angle, 7/2 — a, that the density gradient makes with

respect to the z-axis equals the oblique resonance zenith angle, .., = arctan \/-(_ — P/S), wave
absorption occurs.

Fig. 25 Surfaces of the E.A. dispersion relation
and G.C. relation are shown for a ‘medium
density’ point, B. The dispersion relation is
represented bv a pair of tilted cones with a
vertex angle wider than that for cones shown

in Fig. 24. The intersection of these surfaces is

a part of a hyperbola in the negative n, half-
space. The condition shown here correspond

to the ‘new’ ahsorption layer of Briggs and

Parker.

When effects of the inhomogeneity on the dielectric tensor elements themselves, i.e., de,, /da
and de,./da terms, are neglected (i.e.. a homogeneous dispersion relation is used, but effects
of the tilted density gradient is included), the E.A. dispersion relation is given by,

2 .2 2 ¢ _
Caalty + ety + €een + 2en,n. = 0. (28)

Because no plasma properties vary in the e-direction, we may assume that the refractive index
component, n., remains constant as waves propagate. The geometrical constraint relation is
then given by,

Ne =N, cosa — ngysina = n’ (29)

S
'l 0 . s
where n.1s a constant.

The dispersion relation and G.C. relation are plotted in Figs. 24 through 26 for three spatial
locations, A, B, and C, that are progressively closer to the lower hybrid resonance layer. The
E.A. dispersion relation in the new coordinate system is a tilted cone (as seen most evidently
in Fig. 24) and the geometrical constraint relation is a horizontal plane in these figures. As in
the analysis in the previous sections, the intersection of these surfaces represents admissible

6Equation (5) of the cited reference is written as a partial differential equation. From the context, however,
an ordinary differential equation is appropriate.
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solutions. At the point, A, the tilt zenith angle is greater than the cone vertex angle, i.e.,
T/2 = a > (e, and the intersection of these surfaces is an ellipse with its center displaced in
the negative a-axis direction. Finite solutions exist for the entire range of £ at this point: all
components of the 7i-vector, including in particular n), are therefore bounded for all values
of £. Points at which the solution curve intersects the n, = 0 plane, indicated by ‘b’s’ in the
figure, are the solutions obtained by Briggs and Parker!® in their 2D analysis. They termed
these solutions two ‘modes," although they are in fact the ‘same’ wave propagating at two
different azimuthal angles. The qualitative behavior of these points as the density varies was
sketched in Fig. 3 of the cited reference. The vertex angle of the tilted cones becomes wider
at interior points. One of the ‘b poiuts’ moves toward large negative n, values, and then
disappears to n, = —o0o. At the point, B, 7/2 — a = (,.,. and the intersection consists of that
part of a hyperbola in the negative n, half-space (Fig. 25). Admissible solutions are found
only over a limited range of ¢ at this point. The ‘new” absorption layver of Briggs and Parker
corresponds to this point. They showed that one of the ‘modes’ propagates through the layer,
and the other is absorbed at the layer. At the point, (', /2 — a < (s, and the intersection
is a hyperbola (I'ig. 26). Admissible solutions are found over two disconnected ranges of £ at
this point. At all locations between the point, ('. and the lower hybrid resonance layer, the
solutions are qualitatively the same as those at (. but the two halves of the hyperbola are
closer together. At the hybrid resonance (not shown), the two ‘b points’ will coalesce at the
point, n, = n?/tana. ny = 0. and n. = n". Briggs and Parker stated that waves are reflected
at the lower hybrid layer (in the presence of a tilted density gradient).

Fig. 26 Surfaces of the E.A. dispersion rela-
tion and G.C. relation are shown for a “high
density’ point, (', The dispersion relation is
represented by a pair of tilted cones with a
vertex angle wider than that for cones shown
in Fig. 24 or 25. The intersection of these sur-

faces is a hyperbola.

The above analysis in a plane-stratified geometry is not globally applicable to tokamaks,
but may be approximately applicable locally to the tokamnak geometry. We assume that the
geometrical constraint condition is that the component of the ri-vector in a direction perpen-
dicular to the local density gradient remains invariant. The foregoing analysis has been made
in the (ng, ny.n.)-space in order to show its relationship to the results of Briggs and Parker.!®
But transformation back to the (n,,n,,n;)-space makes the connection to the results obtained
in earlier sections clear: the dispersion relation is still a pair of straight cones as in the previous
sections, but the G.('. relation is now a plane tilted in the x-z (rather than y-z) plane. The new




G.C. relation causes n) upshifting in a manner analogous to the G.C. relation that described
the toroidal mode number invariance. The tilt angle can also become sufficiently large to make
upshifting unbounded for some azimuthal angles of propagation. In the tokamak geometry,
these unbounded ‘admissible’ solutions can actually be ‘realized,” because the 7i-vector rotates
about the field line and can attain these azimuthal angles as waves propagate. (In the plane-
stratified geometry considered above, unbounded solutions can occur only at a single point in
space, because n, and n. are given, and the ii-vector does not rotate.)

The condition for the unbounded n) can be written as,

on, S .
SEVan] 2 (= 5. (30)

Here, we consider again the right-handed local coordinate system, (. j. 2), described in Sec. IV:
the z-axis is perpendicular to the local magnetic surface pointing into the volume enclosed by
the surface. the z-axis is in the surface, aligned with the local magnetic field, and the y-axis is
also in the surface, pointing nearly in the poloidal direction. The equilibrium density gradient
is in the positive r-direction. The density gradient tilt angle is o = arctan((On./0z)/|V n.]),
where |V n.| = \ﬂ((')nf/i).r)‘) + (In, [Oy)?). A large tilt angle can result either from a large
local parallel density gradient. or a small local perpendicular gradient.

Fig. 27 The minimumn parallel density gradi-
ent along magnetic field lines needed to satisfy
the unbounded ny upshifting condition. The
paralle| gradient is normalized by the average
radial gradient, n.(0)/a,. A large parallel gra-

dient may occur in the equilibrium profile un-

2ed

der special circumstances. 'T'he needed gradi-

FRXM

rmall

ent will be much smaller, if a local ‘flat spot’
is generated in the perpendicular profiles, e.g.,
by a density perturbation.

R - a F Eovoa

Major kadia

When the perpendicular density gradient in the denominator of Iiq. 30 is the radial gradient
of a parabolic equilibrium density profile, the parallel density gradient needed for unbounded
ny upshifting. normalized by the average radial density gradient 1s,

1y a”r 27'm in S
—| > - —). 31
71‘(,(0)‘ dz e ap \ﬂ I’) (31)

The minimum value of \/E — S§/P)is 7, 14, and 21% for the SUPRA. PBXM and TRIAM
model plasmas, respectively (see Table 2). Variations along the midplane of the RHS of this
inequality is shown in Fig. 27. A parallel density gradient, that is a significant fraction of the
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average radial gradient, is needed to satisfy the unbounded nj upshifting condition. Although
little experimental evidence exists, it is generally believed that rapid transport of heat and
particles makes it difficult to maintain a large density gradient along field lines. Large parallel
gradients may exist, however, under some special circumstances (see discussion in Sec. VI).

Density perturbations can alter the local density gradient. In a lincar theory of drift waves
or ballooning mode, the parallel wave number of the perturbation is zero, and there is no
parallel density gradient. In electrostatic turbulence, mode coupling broadens the parallel
wave number spectrum,* and the parallel density gradient becomes finite. The gradient is
theoretically expected to be small, |0On./0x| ~ |On./dy| > |dn./dz|, although there have been
no measurements of the parallel gradient. A significant tilt of the density gradient vector is
then generated, only if the perpendicular gradient is small. When the perturbation amplitude
is large enough, n/n, ~ A,/ A, where A, = n./(dn./dz) is the ‘radial” gradient scale length,
and A, is the radial wave length of the perturbation, the local radial profile can become (nearly)
flat. There are in general specific locations at which the “poloidal’ profile is also (nearly) flat,
but at which the parallel gradient remains finite. At such points. the tilt angle becomes large,
and upshifting can become unlimited. Density fluctuations that exist commonly in tokamaks
and other devices can thus provide an ny upshifting mechanism.

VI. SUMMARY AND DISCUSSION

Characteristics of lower hybrid wave propagation were studied in connection with the lower
hybrid current drive (LHCD) in tokamaks through an analysis of a cold plasma dispersion
relation and various geometrical constraint (G.(".) relations.

The dispersion relation has solutions for lower hybrid waves with a resonance that occurs
at an angle oblique to the magnetic field lines. The obliqueness of the resonance angle means
that both parallel (n)) and perpendicular (1;) components of the refractive index vector must
tend to infinit at the resonance. The oblique resonance exists (nearly) evervwhere within the
plasma, but occurs at a specific resonance angle determined by plasma parameters at each
location. The resonance angle is larger at higher dimensionless “densities.” and tends to a right
angle as the lower hybrid resonance condition is approached.

Whether or not the oblique resonance can actually occur depends on the G.C. relation
invoked in the analysis. In the widely employed “classical” accessibility analysis, the G.C.
relation is the invariance of ny postulated as a “boundary condition.” The oblique resonance is
thus precluded from the outset, and the lower hybrid resonance is the only resonance relevant
in the analysis. Perhaps for this reason. the notion of the oblique resonance has remained
obscure. But the lower hybrid resonance is a high density limit of the oblique resonance that
occurs exactly at a right angle to the magnetic field lines. In the “generalized’ accessibility
analysis, a less stringent constraint is placed upon n). The oblique resonance nmay thus occur,
and alter qualitatively the nature of wave propagation. Two different G.('. relations have
been studied in the context of the generalized accessibility. A ‘traditional’ G.C'. relation is
a global constraint used extensively in ray tracing calculations, and assumes the invariance
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of the toroidal mode number. A ‘new’ (G.('. relation proposed in this article postulates the
invariance of the component of the refractive index vector in a direction perpendicular to the
local density gradient. Each of these assumptions leads to the invariance of a different linear
combination of n and n .

Solving the dispersion relation and a G.C'. relation simultaneously, but without specifying
the azimuthal angle (about the local magnetic field line) of wave propagation, leads to the no-
tion of ‘admissible’ solutions. Many qualitative but useful understanding of wave propagation
can be obtained from an examination of adnissible solutions: for example. limits of shifting
of n), either upward or downward, can be assessed from them. Lither G.C". relation allows n)
shifting. The physical basis for ny shifting is the pitch angle of magnetic field lines for the
‘traditional” G.C. relation, and is the density gradient along the field lines for the ‘new’ G.C.
relation. When the oblique rcsonance is realizable, ny upshifting can be unlimited, and toroidal
reflection of waves may also occur. When the oblique resonance is not realizable, upshifting is
bounded, and toroidal reflection cannot occur.

It is commonly believed that lower hybrid waves can damp in spite of spectral gaps, because
ny upshifting bridges them. Large spectral gaps cannot. however. be bridged by ny upshifting, if
it is to be bounded. Wave damping through n)j upshifting should not then occur in the presence
of a large enough spectral gap. It was shown throngh an analysis using model plasmas that this
theoretical expectation leads to contradiction to experimental evidence. if the “traditional” G.C'.
relation is emploved. For the TRIAM model plasma. the slowest possible waves were predicted
to propagate at speeds fourteen times the electron thermal speed. aud a large unbridgeable
spectral gap existed. In the case of PBN-M tokamak. there were conditions under which ),
upshifting was predicted to be too severely limited to bridge the spectral gap. but experimental
evidence reported elsewhere!'™ showed that a current was driven by LHCD. Thus. ny upshifting
through the pitch angle of field lines cannot be the only mechanisin that leads to lower hybrid
wave damping, and may possibly be a mechanism inapplicable to these experiments.

Parallel density gradients may be present in the equilibrium state under special circum-
stances. or may be produced by commonly observed density fluctuations. The proposed ny
upshifting mechanism based upon the parallel density gradient is a candidate to explain ex-
perimentally observed lower hybrid wave damping in the face of spectral gaps.

Past ion heating and current drive experiments, and more recent profile modification ex-
periments have left some fundamental issues of lower hybrid wave physics unresolved. They
include the lack of consistent observation of ion heating.” and the existence of a density limit in
the current drive efficacy. In connection with possible mechanisms to lill the spectral gap. the
existence of “seed electrons is often postulated. but the origin of these clectrons has remained
unspecified. The proposed ny upshifting mechanism may offer plausible quaitative explana-
tions to these issues. The following discussion in the remainder of this section is in part based
upon findings of the present article and in part on conjecture.

Lower hybrid waves remain perfectly coherent in the toroidal direction in an idealized
tokamak with a perfect axisvmmetry, and the toroidal mode number may be taken as strictly
invariant. Density fluctuations may reduce the coherence in real tokamaks, and the global
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constraint relation may become less strictly applicable. In the presence of fluctuations of larger
amplitudes, a local constraint relation may become more appropriate. Density fluctuations
have been measured in tokamaks®3? with relative amplitude ranging from a fraction of one
percent to several tens of percent, depending upon the radial location within the plasma and
the size of the tokamak. The parallel gradient has never been measured, but is theoretically
believed to be quite small. Nevertheless, large tilting of the density gradient can occur wherever
the perpendicular gradient is significantly reduced or vanishes. We will discuss below how the
proposed upshifting mechanism, if it indeed occurs, may be able to explain qualitatively some
of the unresolved issues.

Consider a toroidal geometry with or without poloidal magnetic fields. The density is
high enough to satisfy the lower hybrid resonance condition at an interior point, and density
fluctuations also exist. Fluctuations of ever smaller amplitudes are then suffice to satisfy the
unbounded ) uprhifting condition (i.e., the tilt angie equals 7/2 — () as the lower hybrid
resonance layer is approached. Unbounded upshifting leads to strong electron Landau damping.
Waves may then be damped out by electron Landau damping before they come sufficiently
close to the lower hybrid layer to be damped by perpendicular ion Landau damping or to
be absorbed through mode conversion. The proposed n) upshifting mechanism is thus not
inceasistent with the lack of observation of reproducible ion heating and with the lack of
observation® ol mode conversion products.

The density limit of LHCD Las been observed” in many tokamaks. Several theses have
heen advanced to explain the limit, for example, in terms of mode conversion to warm plasma
waves by Sverdrup and Bellan® and in terms of wave absorption by a minority species by
Alladio. et al.** We propose here that toroidal reflection of waves may play a role in reducing
the current drive efficacy at high densities: fluctuations of smaller amplitudes will suffice to
satisfy the condition for toroidal wave reflection.

It was reported by McWilliams. et al..*® that strong lower hybrid wave damping was ob-
served in the IRVINE TORUS device in the presence of a large spectral gap and strong density
fluctuations (én./n, ~ 0.1). The device had no rotational transform. and the spectral gap
could not have been bridged by the -traditional’ n) upshifting mechanism. The experiment
was conducted close to the lower hybrid resonance, and the density gradient tilt angle required
to produce nnbounded ny upshifting was therefore small. A fluctuating parallel density gradi-
ent that is only about two percent of the equilibrium radial density gradient would be enough
to create such a tilt angle. even no reductions in the perpendicular gradient occur. The propsed
mechanism is thus not inconsistent with the experimental observations. (Using reported num-
bers. Ry = 0.556 m. a, = 0.1 m. By, = 0.1 T, w = 27 x 70 MHz. 24" = 14.3, and under the
assumption of a helium plasma with a parabolic density profile with 1, (0) = 3 - 10"™/m?*, we
obtain wpy/w ~ 0.65 and (.5 ~ 38.9 deg at the plasma center. When the density gradient tilt
angle. a = 2deg. is assumed. Figs. 24 through 26 describe conditions in IRVINE TORUS at
I mm. 1.5 mm and 4 mm from the plasma edge. respectively. Interior points are qualitatively
similar to the last case.)

In discussion of spectral gap issues, the notion of *seed electrons™ is common. If there

“See an article by Sverdrup and Bellan®? for an extensive list of earlier publications on this subject.

39



is a ‘tail’ electron population, no matter how small, that fills the spectral gap between the
thermal electron population and the wave spectrum, waves will deplete the population by
carrying away the tail electrons to higher energies. The tail population is then replenished
from the thermal population. The process thus effectively keeps ‘drawing out a tail’ of the
thermal population. An important ‘gap’ in this explanation is the fact that the source of
the original tail electron population is unspecified. The proposed n| upshifting mechanism is
compatible with generation of such seed electrons. Fluctuations of a large ‘amplitude’ (in the
sense of creating a strong density gradient tilt angle), which may occur only infrequently and
at discrete spatial locations, can cause unbounded nj upshifting. temporarily and locally, in
otherwise bounded upshifting circumstances. Strong upshifting causes waves to interact with
the thermal population, and create a tail population. Such tail electrons may survive for a
finite time period after the large-amplitude fluctuations disappear, and may also be transported
away from their birth places. Those waves that experience only bounded n| upshifting can
now interact with the tail electrons.

There may be other circumstances in which a strong parallel density gradient is generated in
the equilibrium state. For example, a Marfe® is a poloidally localized region of high densities,
and there are parallel density gradients along field lines that enter the region. Interaction of
an LHCD antenna with the plasma may also generate a localized region of altered densities in
the immediate vicinity of the structure: a ponderomotive force of the antenna near-field may
generate a region of lower densities.”” leading to a finite parallel gradient and at the same time
to a reduced perpendicular gradient, or arcing may generate a region of higher densities.

The proposed ny upshifting mechanism must be corroborated by experimental evidence.
Interpretation of experimental results will require measurements of fluctuations and statistical
analysis tools. Scattering of lower hybrid waves by density fluctuations has been considered
analytically by Andrews and Perkins,” and has recently been incladed in ray tracing calcu-
lations by Vahala, et al..*® and by lgnat. et al." In such an analysis, the choice of ‘boundary
conditions’ is crucial: wave scattering while preserving the toroidal mode number will lead
to a test of the ‘traditional” upshifting mechanism. and wave scattering while preserving the
component of the refractive index vector in a direction perpendicular to the density gradient
will lead to a test of the "new’ upshifting mechanism.

Finally, eflorts to resolve spectral gap issues must include effects other than n) upshifting.
The spectral gap is room in velocity space between the wave spectrum and (a few times) the
parallel electron thermal speed. Room can be filled with waves by extending downward the
imposed wave spectrum, as is thought to occur in the ny upshifting hypothesis, or it can be
filled by electrons brought in from elsewhere in velocity space by some mechanism. The reverse-
running portion of a grill-imposed spectrum has been proposed by ‘Takahashi, et al.'"? and
by Colborn, et al.,*! as a possible mechanism to fill with fast electrons the spectral gap that
remains unbridged after the maximum possible n); upshifting. Any role played by suprathermal
electrons that may naturally be present in tokamak plasmas should also be investigated.*? It
is also noted that the applicability of the ray tracing theory itsell to lower hybrid waves has
been examined by Pereverzev.*
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