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Introduction

In this quarter we accomplished two milestones. First, we
qualitatively compared the approximate solutions for gravity-
driven granular flows down bumpy inclines obtained by Richman
and Marciniec [1990] to the experimental results for the same
flows obtained Johnson and Jackson [1990]. The comparison was
made by employing the reparameterized solutions of Richman and
Marciniec [{1990] and by anaiyzing several angles of inclination,
coefficients of restitution, and boundary geometries. The
results of the comparison are summarized in the attached paper
(6ranular Flows Down Bumpy Inclines, by Richman, M.W. and Martin,
R.E.) presented at the Joint DOE-NSF Workshop on the Flows of
Particulates and Fluids held at Worcester Polytechnic Institute
on October 22-24, 1991.

Next, we obtained exact numerical solutions the equations of
motion that were solved approximately by Richman and Marciniec
[1990]. Exact solutions to the governing equations require
that the stresses and energy flux vanish at the top of the flow,
and satisfy separate momentum and energy balances at the base of
the flow. 1In order to generate numerical solutions, we relaxed
very slightly the normal stress condition at the top, assigned a
value to the granular temperature there, and, for those
inclinations, flow particles, and boundaries that admitted
solutions, calculated the profiles of solid fraction, granular

temperature, and velocity and the corresponding values of mass



flow rate and mass hold-up. In this manner we found that there
are flow rates at which two flows are possible. Of the two, the
less massive is more dilute, more thermalized, and faster than
its more massive counterpart. In addition we found that the
approximate results obtained by Richman and Marciniec [1990] for
the same flows are in reasonable agreement with the numerical
solutions.

In what follows, we outline this numerical work in detail.

The Boundary Value Problem

Of interest here are steady, fully developed, gravity-driven
flows of identical, smooth spheres down bumpy inclined surfaces.
The diameter of each sphere is 0, the mass density of each is aqa,
and the coefficient of restitution between them is e. The
vertical acceleration due to gravity is g, the angle between the
incline and the horizontal is ¢, and the perpendicular distance
from the incline to the free surface is L. We introduce an Xq*
X,~%3 Cartesian coordinate system in which x; measures parallel
distances along the incline, and x, measures perpendicular
distances above the incline. In these flows, the solid fraction
v, the dimensionless counterpart u=u1/(ag)1/2 to the xj,-velocity
component u,, and the dimensionless measure w=(T/og)1/2 of the
granular temperature T depend only on the dimensionless
coordinate y=(L-x5)/0. The y=-coordinate varies from 0 at the

free surface to the dimensionless depth B=L/0 at the base of the



incline.

In these flows, the balance of mass and the xj-component of
the balance of momentum are identically satisfied. Furthermore,
if Py, and P, are the X;-%; and X;-X; components of‘the pressure
tensor, then in terms of their dimensionless counterparts S=-
P;5/00g and NsP,,/00g the x,-component of the momentum eguation

is
S' = ysing ' (1)

where a prime denotes differentiation with respect to y, and the

Xp,-component of the momentum equation is
N' = vcosg . (2)

Regardless of v(y), Y may be eliminated between equations (1) and
(2) to show that S(N=tan¢ provided that S and N vanish at the
free surface. Finally, if Q5 is the x,-component of the energy
flux, and Y is the collisional rate of energy dissipation, then
in terms of their dimengionless counterparts qEQz/a(og)3/2 and

Fsv/aol/zg3/2 the energy eguation is
q' - su' -T=0 . (3)

Constitutive relations for S, N, q, and T are necessary to close
equations (1), (2), and (3).
Here we employ the constitutive theory of Jenkins and

Richman [1985], which is restricted to smooth, nearly elastic



spheres but includes the effects of particle transport and
particle collisions. According to this theory, the normal

pressure is given by
N = 4VGFw? (4)

where Gau(z—v)/z(l—v)3 and F=1+1/4G, and the gradient of velocity

is given in terms of the stress ratio by

o = -sn1/2rsw | (5)
2EN !
where  E=1+7(1+5/8G)?%/12. The corresponding constitutive

relations for q and I are

q = 2MNw' (6)
nl/2p '
in which M=1+9m(1+5/12G)2/32, and
6(1l-e)Nw ‘
I' = 5(1-e)Nw . (7)
xl/2p

Following Richman and Marciniec [1990], we employ equations (5),
(6), and (7) to eliminate u', g, and T from equation (3), and
differentiate equation (4) to write v' in terms of N'and w'. In
this manner, we find that in terms of the measure h of energy

flux defined by

w' = hw , (8)




the energy equation becomes

_ (1-2H)N!

h' = A2 h - (1+4H)h% (9)

where A2 is defined by the difference

1 5nF2s52
A2 = ~—[6(1-e) - -————~} , (10)
2M 2 EN2
and H is the function of v defined by
-[{d&n(M/F)/daV]
= : 11
2H = 1qtn(vGF) /av] (11)

The quantity A2 is a local measure of the difference between the
rate at which energy is dissipated by inelastic collisions and
the rate at which energy is supplied to the flow by gravity. The
function 2H, which decreases monotonically from 1 to 0O as V
increases from 0 to 1, measures the importance of the transport
contributions to the fluxes of momentum and energy.

The boundary conditions at y=0 reflect the facts that the

stresses and energy flux vanish there. That is,
S(0) =0 and N(0) =0 ' (12)

and

i
(o]

h(0) (13)
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The boundary conditions at the y=8 depend on the bumpiness
of the base. The incline of interest here is a flat surface to
which smooth hemispherical particles of diameter d are randomly
attached at an average distance s apart. The dimensionless
parameters that determine the bumpiness of the boundary are the
ratios r=0/d and A=s/d. For given values of r, the full range of
A is from -1, which corresponds to a perfectly flat boundary, to
-1+4/(1+2r), which is the maximum value that prevents any flow
particle from colliding with the flat part of the base. In a
collision between a flow particle and a boundary particle, the
distance between their centers is 0=(0+d)/2 and the coefficient
of restitution is ey.

Conditions that express the balance of momentum and energy
at these bumpy boundaries have been obtained by Richman [1988].
When applied to the flows of interest here, the balance of
tangential momentum at the base determines the slip velocity u(8)

according to

u@d _[rs
w (B) ”J;N £ (14)

where the dependence of f on the boundary geometry and solid

fraction at the boundary is given by

_ 1-(50F/23/20E) (1+0B/0) sin2¢ , S5OF

’ (15)
(2/3) [2csc28 (1-cosb) -cosh ) V20E



in which B=n(1+5/8G)/12y2 and sinf=(1+A)/{1+r). Similarly, the
balance of energy at the base determines the gradient of the

granular temperature according to
h(B) =b , | (16)

where the dependence of b on the boundary geometry and solid
fraction at the boundary is given by

F |82
= 73& ;;Ef - 2(1~ew)(1-cosﬂ)cs028 . (17)

The quantity b is the dimensignless difference between the slip
work done by the boundary, and the collisional dissipation at the
boundary. The boundary supplies fluctuation energy to the flow
when b is positive and absorbs fluctuation energy when b is

negative,

Solution Procedure

Because the velocity has been eliminated from the energy
equation and the stress ratio S/N is equal to tan¢g, equations
(2), (4), (8), and (9) are uncoupled from equations (1) and (5).
Consequently, for fixed values of e, ey, r, 4, and ¢, equations
(2), (4), (8), and (9) determine the functions N(y), h(y), w(y),
and v(y) to within three constants of integration. These three
constants and the dimensionless depth B are determined by the

second of the stress conditions (12), energy flux conditions (13)



and (16), and by prescribing a nonzero value W of w at y=0. With
v(y) known, the mass hold-up corresponding to this choice of W

may be calculated according to its definition,

my = Jﬂudy ] (18)‘
0
and equation (1) may be integrated to determine S(y) to within a
constant of integration that is fixed by the first of stress
conditions (12). Alternatively, with N(y) known, S(y) is given
simply by the product N(y)tang. Independent of the variation
S(y) but with v(y) and w(y) known, equation (5) may be integrated
to determine u(y) to within a constant that is fixed by momentum
flux condition (14). The corresponding mass flow rate m for the

choice of W may then be calculated according to its definition,

ﬁ = Jﬂvudy . (19)
0

We employ a fourth order Runge-Kutta technique to integrate
equations (2), (4), (8), 2nd (9) from y=0, where N and h vanish
and w is equal to its free surface value W. In equation (9), we
employ egquations (2) and (4) to write the ratio N'/N as
cos¢/(1+4G)w2. Whenever necessary, we invert equation (4) .
calculate the value of v corresponding to known values of N and
W. For any value of W, the depths B are determined as those

values of y at which the basal energy flux condition (16) is



satisfied. If this conditon is not satisfied within 1000
particle diameters from y=0, then we conclude that eilther no
steady, fully developed solution exists for the value of W
chosen, or that the depth of flow is nearly unbounded. If this
condition is satisfied, then N(y), h(y), w(y), and v(y) are
completely determined, and equations (1) and (5) may be
integrated numerically to determine S(y) and u(y).

According to constitutive relation (4), v must be equal to
zero if N vanishes where w does not. In particular, v must be
equal to zero at y=0. Because h is also equal to zero there,
eguations (2), (8), and (9) demonstrate that N'(0), w'(9), énd
h'(0) each wvanish at y=0. Integrations initiated from y=0
therefore yield no spatial variations in N, h, w, and v. This
indicates that the flows are infinitely deep and that N, h, w,
and v each approach their values at y=0 asymptotically from the
base. To overcome this difficulty, we set v¥(0) equal to 1079,
which is equivalent to relaxing very slightly the normal stress
condition at y=0, and allows the integrations to proceed away
from zero. We have also initiated the integrations with several
other values of v(0) between 10~° and 10'7, and in each case
obtained results that were indistinguishable frecun Lhose based on

v(0)=10"6,

Results and Discussion

In Figure 1 we show the variations of m with W between 0 and

10



3 for e=.8, ey,=.95, r=1/2, and A=-1+y/2 at inclinations ¢ of
19.00*, 20.04°, 20,.,70°, 21.00°, and 21.50°, Steady, fully
developed flows also occur at these inclinations when W is
greater than 3. However, the solid fraction in these flows is
everywhere less than .02. The theory predicts that when W is
extremely small (<.02), the flows are unrealistically dense. In
fact, the lowest value of W on each curve shown in Figure 1
corresponds to the minimum value at which the solid fraction
everywhere within the flow is less than .65. A8 W increases from
its minimum wvalue, although the flow rates do not vary
monotonically, the flows become monotonically more dilute.

In Figure 2 we show the variations of m with W for e=.95,
e,=.8, r=1/2, and A=-1+y2 at inclinations of 11.56°, 11.80°,
12.00°, 12.20°, and 12.90°. Corresponding to each inclination is
a finite maximum value of W at which m becomes unbounded. When
$=12.90°, as W increases from its minimum valug at which the
solid fraction everywhere within the flow is less than .65 to its
maximum value, the flows become increasingly more dilute. At the
remaining inclinations, two flows at different flow rates are
physically possible for fixed values of W near its minimum. As W
increases from its minimum value, the flow at the higher flow
rate becomes more dense until, at a value of W that i=s less than
its maximum, the solid fraction somewhere in the flow reaches
.65. The flow at the lower flow rate becomes more dilute as W

increases to its maximum value.
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To each value of W for which a steady, fully developed flow
occurs, there corresponds a mass hold-up my that may be
calculated according to its definition (18). 1In Figure 3, for
example, we eliminate W and show as a solid curve the variation
of m with mg when ¢=20.70° for the values e=.8, e, =.95, r=1/2,
and A=-1+42 taken from Figure 1. In Figure 4, we show as a solid
curve the variation of m with my when ¢=12.20 for the values
e=.95, e,=.8, r=1/2, and A=-1+y/2 taken from Figure 2. Alsoc shown
in Figures 3 and 4 as dashed curves are the corresponding
approximate variations predicted by Richman and Marciniec [1990],
who integrated the balance of momentum and energy by replacing
the solid fraction by its depth averaged value wherever it
occurred in equations (1), (2), and (9). For those flow rates at
which steady, fully developed flows are predicted by both the
numerical solution obtained here and the approximate snlution
obtained by Richman and Marciniec [1990], the values »f me
predicted by the two agree quite well. However, according to
Figure 3, there can be a considerable discrepancy between the two
predictions concerning the range of flow rates within which
steady flows are possible.

For the case ¢=20.70' shown in Figures 1 and 3, there are
two flows possible for fixed flow rates between the maximum 134.0
and 17.8; the less massive flow is more dilute, faster, and more
thermalized than its more massive counterpart. As m decreases in

this range, the flow at the higher mass hold-up becomes more

12



dense, slower, and less thermalized, until at m=17.8 the solid
fraction within the flow exceeds .65 and we assume that it can no
longer be sheared. As m decreases from its maximum value to 1,
the flow at the lower mass hold-up becomes more dilute, slower,
and more thermalized. Qualitatively similar observations may be
made for the other inclinations shown in Figure 1.

For the case ¢=12.20° shown in Figures 2 and 4, there are
two steady, fully developed flows for fixed flow rates between
the minimum 11.3 and 56.7. O©Of the two, the less massive is more
dilute, faster, and more thermalized than its more massive
counterpart. As m increases from 11.3 the less massive flow
becomes more dilute, faster, and more thermalized. The more
massive flow becomes more dense, faster, and only slightly less
thermalized, until at m=56.7 the solid fraction somewhere within
the flow exceeds .65. Qualitatively similar observations may be
made for the other inclinations shown in Figure 2.

In Figures 5, 6, and 7 we plot as solid curves the
variations of v, w, and u with dimensionless distance Y=y-f from
the base for the case ¢=20.70°, e=.8, e,~.95, r=1/2, and A=-1+/2
when m=50. In Figures 8, 9, and 10 we do the same for the case
¢=12.20°, e=.95, e,=.8, r=1/2 and A=-1+/2. Shown as dashed
curves 1in these figures are the corresponding approximate
variations obtained by Richman and Marciniec [1990]. As
demonstrated in Figures 3 and 4, two steady, fully developed

flows are possible in both cases. The light curves correspond to
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the less massive of the two flows and the dark curves correspond
to the more massive of the two. In the first case (shown in
Figures 5, 6, and 7), the mass hold-ups for the two numerical
solutions are my=2.81 and 5.88 and for the two approximate
solutions are mg=2.95 and 6.30. In the second case (shown in
Figures 8, 9, and 10) the numerical values are my=3.38 and 8.89,
and the approximate values are m¢=3.39 and 9.78.

Figures 5 and 8 demonstrate that <the approximate solid
fraction profiles reach zero at finite distances from the base,
whereas the exact profiles vanish only as the distance from the
base becomes unbounded. The approximate solutions corresponding
to the dilute and dense flows showﬁ in Figures 5, 6, ang 7, for
example, predict depths 18.58 and 12.65 particle diémeters,
respectively. Although the corresponding numerical sblutions
include no such predictions, they do demonstrate tha% 95.2
percent of the mass of the dilute flow and 99.99 percent of the
mass of the dense flow are contained within the depths predicted
by the approximate analysis. Similarly, the approximate dilute
and dense profiles shown in Figures 8, 9, and 10 have depths of
33.6 and 19.8 particle diameters respectively, while the
numerical solutions contain 93.3 and 95.5 percent of the total
mass of the corresponding flows within these depths.
Consequently, although the exact profiles of w and u extend
indefinitely above the base whereas their approximate

counterparts end abruptly, this discrepancy is not serious. 1In
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order to emphasize this fact, we have indicated the locations at

which v=.01 by solid dots on the numerically obtained profiles

of u and w shown in Figures 6, 7, 9, and 10.
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Figure Captions
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5:

6:

The variations of m with W for ¢=19.00°, 20.04°,
20.70°, 21.00°, and 21.50° when e=.8, e,=.95, r=1/2,
and A=-1+y2.

The variations of m with W for ¢=11.56°, 11.80°,
12.00°, 12.20°, and 12.90°' when e=.95, ew=.8, r=1/2
and A=-1+42.

The exact (solid) and approximate (dashed) variations
of m with my for ¢=20.70° when e=.8, e, =.95, r=1/2,
and A=-1+¢/2. Approximate results were obtained by
Richman and Marciniec [1990].

The exact (solid) and approximate (dashed) variations
of m with my for ¢=12.20° when e=,95, e, =.8, r=1/2,
and A=-1+y2. Approximate results were obtained by
Richman and Marciniec [1990].

The exact (dark and light solid) and approximate

(dark and light dashed) variations of v with ¥=y-8 for
$=20.70° and m=50 when e=.8, e,~.95, r=1/2, and
A=-1+y/2. Approximate results were obtained by Richman
and Marciniec [1990].

The exact (dark and light solid) and approximate

(dark and light dashed) variations of w with Y=y~f for
$=20.70° and m=50 when e=.8, e,~.95, r=1/2, and
A=-1+y2. Approximate results were obtained by Richman
and Marcinilec [1990]. Solid dots indicate where

=,01.

The exact (dark and light solid) and approximate

(dark and 1ight dashed) variations of u with ¥Y=y~8 for
¢=20.70° and m=50 when e=.8, e,<.95, r=1/2, and
A=-1+y2. Approximate results were obtained by Richman
and Marciniec [1990]. Solid dots indicate where
y=,01.
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Figure Captions (cont.)

Figure 8:

Figure 9:

Figure 10:

The exact (dark and light solid) and approximate

(dark and light dashed) variations of v with Y=y-8 for
¢=12,20° and n=50 when e=.95, e,=.8, r=1/2, and
A=-1+42. Approximate results were obtained by Richman
and Marciniec [1990].

The exact (dark and light solid) and approximate
édark and light dashed) variations of w with Y=y-§ for
=12.20° and m=50 when e=.95, e,=.8, r=1/2, and
A=-1+y/2. Approximate results were obtained by Richman
and Marciniec [1990]. Solid dots indicate where
y=.01.

The exact (dark and light solid) and approximate

(dark and light dashed) variations of u with y=y-8 for
¢=12.20° and n=50 when e=.95, e,=.8, r=1/2, and
A=-1+y/2. Approximate results were obtained by Richman
and Marciniec [1990]. Solid dots indicate where
y=.01.
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Figure 5.



25

|

T

lll"TI'IW

I

[

r

I

I

—




25

20

15

10

r

I

i 1—!"[ [

[

IR

l—lTlTllTl

. .;

- —]

- —

- -

B 7]

1 Ve b b be e by
o) 10 15 20 25 30 35

u

Figure 7.



-~
-......_~*_
~—

EREEREENE NN R
3 4 .5 .6

1%
Figure 8.



C

e

Figure §.



Y o o o I s s I B B

& BT R TR B T T A N [T T T TR R TR T VAR ATt Yt R R TR LT









