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Introduction

In this quarter we accomplished two milestones. First, we

qualitatively compared the approximate solutions for gravity-

driven granular flows down bumpy inclines obtained by Richman

and Marciniec [1990] to the experimental results for the same

flows obtained Johnson and Jackson [1990]. The comparison was

made by employing the reparameterized solutions of Richman and

Marciniec [1990] and by analyzing several angles of inclination,

coefficients of restitution, and boundary geometries. The

results of the comparison are summarized in the attached paper

(Granular Flows Down Bumpy Inclines, by Richman, M.W. and Martin,

R.E.) presented at the Joint DOE-NSF Workshop on the Flows of

Particulates and Fluids held at Worcester Polytechnic Institute

on October 22-24, 1991.

Next, we obtained exact numerical solutions the equations of

motion that were solved approximately by Richman and Marciniec

[1990]. Exact solutions to the governing equations require

that the stresses and energy flux vanish at the top of the flow,

and satisfy separate momentum and energy balances at the base of

the flow. In order to generate numerical solutions, we relaxed

very slightly the normal stress condition at the top, assigned a

value to the granular temperature there, and, for those

inclinations, flow particles, and boundaries that admitted

solutions, calculated the profiles of solid fraction, granular

temperature, and velocity and the corresponding vaJues of mass



flow rate and mass hold-up. In this manner we found that there

are flow rates at which two flows are possible. Of the two, the

less massive is more dilute, more thermalized, and faster than

its more massive counterpart. In addition we found that the

approximate results obtained by Richman and Maroiniec [1990] for

the same flows are in reasonable agreement with the numerical

solutions.

In what follows, we outline this numerical work in detail.

The Boundary Value Problem

Of interest here are steady, fully developede gravity-driven

flows of identical, smooth spheres down bumpy inclined surfaces.

The diameter of each sphere is 0, the mass density of each is _,

and the coefficient of restitution between them is e. The

vertical acceleration due to gravity is g, the angle between the

incline and the horizontal is _, and the perpendicular distance

from the incline to the free surface is L. We introduce an x l-

x2-x 3 Cartesian coordinate system in which x I measures parallel

distances along the incline, and x 2 measures perpendicular

distances above the incline. In these flows, the solid fraction

v, the dimensionless counterpart U=Ul/(ag) I/2 to the Xl-Velocity

component Ul, and the dimensionless measure w=(T/og)i/2 of the

granular temperature T depend only on the dimensionless

coordinate y=(L-x2)/a. The y-coordinate varies from 0 at the

free surface to the dimensionless depth _L/a at the base of the



t

incline.

In these flows, the balance of mass and the x3-component of

the balance of momentum are identically satisfied. Furthermore,

if PI2 and P22 are the Xl-X 2 and x2-x 2 components of the pressure

tensor, then in terms of their dimensionless counterparts SE-

Pl2/_ug and N-P22/_g the Xl-component of the momentum equation

is

S' = vsin¢ , (i)

where a prime denotes differentiation with respect to y, and the

x2-component of the momentum equation is

N' = vcos# . (2)

Regardless of _(y), y may be eliminated between equations (I) and

(2) to show that S/N=tan_ provided that S and N vanish at the

free surface. Finally, if Q2 is the x2-component of the energy

flux, and 7 is the collisional rate of energy dissipation, then

in terms of their dimensionless counterparts .q_Q2/_(_g) 3/2 and

F-7/_ul/2g 3/2 the energy equation is

q' - Su' - F = 0 . (3)

Constitutive relations for S, N, q, and F are necessary to close

equations (I), (2), and (3).

Here we employ the constitutive theory of Jenkins and

Richman [1985], which is restricted to smooth, nearly elastic
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spheres but includes the effects of particle transport and

particle collisions. According to this theory, the normal

pressure is given by

N = 4vGFw 2 , (4)

where G-v(2-v)/2(I-v) 3 and FmI+I/4G, and the gradient of velocity

is given in terms of the stress ratio by

-5_I/2FSw

u ' = 2EN ' (5)

where E-I+_ (I+5/8G) 2/12. The corresponding constitutive

relations for q and F are

2MNw '
q = , (6)

_I/2F

in which M-I+9_(I+5/12G)2/32, and

6 (l-e) Nwr = . (v)
_1/2 F

Following Richman and Marciniec [1990]_ we employ equations (5),

(6), and (7) to eliminate u', q, and F from equation (3), and

differentiate equation (4) to write v' in te_ms of N'and w'. In

this manner, we find that in terms of the measure h of energy

flux defined by

w' = hw , (8)
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the energy equation becomes
q

h' = 12 - _(1-2H!'N'"'h - (l+4H)h 2 , (9)
N

where 12 is defined by the difference

12 1 [6(l-e) 5_F2S2]
= -- - (mo)

2M 2EN2 0

and H is the function of V defined by

-[d£n(M/F)/dv]
2H = . (II)

[din (vGF)/dv]

The quantity 12 is a local measure of the difference between the

rate at which energy is dissipated by inelastic collisions and

the rate at which energy is supplied to the flow by gravity. The

function 2H, which decreases monotonically from 1 to 0 as v

increases from 0 to i, measures the importance of the transport

contributions to the fluxes of momentum and energy.

The boundary conditions at y=0 reflect the facts that the

stresses and energy flux vanish there. That is,

S(0) = 0 and N(0) = 0 , (12)

and

h(O) : 0 . (13)



The boundary conditions at the y=_ depend on the bumpiness

of the base. The incline of interest here is a flat surface to

which smooth hemispherical particles of diameter d are randomly

attached at an average distance s apart. The dimensionless

parameters that determine the bumpiness of the boundary are the

ratios rm_/d and A-s/d. For given values of r w the full range of

is from-I, which corresponds to a perfectly flat boundary, to

-l+_(l+2r), which is the maximum value that prevents any flow

particle from colliding with the flat part of the base. In a

collision between a flow particle and a boundary particle, the

distance between their centers is _m(a+d)/2 and the coefficient

of restitution is ew .

Conditions that express the balance of momentum and energy

at these bumpy boundaries have been obtained by Richman [1988].

When applied to the flows of interest here, the balance of

tangential momentum at the base determines the slip velocity u(_)

according to

u(_)

_ _ s f , (14)| w(_) N

where the dependence of f on the boundary geometry and solid

fraction at the boundary is given by

I- (5_F/23/2oE) (I+uB/u) sin28 5a--F
f = + ---- , (15)

(2/3)[2csc28(i-cos8)-cos8] V_oE

=
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in which B=-_(I+5/8G)/12_2 and sinS-(l+A)/(l+r). Similarly, the

balance of energy at the base determines the gradient of the

granular temperature according to

h(_) = b , (16)

where the dependence of b on the boundary geometry and solid

fraction at the boundary is given by

b- L2--_-2(l-ew)(i-oo_0)o_o20 (17)

The quantity b is the dimensionless difference between the slip

work done by the boundary, and the collisional dissipation at the
a

boundary. The boundary supplies fluctuation energy to the flow

when b is positive and absorbs fluctuation energy when b is

negative.

Solution Procedure

Because the velocity has been eliminated from the energy

equation and the stress ratio S/N is equal to tan_, equations

(2), (4), (8), and (9) are uncoupled from equations (I) and (5).

Consequently, for fixed values of e, ew, r, A, and _, equations

(2), (4), (8), and (9) determine the functions N(y), h(y) , w(y),

and v(y) to wit1_in three constants of integration. These three

constants and the dimenslonless depth _ are determined by the

second of the stress conditions (12), energy flux conditions (13)
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and (16), and by prescribing a nonzero value W of w at y=0. With

v(y) known, the mass hold-up corresponding to this choice of W

may be calculated according to its definition,

m t = vdy , (18)
0

and equation (I) may be integrated to determine S(y) to within a

constant of integration that is fixed by the first of stress

conditions (12). Alternatively, with N(y) known, S(y) is given

simply by the product N(y)tan_. Independent of the variation

S(y) but with v(y) and w(y) known, equation (5) may be integrated

to determine u(y) to within a constant that is fixed by momentum

flux condition (14). The corresponding mass flow rate m for the

choice of W may then be calculated according to its definition,

m = vudy . (19)
0

We employ a fourth order Runge-Kutta technique to integrate
J

equations (2) , (4), (8), and (9) from y=0, where N and h vanish _

and w is equal to its free surface value W. lh equation (9), we

employ equations (2) and (4) to write the ratio N'/N as

cos#/(l+4G)w 2. Whenever necessary, we invert equation (4) _

calculate the value of v corresponding to known values of N and

w. For any value of W, the depths _ are determined as those

values of y at which the basal energy flux condition (16) is



satisfied. If this conditon is not satisfied within i000

particle diameters from y=0, then we conclude that either no

steady, fully developed solution exists for the value of W

chosen, or that the depth of flow is nearly unbounded. If this

condition is satisfied, then N(y), h(y), w(y), and _(y) are

completely determined, and equations (i) and (5) may be

integrated numerically to determine S(y) and u(y).

According to constitutive relation (4), _ must be equal to

zero if N vanishes where w does not. In particular, y must be

egual to zero at y=0. Because h is also equal to zero there,

equations (2), (8), and (9) demonstrate that N'(O), w,(O), and

h'(0) each vanish at y=0. Integrations initiated from y=0

therefore yield no spatial variations in N, h, w, and _. This

indicates that the flows are infinitely deep and that N, h, w,

and v each approach their values at y=O asymptotically from the

base To overcome this difficulty, we set _(0) equal to 10 -6

which is equivalent to relaxing very slightly the normal stress

condition at y=0, and allows the integrations to proceed away

from zero. We have also initiated the integrations with several

other values of _(0) between 10 -5 and 10 -7 and in each case

obtained results that were indistinguishable fro_ _hose based on

p(O):ZO -6 .

Results and Discussion

In Figure 1 we show the variations of {a with W between 0 and
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3 for e=.8, ew=.95 , r=1/2, and A=-1+_2 at inclinations _ of

19 00", 20 04" and 21 50" Steady,, 20 70', 21 00° fully• • • • , • •

developed flows also occur at these inclinations when W is

greater than 3. However, the solid fraction in these flows is

everywhere less than .02. The theory predicts that when W is

extremely small (<.02), the flows are unrealistically dense. In

fact, the lowest value of W on each curve shown in Figure 1

corresponds to the minimum value at which the solid fraction

everywhere within the flow is less than .65. As W increases from

its minimum value, although the flow rates do not vary

monotonically, the flows become monotonically more dilute.

In Figure 2 we show the variations of _ with W for e=.95,

ew= 8, r=I/2, and A=-I+_2 at inclinations of ii 56", Ii 80", • , ,

12.00 °, 12o20", and 12.90". Corresponding to each inclination is

a finite maximum value of W at which _ becomes unbounded. When

_=12.90 °, as W increases from its minimum value at which the

solid fraction everywhere within the flow is less than .65 to its

maximum value, the flows become increasingly more dilute• At the

remaining inclinations, two flows at different flow rates are

physically possible for fixed values of W near its minimum. As W

increases from its minimum value, the flow at the higher flow

rate becomes more dense until, at a value of W that is less than

its maximum, the solid fraction somewhere in the flow reaches

.65. The flow at the lower flow rate becomes more dilute as W

increases to its maximum value•
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To each value of W for which a steady, fully developed flow

occurs, there corresponds a mass hold-up mt that maybe

calculated according to its definition (18). In Figure 3, for

example, we eliminate W and show as a solid curve the variation

of _ with m t when _=20.70" for the values e=.8, ew=.95 , r=i/2,

and A=-1+_2 taken from Figure 1. In Figure 4, we show as a solid

curve the variation of _ with m t when #=12.20 for the values

e=.95, ew=.8 , r=1/2, and A=-1+_2 taken from Figure 2. Also shown

in Figures 3 and 4 as dashed curves ar_ the corresponding

approximate variations predicted by Ricnman and Marcinlec [1990],

who integrated the balance of momentum and energy by replacing

the solid fraction by its depth averaged value wherever it

occurred in equations (i), (2), and (9). For those flow rates at

which steady, fully developed flows are predicted by both the

numerical solution obtained here and the approximate s,_lution

obtained by Richman and Marciniec [1990], the values 9f m t

predicted by the two agree quite well. However, according to

Figure 3, there can be a considerable discrepancy between the two

predictions concerning the range of flow rates within which

steady flows are possible.

For the case #=20.70' shown in Figures 1 and 3, there are

two flows possible for fixed flow rates between the maximum 1.34.0

and 17.8; the less massive flow is more dilute, faster, and more

thermalized than its more massive counterpart. As _ decreases in

this range, the flow at the higher mass hold-up becomes more
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dense, slower, and less thermalized, until at m=17.8 the solid

fraction within the flow exceeds .65 and we assume that it can no

longer be sheared. As _ decreases from its maximum value to i,

the flow at the lower mass hold-up becomes more dilute, slower,

and more thermalized. Qualitatively similar observations may be

made for the other inclinations shown in Figure i.

For the case _=12.20" shown in Figures 2 and 4, there are

two steady, fully developed flows for fixed flow rates between

the minimum 11.3 and 56.7. of the two, the less massive is more

dilute, faster, and more thermalized than its more massive

counterpart. As _ increases from 11.3 the less massive flow

becomes more dilute, faster, and more thermalized. The more

massive flow becomes more dense, faster, and only slightly less

thermalized, until at _=56.7 the solid fraction somewhere within

the flow exceeds .65. Qualitatively similar observations may be

made for the other inclinations shown in Figure 2.

In Figures 5, 6, and 7 we plot as solid curves the

variations of v, w, and u with dimensionless distance Y=-y-_ from

the base for the case #=20.70 °, e=.8, ew=.95 , r=I/2, and A=-I+_2

when _=50. In Figures 8, 9, and i0 we do the same for the case

_=12.20 °, e=.95, ew=.8 , r=I/2 and A=-I+_2. Shown as dashed

curves in these figures are the corresponding approximate

variations obtained by Richman and Marciniec [1990]. As

demonstrated in Figures 3 and 4, two steady, fully developed

flows are possible in both cases. The light curves correspond to
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the less massive of the two flows and the dark curves correspond

to the more massive of the two. In the first case (shown in

Figures 5, 6, and 7), the mass hold-ups for the two numerical

solutions are mt=2.81 and 5.88 and for the two approximate

solutions are mt=2.95 and 6.30. In the second case (shown in

Figures 8, 9, and I0) the numerical values are mt=3.38 and 8.89,

and the approximate values are mt=3.39 and 9.78.

Figures 5 and 8 demonstrate that the approximate solid

fraction profiles reach zero at finite distances from the base,

whereas the exact profiles vanish only as the distance from the

base becomes unbounded. The approximate solutions corresponding

to the dilute and dense flows shown in Figures 5, 6, and 7, for

example, predict depths 18.58 and 12.65 particle diameters,

respectively. Although the corresponding numerical solutions

include no such predictions, they do demonstrate tha_ 95.2

percent of the mass of the dilute flow and 99.99 percent of the

mass of the dense flow are contained within the depths predicted

by the approximate analysis. Similarlv, the approximate dilute

and dense profiles shown in Figures 8, 9, and 10 have depths of

33.6 and 19.8 particle diameters respectively, while the

numerical solutions contain 93.3 and 95.5 percent of the total

mass of the corresponding flows within these depths.

Consequently, although the exact profiles of w and u extend

indefinitely above the base whereas their approximate

counterparts end abruptly, this discrepancy is not serious. In
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order to emphasize this fact, we have indicated the locations at

which v=.Ol by solid dots on the numerically obtained profiles

of u and w shown in Figures 6, 7, 9, and i0.
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Figure Captions

Figure i: The variations of _ with W for _=19°00', 20.04*,
20.70 °, 21.00 °, and 21.50" when e=.8, ew=.95, r=I/2,
and A=-I+_2.

Figure 2: The variations of _ with W for _=ii.56', 11.80",

12.00 °, 12.20", and 12.90" when e=.95, ew=.8, r=i/2,
and h=-l+_2.

Figure 3: The exact (solid)and approximate (dashed) variations
of _ with m t for _=20.70 ° when e=.8, ew=.95 , r=i/2,
and A=-I+_2. Approximate results were obtained by
Richman and Marciniec [1990].

Figure 4: The exact (solid) and approximate (dashed) variations
of m with m t for _=12.20' when e=.95, ew=.8 , r=I/2,
and A=-l+_2. Approximate results were obtained by
Richman and Marciniec [1990].

Figure 5: The exact (dark and light solid) and approximate
(dark and light dashed) variations of v with Y=y-_ for

_=20.70 ° and _=50 when e=.8, ew=.95 , r=i/2, and
A=-I+_2. Approximate results were obtained by Richman
and Marciniec [1990].

Figure 6: The exact (dark and light solid) and approximate
(dark and light dashed) variations of w with Y=y-_ for

_=20.70 ° and _=50 when e=.8, ew=. 95, r=I/2, and
A=-I+_2. Approximate results were obtained by Richman
and Marciniec [1990]. Solid dots indicate where
_=. 01.

Figure 7: The exact (dark and light solid) and approximate
(dark and light dashed) variations of u with Y=y-_ for
_=20.70" and _=50 when e=.8, ew=.95 , r=I/2, and
A=-I+_2. Approximate results were obtained by Richman
and Marciniec [1990]. Solid dots indicate where
v=.01.
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Figure Captions (cont.)

Figure 8: The exact (dark and light solid) and approximate
(dark and light dashed) variations of _ with Y=y-$ for
¢=12.20" and _=50 when e=°95, ew=.8, r=i/2, and
h=-l+_2. Approximate results were obtained by Richman
and Marciniec [1990].

Figure 9: The exact (dark and light solid) and approximate
(dark and light dashed) variations of w with Y=y-_ for
¢=12.20' and _=50 when e=.95, ew=.8, r=I/2, and
A=-I+_2. Approximate results were obtained by Richman
and Marciniec [1990]. Solid dots indicate where
V=.01o

Figure I0: The exact (dark and light solid) and approximate

(dark and light dashed) :ariations of u with Y=y-_ for
¢=12.20 ° and _=50 when e .95, ew=.8, r=i/2, and
A=-I+_2. Approximate results were obtained by Richman
and Marciniec [1990]. Solid dots indicate where
P=.Ol.
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