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FOREWORD

These proceedings are the result of the Fifth DOE-NSF Workshop on fundamental research in the
area of particulate two-phase flow and granular flow. The present collection of twenty contributions
from universities and national laboratories is based on research projects sponsored by either the
Department of Energy or the National Science Foundation.

These papers illustrate some of the latest advancements in theory, simulations, and experiments.
The papers from the Workshop held September 29 - October 1, 1993 have been separated into three
basic areas: experiments, theory, and numerical simulations. A list of attendees at the workshop is
included at the end of the proceedings.

We would like to thank all those involved in the organization of this workshop and especially the
participants of the workshop for their contribution in preparing this volume.

Sean I. Plasynski
William C. Peters
Mike C. Roco
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DENSE, COLLISIONAL, NEARLY STEADY, NEARLY
FULLY DEVELOPED FLOWS DOWN INCLINES

J. T. Jenkins
Department of Theoretical and Applied Mechanics
Cornell University, Ithaca, NY 14853 USA

ABSTRACT

In preparation for the the development of a hydraulic theory for
particulate flows that involve particle collisions throughout their depth, we
analyze a flow down an incline that is dense, one dimensional, nearly steady,
and nearly fully developed. Because we employ more realistic boundary
conditions at the base of the flow, the analysis is slightly more complicated
than that of Savage (1983); because we restrict our attention to dense flows, it
is somewhat simpler than that of Richman & Marciniec (1990).

THEORY

We first consider rapid flows of a granular material consisting of identical,
nearly elastic, frictionless spheres of mass m and diameter . The familiar
coefficient of restitution e characterizes the energy lost to the component of
velocity normal to the surface of two colliding spheres. Although we restrict
our attention to nearly elastic collisions of identical, frictionless spheres, we
anticipate that the many features of the flow involving irregular particles of
different sizes interacting through frictional, inelastic collisions are captured
by this idealized system.

The mean fields of interest are the mass density p, the product of m and
the mean number n of spheres per unit volume; the mean velocity u about
which the actual particle velocity fluctuates; and the granular temperature T
that measures the energy per unit mass of the velocity fluctuations.

The balance laws for mass, linear momentum, and the fluctuation energy
have the familiar local forms:

prpVu=0, ey
where an overdot indicates a time derivative following the mean motion;

pu=Vit+nF, (2)



where t is the symmetric stress tensor and F is the external force on a sphere;
and

rolw

pT=-V-Q+tr(tVu)-vy, (3)

where Q is the flux of translational energy, tr denotes the trace of a tensor, and
v is the rate at which the energy of the translational fluctuations is dissipated
in collisions in a unit volume.

The hydraulic analyses will be based upon a flow in the x-y plane that is
rectilinear,nearly steady, and nearly fully developed. The x-component u of
the velocity, the density p, and the granular temperature T depend upon x, y,
and t. The base of the flow is taken to be at y = 0, the upper surface of the flow
is given by y = H(x,t), and the x-axis is assumed to be inclined at an angle ¢
from the horizontal. We assume that the flow is long and thin, so that
variations in the y-direction are much more intense than those in the x-
direction, and that the time necessary to adjust to a steady solution across the
flow is more rapid than the characteristic times for change along the flow. In
the analysis across the flow, the acceleration along the flow is ignored, the
pressure is taken to be hydrostatic and the dependence on x and t enters only
through that of the upper surface. In this case, (1) is satisfied identically and
the x- and y-components of (2) require that the shear stress S = t,, and the
pressure p satisfy

dS dp

= X _. i 4

3y ax " PESin® @
and

——35=-pgcos¢, (5)

where g is the gravitational acceleration. Then, with Q =Q,, (3) reduces to

S 4§ .y=0. 6
dy+ dy Y (6)

The mean shear stress working through the gradient of the mean velocity is
the source of the fluctuation energy, while the inelastic collisions dissipate it.
At any point in the flow at which there is an imbalance in the rates of
production and dissipation, there is a transport of fluctuation energy to or
from neighboring points in the flow.




We restrict our attention to dense flows with a distinct upper surface in

which the volume fraction v = nt6>/6 is around 0.5. In this case, collisions
between particles rather than the flight of particles between collisions are
responsible for the fluxes of momentum and energy. In addition, in the
expressions for the fluxes derived in the kinetic theory, we retain only those
contributions to the collisional fluxes that dominate in the dense limit.
Then, with the assumptions that the spheres are nearly elastic, we write the
dispersive pressure p and the shear stress S as the high-volume-fraction
limits of expressions provided by Chapman & Cowling (1970, Sec. 16.41) for
frictionless, elastic spheres:

p=4pGT, 7)

where (Carnahan & Starling, 1979)

G=v(2-v)/2(1-v)’; (8)
and
2 du
S==]k—, 9
Slxdy ©
where] =1+ n/12 and
k=@ /n/?)poTV?G. (10)

Upon expressing x in terms of p, we obtain a simple relation between the
velocity gradient and the temperature:

du 5x2 T2
— = — = (11)

We adopt the corresponding expression for the flux of fluctuation energy
(Chapman & Cowling 1970, Sec. 16.42) that is, in the dense limit, given by

Q=-Mx—, (12)
dy
where M =1+ 9n/32.

The rate of decrease of fluctuation energy per unit volume is (Jenkins &
Savage, 1983)



y=6xT(1l-e)/ (13)

Boundary conditions are derived based upon the collisional exchange of
momentum and energy at the boundary. Here we will consider a bottom
boundary that is a surface to which particles are rigidly attached, called a
bumpy boundary. The bumpiness of the boundary is characterized by an
angle 6 that measures the average depth that a flow particle can penetrate
between wall particles. A boundary consisting of a plane on which spheres
identical to those of the flow have been close-packed has a value of 8 near n/6
(Jenkins & Askari, 1993).

At a bumpy boundary, the particles of the boundary are arranged
differently than particles in the flow. Consequently, in order to balance the
component of linear momentum parallel to the surface of the boundary, the
flow must slip with respect to the boundary. We denote the magnitude of the
slip velocity by v. Then, at the bottom boundary,

N S
v=[—) fT/2 =, (14)
2 p
where the slip coefficient f depends only on the bumpiness of the boundary.
For small values of 8 (Jenkins & Askari, 1993),

£(8) =

2 5= 25n+300\/2‘-7]e2
- '

ETS 360 ] (15

In general, collisions betwecn the particles of the flow and the boundary
dissipate energy, and the rate D of dissipation per unit area is given in terms
of the boundary coefficient of restitution e,, by

D=(2/n)?(1-e,)hT?p (16)

where h depends only on the bumpiness,
AR S
h(9)=1+ze . (17)

Then the balance of energy at a bumpy boundary requires that the flux of
fluctuation energy from the flow plus the rate of working of the shear stress
through the slip velocity equals the rate of collisional dissipation.
Consequently, at the bottom boundary,




-Q+Sv=D; (18)
or with (12), (14), and (16),

dT
G—“=-2b0T, (19)

where

1 n /S\
= —fl—1-(1- ht.
bo ﬁM[IZ (p) (1-ew) } (20)

The boundary condition is applied at the position of the center of a flow
particle that touches the point un the boundary that project furthest into the
flow.

The integral of (5) is

H
P(y) = g cos ¢ jy p(E) dE, (21)

where we have assumed that p vanishes at y = H. Because the function G(v)
varies far more rapidly with v than v itself, we ignore the variation of p with y
in (21) and replace it by its average value. Then

p(y)=pgcos¢(H-y), (22)

and, upon using this when integrating (4),

S(y)=pgcos¢(tan¢-H)(H-y}), (23)

where we have assumed that S vanishes at the free surface in such a way that
5 ,
—=tan¢-H". (24)
P

We employ (11), (12), and (13) in the balance of fluctuation energy (6) and

replace x by op/(nT)!/2 wherever it occurs and use (22) to write p as a function

of y. The resulting equation for w is most conveniently expressed in terms of
the independent variables=(H-y) / o:



+ = -Kw=0, (25)

where

(26)

At the upper surface, s = 0, we require that

dw
—=0. 27
s (27)
The solution of (25) consistent with this is
Io(ks)
= , 28
w(s) =wq To(KH) (28)

where w is the value of the fluctuation velocity at the base of the flow and I,

is the associated Bessel function of order zero.
When the bottom boundary is bumpy and the flow is steady and fully
developed, (19) requires thatats = H/o,

I,(kH/o) @
-

o = (29)
Io(kH/ o)

This is the relationship between the depth of the flow and the inclination of
the base in this simple situation. In an unsteady and/or developing flow, this
relationship is only approximately satisfied.

In Figure 1 we show the variation of the height of a steady, fully
developed flow over a range of stress ratios for realistic values of the
coefficients of restitution and boundary bumpiness. In this situation, the
height of the flow is determined by the stress ratio and is independent of the
rate of flow. In Figure 2 we show profiles of the fluctuation velocity,
normalized by its value at the base, for several values of the stress ratio. The
fluctuation velocity decreases with height and, as the height of the flow
increases, the fluctuation velocity at its top approaches zero.
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The velocity is determined by integrating (11) and using the value (14) for
the slip velocity at the base of the flow:

1/2
T 5 1 KH/o S

In particular, the velocity U = u(H) at the free surface is given in terms of the
height of the flow and the stress ratio by

1/2
s 5 1 kH/o S

In Figure 3 we show profiles of the mean velocity normalized by the
fluctuation velocity at the bottom of the flow for the three values of the stress
ratio. The remarkable feature of these profiles is their linearity. In Figure 4
we show the variation of the velocity at the top of the flow, normalized by w,,
versus the stress ratio.

The variation of the volume fraction through the height of the flow may
be obtained by combining equations (7) and (22):

w -
GW:lEE(H)z(_O)z(_Ii_Y_). (32)
4 U2 Wy w (o

When the velocity U of the free surface is known, equation (32) may be
inverted to determine v(y). Of course, v must everywhere be large enough to
justify our restriction to dense flows. Given U and S/p, wy is determined in
terr _ of them by (31); so the solution is complete.

A more natural parametrization may obtained by eliminating U%/og in
favor of the volume V of material above a unit area of the base:

H U?s
VEJI v(y)dy = V(—,—). 33
) YAy =V o) (33)
Then, for a given stress ratio, the volume flux Q,

U2
og’

H S
Qsjo vy uy)dy = Q). (34)

may be expressed in terms of V by eliminating U?/ og between (33) and (34).



Normalized mean velocity; S/N = 0.415, 0.405, 0.395.

10 . . -
gt
8}
7k
O 6
5
g 5L
™~
> 4l
3+
2+
1+
O i 1 1 — 1 A
2 4 6 8 10 12 14

u/w0

Stress ratio versus normalized free surface velocity
0.4 1 5 T ¥ T T

0.41

0.405

T

0.4+
0.395 ¢+

Ll

£ 0.39
wn

T

0.385

0.38

T

0.375

T

0.37

0.365
4.5

u(H)/wO0



ACKNOWLEDGEMENT
This research was supported by the Department of Energy as part of the
Granular Flow Advanced Research Obijective.
REFERENCES

Carnahan, N.F. and K. Starling (1979) “Equations of state for non-attracting
rigid spheres,” ].Chem. Phys. 51, pp. 635-636.

Chapman, S. and T.G. Cowling (1970) The Mathematical Theory of Non-
Uniform Gases, Third Edition, Cambridge University Press, Cambridge.

Jenkins, J.T. and E. Askari (1993) “Rapid shear flows of frictional spheres
driven by identical bumpy, frictional boundaries,” (in preparation).

Richman, M.W. and R.P. Marciniec. (1990) “Gravity-driven granular flows of
smooth inelastic spheres down bumpy inclines,” J. Appl. Mech. 57, pp. 1036-
1043.

Savage, S.B. (1983) “Granular flows at high shear rates,” In Theory of

Dispersed Multiphase Flow. (R.E. Meyer, Ed.) Academic Press, New York, pp.
339-358.

10



The Growth of Disturbances in Fluidized Beds:
Capturing Gas and Liquid Behavior in a Single Framework

K. Anderson, Y. Kevrekidis, S. Sundaresan, & R. Jackson
Department of Chemical Engineering, Princeton University
Princeton, NJ 08544

The last thirty years have seen numerous attempts to develop appropri-
ate governing equations for dense suspensions of solid particles. The exact
solution of the problem involves the solution of the complete Navier-Stokes
equations for the fluid along with the Newtonian equations of motion for
each particle. The dramatic increase in the computational power available
to engineers and scientists may one day make such solutions practical, but
that day has not yet arrived. Hence, those concerned with the mechanics
of dense suspensions such as fluidized beds have approached the problem
by volume averaging the exact equations over regions large compared to the
particle spacing, but small compared to the size of the flow.

The ability to solve these equations has been limited to special cases.
Consequently, the applicability of the proposed equations of motion remained
in question. At the time of their development, solution of the equations
was limited to an analysis of the stability of the uniformly fluidized state,
performed by linearizing the equations for small deviations from uniformity,
and approximate solutions for bubble motion in gas fluidized beds. Early
analyses indicated that the equations predicted small disturbances would
grow an order of magnitude faster in a gaseous suspension than in a similar
liquid suspension, and this has been confirmed experimentally [2, 5].

Gaseous and liquid suspensions exhibit dramatically different behavior.
Both are unstable [7]. In liquid suspensions waves develop which later buckle
and are destroyed. By contrast, gaseous suspensions are characterized by
the formation of voids containing few or no particles. These regions are
called bubbles in fluidized beds because of their similarity to bubbles found
in gas-liquid flows. It has been known for many years that the equations
of motion also have approximate solutions which represent bubbles (3, 8].
One dimensional analyses [6] have shown that upon becoming unstable the
volume averaged equations have fully developed traveling wave solutions.
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The elusive question has remained whether the proposed equations of mo-
tion can distinguish between the observed behavior of the two systems. This
question can only be resolved by examining the two- or three-dimensional
dynamic predictions of the proposed equations of motion. It is to this end
that the present work has been addressed.

Equations of Motion

We use here the equations of motion developed by Anderson and Jackson [1].
Beginning with the Navier-Stokes equation for the fluid and the equation of
motion of a single particle, governing equations were developed by volume
averaging. If ¢, u, and v represent the volumetric concentration of particles
and the average velocities of the fluid and solid phases, respectively, then the
equations of motion may be written:

V- [(1-¢u+g¢v]=0 (1)
0¢
(—92+V-[¢V]—0 (2)
Bu
prg; T Vu=-Vp—F+V -E;+psg (3)
ov
p.¢a+p,¢v-Vv = -Vp"+F+V . E,
+ ¢(ps — P58
0
+ Pfd’glf + pséu - Vu (4)

Several terms result from the volume averaging process and must be defined
further. The interaction of the two phases is represented by the term F.
Physically this term includes drag and virtual mass effects. The drag is
represented by the Richardson-Zaki relation (1954) originally developed for
sedimentation and fluidization. Virtual mass effects arise from the relative

12



acceleration of the two phases. Together then, the interphase interaction is
taken to be:

d
F=p(¢)u-v)+ psC(¢)5(u~-v) (5)
where the drag coefficient 5(¢) is given by
_(pa—ps)g ¢
B(9) = =gy (6)

The dynamic stresses E; and E, represent the resistances of the fluid and
the particle assembly to shear. Though the behavior in all likelihood is not
Newtonian for these systems, they will be assumed to be so in the interests
of simplicity, since our goal is to find the simplest adequate form of the
equations. The stresses are thus represented by:

2
E,.—_M{Vu+VuT——§IV-u} (7)

E, = p($){Vv + VvT - -§- IV .v} (8)

The fluid viscosity is taken to be that of the pure fluid, while the solids
viscosity is assumed to be a function of solids concentration. The functional
form is suggested by kinetic theory arguments for granular flows:

_ ag
= T8I0 )

Finally, the particle pressure, p’, represents the resistance of the particle
assembly to normal stresses. Several forms have been suggested in the litera-
ture, all of which require that this pressure diverges as the material becomes
close packed. The form chosen here was suggested by Hernandez and Jiminez:

l‘a(d’)

p*(¢) = (ps = p1)9dp C; ¢° exp (@%) (10)

With these constitutive models, the set of equations is closed. We em-
phasize that we have chosen the same closure expressions for all fluidized
beds, both liquid and gas, since our goal has been to test the physics of the
equations using as simple a system of equations as possible.

13
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Model Formulation

In order to eliminate the effects of the boundary conditions on the results, we
have limited the analysis to periodic solutions in an unbounded fluidized bed.
The equations are solved in a rectangular cell which is repeated periodically
in both the horizontal and vertical directions. Since there is then symmetry
across the midline, the domain for computations may be reduced to one half
of the cell. This domain is shown in Figure 1.

The equations are discretized spatially using the finite element method,
chosen because of the flexibility offered in proceeding to other geometries and
imposing boundary conditions. In the finite element method, the domain
is subdivided into quadrilateral elements, and the independent variables are
approximated over the element as polynomial functions. The volume fraction
and the fluid and solids velocity components are approximated as biquadratic
functions, while the pressure is treated as bilinear. The different orders for
the variables are chosen to eliminate spurious pressure modes which arise
from a poor choice for the pressure basis functions.

The equations are integrated over each element using Galerkin’s method.
The system is thus reduced to a set of nonlinear ordinary differential equa-
tions. An implicit Euler step is used for the time propagation for stability
considerations. After specifying an initial condition, the system of equations
is then integrated forward in time. The initial conditions for these simulations
are small sinusoidal perturbations of the uniformly fluidized bed, obtained

14



Gas Bed Liquid Bed
Particle phase

particle size 200 pm 1 mm

density 2.2 g/cm? 2.2 g/cm?

viscosity 7.6 poise 3 poise
Fluid phase

density 0.0013 g/cm® 1 g/cm3

viscosity 0.0181 cp 1cp
Particle pressure

m 0.3 0.3

Co 0.5 0.5
other quantities

terminal velocity = 142 cm/s 14.3 cm/s

drag index 4.35 3.65

stability limit 0.58 0.445

do 0.57 0.43

Ay max 7 cm 2.25 cm

Table 1: Physical Properties and Parameters

by solution of the linearized equations. More complex initial conditions may
be constructed by the Fourier synthesis of a solution from such components.

Values of the physical parameters used in the calculations are given in
Table 1. For the gaseous suspension, we consider 200 um glass beads flu-
idized by air. By contrast, the liquid system is 1 mm glass beads fluidized by
water. The particle sizes were chosen to represent typical values used by in-
vestigators, and for which the observed behavior has been well characterized.
In particular, 200 pm glass beads are of such a size that the gas bubbles that
form are surrounded by a region of circulating gas usually called the “bubble
cloud”.

The code is tested intially against the predictions of linear stability theory.
Small perturbations of the uniform bed travel at the speeds predicted from
linear theory. As the mesh is refined, the growth rates also converge to those

15



predicted from the linear theory. Coarse meshes result in the wave being
more stable than the theory predicts, thus these errors are not catastrophic.
An additional, important check for the equations is obtained by posing the
eigenvalue problem. It is found that the eigenvalues of the algorithm converge
to the values predicted analytically from the linear stability analysis as the
grid is refined.

Growth of One-Dimensional Waves

For both gaseous and liquid suspensions, linear stability predicts the fastest
growing disturbance to be a one-dimensional wave traveling upwards through
the bed. Our analysis of the system of equations thus procceds from this
fastest growing wave. In general we consider cell sizes of the dominant wave-
length and integer multiples thereof. By restricting the number of elements in
the lateral direction, the solution can be constrained to be one-dimensional.

For the parameters in Table 1, the gas fluidized bed becomes unstable
at a particle volume concentration of 57.8%. We consider a bed of uniform
void fraction 57% which is just on the unstable side of this limit. Figure
2 shows the development of the wave of dominant wavelength for the air
fluidized bed. A sinusoidal disturbance develops swiftly and smoothly into a
nonlinear wave with a sharp front and smooth tail traveling upwards through
the bed at a speed of 18.7 cm/s. The time for development is a few seconds.
By computing the eigenvalues of the algorithm for the fully developed one-
dimensional wave, it is shown to be stable to additional one dimensional
disturbances. Finally, it should be noted that this fully developed wave is
robust and is achieved from a variety of initial conditions.

If we double the size of the cell, our previous solution still satisfies the
equations, but now with two periods of the wave contained in the box, as
shown in Figure 3. The two period wave is unstable, and when it is perturbed
by a small increment of the unstable eigenfunction, the two waves coalesce.
The coalescence is oscillatory and is pictured is Figure 4. The final form of
the coalesced wave is identical to that obtained by beginning with a single
sinusoid in the larger box, whose smooth development is shown in Figure 5.
The nonlinear wave in the longer box possesses similar features to that in
the smaller box, but it is deeper and the front is sharper.

The final example of one-dimensional growth in an air fluidized bed is

16
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Figure 2: Development of the fastest growing 1D wave in an air fluidized bed

Figure 3: The fastest growing 1D wave in larger box in an air fluidized bed
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Figure 4: Coalescence of the 7 cm 1D wave in an air fluidized bed
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Figure 5: Development of the 27 cm wave in an air fluidized bed
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Figure €' Development of the 37 cm 1D wave in an air fluidized bed

for a box of height 37 cm, three times the wavelength of the fastest growing
wave. As shown in Figure 6, the sinusoidal disturbance grows smoothly
into a nonlinear wave of the sort seen thus previously, but it is deeper. in
general, only the iongest possible wavelength for a given box is stable. Smaller
wavelengths tend to coalesce.

For liquid suspensions the qualitative behavior is much the same. De-
velopment of the fastest growing wave and one of twice that wavelength are
shown in Figures 7 and 8, respectively. The absence of sharp fronts is due to
the fact that the bed is stable to much lower density for the same parameters
as for the gas bed. When densities are not near the close packed limit the
wave fronts are not so steep. The primary difference between the one dimen-
sional behavior of gas and liquid systems is the much slower growth seen in
the latter. In liquid fluidized beds, the wave travels many wavelengths before
becoming fully developed. However, there is no indication of qualitative dif-
ferences in the types of one-dimensional structures seen in gaseous and liquid
suspensions.
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Growth of Two-Dimensional Disturbances

The longest wavelength fully developed one-dimensional wave for a given box
size is stable to one-dimensional disturbances. However as the box width is
increased and the mesh refined laterally, the one dimensional wave loses sta-
bility in the lateral direction. The eigenvalue representing this unstable per-
turbation of the one-dimensional wave is always real. For both gas and liquid
fluidized systems, the one-dimensional wave is perturbed in the direction of
the dominant instability and integrated forward in time.

For the one-dimensional wave shown in Figure 6, the fastest growing
lateral disturbance corresponds to a lateral wavelength two thirds that in
the axial direction. The initial perturbation is shown in Figure 9. Figures
10 through 12 show the subsequent development of the density field and the
streamlines for both phases. The perturbed wave becomes a void, resembling
in many respects a bubble in a gas fluidized bed. The circulating vortex in
the fluid and the flow of solids around the void are characteristic of bubbles.
The velocity of rise in the rest frame also corresponds well with that to
be expected for a bubble of this size. The hole has a solids concentration
of roughly 10%, whereas actual bubbles are nearly particle free. We thus
hesitate to call the void a true bubble, but in structure it certainly resembles
one, and development continues if the integration is prolonged.

The two-dimensional development of the perturbed wave in the liquid
suspension is shown in Figures 13 to 17. We begin with the fully developed
one-dimensional wave from Figure 8. The fastest growing lateral disturbance
of this wave has a wavelength equal to the axial one. The initial growth
is similar to that in the gas bed, and is nearly as rapid. An incipient void
begins to form and circulation appears in the fluid. Beyond this point, how-
ever, the behavior of the two systems diverges. The velocity in the liquid
vortex is sufficient to lift the particles from the dense region below, resulting
in circulation in the solids phase as well as the fluid. Particles lifted from the
dense region behind the void fill the incipient hole wi.ose remnants accelerate
upwards through several wavelengths and destroy the structure which had
developed to this point. The picture is thus completely different from that
seen in gaseous suspensions. The behavior bears a resemblance to the theory
of maximum stable bubble size in fluidized suspension proposed by Davidson
over thirty years ago [4]. It is also the first indication that the volume aver-
aged equations of motion predict qualitatively different behavior for gaseous
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Figure 13: 2D perturbation of the 4.5 cm wave in a water fluidized bed

and liquid suspensions.

Conclusions

The volume averaged equations of motion for small particles suspended in
a fluid have been studied with the simplest set of constitutive closures, to
explore the extent to which they represent observed behavior. A finite ele-
ment code has been developed to examine the predictions of the system of
equations, and it has been tested against analytical results. With confidence
in the code established, we have proceeded to follow the growth of one and
two dimensional disturbances in gaseous and liquid suspensions.

In both systems one-dimensional disturbances grow into similar struc-
tures. The time scales of this growth are very different for the two, but this
difference is in agreement with observed behavior. These one-dimensional
waves become unstable against pertrubations with lateral structure, with
the instability again taking the same form in both systems. The initial
two-dimensional development is identical in both systems; a void forms and
recirculation appears in the fluid. Finally, in the last stages of development,
the incipient void in the gaseous suspension continues to grow smoothly into
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a bubble-like structure, while that in the liquid suspension is destroyed as
particles are lifted by the liquid vortex to fill the void. This is the first evi-
dence that the volume averaged equations of motion represent the observed
difference in behavior between typical gas and liquid fluized beds.
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GRAVITY-DRIVEN FLOWS OF SMOOTH, INELASTIC
SPHERES DOWN BUMPY INCLINES

Mark W. Richman and Richard E. Martin

Mechanical Engineering Department
Worcester Polytechnic Institute
Worcester, Massachusetts 01609

Abstract

In this paper, we employ a kinetic theory to analyze steady, fully
developed, gravity-driven flows of identical, smooth, highly inelastic spheres
down bumpy inclines. We treat the solid fraction, mean velocity, and
components of the full second moment of fluctuation velocity as mean fields.
In addition to the balance equations for mass and momentum, we treat the
balance of the full second moment of fluctuation velocity as an equation that
must be satisfied by the mean fields. However, in order to simplify the
resulting boundary value problem, we retain fluxes of second moments in its
isotropic piece only. The constitutive relations for the stresses and and
collisional source of second moment depend explicitly on the second
moment of fluctuation velocity, and the constitutive relation for the energy
flux depends on gradients of granular temperature, solid fraction, and
components of the second moment. We obtain numerical solutions that are
free of stress and energy flux at the tops of the flows, satisfy momentum and
energy balances at the bumpy base, and are most easily parameterized in
terms of the granular temperature at the tops of the flows. To each such
temperature there corresponds a value of mass hold-up and mass flow rate.
For fixed coefficients of restitution, boundary bumpiness, and angle of
inclination, we calculate the variation of mass flow rate with mass hold-up,
and for a prescribed value of mass hold-up we calculate the profiles of solid
fraction, mean velocity, normal components of the second moment, and
normal stresses.

Balance Equations and Constitutive Relations

We are concerned here with steady, fully developed, gravity-driven
flows of identical, smooth, highly inelastic spheres down bumpy inclines.
The diameter of each sphere is o, the mass density of each is p,, and the
coefficient of restitution between them is e. In what follows, e need not be
close to unity. The vertical acceleration due to gravity is g, and the angle
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between the incline and the the horizontal is ¢. We introduce an x;-x;-x3
Cartesian coordinate system such that x, measures distance along the incline
parallel to the flows, and x, measures distance above the incline
perpendicular to the the flows. The flows are infinitely extended in the x;-
and xj-directions.

The mean fields of interest in these granular flows are the solid
fraction v, the only non-zero velocity component u,, the granular
temperature T, and the components A,;, Ay, As3 and A, of the deviatoric
part of the second moment of particle fluctuation velocity. Their
dimensionless counterparts v, u=u,/(og)'/?, 1=T/og, a;,2A,,/0g, ap=Ay/cg,
a3;3A,;/0g, and a;,=A,,/og depend on the dimensionless coordinate y=x,/c
only. Their variations with y are governed by the x;- and x,-components of
the balance of momentum, the balance of energy, and the x;-x;, X;-X3, X3-x3 and
X;-X, components of the balance of second moment.

Under these circumstances, the balance of mass is satisfied identically.
If P; are the components of the pressure tensor, then in terms of their
dimensionless counterparts py=P;/p,08, the x;- and x,-components of the
balance of momentum are,

P12 =vsing , 1)

and

P’ =-vcosy (2)

where primes denote differentiation with respect to y. The x;-component of
the balance of momentum demonstrates that p;; does not vary with y. The
balance of energy is the isotropic part of the balance of the full second
moment of fluctuation velocity. If Q, is the x,-component of the energy flux,
I is the rate of energy dissipation due to inelastic collisions, and their
dimensionless counterparts are q=2Q,/p,(0g)*’? and y=-2I'/p,c'/2g*/2, then the
balance of energy is,

q =7-2pjpu . 3)

The remaining equations are obtained from the deviatoric part of the balance
of full second moment. In addition to the components P; of the pressure
tensor, these equations involve the components Q,y and y;; of the flux and
collisional source of the deviatoric part of the second moment. If the spatial
gradients of Qy are small comfared to y;;, then, in terms of the dimensionless
source components y;=y;/p,0'/2g*?, the resulting approximate equations for
a;y, a, and a,, are the x,-x; deviatoric component of the balance of second
moment,
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3huW =% @

the x,-x, deviatoric component of the balance of second moment,

-2
3 PuuW =1 ©)

and the x,-x, component of the balance of second moment,

Pou =%, - 6)

The x;-x; deviatoric component of the second moment equation determines
a3, and to within a minus sign is given by the sum of equations (4) and (5).

In what follows, we employ the constitutive theory derived by
Richman and Martin [1993). The constitutive relation for the shear stress p,,
is given in terms of the solid fraction v, the granular temperature t, and the
second moment component a,, by,

py; =-2(1 +e)th[ Eg\f; u'-H a_;z] , 7)

in which G(v) is equal to v(2-v)/2(1-v)?® and H(G) is equal to 2[1+5/4(1+e)G]/5.
The normal pressure p;; is given in terms of v,t, and the deviatoric
component a,, of second moment by,

P =2(l+e)vG1:[F+H§:%l] , ®

in which F(G) is equal to [1+1/2(1+e)G]. Similarly, the remaining normal
pressures p,; and p;;3 are given by,

Py = 2(1+eVGt [F +H a—?] , ©)

and

P33 = 2(1+e)vGr [F +H a‘%’-] . (10
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Differences between the normal stresses result from corresponding
differences between a,;, a,,, and a;3.

The energy flux q is related to gradients of 1, a;;, and v according to the
relation,

4(1+e)vGrl/?
q=—(—-£12;vz—~“—(m'+)av'+na22') , (11)

in which the coefficients (v, e), A(v, e), and n(v, e) are given by,

9n(1+e)(2e-1) 5 5
K= {1 * T 4(49-33¢) [ 1+ 3(1+e)2(2e-1)G][ 1+ 6(1+e)c;]} ' (12)
9ne(1-e) d(InvG) 5
= 4(49-33¢) dv [ + 6(1+e)G] ’ 13)
and
2 25r(3e+1)(B+a) 1 5
n= 5[ 1+ 54(3-¢)(49-33¢) [ 1+ (1+e)(B+a)G][ 1+5¢a +e)G]
5nk, 1 5
* 24(3-e)[ 1+ (1+e)§c;][ 1+ 6(1+e)G]} ' (14)

where B=(49-33e)[-6(1+e)/5+4(1+e)?/3]/14(3e+1), a=[-4/5-9(1+e)/5+2(1+e)?/3],
and &=[-4/5+6(1+e)/5+4(1+e)?/21]. If gradients of a,, are ignored and e is set
equal to 1, then expression (11) reduces to the expression for the energy flux in
assemblies of nearly elastic spheres obtained by Jenkins and Richman [1985].
The remaining constitutive quantity is the collisional source of second
moment of fluctuation velocity. In it, we retain terms linear in ay;, a5, a33, a;,,
and u'. In addition, we retain just those nonlinear terms that guarantee that,
in the tensoral form of the balance of of second moment, the collisional
contribution to the stress is multiplied only by the rate of strain. In this
manner, the isotropic piece of the source of second moment is approximated

bY/

24vG(1-e23/2
Y= ,21/2 L : (15)

The corresponding result obtained by Jenkins and Richman [1985] may be
obtained by replacing (1-e?) by 2(1-e) in expression (15). The deviatoric parts of

32



the x,-x;, and x,-x, components of the source of second moment are given in
terms of v, T, a;;, a3, a;2, Py2- and u' by the constitutive relations,

-24vG(1+e)(3-e)*/2 a
m= B1/2 T;u + (pr2-vapu' (16)
and
-24vG(1+e)(3-e)r*2 a '
2 = 572 Z - (pp-vapu' (17)

where p,, is given by equation (7). Similarly, the x,-x, component of the
source of second moment is,

-24vG(1+e)e/? [ (3-e) (2-e) u' u'
Y2 = . 5+e { nxg ETR - 4e :11/2} + [(pz -pn) - Vlay-ay)l5 , (18)

where p,; and p,, are given by equations (8) and (9). Constitutive relations
(16), (17), and (18) have no counterparts in the theory of Jenkins and Richman
[1985] for nearly elastic spheres.

In order to reduce the number of equations in the governing system,
we employ constitutive relation (16) to eliminate y,; from balance (4) to
obtain,

a _Snl/z 1 ul
T = 24vG(1+e)(3-e)t[§p12 + "an]a‘ﬁ , (19)

and constitutive relation (17) to eliminate v,, from balance (5) to obtain,

ay S/2 1 " 2
T < 24vG(1+e)(3-e):[ 3P12- Valz] a7 - (20)

Equations (19) and (20) and constitutive relation (7) demonstrate that the
deviatoric components a;; and ay, are sums of terms proportional to (u')? or to
products of a,; and u'. These nonlinear terms were neglected by Jenkins and
Richman [1985]. Consequently, they predicted that, for flows of nearly elastic
spheres, the components a,;, ay, and a3, all vanish. In that approximation,
the constitutive equations (8), (9), and (10) simplify and guarantee that the
normal pressures p,,, Py, and py; are all equal.

Finally, we employ constitutive relation (18) to eliminate vy,, from
balance (6) to obtain,
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a;, x4 3e-1) 5 u'
T~ 12(3-e) [ ]

4 3 T+0)@e )G |77 - 21)

where we have neglected terms that are cubic in u', a,,, and products of u' and
a,,. If equatxon (21) is employed to eliminate a,, from censtitutive relation (7)
and e is set equal to 1, then the resulting expression for the shear stress is
identical to that obtained by Jenkins and Richman [1985].

Boundary Conditions

With appropriate conditions applied at the free surface and base of the
incline, equations (1), (2), (3), (7), (9), (11), (15), (19), and (20) determine the
variations with y of p;,, P22 Q, T, 1, U, V, a5, and ay,. Although the location of
the free surface is not known, the stresses and the energy flux each vanish
there; i.e.

P2=0 and pp=0 , (22)
and
q=0 . (23)

Because the stresses both vanish at the top of the flow, v may be eliminated
between equations (1) and (2) to demonstrate that p,,/px,=-tan¢.

If v is equal to 0 and 7 is not, then according to constitutive relation (9)
the normal stress condition at the top of the flow is automatically satisfied.
Near the top of the flow, therefore, v is small, the normal stress may be
approximated by

Pn = vt +ay) , (24)

and because the ratio p;,/ px, is everywhere equal to -tan¢, the shear stress may
be approximated by

Pz = V(t+ay) tan . (25)

Furthermore, if equations (21) and (25) are employed to eliminate a,, and p;,
from constitutive relation (7), then we find that near the top of the flow, u' is
given approximately by,

24 3-e)(1 t
(3-e)( 5;5)2111;-23122) an¢ _ 26)
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With u' given by equation (26), the lowest order approximation of equation
(7) dictates that,

a;; = -(t+ay) tanp (27)

and with p,,, u', and a,;; given by equations (25), (26), and (27), balance (20)
yields,

ap  -3/2+v9/4 + 6tan’y
T

1+7 = 2tan?$ : (28)

For small values of v and prescribed values of 1 and ¢, equation (28) fixes a,,
equations (24) and (25) fix p,, and p,,, and for prescribed values of e, equation
(26) fixes u'. As v approaches zero, so too do the stresses p,, and p;, and the
velocity gradient u'. However, in the same limit the components a,, and a;,
of second moment each approach nonzero limits that depend only on the
inclination angle ¢ and the local value of t.

Of interest also are the limiting behaviors of the gradients t', v, a;,' a'
and u" as v approaches zero. By differentiating approximations (24) and (28)
with respect to y, for example, we find that

. -vcosp vt
Ml O @)

where f(¢) is given by the right-hand-side of equation (28), and
ay, = [f@®)-1]1t . (30)

If these are employed to eliminate v' and a,,’, then constitutive relation (11)
for the energy flux demonstrates that t', and therefore v' and a,,', each
approach zero with v. Simple differentiation of approximations (26) and (27)
with respect to y then demonstrates that both u" and a,,' approach zero in the
same manner.

At the base of the incline (i.e. y=0), the rate M at which momentum is
supplied to the flows by inelastic collisions between flow particles and the
base must balance the traction vector at the base. Furthermore, the difference
between the rate -M,u, at which energy is supplied by slip work and the rate D
at which it is absorbed by inelastic collisions between flow particles and the
base must balance the energy flux at the base.

The transfer rates M and D depend on the geometry and dissipative
nature of the incline. Here we focus on inclines that are flat surfaces to which
identical, smooth, hemispherical particles of diameter d are randomly
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attached at an average distance s apart. In order to prevent flow particles from
colliding with the flat part of the boundary, the maximum allowable value of
s/d is -1+(14206/d)¥/2. When a flow particle collides with a boundary particle
the distance between their centers is é=(c+d)/2, and the energy dissipated is
fixed by the coefficient of restitution e, between them. A measure of the
bumpiness of the boundaries is the angle 8=sin’'(d+s)/(d+0), which increases
from 0 to n/2 as the boundaries evolve from perfectly flat to extremely
bumpy.

We employ the general expressions for M and D obtained by Richman
and Martin [1993] for assemblies of inelastic spheres that interact with bumpy
boundaries described above. The expression for M involves an unknown
factor that accounts for excluded volume and particle shielding at the
boundary. If we first employ the balance between the x,-components of M
and the traction vector to write the unknown factor in terms of py,, aj,, 7, and
0, then the balance between the x,-components of M and the traction vector
determines the slip velocity u(0) according to,

1/2

u - a 3. § (21 - sin%0) u' /2 a
7 = 21/21[1+—T7'—2(1-Z$m26):|%22- o 2 2% fﬂi—l—'tu , (31

where 1(8)=2[2csc?08(1-cos8)-cos6]/3. Furthermore, the energy flux at the
boundary is determined by,

3/2 1
q= 2{ -Piaut - -zm(l-ew)cscze(l-cose)[ 1 +—(1 §sm%)] ‘t”zpzz} . (32)

Conditions (22), (23), (31), and (32) are the five conditions needed to complete
the set of equations (1), (2), (3), (7), (9), (11), (15), (19), and (20). We provide a
detailed description of the solution procedure in the following section.

Solution Procedure

The shear stress constitutive relation (7), the normal stress constitutive
relation (9), and the x,-x, and x,-x, deviatoric components (20) and (21) of the
balance of second moment determine v, u’, a,,, and a,, as functions of 1, p;,,
and p,,. In principle, these functions may be employed to eliminate v from
the momentum equations (1) and (2), v and u' from the energy equation (3) in
which vy is replaced by expression (15), and v, 7, v', and ay,' from the energy flux
constitutive equation (11). The four equations that result are first order
ordinary differential equations that determine 1(y), p;,(y), p22(y), q(y), and
therefore v(y), u'(y), a;;(y), and a,,(y) to within four constants of integration.
These four constants and the dimensionless depth L (measured in particle
diameters) are determined by the shear and normal stress conditions (22), the
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energy flux conditons (23) and (32), and by prescribing a nonzero value t* of 1
at the top of the flow. The mass hold-up corresponding to this choice of t*
may be calculated according to its definition,

L
m, = fudy . (33)
0

The component a;,(y) is then determined algebraically by equation (19), the
component az,(y) is simply the sum -(a);+ay,), and the stresses p;;(y) and p;;(y)
are fixed by their constitutive relations (8) and (10). Finally, by direct
integration of u'(y), the profile u(y) may be found to within a fifth constant
that is determined by the momentum flux condition (31), and the mass flow
rate may be calculated according to its definition,

L
m = jvudy . (34)
0

Unfortunately, it is not possible in closed form to eliminate v, u’, a,,,
and a,, from equations (1), (2), (3), and (11). Consequently, in the numerical
integration of these equations, at each spatial location at which 1, p;5, and p,,
are known it is necessary to invert the nonlinear algebraic equations (7), (9),
(20), and (21) to determine the corresponding values of v, u', a;;, and a,. In
order to avoid this difficulty, we actually raise the order of the system by
differentiating equations (7), (9), (20), and (21) with respect to y. In this
manner, the four resulting equations and the energy flux constitutive
relation (11) may be written in matrix form:

[CIH{L} = {R} , (35)
in which the components of the five dimensional vectors {L} and {R} are:

L,=1, L=V, Ly =ay', Ly=a;,, Ly=u"; (36)
and

__sing _ -vcos =g vu'sing
R, = 2(1+e)G’ Ry = 2(1+e)’ R; = 4(1+evGri /2’ R, =3 R;=0. (37)

The components of the 5x5 coefficient matrix [C], which are given explicitly in
the Appendix, depend on various combinations of the unknowns «, p;,, v,
u', a;,, and aj;. The momentum equations (1) and (2), the energy equation (3)
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in which y is replaced by expression (15), and the matrix equation (35) are
eight first order equations for 7, py3, Pa3- q, V, U', a;5, and ay, that may be solved
by straightforward numerical integration. The first and second rows of
equation (35) are the differentiated forms of the shear stress relation (7) and
the normal stress relation (9); the third row is the energy flux relation (11);
and the fourth and fifth rows are the differentiated forms of the x,-x,
component (20) and the x;-x, component (21) of the balance of second
moment.

For fixed values of e, e,, 6/d, s/d, and ¢, we employ a fourth order
Runge-Kutta technique to integrate equations (1), (2), (3), and (35) from the
top of the flow, where p,;, p5;, and q vanish and t is equal to its prescribed
value W2. Because, at the top of the flow, p,, vanishes and 1 does not, v must
vanish there. However, we have seen in the previous section that under
these circumstances the gradients 7', v', a;,', a5;', and u" also vanish.
Moreover, equations (1), (2), (3) and (15) demonstrate that when v is equal to
zero, so to are py;', Py;’, and q'. Integrations initiated when v=0 therefore yield
no spatial variations in p;y, Pass Q. T, V, 813, 85, and u'. This indicates that the
theory predicts that the flows are infinitely deep and that p;,, p», q, T, v, a1, ag,
and u' each approach their values at the top of the flow asymptoticzlly from
the base. To overcome this difficulty, we follow Oyediran et. al. {1992] and set
v equal to 10 at the top of the flow, which is equivalent to relaxing very
slightly the normal stress condition there. Then with t=W?, g=0, and ay,, a,,,
u', p;2, and p,, given by equations (28), (27), (26), (25), and (24), the integration
produces spatial variations as it proceeds toward the base. We have also
initiated the integrations with several other combinations of v and q between
10° and 107, and in each case obtained results that were indistinguishable
from those based on v=10* and gq=0.

For any value of W?, the depth L is the distance from the point at
which the integrations are initiated to the location at which the basal energy
flux condition (32) is satisfied. When condition (32) is satisfied, the variations
P12(y), P2(y), q(y), ©(y), v(y), a;a(y), an(y), and u'(y), and the mass-hold-up are
completely determined. With the slip velocity fixed by condition (31), the
variation u(y) may then be determined by direct integration of u'(y), and the
mass flow rate is fixed by its definition (34). The process of finding solutions
is complicated only by the fact that there are a great variety of parameter
values (e, e, 6/d, s/d, and ¢) and initial values W2 for which condition (32)
can not be satisfied; under these circumstances the theory predicts that no
steady, fully-developed flows can be maintained.

Results and Discussion
In this section, we present a sample of the results obtained from the
solution procedure described above. In two previous papers, Richman and

Marciniec [1990] and Oyediran et.al. [1992] employed a theory for nearly elastic
particles, focused much of their attention on flow particles with e=.8, and
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boundaries with e,,=.95, 6/d=1/2, and s/d=-1+2!/2, and found that steady, fully
developed flows could be maintained at inclinations roughly between ¢=19°
and 21.5°. In order to focus on flows more inelastic than these, we simply
double their value of (1-e) by taking e=.6, and do not alter their values of e,,
o/d, and s/d. We find that for these more dissipative flows, the theory for
highly inelastic particles predicts that the range of inclinations for which
steady, fully developed flows may be maintained is raised to roughly between
20° and 26°. In all that follows, we take an intermediate inclination of ¢$=23°
near the upper limit of the range.

In the left-hand panel of Figure 1, we show the variations of flow rate
m with the value W of t'/2 at the top of the flow. In in the right-hand panel,
we eliminate W and show the corresponding variation of m with mass hold-
up m,. The lowest value (.158) of W shown on the curve in the left-hand
panel is the minimum value at which the solid fraction throughout the flow
is everywhere less than .65. The largest value (.990) of W shown on the curve
is the maximum value that yields a mass hold-up m, that is greater than
unity. As W decreases from its maximum to its minimum value, the flows
become less thermalized, more massive, faster, more shallow, and more
dense. The flow rate increases because both the mass and the speed increase.
For the parameters used here, there is only one flow for each flow rate.

In Figure 2, we plot the profiles of v, w=t!2, and u for m=4, and
m=103.2, and W=.498. In Figure 3, we plot the corresponding profiles of
Kk, 2=(1+a,,)1/2, ky,!/2=(1+ay,)"/?, and kyy!/2=(1+ag3)'/?, and py;, Py, and pg;. Solid
dots on the profiles indicate the location (y=13.47) below which ninety-nine
percent of the mass is contained. Within the flows, the rate at which energy
is dissipated by inelastic collisions is greater than the rate at which it is
supplied by gravity. For this reason, the boundary must supply energy to the
flow, and the energy flux must be positive at the boundary. Interestingly, in
the case shown here the gradients of 1 and v make positive contributions to
the energy flux at the boundary while the gradient of a,, actually makes a
negative contribution.

The left-hand panels of Figures 2 and 3 demonstrate that near the top
of the flow, the solid fraction is small, the components k,, and k;; are nearly
equal, and both are less than k;;. As y decreases from about 15 to 9.4, the solid
fraction increases dramatically from 0 to its maximum value .39, k,, rapidly
approaches k,;, and both are greater than ky;. As y decreases from 9.4 to 0, the
solid fraction gradually decreases from its maximum value to .15 at the
boundary, k,, gradually approaches kj;, and both are less than k,;. Except near
the top of the flow, where the solid fraction, velocity gradient, and normal
stresses each vanish, the variations of the differences between py;, py;, and ps;
with depth follow from the behaviors of k;;, k,;, and ky;. These variations
are due primarily to variations in solid fraction and have been observed in
the numerical simulations of homogeneous shearing by Walton and Braun
[1986], Campbell [1989], and Hopkins and Shen [1992].
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Appendix

Here we provide the elements of the 5x5 coefficient matrix [C] of
equation (35). The subscripts on the elements of [C] are unrelated to the x;-x,-
x5 coordinate directions.

The first row of equation (35) is the differentiated form of shear stress
relation (7). The coefficients are,

_u __dH pp  dvG)
Co=57m -+ Cnu=-%G "2 +we)0GE dv (A1)
and
211/2
Ca=0 , Cu=-H , Cis = 5rl/2 (A2)

The second row of equation (35) is the differentiated form of the normal stress
relation (9). The coefficients are,

d(vGF H
CZ] = VGF ’ sz = 1"%—"—2 + azz d(vd(;?: ) , C23 = VGH , (A3)

and C,=C,5=0. The third row of equation (35) is the energy flux relation (11).
The coefficients are,

Cy =x , Cp =M , Cy =1, (A4)

and Cy=C35=0. The fourth row of equation (35) is the differentiated form of
the x,-x, deviatoric component (20) of the balance of second moment. The
coefficients are,

-12(1+e)(3-e)vGa -24(1+e)(3-e)t!/2a,, d(vG) ,
C4] = 5\1—7—& 2 ’ C42 = 51[1/2 2 dV + alzu ’ (AS)
and
-24(1+e)(3-e)vGr!/? 1
5B = Brl/2 / Cy =wvu' , Cys = vap-3pn - (A6)

The fifth row of equation (35) is the differentiated form of the x;-x,
component (20) of the balance of second moment. The coefficients are,
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6(3-e)a 5u’ dG _
Csi = 77Ge o + C2 = AroGe DG dv © » =0/ (A7)

and

-12(3-e) 5
Cu = g7@Be1y02 + Ca = '[1 + 2(1+e)(3e-l)G]

(A8)
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Figure Captions
Figure 1: The variations of m with W and m, for e=.6, e ,=.95,
o/d=1/2, s/d=-1421/2 and ¢=25°.

Figure 2:  The variations of v, w, and u with y for e=.6, e =.95,
0/d=1/2, s/d=-14+2!/2 and ¢=25°, when m=4.

Figure 3:  The variations with y of k;;!/2, ky,!/2, and ky3'/%; and the
variations with y of py,, p2, and pj; for e=.6, e,,=.95,
0/d=1/2, s/d=-1+21/2 and ¢=25°, when m;=4.
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, 46



DISPERSE FLOWS: EFFECTIVE EQUATIONS

AND PARTICLE STRESS

A. Prosperetti, D.Z. Zhang, and H. Bulthuis
Department of Mechanical Engineering
The Johns Hopkins University
Baltimore USA

The purpose of this paper is to briefly describe a new method for the derivation of averaged equations
for disperse multiphase flow and to demonstrate its flexibility by application to a variety of systems such as
potential flow, viscous flow, heat convection, thermocapillary flow, and others. First the main components of
the method will be recalled briefly omitting proofs that can be found in Zhang (1993), Zhang and Prosperetti
(1993a, b), and Bulthuis, Prosperetti, and Sangani (1993).

1 The basic tools

We envisage a system consisting of discrete particles and a suspending continuous phase. To obtain effective
equations we perform an average over an ensemble of realizations of the system, each one consisting ol the
same number N of particles arranged in a different configuration CV. The word configuration is used here
in a broad sense to denote the full set of variables necessary to describe the system. For example, for rigid
particles in potential flow a configuration is specified by the set of positions and velocities of the particles so

that
C¥ oz oy y @y W w2 W) (1)

1 '

Here y(@) and w!®) are the position and velocity of the a-th particle, with @ = 1, ..., N. In the case of
spherical bubbles the set of radii and radial velocities of the bubbles must be added to specify CV. For
rigid non-spherical particles one needs a set of vectors to specify orientation and angular velocity, and so on.
For simplicity, in the following, we shall only indicate explicitly the variables listed in (1), extensions and
adaptations to other cases being straightforward.

The probability of any specific configuration is specified by a probability distribution P(N;t). 'The
particles are assumed to be identical and therefore a convenient normalization of P is

/dC” P(N;t) = N!, (2)

where the integration is over all the variables of CV, and over the appropriate range for each one. The action
of boundaries and macroscopic quantitics (e.g., an imposed pressure gradient) is assuined to be deterministic
and is not included in P.

The volume fractions f¢ p of the continuous and disperse phase are given by

' 1 * ) r 14 .
e = 5 dCN xep(x N) P(N; 1), )

where xc¢,p is the characteristic, or indicator, function of the phases. For example, xp(x;N) = | when
the point x, given that the system has the configuration CV | is inside a particle. The particle houndary is
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assumed to have zero measure so that xc + xp = | and, as a consequence, 8¢ + B8p = 1. For equal rigid
spheres of radius a one has

N
xp(x;N) = )~ H(a~[|x-y°|) = 1 = xc(x; N), (4)
a=1

with H the Heaviside distribution. With this expression the definition (3) gives
potet) = [ #ynr0, a0 = [EuPywin. (5)
IX-Y|<a

Here P(1;t) = P(y,w;t) is the single-particle probability density function obtained from P(CV,t) by inte-
gration over N — 1 particle coordinates and n is the particle number density.

Let fc(x,t; N) be any flow quantity pertaining to the continuous phase. Its phase ensemble average is
defined by

< fc >(x,t) = —N—!-l;?g/dCN xc(x;N)P(N:t) fc(x,t;N). (6)

A similar definition is used for the conditional average < fc > (x,t]1) =< fe > (x,t]ly, w) i.e. the average
over all the configurations such that one particle center occupies the position y with velocity w.

An advantage of this type of average is that the quantity to be averaged does not have to be delined in
both phases. An example is pressure, which is an ill-defined quantity for a rigid particle. A disadvantage is
that differentiation and averaging do not commute,

VBec< fc>) =Bc<Vfc> +/ dS,n | & P(1t) < fe > (x.1]1). (7
|X-¥Yi=a
Vi Bc <fc>) = Bc<Vifc> +V. dS,n/(13wP(l;t)<fc >,
IX-Y|=a
+ / dSyn~/d3wP(l;l)<Vf(;>l . (8)
IX-Yi=a
In order to obtain a relation for the time derivative one needs the evolution equation for P which is
or + i [Vya (WIP)+ Vwe (W*P)] =0 (9)
ot a=l ’
where ilie dot denotes the time derivative. With this it is easy to prove that
i) d
2 (Be < Je >)=;3c<—f£>—/ dSy/daww-nP(l,t)<fc >0 . (10)
at ot 1X-yl=a
By using the kinematic boundary condition at the particle surface one finds
d(Bc < fc > J
W I 2) 49 tpe < feme >) = 8o < 2249 (fene) > (an

Thus, though not commuting, averaging and convective differentiation satis{y a simple relation that plays a
central role in the derivation of the averaged equations.

In dealing with the disperse phase it is more useful to use a different kind of average. Let y(,;’) he a

quantity pertaining to the a-th particle as a whole, such as velocity, radius, position, etc. The definition is
1

n(x,t)

To(x, 1) = /daw P(x,w;t) g“’(x,w,t)‘ (12)
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This definition recognizes the fact that the most compact description of the particles is obtained in terms of
global attributes rather than field quantities. An example is velocity for the case of rigid particles. Since a
velocity field is well defined at each point of each particle, one could introduce an average < up > similar
to that used for the continuous phase. However, in this way, the essential simplification that arises from the
rigidity constraints would be lost. Our approach is instead to introduce an average velocity of the particle
centers

1
w(x,t) = m/dswl’(x,w;t)w, (13)

and, by a similar relation, of their angular velocities if needed. Other advantages are apparent. Consider,
for example, rotating homogeneous, smooth, rigid, spherical particles in potential flow. In this case the
rotational degree of freedom is clearly irrelevant, although it is easy to show that

<up>= W-}-%a? [v x 0+ l(vn.vw+ Unx Q)+ Viw+ O(az)] , (14)
. n

where €1 is the average of the angular velocity vector. An equation of motion phrased in terms of < uy >
must therefore be more complex than one based on W because it must contain terms that cancel the effect
of rotation. Furthermore, with the definition (12), one can average the equation of motion F = mw of the
particles directly with no need to introduce information about the particle-material constitutive relation.

This approach is clearly applicable to particles completely described by a finite number of attributes. It
may not be as advantageous in the case of an infinity of degrees of freedom, such as deformable drops with
internal flow, although it could rcadily be extended to deal with this case as well. The definition (12) is
appropriate for quantities 9(1)“) that, as the velocity w, only depend on the variables of the a-th particle. It
is not difficult to generalize the result to cover other situations.

It is easy to show for such particle-centers averaged quantities that

(M)
(;—9((71!717)+V~(nw”o) = uaial-—. (15)

where the time derivative in the right-hand side is taken following the motion of the particles.

2 Applications

In all the examples to be described below the continuous phase is assumed to be incornpressible. In this
case, by setting fc = 1in (11), its average continuity equation is readily found to be

B¢

—8[—+v-(/}cll(,‘) =0. (16)

Ior the disperse phase we have a balance equation for the number density given by
— + V. (nW) =0. (17)

Although, as shown by (5), Ap does not exactly equal n times the particle volume v, the error i assuming
this equality is of order (a/L)*, where L is the macroscopic length scale, and we shall disregard it. This is
one aspect of what we refer to as the small-particle approrimation. With this approximation, then, for rigid
particles we find a relation analogous to (16). For spherical bubbles (which here, for sitnplicity, are taken to
have the same radius and radial velocity) we have mstead

dBp

-0 V- (BoW) = 4mna’a. (18)
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We now give some examples. The equations of motion of the continuous phase are obtained by averaging
the appropriate exact microscopic equations (e.g. the Euler or Stokes equations) by using the rules (7),
(8), and (11). As shown e.g. by Eq. (7), this procedure introduces integrals containing the conditionally
averaged fields with one particle held fixed. This is the guise under which the fundamental problem of closure,
common to all averaging methods, arises in the present context. In the dilute limit - i.e., to order 8p - the
difficulty is bypassed by observing that the conditionally averaged field is required with O(1) accuracy only.
To this accuracy, it is found that this field satisfies a closed set of equations that can be solved explicitly. In
essence this step involves solving the problem of one particle immersed in an external field consisting of the
first two terms of the Taylor series of the unconditionally averaged fields around the particle center. In one
case - thermocapillary flow — the contribution of the conditionally averaged field can be eliminated in terms
of other quantities and exact results can be obtained. In the case of linear potential flow at finite volume
fraction, we use direct numerical simulation to close the equations.

For the disperse phase, we average the particle equation of motion directly using the relation (15). For
simplicity, we write uc, w in place of < uc >, W. Occasionally, however, we restore the averaging symbol
where necessary for clarity.

In most of the examples we consider the dilute case in the sense that the results are only correct Lo

O(Bp).

2.1 Rigid particles in potential flow

For equal homogeneous, rigid, spherical particles in an inviscid liquid, at low volinne fractions, the continuous
phase equation of motion is
duc
pcBc o + (ue - V)ue| + B¢ Vpe
1 ¢ 7]
= —3rc [ﬂu (%9 +uc - Vue - -0% -w -\_"W) + V. (ﬂl)Mu)]
1
- Epcﬂn(v x uc) x (w—uc)+ Bcpcg
+ V-(BcpcMc + BpTc). (19)

In this equation the first group of terms in the right-hand side will be recognized as the cffect of the added
mass interaction between the phases (sce e.g. Landau & Lifshitz 1959, Auton et al. 1988). The last term
represents the effect on added mass of the fluctuations of the particle velocity,

Mp = Ww — Ww. (20)

Alternatively, one may refer to Mp as the Reynolds stress of the particle phase. The next line of (19)
contains the lift and the body forces. I the last line Mc¢ is the Reynolds stress of the continuous phase,
which can be shown to be given by

Mc = - Q—ldﬁom(llc —w) - (uc —w)l 4 (ug — w)(ue — w)j
+ %O'ﬁ[)[f}(TTMD)I-FMD]‘ (21)

Of particular interest is the non-isotropic stress T¢ given by

«

¢
Tc = %pc { [Q(u(; - w)’I - %(uc —w)(uc — w)]} - épc(Tr Mp)+ -2:)(—)M/) , (22)

where I is the identity tensor. Although T¢ in appearance seems to be a sort, of momentum flux due to the
relative motion of the phases and the particle velocity fluctuations, it will be seen in the next example that
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it actually behaves as a genuine stress tensor in the continuous phase. It may be observed that this is the
correct form of a term that is sometimes introduced in averaged equations models by writing V[(ps — pc)Bp]
(see e.g. Prosperetti & Jones 1974) or, less correctly, (ps —pc)VBp, in which ps is interpreted as the average
pressure of the surface of the particles. In such models, on the basis of potential flow past a spherc, the
difference ps — pc is usually equated to —%pc(uc — w)? which is just the trace of T¢.

For the disperse phase the momentum equation is

a
ppBp [% + (w -V)W] + BpVpc
1 4] é]
= zpc [ﬂu (___;tc +uc - Vuc — ETd -VW) +V. (ﬂDMn)]
1
+ §pcﬂu (Vxuc)x (w=uc)+ppV-(BpMp)+Bpppg. (23)

Here again in the right-hand side we find the added mass and lift forces with opposite sign to the continuous-
phase equation, although there is no term analogous to Te.

It should be explicitly noted that this equation does not contain a “particle pressure,” but that the par-
ticles move responding to the continuous-phase pressurc. This is the correct physical picture that could not
be as easily recovered by averaging the local equation for the particle material rather than the fundamental
equation for the motion of the particles as a whole.

In the present dilute limit, these equations coincide with those obtained by Wallis (1991).

2.2 Massless bubbles in potential flow

L.et us now turn to the case of equal spherical bubbles in potential flow. The continuous-phase momentum
equation now takes the form

3
pcBe [(—(,‘-;t-—c- + (uc - V)Uc] + BcVpe
] "Ouc Ow
= —gpc [(W +uc -Vuc - W Vw) +V. (ﬁDMD)]

1 . 1
+ §pcnv(w —-uc)+ ;z-pcﬂn (V xug) x(w—uc)+ Bcpcg

+ V- (BpTc+ BepcMc). (24)

The added mass interaction is now augmented by a term due to the time dependence of the bubble volume
v, and v = 4ra?a with
da
a=—+w.Va. 25
T (25)

This effect can readily be interpreted in terms of the familiar single-bubble results of potential flow. The
stress tensor T¢ is now deflined by

2 Y L3 9
Te = pc { [g(uc - W) —aia - ;z—a’] I- %(llc —w)(ug - w)}
2. TrMp) + ) M 20
- ',)ﬂc.( rMp) oMo (26)
and the Reynolds stress is given by
_ R Bp
Mc = -8y [a®+ o=(uc = w) - (uc = w)| I = 5=(uc - w)(uc - w)
20 20
1

+ ;26[31)[3(771\41))1 + Mp], (27)
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where

. | a
a:(g-t+w-V) (3—‘;+w.\7a). (28)

Since the bubbles are taken to be massless, the inertia of the disperse phase is negligible and the momen-
tum equation is

1 duc ow 1
BpVpc = 2Pcﬂo [-—a-z—- +uc - Vue - TR VW] - '2'PCV -(BpMp)
1 , 1
- Epcnv(w —ucg) - §pc,31) (Vxug)x (w=uc)+ fBppcg. (29)

For the case of bubbles there is another equation for the radial motion. This is obtained by averaging
the normal stress balance across the bubble surface and is found to be, in the present dilute limit,

aa+-3-a?= L pg—z—”—pc—lTrTc , (30)
2 pc a 3

where o is the surface tension coefficient and pg the pressure inside the bubble. In a simple model this
quantity could be specified for example by an isothermal or adiabatic relation. The appearance in this
equation of the trace of T¢ underscores the physical meaning of this quantity as an additional stress in the
liquid due to the relative motion of the phases.

2.3 Particle stress in potential flow

We now consider the case of rigid spherical particles, again in potential flow, from a different. viewpoint.
Initially we do not assume a dilute system, but derive a result of general validity. Throughout this section
the averaging symbols are restored.

Write the equation of motion of the generic particle as

mw = —/ dS,npc(z,t;N)
|X-%|=a

, a¢ 1 e .
/)[x_lea dS, n (—57 + -2-11(; . uc> + f<, (31)

where € is the force due to collisions with other particles, and body forces have been disregarded for
simplicity. In terms of the impulse

J = -p/ dS;n ¢, (32)
|X~2|=a
this equation takes the form
L . T, .
mw+J=p= p/ dS, n. (—ubl-—ucuc>+f°. (33)
|X-2Z|=a 2
Upon averaging according to (12) we have
0]‘) —_— — — k ¢
n s +W- VD +V . n[(Wp-wp) = -V [of +0°] + F°. (34)

llere F¢ = nf* and the other terms in the right-hand side are the kinetic and potential parts of the particle
stress, 0¥ and o” respectively. The former is similar to a Reynolds stress and is given by

ot = —n(Wp-wp). (35)



The latter one is of greater interest. It may be written in the form
1
o = pPBc{ucuc) - Epﬂc (uc-uc)I+p /daw P(x,w;t)
1
/ dSy s <(n ‘uc)ue — §u%n> (y.tlx, w). (36)
|X-Y|=a 1

This result is of general validity and holds also for non-homogeneous, dense mixtures. It can be shown that
it coincides with a recent result of Sangani and Didwania (1993) after the latter is suitably corrected. The
derivation by the present method is much simpler than that given by these authors.

Up to O(Bp) included, oP is independent of the particle configuration and is found to be given by

1 —
o =~ fcpe <uc><uc>——-§<uc>-<uc>l +ﬁDﬂc[w<uc>

1 1
+ §<UC>(<llc>—W)+<ll(;>'(§W—<uC >)I] . (37)
The divergence of this expression can be proven to be identical to the number density multiplied by the force
on a single sphere moving with velocity w in a flow with a uniform rate of strain, u¢c + x - Vuc,

V.of = g—[)’ppc(w- <uc >) V<ue>+0(8%). (38)

It can be shown that Eq. (34), with o” given by this relation, is identical to the result obtained by eliminating
the pressure gradient between Eqgs. (19) and (23) and dropping the lift force contribution.

The derivation of an explicit expression valid to higher order in fp requires some assumption on the
particle configuration. Results for periodic particle arrangements are given in Bulthuis el al.(1993).

2.4 Linear potential flow

Consider now the case of equal rigid spheres in linear potential flow. This model would he appropriate, for
instance, for the case of small-amplitude oscillations or for incipient motion started from rest. We assume
that the suspension is homogeneous or weakly homogeneous, in the sense that the results are accurate up to
terms containing the first derivatives of fp included.

On the basis of general arguments of Continuum Mechanics, such as Galilean invariance, isotropy, trans-
formation properties under time-reversal, and others it is possible to show that the two momentum equations
must have the form

Buc 1 0 b
p—at—+Vpc = iﬂCﬁDCa(W—"C)‘*‘/’CGy (}9)
0 1 0
PD-a—vtv- +Vpc = 3 PC Bc C 7 (uc —w) +ppg. (10)

The coefficient C = C (Bp, pp/pc) is the same in both equations and needs to be determined. A priori, Lhe
only information available is that it depends on the volume fraction and the ratio of the densitics. It may be
shown that this coefficient is related to Wallis’s exertia E by E = L8pC. If the well-known approximation
of Zuber (1964) to the added mass coefficient is valid, then C = 1.

In Zhang and Prosperetti (1993a) the coefficient C is obtained by carrying out direct numerical sim-
ulations and averaging over the ensemble of simulations. The results indicate that €' remains equal to 1
within £10% for volume fractions as large as 30% and any density ratio. For pp < p¢ this range of near
constancy extends up to Op = 50%. The maximum deviation from 1 does not exceed 20% all the way to the
close-packing limit.
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2.5 Stokes flow

In the case of a dilute suspension of rigid spherical particles in Stokes flow the continuous-phase momentum
equation is found to be

BeVpe = V. {yc [1 + (ga + l)ﬁD] [« Vue > +(< Vue >)T]}

2
9 Bp
)

* 3

pc(w —uc)+ Becpcg, (41)

where )
o = BBt 5HC
up +pc
The same equation expressed in terms of V < u¢ >, rather than < Vue >, takes the form

(42)

Vpc v. {#c [1 + (g—a + l)ﬁu] [Vue + (Vllc)T]}

3ut
5(uc + 1p)
3Bpuc pc + 2up
a?  pc+up (

[(w—uc)(VBp) + (VBp)(w —uc))

+ w - uc) + Bcpcg . (43)

The term in the second line vanishes identically for rigid particles, but not for drops. It is therefore seen
that, when expressed in this form, the equation acquires a non-Newtonian structure.

To reduce the equation to a form from which the well-known Einstein viscosity correction is apparent,
we need Lo express the strain tensor in terms of the mean volumetric flow rate

Wy, = ,BDW + ﬂC"C . (44)

The result is

Vpe = V. [up[Vum + (Vum)T]
3 uc + 3up
el LI Ll LR ;
+ —5Ppuc T D (w—uc)+Bcpcsg, (45)
where 5
ne = (1+ §ﬂ1) e (46)

as expected (see e.g. Landau & Lifshitz 1959).
The disperse phase momentum equation is

ow 9 u
pD (—(:)t—+W-VW> = —Vpc - :jé—z(w—uc)-i-ﬁnpog- (47)

2.6 Heat conduction

We now turn to a different problem, that of stecady heat conduction in a composite consisting of a matrix
with thermal conductivity K¢ and equal spherical inclusions with thermal conductivity Kp.
In the dilute limit the procedure described at the beginning of this section, in this case, leads to
38p De
a2

V (DeVTy) + (Tp =Tc) = 0, (18)
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where Dg is the effective diffusivity of the medium given by (see e.g. Jeffrey 1973)

38p(Kp — Kc¢)
Dg = ——— | D¢, 4
e = |14 22io Ko p, (49)
and
| T = PpTp + BecTc, (50)
is the mean temperature. In (49) Dc = K¢ /(pcCpc), with Cpc the continuous-phase specific heat, is

the thermal diffusivity. The last term of (48) shows that the particles act as heat sources or sinks for the
continuous phase.
The corresponding disperse-phase equation is

3P K¢ fp .
oo T _ =0.
Conro /)D(ID c) Conpp P 0 (51)

llere gp is the volumetric heat source in the particles. If this guantity vanishes, then, from this equation,
Te = Tp, so that (48) takes the more conventional form

V  (DgVTc) = 0. (52)

2.7 Convection at low Ite, large Pe numbers

We now add, to the problemn of the previous section, the effects of flow at low Reynolds, large Péclet
numbers. Using the results of Acrivos & Taylor (1962) for the heat transfer from a particle immersed in
a linear temperature gradient, it is possible to show that the averaged energy equation for the continuous
phase can be written as

ﬂ‘igt—f"-c—) + V. (BcTeue)
- L _v.(kevr,) 4 22l (1 + f—‘i) (Tp - Te)
pc Cypc a 4
3
— =V [Bo(Tp - Te)w = uc)], (53)

where the particle Péclet number is defined by

2a|w ~ uc|

Pe = Do ,

(54)
and the effective thermal conductivity Kg is given by pcCpc Dg, with Dg asin (49). The last term in (53) is
due to the slip between the disperse phase at temperature Tp and the continuous phase at temperature T¢.
Qualitatively, therefore, its origin lies in the same physical process that, at the molecular level, is responsible
for ordinary conduction in a fluid. Not surprisingly, therefore, it appears as the divergence of a vector. The
last term in the second line, on the other hand, is similar to the distributed heat source effect described
before in connection with Eq. (48), modified however by the convectively enhanced heal exchange between
the particles and the fluid.
The averaged energy equation for the disperse phase is

_3Bp Kc
a’Cypp pp

;%(ﬂDTDHV(ﬂDwTD) = (1 *17) (Tp - To) + =22y (55)

Cop pD
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2.8 Thermocapillary flow

Consider a bubble in an infinite expanse of fluid, in which a uniform, constant temperature gradient H far
from the bubble is imposed. Let the surface tension of the interface between the bubble and the fluid be o.
Assume that o decreases linearly with the temperature T, and that the bubble is spherical with radius a.
Young et al. (1959) found that in this case the bubble moves with the velocity

a do
= “Zpodr b (56)
under the assumption of low Reynolds number
R = pc al ' (57)
e
and small Marangoni number )
Ma = all do a*H (58)

“a = -d_'-f?uc D¢
After scaling the velocity by U, temperature by a /1, and lengths by a, Acrivos el al. (1990) showed that
the temperature and velocity field for the liquid in the suspension of bubbles can be written as

T =h -x+¢, ue = -Vé, (59)

where h is the dimensionless temperature gradient h = H/H, and ¢ satisfies the Laplace equation. They
showed that in this suspension each bubble has the same dimensionless velocity

w=h. (60)

We shall only use nondimensional quantities in the following analysis.
The averaged liquid velocity can be written in terms of ¢ by using (59) as

1
e uc(x,t) = =7 [ xe (Vo) PN, dc”, (61)
and the average heat flux is

Qe = ﬂcvf‘c(x,t)=7V'—,/(h+w)xCP(N,z)dCN

= fBch + TVI'“!/XC Vo (N, t)dcN . (62)
The averaged mixture velocity is
un = Bpw+ fcuc
= Bph- 1—\1,; xc V¢ P(N,tydc", (63)
and the relative velocity is
<up>-<uy>=fch + 7\% xcVéP(N,t)dcN, (64)

which equals the right-hand side of (62). Since the bubbles are non-conducting, the mixture heat flux Q,,
is the same as the averaged heat flux in the continuous phase. Thus we have

wW—un =Qc =Qn =KeV<Ty > (65)

The last step follows from the definition of effective conductivity. We have thus provided a very simple -
but rigorous — proof of the relation recently found by Acrivos et al. (1990) generalizing it at the same time
to the case in which a gradient of the volume fraction is present. For a uniform bubble distribution, it can
be easily shown that V < T¢ >= h.

It is clear that this result does not hinge on the assumption of dilution but is valid {or any concentration.
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3 Conclusions

We have described a number of problems to which the approach to averaging that we have developed has
been successfully applied. While in some cases the results coincide with known ones, others are original. In
addition, due to the inherent greater simplicity of the method, errors in earlier results have readily become
apparent.

The main advantages of this method appear to be the following:

1. Systematicity: In all of the examples described, the same procedure has been applied. There is no need
to use a different approach for potential problems or for the highly viscous case, as is often necessary
with other approaches. Furthermore, at least in the dilute limit, closure relations arise naturally from
the formalism with no need for ad hoc hypotheses,

2. Flezibility: Not only the method has been applied to a wide variety of problems, but both analytical
and numerical closure techniques have been demonstrated. A third possibility, that we have not yet
developed but that appears to be potentially useful, is that of approximate closures of the “effective
medium” kind.
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INTRODUCTION

The comprehensive survey by Boyle and Massoudi (1989) discusses the various
constitutive equations that have been used to model the flow of granular materials. Here,
we are interested in the stability of flow down an inclined plane, of granular materials
that are modeled according to the constitutive relation of Jenkins and Richman (1985,
1986). The kinetic theory approach to modeling has been applied to granular materials
by various investigators [cf. Ogawa, Umemura & Oshima (1980), Shen (1981), Jenkins
& Savage (1983), Ahmadi & Shahinpoor (1983a, 1984), Lun, et al. (1984), Ahmadi and
Ma (1986), Ma and Ahmadi (1985, 1988), Jenkins and Richman (1985, 1986), Johnson
and Jackson (1987), and Boyle and Massoudi (1989)]. Details of many of these models
can be found in the review article by Boyle and Massoudi (1989).

GOVERNING EQUATIONS

We shall assume that the stress tensor governing the flow of granular materials down
an inclined plane is given by [cf. Richman and Marciniec (1990)].

P={4pGFT)1-2pED (1)
1

Where, Fv)=1+ i (2)
E(v):l+7\:(—1'—”—§1§-€-;I (3)

12

v (2-v)

Gv)=5 V) 4)

8opG T2
" Tswm ®

In the above equation P denotes the Cauchy Stress, v the volume fraction of the solid,
Pdenotes the deviatoric part of stretching tensor D associated with the solid motion and T
the granular temperature.

Consider the flow of granular material modeled by the above model based on a
kinetic theory like approach, down an inclined plane (cf. Figure 1) due to the action of
gravity [cf. Savage (1979), Johnson and Jackson (1987), Johnson, et al. (1990), Hui, et al.
(1984), Richman and Marciniec (1990), Hutter, et al. (1986a, b)]. In this problem we
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consider steady one dimensional flow of incompressible granular materials (i.c. p, =
constant) down an inclined plane, where the angle of inclination is a. The governing
equations of motion are the conservation of mass, momentum, and a pseudo energy
equation. The conservation of mass is

?—E +divipu)=0, (6)

ot

where g; is the partial derivative with respect to time. The balance of linear momentum is

) av
—an+pb—pE. )]
where % is the material time derivative and b is the body force. The pseudo energy

equation in its general form is

-tr(PD)-divQ -y =%p‘2—f.

where Q is the flux of fluctuation energy, y is the collisional rate per unit volume of

(8)

energy dissipation. The derivation of these equations for the dissipative flows was first
given by Jenkins & Savage (1983). The basic flow goveming the flow of granular
materials down an inclined plane has been solved approximately by Richman and
Marciniec (1990) and numerically by Rajagopal and Gudhe (1991).

STABILITY ANALYSIS

Consider solutions which consist of the basic flow plus an infinitesimal disturbance

V=vy+EV, ®
U=uy+€u, (10)
V=€u2 (ll)
T=T,+¢T, (12)

where v, 4, and T, correspond to the basic solution of the governing equations and v,,
u,, u, T, represent the disturbance. It is assumed that for infinitesimal disturbances, the
equations may be linearized i.e. the terms of order €2 and higher order can be neglected.
In general, in addition to perturbing the volume fraction, velocity field and granular
temperature, it is necessary to perturb the free surface. Ofcourse, the base solution will
not hold in all of the perturbed domain. Here, we do not allow for the perturbation of the
free surface. Such a stability study is incomplete in that it addresses only the disturbances

corresponding to a special class. Ofcourse, a small disturbance without such a constraint
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may prove to be unstable, nullifying the instability predictions. The basic flow is
assumed to have the form

Vo = Vo(¥)
Ug = Uy(V)i
Ty =Ty() (13)

Now substituting equations (9) through (12) into conservation of mass, balance of
linear momentum and balance of energy, the appropriate non-dimensional equations
corresponding to the basic flow i.e. of order one are given by:

__du, dw,  __dv, du,
S, Wy — {s —2 4 S, W, ——}—__"=-20 Jr v, sina, (14)
dv~ dy dv ) dy
_,dv, __dw,
S, u -+2S 0 —— = =V, COSQ. (15)
d_v dy
_Jlu_’ dw, __dW,dv, S, du,
=48 W — — =65, W =0, (16)
d_\" dy dy dy 0 dv

We need to solve the equations (14), (15) and (16) subject to the appropriate
boundary conditions.

l —
——2=bp at vy =P (on the inclined plane) (17)
W dy
i -
0 =E . v dy (8)
and,
du,
dy
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Wf, —=0 aty=0(at the free surface) (19)

V_V-(z, = W,, (Specified)

where g denotes the acceleration due to gravity and o is the angle of inclination of the

plane.
2 3 2
16 v, (2-v,) (=5v +11v =7v,+5)?
With, §;=——— + =2
(1=vy)? 12 (2=vy) (1=vy)
2v(2-v)
S, =V, {_(l—vo)3 + }
4 3 2
5 _ (Vitvortvirverl)
3T (1=v)*
16 vy (4-vy)
YT (v
oon® Vg-375 Vg #2000 VJ-4706 VS+6500 vo-5942 vg+3584 v2-1332 V34186 vy+35
T2 (2-vp)? (1-vp)®
Sg=S4+Ss
2VE(2-vy) g (<SVIHOVI-3v+S)
0 0 T 0 0 0
7% tea
(1=vy)? 64 (2-vy) (1=v,)?
ds
dv
2
Vo (2-vy) (1)
P (1-vy)?

Equation (17), indicates the slip condition on the inclined plane. Condition (18) gives
the amount of material that 1s fed in and which remains the same at all locations of x.

In the above equations,

b= F {n(tana)2]—t—2(l—e",)(l—cose)cscze} (20)
M 2

=
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l-SFa {l+g}sin26 _
BRE a 5aF
+

(23) [2 csc20 (1 - cos®) — cos8) /2 E

where, f=

(1+5/8G)
Bv)=n-———2’
242
2
M(v)=1+91t————(1+5/126)
32
-1 1
4o
r=2
d
)
Td

Here, G is the diameter of the particle, d is the diameter of the hemispherical particles
attached to the flat wall, and s is the average distance between the hemispherical
particles. ¢, is the coefficient of restitution that characterizes the energy dissipated in

particle-wall collisions.

The appropriate non-dimensional equations corresponding to order of € are:

—-_——vo{—:-+—_-}—uo{—_—}——:-u2=0 (21)
or ox dy ox dy

%, 49%u 82u ou, _ ou

oy? 3 a2 axay ay ox
oW, _ oW, 9, ov
+2W Py— +40 7S, W, — + p,— + 20 \/—SMW‘)—
dy ox dy ox
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ou,
+P, W+ Py, +20 «/Ttvo———u,—ZO Jrv,—

dy or
P, Pu, P 322 P, %, ouy _ 9
Ps—-_—+vu0—-:
NV 15VroR 15 n5g ax
o, W,

-28 W —+2P W ——=P =P W.+P vV, =V
2 7 10 1 9V1=Vo =
dy ox dy

a~w, afu", *w, w,
P, W, — + + Py, {-—-_—}2+2 —
8x2 axay 9y? ox ax dy

oW, W,

oW, ow, ov, ov, du, u
+1L13W1 {————+——-}+P19{&—+§}+2P23B§+PZS——_—

dy ox

Y _ oW,
+H1W;+H2V]=3VOW1?

and the boundary conditions become

— 1 —
uy = \/_%-t’a”“wo{fp"ﬁfz—‘u;,z‘w:f}

0

uy=0
B
f v,dy =0
0
ou ou du S, du
S, ]+S,—_2-+A,——_9vl+ 1__0 =0
y ox dy 2 W, dy
_ __ oW, dw,
2W, W, — +—W:=0
dy  dy
wi=0
- - —_ —_ T,
where, y="2, Uy = l: ; Wo—'-{:(')‘}m
c og cg
— U _ W — T
ul= — u2= — W|={:—}lﬂ9
cg cg o8
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—_}2}

(22)
(23)
du, 852
4+ Poy——t Poog —
23 = 28 %
(24)
(25)
(26)
(27)
(28)
(29)
- L-x
X=——,
(0]

t ‘/g (30)
o



where L is the characteristic length. Equations.(25), , are the boundary conditions at
; = B on the inclined plane and equations (27), (28) and (29) are the boundary conditions
at ; = 0 at the free surface. We shall assume the disturbances to be spatially periodic.
That is the perturbed quantities have the form

v, =V,0) e e (31)
u =U, ) e eicr (32)
u, = Up,v(;) el giox (33)
W, =W, () el ¢icF (34)

Where, v, is the amplitude of the volume distribution function,
U, and Upy are the amplitudes of the perturbed velocity,
W_ is the amplitude of the granular temperature,
i is the imaginary number such that i2 = -1,
o is the wave number (real) and
s=0+io.

It would be appropriate at this juncture to observe that there is no equivalent of
Squire's theorem for parallel flows of granular materials and thus we should in general
study three dimensional disturbances. However, the equations, even for the class of
disturbances (31) through (34), are so complicated that at this stage we wish to restrict
ourselves to this case. Substituting (31) through (34) into the equations (21), (22), (23)
and (24), and the corresponding boundary conditions (25) through (29) we end up with

dau,, v, _ -

Vo= +— U, +ioVo U, +(iCu—-s)v,=0 (35)
dy dy

U, 45 dU du aw av

PI———_P‘H—C—,FI———f’uPz Zepy—Lip, L

R

_ du,
02 P =20 VTG Vouy+20 Vo s U, +20 Vv, — U,
dy

[SSTIR N

-

+{Py+i20 VRS, oW}V, + (P, +i20 VS, |W,=0 (36)
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P, d*U, Py dU dUu dv, . dw
Py ! px py P P
Py—=Pyg—-5,—

- + i -
15V &2 15x dy dy dy dy
N ‘
+{tcv0uo—m—vo.s]Upy+P9vp+{tcP-,—P“}Wp=0 (37)
P, d*W aw au du dv
ay” dy dy dy
02P1 3
+ioP28pr+ioP23Um,+{icH3+H]———i—-ivos}wp=0 (38)
and the boundary conditions become
UP,=\[§:ana'w75{fpvp+f-1:-wp}
W
U,y=0 (39)
P -
f vpdy =0 (40)
0
du, du, S, du,
SI———+i0SlUpv+Al__—_vp+——:o_TW =0 “41)
dy ' dy 2W, dy
_dW, dW,__
2W0——-—_+_——_Wp=0 (42)
dy dy
Wp=0 (43)

In the above equations P, through P, H, through H,, G, through Gy, S|, through S,
and A, through A, are quantities that depend on the basic solution and we shall leave out
their specific forms for brevity. Equation (35) is used in equations (36) through (38) so
that v, is eliminated from the three equations and the boundary conditions. In the above
equations we set s = 0 as we are interested in the marginal stability curve and we end up

with three second order ordinary differential equations. The final equations are

d*U d*U du du daw
Py——2 4G — 4+ Gy—L 4 (G +i G —= 4 Py —F
dy? dy? dy dy dy

+ (G +iG U, + (G +iG ) U, +(Py+iG )W, =0 (44)

67



d*U du - dU

y i dy

aw
_52___”+ (G +1Gy3) Uy + G Uy, +(Gas +i Gpg) W, = 0 (45)
5 )

daw dvu
Gy —L+iGyy—L

du dU
+(Gyy +1Gyp) —L2 4 Gy —L= 4 (Gyg +1Gpp) —=
dy dy

and the boundary conditions become

T = 1
U, = \/;tanawo{fpvp-ff;_u—ﬂ-wp}

0

U, =0 (47)
B du,,  dv, -
f {ivo——:—+i—-_—UPV-—ovoUl,x}dy =( 48)
0 dy dy
dU . A, v, du,dU A, du, dv
S, —£ +i o0 _f"v+i{oS,+——-i_~—_3—_—° U,
dy Cu, dy dy G u, dy dy ’
AV, du S, du
— U, ——=—W,=0 (49)
u, dy 2W, dy
_dW, dw,
2W—L+—W,=0 (50)
dy dy
W,=0 (51)
where,
L
P=5

o T (5=Tvg+11ve-5vo)?
PT192 (2-vp)? VR
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4 2 (7-22v+15v))

2TV (27Vg)  (5=Tv+lIV-5VY)

(1_V0)3
=3 Vo (2-Vy)

_ 3 +2(1—V0)
¢‘—(l-—v0) v, (2-V,)
b s
5140, 149,
5 (1-v,)?
67 2 v, (2-v,)
C=§{20sc26(1—cos9)—cos6}
_5aU+)mo b T 0
! 23’2(“‘1’1){12 22 12 22}

0, 5in%8 5 a b (1+0,)

h="T "7 ey

RESULTS AND DISCUSSION

The system of equations (45), (46) and (47) with the boundary conditions (47)
through (51) are solved numerically to obtain marginal stablity curves. For the base
solution we use Richman and Marciniec (1990) approximate solution in the stablity
analysis. In Figure 1, Q Vs o (marginal stability curve) is plotted for different values of
angle of inclination (o). Ofcourse, there are so many paramters involved in the problem,
o, e,, €, Q etc. that a systematic parametric study needs to be carried out. However,
Figure 1 shows clearly that increasing the angle o by a small amount from 12.2 to 12.9
destablizes the flow, a result that is in keeping with our physical expectation. How the
coefficient of restitution between the particles ¢ and the coefficient of restitution between
the particles and the wall will be studied.
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Figure 1. Marginal Stability Curve [ Q vs 0]
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A self-consistent, statistical mechanical theory for the dynamics and rheology of
suspensions of Brownian colloids completely in terms of physicochemical suspension
properties is presented. The theory uses the Rogers-Young closure of the Ornstein-
Zernike (Phys. Rev. A, 1984) equation for the equilibrium structure and the gen-
eralized hydrodynamics theory developed by Hess and Klein (Adv. Phys., 1983)
for the dynamic properties. Direct hydrodynamic interactions are neglected. Mode-
mode coupling is used to close the generalized hydrodynamics equations and provide
a self-consustent set of equations for the dynamics. All accessible linear viscoelastic
properties of the suspension are then calculated from the the dynamics of the inter-
mediate scattering function. Numerical solutions are obtained for Yukawa particles
through the viscoelastic approximation. Comparison with rheological data from the
literature on model systems demonstrates the accuracy of the theory for predicting
both qualitative trends and quantitative behavior. The results are interpreted in
terms of the cage melting model for colloid dynamics.

I. OVERVIEW OF NSF-PY! SPONSORED RESEARCH

The focus of this research sponsored by the National Science Foundation’s Presidential Young
Investigator Award is the physics and chemistry of complex fluids under flow. Specifically, we are
determining the complex interplay between viscometric flows and molecular architecture in liquid
crystalline polymers (both lyotropic and thermotropic), lcp containing blends, colloidal suspensions,
and microemulsions. Understanding and controlling the microstructure of complex fluids and the
products derived from them requires the development of theories and experiments capable of ana-
lyzing the molecular level detail of a fluid under flow. Thus, we are developing new in situ scattering
techniques (both polarized light and small-angle neutron scattering) capable of resolving molecu-
lar architecture under flow [1-4]; new theoretical approaches capable of treating polydisperse and
multicomponent systems [5-8] and new simulation aigorithms that use massively parallel computers
to study the shear flow of > 10® particles [9]. This comprehensive program of experimentation on
model systems, statistical mechanical theory, and simulation promises predictive capabilities in the
design of new materials and materials processing strategies. The following is a listing of the current
thesis projects in my research group (both Ph.D. and undergraduate) along with an indication of
any the source of funding for the PY1 grant and any other collaborations:
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Liquid Crystalline Polymer Science:

¢ Rheology and microstructure of lyotropic LCPs at low shear stresses (Leuven-Belgium)
¢ Rheology, structure, and processing of thermotropic LCP containing blends (du Pont)
¢ Thermodynamics and microstructure of rod-like macromolecules (NIST)

¢ Prediction of coupled diffusion and morphological change in polymers (Dow)

Colloidal Suspensions and Self-Assemblying Surfactant Solutions:

¢ Rheology and rheo-optics of colloidal spheres, rods, and disks (Kodak)

o Viscosity and structure of inverse microemulsions and lameilar phases

o The structure and theology of the square-well colloidal fluid (CRS4-Italy)

e Massively parallel simulations of suspensions (LANL)

¢ Novel ferrofluid systems and magnetorheology

e Generalized Hydrodynamics of dense colloidal suspensions (Konstanz-Germany)

The following report describes recent progress in the last of these topics.

II. INTRODUCTION

One important aim of applying statistical mechanics to describe the dynamics of Brownian suspen-
sions has been to predict the measurable dynamic and rheological properties, such as the dynamic
relaxation of density fluctuations and the frequency dependent shear viscosity, solely in terms of the
fundamental interparticle interactions. Understanding the macroscopic ramifications of changing
the nature of the microscopic forces acting on the colloidal level is a challenging problem with a rich
history and is of obvious technological importance. As with molecular fluids, it is the collective,
many-body interactions that provides the wealth of interesting behavior one hopes to explain in
terms of the microscopic forces between the individual Brownian particles. The advent of larger
computers and the application of methods designed to tackle many-body interactions in statistical
mechanics make a direct comparison of predicted and measured dynamics now feasible. Because of
the long time and length scales invoived in probing macromolecular fluids (versus molecular fluids),
there is relatively easy experimental access to both macroscopic and colloidal level properties for
comparison with theory. Further, from an engineering, modeling standpoint it is important to have a
fundamental theoretical foundation to judge the applicability of more phenomenological approaches.
It is the goal of this paper to describe a self-consistent statistical mechanical description of dense fluid
dynamics and rheology valid for colloidal suspensions that connects the colloidal level interactions
to the macroscopic properties and to test the validity of this theorv directly against experiments on
a model colloidal suspension.

The method for describing the dynamics of Brownian suspencions is based on the mode-coupling
closure of a system of generalized hydrodynamic equations {10-19]. It should be noted that a similar
approach has had marked success in elucidating the dynamics of molecular fluids, in contrast to the
macromolecular fluids considered here, for over a decade [20-25). The theory yields a set of self-
consistent equations for the collective dynamics of a fluid composed of Brownian particles completely
in terms of the static structure of the suspension. Since there are now accurate solutions for the
structure of charged, Brownian particles in terms of the intercolloidal potentials {26-28), a direct link
between the underlying microscopic forces and the dynamics of Brownian suspensions is possible. In
this paper, these two developments are combined and a method for numerically calculating a self-
consistent solution for the dynamics, starting only from the basic physicochemical properties of the
Brownian particles and the solvent, is derived. Further, the linear viscoelastic rheological properties
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are derived in terms of the collective dynamics of density relaxations. Thus, the viscosity of the
suspension in the limit of linear response is also calculated directly from the the physicochemical
colloidal properties.

Significant comparisons have been made between predictions of the generalized hydrodynam-
ics approach for dilute, weakly interacting polystyrene colloid suspensions (10,19.29], concentrated
suspension self-diffusion (30.31] and for hard-sphere colloidal glasses [25,32-35]. Although mechan-
ical measurements of collective dynamics are quite prevalent in the literature, actual quantitative
comparison of theories based on generalized hydrodynamics against rheological measurements on
concentrated, fluid systems are absent.

This theory can be contrasted with an alternative, but complementary, approach based on solving
a nonequilibrium Smoluchowski equation for an applied shear field [36-39,5,40-44). The necessary in-
puts include the equilibrium microstructure, the microscopic interaction forces, and closure relations
for many-body distribution functions. By ensemble averaging the microscopic stresses resulting from
the interactions between the Brownian particles over this nonequilibrium microstructure, the theory
predicts the bulk stresses in the deforming suspension (principally the low shear limiting viscosity).
Again, rheological measurements of the low shear limiting viscosity provide quantitative tests. Fur-
ther. static light and neutron scattering measurements of the nonequilibrium microstructure provide
quantitative tests of the predictions for the steady nonequilibrium microstructure {39.45-50]. In
comparison, one advantage of using the generalized hydrodynamics approach employed here is the
formulation of a self-consistent set of equations for the full dynamics of the suspension through the
mode-mode coupling ansatz. Further, generalized hydrodynamics yields the full time dependence of
all measurable quantities, such as densities and fluxes, as part of the self-consistent solution.

In what follows, the theoretical approach is reviewed and solutions for a model system of charged,
Brownian particles are presented. Much of the background for the technical derivation can be found
in the review article by Hess and Klein {10} and the derivations specific to this work are to appear
in a companion article [7]. The effect of polydispersity on suspension properties is included in
the cumulant and equilibrium structure calculations. The generalized hydrodynamics equations are
defined and the mode-mode coupling closure invoked. A tractable numerical solution of the self-
consistent equations is obtair~4 through the use of the viscoelastic approximation. This also enables

asymptotic examination -ong coupling limit and the glass transition. Numerical calculation
of the self-consistent eq d comparison to rheological experiments on a well-characterized
model system are made i validity of the theory. Finally, a physical picture of the generalized

hydrodynamic theory with iude-mode coupling is presented through the cage melting model and a
possible criterion for the ideal glass transition discussed.

111. EQUILIBRIUM SUSPENSION PROPERTIES
A. microstructure

To define the model systems of interest in this study and to connect the physicochemical properties
of the suspension to the equilibrium structure, an integral equation approach is employed [51,52).
The equilibrium microstructure of a suspension is characterized by the radial distribution function
g(r). which is proportional to the probability of finding a particle at the relative distance r from

the origin given that a particle is centered at this origin. This function can be calculated from the
Ornstein-Ze. zike equation (OZ) {26)

h(ri2) = g(r12) = 1 = ca(r12) +C/Cd("13)h("23)dxa. (1)

where c4(r) is the direct correlation function and C is the number density of the colloidal particles.
A closure relation is needed to connect h(r) and cq(r) with the interaction potential. The Rogers-
Young scheme (RY) [27], which mixes the well known Percus-Yevick {PY) and hypernetted chain
(HNC) closures, is appropriate for the colloids considered in this work. Defining v(r) = hA(r) — cq4(r)
the RY closure can be written as,
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A -1
g(r) = ezp((r))(1 + ”’""‘:’(r‘)"” ) (2)

with ®(r) the dimensionless pair interaction potential and A(r) = | —ezp(—~£r), with € the RY mixing
parameter. When £ = 0 the closure reduces to the PY closure and when £ = oo it reduces to the
HNC closure. This parameter is determined by requiring thermodynamic consistency in matching
the bulk modulus predicted by the compressibility equation and the pressure equation. As the HNC
and PY equations bracket the compressibility and microstructure for repulsive and hard-sphere
potentials, [26,27] mixing these two integral equations generates an equilibrium structure yielding
equal compressibilities from both of the above equations. The accuracy of this scheme has been
demonstrated previously by comparison with Monte Carlo simulations and structure measurements
[27,28] .

Given the pair distribution function, the static structure factor is the Fourier transform as (with
r dimensionless with particle radius a):

sinkr
kr

S(k) = 1+3¢>/ (g(r) = 1)ridr. (3)

where 0 = 47Ca3/3 is the volume fraction.

B. Interaction Potential

The model systems treated here are suspensions of charged Brownian particles, typically realized
as suspensions of polystyrene latex particles in water. The potential depends on the screening length
x. which is related to the concentration of all smail ions n; with charge z¢, including both added
salt ions and the counterions from the colloids themselves, as

, _ dme?
T kT .

ne(ze)® (4)

The interaction potential is of Yukawa form {53] (with r and x made dimensionless with the particle
radius @ and the potential scaled on kT )

o Qe _eren
¥(r) = kyTe(l +~a)3re (5)

with colloid charge Q, and the dielectric constant of the material ¢.

(6)

In this and previous work, the other colloidal forces, such as van der Waals attractions, have been
neglected based on simple calculations of their relative magnitude (5]. It is straightforward to include
other pairwise additive potentials within the formalism. For the systems under consideration, the
simple Yukawa interaction will dominate the other thermodynamic and hydrodynamic interactions

between the particles. A more complete discussion of the role of colloidal forces in suspension
rheology can be found in {54].

C. polydispersity

Significant work has been done to investigate the effects of polydispersity on the equilibrium prop-
erties of Yukawa suspensions through the OZ-RY formalism, with comparable investigations of the
self-diffusion dynamics {19,28,51,55,56,52]. Comparing the results to DLS and monte carlo simula-
tions demonstrates the validity of the treatment. For the work considered here, polydispersity will
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be explicitly accounted for in the calculation of the inputs to the generalized hydrodynamics theory,
i.e. the structure factor, the cumulants and the elastic constants. These inputs will then define
the effective fluid properties necessary for the calculation of the dynamics. No explicit treatment
of the dynamics of multicomponent mixtures will be considered; however, as the Generalized Hy-
drodynamic description is derived in terms of a hydrodynamic level description of an effective OCF
model, this approximation should be correct to first order.

The central quantity that must be considered is the equilibrium structure factor S(k). Previous
work [28,51] has derived the correct form of the structure factor within the OZ-RY scheme using the
Schulz distribution as a model for the polydispersity [57], and demonstrated its accuracy [56] against
scattering measurements and monte carlo simulation. The structure factor that corresponds to the
generalized compressibility ST (k) is to be used in the calculation of the generalized hydrodynamics
equations for polydisperse suspensions in place of S(k).

For input into the generalized hydrodynamics equations, thermodynamic cumulants are defined

as
(k) ST = g2 2za s Das
<ui(h) >T =St
. kT 1
Da" 3’:ﬂo (aa +‘-1:> ™

&2 ,
<) 5T = - < uilh) >T 5o (< Eulk) > ~grip (8)

Ck,T )
where (, is the hydrodynamic friction coefficient for a bare particle. A decoupling approximation is
used for the second cumulant (7).

The high frequency elastic constants are generalized from the Zwanzig-Mountain formulation [58)
as

9 (‘) Cok’z(kﬂl )dl, (9)

G,<a> 3- 3 did; d?®;;(s)
Py il L 2 (@va; ) | ~dal

E,<a> 9 ¢i¢; [d ¢.,(a) cos(ks,)
~ kgT T" Z (a.a,, ./ 9ii(8 )————d.' (10)

where a; = 7 ¢>' ¢ = —1049-: . ®ij is the Yukawa potential between particles of type i and j, g;;
is the partial radial dlstnbunon function, and s = T In the above equation, all hydrodynamic

mteracuons have been neglected but can be readily included in the pairwise additive approximation
(see [39,6]).

IV. GENERALIZED HYDRODYNAMICS AND THE MODE-MODE COUPLING
CLOSURE

On the hydrodynamic level, the motion of a linearly viscoelastic fluid subject to a weak fiow
is governed by the Navier-Stokes equation of motion. The primary assumption of the generalized
hydrodynamics theory is that the transport properties appearing in the Navier-Stokes equation are
generalized to become a function of length and time. This non-local description of the fluid enables
the study of the fluctuations in density, mass currents, and stress underlying the dynamics of the
material, including the linear viscoelastic rheology. As this generalization can be directly derived
from the Fokker-Planck equation, the generalized transport properties themselves can be represented
entirely in terms of the physicochemical properties of the colloidal particles and the solvent. For
suspensions, the fluid under consideration is the hydrodynamic description of the Brownian particles.
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The solvent enters the description through Brownian motion and hydrodynamic interaction. For
now. this theory is limited to the linear regime, or weak-flow limit.

Generalized hydrodynamics naturally arises when considering non-local relationships for the fun-
damental properties of molecular and complex fluids [22,10,19]. Here it is desired to obtain transport
coefficients expressed entirely in terms of equilibrium suspension properties, i.e. physicochemical pa-
rameters and the structure factor. Significant development in this regard has evolved a self-consistent
set of equations that express suspension dynamics entirely in terms of equilibrium properties. Cou-
pled with the above theory for predicting the equilibrium structure in terms of fundamental param-
eters of the system, this program leads to a complete and consistent treatment of complex fluids in
equilibrium and in the linear response regime. In what follows, the basic relations are presented and
some approximate solutions discussed.

The correlation function of interest is the dynamic structure factor

N
S(k,1) = % Y < ezplik-(ri(0) = (1)) > (11)

=1
This can be expressed in terms of the Fourier components of the macroparticle density

N

Clr,t)=)_ b(r-ri(t)) (12)

=1

S(k,t) = -/:7 < C(k,t)C(~k,0) >= 7\1/' < é(k,t)é(-k,0) >,
ék,t)=Clk,t)~- < C > (13)

The particle density must satisfy a continuity equation, written in terms of the particle current
density j(r.t) as

aC(r,t :
c,‘;—) = -V j(r,0). (14)

This current density satisfies a non-local, (in both space and time), generalization of Fick's law:

j(r.z)=/o dt'/dr'D(r—r',t -tV C(r',t') (15)

Using equations (13) and (15) to calculate the dynamic structure factor and Laplace transforming
yields the generalized diffusion equation (GDE)

S(k)
2+ D(k, z)k3'
_k-D(k,z)k

D(k,z) =g (16)

S(k,z) =

where D(k, z) plays the role of the memory function for the dynamic structure factor. Setting
D(k,:) = D.. the collective diffusion coefficient, recovers the local, decoupled solution of the ordinary
Fick's law. In the time domain, equation (16) above hasg the form of a memory equation,

oS(k,t) 5 [, ; :
—a— =k /odtD(k,t-t)S(k,t), (17)

with the collective diffusion coefficient as the memory function.
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The mass diffusion coefficient is directly related to the wave vector dependent, longitudinal friction
coefficient via the generalized hydrodynamic relation [10)

kT/(mS(k))

D I;,: = = .
(k. 2) 4Gk, 2)/m

(18)

This equation represents the generalized Stokes-Einstein relation (GSE), with (,:“(k. z) playing the

role of the memory function ( to be called the second memory function). The longitudinal friction
coefficient is defined as

: k- ((k, z)k k?
Gk o) = <SRN k4 Soylh ), (19)

The hydrodynamic contribution (, is taken to be time independent on the time scales of interest
here. Again if the longitudinal friction coefficient is assumed to be constant (i.e. ((k,z) =¢,) and
in the noninteracting limit (S(k) — 1) the Stokes-Einstein relation is recovered as

Dy, = —. (20)

In the hydrodynamic limit (¢ — 0. : — 0) the GSE relation reduces to

kT or
D, = —e———— = o= . 9
500600 *3C T (21)

Here 7 represents the osmotic pressure.

For systems without hydrodynamic interactions, the longitudinal dynamic viscosity is entirely
due to potential interactions. Projection operator techniques lead to the following relation for the
longitudinal viscosity in terms of the interparticle stress tensor [10]

ik, z) = -?7 < .. (k)2 - QQ) o, (k) >, (22)

with Q the Fokker-Planck operator and Q the orthogonal projection operator (orthogonal to the
subspace spanned by current and concentration fluctuations). Closure of this set of relations requires

a relationship between the interparticle contribution to the stress and the density fluctuations in the
suspension.

A. overdamped limit

For times large relative to the momentum relaxation time for the Brownian particle 2, the fluid

of Brownian particles is overdamped. For such times, the generalized Stokes-Einstein relation can
be reduced to:

- kT/(mS(k))
Gk, z)/m

which can be conveniently expressed in the following form. Defining

D(k, z) (23)

AD(k,t) = D(k,t) - D(k,0) (24)
leads to the following memory equation in the time domain

Dok*ny(k,t)

AD(k,t) = SK)CC,

yr / " AD(K - :')I’lg‘c'-‘-) (25)
0 )
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Here ny(k.t) plays the role of the memory function. Also, the generalized diffusion equation (16)
hecomes

0S(k.t) _ D,k?
at —  Stk)

{
S(k.l)+k2/ dt'AD(k,t - t")S(k,t") (26)
0

Again, these equations are valid for times longer than the relaxation time of the Brownian particle’s
momentum. Alternately, one can start directly from the Smoluchowski dynamics and arrive at the
same result {17,18].

B. Mode-Mode Coupling Approximation

The final step needed to close the system of equations is to express the longitudinal viscosity, in
terms of the dynamic structure factor. A critical part of this work involves analyzing the approxima-
tions used in formulating the mode-mode coupling closure. The details of this analysis can be found
in reference (7]. A projection operator technique is used to separate the slow and fast relaxing vari-
ables of the system. The mechanistic approximations required follow the usual paradigm {59,10,24],
with the exception of the detailed treatment of three-body terms arising in the final expression. As
fias been shown, the two versions of the resultant expressions for the vertex, or coupling functions
found in the literature arise from differeni approximations used in simplifying the three-body terms.

1. Convolution Approrimation

In the molecular theory of simple fluids and the study of colloidal glass transitions, the three-
point correlation function above is approximated wholely in terms of two-point correlation functions
through the convolution approximation (denoted by ©4), which is analogous to the Kirkwood su-
perposition approximation but in Fourier space [60]. This approximation results in an expression
for the longitudinal friction coefficient:

2
m(k. A = %—26-,,7? [ W aA K K 1gEA -k kS K 1), STk 1
EAKK') = — (k- Kyca(k}) + K - Kycg(kD))

Ky, =k/2FK (27)

H
55

The venex function 9% has strong coupling to low k values through the direct correlation function
cq(k) = S(k)) /CS(k Note that in the convolution approximation the three-body terms are
completely reduced to two-body terms. The shear component of the longitudinal stress, by a similar
derivation yields

n(k )54 = 2 )3/dk’ €Ak, K') g,,( —k, ~k')S(ky, ¢), S(ka. )

95 (k k') = 2Bk 7 (k1 ccalkl) + k3 cca(k3)) (28)

This completes the closure of the generalized hydrodynamics equations by relating the second mem-
ory function, the longitudinal friction, to the dynamic structure factor and vertex functions that
depend only on equilibrium, static quantities.
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2. Two-body Treatment

Hess and Klein [10] employed a rigorous factorization of the vertex function instead of the convolu-
tion approximation employed above, which will be referred to throughout this paper as the two-body
treatment As three-body correlations are difficult to calculate and require additional approximation,
Hess and Klein argued in favor of neglecting the entire three-body term, thus leaving a tractable
result containing only two-body correlation functions. Using this form for the 3-point correlation
function results in the following for the longitudinal and shear viscosity functions

2
mik, )78 = 223 [ kT k. KaT2 (K, -K)S (ki ), S(ka 0
9TB(k, k') = m(k kih(k}) + k - kgh(ky))
e )78 = 2228 [ Tk KT (-k, ~K)S (ks 1), SCka 0

9Tk k) = 1.xh(k]) + ki £ h(k3)) (29)

i
20kS(ky)S(ks) (
This form, in contrast to the convolution approximation, results in a slightly more complex coupling
for the vertex function. The two wave vectors are mixed to a greater degree than in the former
case. Notice also that both forms reduce, in the limit of weak coupling to the exact weak coupling
limit {7]. This comparison is reminiscent of the various methods of closing three-body correlation
functions in equations for the equilibrium structure. As there does not seem to be any fundamental
reason to choose one form over the other, the results of using both forms in a numerical caiculation
will be performed to determine their performance.

C. Corrections for the Zero Time Limit

It is known that the MMC approximation is more accurate in describing the time evolution of
the dynamic friction function than the initial, zero time value, which is an equilibrium property of
the suspension calculable from mechanical {38,5,6]) and fluctuation dissipation [58,22,6] derivations.
Thus, 1t is preferable to use the MMC approximation to calculate only the relaxation or time depen-
dence of the dynamic friction functions and rely on the exact calculations for the initial prefactor.
The relaxation functions are defined as:

k)=

nitk.t) i (k, 0)

_ k1)
n(k.t) = (k. 0) (30)

The correct longitudinal and shear friction functions are written in terms of the high frequency
elastic constants [22)

m(k.0) = Eg (k)
ni(k,0) = G, (k) (31)
This leads to the following relations based on the above definitions,
mik.t) = Ego(k)m(k,t)
'h(k~0) = G;o(k)rl(ki t) (32)

Note that this schem. takes advantage of the known, exact initial values without compromising the
integrity of the MMC approximation for the dynamics.
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The macroscopic dynamic properties of the suspension, such as the rheology, can then be directly
calculated in terms of these dynamic friction coefficients. For example, as shown in the appendix,
the definition of the Newtonian shear viscosity yields,

m= [ n,(o.t)dz=/ Gloydt
0

m=Jo m(0,t)dt =_[) Gy(tydt, (33)

where G(t) is the shear viscosity relaxation function discussed in the appendix. Thus, measurement
of the frequency dependent viscosity or modulus can be directly compared to the time dependent
viscosity function determined from generalized hydrodynamics via Fourier transforming the dynamic
friction function with respect to time. All the rest of the linear viscoelastic functions can be deter-
mined directly in this way, as demonstrated in the appendix.

V. RESULTS AND DISCUSSION
A. Short-time Approximation

The simpliest method of solving the GH-MMC hierarchy has been to approximate the time and
wave vector dependent structure factor by a short-time (ST) expression [15,10]. This essentially
decouples the hierarchy and permits calculation of the rheological properties in terms of the static
structure factor and the s.ngle particle diffusion coefficient. Lindsay et al. [29) predicted the Maxwell
relaxation time, relating the steady shear viscosity to the high frequency modulus as *¥ = n,/G',
to have a form similar to a Lindemann melting criterion. Here a similar approach is used to predict
the frequency dependent complex shear viscosity and comparison is made with a common model for
the relaxation spectrum.

In the short-time approximation the memory function for the GDE relation is neglected and the
original Fick's law is maintained. The dynamic structure facte is of single exponential form with a
wave vector dependent relaxation time as given by the collective diffusion coefficient:

S(k,t)5T = S(k)ezp (- De(k)k?t) . (34)
The generalized mass or collective diffusion coefficient is written as
Dc(k) = D°H(k)/S(k). (35)

For the strongly charged system considered here hydrodynamic interactions will be neglected in
these calculations and so the generalized sedimentation coefficient H (k) appearing sbove reduces to
unity. Recent calculations by Genz and Klein (61] have demonstrated the importance of including
hydrodynamic interactions, treated via the renormalization of Beenakker {62], for weakly charged
suspensions. Mathematically, this form for S(k,t)5T follows from replacing the fully time and wave
vector dependent diffusion coefficient in the generalized diffusion equation (26) with its time integral,
the collective diffusion cocfficient. The physical argument is that collective concentration relaxation
would occur on a time long enough that it would sample this net mass diffusion rate. I[n essence,
this neglects memory effects and would be the result from neglecting coupling between stress and
concentration fluctuations in the formalism.

\With the above approximation the viscosity functions are readily calculated from knowledge only
of the static structure factor. Lindsay et al. (29] give typical solutions for the time dependence of the
shear and longitudinal viscosities for very dilute, charged systems of spherical particles within the
two-body treatment. These were then integrated, yielding the steady shear viscosity from equation
(33). Over a dilute range of concentrations it was determined that

_ v (01d)
M =Go Dy (36)
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where d is the average spacing between particles. The proportionality between the shear viscosity and
the high-frequency modulus defines the Maxwell relaxation time for the system, the mean relaxation
time for the stress fluctuations. The above relation is interpreted within a cage melting picture to
express an idea similar to the well known Lindemann melting criterion. Namely, the viscosity is
proportional the force acting on a test particle, surrounded by an instantaneous configuration of
neighbors times a relaxation time. The characteristic time required for this force to relax is given
by the time necessary for the test particle to travel about one-tenth the average neighbor separation
distance. This is the time necessary for the surrounding cage to “melt”, hence the analogy.

B. Viscoelastic Approximation

A more sophisticated approximation to the GE-MMC equations that maintains the self-consistency
is the viscoelastic approximation (VEA). This is physically motivated by trying to approximate the
time behavior of the system by an interpolation between short time elasticity and long time fluid
behavior. For “short” times ( on the diffusion time scale) the suspension behaves like an elastic
solid while for “long” times the suspension will flow like a fluid. Thus, the approximation defines
generalized Maxwell relaxation times for the shear and longitudinal viscosities and approximates the
time dependence of the generalized mass diffusivity as a simple exponential decay [10]. Alternately,
one can consider this as a model for the second memory function, the memory function for the GSE
relation {10.17,18]. The VEA replaces the full wave vector and time dependent memory function
with a single exponential containing a time constant that is wave vector-dependent. However,
unlike the previous models for the memory function, this approximation does not specify the wave
vector dependence explicitly; it is to be determined by the self-consistent solution of the generalized
hydrodynamic equations.

Mathematically, the above assumption translates into the statement

Ak, 0)

Ak, z) = W

(37)

defining the Maxwell relaxation time for longitudinal friction. This can also be calculated, in the

absence of hydrodynamic interaction, from the contribution of interparticle interaction to the longi-
tudinal viscosity

My = — 7 a0y = k2= 0) 38
i (k) mi(k,0) J¢ mk.) ik, 0) (38)

where A() (k. z) = k2Any(k,z)/(C¢,). Substitution into the GSE (23) leads to a single exponential
for the time dependent part of the generalized mass diffusivity in the overdamped limit,

- Ady(k, 2) —pa(k)/k?
AD(k,z) = D*®(k : ~
(k) ( )c|°|’°(k)+A(||(k.z) 4+ (i (k)

(39)
This single exponential ansatz defines the Maxwell relaxation time for diffusion as
Mk = (rM(k -1 palk)
(rp (k) (7" (k)) (k)
AD(k,t) = D*®(k) - D(k,t) = —ﬂki,k—)e""'ﬁ'“‘)o(n (40)

Direct substitution into the overdamped GDE, equation (26), ieads to two poles resulting in a
double exponential form for the dynamic structure factor:
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55(":‘1;;)' = a(k)e™"/" ) 4 (1 - a(k))e™t/ ™K,
A i _ 1/2
(realk) ™ = 5 (k) + (7 (k) [;4- (matke) = (78 (kD)™)” = walk)
! pi(k) - 73! (k)
a(k) = 5 + PN Vit (41)
2 [ (k) = (7§ (0)7)° = dpalk)]
The mean structural relaxation time is given by
5k (k) = alk)ri(k) + (1 — a(k))ma(k). (42)

The three parameters a(k) 7, 2(k) are then algebraically related to the mean diffusion and longi-
tudinal viscosity relaxation times as

of _ T|(k)r’2(k)
o (k) = a(k)ri(k) + (1 — a(k))ra(k)
mi! (k) = a(k)ra(k) + (1 - a(k))r (k) )

The result is a closed set of nonlinear equations that are simplier than the more general set but
still formidable. Because of the viscoelastic approximation, one might expect to predict the correct
overall behavior but not capture all of the details of the relaxation processes {rom this approach.

C. Glass Transition

As discussed in detail in the literature [25,32,33,35,63-66], the dynamics of a similar molecular
model show a slowing down and eventual transition to a “glass” state, as characterized by the
existence of an infinite relaxation time in S(k.t). For the OCF model in the overdamped limii,
the existence of such an infinite relaxation time can be determined from an asymptotic solution of

the GDE. In Laplace transform notation, the GDE in the overdamped limit within the viscoelastic
ansatz becomes

S(k,:) B - ¢
—_— =Fk, ) t=: 4+ °+——‘h——,‘r 44
( S(E) ) (k. z) Ky - (44)

]

As discussed, this equation is closed via the mode-mode coupling scheme for the Maxwell relaxation
time. Now, if an infinite relaxation time exists for the density fluctuation correlation function, then
in the limitas z — 0

:
—

k,g_
(k

|

- Fk.s)~ 1) (45)

-
-

Uy

Substitution of this relation into equation (44) and rearrangement results in the follcwing closed
equation for the function f(k)

M _#3
flk) = — D7 (46)
- (WS =ps  _af'
S L
where tne Maxwell time for longitudinal viscosity is given by the appropriate mode-mode coupling

approximation, equation (28) or (29). Note that these equations differ from those derived in the
abovementioned reference due to the viscoelastic ansatz employed here. Otherwise, as the slowing
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of the density fluctuations are presumed responsible for the glass transition in simple fluids, the two
theories converge.

The limit of "li" — | provides an upper bound for the values of f(k), yielding

—us
J(k) = . (47
2ui)? ~ ui )
This is always positive and will approach | in the limit of infinite elasticity, as expected. This limiting
value provides a useful initial condition for iterative solutions. Numerical iterations converging to
a stable, non-zero value of f(k) distinguish the existence of an ideai glass {35,63] or non-relaxing
structure, whereas convergence to the trivial solution indicates the presence of liquid-like dynamics.
An asymptotic analysis can be performed in a manner similar to that by Bengtzelius [64) by using
the additional approximation for the structure factor of

S(k) = 1 + Ab(k,), (48)

where A, is an undetermined constant characterizing the height of the maximum peak in the struc-
ture factor S(k) and k, is the value of k corresponding to this maximum. Substitution into the
expression for the longitudinal Maxwell relaxation time results in

"df(ko)z +vflk)-1=0
§= ()
(#1)? = u3
.
(H5)? = us'
Note that the viscoelastic ansatz makes the resulting characteristic equation for f(k,) independent
of the value of A,, but still dependent upon the elasticity of the suspension. Further, in this limit,
the results are the same for both choices of the vertex function.
The roots of this equation can be found simply by noting that ¥ = 3 — 1, resulting in

1-4xC
f(ko)——_—u}——

c= /B -60+1. (50)

Real positive roots for f(k,) exist only if C is real, requiring 3 > 3 + 3v/2. (note that the negative
root yields a negative beta, which is unphysical.

The coefficient J has a simple physical meaning as directly proportional to the longitudinal elas-
ticity

2 (49)

E's(ko)a®

4ir |
oo k)= (1)

=5

(ko)

In the dilute limit ¢ — 0, EH}%'-E—’ —_ %{- plus terms proportional to higher orders in volume fraction.

Then, J = (1 + 4,) » 3, requiring 4, > bsé for divergence. This simple model solution is promising
in its ability to predict the existence of a nonrelaxing structure that will depend primarily on the
strength of the longitudinal elasticity and the height of the structure factor peak (correlation in

nearest neighbor position). A simple method for estimating rheological properties near the glass
transition is sketched in what follows.

D. Comparison with Experiment

The rheology and structure of suspensions of charged, polystyrene spheres have been measured
via small angle neutron scattering (SANS), static and dynamic light scattering (SLS,DLS) and me-
chanical spectrometry over a wide range of particle and added salt concentrations (55,67]. This
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experimental data base provides a check of the above theoretical predictions by direct compari-
son of the microstructure, density fluctuations, and rheological predictions for systems where the
equilibrium sttucture and the colloidal interaction parameters are well characterized.

In two recent publications [6,7] a detailed test of the theoretical predictions against this model
colloidal system was performed. Briefly, the major conclusions of that work are:

e the OZ-RY equation yields excellent predictions for the light scattering from polydisperse
charged suspensions

e the high-frequency elastic constants from the predicted structures are in excellent agreement
with wave-rigidity measurements

o quasi-elastic light scattering results on strongly correlated but dilute (in a volume fraction
sense) suspensions demonstrate that the double exponential behavior predicted by the vis-
coelastic ansatz is a good representation of the decay of the dynamic structure factor

o the short-time solution yields resuits in agreement with the Lindemann law

o for these dilute samples the primary relaxation time predicted from the the two-body closure
15 1n good agreement with the measured values while the convolution approximation overesti-
mates the primary relaxation time

o [or concentrated suspensions the convolution approximation correctly predicts the onset of a
kinetic glass transition

o the rheology predicted from the convolution approximation demonstrates the strong divergence
as the glass transition is approached

o the two-body approximation was found not to yield a divergence in the mechanical properties
in the region of the glass transition.

E. Shear Melted Colloidal Crystals

Recently, measurements of the capillary viscosity of dilute suspensions of charged particles in
deoinized water have been reported as a function of particle size and ionic strength [68-70]. The vis-
cosity was found to increase almost linearly with volume fraction with a slope that greatly exceeded
the Einstein prediction for spheres as the ionic strength was decreased. Further, it was found that
the viscosity reduced to a master curve for a given type of particle when plotted against number
density; that is, the master curve reduced viscosity data on all particle sizes for deionized suspen-
sions. The former result is intriguing in that one would expect interparticle interactions to enter as
a concentration squared term. However, as will become apparent, the change in the electrostatic
screening length with particle density is responsible for this apparent linear behavior.

Calculations were performed for particles of size 33.5nm and charge 980e at both 1.e-5 and 5.e-5
Molar added 1:1 electrolyte (see table I). The solutions of the RY-OZ equation are shown in figure
I. Using the critesia proposed by Hansen and later verified by Robbins et al. [71]) that at the
crystallization point the peak in S(k) goes through 2.85, it is apparent that the systems should be
crystalline at the higher volume fractions. Of course, the integral equation theory does not contain
information about this first-order phase transition so it yields a metastable fluid structure. One is
tenpted to postulate that this metastable fluid structure should, to some reasonable approximation,
resemble the shear melted structure seen in the experiments.

TABLE 1
Experimental Systemn Characteristics
system Radius (nm) Charge (e) Salt Cone. (Molar)

A 33.5 980 l.e-b
B 33.5 980 5.e-5
C 35 390 l.e-3
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The mechanical properties are shown in figure 2. Both high frequency moduli exhibit power law
scaling that is less than squared, which is characteristic of charged suspensions at low ionic strength
(5,6]). Further, the longitudinal elasticity is relatively weak even for the most concentrated sample;
therefore, the systems should not be kinetically trapped into a glass phase.

Calculations for the Maxwell relaxation times are shown in figure 3. Predictions are made for
the short-time closure and the two-body viscoelastic treatment, as the two-body closure has been
determined to be more accurate for these volume fractions and elasticities. The maxwell relaxation
times for the short-time solution follow the Lindemann law, while the self-consistent calculation
predicts a significant increase in the cage lifetime. The total relative viscosity is given as:

Boltho = 1 + 250+ GoutM (52)

In figure 4 it is seen that the viscosity scales sublinearly with concentration for both closures, again
a consequence of the increased screening length due to the increasing counterion concentration
accompanying the increasing macroion concentration. The self-consistent coupling results in an
order of magnitude increase in the reduced viscosity above the Lindemann result. The experimental
data, indicated by the best fit curve to the data reported by Mallamace et al. [70], falls on the
results from the short-time solution and is below the predictions of the viscoelastic ansatz. The
yuantitative agreement of the short-time solution with the data is excellent. The theory could
be fine tuned to provide a surface charge that would also make the predictions of the viscoelastic
solution quantitatively consistent with the experiments. Indeed, the titration resuits for the surface
charge on the particle usually overestimate the effective surface charge needed for the Yukawa model
of the potential [55]. Therefore, in the absence of structural information, such as structure factor
measurements, other mechanical measurements, such as high frequency elasticity measurements, or
sell-diffusion measurements, the consistency of the fit cannot be unambiguously determined. This
points to the necessity for measuring one or more additional transport or structural suspension
property to completely characterize a colloidal suspension.

In the original paper, Mallamace et al. (70] apply an approximate analysis based on earler work that
did not benefit from a rigorous statistical mechanical treatment of the suspension mechanics. The
authors fit their viscosity data to the lattice model proposed by Buscall et al. [72] and concluded that
the maxwell relaxation time must be a constant for a given particle size and electrolyte concentration;
i.e. it does not depend upon concentration, in seeming violation of the Lindemann analogy. However,
this analysis demonstrates that the observed behavior is in complete agreement with the cage melting
analogy. The discrepancy is in the use of the lattice model for the high-frequency elasticity. As has
been demonstrated, approximation of the liquid structure by a lattice and the neglect of the first
derivative term makes the lattice model suspect when applied to colloidal suspensions [6].

F. Viscosity Divergence near the Glass Transition

Due to the direct correspondence between the equations for colloids and simple fluids at the glass
transition, it is possible to use previous results calculated for molecular fluids to predict colloid
rheology near the glass transition. Again, this correspondence is exact only when hydrodynamic
interactions are neglected. Bengtzelius et al. [64] have studied the convolution closure version of the
generalized hydrodynamic equations without the viscoelastic ansatz for a Lennard-Jones fluid ap-
proaching the glass transition. This transition is from metastable liquid to glass, which is preempted
by the crystalline transition in monodisperse samples in equilibrium. They showed the development
of a long-time tail in S(k,t) that resuited in a divergence in the self-diffusion coefficient as the glass
transition is approached. Through the use of hard-sphere structure factors, they determined that

D,/D, = (x - ;‘%)m. (53)

where ¢, = 0.516 is the expected transition concentration for molecular hard-spheres.
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As a first order estimate for the rheology, this result is combined with the Lindemann melting
criterion above, equation (36), to yield an equation for the mean viscous relaxation time

o, (0137 ( ¢ )“ "

R mem—— l—_
L] Do

e (54)

where the self-diffusion coefficient has replaced the bare diffusion coefficient in the expression. The
proportionality between shear viscosity and long-time self diffusion has been noted experimentally in
the colloid literature [73] and some modeling has argued for this (44), however exact dilute limiting
expressions demonstrate they are indeed different [74,75]. This approximation is consistent with the
cage model as the diffusion of a particle at high volume fractions must feel the hindering effects
of particle interactions as the phase transition is approached. As previously noted [5), the resuit
yields an equation similar in form to the Krieger-Dougherty relation, which has wide application
in fitting the viscosity of suspensions. The exponent of -1.76 is between the values of ~2.5 « ¢,
to -2 that are typically reported for hard-sphere suspensions [44,76,77), however the experimental
critical concentration is close to the random ciose packing limit (¢ = 0.63) not the concentration
at the onset of the phase transition. The similarity suggests that a full numerical analysis of the
hard-sphere collective dynamics near the glass transition would be fruitful.

This estimate can also be directly applied to charged systems by using a thermodynamic mapping
onto an effective hard-sphere system through the relationship

a\3
on=o(l+=)" (55)
KNG

This 1s essentially a statement that the effective hard-sphere radius is the true particle radius in-
creased by some proportion of the Debye screening length in a charged system. Typically, a has
been reported to be about 1.6 [78,55), as determined by fitting the phase transition ¢. to that of
hard spheres. Figure 5 demonstrates that this approach can estimate the divergence of the shear
viscosity of system C reasonably accurately, where ¢, = 0.63 has been used. The self-consistent cal-
culation using the convolution approximation, which is also shown in figure 5 for comparison, shows
an almost exponential rise in viscosity with concentration [7] that anticipates the experimental data.
The convolution approximation also yields a glass transition at a volume fraction of 24 %, in good
agreement with experiment.

G. physical interpretation in terms of cage melting

A popular method of envisioning the dynamics in simple and colloidal fluids is the cage melting
model (79]. In this model, the particles are temporarily localized, or “trapped” in a cage of their
neatest neighbors. Diffusion for short times is confined to the cage, while for longer times, the
cage “melts” and particles diffuse distances beyond the nearest neighbors. Colloidal transport is
achieved by this process of cage melting, freeing the test particle to diffuse until the next cage is
encountered. The general expression for the interparticle viscosity, n, = G rM is to be interpreted
as G, representing the strength of the force localizing the particle in the cage (relative to shear
deformations) and 7™ representing the melting time of the cage. The latter is modeled through
extension of the Lindemann melting criterion for suspensions (see also (80]). This interpretation
of the Lindemann law works as long as the melting time is simply controlled by free diffusion (29},
as would be the case for the isolated cage. As has been shown here, this result is also recovered
from the short time approximation, which neglects coupling of density fluctuations to the suspension
viscoelasticity.

The mode-mode coupling solution can be interpreted as the consideration of the caging of these
neighboring particles within a cage of their nearest neighbors, a “multiple cage” phenomena. Thus,
{or the nearest neighbor to diffuse so as to free the test particle, they themselves must escape
their cages of nearest neighbors, and so on. Put another way, correlated motion of a collection of
particles is required to dissipate the cage surrounding the test particle. This intuitive picture helps
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to put in perspective the dependence of the transport coefficient upon collective dynamics of density
fluctuations.

The glass transition can also be interpreted with regards to the longitudinal fluctuations that
control the collective diffusion. The large increase in rﬁ"’ is controlled by the force localizing the
neighbors forming the cage, or rather, the stiffness of the nearest neighbor forces with respect to
longitudinal fluctuations, E.,. Thus, once EZ, on a per particle basis becomes significantly larger
than the Brownian energy available to create local density fluctuations, the particle cages become
permanent and the system is kinetically trapped as a glass. The ratio of this energy per particle
to the Brownian thermal energy is, to a first estimate, just £’,a3/kT. This physical picture is

consistent with the rheological predictions and measurements, and the asymptotic treatment of the
glass transition.

VI. SUMMARY AND CONCLUSIONS

A method to calculate all of the collective dynamics and linear viscoelastic rheology for Brown-
ian colloidal suspensions simply in terms of the fundamental physicochemical properties has been
demonstrated. A self-consistent solution of the generalized hydrodynamics equations and for the rhe-
ology of strongly interacting colloidal spheres has been obtained numerically through the viscoelastic
approximation. The predicted rheology for charged colloids interacting via a Yukawa potential is in
good agreement with experiments for the rheology of charged latex suspensions. It is shown how
to explicitly account for polydispersity effects for the structure, cumulants, and elastic constants.
Calculations are performed to demonstrate the viscoelastic predictions for hydrodynamically dilute
suspensions yield a linear scaling with volume fraction, but of much steeper siope than the single
particle Einstein correction. The theory can also predict the onset of the glass transition and the
commensurate divergence in the viscosity.

Further work comparing this self-consistent solution against the details of Brownian dynamics
simulations for model systems are currently under study to firm some of the interpretations and
conclusions suggested by the comparisons with actual measurements. This work complements cur-
rent research using the generalized hydrodynamics formalism to describe both dilute suspensions
and glass systems by providing a self-consistent solution valid for colloidal suspensions in the fluid
phase. Future work includes the study of other Brownian systems relevant to the colloid community.
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APPENDIX A: RHEOLOGICAL PROPERTIES STUDIED

As astarting point we take the generalized Maxwell model for the relaxation spectrum of a complex
fluid (81)], consisting of an infinite superposition of Maxwell elements each with a characteristic
relaxation time A. The relaxation modulus is defined as

V(L)

€o*Y

G(t) = (Al)

where the experiment is a shear stress relaxation 7°¥(t) at infinitesimal shear strain levels ¢Z¥.
The steady shear viscosity is defined as a time integral over the relaxation modulus
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m = / " Gls)ds (A2)

and by frame invariance [82], the primary normal stress difference,

oQ
Ny = ¥ 09% = '2—',2/ sG(s)ds. (A3)

Although not itself a linear property, the primary normal stress coefficient is related simply to the
first term in an expansion for the shear modulus in frequency and, as such, can be obtained from
the dynamic viscosity. Through linear viscoelasticity, the primary normal stress coefficient gives the
recoverable strain upon flow cessation v,, as

Te _ 310

Yo M
showing this is zero in the limit of zero shear rate. The other relevant rheological function, the
secondary normal stress coefficient, cannot be determined solely from linear viscoelasticity, as it
depends on the choice of constitutive equation [82].

The steady elongational viscosity in the linear limit can also be expressed (for an incompressible
fluid) as

(Ad)

n=3n, (AS)
leading to the Trouton ratio of 3. For a general, compressible fluid, this can be written as

3ns(my - 3m,)
m="

where 7y is the longitudinal viscosity, which is calculated in a manner analogous to equation A2
with Gy(t) replacing G(t). In the model to be considered here, the OCF, the solvent is taken to
be an incompressible, Newtonian fluid. The stresses from the solvent and the fluid of Brownian
particles are taken to be additive. Thus, the Trouton ratio must be 3 as the longitudinal viscosity
for the suspension as a whole is essentially infinite. However, it is still instructive to examine
the contribution of the Brownian fluid to the longitudinal viscosity and the resultant elongational
“pseudo-viscosity” as the former property can be determined through optical techniques [83].
Defining the frequency dependent modulus

7= (A6)

G{w) = G'(w) +1G"(w), (A7)
yields
e o}
G'(w) =w/ G(t)sinwtdt (A8)
0
o0
G"(w) =u/ G(t)coswtdt. (A9)
0
This function is also directly related to the frequency dependent shear viscosity:
. G*(w
m(w) = n,(w) = in)/(w) = —w(-—) (A10)
Further, the primary normal stress coefficient is related to the dynamic viscosity by
. 2 H
\le.ozhm.,_o-%-. (A11)

Therefore, predictions of the time and wave vector dependent shear and longitudinal viscosity func-
tions yields the full linear viscoelastic behavior for the suspension.
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APPENDIX B: FIGURE CAPTIONS

I. Equilibrium microstructures S(k) versus ka, systems A and B.

2. Normalized high-frequency elasticities (- - -) Qﬁi (—) Eﬁ: (O) System A (Q) System B.

3. Dimensionless Maxwell relaxation times for: (O) System A, (O) System B, (—) Lindemann
Law, (- - - -) two-body self-consistent solution.

4. Total viscosity (in cp) for the short-time (—-) and two-body (- - - ) solutions, (O) System A
(Q) System B. The thick lines represent data taken by Mallamace et al. [70)

5. Reduced interparticle viscosity (n/p,) for system C (b) 1.0 millimolar salt concentration. Sym-
bols: measured (o), short time (- - -), convolution approximation (o), equation 54 ( ).

93



uorjoudj IJwnfoa
100 1000

a1} uoljexeiad [|oMXe}

uoIjowRlj awinjoa

100 1000
L2 2 4 4 4 N
1000
100
<
o}
Q.
. £
1’0 c
7]

1
wu /9
010 800 900 00 00 000
caaaaaaaalasaasaaasdaaasaaasadaiasd - 80
(@) e
S ¢
\ ﬁ
- .vOc—
1000 |
[ )
- 0025
wgm
€00
c00
[
[
o0y
.EC\F .Vd
010 800 900 00 200 000
-..--r.-Frtrbt-n-b.--.pb~.-->>..>-.......P» OQO
!
(e) g
- 001
[
1000 f ooz
, W
P
=
L oo ¢C
100 .
ﬁ
€00 r oot
cO 4
006§

94



VISCOSIly

6.00

3
p /dJ
p e
5.00 3 e
3 - A
. P -9
o~ 3 Ve
Q400 1 A g
p - -
~ Viscoelastic o~
- -~
- : / -~
>~3.00 3 i
e p - .
P - a
n
Q
Q2,00 ]
n 3 b
> 3
: .
3 short—time
1.00 ;
0-0 .‘“T‘TIITT"l'T"rYl‘lller'ﬁ"Y"’lT“]l’l‘rl‘r']"‘T'lY‘r

0.000 0.005 0.010 0.015 0.020 0.02%8 Nn030

volume fraction

©

4

~

O O O
[0 0]

O
Ch

wn
satid ol gorepd g 1t

- O O O O
t (N 4+
ddastes 2 onbanal S ostiila 1AMl

gad 3yl g

la

{[e

lY"(Y‘rT'T‘YYIYIYI[“I‘TTI‘TTI’I‘IlTll‘]YY'I‘I‘IT‘IYlY]I'lT

)]

0.00 0.05 0.10 0.15 O.2Q 0.25 0.30
volume fraction 5

95



96



NUMERICAL SESSION



Simulations of Particle Transport in Plasma Processing Discharges

Seung J. Choi, Peter L. G. Ventzek, Robert J. Hoekstra, and Mark J. Kushner2
University of Illinois
Department of Electrical and Computer Engineering
1406 W. Green St., Urbana, IL 61801

Abstract

The transport of particles ("dust") in low pressure electrical glow discharges is of interest
with respect to contamination of semiconductor wafers during plasma etching and deposition. The
distribution of dust particles in these reactors is determined by a variety of forces; the most
important being electrostatic, viscous ion drag, gravitational, thermophoretic and neutral fluid drag.
In this paper, we present results from a series of computer models to predict the spatial distribution
of dust particles in capacitively coupled electrical glow discharges considering these forces. The
results are parameterized over power deposition, gas flow, and particle size. We find that the
spatial distribution of dust depends on the spatial dependence of the sheaths and potential in the
bulk plasma which in turn depend upon the electrical topography of the surfaces. Experimentally
observed "dome" and "ring" distributions of dust particles are computationally reproduced for
specific combinations of discharge power, particle size and substrate topography.

dAuthor to whom correspondence should be addressed.

I. Introduction

Particulates ("dust" particles) are common contaminants in low pressure (< 100s mTorr),
partially ionized (electron density 109 - 1011 cm3) plasma processing electrical glow discharges
for semiconductor etching and deposition.[1-10] The dust particles negatively charge, and particles
of a few microns in size have 100s to 1000s of elementary charges.[15,16] Dust particles generally
accumulate in specific regions of the radio frequency (rf) discharges which are commonly used in
plasma processing. Roth and Spears first used laser light scattering to observe that particles
accumulate near the bulk plasma-sheath boundary in these discharges,[1] as later confirmed by
Selwyn et al.,[2-4] Jellum et al,,[S-7] and Watanabe et al.[8,9] Large particles (> 0.1 um)

accumulate near the sheath edge, while small particles accumulate in the center of the discharge at
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the location of the maximum in the plasma potential. (See Fig. 1.) Selwyn et al.[3] and Carlisle et
al.[10] also observed that particles accumulated in rings around and domes above the
semiconductor wafers in reactive-ion-etching (RIE) discharges.

Sommerer et al.[11] and Barnes et al.[12] have proposed that the transport of small
particles (when gravity is not important) is dominated by two forces; electrostatic and viscous ion
drag. The former force accelerates negatively charged particles towards the center of electropositive
plasmas or towards local maxima in the plasma potential. The latter force accelerates particles in the
direction of net ion flux, which is generally towards the boundaries of the plasma. (The ion drag
force results from open orbits of positive ions around the dust particle which transfer momentum to
the particle in the direction of the net ion flux.[15,16]) These forces have also been theoretically
addressed by Graves et al.[13,14] and computationally addressed by Choi and Kushner.[15,16]

The details of the geometry of the reactor are important in determining the location at which
particles accumulate in 1f discharges. For example, for large particles, the electrostatic and ion drag
forces balance near the edge of the sheath. The electrical topography of the substrate, which
determines the shape of the sheath, is therefore important in determining the distribution of dust
particles. Viscous fluid forces accelerate particles in the direction of the gas flow. The flow field
through nozzles and around obstacles is therefore important with respect to dust distributions. The
geometry of the reactor can also determine the temperature field, which generates thermophoretic
forces.[24]

The importance of the electrical topography of the substrates in determining the distribution
of dust has been noted by the experimental observations that dust often accumulates in rings and
domes above semiconductor wafers.[17] Selwyn et al. also observed that particles accumulate in
the center of metallic washers placed on the electrode and in grooves surrounding the wafer in rf
discharges.[3] These observations are presumabely explained by the perturbing effects of these
topographies on the potential profile and ion fluxes. Further evidence for the importance of the
electrical topography in determining dust distributions can be found with recent electric probe

measurements of the plasma potential in rf discharges. These measurements showed that particles
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Fig. 1. Schematic of
locations of particle trapping in
a plasma processing discharge.
a) At low power deposition and
small particles, the particles are
commonly found in the body
of the plasma. At high power
deposition and large particles,
trapping occurs at the edge of
the sheath. b) Particles are
often trapped in domes above
and rings around wafers. These
trapping locations correspond
to discontinuities in the wafer
topography.

SHEATH

Fig. 2. Forces which act on
particles in a plasma
processing discharge.



are commonly found in the vicinity of positive potential traps (perhaps as large as 7 V) at the edges
of wafers.[10,17]

A schematic of the forces acting on a dust particle in a plasma processing reactor having a
showerhead nozzle is shown in Fig. 2. In this geometry, electrostatic forces accelerate the particle
away from the electrode towards the center of the plasma or towards local maxima in the plasma
potential. Ion drag forces accelerate particles towards the edges of the plasma or away from local
maxima in the plasma potentiai. Thermophoretic forces accelerate particles away from the heated
substrate towards the colder showerhead. The fluid drag forces accelerate particles in the direction
of net advective motion away from the top electrode and radially towards the pump port. To
predict the accumulation of particles in these rf discharges, one must therefore self-consistently
account for the shielding and charging of particles in the plasma, the ion flux which provides the
ion drag forces, the electric field which generates the electrostatic force, the fluid flow field which
provides the viscous drag force and the temperature field which generates thermophoretic forces. A
series of computer models has been developed to predict the dynamics of the motion of dust
particles in capacitively coupled rf discharges considering these forces. The models are described
in Section II followed by a discussion of our results in Section III. Our concluding remarks are in

Section IV.

II. Description of the Model

The model we have used in this study is a series of five linked simulations, schematically
shown in Fig. 3. The first model is a pseudoparticle-in-cell simulation (PICs) which provides the
electrical charges on the dust particle and ion-dust momentum transfer cross sections.[15,16] The
second is a 2-dimensional Monte Carlo-fluid hybrid (MCFH) model for plasma properties of rf
discharges.[18] The third is a 2-dimensional plasma chemistry Monte Carlo simulation (PCMCS)
which provides ion velocity distributions.[18] The fourth is an advective flow field model. The
fifth is the dust particle transport (DPT) model which is the module in which the dust particle

trajectories are actually computed. (To avoid confusion, computational particles in a PICs or Monte
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Carlo simulation will be called pseudoparticles; contaminating particulates in the plasma will be
called dust particles.)

The modeling process begins by computing the electrical charges on the dust and the ion-
dust momentum transfer cross sections to be used for ion drag forces as a function of ion energy
and plasma parameters (such as electron density and temperature). These cross sections are
obtained from the PICs which follows electron and ion trajectories in the vicinity of a dust particle
while solving Poisson's equation for the electric field. Before executing the PICs, Monte Carlo
simulations (MCs) of both the electron and ion swarms are performed using a specified and
spatially uniform E/N (electric field/gas number density). The purpose of performing the MCs is to
obtain the quasi-steady state electron energy distribution and ion energy distribution for use as
initial conditions in the PICs. The details of the MCs are described in Ref. 19. All pertinent elastic

and inelastic collisions of electrons with the neutral gas and ions are included in the MCs.
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After the electron and ion energy distributions are obtained, a spherical dust particle is
introduced into the center of the computational volume having a specified charge, Q. The PICs is
then performed while including all the collision processes. This portion of the model differs from
the MCs in that now the self-consistent electric field in the vicinity of the dust particle is obtained
by solving Poisson's equation while the equations of motion of the pseudoparticles are advanced.
When solving Poisson's equation, the net charge density in the plasma and on the surface of the
dust particle are accounted for. The surface charge density provides a boundary condition in the
form of the electric field at the surface. Pseudoparticles striking the dust particle are assumed to be
collected with unity efficiency. The collected charge density was averaged over the surface of the
dust particle. The PICs is executed to obtain dQ/dt. Based on the sign of dQ/dt, the PICs is
repeated with different values of Q to search for the value of Q which yields dQ/dt = 0 which
signals an equilibrium of electron and ion fluxes to the dust particle. An example of the results
from this model are shown in Fig. 4 where the charge and electrical potential on dust particles as a
function of position are plotted. The particles charge to a few times the electron temperature. The
amount of charge on the dust particle scales approximately with its radius.

At the end of the PICs, cross sections for electron and ion momentum transfer to the dust
particle, and for collection by the dust particle are calculated using molecular dynamics techniques.
Given the electric field around the dust particle obtained from the PICs, electron and ion
pseudoparticles are launched into the computational volume with varying impact parameters. By
gathering statistics on the change in momentum and number of pseudoparticles as they leave the
volume, one can calculate the momentum transfer and capture cross sections.

A 2-dimensional MCFH model of rf discharges is then used to obtain electric fields as a
function of position and source functions for ions and radicals.[18] The 2-dimensional (r,z) model
is a hybrid simulation consisting of an electron Monte Carlo Simulation (EMCS), a fluid-chemical
kinetics simulation (FKS), and an off-line plasma chemistry Monte Carlo simulation. The model is
conceptually a 2-dimensional analogue of the 1-dimensional MCFH model for rf discharges

described in Ref. 20. The hybrid model begins by estimating electric fields in the plasma as a
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function of position and phase, E(r,z,0). These fields are used in the EMCS to advance electron
trajectories to calculate the time averaged electron energy distribution, f(€,r,z). This is obtained by
averaging electron trajectories over 50 rf cycles while including all pertinent elastic, inelastic, and
coulomb collisions.[20] f(e,r,z) is then used to calculate source functions for electron impact
processes, transport coefficients, and average electron energies as a function of (r,z). These
quantities are then passed to the FKS. The FKS integrates the continuity equations for the densities
of all charged and neutral species and solves Poisson's equation for the electrostatic plasma
potential using the method of successive-over-relaxation. A semi-implicit solution of Poisson's
equation allow us to take time steps 10s-100s times larger than the dielectric relaxation time if
necessary. An acceleration technique is used to speed the convergence of the FKS by predicting
future species densities based on recent time histories of those densities.[21]

We account for the different effective areas of the electrodes by using a simple circuit
having a blocking capacitor, and calculate the dc bias generated on the substrate. The surfaces of
the chamber are specified as being either metal or dielectric. We can also include topography on the
substrate such as wafers, disks and grooves of specified dielectric constant. After the FKS,
E(r,z,0) and species densities are cycled back to the EMCS to iterate through the model until the
plasma density converges.

In the MCFH model, electrons are treated kinetically while ions are treated as a fluid. We
therefore do not generate the information on the ion energy distributions that is required to compute
the ion drag forces on the dust particles. To obtain these ion energy distributions the electric field
and source functions from the MCFH model are imported into the PCMCS. In the PCMCS, source
functions and electric fields from the MCFH are used to launch and follow trajectories of
pseudoparticles representing ions and radicals. All pertinant elastic and inelastic collisions for both
ions and radicals are included. An iterative particle-mesh algorithm incorporating a modified null
cross section technique is used to account for ion-ion (such as negative ion-positive ion
neutralization) and radical-radical collisions.[22] Statistics are collected on the velocity and spatially

resolved ion momentum flux distribution, ¢(r,z, vy) [g/(cm? s-1)/(cm/s)].
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The fluid flow field in the reactor is obtained by solving the perturbative pressure form of

the continuity and momentum equations.

ou - Vp’ T
—&—- =-Veuu - Po - DV2 u (la)
AL (16)

In Eq. 1, T is the advective fluid velocity, p'is the perturbative pressure, p, is the gas density, ¢,
is the sound speed and D is the velocity diffusion coefficient. This flow field is also used in the
PCMCS to account for momentum transfer between the pseudoparticles and buffer gases during
elastic collisions.

The motions of the dust particles are calculated in the DPT model where we compute the
spatially dependent [T =(r,z)] forces on the dust particles. To obtain these forces we import the
ion-momentum transfer cross sections for ion drag forces and dust charges (from the PICs),
electric fields (from the MCFH model), ion momentum distributions (from the PCMCS model) and
the fluid flow field. For this work we have simply specified a temperature gradient. The force on

a dust particle i having a specified radius (r;) and mass (M;) is

B (T)= ME + qE +/ o(¥1) 617, V) V1l dv]

- SR Vi- D+ CoRep 5P - bmrvRr e F @

The terms on the right-hand-side of Eq. 2 are for gravitational, electrostatic forces, ion
drag, viscous fluid drag and thermophoretic forces. E is the electric field (obtained from the
MCFH model), q;j is the charge on the dust particle (obtained from the PICs), & is the ion-

momentum transfer cross section (obtained from the PICs) and ¢ is the ion momentum flux
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distribution (obtained from the PCMCS model). The last two terms, viscous fluid drag and
thermophoretic forces, are derived from classical thermodynamics based on the hard sphere particle

assumption.[23,24] The constants are

C(Kn) = 1+Kn(ot +B) « exp(- g5 . (3a)

R _ R 0.657 0.01721 » R3n
Co(Rep) ZF = 1+0.173+ Reyd57 + - s Re TS ° (3b)

201V - Ul
Rep = m , (30)
kg
2Cs (k + C[Kn)

Kt = > (3d)

(1+3CqmKn) (1+2- %+ 2CKn)

7i is the velocity of the dust particle, Kn is the Knudsen number (A/r), Rep is the Reynolds
number, W is the fluid viscosity, v = u/p (p is the gas density), and T is the mean gas temperature.
In Eq. 3, o, P and vy are experimental constants which depend on the nature of the gas-particle
interaction at the particle surface and so are affected by both gas composition and particle surface
roughness. kg and kp are the gas and particle thermal conductivities, and C;, Cs, and Cy are the
thermal creep coefficient, temperature jump coefficient, and velocity jump coefficient, respectively.
All values of the constants in Eq. 3 are listed in Table I.

To begin the DPT model, we specify a volumetric rate of generation of dust particles of a
given radius. We then launch pseudoparticles representing the dust particles from those locations,
and simply integrate the equations of motion of those pseudoparticles while continuously launching

additional pseudoparticles until the dust distribution achieves a steady state.
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Table 1

Values of Constants Used in Force Calculations

Constants Yalue Ref,

o 1.227 23
B 0.42 23
Y 0.85 23
kg 0.1799 mW/cm-K 27
kp 1240 mW/cm-K 27
C 2.2 23
Cs 1.147 23
Cm 1.146 23

III. Distribution of Dust Particles

In this work, we investigated dust particle distributions in a capactively coupled radio
frequency (13.56 MHz) discharge sustained in 100 mTorr of argon with a nominal power
deposition of = 20-200 W. (See Fig. 5.) The electrodes are separated by 3 cm and the plasma zone
is 10 cm in diameter. The gas flows through a showerhead nozzle and out radially to a pump port.
(See Fig. 6.) A wafer (dielectric constant €/eo = 11.8, thickness 3 mm) sits on the lower powered
electrode. The top electrode is grounded. The radial boundary condition is approximated as a
ground plane (at r = 10 cm) which allows the advective flow to pass. For these results we have
assumed a constant thermal gradient of 15°K/cm as might occur when actively cooling the wafer.
We observe that the calculated thermophoretic force is 1-2 orders of magnitude smaller than the
electrostatic or ion drag forces, and therefore is not a major consideration under our operating
conditions.

Typical results from the MCFH models are in Fig. 5 where the time averaged plasma

potential, ion source, ion density, and argon metastable density are shown. A 10 cm diameter
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wafer is placed on the powered electrode. The powered diameter of the lower surface is = 12 cm
and is separated from the annular ground plane by a dielectric spacer. The metal surface of the
powered electrode generates a dc bias of -8 V, while the surface of the wafer acquires a dc bias of
-31 V. Note that there are local maxima in the plasma potential, electron sources and ion density in
the form of a toroidal ring 1-1.5 cm from the edge of the wafer.

The positive potential well has a depth of = 1-1.5 V. These local maxima, perhaps similar
to those observed by Geha et al.[17] result from a discontinuity in the electrical topography
produced by the sharp edge of the wafer, and by the transition between the dielectric wafer and the
metal. In this regard, the discontinuity in electrode topography resembles the metal-gas-dielectric
triple point at which electric field enhancement occurs in high voltage switches.[28] The ion
density shows a small maximum in this toroidal region as well as at the center of the plasma. The
Ar(4s) density also shows a weak off axis peak. Note that although the ion source has a local
maximum near the edge of the wafer, its absolute maximum value is near the exposed powered
electrode. This results from the fact that the full capacitve voltage drop is across the sheath as
opposed to sharing the voltage between the wafer and the sheath.

The ion flux (obtained from the PCMCS) and fluid flow fields for these conditions are
shown in Fig. 6. The ion flux typically flows from maxima in the plasma potential and ion sources
to the peripheries of the reactor. The local maxima in the plasma potential and ion source at the
edge ¢! the wafer produces a vertex in the ion flux with ions flowing from that location. The fluid
flows starts from the showerhead and gains speed in the radial direction as the edge of the
showerhead is approached.

Predictions of dust particle locations for dust diameters of 0.5 to 4 um are shown in Fig. 7
for the geometry just discussed. These results are an instantaneous "snapshot" of the dust particle
locations 0.15 s after beginning to generate particles. The dust particles are generated at a constant
rate of 2.6 x 104 s°! in the plasma region of the reactor weighted by a cosine (maximum in the
center) in both the axial and radial directions. The power is 80 W and the gas flow is turned off.

The smaller sized particles are trapped near the center plane of the reactor at the maximum in the
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Fig. 6. Flow fields for the conditions of Fig. 2. a) ion flux and b) advective fluid velocity. The size of the arrow
denotes the magnitude of the ion flux or fluid velocity. The maximum value is shown at top. The ion flux moves
away from the local maxima in ion source and plasma potential to the boundaries. The fluid velocity is most
negative at the showerhead nozzle and is almost totally radial near the edge of the wafer.

plasma potential. The dust particles are also trapped around, but not in, the positive potential well.
Ion flux flowing out of the well is fairly efficient at removing particles from that region and holding
them at the periphery. We also observe that the plasma optical emission and particle locations do
not necessarily coincide. Trapped particles follow a contour on which ion drag and electrostatic
forces balance. This contour moves down towards the edge of the wafer around both sides of the
local maximum in potential on both sides. These loci of points forming the trapping locations give
the appearance of a "dome" above the wafer and "ring" around the wafer as experimentally

observed by Selwyn et al.[2,25,26] at similar power deposition (240 mW-cm-2).
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Fig. 7. Dust particle locations with a 10 cm diameter wafer on the powered electrode. Locations are shown for a)
0.5, b) 1.0, ¢) 2.0 and d) 4.0 um particles. Small particles are more sensitive to the electric potential and may form
domes and rings around local maxima in the potential by ion drag away from those locations. Large particles have
larger ion drag forces, which push them towards the boundaries. Inertial effects cause oscillation about the
equilibrium locations.



As the particle size increases, the trapping location moves toward the electrodes and a flatter
dome and a wider ring form. The ion drag force increases at a faster rate with increasing particle
size than does the electrostatic force; and so the large particles are pushed by the ions towards the
periphery. The ion drag forces are sufficently large for particles = 2-4 um that inertial effects are
important. That is, the dust particles are accelerated to high velocities which overshoot the
equilibrium location at which ion drag and electrostatic forces are balanced. The particles therefore
oscillate about those locations as their velocities are slowly damped by fluid drag forces. The
oscillation is shown by the "blurring" of the particle locations in the snapshot of Fig. 7d. Although
we collect all particles striking the electrodes, many of the larger particles strike the electrodes and
could conceivably bounce off the surface.

Particle locations are shown in Fig. 8 (1 um diameter) for similar conditions to Fig. 7
except having a 15 cm diameter wafer on the powered electrode and power deposition of 20-240
W. The largest difference which occurs with increasing power deposition is an increase in the ion
flux while the potential profile does not appreciably change. As with the smaller wafer, there is a
local maximum in the plasma potential and ion flux near the edge of the wafer as shown in Fig. 9.
But now with the larger wafer, there is also a maxima in the plasma potential at the center of the
wafer. At low power deposition, the electrostatic forces dominate, and the particles accumulate at
the ridge of the maxima in the plasma potential. As the power increases and ion drag forces
increase, the particles are pushed away from the maxima in the plasma potential, and form disk-
and dome-like structures. These locations are on opposite sides of the maxima in plasma potential
where the ion drag caused by ions flowing away from the maxima is balanced by electrostatic
forces. As the power continues to increase, the ion drag forces dominate and push the particles to
the sheaths at the edge of the wafer. At high powers, the ion drag forces accelerate the dust
particles to sufficiently high velocities that they overshoot the equilibrium location. Evidence of
oscillation in the location of the particles can be seen by the "blurred" line of particles. These

predictions agree with the experimental observations of Selwyn et al. who noted that particle traps
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Fig. 8. Dust particle (1 um) locations with a 15 cm diameter wafer on the powered electrode. Locations are shown
for power depositions of a) 20, b) 60, c) 80 and d) 240 W. Increasing power increases the ion drag force, pushing
particles towards the electrodes. The dome and ring structures result from local maxima in the plasma potential.
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PLASMA POTENTIAL (V)

Fig. 9. Plasma potential for
the conditions of Fig. 5 (20
W). The dots denote regions
of negative potential. Maxima
in plasma potential occur near
the edge of the wafer and in
the center of the reactor.

HEIGHT (cm)

can be emptied by increasing power deposition, an effect we attribute to an increased component of
ion drag.[25]

The effects of gas flow on trapping are shown in Fig. 10. for 1 um particles and a power
deposition of 80 W. Note that no wafer is used in this sequence where we varied the gas flow from
zero to 500 sccm. Without gas flow, the particles are trapped at the sheath edges where electrostatic
and ion drag forces balance. As the gas flow increases the particle trap near the top grounded
electrode is eliminated by the fluid forces. At this location the fluid drag force is negative (towards
the lower electrode) and opposes the ion drag which forces the particles towards the upper
electrode. (See Fig. 6). With increasing gas flow particles are swept in the radial direction where
they are both lost out the gas outlet and accumulate to some degree at the radial sheath. This

accumulation may be exaggerated by our electrical radial boundary condition. At very high gas
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Fig. 10. Dust particle locations with a bare powered electrode. Locations are shown for a) 0, b) 100, c) 200 and d)
500 sccm of gas flow. The gas flow detraps particles at the upper boundary where the fluid velocity is negative and
opposes the ion drag forces. Particles are lost out the radial pump port at high gas flow.
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flow, the inertia imparted to the particles by the high axial gas flow near the showerhead causes
particles to oscillate about equilibrium trapping points.

The disposition of 1 um particles are shown in Fig. 11 where the normalized rates of loss
of particles to traps, the top electrode, the bottom electrode (but not the wafer), the wafer and to the
side wall (or out the pump port) are shown. Results are presented as a function of power
deposition (without gas flow) and gas flow (at 80 W). In the low power regime and without gas
flow, most particles are trapped in the plasma. As the power increases the trapping rate decreases
and the particle loss to the reactor boundaries increases. ™is results from ion drag forcing
particles over the potential hill at the boundaries. At 300 W (without gas flow), only 10% of the
particles are trapped. Note that the rate of loss of particles to the wafer is smaller than to the top
electrode because of its more negative sheath (and smaller size). The particle dispositions as a
funciton of gas flow show that at sufficiently high gas flows, the particles can be blown out the
pump port. Larger particles are more easily blown out of the reactor because both the fluid drag
and ion drag forces increase with radius of the dust particle.

The interplay between electrostatic, ion drag and fluid forces ultimately determine the
disposition of the particles. This interplay is illustrated in Fig. 12 where particle locations are
shown when a metal washer is placed on the lower electrode. The gas flow is 200 sccm and results
are shown for 20 and 80 W power deposition. The sheath follows the contours of the washer,
thereby creating a potential well with respect to axial location in the center of the washer. At the
lower power 1 pm particles are trapped in a flat dome above wafer, and are blown towards the
radial boundary. When the power is increased to 80 W, the particles are pushed by ion drag to the
electrodes. Some particles, which are generated in the center of the reactor, are trapped inside the
washer. The particles inside the washer do not have enough energy to climb the electrostatic
potential barrier over the washer and exit through the gas outlet. The gas flow inside the washer

has no appreciable radial component to push the particles out of the center of the ring.
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Fig. 11. Disposition of pag'ticlcs as a function of a) power deposition (1 um diameter) and b) gas flow (1
and 2 Hm diameter). Rates of trapping and loss to the wafer, bottom electrode (but not the wafer), top electrode and
to the side wall or gas outlet are shown,
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Fig. 12. Particle traps are shown when a metal washer is placed on the powered electrode for a gas flow of 200
sccm with a) 20 W and b) 80 W of power deposition. With the higher power particles are trapped on the inside of the
wafer where an axial potential well exists.

IV. Concluding Remarks

A series of linked computer models have been developed and used to investigate the
trapping of dust particles in capacitively coupled rf discharges with various electrode topographies.
Lower rates of wafer contamination are obtained at low power deposition where particles are
allowed to trap in the gas phase; and high gas flow where the particles are blown towards the pump
ports. At higher power deposition, ion drag forces dominate; and particles are pushed through the
sheaths to the boundaries. Various shapes of particle trapping locations are formed at different

operating conditions. At low powers, we observed both dome and ring types of particle traps as
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seen experimentally [3,25,26] which result from a balance of ion drag and electrostatic forces
generated by perturbations in these quantities caused by local extrema in the ion generation and
potential; ultimately caused by electrode topography. At high power or high gas flow, the dust
particles can gain sufficient inertia that they will oscillate about the equilibrium trapping locations,

or climb potential hills of 10's volts to reach the substrate.
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Inertial effects in suspensions
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1 Introduction

Our current research efforts are aimed at understanding the behavior of suspensions in which
both the viscous and inertial effects are significant. The two types of suspension which are
particularly amenable to a detailed many-particle interaction calculation are (i) gas-solid
suspensions at small Reynolds number, Re, and finite Stokes number, St, and (ii) bubbly
liquids at large Re. The uniform states of these suspensions are known to be generally
unstable under the action of a gravitational force. For example, gas-solid fluidized beds
exhibit a bubbling phenomenon in which macroscopic regions (of linear dimensions much
greater than the particle size) devoid of particles form, and bubbly liquids form slugs. While
there is still some debate on the exact form of the equations that describe the macroscopic
behavior of these suspensions! ™4, it is generally recognized that the particle-phase pressure
plays an important role in stabilizing the uniform state of these suspensions. For example,
the stability criterion for the gas-solid suspension is?

dP 2 .2 [ 1 dca)?
P pU 6°(1 — ¢) [agg] , (1)
where P is the particle-phase pressure, p, the density of particles, U the velocity of particles
relative to the mixture, ¢ the volume fraction of particles, and Cy the viscous drag coefficient.
In general, the particle-phase pressure is a tensor of rank two, and for the disturbances
travelling in the direction of the gravity, taken to be aligned along the z-axis, P must be
replaced by the component P,..

The particle-phase pressure for solid particles sedimenting through gas under conditions
of small Re and ¢ and finite St has been evaluated by Koch®. His calculations suggest that the
magnitude of P is generally not large enough to satisfy the above criterion. Similarly, Sangani
and Didwania® have recently determined the bubble-phase pressure for bubbly liquids at large
Re and found it to be negative for the flow induced due to gravity. This negative pressure has
a destabilizing influence on the dynamics of bubbly liquids as shown through the dynamic
simulations in Ref.7.

Understanding the mechanisms by which the particle-phase pressure is increased can lead
to the imporved design of fluidized beds and bubble columns. For example, in magnetically
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fluidized beds, the application of the magnetic field oriented in the direction of gravity is used
to increase the pressure. In the present study, we are interested in investigating the effect
of nonuniformity in the flow field on the particle phase pressure. Such nonuniformities may
exist, for example, due to unevenly distributed gas at the bottom of the bed or in the flows of
suspensions through converging-diverging nozzles. The nonuniformity in the flow will induce
greater fluctuations in the particle motion and thereby increase the particle phase pressure.
Thus, we shall examine the dependence of the variance in the particle-phase motion on the
gradient in mean flow. We began our study with dynamic simulations of bubbly liquids under
simple shear using the numerical simulations method described in Sangani and Didwania*
but quickly found the behavior of bubbly liquids to be sensitive to the initial conditions,
Re, and ¢. Since these calculations were very time consuming, we found it desirable to first
study the phenomena for a simple model in which the hydrodynamic interactions between
particles or bubbles are neglected.

2 Dusty gas under simple shear

Let us consider a monodisperse suspension of solid particles of radii a in a gas undergoing
a simple shear with the shear rate 4. Non-dimensionalizing the velocity with vya, time with
~~1, distance with a, and forces with ma+v?, m being the mass of the particle, and neglecting
the hydrodynamic interactions and the gravitational force, we obtain for the trajectory of a
particle at x

v = =St v — u®(x)] + £ (2)

where St = 57, is the Stokes number with 7, = m/(6rau) the viscous relaxation time,
¢ being the viscosity of the gas. The force on the particle due to collision and the other
interparticle forces is denoted by £/, We shall assume that the particles undergo perfectly
elastic collisions and that the interaction is that corresponding to a hard core repulsion.
Finally, the undisturbed flow is the simple shear

u®(x) = ye,, 3)

where e, is the unit vector along the z-axis and y is measured along the gradient of the flow.

The above model of gas-solid suspension will be referred to as the dusty gas model.
Dynamic simulations of a dusty gas are relatively easy to carry out. We used 100 particles in
a box with the usual periodic boundary conditions. The particle trajectories were determined
through an exact solution of (2) neglecting the collisional force f* and the particles moved
accordingly for a specified time step. The particles were checked for overlap at the end of
time step and, if necessary, the corrections were made for the collison. Various averages were
computed by averaging over 10° time steps after discarding the first 10° time steps to allow
for the system to attain steady state.

Figure 1 shows the velocity variance as a function of St for ¢ = 0.01. Here U is the non-
dimensional fluctuation velocity, i.e. U = v — u®. The simulation results are indicated by
squares whereas the solid line corresponds to the theory to be described in the next section.
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The root mean squared fluctuation < U? >!/? is seen to increase linearly with St at large
Stokes numbers indicating that a large variance and hence a large particle-phase pressure are
attained at large St. At St ~ 5, the quantity < U? >'/2 is seen to abruptly change from about
10 to zero. For smaller St with finite number N of particles in simulations, the particles take
up positions such that the collisions are entirely avoided, and, since the particle interactions
are neglected in the calculations, the variance becomes zero at small Stokes numbers. It
may be noted that the final state with zero variance is actually an artifact of the periodic
boundary conditions with finite N. We are in the process of using the direct-simulation
Monte-Carlo technique to determine more precisely the variance at smaller Stokes numbers.
In this method, the positions of two colliding particles before collision are chosen at random.
Figure 2 shows < U? >'/2 as a function of 1/¢ for St = 10. Note that two steady
states are observed for ¢ < 1/600. In this range the final steady state depends on the initial
conditions. If the initial variance is large enough, then the resulting steady state has a large
variance; we shall refer to this as the ignited state. On the other hand, for small initial
variance the final steady state corresponds to a zero variance, or a quenched state. For
larger ¢ only one steady state, the ignited state, is obtained regardless of the initial velocity
distribution. The abrupt drop in the variance at St ~ 5 in Figure 1 thus corresponds to the
truncation of the ignited steady state branch of solution.
In analogy with the kinetic theory of dilute gases, let us define the pressure tensor non-
dimensionalized by p,¢v?a? as
P=<UU>. (4)

If the dispersed phase obeys a Newtonian rheology, then the diagonal elements of this tensor
must be equal for a simple shear flow. As shown in Figures 3 and 4, however, this is not the
case. We see that the normal stress difference increases like 1/¢? as ¢ — 0 for fixed St and
decreases as 1/St? for a fixed ¢ as St — oo.

3 A Kkinetic theory for dusty gas under shear

The simulations presented in the previous section show that multiple steady states exist
and that the dispersed phase rheology is non-Newtonian. In this section, we present a
simple kinetic theory to explain these findings. Since the particle interactions are neglected
except for the collisions, and since the number density of particles is assumed to be constant
throughout the space, the probability density distribution f(U) satisfies®

of

'a_t—VU'[eryf‘l"St_lUfl:J[faf]a (5)
where J|f, f] is the usual collision integral
Jf,g) = [ avi [ d0B(w,0)(V)g(vi) - f(v)a(vy)], Q

in which v and v, are the velocities of particles before the collision, v/ and v the velocities
after the collision, w = |v; — v| the initial relative velocity, and B(w,0) the probability
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density for a relative deflection by an angle 7 — 20 of the particle at x as a result of an
encounter with the particle labeled 1. In particular, if the interparticle potential force is

repulsive and given by a power law F = xr~", then, as shown in Chapman and Cowling
(Sec. 10.3, Ref. 8),
B(w,O) o n2/1—nw(n—5)/(n—l). (7)

Note that B becomes independent of the relative velocity when n = 5. Because of this
simplification, we shall assume in the development of the approximate kinetic theory below
that the particles have the interparticle repulsive force with n = 5. In the kinetic theory of
gases, molecules with such a repulsive force are termed as Maxwell molecules.

To make further progress in the analytical development, we shall replace the actual
velocities v and v, in the collision integral by the relative velocities U and U,. In other
words, we ignore the mean shear flow in evaluating the collison integral. The pressure tensor
can now be determined by multiplying (5) with UU, integrating in the velocity space, and
using the result

[ OUILS, 114U = 22651 - P), ®)

where I is the identity tensor of rank 2, p the scalar pressure equal to one-third the trace of
P, and

A = 0.3465/x. (9)

The dynamic simulations described in Section 2 were for the hard-sphere model. In order

to make the collision frequency and the transport coefficients of the Maxwell particle model

have the same temperature dependence, we need to make the force law constant « to be
temperature dependent as given by

& = 32T/[Au(5)T(T/2)]2, (10)
where A3(5) = 0.436 (Ref. 9) and T is the temperature defined by
1 2
T_afo du. (11)

Note that T = p. Combining (5) and (8), we obtain four simultaneous equations governing
P.z, Py, P;. and P;,. Solving these equations for the steady state yields

B 2P, AStT
P = b = == = T 35ts (12)
ASE4T
Pee = o+ 5 v (13)

Now using T = (Pz + P,y + P;.)/3, noting that ) is a function of T via (9)-(10), and solving
the energy balance equation
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we obtain three steady state solutions with the corresponding steady temperatures given by

To=o Tr=0-Ve-l up_atvel-l (15)
PTTTY T 070555t T T 2.70555t¢
where o = S§t?/12 - 1.

Thus we note that while three steady states are possible for St > /24, only one steady
state exists for St < /24. The state labeled 2 is unstable, while those labeled 1 and 3 are
respectively the quenched and ignited states observed in dynamic simulations described in
Section 2. The variance of state 2 is O(St®/#)?. Thus, the simple kinetic theory presented
here shows that when the initial velocity distribution has a variance greater than this value,
the final state will be the ignited state for St > v/24. A smaller initial variance or smaller St
will lead to the quenched state. Actually, this is not a precise criterion since our calculations
neglected the mean shear flow effect in evaluating the collision integral. It can be shown
that the shear flow induces an additional variance of O(St3¢). If this shear-induced variance
is greater than T3, then, regardless of the initial velocity distribution, the final state is the
ignited state for St > V24.

To recapitulate, the final steady state for St < v/24 is a quenched state regardless of
the initial velocity distribution. For St > /24, only the ignited state is possible when
St3¢ > O(1). For very dilute suspensions for which St*¢ < O(1), the final state depends
on the initial conditions. This is in agreement with the results of dynamic simulations with
the O(1) constant being about 1.5. For St >> 1, the ignited state with the Maxwell particle

model corresponds to
T2 _ VT_St

3 71661 ¢ (16)
d
an PP, 18
— 5 "5 (17)

which agree well with the results for hard spheres for which the constants 16.61 and 18 in
the above expressions are replaced by 16.63 and 117/7, respectively.

4 Large St, finite ¢, simulations

When the Stokes number is large and ¢ is finite, the steady state variance in the ignited
state can be determined with the help of Monte-Carlo simulations. Since the viscous relax-
ation time is much greater than the collision time in this limit, the leading order velocity
distribution is the isotropic Maxwellian. The steady state variance is determined from the
energy balance according to which the energy input in shearing the suspension is lost via
the viscous energy dissipation. The calculations are similar to those in the theory of rapid
granular flows developed by Jenkins!® except that in his calculations the energy input by
shear was dissipated through inelastic collisions.

To estimate the viscous energy dissipation we carry out Monte-Carlo simulations in which
the velocity of each particle is randomly chosen from a set of numbers with a Guassian
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(Maxwellian) statistics. The position of the particles are generated from the usual hard-
sphere dynamic simulation code. The force on each particle is then determined using a
Stokes flow interaction code!!"'? which accounts for the full hydrodynamic interactions among
many particles. The energy dissipated per particle is then expressed in terms of an energy
dissipation coefficient C} defined via

E4iy=— <F - U>=6rpaC; <U?>. (18)

In these calculations, the rotational velocity of each particle is taken to be unity as the
energy dissipated will be dominated by the random fluctuations in the translational velocity
in the limit of large St.

Results for Cj are presented in Figure 5. In our calculations we assumed that the usual
continuum approximation breaks down when a pair of particles is sufficiently close to each
other so that the forces on a pair of particles with a separation distance between their surfaces
less than 2¢na can be approximated to be the same as the force on particles separated by
2¢ma. The lubrication breakdown parameter €,, can be determined for a given gas-solid
suspension and Stokes number from the detailed calculation of the forces between pair of
particles with an appropriate non-continuum analysis!®'4. It may be noted that since the
force on two particles approaching each other with an O(1) relative velocity increases like 1/¢
as € — 0 according to the usual continuum analysis, C} will diverge logarithmically with e,,
as €n, — 0. (At large St, the velocity distribution of particles is independent of the spatial
configuration of the particles.)

For the purpose of comparison, we have also shown in Figure 5 the average drag coefficient
for the uniform flow through fixed beds of spherical particles and the hinderance factor in
sedimenting suspensions. These quantities, which were also determined by our numerical
code described in Refs. 11,12, are in very good agreement with the results reported earlier
by Ladd'. The curve for C} is based on €m = 0.02. The results with other values of ¢x at
¢ = 0.4 are indicated by asterisks. For very small ¢, the behavior of Cj should resemble
that of the average drag force in a fixed bed of particles since both problems correspond to
specifying the velocity of the particles. Thus, for example, the velocity disturbance due to a
particle is hydrodynamically screened, and for small ¢, C; behaves as 1 + 31/¢/2 + O(log ¢)
as in the case of drag in fixed beds'®. The two quantites start differing at O(¢$) because the
velocity distributions in the two problems are different. The numerical calculations shown
in Fig. 5 suggest that Cj is much lower than the corresponding values in fixed beds and
sedimenting suspensions provided that €., is greater than 0.01.

We would like to note that in the limit of large St, various energy dissipative mechanisms
are addititive so that, for example, if the collisions between particles are inelastic, we can
add the extra energy lost in collisions to the total energy balance for the dispersed phase.
In this sense our calculations of the viscous energy dissipation complements the theory of
rapidly sheared granular flows due to Jenkins!'.
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5 Concluding remarks

We have shown that multiple steady states exist in the flows of gas-solid suspensions. Similar
simulations for bubbly liquids at large Reynolds numbers Re have been carried cut by Tsao
and Koch!?. The major conclusions of the present study, i.e. multiple steady states and a
non-Newtonian dispersed phase rheology, also apply to the bubbly liquids in which Re/18
plays the same role as the Stokes number, although some important differences in the sign
and magnitude of the the normal stress differences occur between the two suspension systems
owing to the presence of the lift forces on bubbles in the presence of a mean vorticity.

Currently we are in the process of carrying out dynamic simulations accounting for the
multiparticle interactions to obtain more accurate estimates of the variance and hence the
particle phase pressure at intermediate Stokes numbers and to study the transition between
the quenched and ignited states.
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ABSTRACT

The effects of rotation rate and interparticle friction on the bulk flow behavior in
rotating horizontal cylinders are studied via particle-dynamic simulations. Assemblies
of inelastic, frictional spheres and rigid sphere clusters are utilized, and rotation rates
from quasistatic to centrifuging are examined. Flow phenomena explored include size
segregation, avalanching, slumping and centrifuging. Simulated drum flows with two
sizes of frictional spheres showed very rapid segregation of species perpendicular to the
drum axis; however, simulations of up to 10 revolutions, utilizing periodic-boundary
ends, did not exhibit the experimentally observed axial segregation into stripes. Angles
of repose for uniform-sized spheres in slowly rotating cylinders varied from 13 to 31
degrees as the friction coefficient varied from 0.02 to 1.0. For simulated rotation
rates higher than the threshold to obtain uniform flow conditions, the apparent angle
of repose increases as the rotation rate increases, consistent with experiments. Aiso,
simulations with rigid clusters of 4 spheres in a tetrahedral shape or 8 spheres in a
cubical arrangement, demonstrate that particle shape strongly influences the repose
angle. Simulations of cubical 8-sphere clusters, with a surface coefficient of friction of
0.1, produced apparent angles of repose exceeding 35 degrees, compared to 23 degrees
for assemblies of single spheres interacting with the same force model parameters.

Centrifuging flows at very high rotation rates exist as stationary beds moving
exactly as the outer rotating wall. At somewhat slower speeds the granular bed remains
in contact with the wall but exhibits surface sliding down the rising inner bed surface,
moving a short distance on each revolution. At still slower speeds particles rain from
the surface of the upper half of the rotating bed. The boundary between stationary and
sliding flow is given by 1% = 1/sin ¢,, and the boundary between sliding and raining
flow is approximately fit by the empirical relation 22 = 1/ sin [tan~1(0.16 + tan ¢,)],
where the non-dimensional rotation rate, 1, is determined by 02 = wﬁ& g, and wy
is the drum rotation rate, R; is the radius of the inner surface of the centrifuging bed,
g is the acceleration of gravity, and ¢, is the angle of repose for the material.

INTRODUCTION

This paper describes numerical simulations of flows of inelastic, frictional particles in rotat-
ing drums. Many industrial applications utilize rotating cylinders in processes involving granular
solids and a variety of intriguing qualitative phenomena have been observed in such devices.
When a slowly rotating drum is partially filled with a granular material it will usually exhibit
one of two modes of motion. For very small loads (or with a very smooth interior wall) the
material will initially ride up on the rising wall, then, when sufficient tangential load develops
to overcome friction, the material will slump back down the wall, moving almost as a rigid
block, with inertia usually carrying it beyond its equilibrium position. After coming to rest with
respect to the outer wall, it will rise again, and repeat the cycle. For drums half or more filled
(or with a rough interior wall) the material will more likely exhibit periodic surface avalanches
down the inclined top surface. The highest attained surface angle and the lowest s/umped surface
angle often differ by as much as 10 degrees [De Jaeger, 1993]. As the rotation rate is increased,

* Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National
Laboratory under Contract W-7405-Eng-48.
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the frequency of these avalanches increases, and, when the average period between avalanches
becomes less than the average duration of an individual avalanche (a time that depends on the
absolute size of the drum involved and on the characteristics of the material), the material often
exhibits a continuously moving top surface that has a nearly constant angle of inclination. This
angle, lying somewhere between the maximum and minimum angle observed quasistatically, is
often referred to as the dynamic or instantaneous angle of repose [Brown & Richards, 1970].

As the rotation rate is increased beyond the threshold dynamic angle-of-repose rate, inertial
effects cause the flow to change character, with the upper half of the flow increasing its apparent
surface angle, and the lower half decreasing its apparent surface angle. Initially the surface
simply appears curved, but, at higher rotation rates, some flows appear to almost form two
distinct linear surfaces [Altobelli et al., 1993].

If the rotation rate is increased even further, the centrifuging limit is approached. At a
rotation rate high enough to produce centrifugal force on the outer wall nearly equal to gravity,
many particles appear to follow parabolic ballistic trajectories, coming off of the upper half of
the rising side of the drum and falling down to a splash bed at the foot. True centrifuging flow,
with particles remaining in continuous contact with the outer wall, requires significantly higher
rotation rates than the minimum that just cancels gravity at the top of the drum. Such flows are
discussed in detail later in this paper.

The qualitative flow phenomena described above are not only observed in laboratory ex-
periments [Brown & Richards, 1970; Altobelli, et al. 1993], but can also be reproduced in
numerical simulations of assemblies of frictional, inelastic spheres and non-spherical particles
[in addition to this paper, see also: Tsuji, 1993; Ting & Corkum, 1988; Nakagawa et al., 1993;
Hashimoto & Watanabe, 1993]. By utilizing numerical simulation models it is possible to test
sensitivity of a variety of flow phenomena to individual particle-interaction parameters such as
interparticle friction or degree of inelasticity in collisions. This ability to isolate the effects of
individual particle or interaction parameters can facilitate development of theories and empirical
relations that focus on the most important particle characteristics. For example, simulations
with a fixed coefficient of friction, independent of sliding velocity, exhibit the slumping and
avalanching behaviors described above. Such simulations demonstrate that avalanching flow
and periodic slumping are inherent characteristics of slowly rotating drum flows, and do not
depend on stick-slip friction or a velocity dependent friction coefficient acting between particles
or at particle-wall interfaces.

METHOD

Molecular-dynamics algorithms and methods are widely utilized and are described in several
texts [Allen & Tildesley, 1987; Hockney & Eastwood, 1988; Hoover, 1991] and these same
methods have been applied to macroscopic granular systems for a variety of deformation and
flow conditions (see, for example Cundall & Strack [1979] and Walton [1982]). We utilize a
simple, explicit, leap-frog integration algorithm (algebraically equivalent to the popular Verlet
scheme) wherein positions and forces are known at the ends of each timestep and the velocities
are known at the mid-point of each time-step. Newton’s equations of motion are expressed as
two first order differential equations in each space dimension for each particle:

t.’a:ga"{"Fa/ms a=1IY,2,; (1)
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fo = Va , azi,y,z. (2)

These are differenced in time-centered form as:

1 _1 : Fr
vz+= =v: P+ At (ga'{""nL:‘) ’ a=2zI,4,2, (3)

rAtl =% L AL v:+% , a=1z,9,z. (4)

Where the superscript refers to the timestep, r is the position, v is velocity, F is the force
from contacts or applied loads, m is mass, and g is the acceleration of gravity.

A radial skin search is employed to establish near-neighbor lists that are stored in a set of
np + 1 intertwined linked lists (one list for each of the n, particles, and a list of previously
released memory locations that can be used for new or re-established neighbors). Individual
list entries are deleted and the released memory locations are added to the empty list whenever
a neighboring pair move further than the search distance. The entire set of neighbor lists is
updated at irregular intervals, triggered by particle displacements exceeding the search radius.

Contact forces (and torques) are calculated for any near-neighbor pairs that are actually
overlapping. The force-displacement model includes position dependent hysteresis in both the
normal and tangential-friction forces. The normal-direction contact force is modeled with a linear
loading (with a slope K) coupled with a somewhat stiffer linear unloading (with slope K3,) so
that isolated, frictionless, two-body collisions will exhibit a constant coefficient of restitution,
e = /K, /K,. The tangential force builds up (non-linearly) with finite tangential displacements
after physical contact occurs. The initial slope of the tangential force displacement curve, Ko,
is a fixed fraction of the normal stiffness. The tangential force has a maximum value limited
by the friction coefficient, u, times the normal force. The resulting behavior is very similar to
Mindlin’s [1949] analysis of elastic frictional contacts between spheres. The justification for,
and the details of, these force models are presented elsewheret [Walton, 1993a,b].

The time derivatives of the angular velocities in the principal frame are given by Euler’s
equations of motion,

Wz = [Npz + wywe(Ipy — Is)] /Tpz (5a)
Wy = [Npy + wawz(Ipz — Ipz)] /Iy (55)
Ws = [Npz + wewy(Ipz — Ipy)] /Ips (5¢)

where I, is the (diagonal) moment of inertia tensor in the principal body frame, and N, is the
torque vector in the principal body frame.

Because of the angular velocity products appearing on the right hand side in Equations
(5a, b, c) a predictor-corrector algorithm is utilized for integrating the angular velocity derivatives.

t Position dependent hysteretic models were employed in these dynamic flows to demonstrate that the effects
observed do not depend on any viscous or rate-dependent parameters in the models. The simulations could have used
damped harmonic oscillator (i.e., spring-dashpot) models in both the normal and tangential directions with the tangential
force magnitude limited by Amonton’s friction rule (Friction force < y Normal force). If such models had been utilized
instead of the position-dependent hysteretic models of these simulations, the results would have been substantially
equivalent to the results presented here.
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The torques are known on the time step and the angular velocities are known at the midpoints.
First, angular velocities are estimated at the current time step by assuming constant angular
acceleration for an additional one-half time step,

-1
Wt =wa 4+ AW l/2, a==z5,u9, 2. (6)

These extrapolated angular velocities are used, along with the current torques, to make a first
prediction of the angular accelerations at the current time step,

AW = [Npy +wytwy (Tpy — Ips)] At/Ips (7a)
Aw;’" = [N:y + w;"w'," (ng - Ipz)] At/IPV (7b)
B = [N, + wlwy (Ipz — Ipy)] At/ I, (7e)

These predicted angular accelerations are then used to more accurately predict the angular ve-
locities at the current time step,

~1
wh=wa *+AWr/2, a=az,y, = (8)

The corrected values for the derivatives are then,

Awy = [N;z + w:w:(lpy - Ipx)] At/Ipz (90‘)
Aw;‘ = [N:v + w:h’:([px - Ipz)] At/IPV (Qb)
Awy = [Ny, + wiwp (Ipz — Ipy)] At/Ips. (9¢)

At this point these corrected values can be used directly to update angular velocities to the
midpoint of the next timestep,
i -4
wat? = w3 3 +Awy, a=uz,yY, 2, (10)

or, additional iterations through the last six equations (e.g. going back to Eqn 8) can be repeated
until a convergence criteria based on changes in the quantities Awz, Awy, and Aw]} between
successive iterations is satisfied, or a predetermined number of iterations is completed.

Orientaions (i.e., angles) for each particle are updated using an adaptation of Evans’ sin-
gularity free quaternion approach [Evans & Murad, 1977). For Euler’s equations of motion and
the integration of the quaternions, the torques are specified in the body or principal frame for
each non-spherical body. The contact detection and force calculations are performed in a space
or global reference frame. The rotation matrix transforming from space to body frame is given
by:

~¢i+ a3 — a3 +a7 —2(9192—93q4)  2(929s + 9194)

A= -2(q192+9aq0) ¢f-93-a3+9df —2(q193 — 9204) (11)
2(9293 — 9194)  —2(q193+ q294) —¢f — a3 + g} + g}
Where the ¢’s are the quaternions of Evans and Murad [1977].
g1 = sin £ sin(¥452) , g2 =sin § cos(y%é) (12a,b)
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8

g3 = cos 3 sin

(M) , g4 = COS % cos(m)

2 2 (12¢,d)

and ¢, 0,y are Euler’s angles representing successive rotations about the z, z, and 2’ axes (see

Goldstein [1950]).

The time derivatives of the orientation parameters (i.e., the quaternions, ¢y, g2, g3, g4) can
be expressed in terms of the quaternions themselves and the angular velocities [Evans & Murad,

1977],
g1 =
g2 =
g3
da

1(—qswz — qawy + qaw;) (13a)
3 (qawz — qawy — qrw,) (13b)
Ha1wz + qawy + qaws) (13¢)
3(—q2wz + quwy — qaw;) (13d)

Only three of the quaternions are independent and closure of this system of equations is obtained
by the normalization relation,
4
Y-t
=1

Time centered finite difference versions of Eqns (13) can be solved explicitly for the quater-
nion values at the new time step in terms of the old values and the angular velocities at the
midpoint of the timestep. The finite difference form of Eqns (13a — d) is,

(14)

r 1 i
gt =gl + 4| + qa)wz — (a2 + )y E + (g5 + gf)wit ] (150)
+3 +4
it = a3 + 4 [ + Dl - (@3 ey tE - (@ el d] (ast)
+ +4 +
a3t = gf + AF (@ + el + (@ + )upTE 4+ (a8 + )it (150)
[ i
gt = gl + A( —(g2*' + q,)wz+% + (g1t + Q?)w: — (g5t + ‘Ig)w:+’] .(15d)
These equations can be solved for ¢f*!, ¢7*!, ¢3!, and ¢f*'. Rearranging Eqns (15) we
have,
n+l ﬂzqn+l + ﬂzqn-H + ﬂyq"-H = 9? + ﬂng - ﬂzQ:'; - ﬂyqr (16a)
ﬁ.q"“ + g3t + Byast! — Bl = —Baql + o — Byas + Beal (160)
—B2qr !t = Byartt + g5t - Bl t! = Bl + Byl + 65 + a9k (16¢)
—Byart + B2a3 Tt + Boa3 T + a4 = Byal — Bza7 — B2q5 + 4% (16d)
where,
l Py
Bz = —A'!w:+ ’ ﬂy = —A4—t(")3+2 ’ Bz = é't'w:+2 . (17a,,b,c)

Now, let B be the matrix of coefficients from the left-hand side of Eqns (16) and C; , ¢+ =
1,2,3,4 be the right hand sides of the four equations:

1 “ﬂz ﬂz ﬂy
— ﬂz 1 ﬂy _ﬂz
B= _'ﬂ:: _ﬂy 1 "‘ﬂz (18)
_ﬂy ﬁ: ,Bz 1
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C, = Q? + ﬂxQ; - ﬁzQ:'; - ﬂyqr (19(1)
Cy = —ﬂzQ? + q£‘ - ﬂyqa‘ + ﬂzQI' (lgb)
Cs = Bzq} + Byas + a5 + Baq% (19¢)
= Byqt — Bzq3 — Paq3 + 94 (19d)

Then
det B = 1+ 262 + 262 + 282 + 2618] + 28,8 + 28267 + B2 + By + By (20)

and

g"t! = (C1 + CaBs — C3fz — CuBy)(1 + B2 + B + B2)/ det B (21a)
"“ = (—C1Bs + C2 — Cafy + CaB:) (1 + B2 + B2 + B2)/ det B (21b)
"“ = (C1B: + C2By + Cs + CuB:)(1 + B2 + B} + B7)/ det B (21¢)
"“ = (C18y — C2Bz — Cafls + C4)(1 + B2 + B2 + B2)/ det B (214)

These explicit expressions for the updated ¢;’s are time centered (e.g., Eqns 15) and, thus avoid
the additional predictor-corrector steps required by Allen and Tildesley [1987].

By their definition, Eqn (12), the quaternions satisfy the normalization relation, Eqn (14)
and Evans [1977] demonstrated that Eqn (13) maintains that relation; however, to ensure that
round-off error does not eventually cause normalization to fail, the resulting new quaternion
values are scaled to conform with the normalization condition. A scale factor,

‘ -1
f= [Z (e *h) ] , (22)

=1

is utilized to satisfy normalization for each particle, after each integration step,

g"tt = ftl,  i=1,2,3,4 (23)

SIMULATIONS

Filling a vertical cylinder

Several qualitative differences in flow behavior between spheres and non-spherical particles
are evidenced in simulations of particles dropping into an initially empty, vertical, right circular
cylinder. In these generic simulations the ratio of loading to unloading stiffness in the normal
force model (i.e., K;/K3) is set to 0.64, corresponding to a coefficient of restitution of ¢ = 0.8
for isolated collisions between spheres. For non-spherical particles the contact normal forces
produce moments as well as rigid-body translational forces, so that the concept of a coefficient
of restitution is somewhat less well defined. Nevertheless, the same force model parameters
were used for individual contacts involving sphere clusters as for those involving single spheres.
The coefficient of interparticle friction, p, was 0.2, and the magnitude of the normal direction
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stiffness was set so that the maximum overlap that would occur in a simulated impact would be
less than one percent of a sphere diameter.

When a stream of particles falling from a height of one meter (i.e., with an impact velocity
of approximately 4.5m/s) was used to fill a cylinder that was approximately 20 particle diameters
across, the top of the resulting granular bed was nearly flat, as shown in Figure 1. Essentially
the same surface condition was obtained whether the particles were spheres, tetrahedral clusters,
cubic ciusters or a mixture of the three as shown in Fig. 1. The kinetic energy imparted to the bed
by each impacting particle was sufficient to vibrationally fluidize the upper surface, producing
the fluid-like flat surface which remained after the vibrations attenuated. Laboratory tests of
uniform sized spheres dropping into graduated cylinders can also result in flat top surfaces and,
depending on both the drop height and flux, can result in a range of solid packings up to as high
as 0.69 [Macrae and Gray, 1961] due to rearrangements caused, or allowed, by the energy of
the impacting particles.
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Figure 1.
Filling a right circular cylinder (not showr) with particles impacting
at a velocity of vy ~ 4.5m/s, p =0.2, e =0.8.

When simulated particles are dropped in a stream with a lower impact velocity (e.g., vy ~
1.0m/s) we obtain a mound under the fill stream as shown in Figures 2a and 2b. The slopes of
the mounds in these two figures are significantly different, with the tetrahedral clusters forming
a steeper surface than the spheres. These instantaneous snapshots of the mounds during filling
are not altogether indicative of the final shape that is obtained after the fill stream is terminated.
In these simulations there is sufficient kinetic energy and inertia existing near the mound peak
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to allow it to flatten considerably after the fill stream is stopped. Similar inertial effects have
been observed in simulations of spheres and sphere clusters by others [Hofstetter, 1993]. In
experimental tests to determine angles of repose such inertial effects are usually minimized by
allowing incoming particles to be quasistatically deposited from the end of a slowly raised small
diameter tube (or straw) filled with the material being tested. Simulations of such angle-of-repose
tests are planned.

Time = 22.00000 Time = 25.00000
Figure 2.
Filling right circular cylinders with particles impacting at vy =~

1.0m/s, up = 0.2, e = 0.8, (a) spheres, and (b) sphere-clusters
composed of 4 spheres in a tetrahedral arrangement.

Slowly Rotating Drums

Slumping and avalanching flows, as discussed in the introduction, are observed in simula-
tions of very slowly rotating drums with both spheres and sphere-clusters. For the majority of the
simulations discussed here the spheres were either 3mm (or 3.78mm) in diameter, and the drum
diameter was 42 (or 33) sphere diameters (i.e., 12.6cm). The simulation region was bounded
by the rotating cylinder in the z and y directions and periodic boundaries were employed in
the direction of the drum axis. The length of the cylinder section simulated was approximately
5 particle diameters (5 spheres for the single-sphere simulations, and 10 spheres for the cubic
sphere cluster simulations).

The threshold rotation rate that produced nearly steady flows with relatively uniform in-
cl’nation angles was approximately ¥ rad/s. (At this rotation rate the centrifugal acceleration
acting on a particle near the wall was approximately 1.5% of the gravitational acceleration, and
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Figure 3.
Size segregation after slow gartial rotation of drum containing an
initially mixed assembly of 3mm and 3.78mm diameter spheres.

corresponds to a non-dimensional rotation rate, N,, of 0.125, where N2 = wiR,/g, wa is the
rotation rate of the drum, R, is the drum radius, and g is the acceleration of gravity). A variety of
simulation calculations were performed at this rotation rate. Randomly mixed assemblies of two
sizes of spheres, with diameters of 3mm and 3.78mm (i.e., differing by a factor of 2 in volume)
showed very rapid segregation in the radial drum direction. Figure 3 shows an instantaneous
picture of the configuration after a rotation of just one complete revolution. The accumulation of
large spheres at the toe of the incline and along the outer wall is quite evident. Similar behavior
has been seen in 2-dimensional simulations of assemblies of discs [Ting & Corkum, 1988]. We
obtained similar results in simulations with drums that were factors of 2 larger and smaller than
the one shown in Fig. 3. These results are also consistent with the laboratory measurements of
Altobelli et al. [1993) wherein radial direction segregation was observed to occur very rapidly
in rotating drums containing binary distributions of mustard seed and also with sand.

In addition to radial segregation Nakagawa [1993] also observed segregation along the axis
of the drum with alternating stripes of the different species appearing after several revolutions of
the drum. One calculation was made to see if such stripes would occur in these simulated flows.
The length of the simulated section was increased to approximately 50 sphere diameters, and
the drum radius reduced to keep the total number of spheres at approximately 3000. After 10
simulated revolutions of the drum no axial segregation was evident. Nakagawa indicates that the
segregation in his tests appears most often to originate at the ends of the drum, and he invariably
obtains an odd number of stripes. The present simulations used periodic end conditions, and
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thus, would not model any effects of real end walls rotating with the drum. Our very tentative
conclusion is that it may be necessary to include rotating end walls in order to simulate axial
segregation of binary distributions in slowly rotating drums.

Dynamic Angles of Repose

The coefficient of friction acting between particles was varied from 0.01 to 1.0 in a series
of simulations examining the dynamic angle of repose of uniform sized spheres in a drum
rotating at § rad/s. Assemblies of spheres with very low coefficients of friction (i.e., 4 = 0.01)
exhibited slumping flows, wherein the entire granular load moves almost as a block back down
the rising cylinder wall, even when the drum was 2/3 filled with spheres. Increasing the friction
between the wall and the spheres (while leaving the interparticle interaction parameters fixed)
still resulted in periodic slumping as a rigid body. The maximum static surface angle exhibited
before slumping was approximately 10 degrees. Increasing the interparticle friction coefficient
resulted in nearly steady circulating flows. Table 1 summarizes the angle-of-repose simulation
results. :

Table 1.
Simulated angle of repose, ¢,, obtained in 12.6cm diameter ro-
tating drum simulations with interparticle friction coefficient, u,,
and drum rotation rate, wq (rad/s), for uniform 3.78mm diame-
ter spheres, O, tetrahedral sphere clusters, A, and cubic sphere

clusters, .

Lp ¢y Wd Shape
0.01 10°* n/2 O
0.02 13° n/2 O
0.1 23° n/2 O
0.1 25° x O
0.2 25° n/2 O
1.0 31° n/2 O
1.0 35° . O
0.1 28° n/2 A
0.1 35-39° /2 O

*(Maximum angle before rigid body slumping)

The exact role of friction on strength of granular assemblies and on the angle of repose has
been the subject of much debate in the last 100 years (see discussion in Rowe, [1962 & 1969],
and Horne, [1965]). The simulation results to date do not specifically confirm any of the existing
theories. This is partially because most of the theoretical treatments have been concerned with
shear strength of assemblies and have ignored rolling, a mode of motion that can play a key
role in the stability of the free surface of an assembly of spheres. As we explore a wider range
of material properties and flow conditions we expect to be able to make comparisons to both
strength and repose measurements and theories and more clearly define the role of friction on
both the shear strength and the angle of repose of assemblies of particles. A significant number
of additional simulation calculations will be needed before the effects of shape can be adequately
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quantified. The angle of repose for the cubic sphere-clusters of the last entry in Table 1 was
somewhat uncertain because of the irregular nature of the inclined top surface an example of
which is shown in Figure 4.

Time = 3.20000 Time = 3.40000
Slice with3192 particles

Figure 4.
Simulation with rigid 8-sphere clusters in cubical arrangement. Ir-
regular surface makes estimate of angle of repose uncertain.

CENTRIFUGING DRUMS

When the rotation rate of a horizontal drum is fast enough for the centrifugal forces to be
comparable to gravity, the character of the flow is changed considerably from the quasistatic flows
discussed above. Figure S shows an instantaneous picture of the configuration in a simulation
with a non-dimensional rotation rate, {1, equal to 1.0, where ﬂ? = wiR;/g, wq and g are
rotation rate and gavity, as before, and R; is the radius of an imagined inner surface that would
exist if all of the granular material were uniformly distributed around the circumference of the
drum. At a rotation rate with {2; = 1.0 the centrifugal force at the top of the drum just cancels
gravity on a particle moving along with the outer wall, yet, as seen in Fig. 5, at this rotation rate
the particles do not stay on the outer wall. Instead, they slide down the rising drum surface and
also cascade in ballistic free-fall to a splash zone at the bottom of the drum. Such behavior is
familiar to anyone who has run laboratory tests with granular materials in rapidly rotating drums
(see, for example, Pitts [1983]). Rotation rates considerably higher than 2; = 1.0 are required
to keep a bed of granular material in continuous contact with the outer cylinder wall.

Single Frictional Particle Analysis
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Time= 2.80000

Slice with3000 particles

Time= 2.90000

Figure 5.

Simulation of flow in a drum rotating at a rate that would cancel
gravity if no slippage occurred, 2; = 1.0. Particles interact with
interparticle friction, 4 = 0.2, particle-wall friction, u,, = 0.5.

A simple two-body frictional contact analysis can be very useful in understanding the motion
of particles on the inner surface of a centrifuging drum. Walton [1984] previously analyzed the
motion of a single frictional particle on the interior frictional wall of a rotating horizontal cylinder.
The numerical simulations in that previous work are essentially correct; however, the analytic
form for the no-slip condition was flawed. We correct that analysis below.

The stability of particles located on the top surface
of an inclined granular bed can be considered analogous
to the stability of a single frictional block on an inclined
plane. Whether the frictional block will remain stationary
or will accelerate down the incline depends on whether
the tangent of the angle of inclination of the plane is
less than or greater than the coefficient of sliding friction
between the block and the plane. Similarly, if the angle
of inclination of a tipped granular bed exceeds the angle
of repose, the top surface will flow down the incline.
This is equivalent to noting that the flow is stable as long
as, tan a < tan ¢,, where « is the inclination angle, ¢,
is the angle of repose, and tan a corresponds to the ratio
of tangential to normal body forces due to gravity acting
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on a particle on a plane inclined at the angle, a.

Extending this analogy to centrifuging flow in a horizontal rotating cylinder, we can deter-
mine the stability of a particle on the inner surface by examining the ratio of tangential to normal
forces acting on it. Consider a two-dimensional view of a particle on the interior surface of a
centrifuging granular bed in a rapidly rotating horizontal cylinder as shown in Figure 6, with the
origin at the center of the cylinder and the polar angle, 8, measured from the horizontal. The
force acting on the particle in the tangential direction, Fr, is given by

Fr = mgcosé. (24)
The force in the radial (i.e., normal) direction, Fg, is given by
Fr = mwiR; — mgsin¥, (25)

where m is the mass of the particle, and all other variables are as previously defined. The ratio
of tangential to normal force is,

Fr cosf
Fr 0% —sind (26)
where, .
n? = K%R-‘i, 0;>1

We can differentiate Eqn. (26) with respect to 8 to find the location of the extrema in the
force ratio,
_ QO%sing—1
(N? —sind)? "~ (A% —sin0)? °

:

d (ET_) _ (Q2 —sinf)sind — cos? § (27)

dd \Fr)

Setting this derivative to zero, we find the circumferential location, 8,,,., where the force ratio,
(Fr/FRr), is a maximum,

] 1
sin 0maz = ﬁi‘ . (28)
)

Substituting this into Eqn. (26) and rearranging we obtain an expression for the maximum value
of the force ratio,
Fr

Fr 4o
Based on the analogy with a single frictional particle, we would expect to have a stationary

centrifuging bed with no movement of the surface particles with respect to the rotating drum
(i.e., no circumferential sliding) as long as

=tanfmaz . (29)

emaz

F.
?‘i’ <tanég, , (30)

where ¢, is the angle of repose for the material. The maximum value reached by the ratio Fr/Fg
during each revolution of the drum is given by Eqn. (29). Thus, we will have a stationary bed if

tanf,q; < tang, . (31)
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From which it follows that no slip will occur as long as
Omaz < br, 0<bmaz<P, (32)

or, combining with Eqn. (28) and rearranging, we obtain an expression for the rotation rate
necessary to ensure that no slip occurs on the inner surface of the centrifuging granular bed,

2 1

7 sing,

(33)

Equation (33) defines the boundary, for cohesionless granular materials in horizontal rotating
cylinders, between a stationary centrifuging bed and a granular bed exhibiting small surface
slippage on each revolution. Just because surface slippage occurs, however, does not mean that
particles will lose contact with the bed or rain down into the open central region. Numerical
simulations show that surface particles can experience slippage of as much as 1/8 radian on
each revolution before their tangential surface velocity becomes so low that centrifugal forces
are insufficient to maintain contact with the underlying granular bed.

Walton [1984] employed a numerical integration of the motion of a single frictional block
on the inside of a rotating horizontal cylinder to determine the minimum rotation rate required
to keep the block in continuous contact with the cylinder. He determined the dependence of that
rotation rate on the coefficient of sliding friction acting between the block and the cylinder wall.
The results were fit by an empirical relation,

N2, = v2 (1 + —-—-—1-—-—) . (34)

2 u+0.125

Identifying the friction coefficient, u, in these single particle simulations with the tangent of the
angle of repose for a granular bed, tan ¢,, it was hypothesized that this same relation would
represent the boundary between sliding and raining flow for a granular bed in a rotating drum,

2 _ V2 1
Mopr =3 (1+tm¢,+o.125) ' (35)

This hypothesis was partially corroborated by noting a laboratory test with sand in a drum
rotating at a rate just below the minimum given by Eqn. (35) exhibited particles raining from the
surface [Pitts, 1983; Walton, 1984]. Here we provide another piece of corroborating evidence
by simulating a drum rotating at a rate just slightly faster than the minimum given by Eqn. (35)
and obtaining slipping flow with no particles raining from the surface. Figure 7 shows two
instantaneous configurations from this simulation; one after 5.5 complete revolutions of the drum
and the other after 14 revolutions. Particles on the inner surface in this counterclockwise rotating
drum slip a short distance down the rising bed each time they pass through the 2:000’clock to
11:000’ clock zone. It took nearly 10 revolutions of the drum to accelerate an initially stationary
bed to the point where all loose particles disappeared from the central region in this simulation.

Figure 8 summarizes the results of the centrifuging and single frictional particle flow analysis
and simulations. The vertical axis is the square of the non-dimensional rotation rate, 12, and
the horizontal axis is the inverse of the sine of the angle of repose, ¢,, (or the inverse of the
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Time = 1.60000

Slice with3000 particles Time = 4.00000

Figure 7.
Slipping flow, 02 = 2.2, 4 = 0.2, (a) after 5.5 revolutions of
the drum and (b) after 14 complete revolutions, starting with the
material stationary and the drum rotating.

sine of the friction angle for the single particle simulations). With this choice of axes, Eqn. (33)
becomes a straight line demarking the boundary between stationary and sliding flows. The single
particle simulations of Walton [1984], defining the boundary where particles lose contact with
the wall, are plotted as open squares and triangles. The empirical curve, Eqn. (35), is shown
as a dashed line. The raining sand experiment of Pitts is a filled circle and the slipping flow
simulation of Fig. (7) is shown as an open circle. Also shown is the graph of an alternative
empirical relationship for the bound between slipping and raining flow,

1

n?, =— 36
o/r = Singl (36)

where, ¢, is an angle related to the angle of repose, ¢,, by the relation,
tan ¢, = 0.16 + tan ¢, . (37)

This empirical curve fits the majority of the single particle simulation results about as well
as Eqn. (35); however, it appears to miss the last point on the right somewhat. Additional
centrifuging assembly simulations are planned to test the validity of using the single particle
simulation results, and thus, Eqn. (35) or (36) as the boundary between the raining and slipping
flow conditions.
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CONCLUDING REMARKS

We have applied inelastic, frictional sphere models to the study of angles of repose and flows
in rotating cylinders, demonstrating the significance of interparticle friction on both the angle
of repose and on the slipping flow behavior in rapidly rotating drums. Analytic and empirical
expressions demarking the boundaries between flow regimes in centrifuging drums are derived
and/or hypothesized. These relations are consistent with experiments and simulations performed
to date. We have applied the rigid-polyatomic approach of Evans & Murad to macroscopic
granular systems and have confirmed that shape effects are as important as interparticle friction
and, in some cases, are crucial to simulate in order to model observed behavior of real granular
materials.

This paper is a status report of work in progress. The cylindrical outer boundary and the non-
spherical particles are recent additions to our well established particle-dynamics capability. The
simulations in this paper are the first exercises of those new capabilities. Some of the problems
addressed here will require many additional simulation calculations in order to establish the
form of expressions relating microscopic interparticle interaction parameters and measures of
bulk flow behavior.
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DIRECT NUMERICAL SIMULATION OF
PARTICLE-TURBULENCE INTERACTION IN
CHANNEL FLOW
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University of California at Santa Barbara

ABSTRACT

This is a study of the interaction of dispersed solid particles with the turbulence in turbulent
wall layer in a flume. The focus of the work is on horizontal channel flows (i.e. inhomogeneous in
the wall-normal direction) because some puzzling and important phenomena have been recently dis-
covered in the near-wall region. By using direct numerical solution of the incompressible Navier-
Stokes equations for the continuous phase, with the effects of particles accounted for, a general
methodology is developed to study the particle/turbulence interactions. This methodology is then
applied to study: i) the effects of turbulent motion on particles with particle Reynolds number Re, <<
1 (Re, is based on the particle’s relative velocity in the fluid flow and the diameter of the particle), ii)
the modification of turbulence by particles. The simulation is conducted for the cases of various par-
ticle sizes and particle loading, with gravity and without gravity. Based on the data obtained from
numerical computations, Lagrangian and Eulerian statistics for both the fluid and the particles will be
developed to study the macroscopic properties of two-phase d*spersed flows and elucidate various
existing modeling approaches. Also the data base will be used for visualization and animation. We are
able to directly look into the details of particle-fluid motion and thus better understand the mecha-
nisms involved in particle-turbulence interactions.
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1. Introduction

The interaction between particles and turbulent flows provides a research topic of both funda-
mental importance and practical interest. Examples of applications are deposition of pollutants, foul-
ing of surface, sedimentation and, the behavior of electrostatic precipitators. This topic consists of
two problems: the first one is particle dispersion in turbulent flows with unmodified properties, called
the "one-way" coupling problem. Physically, this situation is realized in very dilute flows with small
particles e.g. flue gasses with fly ash. The problem has been investigated in a number of studies, but
the experiments are difficult because particle trajectories must be followed, i.e. ideally it requires
measurement in a Lagrangian reference frame. The second problem is to include the effects of parti-
cles on the turbulence structure itself, requiring measurements of how the turbulence gains (or loses)
momentum in relation to the particles and how this in tumn affects their trajectories. This interaction is
referred to as "two-way" coupling.

Traditionally, the effects of particles are thought to act as an additional sources of dissipation
and sometimes of turbulent kinetic energy. This view of turbulence modification by particles does not
take into account the possible effects of turbulence structure on the resulting concentration field of
particles. It was observed (Kaftori et. al 1993) that particles selectively are concentrated in certain
regions by the turbulence structures such as quasi-streamwise vortices, and may cause rapid attenua-
tion of the turbulence in those regions or trigger a new instability mechanism. Therefore, a related
problem to that of turbulence modification by particles is the effect of the turbulence on the character-
istics of the particle concentration field. All these effects are involved in the so called the two-way
coupling problem.

The conventional modeling approach is usually to deal with some form of averaged conserva-
tion equations--ensemble or volume, or volume/cnsemble double averages may be chosen depending
on the problem. However, averaging removes information regarding local gradients, leading to clo-
sure requirements. Such closure relationships are usually semi-empirical and are meant to give mass,
heat, and momentum transfer between phases, and correlations between fluctuations in these quanti-
ties (Reynolds-stress like terms). The averaged equations may be phrased in a manner such that the
flow is viewed as interpenetrating continua or, for dispersed flow, the continuous phase calculated in a
Eulerian frame with the particles being moved in Lagrangian coordinates. Whatever the mathemati-
cal structure of the model, one needs to know how the particles follow turbulent fluctuations and, in
many cases, how the particles affect turbulence properties.

The present research is meant to elucidate these issues by studying turbulent flows containing
particles by direct numerical simulation. Such simulations, if they are well verified in their main fea-
tures by comparison with experiment, can provide information that is difficult to obtain experimen-
tally. For example, direct numerical simulations of channel flows have been verified in a number of
studies by comparison with experimental data on turbulence intensities, Reynolds stresses, streak
spacing, burst frequencies, etc., and may be used to obtain Lagrangian correlation func-
tions--quantities that give rise to formidable measurement problems but which are fundamental to an
understanding of diffusion.

For the purposes of this investigation, we study particle-turbulence interactions near boundaries
in a channel flow. There arc two major objectives of this numerical study. One is to clarify the
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mechanism of interaction between particles and turbulence structures in the wall region. Another is to
contribute information base on which the simplified models may be developed. Both of these goals
are very difficult, if not impossible, to achieve by either experimental or theoretical approaches alone.

There is a few number of experimental studies on particle motion in flow involving the studying
particle effects on fluid. Rashidi et al. (1990), indicated that fairly large polystyrene particles, which
are slightly heavier than fluid, about 5 to 10 wall units in diameter (non-dimensionalized with shear
velocity and kinematic viscosity) increase the frequency of ejections, giving rise to corresponding
increases in turbulence intensities and Reynolds stresses (understandable, since ejections and in-
sweeps account for 60-80% of the Reynolds stresses). The particle loading can be very low (107 for
these effects to show, probably because the particles seem to concentrate in the low-speed streaks.
Conversely, particles of 1 wall unit or less in diameter reduce ejection frequency and damp turbu-
lence--again the effect shows at low loadings with increases in loading increasing the effect. The par-
ticles also tend to accumulate in the low-speed streaks, though the effect of particle size is not com-
pletely clear from the experiments. If the particle velocity and the fluid velocity at any point away
from the wall is averaged, then differences in the average fluid velocity and particle velocity are
found. However, this is not due to the instantaneous relative velocity between the particles and the
fluid, but because the particles accumulate in the low-speed streaks and are ejected with low momen-
tum fluid, i.e. they are associated usually with low streamwise momentum region of the flow since
they are flung upwards with the ejections.

The questions related to why the particles go preferentially to the low-speed streaks and how
this phenomenon depends on particle time constant, and then why the relatively large particles trigger
ejections whereas the small particles damp ejections, remain unanswered.

Similarly, in homogeneous flows it has been found that large particles tend to enhance turbu-
lence, whereas small particles suppress turbulence (see Hetsroni 1989, 1991 and Tsuji 1991 for
reviews of experimental data). The conventional explanation has been that vortex shedding accounts
for the the increase by large particles, whereas the small particles increase effective viscosity and
hence increase the dissipation. However, it is known from several studies that heavier-than-fluid par-
ticles tend to accumulate preferentially in the vorticity/high strain rate regions-the tendency being
influenced by the relative density between the fluid and particle, and the relative time constants for
particle response to drag compared to that for the turbulence. Whether such heterogeneities in the
particle concentration field are an important mechanism for the modification in turbulence intensities
seen in experiments remains an open question. Thus a somewhat similar issue to the one discussed in
the preceding paragraph exists even for homogeneous turbulence.

Yeh and Lei (1991a and 1991b) numerically simulated the small particle motion in homoge-
neous isotropic and homogeneous turbulent shear flow. They used the large eddy model to solve the
turbulent flow field. They considered only one-way coupling problem. It focused on the effect of par-
ticle's inertia and particle free-falling velocity in still fluid on particle dispersion and settling veloci-
ties. Papanicolaou and Zhu (1991) investigated the two-dimensional, dilute fluid-particle system. A
vortex method was used to calculate the fluid phase. The particle-fluid interaction was handled by
adding a body force term into the Navier-Stokes equation. This body force term was calculated by the
averaged particle relative velocity and the averaged particle concentration function. The Stokes solu-
tion was used in particle motion calculation, and the flow was laminar. McLaughlin (1989) studied
small particle deposition in channel flow by direct numerical simulation. He studied only a one-way
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coupling problem. Squires and Eaton studied (1990a, 1990b) the particle-fluid interaction in a homo-
geneous turbulent flow. They also added a body force term to account for the modification of particles
on the fluid. Elghobashi and Truesdell (1992, 1993) studied the particle dispersion and particle-fluid
interaction in the homogeneous turbulence. Again, they handled the particle-fluid interaction by act-
ing the forces, due to the particles in the unit volume, on the fluid, as an additional body force. Some
changes in the turbulence energy and turbulence dissipation have been observed.

In these studies, the particle-fluid interaction is either not considered (i.e. one-way coupling) or
handled by an averaged way. The modified Navier-Stokes equation, used in these studies, is in a form
like

N g V=P v2a-2C -y a
ot p p |

Here V is the averaged particle velocity vector in unit volume of fluid, C is the particle concentration
a is a drag coefficient due to Stokes solution of a single particle motion in creeping flow. In the above
equation the last term is the so called "particle-source" term. It appears like an additional body force

acting on fluid. Then C and V are calculated either by Lagrangian method (following the particles) or
by the macroscopic conservation of mass and momentum of particle phase,

aC -
%’+\7-Vf’=ﬂ(ﬁ-\7) 3

in which g is a constant involving the drag cocfficient and the particle concentration. Obviously, by
doing this, particles, which are discretely distributed in the fluid, are smeared into fluid, i.e. they are
treated as a continuous media. This is equivalent to solving a two-fluid problem, and is the weakness
of this approach, since the forces acting on the fluid by the particles have a distribution and can not
be treated as a point-force. The smallest length scale of the turbulence, the Kolmogorov scale, which
is inversely proportional to the flow Reynolds number, may be comparable to the particle size, at high
Reynolds number. When this scale does not contain cnough particles for averaging, the above model
breaks down. Therefore, this model, though it can give significant results of particle distribution, is
not capable to capture the mechanism of particle-fluid interaction, particularly in the case of dilute
mixture, large particles and in the wall region where the coherent structure of turbulence exist.

In this study, the effect of each particle on the fluid is individually back to the fluid field. By
assuming that the relative motion between each particle and the fluid motion in the particle’s vicinity
is within the Stokes regime, the disturbance velocity field due this relative motion is linear added on
the fluid velocity field around the particle. The motion of each particle is traced by the Lagrangian
method. This approach and the numerical scheme are discussed in the following sections.
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2. Methodology

2.1 Direct simulation of turbulent flow in open channel

We solve time-dependent, three-dimensional, incompressible, continuity and Navier-Stokes
equations. The computational domain for the simulation is shown in Fig. 1. The streamwise direction
is denoted by x, (or x), the spanwise by x;(or y), and the wall-normal direction by x3 (or z), and the
velocity components uy (or u), u; (or v), us (or w), correspondingly. The flow is driven by a constant
streamwise pressure gradient. Pcriodic boundary conditions are imposed in x; and x; directions, and
no-slip boundary condition is applied at the wall, while at the free surface, the free-shear boundary
condition is imposed. All the quantities are normalized with the effective velocity and the half-depth

of the channel. The effective velocity is defined by the pressure gradient as, = ldp/dxih/p, where
dp/dx is the mean pressure gradient, p is fluid mass density, h is the half-depth of the channel. The
effective Reynolds number is then defined as, Re = (u"h)/v, where v is the fluid viscosity. The veloc-

ity, length and time are scaled by u’, h and h/u’, respectively. The non-dimensional continuity and
Navier-Stoke equations for incompressible fluid are:

aui__
5 =0 @)
aui_ ‘ 1 2. ap
—aT—S,+R—eV Ul—-é';(—i )
Buyy,
Si=- (;l_h)‘wn 6

j

The pressure term is eliminated by taking the curl of the momentum equation
aa)k 8S,~ 1

e e

o Uk 3x 7 Re

A fourth-order equation can be obtained by taking the curl of above equation again,

d 0 dS;

3 (Vou) = V°§; + . (ax,- Re (8)

The procedure we followed is to solve the normal velocity uj and vorticity w; first, through the fol-
lowing two equations,

Vzwk (7)

) + —l—- V4Ui

9&:9.5_2_151'.+_‘Ev2w3 )

ad d dS; 1
a V=V s G T Re (10)
Later, the continuity equation and the definition of vorticity are used to solved the streamwise and
spanwise velocity u;, and u,,
aU| du, 8u3
+
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Then the pressure can be obtained by solving the following Poisson equation,
as;
Vip=—! 13
P axi ( )

A pseudo-spectral method is employed to solve the problem. In the homogeneous directions (X, X),
all the quantities are expressed in a Fourier expansion. In the normal direction x3, which is non-
homogeneous, they are represented by Chebyshev polynomials, i.e.

f( xy, X2, X3, 1) =kzk22?( ki, ka. n, l)ci(k‘x‘+kzxz)Tn(X3) (14)
1 ka1

Time advancement of the equations is done by the two-level explicit Adams-Bashforth scheme for
the convective terms and by the implicit Crank-Nicolson method for the diffusion terms. All the cal-
culations are carried out in wave space except that the evaluation of the non-linear terms §i which is
done in real space and then transformed back to wave space in order to avoid the convolution sum
which reduces the efficiency of the method. This method has become a standard method for directly
simulating the turbulent flows in domains of simple geometry such as rectangular channels. A full
description of the numerical scheme can be found in Lam & Banerjee (1988, 1992) and Lam (1989).

2.2 Equation of particle motion

No prediction of the dispersion characteristics of solid particles in turbulent flows can be accu-
rately made without a valid description of the equation of motion for a single particle. This is espe-
cially important for particles in unsteady and non-uniform turbulent flow fields.

Assuming the particle Reynolds number, which is based on the particle diameter and relative
velocity of particle to the fluid, is smaller than one, the most general form of the equation of motion is

-

dv Ao cU 1 d - -
mp—=6/rau(U—V)f(H)+mf-—-+-mfa;(U-V)

dt Dt 2
2, dd_r(ﬁ_v) (15)
+ 6r7a ﬂ:[d‘l' [II—V(_l:-‘[_)ib-S + (mp—mf)g

in which, m, is the mass of the particle, a is its radius, # is the fluid viscosity, U is the undisturbed

fluid velocity at the particle position, V is the particle velocity, f(H) is the coefficient of wall effect to
the Stokes drag, H is the distance from the center of particle to the wall, mg is mass of fluid displaced
by the particle, g is gravitational constant with direction pointing towards the wall, d/dt is the time
rate of change following the particle, D/Dt is the total acceleration of the fluid as seen by the particle,
Du;/Dt = (du;/dt) + u;(du;/dx;), evaluated at the particle position X,. The physical meaning of each
term on the right hand side of above equation are, Stokes viscous drag, pressure gradient and viscous
stresses of the undisturbed fluid, added mass force, the Basset history term and gravitational force
respectively.
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As a particle moves close to a solid wall, the well known Stokes drag formula, which is for a
spherical particle going through a uniform flow in an unbounded medium, should be modified to
include the wall effect. Within an accuracy to the order of O({a/H]*), the coefficient of wall effect is
given as (Kim & Karrila 1991)

1

) = T Gney@m + (8@ (16a)

and

1

) = TGy + 2@y

(16b)

(16a) is for for a particle moving parallel to the wall, and (16b) is for a particle moving perpendicular
to the wall.

For particle motion in turbulent flow in an open horizontal channel, the wall unit is commonly
used to normalize the equations. The characteristic length scale, time scale and velocity scale are,

U, = (1w/pf)”2. 1, =v/u,, and |, = v/u,. 1, denotes the time-averaged wall shear stress. The charac-
teristic length of the channel flow is the order of magnitude of the Kolmogorov scale. The system of
units based on u, and v/u, will be referred to as "wall units", with a + as the superscript.

By normalizing the quantities in wall unit, the equation of motion of a particle becomes,

v _ (- V) + f’—'—(U V>+(1———) 2
a 2 pp dt

d — —
t — (U=-V)dr
L2l 8 [ (17
pp DU " pn® (t=1)”

Here r*P is the particle time constant (in wall unit) defined as,

T = (p")( *)? (18)
Fr is the Froude number defined as,
u,
F. =
u

It is well known that (17) has no exact solution, except for a trivial case, even in its simplest
form in which all but the first term on the right-hand side vanish. This is due to the nonlinearity origi-

nating from the need to evaluate the fluid velocity, U, at the yet unknown particle position. The trivial
case that has an exact solution is that of an invariant and uniform fluid velocity, i.e the flow can not be
turbulent. Therefore, in order to get correct and accurate information of particle dispersion in turbu-
lent flow, each term in (17) has to be examined for various cases. A number of investigations have
been made for particle dispersion in isotropic and homogeneous turbulent flows. In most of these
studies, the particles are much heavier than the fluid, like copper in air. So it is reasonable to neglect
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the added mass, pressure gradient and Bassct terms which are proportional to the ratio of fluid density
to particle density. Since here we investigate the particle dispersion and suspension in turbulent flow
in a horizontal open channel, the density of the particles needs to be equal to or only slightly greater
than that of the fluid. Under this circumstance, the relative importance of each term in the equation of
motion is still unclear. However, to have proper statistics of particle motion, one needs to follow thou-
sands to hundreds of thousands of particles, and if all the terms are included, a huge amount of com-
puter memory and time may be required. From the computational point of view, the most difficult
term is the Basset term.

The majority of the Lagrangian computations have been made for situations where the Basset
term is small in comparison with other terms. Therefore, this term is usually neglected, which is very
convenient, reducing the order of the differential equation and making it explicit in the velocity, and
diminishing the memory requirements of the computations by not retaining information on the history
of the acceleration of the particle. Only a few studies (Thomas 1992) investigated the effect of Basset
force on particle dispersion. It seems that the Basset term makes only a small contribution to the parti-
cle long-time dispersion due to the fact that Basset term decays as (1 - )12 at long times. A study
(Mei et al. 1991) found that the functional form of the Basset term is incorrect since it implies that a
difference in the initial condition of the particle gives a finite effect on the dispersion at long times,
which is clearly unphysical. It was proven that the Basset term should have a form which decays

much faster than (1-7)"'7? at long times. Based on these arguments, it may be acceptable to neglect
the Basset term. At present, we include the Stokes drag, the added-mass force, the pressure-gradient
force and the gravitational force in the numerical simulation. The final expression for the equation of
motion of particles is,

A2 DU |

—=—(@U-V )f(H)+--p—'—(U H+ 2 Zha-2 g (20)

a1 2 ppd pp Dt pp T
However, the relative importance of each force and their effect on particle dispersion and suspension
under different particle size is still an unclear issue, particularly in turbulent channel flow. Therefore,
as a part of this research, an investigation of this issue will be carried out.

2.3 Compuation of particle trajectories

The integration of (20), via a second-order Adams-Bashforth scheme provides the new velocity,
V,(t), in the x,-direction for each panticle as a function of time. In order to keep consistency with the
computation of fluid field, we use u., h and h/u. to rescale (20), and rcarrange it into a form as,

1+ = f(H V) + 1)
25 = 22R.()(U 1+ Copr 2det Fr2 8
in which, C, = p(/pp. a is the nondimensional radius of the panicle ( scaled by half depth of the chan-
nelh), e‘; is the unit vector in the direction of gravity. The Froude number Fr is defined as,

Us

Fr= (_g_hT’E (22)

Particle velocity at time step (n+1) is evaluated through an explicit scheme by knowing the values of

Vand U at step (n) and (n-1). It is necessary to evaluate the instantaneous fluid velocity U at the loca-
tion of the particle accurately. We compute this velocity via a three-dimensional cubic spline

156



interpolation scheme between the adjacent Eulerian fluid velocity values. This scheme is applied in
the three coordinate directions at the particle location. Once the particle velocity at new time step
(n+1) has been calculated, The new position of the particle, xp;(t) is calculated as,

1
Xpiltas1) = Xpi(ty) + 3 At[Vi(tos1) + Vi(t)] (23)

where t, is the time at the previous time step, and At =ty — ;.

The fluid velocity Uj[xp;(1)] at the particle location (initially, the velocities of the coincident
fluid and particle are assumed equal), which is needed to integrate (24) is obtained by a fourth-order
accurate , three-dimensional cubic spline interpolation scheme between the adjacent Eulerian fluid
velocity values. This scheme is applied in the three coordinate directions at the particle position.

We start the computation of particle trajectories by uniformly distributing a number of particle
within the computational domain. The initial velocity of each particle is assumed to be equal to the
fluid velocity at the same location. We then integrate (21) in the three coordinate directions to obtain
the subsequent particle velocity, and calculate the new position from (23). The magnitude of the time
step At is bounded by the resolution needed to compute accurate trajectories. This accuracy requires
At to be much smaller than the particle time constant 7,, and consequently the three-dimensional
velocity field of the fluid needs to be stored at intervals equal to At.

2.4 Particle effect on fluid flow

As a solid particle translates through a flow field, it changes the undisturbed velocity field. In
order to feed the particle effect back to the fluid, we proposed a method, called the method of disturb-
ing velocity, described as follows. At some time instant, t = t,,, the fluid velocity field U(t,) has been
generated by solving equations (4) and (5). Knowing the particle velocity and particle position from

(21) and (23) at the same time step, we calculate the disturbing velocity field due to each particle Vdi,.
Then we superimpose the disturbance velocity, due to the presence of each particle, onto the back-
ground of undisturbed velocity field. So that the modified fluid velocity is obtained by,

VWES(VED> Vaisatn) (24)

This modified fluid velocity field is then put back into the Navier-Stokes equation solver to generate
the field for next time step. The disturbance velocity from each particle is calculated as a local Stokes
flow by assuming the relative motion of particle and surrounding flow is in the Stokes regime. It is
also assumed that the particulate phase is dilute, and the particle-particle interactions are neglected,
and linear superposition is adopted. Since the particles are really moving in a non-uniform flow, this
method is an approximation only. In the following paragraph, we validate our assumption and give
the conditions under which this assumption is valid.

The well-known Stokes theory of the velocity field around a sphere is based on the assumption
that the incoming flow is uniform, which is not the case in turbulent flows. Therefore, the problem
now is to solve the velocity field around a solid sphere moving through a nonuniform, known flow
field. The equations, scaled by d,,, the diameter of the sphere and Uy, a typical incoming velocity, are
expressed as,
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V.i=0 (25)
- — 1 2
u-Vu=—Vp+-R—-—Vu (26)

U=0 atthe surface of the sphere

U=Ug(X) Xateo
Here Re,, is the particle Reynolds number,
Uod
Re, = —£ @7
v

According to the theory of asymptotic expansion, in the iimit of Re,, approaching zero, the solution of
(26) can be approximated as,

i =1 + ORe,) (28)

u° is the first order approximation of U. It is simply the solution of the Stokes problem,
v.i©=0 (29)
Vp© = 4v*g® (30)

The solution of the above equations is just the well-known Stokes solution. If this solution is to be
used as the disturbance velocity, one needs to validate it as being the first approximation to non-
uniform incoming flow.

The next order of approximation takes the nonuniformity of the incoming flow into account.
Since the particle is small compared with the length scale variation in the undisturbed flow, the
incoming flow can be approximated as a linear shear flow,

ug = Up + Gx 3n

Here G is the shear rate. Now the second order problem for the disturbance velocity becomes,

ou - 1 -

(Ug + Gx) — + Gu €3 =— — Vp + vV3i (32)

oz P
V.i=0 (33)

It has been shown that the solution to this problem is (McLaughlin 1991),

F=1%+Reg? T (34)

where Reg is the particle shear Reynolds number defined as,

2
Reg = Sop_ (35)
v

Therefore, the disturbance velocity due to the particle can be expressed in an asymptotic expansion,

=07 +Reg"? 0" + O(Re,,. Reg) (36)

158



If the following conditions

Re, <1 37

Reg <1 (38)

are satisfied, @' is a good approximation of U. In other words, if the conditions (37) and (38) are met,
the Stokes solution is the first approximation of the velocity field around a sphere in a nonuniform
incoming flow. Condition (37) is satisfied if particie size is small enough. The particle shear Reynolds
number, Reg, can be rewritten as,

Gd,2 da d,
=P =yU.-L = ’d (39)
Reg y Up v Rep "

where 7 is the smallest length scale in turbulent flow. If the particle size d is smaller or comparable to
7, the condition (38) is also satisfied.

Therefore we use ii° as the disturbance velocity and superimpose it on the undisturbed velocity
field. This implies capturing the leading order of changes in the flow due to the presence of the parti-
cles. It is similar to the procedure of asymptotic expansion in which, the zeroth order solution is
obtained first, and then substituted into the original equations to get the next order solution by gather-
ing the terms of the same order. In our numerical simulation, the zero order solution to the distur-
bance field is introduced into the flow, and the numerical scheme handles the higher order terms. It
should be emphasised that the inaccuracy introduced by using this method is of the higher order of
O(Rep) and O(Reg).
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2.5 Particle disturbing velocity

As validated in the last section, we adopted-a local Stoke solution for the disturbing velocity
field generated by each particle. The particle is treated as a point in the fluid field, which generates a
disturbance velocity due to the mction relative to the surrounding fluid. This disturbance velocity is
the solution of the creeping flow problem,

V.V=0 (40)

V3 = Vp 41)

The disturbance velocity, which depends on the particle’s relative velocity and particle’s location, is
calculated at each time step and then is used to perturb the fluid velocity around particle. This is the
way we handle the coupling between small particle and fluid.

The theory of creeping flow around a particle and particle-wall interaction had been well estab-
lished in microhydrodynamics (Kim & Karrila 1991). The disturbance velocity due to a particle mov-
ing in an infinite space is

V:Eaf}-(l+£—V2)G(i’-—i’) 42)
4 6 P

in which, U is the particle’s relative velocity, a is the particle’s radius, and X,, is the particle position, X
is the position of the point of interest, as shown in Fig.2. G, the Oseen tensor, is given by,

1 1
Gij = ; aij + r—3 XiX;

= 2 6
2
Ve.G= ;_3'5ij—;-s-xi)(j

3
? = (% = Xpi)
i=1

When a particle moves close the wall, an additional term should be added to (42) to include the wall
effects (Kim & Karrila 1991). A method of reflection is adopted here. As shown in Fig. 3, a mirror
image of the particle is added at the other side of the wall to cancel the velocities on the wall. At the
first reflection on the wall, the disturbing velocity from the mirror image is simply the image system
for the Stokeslet and the degenerate quadrupole,

Ve =F-G(X = %) + 2H[(F, - F) - V]# - G - %)
—HYE, - Fp)- VIG(X = %) + 4@ - V)2Q, + Qy) - G = %)
- 2H( - V)@, - §)V? - G - %) - (3Q; - Q) - V2GR - %»)
-f;(ﬁ-V)(ézxﬁ)xvﬁz—:‘27 (43)

in which, X. is the mirror point of X,,, i is the normal unit vector of wall, pointing into the fluid. F,
and 1_52 are the the vectors parallel and perpendicular to the wall, respectively, 6, and 62 are defined
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as

F)+Fy=>al (44)

W

2
é|+62=%(ﬁ1+ﬁz) @5)

Now we are able to use the total disturbance velocity,

- 3 ol aZ NV | -+
V=ZaU-(1+-6—V)G(x—xp)+v. (46)

to modify the fluid velocity at each collocation point by superimposing V on the undisturbed fluid
velocity U.

3. Validation of numerical scheme

The validation of the numerical implementation consists of three part, force acting on the parti-
cles, the disturbance velocity and the particle’s trajectory.

3.1 Stokes Drag Force With Wall Correction

In order to validate the drag force acting on the particle, a numerical study had been carried out
for a sphere at various distance from a wall under a linear shear incoming flow, by using a finite dif-
ference code FLOW-3D. The problem is shown in Fig.4. The cases with different distances from the
wall H were solved. The particle shear Reynolds number used in these simulations is Reg = 4.63.
Fig.5 compares the drag coefficients from numerical solution, Stokes drag with wall correction,
which is used in (21) and a curve-fit formula, as functions of the distance from the wall. This curve-fit
formula is modified with wall effect

Cy= 24 f(H) + 6

Taina 112
Rep 1+ Rcp

Here the coefficient of wall effect f(H) is given by (16a) and (16b). Figure 6 compares these three set
of data as functions of particle Reynolds number. The Stokes drag is calculated assuming a uniform
incoming flow with a value at the center of the sphere. It is seen that the shear gives higher value of
drag. As stated before, the local Stokes flow assumption is valid only when condition (37), (38) are
satisfied. One thing to note is that the curve-fit formula predicts the drag coefficient very well even in
the case of shear flow.

+0.4 0 < Re, < 2X10° @7

3.2 Disturbance velocity

In Fig.7, the velocity profiles, for the problem shown in Fig.4, across the center of the sphere are
shown. It compares the FLOW-3D result and our approach which is a Stokes disturbance flow with
wall correction, as given by (43) and (46), superimposed on the incoming flow.
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3.3 Particle trajectory

The validation of particle trajectory is made in following way. A sphere is released at the center

of the channel, as shown in Fig.8. The nondimensional parabolic velocity profile, scaled by u', is
given by,

u=Re (22— —;— z%) (48)

Here u” and Re are called effective velocity and effective channel Reynolds number as defined in sec-
tion 2.1. The flow is made laminar by reducing the the effective channel Reynolds number Re to one.
In this case analytical solutions of particle velocities and particle trajectory are easily obtained. The
numerical results are obtained by tracing the particle using (2/). The result is shown in Fig.(9). It can
be seen that the numerical values agree with the exact values perfectly. In order to check the accuracy
of our method for evaluating the fluid velocity at arbitrary point in the flow field, a single particle is
released into a realization of a turbulent flow. The fluid velocity at the particle’s position is calculated
by three-dimensional cubic spline interpolation and compared with the value calculated from the
fourier triple summation,

§(Rp 0 =TT TACky, k. n, O ®HRmdT, (x5) (49)
k] kz n
which can be considered as the exact value. Figure 10 shows the relative errors of the three compo-
nents of the velocity.

3.4 Forces acting on the particle

The forces acting on the particle are the drag force, the hydrostatic force and the added-mass
force. In the other studies (Squires & Eaton 1990a, 1990b, Elghobashi & Truesdell 1992, 1993), the
particles are much heavier than the fluid. Therefore, the hydrostatic force and the added-mass force
were neglected. In our study, the particles are slightly heavier than the fluid. The hydrostatic force and
the added-mass force are not negligible. In order to compare the relative importance of the different
forces, a particle is released into the flow. The forces acting on this particle is recorded as a function
of time. The ratio of particle’s mass density to that of fluid is 1.03. Figure 11 shows the non-
dimensional forces, in each direction, versus the time. It can be seen that the hydrostatic forces have
the same magnitude as that of the drag forces. The small values of the added-mass force means that
the particle follows the fluid closely.

4. Results

The computer code for small particles have been completed and tested with a case of 1700 parti-
cles in a channel with dimension which 4 7 (1000 in wall unit) in the streamwise direction, 2 7 (500
in wall unit) in the spanwise direction and 2 (170 in wall unit) in the normal direction of the channel,
normalized by the half depth of the channel. The flow Reynolds number, defined by the friction veloc-
ity at the wall and the half depth of the channel, is 85.5. The diameter of particle is about 4.0 wall
unit. The corresponding particle volume loading is about 3.5x107>. The Froude number is 0.02,
which gives a settling velocity Vy, = 0.6, of the particles. The ratio of particle mass density to that of
fluid is pp/ps = 1.03. The resolution of computational domain is 32x64x65.
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We start from a uniform distribution of particles. One-way coupling case is simulated until the
particles reach an equilibrium distribution. The stable particle distribution is shown in Fig.12. Due to
the relatively large gravitational constant, most particles are in the region very close to the wall. Fig-

ure 13 shows the particle distribution and the contours of the streamwise fluctuation velocity u
(u=T+u') at a horizontal (x-y plane) plane with a distance of 5 wall units from the wall. In this fig-
ure, the green and blue color represent the negative value of u, which means the streamwise velocity

in these region are lower than the mean value. The yellow and red regions represent the positive v,
which correspond to the high velocities. It can be observed that the particles segregated in the low-
speed streaks. This phenomena is supported by the experimental results (Kaftori 1993) and other
numerical simulations (Pedinotti et al 1992). This is mainly due to the large inertia of the particles. In
this simulation, the size of the particles is fairly large. For the smaller particles, the distribution will
be more uniform. Fig.14 gives a three dimensional view of an instantaneous particle distribution in
the channel. We see that most of the particles are in the region very close to the wall,

Once the particles reach the equilibrium staie, the two-way coupling is simulated. The effects of
particles on turbulence can be seen by looking at intensities of turbulence in each component, which
are represented by the rms of the fluctuation velocities. From the simulation, we generate the instanta-
neous velocity field U(t) at a large number of times. These data base are used to carry out the statistics
of the turbulent flow. Fig.15, 16, 17 show the rms velocities in streamwise, spanwise and normal
direction respectively. The values of clean flow and flow containing particles are compared. The pres-
ence of the particles does not change the turbulence intensity in the sgaR®se component, as shown in
Fig.16. In the streamwise and nommal direction, some changes are observed. These changes are
mainly in the wall region, which is obvious since most of the particles are settled in the wall region,
which covers a distance of about 10 wall units from the wall. Outside of this region, the properties of

the flow are the same as that of the clean flow. Fig.18 gives the Reynolds stress u'w’ for two-phase
flow and clean flow. A very significant increase occurs in the region about 10 wall units from the
wall. The peak value changes about 20%. These results tell us that the particles do modify the turbu-
lence. It should be pointed out that the results presented here are just for one typical case, where the
particle size is large and gravity is high. To see the effect of particle size and gravity, more cases of
various particle diameter and Froude number have to be simulated.

Fig.19 gives the averaged particle Reynolds numbers corresponding to three components of
velocity. Rey,; and Re,, are much smaller than unit. The large Re,, is due the relative high gravity.
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The caption of the figures
Figure 1. The computational coordinate system.
Figure 2. Coordinate system of particle position in fluid.
Figure 3. The mirror reflection operation for the Stokeslet field.
Figure 4. Single sphere close to a wall with a linear shear incoming flow.

Figure 5. Drag coefficient versus the particle’s distance from the wall, for the problem shown in Fig.4,
using different methods.

Figure 6. Drag coefficient versus particle Reynolds number, for the problem shown in Fig.4, using dif-
ferent methods.

Figure 7. The profile of the streamwise velocity, through the center of the sphere, for the problem
shown in Fig.4., by different methods.

Figure 8. A testing case for the computer code.
Figure 9. Particle velocity versus time for the case shown in Fig.8.

Figure 10. The relative errors of fluid velocities evaluated by the cubic spline interpolation,
I(4; = Uj(exact))/Uj(exacyl- The time is scaled by h/u..

Figure 11. The forces acting on a particle moving through a turbulent flow. The diameter of the particle
is 4.0 in wall unit. The forces, which are the forces acting the unit mass of the partilce, are scaled by
u.?/h. The time is scaled by h/u..

Figure 12. The stable particle vertical distribution in the channel.

Figure 13. Particle distribution in the region close to the wall. The color contours show the streamwise
fluctuating velocity at a x-y plane 5 wall unit from the wall.

Figure 14. A three-dimensional view of the distribution of all the particle in the channel. The color con-
tours show the streamwise fluctuating velocity at a x-y plane 5 wall unit from the wall.

Figure 15. Streamwise turbulence intensity, (u?)'?/u., for flows with and without particles.
Figure 16. Spanwise turbulence intensity, (v2)"?/u., for flows with and without particles.

Figure 17. Turbulence intensity of velocity normal to the wall, (W?2)fy,, for flows with and without
particles.
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Figure 18. Reynolds stress, (u'w’)/u.?, for flows with and without particles.

Flgure 19. The averaged particle Reynolds number Re,,.
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Bridging Microstructural and Continuum
Theories of Dispersed Systems with
Parallel Computer Architectures

Sangtae Kim

Department of Chemical Engineering
University of Wisconsin

Madison, WI 53706

Abstract

The project objective is to develop a foundation for the large-scale simulation of the be-
havior of suspensions ranging from dilute to concentrated systems. The suspended particles
and container walls in the simulation can be of arbitrary and quite complex shape; detailed
information at the microscopic level, such as the role of surface roughness, and nonsphericity
(rod-like to disk-like) can be addressed. The solution methodology features fast iterative
algorithms based on integral representations for the Stokes velocity field (and related equa-
tions in potential theory for the electrostatic effects) developed by our group. The overall
computational design philosophy is consistent with the goal of optimal performance on new
advanced computer architectures (parallel computers) capable of performing 10° (today) and
10'? (near future) floating point operations per second.

To achieve these objectives, we have initiated scalability studies to predict performance
on massively parallel computers, using NSF/ARPA sponsored architecture prototyping en-
vironments developed by computer scientists at UW-Madison. Results are now coming out
for such interesting constructs like massively parallel shared memory environments and other
architecture designs of the next generation of parallel supercomputers.

As part of the testbed of benchmark suites to evaluate performance of various architec-
tures, we are developing a large scale computational simulation of the kinetics of protein
folding. The separation between time scales is too large for a direct Brownian dynamics
simulation. Instead, we solve an equivalent set of Fokker-Planck equations over an optimal

pathway in configuration space. Preliminary results for both parallelism and model fidelity
are presented.

Introduction

In recent years, parallel computing has become a dominant issue in computational science and
engineering, including computation and simulation of multiphase systems. We can now lock
back and analyze the trends of the past ten years. The shared memory parallel computers
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Figure 1: Conceptual view of the Sequent Symmetry, CM2 and newer MIMD machines
(CM5, Intel Paragon).

of the mid 80’s, such as the Sequent Symmetry, with bus-based architectures connecting on
the order of 20 microprocessor chips have given way to message-passing distributed memory
computers such as the CM5 and Intel Paragon, that combine many (up to 1000) powerful,
workstation-like RISC processors.

This development has been dictated in part by the concept of scalability of architecture
(the ability to increase the number of processors without impeding performance). The shared
memory programming model assumes the idealized concept of uniform access to a common
or shared memory. Processors communicate with each other by writing and reading from
a uniform memory address space in a coordinated fashion determined by the programmer.
Such architectures have fallen out of favor because of the difficulties in scaling uniform
memory access to large numbers of processors.

At the present time, coarse-grain MIMD machines such as the Thinking Machine Cor-
poration’s CM5 and the Intel Paragon, consisting of smaller numbers (a thousand or less) of
very powerful processors, distributed memory and message-passing on interconnects, domi-
nate the market. Such machines can scale up to large numbers of processor and solve very
large problems, as long as the users take responsibility for removing interprocessor communi-
cation bottlenecks, as in [1]. However, the gains in scalability comes at a price: programming
such machines is relatively difficult in comparison with the shared memory machines.

At this point, a historical analogy analogy may be illuminating. In the early days of
the digital electronic computers, computational scientists were willing to program in non-
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portable machine code to squeeze the last ounce of performance from their machines. As
the technology matured, the ease of portability to newer and faster machines became the
paramount concern and gave rise to high level languages such as Fortran. Ultimately, the
same phenomena must occur with high performance parallel computers. The challenge for
those who wish to design the new high level languages is to identifying the common features
of modern computationally extensive algorithms.

These ideas are tested in concrete form in an architecture prototyping environment that
has been developed in the computer sciences department at UW-Madison [2]. This brings
up a second point: the cost of implementing new ideas in hardware is becoming increasingly
expensive. A prototyping environment, essentially an event simulation of a hypothetical
machine, allows algorithm designers to test the the cross-performance of algorithms and
architectures, without the prohibitive cost of building the real thing. The example described
in the following section is a test of the CDL-BIEM algorithm [1,3] with the cooperative
shared memory programming model, as implemented on the Wisconsin Wind Tunnel (the
prototyping environment).

The Cooperative Shared Memory Model

The essential ideas behind the Fuentes & Kim [1] iterative algorithm for boundary integral
equations can be summarized as follows. The suspension region is divided into regional
subdomains (which can be as small as one particle per domain) and assigned to processors.
Communication bottlenecks are removed by scheduling inter-processor communications as a
function of distance. Distant regions (processors) communicate less frequently. This idea is
readily implemented in the Cooperative Shared Memory programming model.

The cooperative shared memory model is a shared memory model in that the idea of
a global memory accessible to all processors is preserved. But uniform access to memory
(which does not scale) is dropped. The programming model allows processors to “check
out” data to indicate immediate and/or frequent use, and “check in” data when such usage is
terminated. In fact. CSM at Wisconsin actually resides on message-passing hardware (CM5)
but messages are automatically generated by CSM in response to higher level directions of
the programmer. If the programmer works properly with the programming interface, all
variables are read in from local memory thereby giving the impression of a massively parallel
shared memory machine.

The transition from the message-passing model to CSM was implemented by exploiting
the idea that access to (physically) remote memory must correspond to messages. In practice,
this means scheduling the prefetch and checkout directives of CSM. In Figure 2 we show
typical results from the simulations on a 32-processor partition of a CM5. This plot, a
boundary element calculation of the Laplace equation, shows good scale up to large numbers
of processors.

Protein Folding Kinetics

Proteins can be viewed as biological polymers comprised of a specific sequence of amino acids
(the so called primary structure). Most proteins of significant form secondary structures
(alpha helices, beta sheets, etc.) which in turn combine to form a specific three-dimensional
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Figure 2: Boundary element solution of the Laplace equation, using CSM on the Wisconsin
Wind Tunnel.

(tertiary) structure. One of the grand challenges of modern science is the prediction of
protein folding given its amino acid sequence (predicting both the 3-D structure as well
as the kinetic rate of the folding). Since folding to the correct tertiary structure has been
observed to take seconds (even minutes in some cases) a direct molecular dynamics simulation
of protein foldiong is infeasible.

Fortunately, some separation of time scales exits. It is known that proteins fold very
quickly into their secondary structures. There is some hope that, given the energetics of
interactions between these secondary structures, we will be able to construct the optimal
pathway and thus compute tertiary structure. But even for this simplified situation, a direct
molecular dynamics (or even Brownian dynamics) simulation is inherently difficult. Direct
implementation of an integrator for the governing stochastic differential wastes most of the
computational resources in following the rattling motion in local energy minima.

However, some progress has been achieved by working with the associated Fokker-Planck
equation. To obtain the parameters for this associated equation, we perform many (parallel)
short simulations along the pathway. Having obtained the necessary ‘geometric’ information
about the pathway connecting local minima, we use a stiff PDE solver (PDESAC, [4]) to
integrate along the path. The essential idea is that whereas a direct attack on the SDE would
fail as the free energy barrier height increases at the the saddle point, the computational
time for the PDE integration would be a much weaker function of the barrier height.

These ideas are illustrated using Figure 3, a two-dimensional potential energy surface
that is still small enough to solve by direct integration of the SDE. The ‘rate constant’ for
formation of products from the reactants is computed by direct simulation, as well as by
the approximate method (running smaller simulations, obtaining the local curvature, then
integrating with the PDE solver). The approximate and exact methods are compared for
a range of anisotropic diffusivity (ratio of diffusion coefficients transverse to the path and
along the path) and width of the gap. As can be seen in Figure 3, the agreement between
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the approximate method works well, except where it is expected to fail in the pathological
case of wide gap (the free energy barrier is low) and transverse diffusion is extremely low.

Summary and Conclusions

There exists a large class of important computational problems that require computers that
are a factor of at least 10° beyond the fastest machines of today. Strategic research areas
such as computer-aided drug design fall into this category. Parallel computer architectures
can and must evolve in a number of directions to attain these performance levels. On the
other hand, it is prohibitively expensive to actually build real prototypes to test all these
possibilities. Event simulations of these future machines allow us to test our algorithms
on present day machines. Our experience with large scale computations suggest that the
interaction between algorithm and architecture is important and point out the useful role of
prototyping environments.
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ABSTRACT

The emerging technology of coal log pipeline (CLP) for transporting coal has
generated a host of new multiphase flow problems that require research and attention from
researchers in the multiphase-flow field. These include the hydrodynamics of capsule flow
(both steady and unsteady), dynamic modeling of the CLP system, drag reduction in CLP,
coal log jamming and abrasion (wear), water absorption of coal logs, granular flow in
extrusion/compaction, and coal log transport in coal slurry. This paper describes the state
of the knowledge in each of these areas, and the remaining unknowns that must be
researched.

INTRODUCTION

Coal log pipeline (CLP) is a special type of hydraulic capsule pipeline (HCP) that
transports extruded or compacted coal logs (circular cylinders) through the pipe. As
compared to the conventional coal slurry pipeline, the CLP new technology has distinct
advantages including less headloss (energy consumption) at the same velocity, more coal
and less water transported, and easy to dewater and to restart. When fully developed, the
CLP technology is expected to be able to penetrate a large market of coal transportation
that the coal slurry pipeline has been unable to penetrate. At present, the National Science
Foundation, the U.S. Department of Energy, the State of Missouri, and a consortium of
private companies are jointly funding an intensive R & D program in CLP, aimed at early
completion of the develcpment of this emerging technology.

The R & D program in CLP conducted at the Capsule Pipeline Research Center,
University of Missouri-Columbia, is broad based. It includes hydrodynamics, coal log
manufacturing, automatic control of CLP systems, CLP economics, CLP effluent
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treatment, and legal studies including eminent domain issues, water rights, rights to cross
railroads, etc. This paper is focused on the multiphase flow problems (areas) encountered
in CLP, including the following:

Hydrodynamics of coal log flow.
Unsteady flow and water hammer in CLP
Dynamic modeling of CLP system.

Drag reduction in CLP.

Prevention of coal log jamming in pipe.
Abrasion (wear) of coal logs.

N o AW -

Water absorption into coal logs—two-phase flow (air/water) through
porous medium.
Granular flow in coal log extrusion and compaction.

0 00

Coal slurry suspension of coal logs.

Note that the first five of the above nine areas in CLP are common to both CLP
and HCP. Therefore, when discussing them the terms CLP and HCP are used
interchangeably. In contrast, areas 6 through 9 are unique to coal logs; the term HCP will
not be mentioned there.

In what follows, each of the nine areas will be briefly described, and their state of
development and remaining research will be pointed out. The intent is to encourage more
researchers to become aware of and interested in the multiphase flow problems of CLP
and HCP, especially areas that are still poorly understood and that require greatest
research efforts.

HYDRODYNAMICS OF CAPSULE FLOW

The hydrodynamics of capsule flow in pipe is the most extensively explored area of
HCP and CLP. Most of the early studies were conducted in Canada at the Alberta
Research Council between 1958 and 1978. Results were mostly published in the
CANADIAN JOURNAL OF CHEMICAL ENGINEERING, in several
HYROTRANSPORT Conference proceedings, in numerous reports of the Alberta
Research Council, and in the book THE FLOW OF COMPLEX MIXTURES IN PIPES
by Govier and Aziz. They are exemplified or described by the first ten references listed at

the end of this paper [1-10]. Since 1978, the hydrodynamics of capsule flow has been
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studied in other nations including U.S.A. [11-13], Japan [14,15], the Netherlands [16,17],
South Africa [18,19] and Australia [20]. Major progress has been made since 1990 in
classifying capsule flow into four distinctly different regimes, and in deriving the equations
in these regimes for predicting the headloss, incipient velocity, capsule velocity, and
capsule drag coefficient [21,22].

A major unresolved problem in capsule hydrodynamics is the prediction of the lift
force on capsules and the vertical position and the orientation of any capsule moving in the
pipe, before and after lift-off Such predictions are not possible unless and until the
pressure variation around a capsule moving in a pipe can be predicted. Although several
attempts have been made in the past to predict the velocity and pressure fields around a
moving capsule, they all suffer from two unrealistic assumptions: (1) the flow in laminar,
and (2) the capsule is parallel to the pipe (i.e., no angle of attack). In reality, all capsule
pipeline applications involve turbulent flow, and capsules tilt slightly in the pipe which
increases the lift

Therefore, there is a strong need for a good turbulent flow model to predict the
flow field around a capsule in pipe. For such a model to be realistic, it must be three-
dimensional, having the capsule at any vertical location in the pipe with an arbitrary angle
of attack. The model also must include flow separation at capsule entrance, boundary
layers along both the capsule and the pipe, and a three-dimensional wake behind the
capsule. Once the flow field around the capsule is determined, the pressure around the
capsule can be integrated to yield the drag, the lift, and their lines of action. The
information can then be used to determine the moment on the capsule about a given point
such as the capsule tail end. If the assumed position and orientation of the capsule in the
pipe is correct, the overturning moment generated by pressure will be exactly balanced by
the stabilizing moment generated by the weight of the capsule. On the other hand, if the
two moments are not balanced, then the assumed position and orientation of the capsule

are incorrect, and a new position/orientation must be assumed. This means many trials are
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required before one can balance the two moments, and find the final flow field. Although
the task of developing such a turbulent flow model appears formidable, it is within the

reach of modern computational fluid dynamics.

UNSTEADY FLOW AND WATER HAMMER IN HCP

A practical means to inject coal logs and other capsules into a pipe is to use a set
of parallel injection tubes (locks) at the pipeline intake. Trains of capsules (logs) are
alternately drawn into the locks and pumped into the main pipeline by alternately switching
valves; no capsules (logs) need to pass through the water pump. Likewise, at downstream
boos:er stations, capsules (logs) are alternately let into two parallel branches (locks), and
alternately pumped out to the downstream pipe by switching valves. Such valve switching
generates unsteady flow and water hammer (pressure surges) that must be investigated
and understood clearly before HCP or CLP can be used successfully. This subject has
been explored at the Capsule Pipeline Research Center since 1988, using the method of
characteristics. At first, they were analyzed without capsules or logs in the system [23-
25). Then, the problem was solved with capsules in the pipe [26-28]. Currently,
experiments are underway to check the correctness and accuracy of the theory, and to

improve the theory based on experimental evidence.

DYNAMIC MODELING OF HCP SYSTEM

The unsteady flow model (dynamic model) developed can be used to analyze the
behavior of an entire HCP or CLP system during start-up, shut-down, regular operation
involving periodic flow and water hammer generated by periodic valve switching,
emergency valve closure, and capsule jamming. Work is near completion in developing

such a dynamic model [29].
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DRAG REDUCTION IN CLP

It is well known that when a small amount of polymer such as polyethylene oxide
is added to the liquid flowing through a pipe, the headloss (pressure drop) becomes
significantly less than that without the polymer [30-33]. This phenomenon, known since
World War II and widely used nowadays by pipeline companies in long-distance crude oil
and product pipelines, is usually referred to as "drag reduction." In addition to polymers,
fibers such as wood pulp, and combinations of fiber and polymers, also have been found to
be effective in drag reduction [34,35].

The reason for drag reduction to occur is that long-chain polymers and fibers
inhibit turbulence which in turn is responsible for the large headloss and pressure drop in
turbulent flow. Consequently, for any type of hydraulic capsule pipeline (HCP) including
coal log pipeline (CLP), drag reduction is not expected at low velocities at which the
capsules are sliding on the pipe bottom and contact friction between the capsules and the
pipe dominates the headloss or pressure drop. However, at high velocities, the capsules
are lifted off or totally suspended by the flow, and headloss is mainly due to turbulence.
Under this condition it is expected that drag reduction will occur and become effective.
Whether this is true or not is being tested at the Capsule Pipeline Research Center. By the
end of 1993 we should know from the test result whether drag reduction by adding
polymers is effective at velocities above capsule lift-off. The effectiveness of drag
reduction in capsule flow by using fiber (pulp) at low concentration (0.5%) has been

demonstrated in a previous study [36,37].

CAPSULE JAMMING IN PIPE
To prevent capsule jamming in pipe, the causes of jamming must be clearly
understood, and ways to prevent jamming must be developed. This research involves a

combination of experiments and theoretical analysis. It is currently being pursued at the
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Capsule Pipeline Research Center. No previous study of capsule jamming has been found

in the literature.

ABRASION OF COAL LOGS

To minimize coal log abrasion (wear) in pipe, the various causes of such abrasion
must be clearly understood. This includes erosion of coal logs by the fluid (water),
abrasion of coal logs by rough joints, impact of coal logs with pipe, valves and with each
other, and possible damage of coal logs by water hammer. A systematic investigation of

these causes is currently underway [38].

WATER ABSORPTION OF COAL LOGS

Dry or relatively dry coal logs, upon immersion in the water in a pipeline, absorbs
water quickly in the high pressure region immediate downstream of any pump. As the
logs travel downstream, the pressure in the pipe drops and the logs decompress and
release water. This goes in cycles as the logs travel between pumping stations. How fast
does a coal log absorb and release water and how much water is absorbed/released during
such cycles affect the strength and the integrity of the coal log. It is a phenomenon that
has' =n explored experimentally in a recent study [39].

A preliminary model to predict the water absorption of coal logs has been
developed by the writer [40]. The model assumes that the water entering a coal log
causes air to be entrapped in the center of the log, forming an air core. As the water
enters the log, the air core compresses. The rate of shrinkage of the air core and the
ultimate size of the core can be predicted by using the Darcy's law in the water-saturated
outer region of the log, and using the polytropic equation for the air core. Due to surface
tension, the capillary flow equation is also needed at the air/water interface. The resultant
equations can be solved to determine the size of the air core as a function of time. This in

turn allows the determination of the coal log water absorption rate as the log encounters a
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high ambient pressure, and the rate of water released as the ambient pressure decreases.
The validity of the model is being checked in the laboratory through a set of tests. It is
likely that improvement of this preliminary theoretical model will be needed to yield
accurate predictions. More research will be needed before accurate prediction of the
water absorption of coal logs can be accomplished. This is a complex phenomenon that
involves the motion of water and air through a porous cylinder (the log). A good
understanding of this problem will also help to understand the absorption of water by
other porous solids immersed in water or underwater--a rather general field with wide-

spread potential applications.

GRANULAR FLOW IN COAL LOG EXTRUSION/COMPACTION

As a coal log is being formed in an extruder or a compactor, the material (coal-
water-air mixture) undergoes intensive compression, shear deformation, dewatering, and
deaeration.  Existing models for predicting the extrusion of food products, plastic
materials, ceramics and metals are all based on the assumption that the material is
incompressible [41-43]. They also often assume that the materials behave as a certain
non-Newtonian fluid, such as the power-law fluid used for food products [44]. It is
believed that a more realistic model for coal log extrusion/compaction should be based on
granular flow and should take into account the compressibility of the material. This is an
area that has not yet been studied. It presents a challenge to researchers in the granular
flow area. Success in developing such a model has far-reaching implications since it is
applicable not only to coal log fabrication but also to other fields such as extrusion of food

products.

COAL SLURRY SUSPENSION OF COAL LOGS
Strong coal logs made by compaction [45,46] have high density--specific gravity

approaching 1.35. Such dense logs, when transported by water in a large-diameter pipe,
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require a high water velocity before the logs can be lifted off (totally suspended). For
instance, for a 20-inch diameter pipe (the largest expected for coal log transport), the lift-
off velocity can approach 20 ft/secl This is too high a velocity for it causes excessive
headloss, abrasion and other operational problems.

A way to solve the problem is to use coal slurry instead of water to transport the
logs through the pipe. The coal slurry, having a density higher than water, develops a
stronger buoyancy than water can develop. Consequently, heavy logs can be suspended
(lifted off) by slurry at a velocity much below that required for water.

This concept was tested recently in a 2-inch-diameter pipe [47,48], using a slurry
that contains 50% coal by weight--the same slurry used in the Black Mesa Coal Slurry
Pipeline. The test results showed that logs suspended in the slurry were lifted off at a
much lower velocity than that required for water suspension of coal logs. The headloss
for coal logs in slurry was found to be identical to that for slurry flow alone. This is
promising because it means much more coal can be transported at the same energy
consumed by a coal slurry pipeline. More experiments are needed to test the concept in a
larger pipe, and to develop a theory (or semi-empirical approach) for predicting the lift-off
velocity and the headloss for coal logs in slurry. This opens up a new frontier of

opportunities for researchers working in the field of coal slurry transport.

CONCLUSION

Many multiphase flow phenomena have been discovered in the development of the
coal log pipeline (CLP) technology. The rapid advancement of the CLP technology has
far outstripped current ability to understand fully the basic phenomena involved. A strong
need exists to explore the basics of these phenomena so that they can be better understood
and more accurately predicted. Such basic research will cause further advancement in the
CLP technology. The field is fertile and promising; it provides important new topics of

multiphase low that will both frustrate and delight researchers for many years.
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Abstract:

The shear induced coefficient of self-diffusion is measured for dilute suspensions of
non-colloidal particles at low Reynolds numbers in a simple shear flow. Previous models predicted
that the diffusivity for dilute suspensions of smooth spheres should scale as the square of the
concentration ¢ in the dilute limit since at least three particle interactions are required for any
permanent displacement across streamlines (Leighton and Acrivos, 1987). In this study the
diffusivity is shown to be linear in the concentration in this limit, with a value of approximately
0.024 ¢ "yaz. Further investigation showed that the surface roughness of the particles was
insufficient to account for this behavior (Da Cunha and Hinch, 1993), however the particles were
also shown to be eccentric with an average aspect ratio of 1.19. The observed diffusivity may be

due to the breaking of the symmetry of two particle interactions by this eccentricity.

1. Introduction:

When non-colloidal particles interact in the presence of a shear flow under creeping flow
conditions, they will experience some displacement away from their original streamlines. Such
displacements lead to a random walk which can be characterized by a shear-induced coefficient of
self-diffusion. Since the rate at which such interactions occur is proportional to the shear rate Y, and
the length scale of each displacement is the particle radius a, the diffusion coefficient has the
dimensional scaling a2 (Eckstein, et al., 1977). In a dilute suspension of smooth spheres
undergoing purely hydrodynamic interactions it takes at least three interacting particles to produce a

net displacement, thus since the rate at which a tracer sphere interacts with two other particles is
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proportional to the square of the concentration ¢, the diffusion coefficient should also scale with ¢2
in the dilute limit (Leighton and Acrivos, 1987). In contrast, if there is some source of irreversibility
in two particle interactions which breaks the symmetry of the interaction, such as is produced by
surface roughness (Rampall, et al., 1993), or if there is any anisotropy in the particles which also
breaks the symmetry, then two particle interactions can lead to a net displacement and the coefficient
of self-diffusion will be proportional to ¢ in the dilute limit.

In this paper we present the results of experiments designed to distinguish between these two
possible limiting behaviors. In the next section we describe the materials and procedure used in the
experimentation. The third section describes the statistical analysis necessary to determine the
diffusivity from observations of the random walk of particles in a Couette flow, and the fourth
section presents the results of our experimentation. The final section presents our conclusions and

offers possible explanations for the observations.

2. Experimental Approach:

The method for measuring the diffusivity employed in this study is the same as that developed
by Leighton and Acrivos (1987). The diffusivity was measured in the Couette viscometer depicted
in figure 1. The device had an inner radius of 9.73cm and an outer radius of 11.74cm, resulting in a
gap width of 2.01 cm. The aluminum inner cylinder was aligned with the rotation axis to within
+50um and the outer PMMA cylinder to within £200um, thus the variability in the gap width was on
the order of 1%. To test the effect of this small non-uniformity of the gap on the measured
diffusivity, a new PMMA outer ring was machined which was aligned to £70um and the diffusivity
of a dilute suspension was remeasured. No statistically significant difference was found.

A stress free lower boundary was provided by a lcm thick layer of mercury, and the upper
surface was open to the atmosphere. The radial diffusivity was determined by measuring the
variation in the length of time a marked particle took to complete a series of rotational transits of the
device. Since particles on different streamlines move with different velocities, the variation in the

transit time can be used to measure the radial diffusion coefficient.
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Figure 1. Measurement apparatus. The device consisted of a 9.73cm radius aluminum inner
cylinder and a 11.74cm radius PMMA outer cylinder. The suspension A was floated on a layer of
mercury B between the inner and outer cylinders. Transit times were determined by recording the
times at which a marked particle would pass in front of a vertical line drawn on the inner cylinder.
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The particles used in the experiments were PMMA patrticles sieved from a polydisperse sample
of MG102 particles obtained from ICI, Inc. They were observed to be slightly eccentric, ranging
from a prolate spheroidal shape to (in the case of two fused spheres) a cylindrical shape with
hemispherical end caps. It was found that in air the particles would tend to stick to a plane surface,
and would not always lie with the major axis parallel to a plane. Thus to characterize the shape it
was necessary to drop a sample of the particles one at a time through a fluid onto a plane inclined at
an angle of about 70° to the horizontal. The particles were aligned by travelling down the plane, and
observed using a video microscope to determine .\ size and shape. A sample of 75 particles was
used. The average ratio of major axis to minor axis was determined in this way to be 1.19,
characterized by a population standard deviation of 0.07. The average diameter was 771yum and the
population standard deviation was £54um. Many of the particles were observed to contain air
bubbiles in their interiors, and on some spheres these inclusions led to a visible bump on the exterior
of the sphere.

In addition to size and shape characterization, it was also necessary to determine the
characteristic surface roughness of the particles. The hydrodynamic technique of Smart and
Leighton (1989) was employed, in which the surface roughness w. s determined by measuring the
time taken for a particle initially in contact with a plane surface to fall away. It is simple to show
that, for spherical particles, this time is related to the largest scale of surface roughness which is of

sufficient surface coverage to support the particle. The relationship is approximately given by:

g, =2exp{2-[tg/ (tg- )] [1 + In(2)]} 2.1

where g is the surface roughness rendered dimensionless with the particle radius a, t, is the time for
the sphere to fall from contact to one radius from the plane, and t; is the time to fall from contact to
one diameter.

A sample of 12 particles were tested in this way in an 8ml sealed cube containing an 80wt%

Triton X-100 and 20wt% water solution. The plane surface was a freshly cleaved mica sheet. The
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Table 1. Tracer particle major and minor diameters.
The diameter measured for the largest particle is
within 0.5% of that expected for a 1/8 inch ground
asrylic sphere.

major minor aspect
diameter (um)  diameter (um)  ratio
317 310 1.02
420 401 1.05
656 602 1.09
770 659 1.17
770 663 1.16
802 651 1.23
1157 667 1.73
1434 1402 1.02
3190 - 1.00
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Figure 2. Translational and angular velocities of a sphere along an inclined plane. The
dimensionless translational and rotational velocities of the 1418pum sphere along an inclined acrylic
plane are presented as a function of inclination angle. The curves are fitted by a dimensionless
roughness of 7.5 x 10~ and a coefficient of sliding friction of 0.22.
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Figure 3. The ratio of rotational to translational velocities along an inclined plane. Data are for the

same experiments as in figure 4, with solid body rotation being achieved at about a 15° plane angle of
inclination.
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data exhibited a large amount of scatter, likely due to the use of an equation derived for spheres to
describe the behavior of ellipsoidal particles. The average dimensionless surface roughness over all
orientations examined was approximately 1x10-3.

A number of the acrylic particles were marked by boiling them in a concentrated solution of
black RIT fabric dye. Several particles were selected from this batch as tracer particles. Both the
shape and sizes of these particles were determined by examining their motion down an inclined
plane. The sizes and aspect ratios of these particles are given in table 1. The largest particle was a
ground acrylic sphere obtained from Engineering Laboratories, Inc.

To determine the influence of the dying process on the surface roughness, the 1418um particle
was more completely characterized. This particle was chosen because it was the most nearly
spherical of the larger ICI acrylic particles, and thus the roughness models developed by Smart
(Smart and Leighton, 1989; Smart et al., 1991) would better apply. We were unable to find a dyed
acrylic particle of the same size as those in the suspension which was also spherical.

The 1418um particle was characterized by determining its time to fall away from an acrylic
plane, and by measuring its rotational and translational velocities along an inclined plane. The latter
portion of the experiment allows us to determine both the surface roughness and the coefficient of
friction between the dyed acrylic particle and the acrylic plane. The details of this experiment are
identical to those described by Smart, er al. (1991). The measured velocities as a function of angle
are given in figure 2, rendered dimensionless with the Stokes settling velocity and the component of
gravity tangential to the plane. The ratio of these velocities, a sensitive function of the coefficient of
friction, is given in figure 3. The data are best fit by a dimensionless surface roughness of 7.5x10-4
and by a coefficient of sliding friction of 0.22. Thus, it appears that the dying process does not
significantly add to the surface roughness.

The fluid used in the diffusion experiments was a solution of 77.93wt% Triton X-100 (a
non-ionic surfactant manufactured by Rohm and Haas), 13.06% anhydrous zinc chloride, and
9.07% water. In addition, 0.2wt% concentrated hydrochloric acid was added to the final solution to

prevent the formation of zinc hypochlorite precipitate. This was the same solution employed by
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Phan and Leighton (1993) in their study of tracer diffusion at high concentrations. The fluid had a
viscosity of 32p at the operating temperature of 24.5°C and a density of 1.17g/cm3. Both the index
of refraction and the density of the fluid closely matched those of the acrylic particles.

In operation, the Couette device was brushed with a thin coating of the suspending fluid to
protect aluminum surfaces from the mercury, and then the mercury and the pure fluid were added.
The height of the pure fluid layer in the gap was approximately 3.3cm. Particles were added in the
desired quantity at a shear rate of 4s-!. Shearing was continued at this shear rate until the particles
were fully wetted, and then the shear rate was increased to 40s!. At this higher shear rate secondary
currents produced either by inertial flow in the mercury or by shear waves visible at the mercury /
solution interface caused rapid vertical mixing of the particles. After 3 minutes of shearing it was
found that the particles were well dispersed in the vertical direction, however at lower concentrations
(1% - 5%) there appeared to be a band of particle free fluid near the inner wall. The cause of this
band was not investigated, however it decreased in width as the concentration increased and
disappeared altogether at a concentration of 7.5%.

Before taking data the suspension was well mixed. The mixing procedure consisted of
shearing at 4s-! and simultaneously scraping the fluid upward along the inner and outer cylinders
around the entire circumference. This procedure was repeated twice, and then the marked particle
was positioned near the center of the Couette gap. The suspension was sheared for a further Smin to
13min at 4s°! before data taking was commenced. No inertial currents or interfacial instabilities were
observed at this lower shear rate.

The position of the particle vertically in the gap was recorded before and after each series of
transits to guage the significance of any secondary currents. These currents, apparently thermally
driven, were of small magnitude (on the order of 3um/sec), and typically varied in strength over a
time scale of about 1 hour. Because the diffusivity for a dilute suspension is very small, however,
this magnitude drift velocity could have a significant impact on the calculated value of the diffusion
coefficient. As will be described in the next section, reduction techniques were employed to

eliminate any constant drift velocities from the calculated diffusivity. Measurements were taken over
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a period of approximately 20min to ensure that the drift velocity did not appreciably change during
the measurements. Particle transit times were measured by determining successive times for a
marked particle to pass a line drawn on the inner cylinder. Typically 100 transits would be
observed, the suspension would be remixed according to the procedure described above, and the
process would be repeated.

The experiments were done in two parts. First, the behavior of the 1.23 aspect ratio particle
was investigated as a function of concentration. The number of measurements varied with
concentration, with 500 to 700 transits observed at concentrations from 1% to 5%, and 300 transits
observed at concentrations from 7.5% to 15%, the highest concentration used in this study. These
measurements were done in two series, the first a sequence of 2.5%, 5%, 7.5%, 10% and 15%
concentrations, and the second a sequence of 1%, 2.5%, and 5% concentrations. The migration
behavior in the pure fluid was observed for both series. In addition, this particle was also examined
at a 1% concentration using the newly machined outer ring which reduced the variability in the gap.
The diffusivity measured in the two experimental runs differed by only 18%, which was well within
the expected random error.

In the second part of the study, the behavior of the other tracer particles was examined at a 1%
concentration alone. Typically 600 transits were observed for each particle. Difficulties were
encountered for both the 314pum and 3190um spheres (the smallest and largest particles used in the
study). For the smallest sphere additional lights were required to sufficiently illuminate the particle
to make it readily detectable, and these lights apparently induced significant thermal secondary
currents in the gap. The large acrylic sphere, obtained from a different source than the 771um
particles, did not quite match the density of the fluid and displayed a tendency to settle. Diffusivities
were calculated for this particle only from data taken when the particle was in the middle third

vertically in the gap.

3. Statistical Analysis:

As is described in more detail by Leighton and Acrivos (1987), it is possible to use the
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variation in the observed transit time of a marked particle as it travels around a Couette viscometer to
determine the diffusion coefficient in the radial direction. For a device with finite curvature such as

is employed here we may define a variable o such that:

(Ctefr) = Lt . 1/ !
(L a2 err 2 €2 1+ 0) (o)

where Y¢r and (Xg).r are defined as:

(Xo)eft = 27tnR (1 - “—&)% 3.2
vt
and
'chf=‘ll€t‘\i(l n-vtg) 33

where v is the rotational frequency of the outer cylinder, t is the average of the transits t and t', and n
is the number of successive transits summed together in calculating both t and t'. The device aspect

ratio € is defined as

R\ R/ 3.4

where R is the radius of the inner cylinder and W is the gap width.
This expression, derived for a Newtonian velocity profile, explicitly accounts for the variation

in both the path length that the sphere travels and the shear rate as a function of radial position in the

gap. The calculated diffusivity is given by:
R N
D=D =~ L% (o2 3.5
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in which it is assumed that there are no measurement errors, or periodic displacements of particles
such as would occur due to the rotation of doublets or clusters of particles. As was demonstrated by
Leighton and Acrivos (1987), however, the contribution of errors to the calculated diffusion
coefficient can be greatly reduced by summing successive transits together. Thus, instead of using
the time for a particle to complete one transit in calculating oy, we can use n successive transits and
increase X, accordingly. It was demonstrated that the contribution of either observational errors or

periodic displacements with variance 0,2 to the calculated diffusivity would scale as 1/n3:

. 5
D. =D 9 Yzw O%)bs
Dobs D+[512n Raaz} " 3.6

The actual diffusivity can thus be obtained by plotting the calculated diffusivity vs 1/n3 and
extrapolating to zero. This is particularly important for small concentrations, since the contribution
of observation error to the calculated diffusion coefficient may be larger than the actual diffusivity for
single transits.

The extrapolation procedure suggested above only applies in the case where wall limitations of
the random walk of the particle are not significant. In order to prevent wall limitations from
becoming significant we limit n < 6 and we use only those migrations which begin in the central
region of the Couette gap. We choose an observation window whose edges are the same multiple of
diffusion lengths from the nearest wall. Because transits are much longer nearer the inner wall (and
thus the elapsed strain between observations and diffusion length are longer), the window is
displaced toward the outer wall. For our experiments we have chosen the window 0.308 < y* <
.808 where y* = (r - R)/W is the dimensionless position in the gap.

The maximum information can be obtained from a series of transits if we make use of all of the
observed transit times even for values of n # 1. For example, in the n=2 case we can calculate a
value of a; by using the total time to complete the first and second transits and then the third and
fourth as t and t'. We can also determine a n=2 ¢ by using the total time to complete the second and

third transits and then the fourth and fifth. By interleaving the data in this way we take maximum
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advantage of the transit observations and somewhat reduce the greater statistical error produced by
calculating diffusivities using larger values of n.

In addition to the above treatment, it is also necessary to remove any contributions due to
secondary currents. At a concentration of 1% the magnitude of the dimensionless diffusivity is only
about 2.3x10-4. For this diffusivity the expected rms radial displacement after 20 minutes of
shearing at 4s-! is only about 1 particle diameter, thus it can be easily masked by drift motion arising
from secondary currents. For a Newtonian velocity profile, the time to complete a transit of the

device is related to the radial position r by:

-1
t=§_(1_R_2 3.7
\Y r2

The variation in the transit time due to some constant radial velocity U is thus given by:

=

At=ﬂAr=

U 38
d t

—
o

r

Taking the derivative of equation 3.7 and rearranging yields an estimate for the scaled drift velocity

from the observed data:

N
U~ NL 2 (aeff)l 3.9

where the mean is taken over all of the observed transits in a particular series. The diffusion

coefficient can then be calculated by removing this bias:

~

N
. | Al |
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where n is the number of transits summed together in evaluating the data as described above. Note
that the diffusivity is no longer simply the variance of the unbiased a;'s, but rather is different from
this by a factor of N/(N-1.5n). This factor arises because of the reduction in the number of degrees
of freedom by using the measured o;'s to determine the drift velocity. The factor of 1.5 is greater
than unity (which would be expected for independent @;'s) since the successive transits are not
independent, but depend in a complex way on the time history of the radial position of the particle
during the migration. The factor of 1.5 was determined by examining the results of a numerical
simulation of the migration process involving 160,000 transits. Since the value of N for the
experimental data was kept at about 100, however, and n was less than or equal to 6 in the data
reduction, this degree of freedom correction was only a few percent.

The magnitude of the drift velocity was small in our experiments, however it was sufficient to
affect the calculated diffusion coefficient at the lowest concentrations studied. In figure 4 we plot the
diffusion coefficient calculated for 0% concentration both with and without the drift correction. As
can be seen, without the drift correction the calculated diffusivity is close to that measured for the 1%
concentration suspension. The drift correction reduces the magnitude of the calculated diffusivity by
more than an order of magnitude.

In order to determine if the period of 20 minutes was sufficiently short that the drift velocity
could be regarded as constant, the five 1.0% concentration 20 minute time series observations were
divided into ten 10min segments and reanalyzed using the same procedure. The results of this
analysis are depicted in figure 5. As may be seen, the diffusivities calculated in this way differ by
only 4%, which is much less than the random statistical error in the diffusivity. A somewhat
different result was obtained for the 314um and 3190um acrylic spheres. In the former case, the
illumination lights required for the small particle induced a secondary current much larger than that
found for the other tracer particles. Thus, during the observation time the particle actually moved
radially far enough for the magnitude of the drift velocity to change significantly. The calculated
diffusivity for this particle decreased by 15% when the intervals used were divided in half. We have

reported the lower value.
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Figure 4. Diffusivities measured for the 1.23 aspect ratio particle at zero concentration. Open
symbols are calculated diffusivities using equation 3.5, filled symbols are for the same data with the
drift correction given by equation 3.10. The straight line is what would be expected for zero

diffusivity from equation 3.6. Note that the calculated diffusivity is reduced by more than an order
of magnitude.
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Figure 5. The effect of observation time on the calculated diffusivity for the 1.23 aspect ratio particle
at 1% concentration. Open symbols are calculated diffusivities using 10 minute samples, filled
symbols are the same data using 20 minute samples. The two results are similar, thus indicating that
the drift velocity was approximately constant over this period.
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With the 3190um sphere, a different difficulty was encountered. Since this particle both had a
very low diffusivity (about a factor of 4 less than that of a 771um particle) and settled through the
suspension vertically, the drift (while small) tended to be outwards for half of the observation series
and inwards for the other half. The drift correction described above treats the drift velocity as a
constant. When the observation series for this particle were divided in half, the diffusivity decreased
by 35%. Again, we have reported the lower value, but the calculated diffusivity for this tracer
particle must be regarded as only approximate.

Another consideration is whether sufficient strain elapses between observations for the
diffusivity to approach its steady long-time value. This is particularly true for dilute suspensions in
which interparticle interactions are more infrequent than at higher concentration. The elapsed strain
between particle observations is a function of the position of the tracer particle in the gap, however
for this geometry it was typically about 50. During this time a tracer sphere in a 1% suspension can
be expected to undergo a close encounter (impact parameter at infinite separation of less than one
diameter) with, on average, 1.3 spheres. The number of such encounters can be increased by
increasing the number of successive transits summed together in calculating the diffusivity. In figure
6 we have plotted the calculated diffusivity for the 1.23 aspect ratio particle in a 1% concentration
suspension as a function of 1/n3 up to n=20, together with a linear fit to the data. As can be seen,
the data clearly approach an asymptotic value for n 2 4, thus suggesting that the diffusivity
approaches its steady value for ¥t < 200. Note that we cannot set a lower limit on this value since it
is impossible to separate the experimental error from the strain necessary to approach steady state.

In addition to calculating the diffusion coefficient, it is also necessary to determine its accuracy.
The variance of a set of independent measurements x; has an error which is characterized by the chi
square probability distribution. In the limit that the number of observations N becomes large, this

distribution reduces to a Gaussian form with a standard deviation given by:

op=D|(2)" 31
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Figure 6. Effect of elapsed strain on the calculated diffusivity. Data are for the 1.23 aspect ratio
particle at 1% concentration. The calculated diffusivity did not change significantly for n > 4,

suggesting that steady-state had been achieved by this point. The curve is the fit suggested by
equation 3.6.
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Figure 7. Calculated diffusivities for the 1.23 aspect ratio particle as a function of the number of

transits summed together. Note that the measured diffusivity at 0% concentration is more than an
order of magnitude below that measured a. 1% concentration.
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Unfortunately, the problem examined here is more complex, since the individual oy's are not
statistically independent, and we are also subjecting the data to an extrapolation to 1/n3 = 0. In order
to more accurately determine the error in the calculated diffusivity we used two approaches. First,
the statistics of the diffusivity calculated via the numerical simulation was examined. This showed
that the error of the diffusivity calculated using the extrapolation procedure described above was
roughly twice what would be expected from a random sample of N elements as given by equation
3.11. Second, the scatter in the diffusivity measured in the actual experiments for each 20 minute
sample was also determined and used to estimate the error. This had the added advantage of also
including any error due to incomplete mixing before each experimental run. The error in the
diffusivity calculated both ways was quite similar, suggesting that the contribution to the error

produced by the mixing was small in comparison to the statistical source of error.

4. Results:

The diffusivities measured using the procedure described above for the 1.23 aspect ratio
particle are presented in figure 7 as a function of 1/n3, and the extrapolated values are given with one
o error in table 2. The curves in the figure are linear fits to each data set. Note that the diffusion
coefficient calculated for the pure fluid case is more than an order of magnitude below the
extrapolated value for the 1% concentration case. This large degree of separation demonstrates that
this technique can be used to accurately measure the diffusivity even at these low concentrations.

In order to determine the asymptotic behavior of the diffusivity in the dilute limit, it is useful to
examine the ratio D/¢. This is done in figure 8. As can be seen, the ratio approaches a constant
value as the concentration goes to zero, showing that the diffusivity is proportional to the
concentration in the dilute limit, with a coefficient of 0.024 + .003. The earlier work of Leighton
and Acrivos suggested that the diffusivity scaled with ¢2 in the dilute limit. Their data was correlated

by the expression:

D=0502(1+009e7) 4.1
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Table 2. Measured dimensionless coefficient of self-diffusion as a
function of concentration for the 1.23 aspect ratio tracer particle.
The diffusivities are rendered dimensionless by the shear rate and
the average radius of the particles in the suspension.

¢ Dx10* o5x10

0 0008 0.2
001 242 023
0.025 576  0.67
0.05 14.5 1.6
0.075 232 4.
0.10 416 7.8
0.15 102 18

Table 3. Virial expansions for the diffusivity of the 1.23 aspect
ratio tracer particle. The errors given are those calculated by
assuming the form of the virial expansion is correct, and
accounting for the statistical error in the measured diffusivities.
These one standard deviation errors thus do not reflect any
systematic error in the measurement procedure, or error due to the
assumed form of the virial expansion. Note that the O(¢?)
coefficient is within one standard deviation of zero, and that the
constant term is also zero to within error.

0 1 2 3

o o ¢ ) range
85x107 00242  -0.05 228 (<¢<0.15
121 x 106 *0.0031  #0.14 %119 -
i 0.0232 . 186 < ¢ <0.15
+0.0016 +043 T
83x107 00222 0.11 ] 0<¢<0.05

21 x 106 *0.0028  +0.10
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Some of the data from this earlier study, together with their proposed correlation, is also reproduced
in figure 8. As may be seen, the data in the present study agrees very well with the earlier
measurements, with the correlation drawn through the new data passing through the old as well.
The difference is, of course, that it is necessary to make measurements at concentrations much below
the lowest value (4.6%) used in the Leighton and Acrivos study to measure the very small O(¢)
coefficient.

It is interesting to try to determine the next coefficient in the virial expansion for the diffusivity
in this suspension from the data. We have tried three different expansions, with the results given in
table 3. The coefficients are obtained using a weighted linear regression scheme, and the errors in
the coefficients are determined from the error in the measured diffusivities rather than the degree of
fit to the data. As can be seen, the O(¢2) coefficient is always within one standard deviation of zero.

Indeed, the data is adequately fit by the correlation:
D=~0023¢ + 1.860¢° 4.2

where the O(¢2) term is absent entirely. The cause for this behavior is unclear, however it may be
that the region in concentration over which solely three particle interactions can contribute
significantly to the particle migration is very small. At a concentration of 10% the average
interparticle separation distance is only 3.5 radii, and thus multiple particle interactions may already
be becoming significant. Also, the work of Graham (Graham and Bird, 1984; Graham and Steele,
1984) has demonstrated that particles tend to cluster at relatively low concentrations, making multiple
particle interactions more likely.

The measured diffusivities for the other tracer particles at 1% concentration are presented in
table 4. As may be seen, the diffusivities of the three tracer particles larger than those in the
suspension are lower. These data are presented graphically in figure 9, where we have plotted the
measured diffusivity vs. the ratio of the tracer major axis to the average major axis of the suspending

particles. While the observations for the 3190pum sphere are somewhat uncertain for the reasons
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Figure 8. Measured diffusivity as a function of concentration for the 1.23 aspect ratio particle. Note
that the diffusivities are in close agreement with the earlier 670(um sphere data of Leighton and
Acrivos (1987). The low concentration data clearly show that the diffusivity approaches zero as
O(¢) rather than as O(¢2) as had been suggested by the correlation of Leighton and Acrivos.
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Figure 9. Measured diffusivity as a function of particle size and shape at 1% concentration. The
diffusivity is plotted against the ratio of the tracer major axis to the avcrage suspending particle major
axis. Note that the diffusivitis of the larger tracer particles is much less than those of tracer particles
closer in size to those of the suspension. The data is consistent with an inverse dependence on tracer
particle size for large tracers. The filled symbol is the highly eccentric 1.73 aspect ratio particle.
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Table 4. Dimensionless tracer diffusivities measured at 1%
concentration for all tracer particles. The diffusivities are rendered
dimensionless with respect to the shear rate and the square of the
average suspending particle radius.

st ) Bt o
314 1.02  2.17 0.38
411 1.05 1.58 0.29
630 1.09 201 0.29
714 1.17 277 0.34
717 1.16 2.38 0.30
726 1.23 243 0.23
912 1.73 1.36 0.17
1418 1.02 1.68 0.31
3190 1.00 0.70 0.17
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described in the last section, the data are at least consistent with the inverse size ratio dependence
observed by Phan and Leighton (1993) for concentrated suspensions. Much more precise
measurements at larger aspect ratios would be required to confirm this relationship, however.

The dependence on tracer particle size for small tracers is much less clear, particularly due to
the uncertainty in the 314pum tracer measurements. The data appear to be consistent with the
interpretation that the O(¢) contribution to the diffusivity does not vanish for small tracer size. This
is also similar to the behavior observed in concentrated suspensions. Again, it would be useful to
explore a larger range in tracer particle sizes, but the 314jum particle was the smallest which could be
detected in this experiment.

An effort was made to determine the effect of particle shape on the tracer diffusivity. A 1.73
aspect ratio particle was examined. This particle was capsule in shape and had a mivor axis
comparable to the minor axis of the particles making up the suspension. Its major axis, however,
was significantly larger. As may be seen from figure 9, its diffusivity was less than that which
would be expected for a more spherical particle with a characteristic radius of either the major axis or
minor axis. This suggests that a high degree of anisotropy retards the diffusivity in a suspension of

moderately anisotropic spheroids.

5. Conclusions:

In this work we have demonstrated that there exists a finite O(¢) contribution to the
shear-induced tracer diffusivity. In order for such a contribution to exist something must break the
symmetry of two-particle interactions to yield a net displacement. One possible explanation for this
interaction assymetry is the presence of surface roughness on the particle. As has been demonstrated
(Arp and Mason, 1977; Rampall, et al., 1993) surface roughness acts to keep particles at distances
greater than some minimum separation distance. Since particles are driven very close together in
simple shear flows, surface roughness can significantly modify the particle trajectories. Such a

displacement reveals itself in the assymetry of the pair particle distribution function. In figure 10 we
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Figure 10. Area average pair distribution function for a 5% concentration suspension of 3175um
spheres in a simple shear flow: a. compression quadrant, b. extensional quadrant, c. comparison of
compression and extension quadrants at low angles. The data were taken for ground acrylic particles
similar to the large tracer sphere employed in our work. The measured surface roughness for these
spheres was 2 x 10-3 radii. From Rampall, et al. (1993).

229



reproduce the area average pair distribution function observed by Rampall, et al. (1993) for a 5%

suspension of 3175um acrylic spheres undergoing simple shear flow. This average is defined as:

0+A6/2 pr
I I q(r,0) r dr d6
8-4612 Jo

y(r,0) = 5.1
%rz AO

where q(r,0) is the pair distribution function normalized by its value at infinity. The range 0°<6<90°
corresponds to the recession side of an interaction while 90°<8<180° corresponds to the approach
side. Note that the lack of fore and aft symetry in the pair distribution function, with a depletion of
particles on the recession side, provides clear evidence of the displacement of particles during particle
interactions. Such displacements can lead to a random walk.

Recently Da Cunha and Hinch (1993) have calculated the shear-induced self-diffusion for equal
sized particles in a simple shear flow arising from surface roughness. From their calculations, a
dimensionless surface roughness of 1.0x10-3 would result in an O(¢) coefficient for the random
walk diffusivity of 9.75x10-4, more than a factor of 20 less than the value measured in this study. In
order for the surface roughness to account for the observed diffusivity, it would have to have a value
of 0.07, a factor of 70 greater than is observed, leading us to conclude that while the surface
roughness can significantly modify the structure of a dilute suspension of spheres, it plays no direct
role in the random walk for the suspension studied here.

A second possibility is that the assymetry in interactions is induced by the anisotropy of the
particles in the suspension. While it is possible to numerically simulate the interaction of two
ellipsoidal particles in a shear flow, and a few such calculations have been carried out (Kim and
Karilla, 1991), these simulations have not yet been used to calculate the displacement upon
interaction or the resulting O(¢) contribution to the coefficient of self-diffusion. Our observations of
the effect of tracer particle size are at least qualitatively consistent with this explanation, however. In

addition to causing an O(¢) contribution to the self-diffusion, the anisotropy of a dilute suspension of
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spheroids would also contribute an O(¢) term to the shear-enha..ced fluid diffusivity. Thus, one
would expect to find a non-zero limit to the tracer diffusivity as the tracer particle becomes small in
such suspensions. In contrast, a suspension of rough spheres would have little or no O(¢)
contribution to the fluid diffusivity, since for isolated spheres the limiting closed orl.¢ streamline for
the fluid lies approximately 0.3 sphere radii away from the surface. Roughness elements would
have to project outside this layer to significantly contribute to the fluid diffusivity, and thus the tracer
diffusivity would vanish as the tracer particle size became small.

It is important to note that the diffusivity measured in the experiments described here is that due
to the random walk of the particle, and not the gradient or effective diffusivii, .vnich is determined
from the actual flux of particles arising from a concentration gradient. This latter quantity, which has
only been measured for concentrated suspensions (Leighton and Acrivos, 1987b; Chapman and
Leighton, 1991; Phillips, et al., 1991), is of necessity greater than or equal to the random walk
diffusivity. Cunha and Hinch (1993) have calculated this quantity as well for the interaction of
rough spheres in dilute suspensions, and have shown that the gradient diffusivity is greater than the
random walk diffusivity by about a factor of 4, at least for irreversibilities arising from surface
roughness. Thus, if we are permitted the analogy between interacting ellipsoidal particles and
interacting rough spheres, this suggests that the asymptotic limit of the gradient diffusivity should be
about 0.1 ¢ ya? in the dilute limit for the suspension examined in this srudy. The actual value for
other suspensions, however, will be strongly dependent on the geometry and surface morphology of

the particles and will likely vary significantly.
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Abstract

In recent years, Nuclear Magnetic Resonance (NMR) has been applied to a
few non-medical problems including flows of pure fluids, immiscible fluids, con-
centrated suspensions, and grains. In this report, we provide examples of applica-
tions to granular flows. In particular, flows of granular materials in a partially
filled, horizontal, rotating cylinder (such as a rotating drum or kiln), have been
studied by NMR to yield not only the velocity and concentration field, but also
'diffusion’ coefficient components which are related to the fluctuations of velocity.
The velocity is measured from phase images wherein the phase is correlated with
the velocity. The concentration is measured by a flow compensated imaging
sequence corrected for intensity attenuation caused by diffusion. The diffusion
coefficient components are often anisotropic, for example, flat particles have
significantly anisotropic diffusion along the direction of flow as opposed to
perpendicular to the flow. We have used NMR measurements of concentration
and velocity to calculate energy dissipation from all sources including the
collisional losses, from velocity and acceleration fields, and compared the results
with a macroscopic measurement of the total dissipation. Preliminary numerical
experiments from a 2D direct simulation are being used to assess the performance
of the NMR experiments. Experiments with two solid phases yielding different
NMR signals can be used to study mixing/demixing phenomena such as segrega-
tion; we have imaged radial segregation of a mixture of mustard seeds and glass
beads of identical sizes but different density.

Introduction

Experimental investigation of the interior of granular flows is difficult.
Since such experimental data could be useful in applications which require
efficient solids handling , and since NMR imaging can provide information on
structure and motion of protons inside optically opaque samples without
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mechanical intrusion, we have endeavored to develop, evaluate and use NMR

techniques appropriate to studies of granular dynamics. In this report, we will:

 describe the physical bases of velocity and diffusion imaging;

» describe the flow being used to evaluate our NMR techniques (partially filled,
horizontal, rotating cylinder);

« present examples of NMR concentration, velocity, and diffusion measure-
ments;

 present dissipation images calculated from NMR data and direct observation;

o briefly describe visual and NMR observation of segregation phenomena, and
mention simulations which help evaluate NMR results;

o and summarize recent progress in NMR technology and in understanding
granular flow in rotating cylinders.

NMR Measurements

NMR measurements were performed in the horizontal bore (31 cm
diameter) of a super conducting magnet (1.89 T from Oxford Instruments). A
"bird-cage" radio frequency (rf) probe, tuned to 80.3 MHz, and actively shielded
gradient coils (Magnex Scientific) were controlled by a versatile VAX-based
(Digital Equipment Corp.) imager/spectrometer (Quest 4400 from Nalorac
Cryogenics Corp.). Data collected by the NMR imager was transferred via
ethernet to a workstation (Sun Microsystems) for analysis using customized data-
reduction software. Figure 1 shows the main elements of the imager/spectrometer.

(top)

~eo~cO300

Measurement
Location

80.3 MHz
“birdcage”
rf prol

{front) (side)

Figure 1. Three views of the magnet, with a sample cylinder installed are shown, and the associated
electronics are a summarized schematically. The experiment is controlled by a micro-state controller
(MSC) which controls the radio frequency (rf) and gradient (X, Y, Z) outputs and sampling (A/D).
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velocity imaging and diffusion imaging . The images presented here are of the
type termed phase-warp, Fourier images. Velocity or diffusion information is
obtained by first performing a set of experiments with varying sensitivity to the
desired parameter, and then mathematically fitting the NMR data on a pixel-by-
pixel basis. NMR imaging experiments make use of the proportionality between

NMR frequency o and magnetic field B expressed in the Larmor equation —2(3- =vB
T

where 7 has the value 42.5 MHz/T for protons. Gradient coils were used to
generate spatially linear variation of B of the form (Bg + Gxx + Gyy + Gz2), with
concomitant changes in w. The gradients were small compared to the static field:
the peak values for the gradients used in these experiments were 1-10 mT/m.
NMR signals were induced by the small, transient, magnetization resulting from
the precession of a large number of nuclear spins. This magnetization was initially
excited by an rf pulse, modified by gradient pulses, and then observed in the
presence of a "readout" gradient. The process encoded one spatial coordinate in
the frequency of the signal and additional spatial (and velocity) information in the
phase of the signal. Diffusion / fluctuation information is derived from pixel-by-
pixel variations in a series of images, as described below. In Fourier imaging, data
is taken in a domain conjugate to the image domain termed k-space. We acquire
128 by 128 samples on a rectangular grid in k-space, one "row" per sub-
experiment. After each of the sub-observations, the magnetization is allowed time
to re-equilibrate. In fluctuating systems like the granular flows considered here, 4
complete acquisitions are summed and Fourier transformed to produce an image.

In order to measure, for example, the x-component of flow or diffusion
(more precisely, one of the diagonal components of the self-diffusion tensor, e.g.,
Dyx ). a gradient with the profile shown in Figure 2 may be used.

0

¢—

Gx ¢A$’_—-

l

Figure 2 A bi-polar gradient pulse of intensity g (1-20 mT/m) consists of a positive and a
negative pulse of duration 8 ( e.g., | ms) separated by an interval A (1-100 ms).
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The NMR signal S(g), in the presence of such a pulse, compared to the signal
observed without the gradient pulse is given by (according to Stejskal and Tanner)

S(g) _ eiyag.vA—7252g2D(A—5 3) 1]
$(0)

The effect of the bulk flow is a phase shift, and the effect of the random motion
due to self-diffusion is an attenuation of the signal. By performing a series of
NMR imaging experiments with increasing values of g and fitting the model
equation for each pixel, images of velocity components and D are calculated.

Four aspects of the imaging process may be discerned from these
comments. First, information from all parts of the sample was received
simultaneously in the NMR signal, which could only be observed when most of
the magnetization was nearly in phase. Second, in order to decode the information
present in the phase of the signal, repeated measurements with systematic variation
of the phase encoding gradients were made. Third, since the velocity and one
spatial coordinate were both encoded in the phase of the signal, velocity was
extracted from the difference between two images. Fourth, velocity fluctuation
information is derived by curve fitting image attenuation.

Direct Observations and Numerical Experiments

The basic flow we are using to evaluate the NMR techniques is generated
by a partially filled. horizontal, rotating cylinder. Mustard seeds, sesame seeds,
sunflower seeds, sand, and glass spheres are used singly and in combination as
flowing substances. NMR signals are not obtained from the sand or the glass
spheres. The dimensions of the cylinder are shown in Figure 3. When installed
inside the rf coil, inside the magnet, the cylinder was supported by two sets of
plastic rollers. NMR measurements were obtained from a tomographic slice
transverse to the cylinder. All NMR measurements reported here were taken from
slices within 2 cm of the (lengthwise) center of the cylinder.

The cylinder was also used outside the magnet to perform direct
observation of segregation phenomena. Many two component mixtures and some
sand samples with a broad size distribution were studied.

Global dissipation in flowing mustard seeds and sesame seeds was
estimated by observing half filled cylinders rolling down an inclined plane. For a
range of inclinations a period of nearly constant velocity was observed. Total
dissipation was estimated from the constant velocity observations.
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Sesame Seeds

Sunflower

Figure 3 A Plexiglas cylinder was used in NMR experiments, in flow visualization outside the
magnet, and in experiments which estimate global dissipation in flowing granular materials. The
ID and length of the cylinder are shown.

A 2-dimensional, direct numerical simulation developed by Hopkins and
Louge is being matched to mustard seed studies. Parameters such as the mean
rotation of the flowing seeds and the mean time between collisions are difficult to
measure directly, and the simulation is used to estimate them. The output of the
simulation is also used as input to numerical simulation of the NMR experiments.

Results

An example of NMR measurements of Vy, and Vy in mustard seeds is shown in
Figure 4. The cylinder was rotated clockwise at 24 rpm. The x- and y-
components of mustard seed velocity are shown as gray scale images. The flow

Figure 4. Left image shows the horizontal component of velocity in a half-filled cylinder of
mustard seeds. The right hand image shows the vertical component of velocity for the same flow.

consists of two regiomns: aregion of seeds in rigid body rotation in contact with the
cylinder and a flowing shear layer which arises from the top of the rigid rotation
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region and returns the granular material to the bottom of the incline. At low
rotation rates, such as this example, the upper surface of flowing mustard seeds is
planar. X-velocity is positive to the right as indicated by darker grey values, the
positive direction for y-velocity is taken to be upward. Alternate presentations
of the velocity information are possible, as shown in Figure 5.

mr Y v ¥ T v ' T v r v ™" \ v ” ) E— —— Y Y v
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Figure 5. Velocity data is presented as a vector plot, on the left, and as iso-lines of the
computed stream function on the right.

NMR measurements of Dxx, Dyy, and Dz of mustard seeds rotated at 24 rpm
are shown in Figure 6.
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Figure 6. Diagonal components of the self-diffusion tensor for flowing mustard seeds, imaged
by NMR, are shown. Dyy is on the left, Dy, in the center and Dy, is on the right. Set Figure 7
for a comparison in a similar flow of sesame seeds.

238




For comparison, NMR measurements of Dyx, D v, and D of sesame seeds
rotated at 24 rpm are shown in Figure 7. Note the distinctly different distribution
and the anisotropy of the diffusion components.

0.93 . 0.21 0.28«

e

A

[

{ \

Y 3
_ ) . <

1-0.00 ~0.00 ~0.00 ‘.

Figure 7. Diagonal components of the self-diffusion tensor for flowing sesame seeds, imaged
by NMR, are shown. Dy is on the left, Dy, in the center and Dz is on the right. See Figure 6

for a comparison in a similar flow of mustard seeds.

One final result, a photograph showing the axial segregation which was
observed in a sand sample is in Figure 8. The sand had a broad size distribution
and the smallest particles were darker in color than the larger particle. The sand
was initially well-mixed, and the configuration shown in the figure evolved within
one hour of rotation at approximately 30 rpm. All mixtures studied have
demonstrated either radial or axial segregation based on particle size, density and
surface characteristics.

Figure 8. Photograph shows the alternating dark and light bands of sand resulting from
rotation of a mixed sand sample. This is an example of 'axial' segregation observed in many
flowing granular mixtures.
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Summary

NMR concentration images have been improved by accounting for signal
loss due to velocity fluctuations. Velocity measurement resolution and S/N have
similarly been improved. Fluctuation/diffusion imaging techniques applicable to
granular flows have been developed, and are currently being evaluated and used.

The concentration and velocity data already obtained accounts for most
observable energy dissipation. Fluctuation/diffusion images show anisotropy
apparently related to particle shape. Radial and axial segregation occur by virtue
of density, size and surface property differences in granular flows with two or
more components.

We are currently working on understanding what aspects of the motion
spectrum of granular materials can be extracted from NMR experiments, how the
image acquisition process affects averaging, how to adapt new imaging strategies
to granular dynamics.
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Flow of Colloidal Crystals

M.K. Chow, M. E. Fagan and C.F. Zukoski
Department of Chemical Engineering and Beckman Institute
University of Illinois
Urbana, 1L 61801

Abstract

The microstructure and flow properties of crystals consisting of charge stabilized, uniform
spheres is explored as a function of particle packing fraction and shear rate. An order parameter
characterizing the degree of hexagonal close packing in the velocity-vorticity plane for the
crystals under shear is developed to explore the effect of shear on microstructure. For volume
fractions above the equilibrium ordering transition as shear rate is increased, long range
orientational order is lost, regained and then lost again. While these transitions are broad, often
spanning an order of magnitude in shear rate, rheological transitions accompanying changes in
microstructure can be quite abrupt.

The mechanisms of deformation and flow in crystalline solids have seen extensive
investigation in a stress range on the order of a few percent of the material’s shear modulusV.
Experimental and modelling studies have resulted in a detailed understanding of the roles of
defect and dsiccation nucleatior: and movement in yielding, and creep phenomena. More recent
studies focusing or: the microstructural and mechanical properties at elevared pressures and
stresses have demonstrated that crystalline solids can be stressed into an X-ray amorphous state
and that some materials sustain plastic deformation over strain ranges far in excess of what would
be expected under normal processing conditions®?). The origins of high stress microstructures
and flow properties are poorly understood. In this paper we report recent work on model
crystalline solids where microstructures and mechanical properties have been probed over a wide
of crystal densities with stresses up to 0.5-1G,, where Gy is the crystal’s equilibrium elastic shear
modulus. A non-equilibrium phase diagram is developed where mechanical properties and
microstructures are correlated over a crystal density range up to 1.7¢, where ¢; is the freezing
density.

Our model system consists of uniform spherical charge stabilized particles suspended in

an aqueous electrolyte™®. As a result, the scaling relationships we derive are most obviously
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applicable to overdamped systems and thus have immediate applications in the field of dense
suspension rheology. However, the similarity of the microstructures and scaling i;élationships we
see with those predicted or measured for atomic or molecular crystals suggests a common
underlying physics dominated by the role of particle packing in the transfer of stress in crystalline
solids. Our results show that the key parameter linking molecular and colloidal crystals is a
characteristic structural relaxation time, t,(s). For molecular solids t, will depend on particle mass,
size and interaction potential while for the colloidal solid the structural relaxation time will
depend on continuous phase viscosity, particle size and interaction potential. However, we expect
that when deformed at rates comparable to t,", molecular and colloidal crystals undergo similar
structural and flow transitions.

The aqueous suspensions studied consisted of uniform polystyrene latex particles 238 and
255 nm in diameter dialyzed to equilibrium against 10> M KC1. Rheological studies were made
with a Bohlin Constant Stress Rheometer with a cup and bob geometry. Both constant rate of
strain and constant stress experiments could be carried out using this instrument. SANS patterns
were gathered on samples in a Couette shear cell as a function of shear rate. A two dimensional
scattering pattern was gathered where k, =k, and k, = kg, +kyey. Here g, ¢, and ey are unit
vectors in the vorticity, velocity and shear gradient directions. x and y denote horizontal and
vertical directions on the SANS detector and the k; are magnitudes of the wave vectors along the
i"" direction. When the beam passed through the axis of rotation, ky =0. When the beam was
off-axis, k, contains components from both k, and ky. Examination of the modulation of
intensity maxima at fixed k, and k, with varying ky was used to explore the stacking correlations
for hexagonally closed packed layers(6-%),

Samples were loaded into the theometer or SANS shear cell and presheared at 10-20 s!
for 5 min prior to allowing the sample to sit for an additional 30 min before determining
equilibrium elastic modulus and SANS patterns. For ¢<freezing volume fraction, ¢, the
suspensions were opaque white, had well defined zero shear rate viscosities and showed no shear
induced ordering for ¢/¢ (<0.97. When ¢/¢ 1, preshearing established long range orientational
order, LROO, corresponding to hexagonally close packed planes oriented with the close packed
direction along ¢,. The stacking sequence of these layers was explored by following the intensity

along q,(ky) = ((2r/d)e,, (2n/(d‘13))g_v, kyey) where d is the crystal lattice parameter. Stacking
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correlations of hexagonally close packed layers in the ey direction show up as modulations in
g(ky). For all samples investigated where ¢>¢ ¢, a broad maximum in g,(kg) occurred near ky
= 0.6(2r/d) indicating a weak registration between layers consistent with the random registered
stacking. Visually, these samples showed a smooth iridescence due to Bragg scattering of white
light. The elastic modulus of the crystals, G, was determined when a small strain was applied
along the (110) direction of the (111) planes of the crystalline phase (i.e., along ¢,) producing
an elastic modulus which varied exponentially with volume fraction ranging from 4 Pa at
$=0.395 to 2031 Pa at $=0.61. The solids were linear up to strains of 0.012. The static yield
stress (i.e., the stress above which plastic deformation occurred) ty’, was found to equal
(0.01240.003)G,,. For ‘c>1:y’, the suspensions deformed in a plastic, work hardening manner never
reaching a steady state rate of strain. Visually, the sample showed signs of becoming
polycrystalline in this stress region.

d a steady state rate of strain was

When a stress larger than the dynamic yield stress, Ty
established and all remnants of the smooth iridescence were replaced by a polycrystalline optical
appearance(g'w). The intensity maxima seen at rest in SANS were replaced by broad rings with
regions of greater intensity forming crescents concave up and down in the primary scattering ring.
However, g,(ky) retained a maximum near (0.6) 2rn/d indicating the continued presence of
stacked layers. At higher shear rates (t/G,>0.04), visually the samples showed a coexistence of
zones of uniform iridescence and regions displaying polycrystals. These two phases coexisted
over a range of shear rates with the fraction of observed surfuce covered by regions of smooth
iridescence increasing with shear rate. Over the same shear rate region, distinct intensity maxima
grew out of the polycrystalline SANS pattern and all signs of polycrystals were lost. In the high
shear rate region showing LROO, the samples showed a uniform iridescence optically and a
SANS pattern characteristic of hexagonally close packed planes lying parallel to the rheometer
walls. In the first scattering ring, the intensity of the top and bottormn maxima was less than that
of the four side maxima indicating a shift of layers in the ey direction. In this shear rate region
and for all ¢/¢ >1, g,(ky) displayed a broad maximum for 0.4< kyd/21<0.8 indicating that the
hexagonally close packed layers retain correlations in the ky direction. These results suggest the

suspension deforms with a microstructure consisting of freely slipping layers interspersed with

zones of strained crystal.
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Further increases in shear rate produced a broadening of intensity maxima until the sample
was amorphous by SANS and white under optical observation. Over a range of shear rates near
that where the samples became fully amorphous, the SANS patterns fluctuated in time between
patterns showing greater and lesser degrees of LROO“10,

Changes in microstructure were quantified through an order parameter, OPg,, defined to
characterize the degree of hexagonal close packing seen in the vorticity, velocity plane (i.e., when
ky = 0):

N
OPg, = E ((I (6,) 1(6; +n/3) - <I>2)/I“2‘“)

i=l

N
where <> = _I:T E 1(6,). Here the intensity of the neutrons in the first Debye ring, 1(6,), are
i=l

evaluated at angles 8, measured from ¢,. I, is the maximum intensity in the angles sampled.
The sum is over 12 angles where the intensities are determined every 30 degrees starting from
the vorticity axis at k (= (ke2 + kvz)m) = 2n/d (the parameter of the primary intensity ring).
Due to the symmetry of the scattering patterns, imens_ities were only measured for 6, = 0, /6,
/3, /2 and symunetry applied for all other angles. For amorphous samples OPgy= 0.010.1.
Increases in OPg, indicate an increase in the strength of hexagonal close packing in the ¢, e,
plane.

A characteristic plot of OPg, as a function as shear rate is shown in Fig. 3 where a

decrease to a minimum at ¥, is followed by an increase to a maximum at §_, . OPg, decays
for ¥ > Y., to a value near zero at §, . Similar changes in OP¢, with shear rate were

reproduced for all samples where $>¢,. A summary phase diagram of ¥; is shown in Fig. 4.

Near ¢, the viscosity decreased smoothly over the shear rate range which could be
probed. However, for ¢/¢; > 1.12, at a critical stress, 1", the viscosity decreased discontinuously

one order of magnitude. This abrupt change in rheological behavior coincided with the first
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observation of regions of smooth iridescence amongst polycrystals when the samples were

observed visually. We define ¥, and {y to cormrespond to the lower and hiéhcr shear rates

observed at T and these values are given in the phase diagram in Fig. 4. Note that{y, < 7§,

indicating that the rheology is more sensitive to the nucleation of shearing layers than is the
scattering from the suspension.
For ¢<¢_ ~ 0.5, the viscosity decreased monotonically to an apparent high shear rate

plateau value through the shear melting transition (i.e., no rheological anomalies were observed

as y approached and surpassed ¥, ). However, for ¢>¢ ., shear thickening was observed asy

increased. Near ¢, the shear thickening transition could be traversed reversibly. However, as

volume fraction increased towards 0.6, shear thickening accompanied irreversible aggregation of

the sample. The shear rate marking the onset of shear thickening, ¥_, depended on the sample’s

previous shear history. Here f_ is defined as the first shear rate where the stress became an

emratic function of time.

As indicated in Fig. 4, the stable low shear rate microstructure for ¢/¢ >1 is that of
polycrystals. This polycrystalline phase persists over a wide range of shear rates and volume
fractions. If the suspension is sheared such that it has a polycrystalline microstructure and the
shear rate is set to zero, LROO is not reestablished in a reasonable period of time (i.e., several
days). However, low strain amplitude oscillations will produce LROO suggesting an energetic
barrier to the large degree of cooperative movement required to produce single crystals from
polycrystals®. As the shear rate is increased, the nucleation of shearing layer structures (as
observed visually by the appearance of large regions of uniform color) is associated with T

However, as ¢, is approached from above, the nucleation of sliding layers occurs with sufficient
ease that y; and {; merge. At volume fractions where discontinuous shear thinning occurs,
metastable viscosities can be measured by setting the structure in the polycrystalline region and
stepping to stresses above T.. The length of time required to nucleate the lower viscosity phase

decreases with increasing 7413

As shown in Figs. 3 and 4, microstructural transitions (i.e., the increase in order for
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¥1<¥<¥max and the loss of order for § . <Y<Yy cp occur over a broad shear rate range. As with

particles experiencing a soft interaction investigated here, hard spheres display microstructural
transitions over a range of shear rates suggesting that abrupt microstructural transitions are not
common in systems containing particles suspended in a dissipative medium(!D, Despite the broad
nature of microstructural transitions, rheological transitions are abrupt.

As reported on similar samples''*!¥, 1 */G,, (=0.014£0.003), 1,%/G,, (=0.02940.008) and
1'/G, (=0.03940.008) are weakly dependent on ¢. We also find that the stresses at
Yinax> Tmerr 20! ¥, scale on G, (ie., 1,,,/G, = 0.0910.02, t_.,/G, = 0.440.2, and 1 /G, =
0.1240.05). The constancy of these ratios suggests a scaling of the crystal constitutive response
given in Fig. 5 where relative viscosity is presented as a function of 1/G,. Given the two order

of magnitude range of G, values covered by the samples in Fig. 5, we feel the resulting

correlation is remarkable. 1/G,, may be interpreted as a Debora number (i.e., the ratio of t_to the

characteristic deformation time, ¥') yielding t=n/Gy where 1 is the suspension viscosity at the
shear rate and viscosity of interest. The superposition of viscosities for crystals with such a wide
volume fraction range when plotted as a function of De (= t.¥ = NY/Gy = 1/Gyp) suggests that
transitions in flow behavior and microstructure occur when the crystal is deformed at a rate
comparable to the suspension’s structural relaxation time, a concept in agreement with recent
simulations®.,

The correlation shown in Fig. 5 suggests a useful definition of t, in colloidal crystals is
N/G, indicating that the suspension relaxation time decreases with increasing y. Fig. 5
demonstrates that when De is 0(1), microstructural and rheological transitions occur. In passing
we note that the data in Fig. 5 can be replotted as 7/G, vs 1 ¥/Gy to show equally good super
position. Here 1 is the continuous phase viscosity. In this manner, a Debora number is
naturally defined with t. = 1 /G such that transitions in rheology and microstructure occur when

De<<! (i, N.¥3/Go = 742x10°® and M ¥, /Go = 9£5x10™%). Either definition of De provides

a master curve defining rheological and microstructural properties which are independent of ¢

for ¢/¢p¢ > 1.

Previous studies of shear thickening and shear melting (1420

in colloidal suspensions
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Fig. 5. Relative viscosity as a function of t/G,, for suspensions of 255 nm particles at
various volume fractions: (O) ¢ =0.395,G,=3.97 Pa; (@) ¢ =0412,G,=5.39
Pa; (D) ¢ = 0437, Gy = 13.3; (M) ¢ = 0.507, Gy =31 Pa; (&) ¢$=0.525,Gy=
178 Pa; (s) ¢ = 0.564, G, = 238 Pa.
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suggest both phenomena are due to a transition from interparticle force control of microstructure
to one where viscous forces dominate. Investigations at low volume fraction with charge

stabilized particles show that shear melting occurs at a shear rate which is an increasing function

15)

of volume fraction‘!> while separate studies at high volume fractions suggest melting and ¥, are

(14,15,17-20)

decreasing functions of shear rate Here we report the both branches of the melting

shear rate (either ., or {,,.,) for a single system. The general features of the transition can

be understood if the structural instability is taken as occurring when there is a balance between

(17,18)

viscous and electrostatic repulsive forces. Following Boersma , we account for lubrication

forces by writing the viscous force acting on a particle as ﬁrmca2 Y{a/(r-2a)] where 1 is the
continuous phase viscosity, a is the particle radius and r is the average particle separation.
Instability will occur when the shear forces acting to destabilize layers balance the interparticle
forces holding particles in planes given as (4me€, o-a)exp(ax(r/a-2))/(r/a) where €€, is the
product of the permittivity of free space and the dielectric constant of the continuous phase,
is the particle surface potential and x is the Debye Huckel screening parameter and a is the
particle radius. Balancing these forces yields a relationship for the shear rate at melting which

shows a maximum near a volume fraction of 0.58. The predicted curve is sharper than observed

for {,,, due to inaccuracies in describing both viscous and interparticle forces acting on the

particles. However, the predicted magnitudes of ¥, and existence of a maximum are in

keeping with the model.

Shear thickening is often associated with the formation of large particle clusters.
Evidence that particles are jammed together with great force in our experiments is supported by
the onset of irreversible flocculation accompanying shear thickening as ¢ approaches 0.6. The
onset of shear thickening with increasing ¢ can be understood in terms of the sensitivity of
viscosity to volume fraction at elevated ¢ and fluctuations in local density and shear rate. In

constant stress experiments, the shear rate decreases with the onset of shear thickening while in

constant shear rate experiments, stresses and microstructures are erratic for § > Vet - I

addition, shear thickening is associated with the complete loss of LROO suggesting that asY,,ent
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is approached, the sheared volume contains disordered regions which have a higher viscosity and
thus are deforming at a lower than average shear rate. Regions which are still def'érming through
a shearing layer mechanism are thus subjected to a larger than the average shear rate. Due to the
sensitivity of viscosity to volume fraction at high ¢, small density or shear rate fluctuations will
generate large viscous forces driving particles together and resulting in the development of large
clusters. At low volume fractions, the viscous forces increase slowly with volume fraction such
that local density fluctuations will not result in large clusters.

Our results suggest that for monodisperse particles, shear melting occurs when there is
a balance of deformation and structural relaxation times. Due to the way these forces change
with interparticle spacing, a maximum shear rate is observed above which the suspensions are
not ordered at any volume fraction. This result is in keeping with recent predictions of shear
melting in suspensions which are body centered cubic at rest?)), The abrupt shear thickening
observed a ¢ exceeds ¢ is associated with the inability of density fluctuations produced during

melting to decay in a time frame comparable to the deformation time.
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Observations of Granular Flow in an Inclined Chute
Daniel M. Hanes
University of Florida

ntr ion

The dynamics of flowing granular material has been previously
observed in inclined chutes (e.g. Savage, 1979; Johnson et. al,
1990; Ahn et. al, 1991). One of the questions arising from
previous work regards the existence of fully developed, steady
flows. Depending upon the friction or bumpiness of the chute
base, experiments have indicated that under some conditions the
flow appears to be sfeady and fully developed. While a truly
fully developed flow can never be proven to exist in an
experimental apparatus because of its finite length, apparent
fully developed flows are observed to within reasonable
experimental accuracy's. The present series of experiments
focuses on the existence of steady, fully developed flows over a
low friction, bumpy base.

Experimental Apparatus

The inclined chute is 4 meters long, with an adjustable width set
to 15 cm. A belt conveyer provides material recirculation that
allows for continuous operation. The granular material used in
these experiments are medium quality glass spheres with diameters
of approximately three millimeters. The angle of inclination is
variable; for these experiments the angle is varied between 19
and 28 degrees. The base of the chute is removable and
exchangeable; in these experiments the base consists of 3 mm
glass spheres fixed in a closely spaced hexagonal pattern. For
the data to be shown below, the separation between base grain
centers is 4 mn.

A series of flow-trapping gates has been developed to measure the
mass hold-up in six sections along the chute. These gates fall
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under the influence of gravity when holding pins are
simultaneously removed by a solenoid driven piston. The mass
hold-up can be combined with flow thickness measurements and
discharge measurements in order to calculate the average volume
fraction and velocity in each of the six sections.

R ] ion

A variety of flow regimes are observed in the chute. The flows
exhibit distinctive characteristics that relate to the
inclination of the chute, the nature of the base of the chute,
and the entrance/exit conditions. The flow is frequently
observed to have constant mass flux and constant flow thickness
along the chute. However, the volume fraction and velocity of
these flows generally changes with position along the chute. It
is found that fully developed flows exist only over a small range
of inclinations (with all other variables constant).

Ar example of a steady, fully developed flow is shown in Figure
1. The angle of chute inclination for this flow was 23.4
degrees. The volume fraction, velocity, mass hold-up, and flow
thickness are all nearly constant along the chute.

A technique to measure the structure of the velocity and
concentration fields is under development. These quantities are
estimated from high speed images transmitted through a 5 mm
diameter boroscopic lens. The lens is inserted into the side
wall to be flush with the wall, or the lens may be inserted
thorough the side wall into the flow. In the latter case, some
disturbance to the flow is likely, but not yet quantified.
Preliminary analyses of some images indicate a nearly linear
velocity profile with slip at the base and an abrupt
concentration gradient (interface) at the top of the flow.

In conclusion, we have observed steady, fully developed flows of
glass spheres in an inclined chute. These flows seem to exist
over a range of inclination angles of a few degrees.

258



Mass hold-up (dimensionless)

C = N W & OO N 0 0w O

23.4 deg: 2" sluice ® runi
_ = run 2 !
l ¢ n3
|
Tj """ mean |
- u - . - 2 g
;
|
!
e e + — + i o + e — —
0 200 400 600 800 1000 1200

Chute distance (dimensionless)

259



Thickness (dimensionless)
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ABSTRACT

Model colloidal dispersions have become very popular in the last
decade as ideal vehicles for studying phase transitions and structural tran-
sitions in atomic fluids and alloys and for understanding non-equilibrium
structure and flow of suspensions. The issues of interest are numerous.
Some questions that have motivated studies on the microstructure of dis-
persions are: How do the interparticle forces affect equilibrium (and non-
equilibrium) structures? How does polydispersity (in size as well as interac-
tion forces) influence the phenomena? Can one obtain reliable information
on the properties ¢ rarticles (size, charge, aggregation numbers in the
case of associatior. 3, etc.) from measurements of the microstructure?
Can one use colloia.  model systems to study nucleation and crystalliza-
tion phenomena, formation of alloys and composites, two-dimensional and
three-dimensional order/disorder transitions, defect generation and propa-
gation and the like? How do the experimental limitations such as mea-
surement errors and inaccessibility of data over the relevant ranges of pa-
rameters restrict the information that can otherwise be obtained, and how
can one circumvent such limitations? In this paper, we focus on obtaining
information on interaction forces from static structure factors and discuss
a new method for obtaining the details of interparticle interaction forces
from the static structure factor is outlined. We then outline some of the
potential =xperimental limitations of scattering experiments and suggest
the use of video-enhanced microscopy for direct visualization and mapping
of the microstructure and spatial correlations.
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L. INTRODUCTION: COLLOIDS AS MODEL MANY-BODY SYSTEMS

There has been a long-standing and almost unending need to relate
microscopic interaction forces to macroscopic structure and properties of
dispersions (and suspensions) and atomic, molecular and supramolecular
materials. One encounters at least two levels of mutually related goals in
this respect, namely, (i) predicting equilibrium or non-equilibrium behavior
and properties from ‘given’ microscopic forces, and (ii) ability to deduce
interparticle interactions from macroscopically observed behavior and
properties of materials. Over the last decade, colloidal dispersions have been
found to be excellent model systems for studying a number of fundamental
issues in simple (but nevertheless important) fluids. Dispersions of
controlled sizes and surface properties have been used to study phase
transitions in ‘soft’ systems, structural transitions in Coulombic fluids,
ordering and melting in two-dimensional crystals, etc.; see, for example,
Denkov et al. (1992), Dosho et al. (1993), Murray (1992) and Nagayama (1993).
(Some of the advantages of using colloids as model systems are
summarized later in this section.) The utility of colloids in this context has
given rise to a need to develop reliable and accurate experimental
techniques for observing and recording the microstructure of dispersions
as a function of time and of the relevant physical and chemical parameters.
Moreover, understanding the interactions in colloids has intrinsic merit in
view of the numerous practical applications of materials in the colloidal
state. The purpose of the present paper is to focus on one of the many
questions of interest and relate it to the need for systematic microscopic
studies of structure of dispersions.

We focus here on the determination of interaction forces from
observed properties of materials. As well-known, the nature and the details
of interaction forces in a number of practically important materials
(ranging from liquid metals in the case of atomic fluids to sterically
stabilized dispersions in non-aqueous fluids in the case of colloids) are not
clearly understood, and systematic ways to study these are badly needed. In
approaching this task, one often measures the static structure factor (a
function related to the atomic or molecular pair correlation function of the
material) of the material and employs a suitable statistical mechanical
formalism to fit the observed structure factor data using assumed
potentials. This procedure, a standard practice in statistical physics, is used
extensively in colloid science, especially in the case of association colloids
for determining the aggregation number, the effective charge, and the size
of the micelles and microemulsion droplets. This approach, although
standard, can lead to quite misleading results, as we have emphasized
elsewhere (Rajagopalan 1992) since the techniques used to calculate the
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structure factor from assumed potentials are usually insensitive to subtle
details of the potentials. Further, a priori assumptions concerning the form
of the potentials bias the outcome of the results and conclusions. To
complicate the matters further, the results lack uniqueness since
essentially similar structure factors may result from different forms or
versions of the potentials. New techniques that avoid a priori assumptions
concerning the nature and the form of the potentials are therefore needed.
Use of model colloids toc develop such techniques and to study interaction
forces in steric systems is, therefore, highly attractive. This again leads to
the issue of developing ways to map the microstructure of dispersions as a
function of the relevant parameters.

Colloidal dispersions offer a number of advantages as model systems:

i. Particles of very narrow size distributions can be prepared, thereby
assuring practically identical particles. Polystyrene latex particles
and a few other types of polymer particles are readily available
commercially.

ii.  To a limited extent, non-spherical particles of specific shapes can also
be prepared.

iti. The surface charge on the particles can be controlled adequately, and
charges as high as one electronic charge per nm? are possible.

iv. Methods to adsorb or graft polymers and polyelectrolytes onto the
surfaces are available. These allow one to tailor the interparticle
forces according to specification (e.g., hard-sphere interactions,
adhesive sphere interactions and interactions with ‘soft’ repulsive
cores and attractive or repulsive tails). Methods have also been
developed, using polymer-coated silica particles, to adjust both the
interaction forces and the refractive indices of the surface layers. The
latter allows one to vary the optical contrast of the particles by suitably
choosing the suspending medium. In principle, particles can be made
invisible selectively and differentially.

v.  Model particles with fluorescent dyes of different colors can be
prepared or can be obtained commercially.

vi. The use of colloidal particles in the appropriate ranges of sizes also
allows one to use optical imaging experiments to observe and record
the microstructure directly.

vii. The dynamics of colloidal particles has a strong Brownian component.
Thus, the dynamics is described by Langevin equations and the
dispersions has a true thermodynamic temperature. Further, the
interparticle ‘collision’ times are large (relative to those in atomic
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fluids) and the evolution of structure and other microstructural
features such as defect dynamics can be monitored at convenient time
scales. As a consequence, the evolution of phases occurs over large
enough time scales (from hours to weeks) for convenient experimental
design. As emphasized by Murray (1992), the ability to monitor the
structure by direct observation is particularly important in studies of
order/disorder transformation in which diffraction results are
difficult to interpret (see also Section IV).

viii. If experiments can be designed to monitor and record the positions of
the particles accurately, the results can be used as analog Brownian
dynamics experiments that do not have some of the drawbacks of
computer experiments. In particular, systems with a large number of
particles can be studied without limitations imposed by periodic
boundary conditions and insufficient equilibration times.
Assumptions necessitated by uncertainties in pair interactions and
the need for and the form of three-body and higher-order interactions
can be avoided.

As mentioned earlier, this paper is restricted to describing a new
method to extract information on interaction forces from structure factors.
We use this as a vehicle for illustrating the need for developing good
methods for mapping the microstructure of dispersions as functions of the
physicochemical parameters and time. The paper begins with an outline of
some outstanding issues in the interpretation of microstructure of charged
dispersions (Section II). We then move on to the inversion problem, namely,
the problem of inverting static structure factors for obtaining interaction
forces (Section III). Section IV discusses the advantages of using direct
measurements of the microsiructure of dispersions to study interaction
forces in colloids. This is followed by some concluding remarks.

II. QUESTIONS CONCERNING THE NATURE OF INTERPARTICLE
FORCES IN CHARGED DISPERSIONS

As mentioned earlier, there is a need to examine the microstructure
of charged dispersions systematically and to relate the observed structure to
interparticle interaction forces. For instance, experiments based on highly
charged latex particles seem to lead to some puzzling observations. Ise and
coworkers have reported for some time that the results observed in their
experiments on the structure of charged dispersions cannot be explained
without a long-range attractive tail ir the pair-potential {with a minimum
in the potential at interparticle distances of the order of a few particle
diameters; see Dosho et al. (1993) and references therein]. Their
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experiments lead to a number of interesting observations which suggest the
existence of long-range attraction ir apparently purely charged
dispersions. For eample:

i. The dispersions undergo an order/disorder transition, but the ordered
phase is not space-filling, as would be the case if only large repulsion
exists between the particles.

ii. The experimentally measured interparticle separations in the ordered
phase (measurements based on a number of techniques such as
scattering experiments, Kossel-line analyses or direct observations)
are smaller than the average interparticle distances expected from
the bulk density.

iii. Gas-like structures and large void structures seem to coexist with
regions with liquid-like order.

Moreover, a recent experiment reported by Tata et al. (1992) using
dilute aqueous polystyrene latex dispersions suggests the existence of a
‘vapor/liquid’ phase transition below a critical particle concentration. The
particles used in the experiments have an estimated charge of about 600e
per particle, and the interparticle distances observed in the liquid-like
phases are again of the order of a few particle diameters. The van der
Waals attraction is practically zero at such large distances for the types of
systems studied by both Ise’s research group and Tata et al. These lead to
questions such as: Is there an attraction in these Coulombic systems? If
‘yes’, what is the source of such attraction? What are the implications of
such an attraction to the non-equilibrium structure and properties of the
dispersions?

Issues such as the above can be examined systematically if (i)
methods can be developed to obtain the microstructure and interparticle
correlations (e.g., the structure factor) accurately and unambiguously, and
(i1) analytical methods can be developed to extract interparticle forces from
measured structure factors without any a priori assumptions concerning
the nature or the functional form of the interparticle potentials. In what
follows, we address item (ii) and use it as motivation for designing new
experiments along the lines of item (1).

III. INVERSION OF STRUCTURE FACTORS

It is our purpose in this section to show that if sufficiently accurate
static structure factor data are available over a broad enough range of wave
vectors, one can invert such data for obtaining effective interaction
potentials. This forms the motivation for designing experiments that can
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provide accurate spatial correlation functions and structure factors. In this
section, we present the essential details of a method based on perturbation
theory for extracting effective interaction potentials from static structure
factors of monodispersed colloids and simple fluids. The presentation here
follows an earlier lecture given at a NATO Advanced Study Institute
(Rajagopalan 1990); Additional details and recent results are presented in
Sen and Rajagopalan (1991) and Rajagopalan (1992).

Although the past attempts on the development of solutions to the
inverse problem have been largely unsuccessful, the inverse problem has
attracted considerable attention in view of the potential benefits that can be
derived from successful theories. Using a perturbation approach, which
assumes that the large-scale structure is determined by the excluded-
volume effect of the core of the potential and that the finer details are
supplied by the rest of the potential, we have shown that the essential details
of the effective pair-potential can be extracted from the static structure
factor. The performance of this approach is examined for two model
potentials for which the structure factors are first obtained using an
independent theory and computer simulations.

IIL.1. Inversion of Structural Data: Background

~ As we have emphasized previously, statistical physics traditionally
has concerned itself primarily with the description of the microscopic and
macroscopic properties of the system under consideration from given
interatomic or intermolecular pair potentials. In contrast, the inverse
problem of extracting effective interaction potentials from observed
structural data has received limited (and, to this day, incomplete) attention.
The inverse problem is especially important in the case of interactions in
dispersions with ‘liquid-like’ ordering since under such circumstances
potentials (or forces) based on the dilute-limit may not be rigorously correct.
[The term ‘liquid-like ordering’ alludes to the fact that the dispersed species
can be treated, conceptually and analytically, as elementary constituents of
a fluid-like collection of ‘particles’. The host medium in which they are
dispersed may be assumed to be structureless and treated as an effective
dielectric. Correspondingly, the motion of the species is described by
Brownian dynamics (with appropriate hydrodynamic contributions) rather
than by molecular dynamics; see Castillo et al. 1984; Hirtzel and
Rajagopalan 1990.] The interaction potentials in the dilute limit are based
on the assumption that the interacting species are imbedded in an infinite
reservoir of counterions and that they have surfaces in equilibrium with the
bulk — conditions that do not always hold in strongly interacting
dispersions. Even in the case of classical liquids, the effective potentials

271



Microstructure of Dispersions Raj Rajagopalan

contain a wealth of fundamental information on density dependence,
possible long-range oscillatory behavior of the interaction forces and
cooperative effects (March and Senatore 1984).

Past attempts to extract effective potentials from structural data can
be traced to a method suggested by Johnson and March (1963), for rare-gas
liquids and liquid metals, based on certain integral equation theories
developed originally for predicting the equilibrium structure of liquids from
known potentials [with the Percus-Yevick (PY) and the hypernetted chain
(HNC) closure schemes (Friedman 1985)], and the limited efforts in the last
twenty years have been largely unsuccessful. The PY and the HNC effective
potentials can be obtained in a straightforward manner from the known
static structure factor S(q), where q is the magnitude of the scattering vector
q, through

B upy(r) In [1 - c(r)/g(r)] (1)

and
Bugnc) = g(r)—cr)-1-Inglr) (2

where g(r) and c(r) are, respectively, the radial distribution function and the
direct correlation function, which are related to S(q) through Fourier
transforms [see Eqns. (4) and (5)].

3 rrrrereer———

N "Argon at T = 85 K
2 F
= 1 F
=
s 0
-1 F
-2
3

Figure 1. Inverted effective pair-potentials for argon based on the
Percus-Yevick (PY) closure and the hypernetted chain (HNC)
closure. The potential marked ‘Aziz’ is the AMS pair-potential
merntioned in the text.
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However, the integral equation approximations break down at high
densities (or, in the case of supramolecular fluids, when liquid-like
ordering develops). Consequently, the extracted potentials bear little
resemblance to the ones obtained by fitting thermodynamic and transport
properties to assumed forms of potentials. An example of such a case is
illustrated in Figure 1, which shows the effective pair potential in liquid
argon (at 85 K and at the reduced density, po3 = 0.84) obtained through the
PY and the HNC integral equation theories. This particular example of
liquid argon has been chosen here as a model system since very good
experimental scattering data are available in the literature (Yarnell et al.
1973) and since the interaction potentials in argon have been studied
extensively by computer simulations in the past. Figure 1 also shows a
three-parameter potential known as the Aziz-Maitland-Smith potential,
parametrized for argon by Aziz, and the properties of argon derived from it
match experimental data very well for argon at low densities (Fender and
Halsey 1962; Maitland et al. 1981). The Aziz-Maitland-Smith (AMS)
potential is shown primarily for comparison, and this potential is strictly
valid only in the dilute-limit. (Three-body corrections are needed for
predicting at least some of the properties of argon at liquid-densities.) It is
clear from the figure that both the PY and the HNC pair-potentials
[obtained from the data of Yarnell ef al. using Eqs. (1) and (2)] deviate
substantially, in both the location and the magnitude of the minimum in
the potential. Equally important is the fact that the hard core of the potential
as well as the attractive tail also differ significantly. The PY and HNC
potentials shown are actually effective pair-potentials and one would expect
them to deviate from pair-potentials such as the AMS potential. However,
attempts to use these extracted potentials for predicting properties of argon
have not been successful. Conclusions similar to the above can also be
drawn from the results of Nieuwenhuis and Vrij (1979), who used the
integral equations to extract pair-potentials for polymethylmethacrylate
latex dispersions in benzene.

Results similar to the above have generated considerable skepticism
in the literature about the success one might expect from attempts to obtain
interaction potentials from macroscopic data (Croxton 1974).However, these
negative results are in fact very instructive and are helpful in formulating
a few key requirements concerning structural and thermodynamic
consistency and sensitivity, which must be met by any prospective theory of
inversion in order for the theory to provide meaningful and useable
interaction data from macroscopic structural information. These are
outlined elsewhere (Sen and Rajagopalan 1991; Rajagopalan 1992) and will
be discussed briefly in the concluding section of this paper.
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In the following we discuss briefly some results based on an inversion
method that is derived from perturbation theories of liquid-state physics.
The primary focus here will be on illustrating the promise of this method
and on examining the quality of the results one can expect from it.

II1.2. Effective Interaction Potentials from Static Structure
Factors

The inversion of static structural data presented in this paper follows
the conceptual framework used in perturbation theories of liquids;
therefore, we present in this section the essential details of the forward
formalism necessary to follow the logical structure of the inversion.

In the perturbation theories, the configurational integral is expanded
in a series, relative to a convenient reference potential, in terms of a
perturbation of the pair-potential (McQuarrie 1976). Since excellent
descriptions of various forms of perturbation theories and approximations,
including the optimized random-phase approximation that will be used
here, are readily available in the literature, the present section will be
restricted to a basic outline of the details necessary for understanding the
approach used in the inversion method. Results of applications of Barker-
Henderson and Chandler-Weeks-Andersen perturbation schemes to
colloidal fluids are presented in Castillo et al. 1984; the high level of
accuracy one can expect for dense systems from such perturbation schemes
is demonstrated through Monte Carlo computer experiments in Hirtzel and
Rajagopalan (1990).

Both in the forward perturbation theories and in the inversion
scheme, it is assumed that the pair potential, u(r), can be written as

u(r) = uy(r)+ up(r) 3)

where u,(r) is a suitable reference potential (usually an appropriate
representation of the hard core) and u,(r) is the perturbation (the soft
attractive tail). In the inversion scheme one begins with the static structure
factor, S(q), at known intervals of the scattering vector, q. The radial
distribution function, g(r), and the direct correlation function, c(r), are
related to S(q) through

g(r) [p (2m)3]! j dq [S(q)>-1] exp (ig°r) 4)

[p (20)°"! | dq ([S(q)-1VS(q)) exp (iqr) (5)

and
c(r)
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Egs. (4) and (5) can be used to obtain the radial distribution function and the
direct correlation function for the fluid from the observed structure factor.
In the case of isotropic systems, the above equations can be simplified and
can be written in terms of the scalar variables q and r. Details may be found
in Hansen and McDonald (1986) or in standard books on scattering theory
or statistical mechanics.

The (forward) perturbation theories begin with the decomposition of
the pair-potential as in Eqn. (1). One then usually chooses an effective hard-
sphere diameter d, which defines a hard-sphere potential ug(r) that
replaces uy(r) in Eqn. (1) and defines the trial potential, up(r), i.e.,

ur(r) = ug(r) + uyr). ()]

A number of options exists for the selection of d; the use of the following
criterion due to Lado is known to lead to better predictions of the
thermodynamic properties of the fluid (Lado 1984; Hansen and McDonald
1986):

I[ayd(r)/ad] {exp [-Buy(r)] - exp [-Bug(r)}dr = O, 7

where yq is the well-known cavity function corresponding to ug. Finally, the
trial structure factor can be written as (Andersen et al. 1976}

St(@) = Sg(q)/[1+S4(q) p B uy(gl, 8

where r is the number density, up(q) is the Fourier transform of an
optimized uy(r) which is redefined inside the hard core in terms of a
polynomial obtained by a well-known optimization prescription (Andersen
et al. 1976), and Sy(q) is the structure factor of a hard-sphere fluid of
diameter d. The radial distribution function in the so-called EXP-
approximnation can be written as

gexp(r) = y4(r) exp [Cp(r) — uy(r)], 9
where Cy,(r) is a renormalized potential (Andersen et al. 1976).

In the case of inversion, we will begin with an estimate of the effective
hard-sphere diameter, d, from the compressibility limit of the structure
factor, namely, S(0). This is then used in combination with Eqn. (8) and the
- -en structure factor data to obtain the perturbative part of the effective
potential and subsequently the renormalized potential. The core can now be
'softened’ using Eqn. (9) under the assumption that the experimental radial
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distribution function can be approximated by ggxp(r). The resulting
effective potential is refined further through additional iterations by
returning to the above scheme with a new hard-sphere diameter obtained
from the extracted potential. The details of this inversion scheme and the
implications of the assumptions involved in the procedure are presented
elsewhere (Sen and Rajagopalan 1991; Rajagopalan 1992); here, we restrict
ourselves to a brief discussion of some sample results.

II1.3. Sample Results

We now present some results based on this predictor-corrector method.
Two different classes of potentials, one a simple potential with a single
minimum (a Lennard-Jones potential) and another with a more complex
shape with two minima (a weakly charged model colloidal dispersion), have
been chosen for examining the method. In order to avoid the complications
arising from possible effects of three-body potentials on structure, we
restrict our attention here to data generated from known pair-potentials
using an independent theoretical method. For this purpose, we have chosen
the reference hypernetted chain (RHNC) theory. We have independently
verified, using computer simulations, that the structure factors computed
using RHNC for the above Lennard-Jones potential and the colloid potential
are sufficiently accurate for testing the inversion method.

1.25 8 ";" ' L. ~ L] l . 9§ F W ' L 4 A L] L] l L L | L] '.

" Lennard-Jones Fluid :

! E‘ o wu(r)-PT ?

0.75 u(r) - LJ o

o s .
= < ]
=~ 05 P 3
El ] p
0.25 F ;

0 ] \ .

025 Bomaa e a b iy,
0.5 1 1.5 2 2.5 3

r (Dimensionless)

Figure 2. Inverted potential based on the perturbation method for an LJ
fluid. Please see the text for details.
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IT1.3.1 A LENNARD-JONES FLUID

The parameters of the Lennard-Jones potential considered are taken
to be 0 = 1 and (e/kgT) = - 0.1, where ¢ is the so-called collision diameter and
€ is the minimum in the pair-potential:

ulr) = 4elom)?-(o/m)8) (10)

The structure factor data for this potential were generated for a fluid at a
reduced density, po3, of 0.382 [corresponding to a ‘volume fraction’, (xps>/6),
of 0.2] using RHNC. This moderately low value for the density was taken so
that the structure factor generated was sufficiently accurate. Although
computer simulations could have been used for this purpose, we chose to
use the RHNC theory in order to avoid the need for smoothing the
computer-generated data (to eliminate the statistical noise) and to avoid the
need for extending the data sets further in both r and q spaces. However, the
accuracy of the data generated from the RHNC theory has been verified
using simulations [see Rajagopalan (1992) for sample results for related
systems]!. The resulting structure factor was used in the inversion scheme
and the extracted potential is shown in Figure 2 along with the known
potential. The excellent agreement between the two is evident from this
figure. An enlargement of the results near the minimum further
illustrates the accuracy of the results.

0 —————r—
i u(r) - PT
-0.05 F « u(r)-LJ J
- I 1
i ]
[ 4
1 4
-0.1 F ~
[ Lennard-Jones Fluid
_0.15 a2 a2 a2 2 a2 a2 4 2 2 2 2 8 2 2.2 2 1 a2 2 2
0.5 1 1.5 2 2.5 3
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Figure 8. Enlargement of Figure 2 near the minimum in the extracted
and the known potentials,

1The use of an analytical theory for generating structural data allows the choice of
arbitrarily fine intervals in r and q, without any concern for statistical noises.
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II1.3.2 A MODEL COLLOIDAL FLUID

It is now instructive to examine a case corresponding to colloidal
interactions. A model colloidal potential, which is described below in some
detail, is chosen for this purpose. The structure factors and the radial
distribution functions were generated for a colloidal fluid interacting
through this potential for a number of densities using the RHNC theory.
We have found that the RHNC results compare very well with the results of
Monte Carlo simulations (for the model colloidal potential used here) for
low densities (e.g., volume fractions of about 0.15 or lower). At larger volume
fractions (especially around 0.4 or above), even though the radial
distribution function appears to be quite accurate, the structure factor at
low q [particularly the S(0) value, which is related to the isothermal
compressibility] is in error by about 30% or more. Since the S(q) at low ¢'s
will have significant contributions to the extracted potential for large r, the
larger density has been chosen here so that the resulting error in the
extracted u(r) could be examined.

The hypothetical, but sufficiently realistic, model colloidal potential
used here has a hard core (of unit diameter), a strong London-van der
Waals attraction, u,, a weak electrostatic repulsion, ug, and a steep Born-
type repulsion near the core, ug:

wr) = uu(r) + ug(r) + ug(n), (11)

where r is the center-to-center distance of separation between the particles
in units of particle diameter, and the pair-potentials are in units of kgT.
The expression for the London-van der Waals interaction u, between two
identical spheres is given by (Vold and Vold 1983; Castillo et al. 1984) :

up(r) = = Npg (1/2r2) + 12(r%-1)] + In [(P2-1)/F%} (12)
where Nj o = H /(6kgT).

The Hamaker constant, H, in the above equation is a material
property. The repulsive contribution, ug, in Eqn. (11) arises from the
electrostatic interaction between the diffuse portions of the electrical double
layers surrounding each particle. The general expressions for electrostatic
interaction energies are rather complicated and depend on whether the
interacting surfaces keep their potentials constant or their charge densities
constant. We have used an expression that reproduces the essential
features well for systems with constant surface-charge densities and thick
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electrical double layers, i.e., small inverse-screening lengths, xa 2 2.5 (Vold
and Vold 1983; Verwey and Overbeek 1948):

ug(r) = Nglexp[-xa(r-1)]}/r, (13)

where a is the radius of the particles (equal to 0.5 in our dimensionless
units) and the premultiplying factor N is related to the contact potential.

2 L NN NN B (EEAL AN MED BNNN BN NN N Sl URSN SN BN SN [NNR Sumn S
J E
o R P
1.5 . f L .,
3 L]
1 E- ® e
ot
= d ¢
T 05 B : Model Colloid
B g
- F 9 + Known u(r)
(U o EE o PT u(r)
E o
-0.5 |
1 1.02 1.04 1.06 1.08 1.1

r

Figure 4. The inverted and the known potentials for the model colloid
near the primary minimum in the potentials.

The other repulsive contribution, ug, despite its very short range, has to be
taken into consideration for dispersions with moderate or low electrostatic
interactions, since the probability of finding two particles at very close
separations can be far from negligible at sufficiently high particle
concentrations. An expression of the following form was used for the Born
repulsion ug so that the appropriate shape of the pair-potential could be
generated:

ug(r) = Np@r-1)12 (14)

with Ng is a scale factor that we call the Born parameter. The numerical
values that were used for the dimensionless parameters are N,, = 1.025, Ng
=10.0, ka = 3.75, and Ng = 2.275 x102°, The resulting pair-potential has both
a primary minimum and a secondary minimum, with a moderate energy
barrier in between. Moreover, the attractive force immediately beyond the
primary minimum is quite large.
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Figures 4 and 5 show that the inverted pair-potential for volume
fraction of 0.4 is in good agreement with the known potential. All the major
features of the potential and the shape are reproduced well. As mentioned
earlier, the structure factor generated by the RHNC theory for volume
fraction equal to 0.4 is not very accurate in the compressibility limit;
consequently, one should expect to see disgreements between the model
potential and the extracted potential for large r’s, and this is confirmed by
the far-field results presented in Figure 5. Overall, the results for the
colloidal fluid demonstrate that the method is capable of reproducing both
the near-field and the far-field behavior of the potential well, and in a
physically consistent manner, as long as sufficiently accurate structural
data are available. The difference between the extracted potential and the
exact potential in the far-field region can be reduced if the structure factor
in the low-q region can be calculated with better accuracy. This is, in fact,
evident from the results shown previously for the Lennard-Jones fluid (see
Figures 2 and 3). This has also been verified by testing the inversion for a
dispersion with the same potential but at a lower volume fraction (at which
RHNC produces more accurate structure factors); these will be discussed in
subsequent publications.
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Figure 5. The inverted and the known potentials for the model colloid
near the secondary minimum. The difference between the two
is due to the large inaccuracy in the structure factor data near
q=0.
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III.4. Caveats

The primary objectives of this section have been to demonstrate that
static structure factors retain a considerable amount of information on the
microscopic details of pair interaction potentials and that such details can
be recovered to a large extent if the inversion method places proper
emphasis on the crucial features of the interactions. The results shown
above support these arguments. The method presented here is also the first
successful analytical scheme that does not require any computer
simulations in the inversion process. Nevertheless, a number of
outstanding issues remain and require systematic examination. These
issues include (i) the influence of errors in the structure factor (i.e., the
sensitivity of the inverted potential to these errors), (ii) effects of cutoffs in
the range of q,s over which the data are available, and (iii) the influence of
smoothing and extension procedures that are used for refining and
extending the range over which the data are available. It should also be
emphasized here that the inverted potentials actually represent effective
pair-potentials when three-body interactions and other non-additive
interactions are present in the system. In view of this, additional
constraints (such as consistency between experimentally measured
thermodynamic or transport properties and the ones derived from the
extracted potential) may need to be imposed. These and related issues will
be addressed in future publications.

IV. EXPERIMENTS FOR DIRECT OBSERVATION OF STRUCTURE

What we have shown above is that interaction forces in colloids and
atomic systems can be investigated using experimentally measured static
structure factors and the inversion method outlined above. This approach is
particularly useful to study steric and electrosteric interactions in relatively
dense systems. As emphasized elsewhere (Rajagopalan 1992), techniques
such as the one based on the surface force apparatus or total internal-
reflection microscopy provide interactions between flat surfaces or between
a sphere and a flat surface taken in isolation. In contrast, the method we
have outlined here allows one to obtain interactions between spherical
particles at arbitrary densities, thereby providing a systematic way to study
interaction forces (including the onset of multibody interactions) as
functions of density and other relevant parameters.

Given the above prospects, it is natural to ask what experimental
limitations exist currently and how they might affect the results generated
by the above method. At the outset, the following points deserve mention in
this context:
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1. Currently, the most common method of collecting structural
information is through scattering experiments (especially neutron
and light scattering). However, the scattering experiments typically
provide structure factors over a restricted range of scattering vectors
because of instrumental limitations and limitations due to g-values
physically inaccessible. For the inversion method to lead to reliable
results, data over a sufficiently large range of q's [low-q region (i.e.,
below the primary peak in S(q)) as well as large q’s, for which S(q)
reaches the asymptotic limit of unity] are necessary; otherwise, the
problem becomes ill-posed. However, notice that this drawback also
applies to ‘fitting’ methods? traditionally used in the analysis of
scattering data. We have illustrated in Figure 5 that accuracy in the
low-q range is essential for obtaining reliable results in the far-field
region of the potential. We have also demonstrated elsewhere
(Rajagopalan 1992) that the low-q results may also be important in the
region of the core of the pair-potential. In particular, a combination of
light scattering and neutron scattering experiments may be necessary
to cover the relevant range of q’s. Further, as well-known, the low-q
region offers a particular challenge to *he experimentalists.

2. Reduction of the scattered intensities to structure factor involves
approximations, including the need to factor out the form factor.
Methods to determine the structure factor directly will therefore be
invaluable.

3. In the case of colloids, polyrdispersity (of size, charge, etc.) is a fact of
life. Polydispersity affects the low-q values of the average structure
factor when the standard deviation is more than about 10% of the
mean value of the corresponding parameter [see Salgi and
Rajagopalan (1993) for a review of the effects of polydispersity].
Therefore, experiments that are designed to probe interaction forces
need to be restricted to highly monodisperse systems.

Experiments designed to provide direct visualization of the
microstructure and to measure the correlation functions directly are very
appealing since they can be designed to circumvent the difficulties
mentioned in Items 1 & 2 above. In particular, correlation functions over
100 micrometers can be measured (corresponding to q’s of the order of 1073
A-1). In addition, since the spatial positions are measured directly, the
structure factor can be computed directly (without the need for making

2By ‘fiting methods’, we mean ‘forward’ methods, in which one fits the observed
structure factor data using assumed forms of pair-potentials and either computer
simulations or theoretical methods for calculating structure factors. An extreme case of
the uncertainties implicit in this approach is illustrated in Rajagopalan (1992).
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approximations concerning form factors). Confocal microscopy can be used
for layer-by-layer construction of positions as demonstrated by Dosho et al.
(1993). We illustrate the use of such an approach through a video
presentation of soine sample results as part of this lecture.

V. CLOSING REMARKS

We have shown here that useful and quite accurate information about
the interaction forces in dispersions (and atomic fluids) can be obtained
from static structure factors. It is shown that use of colloids as model
many-body systems, in combination with direct visualization and mapping
of the microstructure of dispersions, can be profitable in studying
systematically issues on the interaction forces that are otherwise
inaccessible.
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Non-Invasive Rigid Body Tracking

R. Dave*t  B. Bukiet!!  A. Rosato*’ 1. Fischer*  J. Volcy*

Abstract

We report on efforts to non-invasively track a sphere as it moves under gravity
down an inclined chute. The sphere contains an electrical transmitter and its
position and orientation are deduced using only the voltages received in a set of
antennae mounted on the chute. The ultimate goal of this project is to detect the
motion of a single particle flowing within a mass of particulates.

Model equations have been developed for the voltages induced in the receivers.
These nonlinear equations predict the voltage induced in a given antenna as a func-
tion of the transmitter’s orientation and position. In order to obtain the position
and orientation of the transmitter from the voltage measurements, we apply the
ideas of gradient search algorithms with those of Monte Carlo methods to obtain
the best agreement between the model predictions and experimental measurements.

Results have been obtained using our model equations and inversion algorithm
to find the position and orientation of the sphere being tracked as it proceeds
along a known trajectory. Comparisons with simulated and experimental data are
presented which establish the feasibility of our approach.

1 Introduction

The study of granular flows is of great importance because an improved understanding
of such processes may lead to methods to reduce energy costs to industiy by improving
the efficiency of certain transport processes. Unlike fluids, which behave according to
well-established equations, the flow of granular materials is not well-understood. and
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scaling laws for these systems are not known. In order to understand the behavior of
particulates subjected to various mechanical disturbances, it is necessary to perform
non-invasive experiments. In this way, one can examine the kinematics ot an individual
particle without inserting a probe which would affect the flow. In this paper, we report

on efforts to track a moving rigid body in a rectangular three-dimensional region in a
non-invasive manner.

In the following section, the experimental apparatus for studying the flow of a spheri-
cal rigid body containing a transmitter is described. A radio-transparent chute has been
built on which is mounted an array of antennae to receive the transmitter signals. The
antennae voltage measurements are recorded and used to compute the positions and
orientations of the sphere.

In section 3, we present the model equations for the voltages induced in the antennae.
The voltages depend on the six orientation and position variables describing the location
of the tracked body. We describe our method to solve the inverse problem, i.e., finding
the position and orientation of the sphere given the measured voltages. This problem
is complicated by the fact that the equations are nonlinear. Our solution technique
combines the ideas of steepest descent, and trust regions (Levenberg-Marquardt method)
with the i1deas of stochastic (Monte Carlo) methods.

In section 4, we present the results of the numerical method with simulated data (using
the model equations) and experimental data taken in our chute for known trajectories.
Finally, in section 5, results are summarized and ideas are briefly discussed that may lead
to improvements in the accuracy of the method.

2 The Physical Setup

Although, there are many different techniques available for particle flow measurements
[10], few are suitable for the quantitative measurement of position and orientation of
an individual particle. Fewer still can be considered non-invasive and most of these
have significant problems associated with them. For example, X-rays methods can be
dangerous. Photo-optical systems are reliable only if the body being tracked is near a
clear wall. Reflections and refractions can degrade the results. Other bodies in the flow
can interfere with ultrasound measurements.

We have constructed a rectangular radio-transparent chute 120” x 12” x 14” (see Fig.
1). The chute is surrounded by an array of rectangular antennae in which a voltage can
be induced by an electrical transmitter. The details of the construction of the minia-
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ture transmitter and the receiving equipment were reported in [2]. Because the chute
is constructed entirely of non-metallic radio-transparent material, it does not interfere
with the transmitted electromagnetic signals. Our apparatus allows measurements to be
received from a rigid sphere (1" in diameter) containing an electrical transmitter from
any location in the chute. There are no health risks associated with such a setup and
other (non-metallic) bodies in the chute do not influence the results.

3 The Model Equations

The voltage induced in a receiving antenna is determined by the position and orien-
tation of the sphere containing the transmitter and the positions of the corners of the
(rectangular) receiving antenna.

A small loop of wire carrying a sinusoidal current | = [ysinwt (where w is the ire
quency) produces a magnetic field and induces a current in any small nearby loop of wire.
The magnitude of the induced voltage depends on the relative position and orientation
of the transmitting and receiving loops. with respect to one another. If both loops are
small, the magnetically induced voltage, V', is found to be

= M[‘Zcos@lcos% + sinfysinb,)] (1)
(47r3)

Ay and A; are the areas of the transmitting and receiving antenna loops, g is the
permeability of free space, Ij is the magnitude of the current and r is the distance between
the transmitter and the receiver. 8, and 6, are the angles made by the normals to the
transmitter and receiver respectively with the line connecting the center of each. (Fig.
2).

From the above equation, it can be seen that the magnitude of the induced voltage
is proportional to cross-sectional area of each loop of wire. In order to increase the
magnitude of the signal produced in each receiving coil, receivers of much larger area are

required. Rectangular shaped antennae are most practical, see Fig. 1. For this setup,
equation (1.1) becomes

V= -w(B-A) (2)

where B is the magnetic-field density vector, and A is the vector normal to the plane of
the transmitter. For each rectangular receiving coil, the magnetic field density is
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4
B = 21: (f;g)i)(cosqﬁu — €05¢i2)0; (3)

This sum contains one term for each side of the receiving rectangle. R; is the distance
from the transmitter to the center of the side. ;1 and ¢;; are angles made by lines
connecting the transmitter to the ends (vertex) of a side of the rectangular loop of wire
with those sides of the rectangle. ©, is the unit normal to the triangle with the two ends
of the side of the rectangle and the transmitter as vertices. (Fig. 3). This model was

derived by Carr and Parasar [1] based on the principle of reciprocity in linear electrical
networks [11].

With the receiving antennae fixed, one ohserves that the voltage depends on the
position and orientation of the tracked sp iere containing the transmitter. Since a voltage
is induced in each receiver, there is o' e equation for each receiver and there are six
unknown quantities, 3 for position (¥ ,z) and three for orientation (a,f,v - the angles
made by the transmitter with the courdinate axes). Thus, at least six receiving antennae
are required in order to resolve the six unknown values. In practice, some antennae may
receive low voltages if they are far from the transmitter, or if the vector normal to the
transmitting loops is almost parallel to the plane of the receiving antenna. In such cases,

background noise becomes more significant, causing unacceptable errors. Thus, we have
used ten antennae in our experiments.

The model equations, of course, do not exactly predict experimental values. However,
the measured values are usually close to the voltages predicted by the model. Although
the apparatus was built with special care using only radio-transparent materials, there
are other sources for the differences between the model and experimental voltage values.
These may include asymmetries in the transmitter, effects of background radiation, the
coupling between antenna coils and nonlinearities in the signal amplifiers and other parts
of the electronics used.

From a set of measured voltage readings, we need to determine the position and
orientation of the transmitter. That is, we want to find the values of position (x,y,z)
and orientation angles made with the coordinate axes (a, 3,7) satisfying as closely as
possible the model equation for each receiver. To do this, we need to minimize the residual
between the model voltages predicted and the measured voltages. The algorithm we have
developed to solve this inverse problem is described in the following section.
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4  Algorithm for finding position and orientation

In our experimental setup described above, there are ten antennae recording voltage sig-
nals from a moving transmitter. This leads to an overdetermined system of ten nonlinear
equations in six unknowns (z,y, 2z, @, 3, 7).

Methods of solution for such nonlinear optimization problems (see [3]) involve making
initial guesses for the values of all the unknowns and updating the guesses in order
to minimize error, the difference between measured and model values. By letting the
measured voltages be denoted by v, and the model values by fi(z), where the index &
designates values from one to the number of receivers, we want to find X such that

re(X) = fi(X)—ve =0 fork = 1,2,3,...,10 (4)

where X is the vector of unknowns X = (r,y,z,a,ﬂ,v)T.

We let R(X) be the vector whose entries are each of the r(X). In general, no value
of X exists such that R(X) is zero since the model equations do not exactly reflect the
experimental results. We use the standard measure of error

Residual = 5) ri(X). (5)
k

A first order Taylor expansion of R(X) about the guess X, yields
R(X) = R(X.) + J(X)(X - X.) (6)

where J(X') is the 10 x 6 Jacobian matrix J whose entries are

Jo(X) = 0ri(X) /s, (7)

where z, = z,1, = y,z3 = 2,24 = a,25s = [ and z¢ = 5. We want to find the
vector X such that R(X) = 0. Setting R(z) to zero, one would like to solve

R(X.) + J(Xo)(X = Xo) =0 (8)

for z. Since J is a 10 x 6 matrix, it cannot be inverted. To solve for X, we multiply this
equation by J7(X,) to obtain

JTXOR(X) + JT(X)J(X)(X = X,) = 0. (9)
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If the 6 x 6 matrix J7(X.)J(X.) is invertible, (all eigenvalues of such a “least squares

matrix” are non-negative) we can multiply by (JTJ)~! and solve for X in the least
squares sense - i.e. we minimize the residual.

X =X, - (JTI)VITR(X,). (10)

This Gauss-Newton method is simply the extension of Newton’s Method to systems
of nonlinear equations. This method may be problematic if J7J is not invertible or if
any eigenvalue is small. This is because the amount that X, is updated, X — X, is
proportional to the reciprocal of the smallest eigenvalue of J7J. Hence, if any eigenvalue
is small, the correction may be large, leading to instabilities and non-robustness of the

method. To improve the stability of this algorithm, one may perform the following
update,

X =X.—JTJ + u)7VJTR(X.). (11)

where the scalar 4 is non-negative and I is the identity matrix. This increases each
eigenvalue of the matrix to be inverted by y. This method is called the Levenberg-
Marquardt algorithm [5], [6]. Various complicated methods have been suggested for
obtaining the value of y. We have used More’s implementation (8], in the publically
available MINPACK [9] code. Here, p is reset using an iterative method at each step. The
Levenberg-Marquardt method combines the quadratic convergence of Newton’s Method
(when the current iterate, X, is close to the solution) with the trust region approach
(which does not allow the next iterate be too far away from the current iterate). The
algorithm also guarantees that the correction is in a descent direction, i.e. the residual
decreases for small corrections in that direction.

We have found the Levenberg-Marquardt method to converge well to a local mini-
mum of the residual for our problem. However, since there are multiple local minima,
the Levenberg-Marquardt method alone may not find the optimal solution (the global
minimum) especially if the initial iterate, Xo, is not close to the solution. In our compu-
tations, the initial iterate is based on the computed position of the tracked sphere at the
previous time. Thus, if for some reason, the computed trajectory wanders away from the
correct trajectory, it tends to remain off course for the remainder of the computation.

To handle this problem, we have combined the Levenberg-Marquardt method with the
ideas of Monte Carlo methods [7], [4]. An initial iterate is chosen based on the computed
position of the tracked sphere at the previous time and several steps of the Levenberg-
Marquardt method are performed. Another starting iterate is chosen by perturbing the
result of the Levenberg-Marquardt iterations randomly within a spherical volume several
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inches in radius. We have found that by taking five to ten starting guesses in this manner
and selecting as the computed solution, the iterate which yields the smallest residual,
yields high quality results. Since this method does not always guarantee a physically
realistic trajectory, a limit is placed on the distance that the sphere can move within
the small time interval between the captured voltages. The effect is that we test for the
minimum residual in several nearby valleys and choose the deepest one which satisfies
reasonable physical constraints. As we show in the following section, this method is more
robust than the straight Levenberg-Marquardt method in that if a computed trajectory
strays off course, it may be able to recover and get back on course. This is especially
important when the trajectory strays off course due to the transmitter orientation being
almost parallel to some receivers. In rolling trajectories, there often will be points for
which the transmitter axis is almost parallel to planes of some of the receiving antennae.

5 Comparison with Simulated and Experimental Data

In this section, results of several tests are presented in order to validate the computational
method and establish the feasibility of the approach. First, in order to test only the
numerical method without having to deal with the inexactnesses in the model equations,
tests were performed with simulated data. That is, the input voltages were produced
by the model equations. Figs. 4 and 5 present plots of simulated experiments, both
a straight line trajectory and a sinusoidal one. Figs. 6 and 7 show plots of the same

experiment in which random noise was introduced into the simulated voltage readings.

Experiments were performed using the chute and transmitting sphere. The number
of counts received through each antenna are measured and scaled with the model to
compute a voltage. This data is then inverted to calculate the position and orientation of
the transmitting sphere. Since the model equations do not exactly represent reality, there
are additional sources of error. In Figs. 8a-c, experimental results are shown in which
the transmitter was hooked to a motor-driven ski-lift type device and pulled through
the chute in a straight line at constant velocity. The orientation of the transmitter
was more or less constant during the experiment. Experimental readings were taken
during the approximately twenty second run. The initial iterates were chosen using
linear extrapolation on the two previous computed positions and orientations.

Difficulties may arise when the orientation of the transmitter is close to being parallel
to the planes of some of the antennae loops. This is because the voltage readings will
be small and consequently the effects of background noise and other causes of error will
be magnified. This issue is important for the study of realistic trajectories of a particle
traversing a path through the chute. Large changes in the orientation variables (a, 3, 7)
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could be expected during such an experiment. A relatively small fraction of these ori-
entations would be almost parallel to some antennae. However, we have found that if
this occurs, the simple algorithms used (Gauss-Newton and Levenberg-Marquardt) can
miscalculate the position and orientation of the particle. Because calculating the loca-
tion of the particle at any time critically depends on the intial guess (previous computed
location), an error incurred at some instant can cascade thereafter. This problem is
circumvented via the combined Levenberg-Marquardt-Monte Carlo algorithm. The im-
provement using the combination algorith:in for such a case (Figs. 10a-f) is demonstrated
by comparing it to the result using the Levenberg-Marquardt method alone (Figs. 9a-
f). Readings were taken in which both the orientation and position of the transmitting
sphere were varied. Although the algorithm yields larger errors when the transmitter is
almost parallel to some antennae, the method quickly corrects itself as the transmitter
moves away from being parallel to some antennae.

6 Summary and Conclusions

We have constructed an experimental system in which particle flows can be studied
non-invasively based on the principle of magnetic-induction coupling. This allows com-
putation of the trajectory of an individual sphere containing a transmitter as it travels
through a inclined chute. To do this, a model has been derived which expresses the posi-
tion and orientation of the transmitting sphere as a function of the experimental voltage
measutements. A numerical algorithm has been developed which combines the ideas of
multidimensional descent methods with Monte Carlo methods to solve the inverse prob-

lem, i.e. compute the sphere’s position and orientation based on the measured voltage
data.

The thoeretical model has been shown to be a reasonable representation of reality.
However, it is believed that heuristic modifications may prove useful in improving the
accuracy of the method. Such work could include corrections for the influence of the
receiving antennae on one another and incorporating higher order correction terms in the
model equations based on experimental results. Our numerical method has been tested
against both simulated and experimental data. The technique has been shown to improve
the robustness of standard inversion techniques. This work provides the foundation for
experimental studies for the behavior of an individual particle in an inclined chute flow.
The system also has applicability to other dry granular and multiphase systems.
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Fio. | A chute has been constructed for proof-testing of the radiosonde system and the conduct
© © of particulate-flows experiment. It features all-plastic construction for radio-transparency.
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Fig.2  Geometry for a small circular loop transmitter-receiver pair.
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Fig. 3 Configuration for a small circular loop transmitter and a rectangular loop receiving
antennae.
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Fig. 4 Simulated experiment without noise, projection on xy plane. Curves are actual trajectories
while the markers are the predicted trajectories.
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Fig. 5 Simulated experiment without noise, projection on xz plane. Curves are actual trajectories
while the markers are the predicted trajectories.
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Fig. 6  Simulated experiment with added noise, projection onto the XY plane. Curves are actual
trajectories, while the markers are predicted trajectories.
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Fig. 7 Simulated experiment with added noise, projection onto the XZ plane. Curves are actual
trajectories, while the markers are predicted trajectories.
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Aggregation and Dispersion of Spheres Falling in Viscoelastic Liquids

D.D. Joseph, Y.J. Liu, M. Poletto and J. Feng

Department of Aerospace Engineering and Mechanics, University of Minnesota,
107 Akerman Hall, 110 Union Street, Minneapolis, MN 55455, USA

Abstract

This paper focuses on the settling of one sphere near another or near a wall. We find
maximum differences between Newtonian and viscoelastic liquids, with repulsion between nearby
bodies in the Newtonian case and attraction in the viscoelastic case. Side-by-side arrangements of
sedimenting spheres are unstable in exactly the same way that broadside-on settling of long bodies is
unstable at subcritical speeds in a viscoelastic fluid. The line of centers between the spheres rotates
from across to along the stream as the spheres are sucked together. The resulting chain of two spheres
is a long body which is stable when the line between centers is parallel to the fall, but this
configuration breaks up at supercritical speeds in which inertia again dominates. To explain the
orientation of particles in the subcritical case, we correlate the aggregative power of a viscoelastic fluid
with the zero shear value of the coefficient of ratio of the first normal stress difference to the shear
stress and for exceptional cases we introduce the idea of the memory of shear-thinning leading to
corridors of reduced viscosity.

Keywords: aggregation of spheres; dispersion of spheres; elastic stress ratio; Newtonian liquids;

numerical simulation; settling of spheres; sphere-sphere interaction; wall-sphere interaction;
viscoelastic liquids

The material reported here will appear in a paper with the same title to be published in J. Non-
Newtonian Fluid Mech.
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1. Introduction

Liu and Joseph [1] discussed the sedimentation of cylinders and flat plates in viscoelastic and
Newtonian liquids, noting that the flow-induced anisotropy of sedimenting spherical particles is
associated with the natural orientation of long bodies, longside parallel to the stream when
viscoelasticity dominates and perpendicular to the stream when inertia dominates. They reviewed
the literature on the sedimentation of long bodies. Joseph and Liu [2] did further experiments on the
orientation of a cylinder settling in viscoelastic and pseudoplastic fluid and attempted to identify the
main mechanisms controlling orientation. They stressed the fluid's ability to remember where it was
thinned and introduced the notion of evanescent corridors of reduced viscosity. In this paper we

highlight the importance of the elastic stress ratio N,/7, which turns out to be a subtle measure of

fluid elasticity.

This paper focuses on the settling of one sphere near another or near a wall. Again we find
maximum differences between Newtonian and viscoelastic liquids, with repulsion between nearby
bodies in the Newtonian case and attraction in the viscoelastic case. This observation has
applications for manipulative strategies addressing the problem of placements of particles by flowing

liquids.

Christopherson and Dowson [3] took notice of a tendency for balls to rotate and fall off-
center while settling in Newtonian liquids in a cylinderical container. Tanner {4] noticed that this
tendency is enhanced in non-Newtonian liquids, stating that "if one carefully drops the balls axially
in the fall tube, there appears to be a critical ball/tube radius after which the ball is seen to fall off-
center and rotate." The critical radius ratio may possibly be associated either with a critical fall
speed or with other critical values associated with instability. The effects of eccentricity on the

precision of falling ball viscometry were discussed by Caswell [5].

Many papers treat problems of sedimentation of spheres in Stokes flow (Leal [6, 7] are

convenient references). Goldman, Cox and Brenner (8] treat the problem of interaction between a
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sphere and a wall. They also consider the problem of a sphere "rolling" down an inclined wall and
find that the sphere cannot be in physical contact with the wall and that it slips, giving rise to
anomalous rotation when forced into close approach. Bungay and Brenner [9] showed that the
rotation of a tightly fitting ball falling down a vertical tube would change sign as the distance
between the ball and the tube wall tends to zero. These Stokes flow predictions involve neither
inertia nor elasticity. The phenomenon of anomalous rolling predicted by these authors appears in
the experiments of Humphrey and Murato [10] who found that the rotation of a sphere gradually
changes from positive (opposite to downhill rolling) to negative (in the sense of downhill rolling) as
the tube inclination angle is increased and the sphere contacts the wall. They conclude that inertia

induced lift keeps the rolling ball off the wall at the smaller angles of inclination.

Joseph, Nelson, Hu and Liu [11] found anomalous rolling of a sphere in viscoelastic liquids
along an inclined plane. The angle between the wall and the direction of gravity is varied from zero
to 45°. A sphere falling down these inclined walls rotates as if rolling down the wall in viscous
liquids as it does in dry rolling, but rotates as if rolling up the wall against intuition in viscoelastic

liquid. Liu, Nelson, Feng and Joseph [12] documented this phenomenon with measured data.

Sigli and Coutanceau [13, 14] studied the effects of the walls of a round tube on a sphere
settling under gravity. Like Tanner [4], they noted that there are critical ball/tube radii for off-center
positions. A small initial eccentricity is magnified by the effects of the fluid's elasticity. It is likely
that the sense of rotation of a sphere falling off-center in a tube filled with viscoelastic liquid is

anomalous.

Riddle, Narvaez and Bird [15] presented an experimental investigation in which the distance
between two identical spheres falling along their line of centers in a viscoelastic fluid was
determined as a function .of -time.. They-found.that, for all-five fluids-used in the experiments, the
spheres attract if they are initially close and separate if they are not close. There is a critical

separation distance. We will show that there is also a critical separation for side-by-side attraction.
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This suggests that the critical separation distance for end-to-end settling may not be associated with a

negative wake as has been suggested by Bird, Armstrong and Hassager [16].

Lateral migration and chaining of spheres in a 0.5% aqueous polyacrylamide solution and in
a solution of high molecular weight polyisobutelene in a low molecular weight polyisobutelene were
observed by Michele, Pitzold and Donis [17] in experiments using very tiny spheres (60-70 pm).
A droplet of the suspension was placed between two glass plates that were pushed together as close
as possible (about 100 um). Different kinds of aggregation were observed in rectilinear and rotary
shear. They also showed chaining and lateral migration of these tiny spheres in an elongational flow
by pulling a glass plate out of a droplet of the suspension. The aggregation of particles appears to be
a generic feature of flows of viscoelastic fluids that occurs in many different types of fluids, for

vastly different scales and types of motion.

Brunn [18] did a theoretical analysis of the interaction between spheres in a second order
fluid with inertia neglected and although he found an attractive force drawing the spheres together he
did not find a critical separation distance for attraction. Brunn's analysis cannot treat close approach
because it has been assumed that the distance between sphere centers is large. His results, as far as
they go, are consistent with our observations and suggest that the mechanism involved is associated
with the normal stresses, which are in his analysis, and not with shear-thinning, which is neglected in
his analysis. In fact, shear-thinning plus memory may play an important role, at least in the chaining

of spheres, as we shall see.

Giesekus [19] tried to explain end-to-end and side-to-side attractions in terms of normal
stresses using 2nd order theory with inertia neglected, like Brunn. These two authors could not
explain the critical separation distance observed by Riddle et al. [15] and they did not investigate the

possibility that this distance is determined by a competition of non-Newtonian and inertial effects.

As far as we know, ours is the first study of side-by-side sphere-sphere attraction. We find
that the spheres attract when the initial separation distance is smaller than a critical value and they do

not attract when the initial distance is larger than this critical distance. The side-by-side spheres
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never attract in a Newtonian fluid; if they are initially separated by a small distance, they repel each

other; just the opposite of their behavior in a viscoelastic fluid.

Side-by-side arrangements of sedimenting spheres are unstable in exactly the same way that
broadside-on settling of long bodies is unstable at subcritical speeds in a viscoelastic fluid (Liu and
Joseph [1], Joseph and Liu [2]). The line of centers between the spheres rotates from across to along
the stream as the spheres are sucked together. The resulting chain of two spheres is a long body that
is stable when the line between centers is parallel to the fall, but this configuration breaks up at
supercritical speeds in which inertia again dominates. These authors last mentioned have presented
evidence that the critical fall velocity is not too much greater than the measured value of the shear

wave speed in nearly all cases.

Van der Brule and Gheissary [20] saw a videotape (shown at the International Congress of
Rheology) of the experiments of Joseph and Liu on sedimenting spheres, which form long chains in
all viscoelastic liquids at the slow fall speeds in which long bodies rotate their long side parallel to
the fall. This stimulated them to undertake experiments of their own on sedimenting spheres. They
atternpted to isolate the effects of shear-thinning and normal stresses by using test fluids that have
one and not the other of these properties. They dropped spheres in aqueous polyacrylamide, an
ordinary viscoelastic fluid with large normal stresses and strong shear-thinning, and found results
identical to ours. Then they did experiments in "shellflo", an aqueous Xanthan solution that has no
measurable normal stresses in shear but is strongly shear-thinning. They found that the spheres
chained in this fluid in much the same way that they did in the aqueous polyacrylamide. This
suggests that shear-thinning is the important parameter. They then did experiments in a Boger fluid
that they prepared with small amounts of polyacrylamide (100 ppm) in glycerin and water. This is a
very viscous fluid with large but saturated normal stresses, which lead to constant values of the
recoverable shear at high rates of shear. They did not observe chaining in this Boger fluid, and thus

concluded that shear-thinning, not elasticity, is the mechanism controlling the chaining of spheres.
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Joseph and Liu [2] did experiments on sedimenting cylinders in liquids like the ones used by
Van der Brule and Gheissary (20]. They found that in 0.3% aqueous Xanthan (Kelco) and 0.4%
Carbopol in 50/50 glycerin-water solutions (see Fig.s 11 and 12 in that paper) which are shear-
thinning fluids without normal stresses, the cylinder puts its long side parallel to gravity when
falling at speeds less than critical. The critical speed in the Xanthan solution was the shear wave
speed measured on our meter, but the critical speed for Carbopol was 1/10 the value measured on the
meter, the only exception so far. In other respects the Carbopol solution, we shall see, is nearer to
Newtonian than to viscoelastic. Spherical particles dropped in the 0.4% Carbopol did not exhibit
side-by-side attraction, they repelled each other when they were initially together as in Newtonian
fluids. They were repelled by a vertical wall and exhibited only the feeblest form of anomalous

rolling (Liu et al. [12]), and apparently no chaining.

These results are surprising because they appear to associate strange effects like tilting and
chaining with shear-thinning rather than with normal stresses. In fact, theoretical results for second
order fluids, without shear-thinning, give rise to all the observed effects, so we are confronted with a

real mystery.

In the case of fluids without normal stress, which do not climb a rod, we may entertain the
idea that 2nd order correlations to viscous behavior are negligible, so that we might learn something

important at the next non-trivial third order.

Thinking more globally, Joseph and Liu [2] introduced the idea that a combination of
memory with shear-thinning is required and may be enough to induce nose-down turning and the
related chaining of spheres. They concluded that shear-thinning alone affects particle's orientation
much less, because, like the Carbopol solution, although it shear-thins, the thinning is not persistent
and decays very rapidly. -The Xanthan solution remembers the place where the viscosity was
reduced, so that the back part of a nose-down cylinder, or the spheres behind the lead sphere in a

chain, experience a smaller viscosity than the leading end of the cylinder or leading sphere. We
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might think that corridors of reduced viscosity are marked on the fluid by shear-thinning as a particle

drops in the fluid and persist for a time before they relax.

These theories could be tested with standard test liquids provided that they shear-thin and

have long memories, whether or not they exhibit normal stresses or climb rods.

The existence of relaxing corridors of reduced viscosity, marked on the fluid by the shear-
thinning induced by a falling ball, is consistent with the observations of Cho and Hartnett {21] and
Cho, Hartnett and Lee [22]. They studied falling ball rheometry, measuring the drag on balls that
were dropped in the test liquid in specified and definite intervals of time. They found the same
memory effects that we did, effects that were particularly evidentin a 10* wppxh solution of aqueous
polyacrylamide (Separan, AP-273), a highly viscoelastic and highly shear-thinning liquid. The
measured terminal velocity depended strongly on the time interval between the dropping of
successive balls in the cylinder. Balls launched after only a short wait period would fall up to nearly
twice as fast as the speed of the initial ball, and it took intervals of thirty minutes or more for the

memory of the corridor of reduced viscosity to relax.

We can imagine the trailing spheres in a chain or the trailing end of a long particle setting
itself in a corridor of reduced viscosity. For this behavior to occur, shear-thinning and the memory
of shear-thinning is required. We should recall at this point that similar effects in weaker form occur
in our constant viscosity fluid (STP) and in stronger form in S1 where the degree of shear-thinning is
small. Thus shear-thinning plus memory cannot explain everything. The experiments with semi-
dilute Xanthan are interesting because shear-thinning and memory are present, but many other

mechanisms that could come into play are absent.
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2. Material and dimensionless parameters

The material parameters that were measured in the liquids used in the experiments are the
density p , viscosity n =ky""', where 7 is the shear rate in reciprocal seconds, the climbing
constant [§ measured on a rotating rod viscometer (Beavers and Joseph [23]) and the wave speed c.
To compute [3 from measured values of the climb we need the interfacial tension that we measured
with a spinning drop tensiometer (Joseph, Amey, Gillberg et al. [24]). The value of [3 is insensitive

to a small change of surface tension (chap.16 in Joseph [25]). Table 1 is the summary of material

parameters.
Fluid p , k n B Vi c A, Vie . 108
N 31,
(g/cm3) | (Pa.s) (g/cm) | (g/em) | (cm/s) | (s) (s)
1.5% aqueous
polyox 1 17.3 |5.7110.44|132 |440 20.3 | 0.420 2.54
1.25% aqueous
polyox 1 12.7 142110451117 |389 17.2 | 0.429 3.07
1.0% aqueous
polyox ] 7.6513.97 042|108 360 15.0 ] 0.34 4.70
0.4% Carbopol in
50/50 glycerin/water| 1.13 0.7610311067] O 0 15.9 | 0.027 0
0.3% aqueous
Xanthan 1 521f11 028 O 0 12.2 1 0.35 0
ST 0875 | 8.06|7.1410.62] 11.8 | 39.3 | 72.4 | 0.018 0.49
STP 0.86 180 [17.8]0.85[ 097 3.23]286 0.0026 0.02

Table 1. Summary of material parameters. Liu and Joseph [1] did some experiments with the 1.0%
aqueous polyox listed in this Table, but not used in the experiments reported here. The stress ratio
V1,/1M, is a measure for which the more dilute polyox solutions are relatively more elastic.

The climbing constant B is related to the limiting (zero shear) value of the first and second

normal stress differences

(Vier W20) = }E‘},(M(?)-Nz(?))/?’ 2.1)

by
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B‘= Wlo + WZc' ' (2.2)

|-

The climbing constant

"

B =3a,+2a, . (2.3)
may also be expressed in terms of quadratic constants

(@1.02) = (=3 Vios¥io + V2, @4
of the second order fluid. a,/]a;| is the ratio of quadratic constants and

[, 0] = [-m,2m~2]3/(m—4) @5

where m=2aq,/(2a, + a,) = - y,,/v,, is the ratio of the first to second normal stress difference. It can
be argued (§17.11 in Joseph [25]) that m = 10 is a reasonable value for our polymer solutions. Then

o _ lZ(l-m) =18 2.6)

A I om

is a constant and o, and «, are determined by the measured values of the climbing constant B. We
are going to assume (2.6) in the calculations that follow. The value of y,, that we get from
measuring ﬁ is not sensitive to the value of the ratio y,,/v,, as long as y,, is relatively small and

negative (see §17.11 in Joseph [25]).

The measured value of the climbing constant, together with the assumption that the second

normal stress difference is -1/10 as large as the first, allows us to evaluate Roscoe's [26] formula
T, =T, =357, + 3(, + @,)s* (2.7)

for the extensional stress difference, where § is the rate of stretching in the direction x, and 1), is the

zero shear viscosity. Using (2.6) and a, =-y,,/2 we get

Ty - Ty =351, +1.2y,,5%. (2.8)
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The zero shear value of the first normal stress difference y,, =-’;:‘l_'-_"7ﬁ =3-39ﬁ and the zero

shear quadratic correction 458 of Troutons viscosity, 37,, increase with 8. An argument given by

Liu and Joseph [1] shows how extensional stresses broadly speaking can control some of the

properties of the aggregation of particles in viscoelastic liquids documented here.

Material parameters of the fluids used in our experiments are listed in Table 1. The percent
of the polymers and the percent of the glycerin in water are by weight. Glycerin is a Newtonian
liquid. Carbopol is basically a non elastic but shear-thinning fluid. STP is a weakly viscoelastic
liquid with small normal stresses and basically constant viscosity (see Fig. 5 in Beavers and Joseph
[23]). For shear rates below 100 sec -1, STP could be called a Boger fluid. The polyacrylamide and

polyox solutions are standard viscoelastic liquids.

An important measure of elasticity is the elastic stress ratio

N(T) “ (7)Y 2.9)
o(y) ()

where y,/n is the elastic stress ratio coefficient whose limiting y — 0 value is v,,/n,. (The ratio
N,/ is twice the recoverable shear; see Barnes, Hutton and Walters [27]). This ratio vanishes for

Newtonian fluids and is very small for dilute solutions with Newtonian solvents, like Boger fluids.

For small values of 7, (2.9)

. M@ W, .

L 1 / Ylo 2.1
70 1) Mo 10
where

Vio _ 108
Yo P 2.11

T 370 @1
is a material parameter. Values of 15?-19- are listed in Table 1. The stress ratio coefficient could have

0

a finite and even large value in mobile liquids with small values of 7 under circumstances in which

N; and even B are too small to measure. In this sense, the stress ratio of mobile liquids is
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indeterminate. We thought at first that this indeterminism might apply to the 0.3% Xanthan solution
but the viscosity of Xanthan at the shear rates in our experiments is too large to support any

conclusion other than [3/ n=0.

The stress ratio is not a monotonic function of concentration. Aggregation of particles occurs

more readily in fluids with high stress ratios independent of concentration.

The dimensionless parameters used in this study are the Reynolds number

R,= 22 2.12)

o
where U is the terminal velocity of a sphere of radius D, the Weissemberg number

AU
°="p (2.13)

where 4, =n,/pc? is computed from measured values of 77 and the wave speed ¢, the Mach number
M? = U?/c* = RW and the elasticity E = nA/pD?*. The flows in the experiments reported here are

strongly subcritical with M<<1.

Two different solutions of aqueous polyox (WSR 301) at concentrations by weight of 1.5 and
1.25% were used as test liquids. Plots of viscosity vs shear rate for both solutions are given in Fig.

2.1. Values of dynamic moduli of these two solutions as a function of shear frequency are shown in

Fig. 2.2.
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Fig. 2.1. The viscosities of Polyox solutions as a function of the shear rate were measured, at room
temperature, on a RSF2 Rheometrics fluid rheometer with a couette apparatus.
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Fig. 2.2. The dynamic moduli of Polyox solutions as a function of the shear frequency were
measured, at room temperature, on the same rheometer used for viscosity measurements.

STP is a solution of polyisobutylene (PIB) in petroleum oil that was used extensively in early
studies of rod climbing (see Joseph [25]). S1 is a solution of 5% W/W of PIB in decalin plus 50%

polybutene oil. The viscosity and the values for the dynamic moduli of these two polymer solutions
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are shown in Fig.s 2.3 and 2.4 respectively. The viscosity of STP is nearly constant for shear rates
less than 100. The viscosity of S1 decreases with increasing ¥, but the decrease is very slow for
shear rates less than 10. The viscosity of S1 is an order of magnitude smaller than STP; it is a much
more mobile liquid. Both solutions climb a rotating rod, but the STP is not a good climber; the
climbing constant at a temperature of 26.7°C is 0.97 g/cm. We can say that STP is a Boger fluid
with very weak normal stresses. The climbing constant of S1 at 25°C is 11.8 g/cm and S1 can be
said to resemble STP with much larger normal stresses, especially at low rates of shear. The loss
modulus for STP is an order of magnitude higher than S1. The storage modulus of S1 is larger than
STP for shear rates less than about 10 s-1, and the shear rate at which the loss modulus falls below
the storage modulus is much lower in S1 than in STP. It is clear that S1 is a more mobile and much

more elastic liquid than STP.
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Fig. 2.3. The viscosities of STP and S1 fluid as a function of the shear rate at temperature of 24.5°C,
on a RSF2 Rheometrics fluid rheometer with a cone - plate apparatus. The viscosity of S1 is an
order of magnitude smaller than STP; it is a much more mobile liquid. S1 is weakly shear-thinning.
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Fig. 2.4. Dynamic moduli of STP and S1. The loss modulus for STP is an order of magnitude
higher than S1. The storage modulus of S1 is larger than STP for shear rates less than about 10. The
shear rate at which the loss modulus falls below the storage modulus for S1 is much lower than that
for STP.

We attempted to isolate the role of shear-thinning by suppressing both normal stresses and
elasticity by using a solution of 0.4% Carbopol 690 (Goodrich) in a 50/50 glycerin/water mixture in
our attraction experiments. The viscosity versus shear rate for this Carbopol solution is plotted in
Fig. 2.5, and the dynamic moduli are plotted in Fig. 2.6. Carbopol is though to be a pseudoplastic
fluid without elasticity. Since our Carbopol solution has a non-zero storage modulus, it cannot be
said to be without elasticity. The presence of small elasticity in Carbopol solutions has been noted

before. There is no evidence that Carbopol 690 in 50/50 glycerin/water has a measurable value of

the first normal stress difference, and it does not climb a rotating rod.

To determine the effects of shear-thinning in a fluid with a strong memory but no normal
stresses, we used a solution of 0.3% Xanthan (Kelco) in water. The graph of viscosity versus shear
rate is shown in Fig. 2.5, and the variation of the storage and loss moduli with frequency is shown in
Fig. 2.6. This Xanthan solution is very shear-thinning and it has no measurable normal stresses. We

could not register a first normal stress difference on the Rheometrics fluid rheometer and the 0.3%

329



Xanthan solution would not climb a rotating rod. On the other hand, this fluid has a high storage

modulus and can be said to be linearly elastic.
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Fig. 2.5. The viscosities of 0.3% aqueous Xanthan and 0.4% Carbopol in 50/50 glycerin/water

solution as a function of the shear rate at temperature of 24.5°C. The Xanthan solution has a higher
but more shear-thinning viscosity than the Carbopol solution.
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Fig. 2.6. Dynamic moduli of Xanthan and Carbopol solutions. For modest shear rates ranging from
0.1 to 100, both the storage modulus and loss modulus of the Xanthan solution are higher than those
of the Carbopol solution. The storage modulus G' of Xanthan is greater than the loss modulus G"; in
the Carbopol G" is greater than G'.
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3. Description of the experiments

Spheres were dropped in liquid filled channels made of transparent plexi-glass to allow video
recording of experiments. The first channel, which was used to test 1/4-in spheres, has a gap of
0.44-in, is 6.5-in wide and 25-in high. The second one, which was used to test spheres with different
diameters from 1/8-in to 5/8-in, has a gap of 1-in, is 7-in wide and 30-in high. The motion of
sedimenting spheres in these beds is basically two dimensional with spheres centering themselves
between two close walls. This centering was described by Liu and Joseph [1]. We did some of our
experiments in channels with distant side walls. The phenomena of attraction of nearby bodies in
viscoelastic liquids, opposite effects in Newtonian liquids, and anomalous rolling are the same in
channels with close and distant side walls. These effects do not depend strongly on the exact
distance between the center sphere and the side wall. Velocities and position of spheres were

measured with a video system and image processing software.

To facilitate the side-by-side and contemporary dropping of two spheres we used a small
device which we call the "clothespin dropper", shown and described in Fig. 3.1. The same device
was also used to release a single sphere at a distance from a straight prismatic rod. The rod was
almost as deep as the channel and simulated the presence of a side wall. It was supported by an
external support that could be tilted several degrees from the vertical upright position. A sketch of
this device is given in Fig. 3.2. We also used another single sphere dropper to drop spheres with

different diameters.
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Fig. 3.1 The "clothespin dropper". The two spheres are held at the ends of the facing arms. The

circular holes on these keep the spheres at the same height. Pulling the lever on the facing arms
shown in (b) opens the clothespin and releases the two spheres at the same instant.
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Fig. 3.2. The front view of the experimental apparatus (not including the video system and image
processing system). For the side-by-side test, the initial distance between the two spheres can be
adjusted and measured by moving ruler 1; for the wall-sphere test, the initial distance of the sphere
from the wall is controlled by ruler 2. The solid plane surface can be inclined by tumning the screw
and the tilt angle can be measured by the angle level.

In order to test the effects of sphere diameter, we selected spheres having different diameters
and weight, keeping the Reynolds number

2aUp,

R(y)= = constant, 3.1

where a and U are the radius and the terminal velocity of sphere, and p, and n are the density and

viscosity of liquid, by the following approximate method. Assuming Stokes flow, we have

(p, —p.)sg na® = 6mnal (3.2)

where p, is the density of sphere. The terminal velocity can be determined from equation (3.2) as

2 (p, - I:,l )ga (33)
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The shear rate will be

U _(,-plga
2a 91

y=

Substituting this into the power law equation

- m=1

n=xy .,
we have

1 i
,,=x.(£e:-_9ﬂ:>_89_) -

(3.4)

(3.5)

(3.6)

From equations (3.1) and (3.6), the following condition for determining the diameter and material of

spheres can be obtained:

(p, —p1)> "a®*" = constant .

3.7

We chose 1.5% aqueous polyox as the test liquid; then spheres were picked according to equation

(3.7) and availability in the market as listed in Table 2. The 1/8-in tungsten carbide, 1/4-in steel,

7/16-in ceramic and 5/8-in aluminum spheres were used to test size effects, and 1/4-in teflon,

aluminum, steel and tungsten carbide spheres were used to test weight (or velocity) effects on

attraction and dispersion.

Material Diameter (in.) Weight (g) . Density (g/cm3)
tungsten carbide 1/8 0.26 15.8
steel 1/4 1.02 7.61
ceramic 7/16 2.74 3.81
aluminum 5/8 5.78 2.76
teflon 1/4 0.29 2.18
aluminum 1/4 0.37 2.76
tungsten carbide 1/4 2.12 15.8

Table 2. Spheres tested.
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4. Interactions between spheres falling side-by-side

We dropped two spheres side-by-side in a channel filled with different liquids. In
viscoelastic liquids, when the initial separation distance is small, the two spheres will attract; the line
between centers will turn as they attract, until the spheres touch and chain with the line of centers
vertical. Close side-by-side settling at slow speeds is unstable in viscoelastic fluids and the
dynamics creates stable vertical chains. The tilting of the line of centers between falling spheres
starts at the inst~nt of release and the two spheres appear as a dumbbell pair sliding along the tilting

line of centers as in Fig. 4.1(a).

If the initial distance is large enough, the two spheres appear not to interact and to fall
straight down as in Fig. 4.1(c). Sphere-sphere interactions in this regime are not strong. We shall
call this regime "non-interacting" though we recognize that some small interactions that could

produce a large effect over long time periods are probably at work.

In Newtonian fluids, two spheres launched side-by-side, which are initially separated by a
small gap or no gap, will separate as in Fig. 4.1(b). If the initial gap is large enough the two spheres
enter into the non-interacting regime described in the preceding paragraph and in Fig. 4.1(c). Side-
by-side sedimentation is relatively stable or only weakly unstable and spheres will never chain in

Newtonian liquids.

Two heavy spheres falling faster than the wave speed for the fluid in a viscoelastic fluid will
disperse as in a Newtonian fluid. This phenomenon is the same one that causes long bodies that fall
straight down at slow speeds to turn 90° into broadside-across-the-stream fall at supercritical speeds

when inertia dominates viscoelasticity (Liu and Joseph [1], Joseph and Liu [2]).

Returning now to the fall of spheres launched side-by-side in the strongly subcritical case, we
look at a range of initial separation distances that are larger than those for which chaining occurs and
smaller than those for which the falling spheres apparently do not interact. The dynamics of

aggregation and dispersion here is more complicated. Two spheres will attract initially and the line
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of centers between them turns toward the vertical. The spheres do not touch but instead, enter into a
non-interacting regime, or else actually separate in a manner reminiscent of the settling behavior of
distant spheres, with the line of centers vertical, that was studied by Riddle et al. [15]. The triangles
in Fig. 4.3 (see section 4.1) exhibit the behavior just described. The two spheres attract initially, but

they do not come into touching contact and eventually separate.

Now we are prepared to define two distinguished distances. The first distance d. is the

largest side-by-side distance 8 for which attraction can be observed, as shown in Fig. 4.1. This
critical distance may not be a precisely defined value; it may depend on the level of resolution of the

measurement of the mutual attraction that we can achieve in our experiment. If 8 <3 the spheres
will attract initially. For small 8 <&, the line of centers between spheres will turn from the vertical

and the spheres will attract, touch and then fall in a chain with line of centers vertical. For large

values of & < 8. the spheres attract initially and the line of centers between spheres will turn from
the vertical but the spheres eventually separate, or stop interacting and never touch or chain. We did
not try to measure 8.. The set of small 8 <8, for which falling side-by-side spheres eventually
touch is defined by a second distance 8; <&, called the critical touching distance. &, is
determined by observations associated with measurements. We increased the initial separation
distance by small steps and repeated experiments a few times under each condition. The vertical
distance between release and the point of touching is called the vertical touching distance £;(8) (Fig.

4.1(a)).
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(d) 1/4-in steel spheres falling in 1.5% aqueous polyox, initial distance §=3.8 mm.
¢ is the vertical distance from the point of release to the mid-point on the line of centers
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(e) 1/4-in teflon spheres falling in 50/50 glycerin/water solution

Fig. 4.1. Two spheres released side-by-side at the same time in a viscoelastic fluid with 8§ <8, will
attract each other while the line of centers between the spheres rotates toward the vertical (as in (d)).
The final result is a vertical chain of two spheres (a). If § > 8¢, then the spheres appear not to attract
(c). If &1 < & < 8¢, the spheres attract initially and the line of centers between spheres will turn from
the vertical but the spheres eventually separate, or stop interacting and never touch or chain. In a
Newtonian liquid, two spheres dropped side-by-side with a small gap or no gap will disperse rather

than aggregate (b). If the initial distance between two spheres is large enough, then they apparently
will fall without interaction. Some photographs from experiments are shown in (d) and (e).
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Table 3 lists measured values of the fall velocity U and the shear rate ¥y =U/D. The

Reynolds number Ry and Weissemberg number W, are zero shear values (2.12) and (2.13).

Table 4 lists the vertical distance £;(8) traveled by spheres before touching (Fig. 4.1) as a

function of the initial distance & between the spheres

The lateral migration of spheres depends on the fall velocity, which is determined by the
weight of the sphere, as well as on the properties of the fluid in the settling bed. Effects of the
weight of the particles can be assessed to a degree by normalizing all the lengths with the lateral
touching distance &t which also depends on the weight. Fig. 4.2 shows that heavier particles achieve
larger fall distance ratios £, /8, for a given initial distance fraction §/8,. The effect of the weight
of particles is weak. 1/4-in tungsten, steel and teflon spheres have very different weight (Table 2)
and fall speeds in S1 (Table 3), but the ratio of the lateral drift distance to the vertical touching
distance is not very great. The weak effects of weight are more easily seen in experiments, discussed
in section 6 and section 7, in which spheres are attracted to vertical wall. We do not mean to imply
that weight effects are generally not important, but only to note the tendency of the lateral drift

velocity to increase in proportion to the fall velocity.

It is of interest to examine data for steel particles. The data for steel in Fig. 4.2 orders weakly
with the elastic stress ratio coefficient IOB /3 7, in Table 1, with strength of interaction for steel in
difierent fluids in the order: STP, S1, 1.5% Polyox and 1.25% Polyox. The data for teflon is too
sparse for us to draw a definite conclusion. Xanthan which is strongly shear-thinning and has a zero
elastic stress coefficient, does not seem to be greatly different than S1, which does not shear-thin at

the small shear rate of 0.17 of our experiments (see Table 3).
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Liquid-solid U (cmy/s) Y (s71) R, W,
1.25% Polyox-1/4-in steel 6.34 9.98 0.032 4.29
1.5% Polyox-1/4-in steel 3.08 4.85 0.011 2.04
STP-1/4-in steel 0.37 0.58 0.001 0.001
S1-1/4-in steel 0.99 1.56 0.008 0.028
S1-1/4-in tungsten 2.11 3.32 0.017 0.058
S1-1/4-in teflon 0.11 0.17 0.001 0.003
Xanthan-1/4-in teflon 10.9 17.2 0.133 6.01
Carbopol-1/4-in teflon 4.99 7.86 0.417 0.209

Table 3. Measured values of the fall velocity and related quantities.

Liquid-solid Initial distance & Vertical distance £; from Cnitical touching
(mm) releasing to touching (mm) | distance &t (mm)
0.3% aqueous Xanthan 2.5 57 6
--teflon 5 79
0.4% Carbopol in 50/50 no attraction
glycerin/water--teflon
STP--steel 1.3 60 11
2.5 120
3.8 290
5.1 470
6.4 590
S1--steel 2.5 23 175
5.1 61
7.6 130
10.2 225
114 300
S1--tungsten 38 100 15
7.6 300
S1--teflon 3.8 75 5
1.5% aqueous polyox 1.3 9.5 5
--steel 2.5 51
3.3 68
3.8 89
4.1 102
1.25% aqueous polyox 1 12 8
--steel 2 21
3 74
4 90
5 108
5.8 114
7.1 150

Table 4. Attraction between side-by-side spheres in different liquid-solid systems. The vertical
distance £,(8) traveled before touching depends on the ratio of the fall velocity to the lateral
migration velocity.
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Fig. 4.2. Interaction between side-by-side sedimenting spheres in different fluids in terms of the
ratio £;/8; of vertical distance traveled by the sphere before touching over the critical touching
distance as a function of the ratio §/8,. Full symbols refer to S1 and empty circles to STP.

4.1. Interaction in aqueous polyox solutions

In Fig. 4.3 the distances between two 1/4-in falling spheres dropped side-by-side are shown

as a function of the vertical distance from the point of release. Four different values of  are

considered. Attraction between the particles is stronger and particles aggregate at a smaller distance

from the point of release when the initial side-by-side distance 8 is small. If d is large, falling

spheres will not touch.
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Fig. 4.3. Separation distance between spheres measured along the line of centers vs. the vertical
distance £ to the mid-point between the spheres in 1.25% polyox solution.

The vertical distance £,(8) traveled by 1/4-in steel spheres before touching versus the initial
distance & between the spheres is plotted in Fig.s 4.4(a) and (b). Spheres falling in 1.25% aqueous
polyox solution did not touch when 8 > 8, =~ 8mm and &, = 5Smm in 1.5% aqueous polyox solution,

Values of flow parameters for the experiments shown in Fig. 4.4 are listed in Table 3.

We were at first surprised to find that the critical touching distance was greater in the 1.25%
polyox solution than in the 1.5% solution. This unexpected result perhaps finds its explanation in

the fact that the stress ratio N,/t (Table 1) is actually larger in the more dilute solutions, indicating a
sense in which the dilute solution is actually more elastic. Consequently, we would predict even

stronger interaction in the 1.0% than in the 1.25% solution.
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Fig. 4.4. £;(0) vs & for 1/4-in steel spheres in (a) 1.25% aqueous polyox solution and (b) 1.5%
aqueous polyox solution. The critical touching distance is larger in the 1.25% solution.

Clusters of spheres dropped together in the polyox solution will form streamline arrays (see
Fig. 4.5). Chains of spheres, like long bodies, tilt their longside parallel to streamlines. Their falling

speeds are less than the shear wave speeds in these cases.
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Fig. 4.5. Chains of 1/4-in steel spheres falling in 1.25% aqueous polyox solution. The same kind of
chaining was observed in the 1.5% aqueous polyox solution.

4.2. Interaction in S1 and STP

Pairs of steel spheres were released in STP. Pairs of steel, tungsten and teflon spheres were
released in S1. The behavior of attracting spheres in this experiment was qualitatively similar to that
described in the previous section. The critical touchirg distance in STP is about 11 mm. This is
smaller than the critical touching distance of 17.5 mm in S1. The elastic ratio of the first normal
stress to the shear stress at small rates of shear is an order of magnitude larger in S1 than in STP
(Table 1). The experimental results are presented in detail in Table 3, Table 4 and Fig. 4.2. Fig. 4.6
shows chains of spheres falling in S1 and STP.
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Fig. 4.6. Chains of 1/4-in steel spheres falling in (a) S1 and (b) STP.
4.3. Interaction in Xanthan and Carbopol

Experimental results for side-by-side attraction in all liquid-solid systems including Xanthan
and Carbopol are given in Table 4. Two spheres dropped side-by-side do attract in 0.3% aqueous
Xanthan solution, but the attraction is weak. The critical touching distance of teflon spheres is about
6 mm. There is no attraction in 0.4% Carbopol in 50/50 glycerin/water solution. Two spheres
dropped closely side-by-side will separate as in a Newtonian liquid. The flow parameters are given

in Table 3. The chains of spheres falling in these two liquids are shown in Fig. 4.7.
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Fig. 4.7. Chains of 1/4-in teflon spheres falling in (a) 0.3% aqueous Xanthan and (b) 0.4% Carbopol
in 50/50 glycerin/water solution. Horizontal arrays of spheres are relatively stable in the Carbopol
solution and vertical arrays are relatively stable in the Xanthan solution.

In comparing the results we have obtained in our experiments with different liquids, we see a
definite difference between side-by-side attraction and the chaining spheres. In this tentative and
preliminary interpretation of our results we focus on the effects of normal stresses and shear-thinning
with and without memory. STP and S1 are basically non-shear-thinning at the low rates of shear
characteristic of our experiments. Side-by-side spheres attract in these fluids and they also chain,
indicating that shear-thinning is not a necessary condition for these effects. S1 is a more mobile and
elastic fluid than STP and it gives rise to stronger attraction and chaining. This suggests that fluids

for which the elastic ratio of normal stress effects to viscous effects are large will give rise to strong

interparticle forces, attraction and chaining. The Polyox solutions have large elastic normal stresses,
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elastic stress ratios and times of relaxation as well, but they also shear-thin strongly at shear rates
characteristic of our experiments. Although the prcsencé of all the viscoelastic effects in Polyox
solutions does not allow us to isolate the properties of a viscoelastic fluid that give rise to the strong
particle interactions that we observed in our experiments, these interactions also appear to correlate
well large values of the stress ratio. The correlation in Polyox is subtle because the less concentrated

solutions have higher stress ratio and stronger interactions.

To isolate the effects of shear-thinning we looked at the Xhanthan and Carbopol solutions,
which do not give measurable values of normal stresses at any rate of shear. The value of the elastic
stress ratio may be large in Xanthan, but the ratio cannot be determined because the normal stresses
are too small to measure. However, the 0.3% aqueous Xanthan has a much higher linear elasticity
than Carbopol. We are assuming that this means that the memory of shear-thinning is much longer
in Xanthan. In fact the Xanthan will exhibit side-by-side attraction weakly and chain strongly, but

the 0.4% Carbopol does neither.

Our experiments show that different mechanisms promote aggregation in viscoelastic liquids;
more than one property is involved. A possible generalization of our observations is that large
values of the elastic stress ratio N, /7 are sufficient but not necessary for strong interactions. Shear-
thinning plus memory, which creates corridors of reduced viscosity, is also sufficient but not
necessary for strong interactions. Aggregation seems not to occur in inelastic fluids with short

memory or small values of N,/7, whether or not they shear-thin.

S. Direct two-dimensional simulation of the interactions between two particles falling side-by-
side in Newtonian fluids

The hydrodynamic mechanisms that cause circular particles to rotate and drift avay from
each other in a Newtonian fluid can be.understood by direct (two-dimensional) numerical simulation,
using the Navier-Stokes equations to find the fluid motion and hydrodynamic forces which move the
rigid particles according to Newton's equation of motion. A finite element package based on

POLYFLOW with this capacity has been presented by Hu, Joseph and Crochet [28), and a video of
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this simulation together with a short paper has been given by Hu, Joseph and Fortes [29]. Huang,
Feng and Joseph [30] applied this code to study the forces and the turning couple on an elliptic
particle settling in a vertical channel, and they showed that there is high pressure on the front side of
the ellipse at the place where the shear stress vanishes, which corresponds to a stagnation point in
potential flow. This pressure acts always to keep the long side of the body perpendicular to the fall.
Feng, Hu and Joseph [31] used this code to solve initial value problems for circular particles settling
in a channel and this section is an adaptation of their work to the problem at hand. An analysis like
this one has been applied by Liu et al. [12] to the problem of interaction between a circular particle

falling in a Newtonian fluid and a vertical wall.

We want to understand how two heavier-than-liquid circular particles dropped side-by-side
from rest in a channel will rotate and move. Referring to Feng et al. [31] for details, we note here
that in the regimes of moderately low Reynolds numbers in which there is no vortex shedding, the
particles will commence to rotate as if turned by the shears from the fluid going éround the outside
of the particle and not from the fluid in the gap. As the particles acquire angular velocity, they
separate and fall side-by-side for a time before they enter into a staggered arrangement. The side-

walls of the channel are important, especially in the later stages of the motion.

In our experiments, spheres dropped side-by-side in Newtonian liquids would begin to rotate
and drift rapidly away from each other and after a short time reach an apparently steady state with
definite angular velocity and a fixed stand-away distance with no further drift. In this simulation, a
fixed stand-away distance with the line of centers perpendicular to the flow is not achieved. The

side-by-side configuration, however, is very persistent as Fig. 5.1 shows.
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Fig. 5.1. Trajectories of two circular cylinders dropped from a side-by-side initial condition in a

channel of 8 diameters width. The dimensionless time is defined by ¢ = tyg/d. The oscillation
seen in the trajectories is associated with a wall effect.

At first, when the side-by-side particles are close together, the passage of fluid between the

particles is blocked, so that the flow passes over the outside of the particle, turning them as in Fig.

3.2. We are going to show that the pressure and the shear stress distributions on the surface of the

particle give rise to a lateral force and a torque that define the drift and rotation of the particles.
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Fig. 5.2. Streamlines for side-by-side sedimentation of two cucular parﬂcles dropped from rest in an
8d channel. The particles are at an early stage of sedimentation (t*=31in Fig. 5.1). To visualize the

streamlines, we use a coordinate system fixed at the center of the right particle, which is moving
down and to the right side. In this system, the centerline between the particles is not a streamline.
Fig. 5.3 shows that the maximum pressure occurs near 6 =202.5°. This position is also where
the dividing streamline seems to hit the surface of the body in Fig. 5.2. Because the circular particle
is rotating, the no-slip condition implies that there are closed streamlines around the surface of the
particle and a stagnation point cannot be strictly defined. But considering the outside streamlines,
we will call the point with maximum pressure a viscous stagnation point. We have shown that the
stagnation point usually corresponds to vanishing shear stress (Huang et al. [30], Liu et al. [12]).
This is not the case here because of the strong rotation of the particle. If we modify the shear stress

by taking out the contribution from rotation, we should still have the correspondence. This is done

by considering a potential vortex at the center of the particle with velocity:

u' =wat/r (5.1
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where  is the angular velocity at this moment. The shear stress at r = a for this is:

th=-2nw (5.2)
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Fig. 5.3. The pressure and shear stress distribution on the surface of the right particle. Dimensionless
time t* = 31, and instantaneous Reynolds number R = 2.65,

After removing the shear stress (5.2), we obtain the effective shear stress in Fig. 5.3. Thus, the
maximum pressure occurs at the stagnation point where the effective shear stress vanishes. We also
tested a particle prevented from rotation and settling at virtually the same Reynolds number. The
distributions of pressure and viscous stresses are shown in Fig. 5.4. The shear stress distribution is
very much like the modified shear stress in Fig. 5.3, and the zero of the shear stress is the viscous

stagnation point that-locates the-pressure maximum.
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Fig. 5.4. The pressure and shear stress distributions on the right particle. The particles are prevented
from rotation. Dimensionless time t* = 30, instantaneous Reynolds number R = 2.76.

Fig. 5.5 shows that the stagnation pressure controls the sidewise drift, increasing the distance
between repelling particles. In this Fig. we have compared the side thrusts, psin6 of the pressure and

tcos6 of the shear stress on the surface of the particle. The resultant forces are:

[Fp:Fe) =_/:‘[psin 6, 1cos 8ladd = (1.602x1073,8.034x10™*) dyn /cm (5.3)

The pressure force is larger than the shear stress force, and the separation of the two particles is

therefore determined mainly by the stagnation pressure.
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Fig. 5.5. The horizontal component of the pressure and shear stress shown in Fig. §.3. Because of
the definition of 6, negative lateral thrusts peint to the right.

The rotation of the particle is associated with the fact that the positive shear stress on the
right side is larger than the negative shear stress on the left. This is even clearer in the case of non-

rotating particles shown in Fig. 5.4.
6. The interaction between a wall and a settling sphere

If a sphere is released at a small distance from a vertical wall in a viscoelastic fluid it will
eventually approch the wall and fall while rolling up along the wall (anomalous rolling is discussed
by Jose};h etal. [11] and Liu et al. [12], see Fig. 6.1(a)). Even when the wall is slightly tilted away
from gravity, the wall will attract a sedimenting sphere that is dropped near the wall. On the other

hand if § is large the sphere and wall do not appear to interact during the short fall time of our

experiments (Fig. 6.1(b)).
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Spheres dropped at or near a vertical wall in a Newtonian fluid will be repelled by the wall
(Fig. 6.1(c)), just the opposite of what occurs in a viscoelastic fluid. Spheres that are sufficiently far
from the wall initially do not appear to interact. The results of a direct two dimensional numerical
simulation of a circular particle falling near a vertical wall in a Newtonian fluid was given by Liu et

al [1993].

Returning to the case of viscoelastic fluids near a tilted wall, we may define two critical

values 8.and &, , the critical distance of interaction and the critical touching distance respectively,
with 8; <8, as in the case of the interacting pairs of spheres. If 8 < &;, then the sphere eventually
migrates nearly all the way to the wall and never falls away. Usually, the gap between the sphere
and the wall is too small to measure easily. If 8; <8 < 8., the sphere will move toward the wall,
but it will eventually fall away (Fig. 6.1(b)). In our experiments, spheres were dropped at increasing
distances from the top corner of the tilted rod, at different angles of inclination of the rod between 0

and 5°. There is a critical tilt angle 61 such that when 08>0, spheres are not attracted all the way to

the wall.
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356



~
£=64 (mm) ;g s=0mm)
‘
1=0.2 (s) - t=0 () .
foa ~ -
¥ =95 (mm) £=120 tmm)
1=2.5(%) - 122858y Iu‘
/=197 (mm) [=2248 (M) e
1=4.8 (s) t=5.4 (3 : -
° -
>
t
-
£ =298 (mm) I'
98 {mm - V=300 (mny i
t="1 s R

1~
(=820 B

£ =403 (mm)

- -
(=07 (st ’01 ¢ =336 (mnn
i t=il v
(¢ « 7 i=-ir ceramic sphere falling near a vertical wall (left, 8=10 mm) or

ity

« 1 tiied wall (right, 8=3 mm) in 1.5% aqueous polyox solution.

357



£=13 (rum)
t-O (s) ]

£=38 (mm)
- 1=0.4 (8) ‘

£=89 (mm)
1=0.8 (s)

£=444 (mm)
t=3.3(s)
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Fig. 6.1. A sphere released in a viscoelastic liquid will be attracted to the wall: (a) when the initial
distance 8 of the sphere from vertical wall is smaller than the critical touching distance dT; (b) when
the wall is slightly tilted with 8<6T. a sphere will fall straight down if 8>&7 in case (a) or (b). In case

(b), when 81<8<&:, a sphere will experience some wall attraction but will not migrate all the way to
the wall and will eventually fall straight down. In Newtonian liquids, a sphere dropped at a small
distance or no distance from the wall will migrate away from the wall (¢). (d) Ceramic sphere falling
in aqueous polyox solution. (e) Teflon sphere falling in aqueous glycerin.

6.1. Vertical wall

Sphere trajectories are shown in Fig. 6.2 for 1/4-in. steel spheres dropped in 1.5% polyox at
different initial distances from a vertical wall ranging from 2 to 12 mm. These trajectories are
approximately straight lines suggesting that the ratio of the fall velocity to the lateral migration
velocity is constant. The free fall terminal velocity was reached at a distance of about 5 cm from the
release point by those particles that had not touched the wall. Spheres starting at smaller initial
distances & migrate to the wall more rapidly. For larger initial distances, attraction between the

falling sphere and the wall could not be observed in the time it takes for a particle to fall to the
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bottom of the channel. & =3 is an effective critical distance such that when & > 8; the sphere is
apparently not attracted by the wall. Fig. 6.3(a) and (b)vplots the vertical distance traveled by the
sphere before touching the wall as a function of the initial distance between the sphere and the wall
for 1.25% and 1.5% polyox solutions. The open circles in Fig. 6.3 are for values of £; longer than
our channel which were extrapolated from particle trajectories. The 1.25% solution, which has a

higher elastic stress ratio N, /7 than the 1.5% solution (see Table 1), also has a larger 3.

It is of interest to compare the critical values of 8 for a plane wall with a sphere and for two
spheres launched side-by-side. The attracting or repelling power of a wall is larger than that between
two spheres, because the wall can be visualized as a vertical array of touching spheres. Each sphere
in the array attracts or repells the free test sphere, but with a different power of interaction depending
on the variable distance between the spheres. So the interaction power of a wall is obtaiied by
integration of the interaction of each small part of it. Reasoning in this way we would think that a
wall could attract a free particle in a viscoelastic fluid at a much greater power than a single sphere
could do. In fact, because the wall would not move by interaction with the free particle, we should
actually define the critical touching distance (8;),,, in the case of wall-sphere interaction, as twice
of the distance between the sphere and the wall, i.e., the distance between the sphere and its image
with respect to the wali. Comparing (9,),, with (8,),, which is the critical touching distance for
falling spheres launched side-by-side, we see from Table 5 that (3;),,/(8;), =1~4 for all the
liquids that show attraction except STP. The falling velocity is slowest in STP so the lateral
migration velocity may also be too small to produce a noticable effect in channels as short as those
used in our experiments. In a Newtonian fluid, the wall will force the test particle move out further
than spheres settling side-by-side. In the experiments in which 1/4-in teflon spheres fall in a 50/50
glycerin/water solution, twice the distance between the sphere and the wall is ultimately 1.7 times

greater than the distance -between two spheres.
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Liquid-solid (1), (O1) s
Polyox 1.25% -- steel 8 26
Polyox 1.5% -- steel 5 24
S1 -- steel 17.5 24
S1 -- tungsten 15 20
S1 -- teflon S 6
STP -- steel 11 -
Xanthan -- teflon 6 6

Table 5. Comparison of critical values between wall-sphere and sphere-sphere interctions.
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Fig. 6.2. Distance between a falling sphere and a vertical wall in 1.5% polyox as a function of the
vertical distance of the spheres from the point of release.

360




2500

i %
¢, (mm)} ‘ %
r %
s o \
2000 |- %
[ %
i Z
i %
- %
1500 | \ 7
i %
[ Z
1 \ %e:
1000 |- w
! Z
y “
Z
[ Z
500 | Z
| L
0 1 et U PO TR T T
0 2 4 6 8 10 12 14
8 (mm)
(a)
2500
0
¢, (mm)i
3
2000 o\

-
(-]

1500 .. \
” /

;

D ANIRAARANAAARANANRAANNAANNNNANNNN

1000 |- /
[ /o
L A
500 i \
| N g
i —a &
Q.EJI_...’_.L M BT S —a
0 2 4 6 8 10 1 14
8(mm)
(b)
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separation distance 8 between the sphere and the wall: (a) 1.25% polyox solution, (b) 1.5% polyox
solution.
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6.2. Tilted wall

The case of inclined wall is more complex. The settling sphere can move toward the wall
initially and then fall away. In Fig. 6.4, we have plotted trajectories of a 1/4-in steel sphere falling
near a 1.5° tilted wall for different initial distances in a 1.5% aqueous polyox solution. We can
identify a first critical distance, critical touching distance 8., that separates the initial distances for
which spheres appear to eventually touch the wall from those for which they will not touch. As in
the case of attracting spheres, we were able to identify a second critical distance §.. When 8 <3,
the sphere will move toward the wall initially, but it may not reach the wall. When &> 8. no
attraction was observed. In Fig. 6.5, we have plotted 8§, and 8. as a function of the tilt angle for

1.25% polyox solution (Fig. 6.5(a)) and for 1.5% polyox solution (Fig. 6.5(b)). From this figure we

see that ; and §. decrease with increasing tilt angle.
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Table 6 lists critical touching distances &, and critical interaction distances &, for 1/4-in

spheres of different weights falling in various fluids. Sphércs falling near vertical and tilted walls in
STP or Carbopol are not attracted to the wall. STP has normal stresses but does not shear-thin.
Carbopol shear-thins but has no measurable normal stress. On the other hand, the wall attracts
spheres in the shear-thinning Xanthan, which also has no measurable normal stresses, but has much
longer memory than Carbopol. Sphere-wall interactions are strong in S1 and polyox solutions. We
do not yet understand the mechanisms that control lateral migration. Spheres with different weights
(Table 2) were dropped in S1. The results show that the effect of particle weight on 8T is the same

as in the case of side-by-side settling of spheres (cf. Table 4).

Liquid-solid 0 (degree) 8T (mm) 3¢ (mm)
Polyox 1.25% - steel 0 13 13
0.7 6 9
K] 4 7
8 3 7
2.1 3 7
24 1 7
2.8 1 5
3.5 0 5
] 0 5
Polyox 1.5% - steel 0 12 12
0.7 6 8
15 4 7
1.8 4 7
2.2 0 6
S1-steel 0 12 12
1 2 5
2 0 5
Si-tungsten 0 10 10
1 0 5
2 0 3
S1-teflon 0 3 3
STP-steel no detectable
attraction
Xanthan-teflon 0 3 3
1 2 3
2 2 3
Carbopol-tefion no aftraction

Tablle 6. Critical-touching and-interaction-distances in-different fluid-solid systems at different tilt
angles.
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6.3. Effects of sphere size and weight

These experiments were done later than the others and we used a fresh 1.5% aqueous polyox
solution as a test liquid. The graphs of viscosity and the dynamic moduli of this solution as

functions of shear rate or frequency are similar to those shown in Fig. 2.1 and Fig. 2.2. The

parameters, listed in Table 1, for this solution are as follows: 7, = 10.6 Pa.s, x =4.67, n =0.46,

ﬁ = 144 gm/s, y,, = 480 gm/s, c¢=23.0 cm/s, A, = 0.20, -%‘-?-=M = 4.52 5. The flow
parameters of the experiments are listed in Table 7.
Spheres | U (cmfs) ¥ (s1) R, W,
1/8-in tungsten 3.44 10.8 0.010 2.17
1/4-in steel 4.13 6.5 0.025 1.30
7/16-in ceramic 5.58 5.02 0.058 1.01
5/8-in aluininum 5.08 3.2 0.076 0.641
1/4-in teflon 0.17 0.27 0.001 - 0.054
1/4-in aluminum 0.39 0.61 0.002 0.123
1/4-in tungsten 14.6 23 0.087 4.61

Table 7. Measured values of the fall velocity and related quantities in the 1.5% aqueous polyox.

Fig. 6.6 shows the interactions between falling spheres and a vertical wall in terms of the
vertical distance traveled by the sphere before touching the wall as a function of the initial distance
between the sphere and the wall. It can be seen from Fig. 6.6(a) that the particle weight does not
have an obvious effect on attraction between a sphere and a vertical wall. All the tested spheres of
the same size but different weight have about same critical distances. For a given initial separation
distance & each of the four different spheres travels approximately the same distance in the vertical
direction before touching the wall; £,(8) does not depend strongly on weight. However, the size of
the sphere has an effect on the attraction. This effect is shown in Fig. 6.6(b). The larger the sphere,
the shorter it travels in the vertical direction before touching the wall, and the greater the critical

distance. Fig. 6.7 plots all data together in the normalized form.
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Fig. 6.6. Interactions between falling spheres and a vertical wall in terms of the vertical distance £;

traveled by the sphere before touching the wall as a function of the initial distance 5 between the
sphere and the wall in the 1.5% aqueous polyox solution: (a) effect of particle weight; (b) effect of
particle size.
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Fig. 6.7. Normalized form of Fig. 6.6.

Interactions between a falling sphere and a wall are expressed in terms of the critical
touching distances as a function of the tilt angle in Fig. 6.8. The critical touching distance exists
only when the tilt angle of the wall is less than about 2°. The critical angles for most sphcrcs: tested
were between 1.5° and 2° except for 1/4-in tungsten sphere for which the critical angle was 1°. Most
of the spheres tested have similar critical interaction distances in this case, but the critical distances
of the 1/4-in tungsten sphere from a tilted wall are much smaller than the others. The experimental
results are also summarized in Table 8. The effect of particle size on sphere-wall attraction can a!so
be seen in the case when the wall is tilted through an angle of 1°. Bigger spheres migrate to the wall

more rapidly.
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Fig. 6.8. Critical distances vs tilt angle of the wall in a 1.5% aqueous polyox. The results given here
are similar to those given in Fig. 6.5.
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Sphere 6 (degree) | &t (mm) | 8¢ (mm) & (mm) £y (cm)
1/4-in steel 0 kX] 33 5 3.9
5 2.6
10 49.5
13 74.9
15 132
16 175
17 150
18 218
19 191
21 259
1/4-in tungsten 0 33 33 - 21.9
10 61
15 140
20 272
1/4-in aluminum 0 33 33 5 21.1
10 45.7
15 91.4
20 165
25 284
1/4-in teflon 0 KX] 3 ] 25.4
10 52.1
15 102
20 178
25 318
1/8-in tungsten 0 28 28 5 29
10 76.2
10 T2.4
15 145
20 259
25 381
7/16-in ceramic 0 34 34 5 2.9
10 35.6
15 63.5
20 109
25 196
30 312
5/8-in aluminum 0 37 37 5 20.3
10 33
15 58.4
20 104
25 188
30 315
1/4-in steel 0.5 13 24
1/4-in tungsten 0.5 3 10
1/4-in aluminum 0.5 12 26
1/4-in teflon 0.5 11 24
1/8-in tungsten 0.5 6 24
1/4-in steel 1 6 23 5 71.1
1/4-in tungsten 1 0 10
1/4-in aluminum 1 6 23 5 137
1/4-in teflon 1 5 23
1/8-in tungsten 1 2 18
7/16-in ceramic 1 11 22 5 35.6
5/8-in aluminum 1 13 22 5 29
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1/4-in steel 1.5 0 25
1/4-in tungsten 1.5 0 10
1/4-in aluminum 1.5 2 23
1/4-in teflon 1.5 1 22
1/8-in tungsten 1.5 1 20
1/4-in steel 2 0 18
1/4-in aluminum 2 1 22
1/4-in teflon 2 0 20
1/8-in tungsten 2 0 19

Table 8. Summary of experimental results in the 1.5% aqueous polyox.
7. Discussions and conclusions

We dropped two spheres side-by-side in a sedimentation channel filled with different liquids.
In viscoelastic liquids, the spheres will attract when the initial separation distance is small; the line
between centers will turn as they attract, until the spheres touch and chain with the line of centers
vertical. Close side-by-side settling at slow speeds is unstable in viscoelastic fluids and the
dynamics creates stable vertical chains. If the initial side-by-side distance between spheres is large
enough, the spheres do not appear to interact, whether or not they are dropped in Newtonian or

viscoelastic liquids.

In Newtonian liquids, two spheres launched side-by-side, which are initially separated by a
small gap or no gap, will separate. Side-by-side sedimentation is relatively stable or only weakly

unstable and spheres will never chain in Newtonian liquids.

Two heavy spheres falling faster than the shear wave speed in a viscoelastic fluid will
disperse as in a Newtonian fluid. The phenomenon is the same one that causes long bodies that fall
straight down at slow speeds to turn 90° into broadside-cross-the-stream fall at supercritical speeds

when inertia dominates viscoelasticity.

In the case of attracting spheres, there are two critical values of the initial distances between
spheres. For small values of initial distance below the first critical one, the two spheres will come
together in a chain with line of centers vertical. If the initial distance between spheres is larger than
the first critical value, the spheres would not come together, and if smaller than the second critical

value they will move toward one another, but eventually separate.
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Spheres that are initially close to a vertical wall or to a wall tilted slightly in such a way that
gravity pulls the sphere away from the wall, will attract falling spheres in a viscoelastic liquid and
will repel falling spheres in Newtonian and inelastic liquids. There is a critical separation distance
for attraction to a vertical and two critical separation distances, the same ones as for two falling
spheres, for the tilted wall. If the angle of tilt is too great (say, greater than 5°) the sphere will

always fall away from the wall.

Attraction between spheres and between a sphere and a wall does not depend strongly on the
weight or fall velocity of the sphere, but there appears to be a noticeable effect of size, with stronger
attractions when the sphere size is larger in the sphere-wall experiments. The effect of changing

weight is roughly to change the lateral velocity in proportion to the fall velocity.

Our experiments show that different mechanisms promote aggregation in viscoelastic liquids;
more than one property is involved. A possible generalization of our observations is *hat large
values of the elastic stress ratio N, /7 are sufficient but not necessary for strong aggregation. All of
the active viscoelastic liquids (polyox solutions and S1), except 0.3% aqueous Xanthan, have large
values of N,/7 and all the liquids except Xanthan, including STP and Carbopol, are nicely ordered
with respect to aggregation behavior by the zero shear ccefficient of the elastic stress ratio. The
Xanthan solution has no measurable normal stresses and the zero shear coefficient of elastic stress
ratio, and the ratio itself are too small to measure, but it has strong properties of aggregation.
Xanthan shear-thins strongly and has a large storage modulus. This leads us to believe that shear-
thinning plus memory, which creates corridors of reduced viscosity, is also sufficient but not
necessary for strong aggregation. In either case the elasticity of the fluid is important. Aggregation
seems not to occur in Newtonian fluids cr in inelastic fluids with short memory, as in our Carbopol

solution or in Boger type fluids with small values of N, /7.
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ABSTRACT

This paper describes our work in modeling concentrated liquid-solids flows
in pipes. COMMIX-M, a three-dimensional transient and steady-state computer
program developed at Argonne National Laboratory, was used to compute ve-
locities and concentrations. Based on our previous analyses, some concentrated
liquid-solids suspension flows display shear-thinning rather than Newtonian phe-
nomena. Therefore, we developed a two-phase non-Newtionian power-law model
that includes the effect of solids concentration on solids viscosity. With this new
two-phase power-law solids-viscosity model, and with constitutive relationships for
interfacial drag, virtual mass effect, shear lift force, and solids partial-slip bound-
ary condition at the pipe walls, COMMIX-M is capable of analyzing concentrated
three-dimensional liquid-solids flows.

1. Introduction

The behavior of concentrated two-phase liquid-solids suspension flows has
been a matter of interest for many years because the processing and transport of
these flows are important operations in many industrial applications. This has
called attention to the need for a fundamental understanding of the physical phe-
nomena for macroscopic computer simulations of these flows. However, there is as
yet no comprehensive theory that accounts for all of the effects in concentrated sus-

pensions, and few computations have been performed for fully three-dimensional
two-phase liquid-solids flow.

375



Argonne National Laboratory (ANL) has initiated research on concentrated
two-phase suspension flows (Sekar et al., 1988; Lyczkowski and Wang, 1992; Ding
et al., 1992: 1993). A coordinated methodology that involves theory (development
of field and constitutive equations), experiinentation, and computer modeling is
being pursued. ANL anticipates that synergism will be the result when a conscious
effort is made to coordinate the extension of this research program, which involves

complex and interdisciplinary phenomena that require advances in both a theory
and experimentation.

Earlier efforts to study concentrated suspension flow have been reviewed in
our previous papers (Ding et al., 1992; 1993). The philosophy of ANL is to use a
self-consistent methodology to link micro- and macro-fluid mechanical phenomena.
This philosophy will ensure the internal consistency of the design and instrumen-
tation of the experiments, the data acquisition and its processing for use in the
development of field and constitutive equations, and computer code validation.

We use the COMMIX-M computer code to analyze the velocities and con-
centrations of concentrated liquid-solids flows in pipes. COMMIX-M, a three-
dimensional transient and steady-state computer program developed at ANL, is
capable of analyzing multiphase flow and heat transfer and uses the separated-
phases model wherein each phase has its own mass and momentum equations.
For a brief description of the COMMIX-M computer code, refer to our previous
paper (Ding et al., 1992) and references therein. The COMMIX-M fluid velocities
computed with the new two-phase power-law solids viscosity model, together with
constitutive relationships for interfacial drag, virtual mass and shear lift forces, and
solids partial-slip boundary conditions at the pipe walls, are compared with data
obtained by Sinton and Chow (1991) with three-dimensional time-of-flight nuclear
magnetic resonance (NMR) imaging techniques. Comparisons are presented in
this paper for average solids volume fractions of 21%, 40%, and 52%.

2. Hydrodynamic models

A two-phase, three-dimensional, transient hydrodynamic approach was used
to model concentrated liquid-solids flows in pipes. All of the solid particles with
identical densities and diameters form a continuum, a particulate phase. Each
phase has its own mass and momentum equations. These equations, along with
constitutive relations for interfacial drag, were presented in our previous paper
(Ding et al., 1992) and are in Table 1 as Eqs. T1-T5 and T8.

In the two-phase momentum equations (Eqs. T4-T8), the shear lift force per
unit volume Fj, was extended from Saffman’s shear lift force expression (Saffman,
1965; 1968) for a single particle in a simple shear flow to a collection of particles
in a general flow field. The expression for Fi is given by Eq. T6 in Table. 1.
When a particle accelerates with respect to the fluid, a virtual mass force that is
proportional to the relative acceleration is developed on the particle. The virtual
mass force per unit volume Fy for a collection of particles is given by Eq. T7
in Table. 1. Detailed derivations for these two forces were given by Ding et al.
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(1993).

The shear lift and virtual mass forces, represented by Eq. T6 and T7, respec-
tively, were used to perform all the calculations in this paper. These two forces
were found to be a secondary effect on the computed fluid velocities and fluid
volume fractions because the relative velocity of two phases is small because the
Reynolds number is low. Neglect of these two terms was found to produce results
that agreed somewhat less with experimental data (Ding et al., 1993). Therefore,
it is concluded that these two forces are probably generally necessary to properly
describe the solids concentration and velocity fields.

The liquid phase is assumed to be a Newtonian fluid. For isothermal and lam-
inar flow, the liquid viscosity u; is constant. For the solids phase, the model for
the effective shear viscosity pu, in two-phase flow is of major concern in this paper.
Based on our previous analyses (Ding et al., 1993) and experimental rheological
findings (see, for example, Sinton and Chow 1991; Sekar et al, 1988; Lyczkowski
and Wang, 1992; Wildman et al; 1992), some concentrated liquid-solids suspen-
sion flows display shear-thinning rather than Newtonian phenomena. Such shear-
thinning phenomena differ from shear-thickening behavior observed in some rapid
gas-solids flow systems, for which a theoretically obtained expression for solids
viscosity using a kinetic theory of granular approach was found to be quite suc-
cessful (Ding and Gidaspow, 1990; Ding and Lyczkowski 1992; Sinclair and Jack-
son 1989; Pita and Sundaresan, 1991). In rapid gas-solids flow, particle-particle
collisions are dominant for momentum transfer, i.e., the duration of two particle
contacts is very short compared with a hydrodynamic time scale. Therefore, the
kinetic-theory method can be used for rapid gas-solids flow and the solids viscosity
obtained is proportional to the shear rate. In slow liquid-solids flows, such as we
are studying, the duration of contact between two particles and the fluid lubrica-
tion between two particles may play important roles in the rheology. Under such
conditions, the kinetic-theory approach may not be applied. When the shear rate
of a liquid-solids mixture becomes high enough, the shear-thickening phenomena
appear, as shown for example, in the experiments of Sekar et al. (1988).

For modeling the flow of liquid-solids in pipes, we implemented a modified two-
phase non-Newtonian power-law model for solids viscosity to account for a resting
(static) mixture viscosity. The relative mixture viscosity 7 can be expressed as

€Esps + € . n~t
n= SR s mi O (1)

where m, ), and n are parameters. Eq. 1 generalizes the model used by Ly-
czkowski and Wang (1992). We expect that parameters m, A, and n depend on
solids concentration, ratio of particle size to pipe diameter, and density ratio of
fluid to solids. From Sinton and Chow’s (1991) rheological data, as shown in
Fig. 1, the solids concentration affects the rheological properties. At lower solids
volume fractions, the flow is Newtonian. As the solids volume fraction increases,
shear-thinning behavior becomes significant. For simplicity, we assumed the those
parameters in Eq. 1 are a function of solids volume fraction only and used second
order polynomial functions to correlate these parameters with one another based

377



on Sinton and Chow’s (1991) measured rheological data. We obtained

m = m(e;) = 220.7 — 1636.4¢, + 3024.2¢ (2a)
n = n(e,) = 1.088 — 0.378¢, — 0.194¢> (2b)
A = A(e,) = 1026.3 — 7461 .4¢, + 12257.4¢ (2¢)

Equations 1 and 2 are plotted in Fig. 1, together with Sinton and Chow’s (1991)
data.

To solve the governing equations for fluid-solids flow given in Table 1, we
need appropriate initial and boundary conditions for the two-phase velocities,
fluid-phase pressure, and volume fraction. The initial conditions depend upon
the problem under investigation. The inlet conditions are usually given. The
boundary conditions at planes of symmetry demand zero normal gradient of all
variables. The no-slip condition was used for the fluid-phase velocity at pipe walls.
but this condition cannot always be applied to the solids phase because particles
may slip along the wall. The mean solids slip velocity at a solid wall was proposed
by Soo (1969) to be

0
'U2‘w = —'Ap 22 |Wa (3)
61,‘1

where the z; direction is normal to the wall and the z, direction is tangential to
the wall. The slip parameter ), is taken to be the mean distance between particles.
Here we used the expression from the work of Ding and Lyczkowski (1992) for A,

given by
N = V3r d,
P77 24 €90

(4)
where

€ \-
90=(1~g¢5) 1928, (5)

The new two-phase power-law solids-viscosity model, together with constitu-
tive relationships for interfacial drag, virtual mass and shear lift forces, given in
Table 1, Eqs. T6-T8, and solids partial-slip boundary condition at the pipe walls,
given in Eq. 3, were used to model liquid-solids flow in pipes.

3. Comparison with experimental data

We have analyzed some of the steady-state, fully developed, and isothermal
carrier-fluid velocity and solids concentration data of Altobelli et al. (1991) and
Sinton and Chow (1991) which were obtained using three-dimensional time-of-
flight nuclear magnetic resonance (NMR) imaging techniques (Ding et al., 1992;
1993). NMR imaging is a powerful technique to nonintrusively determine three-
dimensional time-dependent velocity and concentration fields to assist develop-
ment and validation of the constitutive models and the computer programs that
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describe concentrated suspensions. These experiments were carefully performed
and probably represent the best available data of their kind in the open literature.
In this paper, for the purpose of studying shear-thinning phenomena of neutrally
buoyant dense . ispensions in vertical pipes, we used the models presented in the
previous section to analyze the data of Sinton and Chow (1991).

The Sinton and Chow (1991) experiments consisted of a suspension of neu-
trally buoyant, poly (methylmetkacrylate) spheres (Lucite 47G) with a median
volume diameter of 0.131 mm, and a standard deviation of 0.051 mm, flowing in
vertical pipes with diameters of 15.2, 25.4, and 50.8 mm and a 500-mm entrance
length. Intensity and velocity data were collected over a range of 21 to 52 vol.%
plastic spheres and Reynolds numbers ranging from 0.005 to 4.0. The carrier fluid
was a mixture of polyether oil (Uncon oil, 75-H-90,000), water and sodium iodide
to increase the fluid density to that of the solids having a density of 1190 kg/m?®.

NMR data were taken with a vertically oriented 4.7 T superconducting

solenoid by techniques developed by Kose et al. (1985) and Majors et al. (1989).
A positive-displacement Moyno pump was used.

Three runs were analyzed: (1) 21 vol.% solids, an average fluid velocity of
22.7 cm/s, and pipe diameter of 2.54 cm; (2) 40 vol.% solids, an average fluid
velocity of 17.6 cm/s, and pipe diameter of 1.52 cm; and (3) 52 vol.% solids, an
average fluid velocity of 17.5 cm/s, and pipe diameter of 1.52 cm. The pipes were
modeled in two dimensions, assuming azimuthal symmetry. A total of 20 nodes
were used in the radial direction and 25 in the axial direction.

Fluid velocities computed with both the current model and our Krieger’s
Newtonian-type solids-viscosity model were compared with the measured data. In
our previous analyses (Ding et al 1992; 1993), the solids viscosity u, was obtained
from Krieger’s (1972) empirical expression for the relative viscosity given by

€shhs T Efp s €s \—1.82

== =(1- — . 6)

This expression was used by Phillips et al. (1992) in their analyses of concentrated
y p

suspension data. In Eq. 6, the solids viscosity is determined by the solids volume
fraction only.

For the case of 21 vol.% solids, as shown in Fig. 1, the relative viscosity is
nearly independent of shear rate. Hence, the computed fluid velocities with the
new model and Krieger’s model for solids viscosity are very close, as shown in Fig.
2. Reasonably good agreement exists between the model predictions and the data.
This case exhibited basically Newtonian behavior.

Figure 3 shows the two model predictions and the NMR measured data for
the case of 40 vol.% solids. Except near the pipe center, both models agree with
the data very well. Because the rheological experiments show a slightly shear-

thinning behavior, the new two-phase power-law model gives better agreement
with the data near the pipe center.
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As can be seen ia Figs. 1 and 4, when the solids volume fraction reaches
52%, the shear-thinning phenomena become very prominent. For the case of 52
vol.%, the new two-phase power-law model agrees much better than the Krieger
(1972) Newtonian-type model near the pipe center. The data clearly exhibit shear-
thinning behavior with a blunted velocity profile. Therefore, the non-Newtonian

shear-thinning model is strongly recommended for suspension flows at high solids
volume fractions.

Our computer model predictions for these three cases did not show significant
nonuniform distributions of solids in the radial direction. Slightly higher solids
volume fractions were found in computational nodes away from the pipe walls.
This results from particle migration toward the pipe center and is due to the shear
lift effect at the wall. It should be also noted that these experiments did not report
significant particle migration nor solids concentration distributions.

4. Conclusions

Based upon the agreement between the COMMIX-M computer code predic-
tions and the experimental data, the models proposed in this paper appear to
be reasonable and promising. Thus far, no adjustments in the literature model
have been made. The parameters in the near empirical shear-thinning model are
functions of the physical properties of the fluid and solids concentration. Rheo-
logical experiments can be performed to obtained these parameters as input to
the computer model and to predict design of dense-suspension flow systems. The
rheological properties of suspension flow should be further examined and stud-
jed to develop a shear-thinning model that not only includes the effect of solids
concentration but also particle size and shape, density ratio of fluid to solids,
and carrier fluid velocity and/or velocity gradients. Because some investigations
have reported particle migration phenomena (Phillips et al., 1992; and references
therein), particle migration mechanisms should also be studied.

Further improvements of the model should increase our confidence in predict-
ing design and processing of concentrated suspension flow systems. Such improve-
ments will be from additional comparisons with a wider data base of experimental
measurements and COMMIX-M analyses, which will also serve to more critically
evaluate the models.
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Nomenclature
Cq Drag coeflicient
d, Particle diameter
Fi Shear lift force per unit volume
Fv Virtual mass force per unit volume
g Acceleration due to gravity
9o Radial distribution function

Unit tensor

Parameter defined in Eq. 1
Parameter defined in Eq. 1
Pressure

Deformation rate tensor
Time

Fluid phase velocity
Solids phase velocity

<c w3 g

Greek letters

I¢] Two-phase drag force coeflicient
€ Volume fraction

n Relative mixture viscosity

A Parameter defined in Eq. 1

A

p Mean distance between particles
I Viscosity
P Density
7 Stress tensor
Subscripts
f Fluid phase
s Solids phase
w Wall
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Table 1. GOVERNING EQUATIONS FOR FLUID-SOLIDS SUSPENSION FLOW

CONTINUITY EQUATIONS
Fluid Phase

;]
57(¢p1) + 7 - (epyu) = 0
Solids Phase 9
52(‘0!’11) + V- (€ppv) =0
€g+e =1

MOMENTUM EQUATIONS
Fluid Phase

8 _
—(egpyu) + V- (egppuu) = —€; Vpy + €418+ V - Te +B(v —u) -F - F,,
at

where -
Tr = 2¢puy S¢
= 1 l =
Se¢ = 5[vu+(vu)) - g v ul
Solids Phase
a8 =
a(hppv) +V- (fuPpVV) = —€, Vprteppg+ V- Ts +,B(u - V) +Fi+F,
where

Ts = 2€n#a§s

= 1 1 =

S, = 5 [vv+(vv)] - vI
Shear lift force F, o

F = 6.176,(p/pf)1/2(u —v) - S¢(25¢ : §f)—1/4/dp
Virtual mass force
P, =L, (0 _ Dy,
VIO T D
Fluid-solids drag coefficeints
For ¢4 < 0.8, (Ergun equation)

8= 1505_?“_1 + 1_758’.‘.‘&’;:_1'_l
€sd2 dp

For ¢; > 0.8, (Wen and Yu's empirical correlation)

_ 3 gaplu=v| o6
ﬂ* ZCchf ]

where 04
Cq= ﬁ;;[l +0.15Rep®®7|,  For Rep < 1000
Cy4=10.44, for Rep, > 1000

—vid
REp: e;p;|u v‘_ﬁ
Hy
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Figure 1. Relative mixture viscosity as a function of shear rate, as calculated
by us and experimentally determined by Sinton and Chow (1991)
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Figure 2. NMR fluid velocity data predicted by COMMIX-M and determined
experimentally by Sinton and Chow (1991) for the case of 21 vol.% solids
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Figure 3. NMR fluid velocity data presented by COMMIX-M and determined
experimentally by Sinton and Chow (1991) for the case of 40 vol.% solids
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Figure 4. NMR fluid velocity data presented by COMMIX-M and determined
experimentally by Sinton and Chow (1991) for the case of 52 vol.% solids
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