

ANL/CHM/CP-- 81872
CONF-940523--5

**Optical parametric Generation and Amplification of intense tunable femtosecond
Pulses by a regeneratively-amplified Ti:Sapphire Laser.**

Scott R. Greenfield and Michael R. Wasielewski
Chemistry Division, Argonne National Laboratory, Argonne, IL 60439
(708) 252-3541

The design for a optical parametric generator - optical parametric amplifier using KTP pumped by a regeneratively-amplified Ti:Sapphire laser is given. The frequency-doubled, microjoule-energy femtosecond pulses are tunable from 550 to 840 nm.

The submitted manuscript has been authored
by a contractor of the U. S. Government
under contract No. W-31-109-ENG-38.
Accordingly, the U. S. Government retains a
nonexclusive, royalty-free license to publish
or reproduce the published form of this
contribution, or allow others to do so, for
U. S. Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

ds

Optical Parametric Generation and Amplification of intense tunable femtosecond Pulses by a regeneratively-amplified Ti:Sapphire Laser.

Scott R. Greenfield and Michael R. Wasielewski

Chemistry Division, Argonne National Laboratory, Argonne, IL 60439

(708) 252-3541

There has been a recent surge in the development of optical parametric oscillators partially due improvements in crystals (e.g., LBO and BBO) and laser pump sources (Ti:Sapphire). There has been comparatively little work done on optical parametric generator-optical parametric amplifier (OPG-OPA) systems, which have the potential to provide the intense (microjoule) pulses that are necessary for many experiments. Those OPG-OPA systems that have been built are based on 10 Hz pump lasers. Several have been built that operate in the ps^{1, 2} and fs³⁻⁵ regimes. The advent of regeneratively-amplified Ti:Sapphire lasers⁶ has provided a fs source with enough energy to pump an OPG-OPA at 1 kHz.

The choice of the nonlinear crystal depends on many factors, including the ability to phase-match over the desired tuning range, the size of the nonlinearity (d_{eff}), the group velocity mismatch (GVM) between the signal (or idler) and the pump, and the damage threshold.

Given a near-IR fs pump, KTP is superior to both LBO and BBO. Type II phase-matching in KTP is used with an $o \Rightarrow e + o$ (pump \Rightarrow signal + idler) polarization scheme. The beams propagate in the xz plane; i.e., $\phi = 0^\circ$. Wavelength tuning is achieved by varying the angle θ between the pump wavevector and the z -axis of the crystal. The phase matching curves for KTP pumped at 840 and 775 nm are shown in Fig. 1. The Sellmeier coefficients of Kato⁷ were used to satisfy the phase-matching condition $n_p\omega_p - n_s\omega_s - n_i\omega_i = 0$. Other Type II phase-matching schemes exist for KTP; however, none of the others have a wide tuning

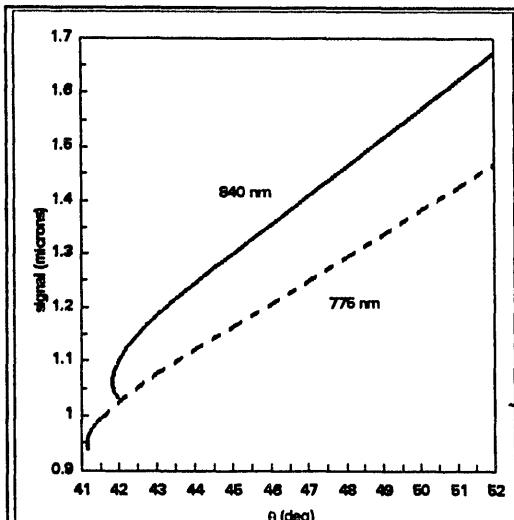


Fig. 1. Phase-matching curves for KTP (Type II, $o \Rightarrow e + o$) pumped at 775 and 840 nm.

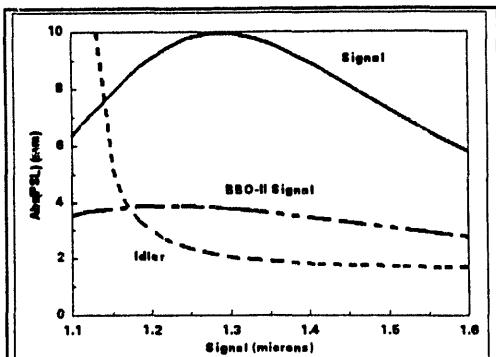


Fig. 2. The absolute value of the pulse-splitting lengths for the signal and idler in KTP pumped at 840 nm by 200 fs pulses. The PSL for the signal in Type II BBO is shown for comparison.

positive in this wavelength range, while the idler's is negative. The signal PSL for BBO using Type II phasing (also pumped at 840 nm) is shown for comparison. The PSL for KTP pumped at 775 nm was also calculated. For this wavelength, the *minimum* PSL for the signal within the tuning range is 12 mm (GVM = 17 fs/mm), and at $\lambda_s = 1.25 \mu\text{m}$, the pump and the signal travel at the same group velocity.

The gain of the parametric process with perfect phase matching for the limit of high gain is

$$G_0 = 0.25 \exp(2\Gamma_0 L) \quad (1)$$

where

$$\Gamma_0 = 2d_{\text{eff}} \sqrt{\frac{\omega_s \omega_i \Phi}{\epsilon_0 n_s n_i n_p c^3}} \quad (2)$$

and L is the length of the crystal and Φ is the pump intensity. The effects of GVM and pump depletion are not included here. We define a modified figure of merit,

$$FOM_j = \frac{l_j d_{\text{eff}}}{\sqrt{n_s n_i n_p}}, \quad j = s, i \quad (3)$$

that is useful for comparing the effectiveness of various crystals by taking into account the pulse-splitting length, which limits the effective interaction length of the crystal. A comparison of KTP and BBO pumped at 840 nm shows that the modified figure of merit

range with a near-IR pump wavelength.

Perhaps the most important factor in determining the optimal crystal for the OPG-OPA when using femtosecond pulses is the GVM, which is given by $1/v_j - 1/v_p$, where j refers to the signal or the idler. The GVM for the signal in KTP is ≈ 25 fs/mm with a 840 nm pump. A useful way of viewing the GVM is the pulse-splitting length⁵, l , which is given by τ_p/GVM , where τ_p is the pulse-length of the pump. The pulse-splitting lengths for both the signal and the idler for KTP pumped at 840 nm are shown in Fig. 2. The pulse-splitting length (PSL) of the signal is

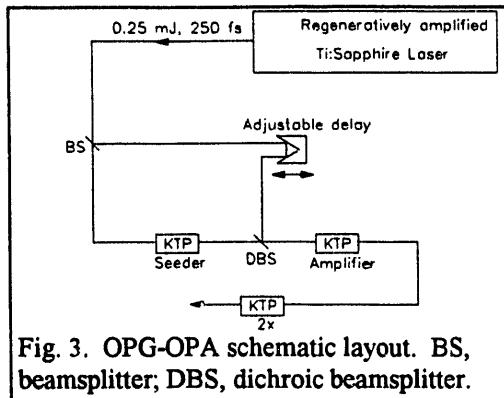


Fig. 3. OPG-OPA schematic layout. BS, beam splitter; DBS, dichroic beam splitter.

for the signal for KTP is better by at least a factor of three in the wavelength range of interest, corresponding to a factor of 20 greater gain.

The design for the OPG-OPA is shown in Fig. 3. The $250 \mu\text{J}$, 250 fs output of the regeneratively amplified Ti:Sapphire laser is beamsplit to provide a separate pump for both the seeder (OPG) and amplifier (OPA) stages. An adjustable delay for the pump of the amplifier

crystal allows temporal overlap of that pump pulse with the signal generated in the first KTP crystal. The KTP crystals are $3 \times 3 \times 6$ mm, cut at $\phi = 0^\circ$, $\theta = 46^\circ$. Since the crystal length is below the PSL, little or no temporal broadening is anticipated. The output of the OPG-OPA is focused into a KTP doubling crystal to provide microjoules of energy from 550 nm to the wavelength of the pump.

We have designed a simple system to provide intense femtosecond pulses in the visible part of the spectrum using a regeneratively-amplified Ti:Sapphire laser as a pump source. This extends the operating wavelength range of fs solid state systems into a extremely important region of the spectrum that has been previously readily accessible only with dyes. This system should provide superior performance to kHz amplified dye laser systems.

(This work was supported by the Division of Advanced Energy Projects, Office of Basic Energy Sciences of the United States Department of Energy under contract W-31-109-Eng-38. This research was supported in part by an appointment to the Distinguished Postdoctoral Research Program sponsored by the U.S. Department of Energy, Office of Science Education and Technical Information, and administered by the Oak Ridge Institute for Science and Education.)

References

1. H. Vanherzele, *Appl. Opt.* **29**, 2246 (1990).
2. J. Y. Zhang, J. Y. Huang, Y. R. Shen and C. Chen, *J. Opt. Soc. Am. B* **10**, 1758 (1993).
3. W. Joosen, H. J. Bakker, L. D. Noordam, H. G. Muller and H. B. v. L. v. d. Heuvell, *J. Opt. Soc. Am. B* **8**, 2087 (1991).
4. W. Joosen, P. Agostini, G. Petite, J. P. Chambaret and A. Antonetti, *Opt. Lett.* **17**, 133 (1992).
5. R. Danielius, A. Piskarskas, A. Stabinis, G. P. Banfi, P. D. Trapani and R. Righini, *J. Opt. Soc. Am. B* **10**, 2222 (1993).
6. F. Salin, J. Squire, G. Mourou and G. Vaillancourt, *Opt. Lett.* **16**, 1964 (1991).
7. K. Kato, *IEEE J. Quantum Electron.* **QE-27**, 1137 (1991).

DATA

תְּמִימָנָה

1919年
九月
廿四

