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Charles David Pibel

Abstract

The room temperature rate constants for quenching of the
fluorescence of H,, HD, and D, B I, by ‘He have been measured
as a function of the initially excited rotational and
vibrational level of the hydrogen molecule, and the room
temperature rate constants for molecular angular momentum
reorientation of H,, HD and D, (B 'L, v’=0, J'=1, M,.=0) in
collisions with He, Ne, Ar and H,(X ') have also been
measured.

The effective quenching cross sections with ‘He increase
with increasing vibrational energy from about 1 A? up to a
maximum of about 6 A?. The effective cross sections for D, (B,
v‘'=0) were independent of the rotational level excited for 0
< J' £ 7 ,and the cross sections for (v’'=0,J'=0) were about
80% of the values for (v’=0,J’>0) for all three isotopes
studied. The vibrational state dependence of the quenching
cross sections fits a vibrationally adiabatic model of the
quenching process. From the vibrational state dependence of
the quenching cross section, the barrier height for the
quenching reaction is found to be 250 = 40 cm, aﬁd the
difference in the H-H stretching frequencies between H, (B) and

the H,-He complex at the barrier to reaction is 140 + 80 cm™.



Both values are substantially smaller than results from ab
initio calculations. The rotational state dependence of the
quenching cross sections suggests that quenching occurs with
H, rotating in a plane perpendicular to the relative velocity
vector, in qualitative agreement with the rotational
anisotropy of the H,(B)-He ab initio electronic potential
energy surface.

The effective cross sections for angular momentum
reorientation in collisions of H,, HD, D, with He and Ne were
found to be about 30 A’ and were nearly the same for each
isotope and with He and Ne as collision partners. The cross
sections for reorientation of HD and D, in collisions with Ar
were found to be 10.6 + 2.0 and 13.9 % 3.0 A?, respectively.
The smaller cross section is due to the dominant role played
by quenching of the electronic energy of molecular hydrogen in
collisions with Ar. The reorientation of D,(B) in collisions
with room temperature H,(X) occurs with a 7.6 * 3.4 A? cross
section. The small cross section for reorientation of the
angular momentum is again due to the dominance of quenching in
the collision dynamics.

Calculated cross sections using semiclassical and quantum
close coupled methods give cross sections for reorientation of
H,(B) and D,(B) in collisions with He that agree quantitatively
with experiment. The discrepancy between the calculated and
experimental cross sections for HD(B)-He are likely due to

rotational relaxation in HD contributing to the experimental



measurements.

Experiments carried out to study the products of the

reaction of D,(B) with D,(X) were unsuccessful due to the

lower-than-expected intensity of the wvacuum ultraviolet

excitation source.
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Chapter 1: Introduction

The hydrogen molecule has long been a favorite of
chemists because of its simplicity. Containing only two
electrons and two nuclei, it represents a situation where the
very highest quality theoretical methods may be brought to
bear with the fewest approximations. Usually, studied in its
ground electronic state, the research presented here examines
some of the chemistry of the hydrogen molecule in its first
excited electronic state, H,(B XIi).

The first research to be presented here, in Chapter 2,
will be the study of the reaction of B-state H,, HD and D, with
He, using the fluorescence quenching technique. This reaction
is of fundamental theoretical interest, since it is the
simplest example of the collisional transfer of molecular
electronic excitation into the translational motion of the
three constituent atoms. In addition, since the reactant
hydrogen 1is prepared 1in the B-state through optical
excitation, it is possible to study the dependence of the
reaction Cross sectioné on the initially prepared
rovibrational state of any of the three hydrogen isotopes.
Following a presentation of this data, some simple models are
presented to rationalize the observed quantum state and
isotopic dependence of the reaction cross sections, in terms
of features of the ab initio potential energy surface.

Chapter 3 discusses experiments that probe the dynamics

of nonreactive collisions of B-state H,, HD and D, with noble
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gas and ground electronic state hydrogen molecule collision
partners. Specifically, this chapter will present results
measuring the cross sections for the collisional angular
momentum reorientation of H,, HD and D, (B, v’'=0, j’'=1, my=0).
The reorientation was monitored by measuring the decrease in
the spatial anisotropy of the laser induced fluorescence with
increasing number of collisions. The reorientation is thought
to be due to elastic my.-changing collisions of the j’=l
molecules. The results of these experiments will be compared
with the results from other studies, and the cross sections
for excited hydrogen with the different collision partners
will be explained in terms of the magnitude of the rotational
anisotropy cof the H,(B)-M ( M = a noble gas or H,(X) )
interaction potential and the size of the competing reactive
processes.

Chapter 4 gives the results of simple semi-classical and
quantum close-coupled calculations, modeling the reorientation
experiments with He as a collision partner. The cross
sections obtained in the two sets of calculations, agree
guantitatively with the H, and D, measurements. The
disagreement between the calculated and experimental values
for the HD reorientation cross section is most likely due to
the contribution of rotational relaxation, j’=1—3j’=0, to the
decrease in the fluorescence anisotropy in the HD experiments.

In Chapter 5, a discussion 1is presented of some

unsuccessful experiments, designed to study the products from
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the reaction of H,(B) with H,(X). The products are thought to
be two H atoms and a ground state hydrogen molecule. The
experiments were to measure the Doppler spectra of the H atoms
produced to determine the predominant reaction pathways.
These experiments were unsuccessful due to the lower-than-
expected intensit§ of our vuv laser system.

The last chapter will conclude with some suggestions for
experiments for others who wish to carry on from where this

study leaves off.



Chapter 2: Reaction of Excited Hydrogen with He
2.1 Introduction

The simplest example of collisional transfer of molecular
electronic excitation to nuclear motion 1is provided by
collisions of B-state H, with He. This process can be probed
by observing the quenching of the H,(B !X,*) fluorescence by
He. This system is attractive theoretically because only four
electrons and t:hrée nuclei are involved. The energetics of
the process are such that at most three electronic potential
energy surfaces (pes) may be involved: H,(B,!X*)+He,
Hz(X,IZQ*)-ng, and H,(b,3X) +He. Consequently, the highest
quality ab initio and dynamical calculations may be done. The
process is also novel because of the large energies involved.
The 90,000 cm! of electronic energy of the B state is more
than enough energy to break the H-H bond in ground state H,
(36,100 cm?).

The earliest experiments showed that the gquenching of the
fluorescence of HD(B) by ‘He was facile, occurring with a
cross section characteristic of a curve crossing mechanism.!
The HD was excited with an Ar lamp into (v’=3,J’'=2), and the
quenching cross section with ‘He as the collision partner was
9.9 =+ 1.3 A2, The mechanism for the gquenching was not
established, though an interaction between the HD(B)+He and
the triplet HD+He surfaces was suggested.

Subsequent calculations of the interaction potentials

between H, and He did not provide an explanation for the
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observed quenching.?* Schaefer III, et al.? limited their
SCF-CI calculations to C,, geometries and only considered the
two lowest singlet states and the lowest triplet state.
Rémelt, et al.** carried out MRD-CI calculations for these and
several other excited electronic states in both C,, and C,
geometries.

Later calculations by Farantos, Theodorakopoulos, and
Nicolaides,® in an extension of the early MRD-CI work, found
an avoided crossing between the first two singlet electronic
states of H,-He for a C, geometry with the angle between the
H, bond and the line connecting the He with the H, center of
mass set at 45°. This avoided crossing of the H,(B)-He
surface with the H,(X)-He surface occurs at the bottom of a
deep well (12,000 cm?) in the upper surface. The bound
species has a large degree of ionic character and may be
represented as HeH' and H moieties.>® Entrance to the well is
preceded by a barrier. Farantos, et al. found that this
barrier was 1,900 cm! for their C, approach. Thus the
quenching of the H,(B) is thought to occur when the hydrogen
and He come together, form the complex, undergo a non-
adiabatic transition from the upper electronic surface to the
lower surface, and form either H,(X)+He or H+H+He products.
The formation of the complex is governed by the ability of the
reactants to come together with the correct geometry and
enough energy to overcome the barrier on the upper state

surface. The disposal of the = 90,000 cm! of energy into the



products is governed by the shape of the ground state pes.

The dependence of the quenching cross section on the
initial ro-vibrational state of the diatom should be governed
mostly by the effect of the rotational and vibrational
excitation on the ability ‘o overcome the barrier to complex
formation on the upper pes. The non-adiabatic transition
probabilities®® are large and most collisions that enter the
well should result in quenching regardless of the initial
state of the diatomic.

Since the first calculated barrier was 1,900 cm!, most
of the energy for crossing the barrier would have to come from
vibration for quenching to occur with cross sections as large
as those seen by Fink, et al.l. No quenching would be
possible for v’'=0. Later, two separate analytic fits to the
ab initio data by Farantos, Murrell and Carter!® and by Grimes,
Lester, Jr. and Dupuis,’® lowered the value of the barrier to
about 1,200 cm!. The most recent calculation by Perry and
Yarkony® pﬁts the barrier at only 520 cm!. For a barrier that
is this low, quenching should occur even for v’=0 at room
temperature. A schematic diagram of the potential surfaces
involved in the quenching is shown in Fig. 2-1.

The present experiments were carried out with the goals
of establishing the quenching mechanism:. and determining
quantitative and qualitative information about the H,(B)+He
interaction potential by studying the rotational and

vibrational state dependence of the quenching rate constants.



The experimental method used is straightforward. The
B-state of hydrogen is prepared by a one-photon absorption
from the ground state with light in the wvacuum ultraviolet

(vuv) region.-13

The rates for electronic energy transfer are
determined by measuring the decrease in the total
fluorescence, following one-photon absorption, while
increasing the pressure of He (fluorescence guenching
technique) . The availability of tunable wvuv laser sources
with the correct wavelength and the wide frequency spacing of
individual hydrogen transitions, make it easy to prepare
single ro-vibrational levels of B-state hydrogen.
2.2 Experimental

The room temperature (296 * 3 K) rates for the quenching
of hydrogen B — X fluorescence by ‘He were determined by
measuring the decrease in the laser-induced fluorescence
intensity with increasing pressure of *He gas. The apparatus
used is shown in Fig. 2-2. Tunable vacuum ultraviolazt (wvuv)
laser light, produced by third harmonic generation (THG) in Kr
or Xe, ! was passed through two fluorescence cells containing
a small pressure of H,, D, or HD to excite a single ro-
vibrational level of the B state. Helium was added to one of
the cells, and the ratio of the fluorescence intensities in
the two «cells was measured with two solar blind
photomultiplier tubes. The dependence of this intensity ratio
on the He pressure was used to determine the quenching rate

constants.
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The source of the ultraviolet light for THG was the
frequency-doubled output of a Nd:YAG pumped dye laser. The
second harmonic of a Nd:YAG laser (Quantel YG581C) was used to
pump a dye laser (Quantel TDL 50) with either a mixture of DCM
and LDS 698 laser dyes (Exciton) for generating vuv around 110
nm or pure DCM dye for generating vuv around 106 nm. The dye
laser output is 7 ns pulses at 10 Hz of about 40 mJ. The
visible output was then frequency doubled in a KDP "C" crystal
mounted in an autotracker (Inrad) to give tunable ultraviolet
light (5-10 mJ/pulse.) The final beam diameter was 5 mm with
a circular shape. The spatial intensity distribution was
never measured, but burns on photographic paper show a hot
spot on one edge. The ultraviolet was focused by a 15 cm £.1.
quartz lens, through a qQuartz window, into a Pyrex THG cell
containing either several hundred torr of Kr (Spectra Gases)
for generation of wvuv near 110 nm or 20-30 torr of Xe
{Matheson) for generation of vuv near 106 nm. Both the Kr and
Xe were 99.995% pure. The vuv generated at the focus, along
with the original uv, exited the THG cell through a 1/2"
diameter, 2 mm thick, vuv grade, polished LiF window
(Harshaw.) The diameter of the now divergent uv beam on the
exit window was 1-5 mm depending on the particular THG cell
used and the position of the focusing lens. The vuv bandwidth
was measured to be 1.0 cm!, larger than the 0.8 cm Dpppler
width of room temperature H, (B &« X) transitions. The

wavelength of the linearly polarized vuv was tuned over a
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B ¢« X transition by tuning the wavelength of the dye laser,
keeping the pressure of the THG gas constant. The divergent
output of the THG cell passed directly into the Pyrex
fluorescence cells. The average uv beam diameter in the first
cell (10 cm long) was 5 mm. After going through the first
cell, the beam then passed through a 1" diameter, 2 mm thick
LiF window into the second fluorescence cell (30 cm long),
where the average beam diameter was 1 cm. The LiF windows
were sealed to the Pyrex using either Torr Seirl epoxy (Varian)
or black wax (Apiezon.) All three cells were connected to a
diffusion-pumped, Pyrex gas manifold. The leak rates of the
two fluorescence cells were less than 10 mtorr/hr. The cells
were pumped out approximately every 10 minutes.

The vuv fluorescence from the hydrogen was measured using
two solar-blind photomultiplier tubes (EMR 542G-09 and EMR
542J-09) mounted perpendicular to the axis of the laser beam,
one on each cell. Polished, vuv grade LiF windows were sealed
to the cells in front of the two PMT's. The volume between
the LiF window and the PMT photocathode was flushed with Ar to
avoid any absorption of the vuv fluorescence by air. The MgF,
window material of the PMT's renders them insensitive to
scattered vuv laser light. Most of the fluorescence from the
hydrogen is red-shifted and is transmitted. The PMT'’s are
sensitive to scattered uv light which required baffling of the
PMT in the first cell. No baffle was required in the second

cell.
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The signals from the two PMT’s were amplified (Pacific
Instruments 2A50 video preamplifier), integrated and averaged
(SRS SR250 Gated Integrator/Boxcar Averager), digitized
(Metrabyte Dash 8 A-to-D converter), and finally stored in a
personal computer (Fountain PC/XT.) The personal computer was
also used to control the scanning of the dye laser. A
discussion of the computer programs used for data acquisition
is presented in Appendix 1.
Experiments were performed by placing equal pressures
(<1 torr ) of hydrogen in both fluorescence cells. Only a few
percent of the incident vuv is absorbed in the first cell.
The absorbance in the first cell was monitored by looking at
the ratio of the PMT responses over a hydrogen transition.
Too much absorbance in the first cell would cause this ratio
to change through the transition. The absorbing gas was added
pure, or in a mixture with ‘He, and the pressure was measured
with a 0-1 torr Baratron (MKS 390H.) The exact pressure used
was lict important, since eqgual pressures were used in each
cell, but the pressures of absorbing gas for different total
pressures were not allowed to vary by more than * 5%, and the
deviations were typically about 1%. The laser was scanned
over a B ¢« X transition and the fluorescence excitation
spectrum recorded. Typically, three spectra were recorded at
each pressure. Additional He was then added on top of the
base pressure already inside the first cell, and the final

pressure (100-70C torr) was measured with a calibrated
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Validyne variable reluctance pressure transducer, with an
accuracy of about one torr. Another series of spectra was
then recorded for the new He pressure. Then the two cells
were pumped out and the entire process repeated. The He
pressures were randomly seqguenced.

The normalized intensities were obtained by dividing the
integrated ercitation spectra taken in the first cell by those
in the second cell. The scatter in the normalized intensities
from different excitation spectra at the same pressure was
about 2%. A systematic decrease in the normalized intensities
of 5-10% over several hours was caused by the formation of
color centers in the LiF window separating the two cells. The
normalized intensities of the spectra taken without added He
provided a correction factor that was linear in time.

The H, used was 99.999% pure (Linde ultrahigh purity),
and the ‘He was also 99.999% pure (Matheson ultrahigh purity.)
The D, was 99.5% pure D, (Linde) with = 0.5% HD and H, and
trace amounts of air. The HD (MSD Isctopes) was about 98% HD
‘with about 2% H, and D, and trace amounts of air. The main
impurity in the H, and He was also air, at the ppm level. All
gases were used straight from the cylinders, and no further
attempts were made at purifying them. Impurities in the
isotopes of the hydrogen should not affect the measurements,
since only small pressures were used, and the same pressure
(within a few percent) was used in each fill of the cells.

Any H, impurity in the He was very small compared to the H,
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used in the experiments; the LIF spectra of 600 torr He showed
a peak with an intensity that was 1less than 1% of the
intensity for the amount of hydrogen typically used in the
experiments. Any HD or D, impurity should be even smaller.
There was no detectoble absorption of the vuv by the He.

Since the excitation light was linearly polarized, the
fluorescence should be spatially anisotropic.?!® This will
cause problems if the anisotropy changes as a function of He
pressure. Collisions with He atoms will change the initially
prepared M, distribution of H, molecules. This is a problem
with R(0) and R(1) excitation. The change in the fluorescence
anisotropy was observed by increasing the He pressure in both
cells and having the two PMT’'s inclined with respect to one
another by 90°. One PMT was kept roughly perpendicular to the
electric vector of the excitation laser. There 1is no
fluorescence anisotropy for P(1l) excitation since the J=0
wavefunction i1is spherically symmetric. The fluorescence
anisotropy decreases with 1ncreasing J'>0. No detectable
change in anisotropy was observed with P(2) or R(3) excitation
of D, (v’=0). Quenching measurements using R(0) and R(1) will
be inaccurate if no correction is made for the decrease in the
spatial anisotropy with increasing He pressure. No gquenching
cross sections using R(0) or R(1l) excitation are presented.
Measurements of reorientation cross sections are presented in

Chapter 3.
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2.3 Kinetics of Quenching
The kinetics of the quenching of the H, (B=X)

fluorescence are described by the following equations:

ke
H, nv = H,(B,m’) (2-1)
Kon !
H,(B,m’) + ‘He = H,(B,n) + ‘He (2-2)
Kn'n
ko'
H,(B,m) + ‘He — Products (2-3)
k"
H,(B,m) — H,(X) + hv. (2-4)

The first equation represents the laser excitation to a
specific ro-vibrational level (m’) of the B-state. The second
equation describes the removal of the initially excited state
by inelastic collisions, populating other ro-vibrational
levels (n) of the B-state. The third equation describes all
processes quenching the distribution of 1levels m’ and n
(denoted m) populated following excitation of m’ of the B
state, and the last equation describes the fluorescence of all
of the electronically excited states.

Quenching of the excited H, by ground state H, 1is

neglected. In most of the experiments, only a few mtorr of



14
hydrogen were used. Even in the experiments where a larger
pressure of H, was required, the states with high J’, the
contribution from self-quenching is only a few percent for a
self-quenching cross section of about 100 A?. This is larger
than both the measured experimental cross section of Fink,
Akins and Moore! and the cross section from the present work,
presented in Chapter 3.

The concentrations of the excited states are obtained by
making the steady state approximation and solving the rate
equations for Egns. (2-1)-(2-4). This gives a set of coupled
equations in the excited state concentrations, which may be
simplified by ignoring the ro-vibrational energy transfer.
The electronically excited levels are treated as a group.
With this approximation, the steady-state concentration of

H,(B) 1is
[Hy(B)] = k.[hv][H,)/(ko[He] + k¢), (2-5)
and the fluorescence intensity is given by
I o ke[H(B)], (2-6)
1/ = (1/I) {1 + (ky/k¢) [Hell}, (2-7)

where I, is the fluorescence intensity with no added He. A

plot of 1/I vs He pressure should be linear, and the ratio of
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the quenching rate to the fluorescence rate may be easily
determined from the slope and the intercept of this line.
Since k; is known, k, may be determined. The values of k; used
were the integrated Einstein A coefficients given by Allison
and Dalgarno.!” The k; were different for different v’ levels,
but the same k; was used for different rotational levels with
the same vibrational quantum number.'®

The simplifiéd model works in cases when the rates of ro-
vibrational relaxation are small compared to the quenching
rates or the change in quenching rate with ro-vibrational
state is small. The simple model will also work if the rates
for ro-vibrational relaxation are fast; then k, is for a
thermalized distribution of levels. If the different levels
quench at different rates, and the rates for internal energy
transfer are comparable to quenching, breakdown of the simple
model will appear as curvature in plots cf 1/I vs pressure
because the distribution of levels is changing as a function
of pressure. No unambiguous curvature was seen in the data.

The quenching rate constants may be changed to effective

cross sections using:
<<0>> = Ko/ (N <v>), (2-8)
where N is the number density of quenching gas and <v> is the

average center of mass speed, (8kT/mu)*, of a collision

between the excited hydrogen and the guencher.
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2.4 Results

The decrease in intensity of the hydrogen fluorescence
with increasing pressure of He 1is shown in Fig. 2-3. The
intensities used are the numerically integrated peak
intensities of the excitation spectra, normalized as discussed
before. A least squares fit of the data to a straight line is
performed to extract the quenching rate constant. Typically,
fluorescence measurement.s at seven different He pressures were
carried out. Plots of 1/I vs He pressure are shown in
Fig. 2-4. Table 2-1 summarizes the quenching rate constants
and effective cross sections determined from the present work.
Fig. 2-% shows the rotational state dependence of the
quenching cross sections for D,(v’=0), and Fig. 2-6 shows the
vibrational stat*t.e dependence of the quenching cross sections
for all of the isotopes studied.

The uncertainties in the measurements were estimated to
be + 15% (+ 20) from the experimenty where data were taken on
different days. For states where data was taken on more than
one occasion, the uncertainties given are * 20 (6 = ©/n%,
where n is the number of experiments) The uncertainties
obtained from the least squares fits to the data were less
th.n the changes between days.

2.5 Discussion

The observed quenching cross sections increase with

vibrational quantum number and with decreasing reduced mass

from 2 A? and level off at a maximum of 5 - 6 A2, For J > 0,
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the cross sections appear insensitive to rotational Qquantum
number but are significantly smaller for (J’ = 0, v’ = 0) of
all three isotopic molecules studied.

It is important to consider the possible effects of
rotational and vibrational energy transfer among B-state
levels, as this has been ignored in the analysis. Rotational
and vibrational relaxation for HD(B) collisions with He have
been studied. The cross sections for pure rotational
relaxation were found to be 1 - 4 A? ¥ and the cross section
for relaxation from v’=3 to v’=2 was found to be 0.76 + 0.15
A?.' Grimes, Lester, Jr. and Dupuis’-® performed close-coupled
calculations of the rotational energy transfer cross sections
using an analytical fit to the excited pes. The calculation
gives a thermally averaged cross section of 1.2 A? for the
transition J’'=0 = 2 for H,(B,v’=0) and smaller cross sections
for excitation from higher J’ states. For a two level system
with rotationally inelastic cross sections of this magnitude,
the difference between the actual quenching rate constant and
the quenching rate constant determined from a fit of the 1/I
data is about 10% if the quenching rates for the two levels
differ by a factor of two. With vibrationally inelastic cross
sections of the magnitude measured in the previous experiments
and quenching cross sections of the magnitude measured in the
present experiments, the difference between the actual
quenching cross section and the cross section determined from

the fit to the data assuming population of a single
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vibrational level is less than 5%.

The proposed mechanism for quenching is the formation of
an HeH," complex followed by a non-adiabatic transition to the
ground state He-H, surface. To form this complex, the
reactants must come together in a specific geometry with
enough energy to overcome the barrier to complex formation on
the H,(B) + He pes. Since the complex has a well depth of
some 12,000 cm! it is reasonable to expect that once the
complex is formed, quenching occurs with a high probability
that is independent of the initial quantum numbers of the B-
state hydrogen. Thus the dependence of the quenching cross
section on the rotational and vibrational state of the B-state
hydrogen is determined by the effects of vibration and
rotation of the hydrogen on complex formation.
2.5a Rotational State Dependence

In reactions of a diatom and an atom, rotational
excitation may decrease the reaction rate by inhibiting the
ability of the collision partners to orient themselves to
achieve the transition state geometry (orientation effect), or
it may increase the rate by providing additional energy to
overcome a barrier, provided some coupling exists between the
rotational motion and the reaction coordinate (energy
effect).?® Both effects have been seen in quasiclassical
trajectory calculations of the cross sections for the reaction
of D+ H, (v=1)* and H + H, (v=0).% 1In the first study, the

cross section for reaction decreases by a factor of two in
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going from J=0 to J=5 before increasing again for higher J’s.
In the second study, similar behavior was also seen, except
this time the minimum cross section occurred for J=4. The
same type of behavior has also been seen experimentally by
Blackwell, Polanyi and Sloan in reactions of Na + HX
(X=F,Cl1).%

Since, the calculated pes between He and H,(B) has a
barrier to complex formation and is highly rotationally
anisotropic®?!®, there is a strong steric requirement for
reaction. Behavior similar to H + H, might be expected for
this system.

The observed rotational state dependence of the quenching
cross section of the ground vibrational state of D, is quite
different. The reason for the difference between the H + H,
reaction and the present system is due to the different
anisotropy of the two potential surfaces. The effect on the
cross sections may be seen using the rotational sl: .ing mass
(RSM) model of Loesch.?® This model restricts the treatment
to collisions with zero impact parameters, but it is useful
because of its clarity. The model treats the collision as a
trajectory of a particle on a two dimensional potential
surface, similar to the potential on scaled and skewed axes
used in the treatment of atom-diatom exchange reactions.
However, the two coordinates in the RSM model are the distance
between the atom and the center of mass of the diatom, R, and

the angle between the diatom axis and R, Y. Reaction is



20
defined to occur when the distance between the atom and diatom
falls below some critical distance.

When the diatom is allowed to rotate, the angular
momentum vector, J, is oriented with respect to the center of
mass velocity vector, v, which lies along R. Two limiting
cases for this orientation exist: Jlv (perpendicular
polarization) and J|v (parallel ©polarization). For
perpendicular polarization, the collision occurs in a plane,
and rotational excitation causes trajectories to have dy/dt =0
(dy/dR =0). For parallel polarization, the collision occurs
with a constant value of Yy=r/2, and the atoms of the diatom
trace out helices in space.

If the minimum energy path for reaction is with y=0,=®, a
collinear reaction, and there is strong repulsion for angles
away from the minimum, the reactions with perpendicular
polarization are the most 1likely to result in reaction.
Rotational excitation causes the reaction cross sections to
decrease because fewer initial values of Y result in reaction
(there is a smaller cone of acceptance). Trajectories with
parallel polarization will always sample the repulsive part of
the potential and will be unreactive.

If the minimum energy path for reaction occurs with y=n/2
and there is repulsion for angles away from this value, then
trajectories with parallel polarization will be highly
reactive; the trajectory will be aimed straight down the

minimum energy path. There will not be any rotational state
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dependence of the reaction cross section for collisions with
parallel polarization. All trajectories for nonzero J will
look the same regardless of the particular rotational state of
the diatom. Classically, in a reference frame rotating with
the diatom, collisions with different J’s are virtually
indistinguishable from each other.

Even when nonzero impact parameters are included, the
preferential reaction of collisions with parallel polarization
is still seen for a system with a minimum energy path for
perpendicular approach. Pattengill, Zare, and Jaffe have
examined H + LH exchange reactions with different rotationally
anisotropic potentials using quasiclassical trajectory
calculations for a thermal distribution of rotational levels.?
They were interested in observing the differences in the
reaction cross sections for reactions with the diatom aligned
so that all collisions had either purely parallel or purely
perpendicular polarizations. For a potential where the
minimum energy path was with y=n/2, the reactive cross section
for parallel polarization was a factor of five greater than
for perpendicular polarization.

From the ab initio calculations of the excited He-H, pes,
the minimum energy path for reaction is predicted to occur at
Y=n/2 at long range, where there is slight attraction due to
a van der Waal’s minimum, and to change over to y=0.4n at the
saddle point. The potential surface is strongly repulsive for

collinear approach. Therefore, the collisions with parallel
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polarization are the ones that will be most reactive, and the
reaction 1s not expected to have a strong rotational
dependence for the reasons given above. In retrospect, the
observed dependence of the quenching cross section on the
rotational level excited is not surprising, given the nature
of the pes.

The reason that the (v’=0,J'=0) levels were consistently
quenched with a smaller cross section than higher values of J’
could be due to the spherical symmetry of the J=0
wavefunction. As a result, no collisions can have purely
parallel polarization and all must sample the strongly
repulsive parts of the potential.
2.5b Vibrational State Dependence

The study of the vibrational state dependence of reaction
rates has a long history.?*? The most familiar example is the
dependence of the rates for collinear atom exchange reactions
on the position of a barrier on the pes.?® Reactions with a
barrier in the entrance channel are said to be early, and
vibrational excitation of the parent diatom dées not affect
the rate as much as when the barrier is in the exit channel,
a late barrier. Since the coupling of vibrational motion to
other degrees of freedom is often small, it can be useful to
treat collisions as being vibrationally adiabatic. This gives
a separate vibrationally adiabatic interaction potential for
each vibrational level. For reactions with a barrier, the

dependence of the reaction rate on vibrational state follows
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directly from a comparison of the vibrationally adiabatic
potential energy surfaces. Differences in the barrier height
for different vibrational states will result from small
changes in the vibrational frequencies and anharmonicities
along the reaction coordinate. The vibrationally adiabatic
approximation has been used in describing A + BC reactions,
usually in the form of a vibrationally adiabatic transition
state theory.?8:30-3

A quantitative measure of the vibrational adiabaticity
based upon time-scale type of arguments is given by the Massey
adiabaticity parameter (§ = a|AE|/hv, where a is the effective
range of the potential, v is the relative collision wvelocity
and AE is the change in vibrational energy) .?? In the case of
He + H,(B), with an effective range of about 1 A for the
interaction potential between the H,(B) and He, the value of
the Massey adiabaticity parameter is 1.8 for a vibrational
transition in H,(B) caused by a collision with He. This is in
the range of values where collisions are expected to be
adiabatic. Even when the classical vibrational period is
comparable to the collision time, as in the case of the
bending vibration for the H + H, reaction, the reaction still
appears to be vibrationally adiabatic in the bending
vibration. This has been explained by Schatz wusing
uncertainty principle arguments.?®®

The coupling between the vibrational motion and the

reaction coordinate in the H,(B) + He — H,He" reaction should
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be small. At long range, the minimum energy path for reaction
is with the He coming in perpendicular to the H-H bond. For
the most reactive collisions, the interaction between the He
and each H atom should be about the same. Non-adiabatic
effects may arise from curvature in the reaction path in the
vicinity of the transition state. 1In the He + H,;(B) case, the
H-H bond length is nearly the same at the saddle point as the
H-H bond length in H,(B); the reaction is predicted to have
an early barrier, and on this basis must also be vibrationally
adiabatic.

The classical expression for the thermally averaged
reaction <cross section for a spherically symmetric

interaction potential is

w Dpax
<G> =de N(E) f db 27bP (b, E) (2-9)
0 0

where N(E) is a Boltzmann distribution of energies, b is the
impact parameter, b,,, is the maximum impact parameter beyond
which no reaction occurs, and P(b,E) is the probability that
a collision with impact parameter b and collisional energy E
will lead to reaction. For a spherically symmetric potential
with a barrier height V, at some distance b,,,, and assuming
unit reaction probability for collisions that approach closer
than b,,,, the expression for the thermally averaged_cross

section is®?
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<g> = mb2, e /T, (2-10)

Asymmetry in the potential may be included by multiplying
mb,..,. by a steric factor, reducing the reactive cross section.
For modeling the quenching cross section, %b,,,°’ is replaced
by 6,, a limiting cross section determined by steric effects
and the position of the vibrationally adiabatic barrier. V,

is the vibrationally adiabatic barrier height.
The potential, V,, may be written in a way to reflect its

dependence on the vibrational state of the diatom reactant:
Vp(v') = Vo + VH(v’) = Veo(v'). (2-11)

Here, V, is the barrier on the electronic pes plus any zero-
point energy of any vibrations appearing at the transition
state, and V'(v’) and V_(v’) are the vibrational energy of the
level v’ at the barrier and at infinite separation of H,(B)
and He, respectively.

The vibrational energy of the level v’ is expanded in the

usual way for a diatomic molecule®*
V(v') = (vi+8)pw, - [(Vv'+¥)pliOx, + ... (2-12)

The term p is just the reduced mass factor: 0.707 for D,,

0.866 for HD, and 1 for H,. Hence,
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Vo (V') = Vo(p) - An [ (v/+%4)p] + Awx.[(v'+¥)pl% - ...(2-13)

Here, V,(p) explicitly includes the isotopic dependence of the
barrier due to the zero-point energy of the new bending

vibration, and

Aw, = ©. - ®' etc. (2-14)

When the expression for the barrier height, Eq. (2-13), is
replaced in the expression for the cross section, Eqg. (2-10),
the dependence of the quenching cross section on the

vibrational level becomes,

1nG,-1n<o> = [Vy(p) /kT]- (Aw,/kT) [ (v'+%)pl+

+ (Ax./KT) [ (v +%)pli-..., (2-15)

where 0, = mb,,°.

In the above, it is assumed that the transition state
vibrational frequency corresponding to the H-H stretch scales
with the same p as that for the diatom. This is most likely
a good assumption, since the saddle point computed by Perry
and Yarkony® is far from being linear, and the He is situated
at Yy=70° so that it affects each atom of the diatom to
approximately the same extent. Indeed, using Yarkony'’s
Hessian matrix’® at the saddle point to compute the vibrational

frequencies, we find that the vibrational frequency
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corresponding to H-H stretching motion does scale with the
same p as the diatomic.

The assumption is also made that the maximum impact
parameter for reactinon remains the same as the vibrational
energy increases. This might not be the case. In similar
systems, the vibrationally adiabatic transition state moves
further away from the saddle point on the pes as the
vibrational energy is increased.

When the vibrational frequency at the transition state is
smaller than in the free molecule, the barrier, V, in
Eg. (2-13), gets smaller as the vibrational quantum number
increases. The cross section reaches the value 6, for large
v’. This is exactly what is seen in the data in Table 2-1 and
Fig. 2-6. If o0, is taken to be the average of the cross
sections with (v’+%)p 2 2.5, |
5.55 # 0.25 A?, then the plot of 1lng,-ln<G> vs (v'+%)p is as
shown in Fig. 2-7. Fitting the data up to (v‘+%)p = 3.03 to
a quadratic function gives values for Aw, and Aw,x, of 140 + 80
and 20 + 24 cm’!, respectively. From the same fit, a value for
V,(p) of 250 #+ 40 cm! is obtained (the uncertainties are * 20
from the fit). The fit is shown as the solid line in Fig. 2-
7. The isotopic dependence of V,(p) has been neglected, so
the value obtained from the fit reflects an average value for
this qQuantity.

The present measurements are in disagreement with the

earlier measurements of Fink, Akins, and Moore.! The result
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for the quenching cross section for HD (B,v’=3) from the
present experiments is nearly a factor of two less than the
earlier measurement. The previous experimenters used an Ar
lamp as a 1light source. The 1line used to excite
HD(B,v’=3,J'=2) was about 4 cm’?, several Doppler widths, away
from the HD transition. The authors assumed that the Ar line
was very narrow, and the absorbance occurred far away from the
Doppler wings and was producing a thermal distribution of
speeds because the absorbance was occurring in the Lorentzian
wing of every velocity component. The absorbance of the Ar
line by the HD increased with increasing quenching gas
pressure. This pressure broadening is not enough to carry the
HD line over the Ar line, and the authors assumed that it did
not affect the velocity distribution of the excited HD.

One explanation for the discrepancy between the two
results 1is that the assumption that the excitation was
populating a thermal distribution of speeds is wrong.
Exciting molecules in the Doppler wings more than molecules
right on resonance will result in a higher average speed than
the average thermal speed. This increase would result in a
larger quencﬁing rate, because the collision frequency 1is
actually higher than the thermal collision frequency. Since
HD(v’=3) 1is in the flat region of Fig. 2-7, (v'+%)p = 3.03, a
collision energy effect is not expected.

The previous theoretical investigation of the state

dependence of the quenching cross sections using the
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quasiclassical trajectory technique’® has serious problems
because the potential surface used was probably not an
accurate one. A comparison of the vibrational state
dependence of the quenching cross sections from this study and
the present experiments is shown in Fig. 2-8. The cross
sections from the trajectory study are for HD(J’=0) and the
experimental cross sections are for many different J’. The
cross sections from the trajectory study are too low for lower
vibrational states, because of the high barrier of 1,200 cm™
for entrance into the quenching region. The calculated cross
sections for the higher vibrational levels (v’=4) were larger
than the cross sections measured and are larger than what
would be predicted using the geometry at the saddle point on
the pes (around 5-8 A?), This could be caused by the
unrealistically deep van der Waal’s minimum on the analytic
pes (1,200 cm! deep on Farantos’ surface compared to 200 cm!
for the accurate surface of Grimes, Lester, Jr. and Dupuis’).

The rotational state dependence of the quenching cross
section for HD(v’'=3) from the qguasiclassical trajectories is
independent of J’ for 0 < J’ < 3 and decreases for higher J’.
The behavior for low J’ is similar to the present experiments
for D,(v’=0). It is not known if the behavior for high values
of J’ seen in the trajectory study is due to the artifacts in
the pes, or if it is a real effect, and arises from the two
different B-state species studied: HD(v’=3) in the trajectory

study vs D,{(v’=0) in the present study. A more recent guantum
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time-dependent study by Pernot, et al. 3° also used the
analytic surface of Farantos but for an average collision
energy much higher than the conditions of the experiment, so
a comparison with these results has limited value.

A comparison of the barriers to reaction from theoretical
studies with the results from the present experiments is given
in Table 2-2. The experimental value is much lower than any
of the theoretical results. The present result, from the
vibrationally adiabatic model, is an upper bound for the
actual barrier on the excited pes because it also includes the
zero-point energy of the bending vibration. The difference in
the H-H stretching frequency change, Awm,, between experiment
and theory is also significant. Yarkony'’s Hessian matrix?®® at
the saddle point predicts a value of Aw, of 300 cm™!, while the
value from the experimental analysis is 140 cm™.

Tunneling is not expected to affect the analysis of the
barrier heights using the vibrationally adiabatic model. A
calculation of the thermally averaged cross section for
reaction on an Eckart potential®’ with height and imaginary
frequency similar to Perry and Yarkony'’s values was carried
out. The thermally averaged cross section, including
tunneling, was either higher or lower than the classical
expectation, depending upon whether reflection £rom the
barrier with energies greater than the barrier height or
tunneling through the barrier with energies lower than the

barrier height was more important. However, the deviation
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from the classical prediction was only a few percent in either
direction.

2.6 Conclusions

The large rate constants for quenching of B-state
hydrogen by He result from formation of a strongly bound
excited state complex which crosses onto the ground state
potential energy surface and dissociates. The general
features of the potential surfaces responsible for the near
independence of rate constants on J are clear from ab inmitio
work. The dependence of rate constants on vibrational quantum
number and isotopic species shows that the complex-formation
process is vibratibnally adiabatic. The data give a lower
barrier to complex formation and an H-H stretching fregquency
at the transition state closer to free B-state H, than do the

ab initio calculations.
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Table 2-1. Observed quenching rate constants and
effective quenching cross sections.

. kQa

v ,a) Tigggiggon (cm®/molecule-s) <6:

- 1on (A?)

D,
0,0 P(1) 2.51 = 0.09 1.42
lo,1) P(2) 3.52 = 0.39 1.99
l0,2) P(3) 3.43 1.94
l0,3) R(2),P(4) 3.70 = 0.35 2.10
|0, 4) R(3),P(5) 3.53 £ 0.25 2.00
|0, 5) R(4) 3.43 1.94
lo,6) R(5) 3.56 2.02
0,7) R(6) 3.09 1.75
|1,3) P(4) 5.72 3.24
|1,4) P(5) 5.83 3.30
|2,6) P(7) 6.10 3.46
l4,3) P(4) 9.79 5.56
HD

|0, 0 P(1) 3.94 2.07
|0,3) R(2) 4.85 2.55
|1,2) P(3) 7.50 3.94
|2, 5) P(6) 8.21 4.31
13,0 P(1) 11.2 5.90
|4,3) P(4) 9.47 4.98

|3,2) R(1) 9.90"
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Table 2-1. (continued)

. ko’
Pumping <0>
lve,3) Transition (cm®’/molecule-s) (A7)

x 101

H,

|0, 0) P(1) 4.10 1.90
|0,3) R(2) 5.09 2.36
l1,1) P(2) 7.08 3.50
|2, 5) P(6) 12.0 5.54
13,1 P(2) 14.0 6.51
l4,3) P(4) 10.4 4.82

@ Uncertainties (+ 26) are 15%, unless given.

® Reference 1.
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Table 2-2. Barrier heights.

Reference Barrier Height Note
(cm™)
5 1,900 a
9,10 1,200 b
7,8 1,200 c
6 520 d
6,36 = 800 e
Present 250 = 80 f
Study

a Calculated maximum for ¥y = 45° approach
b From a fit of the ab initio points for ¥y = 0°,45°, and 90°.

c From a fit of the previous ab initio data plus new
calculations with y = 0°, 30°, 45°, 60°, and 90°. The saddle
point occurs with y = 60°.

d Calculated point. Confirmed saddle point by diagonalization
of Hessian matrix.

e Barrier including the calculated zero-point energy of the
bending vibration from the Hessian matrix at the saddle point.

f The experimental value is an upper bound for the height of
the saddle point, since it includes the zero-point energy of
the bending vibration.
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Figure 2-1. Schematic diagram of the potential energy
surfaces involved in the quenching of B-state hydrogen. The
excited hydrogen and helium cross a barrier on the excited
potential energy surface; they then enter a deep well where
the H-H bond length grows to about 2 A. At the bottom of this
well, there is a seam of avoided crossings with the ground
state surface. Quenching is thought to occur when a non-
adiabatic transition takes the metastable H,(B)-He complex to
the ground state surface, where the products are either H, (X)

and He or two H atoms and He.
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Figure 2-2. Experimental apparatus consisting of two
fluorescence cells filled with the same pressure of hydrogen.
Helium is added on top of the initial pressure of hydrogen in
Cell #1, while Cell #2 1is left wunchanged. The vuv
fluorescence is monitored with two solar-blind photomultiplier
tubes (PM). The decrease in fluorescence in Cell #1 compared

to Cell #2 is used to determine the guenching rates.
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Figure 2-3. Fluorescence excitation spectra of H,(B, v’=0).
The two spectra are for 0.5 torr (a) and 670 torr (b) of added
He. The scales have been normalized by the integrated
intensity from the spectra taken in the normalization cell.
The factor of =2 decrease in fluorescence intensity with the
addition of nearly an atmosphere of He is evident. The noise
in the spectra is caused by fluctuations in the wvuv laser

intensity; no shot-to-shot normalization is done.
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Figure 2-4. The 1/I data for D,(B), v’ = 0 =~ 2. The
quenching rate constant is given by the slope of the fit line.
The increase in rate constant with vibrational guantum number

is evident.
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Figure 2-5. Rotational state dependence of the effective
quenching cross sections for D, (v’=0). No significant change

is seen for J' =1 - 7.
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Figure 2-6. Vibrational state dependence of the quenching
cross sections. One cross section (J’ # 0) is plotted for

each v’ level. The symbols are: triangles for D,, squares for

HD, and circles for H,.
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Figure 2-7. The experimental data and the fit to the data
assuming a vibrationally adiabatic description of the barrier
to complex formation. The symbols are the same as in Fig. 6.
The (v’=0,J’=0) data have been excluded, and the points for D,
(v’=0) and D, (v’=1l) represent averages of the data for non-
zero J’. The solid line is the best fit to the data, and the
dashed line is drawn where V, = 0. The parameters from the
best fit to the data give a barrier height of 250 cm! (the
barrier on the electronic pes plus the zero-point energy in
the bending vibration at the barrier) and a difference of

140 cm! between the vibrational freguency of isolated H,(B)
and the lower H-H stretching freguency at the transition

state.
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Figure 2-8. Effective cross sections for HD(B) as a function
of vibrational energy from the present experiments (filled
circles) along with the quasiclassical trajectory calculations
of Farantos®’ (triangles). The differences are most likely
caused by the potential used by Farantos (see text). The

lines are drawn only to aid the eye.
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Chapter 3: Angular Momentum Reorientation of Excited Hydrogen
3.1 Introduct.ion

Measurement of the cross sections for elastic and
inelastic processes in molecular collisions gives information
about the nature of the potential energy surface (pes), and
hence the forces between molecules. In particular, cross
sections for rotational energy transfer give information about
the rotational anisotropy of the pes. There is in addition,
a second type of collision process that is sensitive to the
rotational anisotropy of the pes, the cross section for
elastic angular momentum reorientation.

Many of the first experiments that measured the elastic
reorientation of the angular momentum vector of molecules in
a laboratory-fixed frame found small collision cross sections
for these processes.!® Similarly, theoretical calculations
gave small values for reorientation cross sections.®’ This
provided some basis for a propensity rule of aM; = 0 in
collisions of homonuclear diatomics with other molecules,? but
there is no a priori reason why this must be so.® Later
experiments and theory provide examples of reorientation cross
sections with a wide range of values.’!® As is the case in
rotationally inelastic collisions, the cross sections for
reorientation are small when the anisotropy of the pes is
small, as in the case of H,(X'L;*) - rare gas collisions,”® but
become larger as the anisotropy becomes larger. There is a

"strong propensity to conserve"!®* M, in space, only when the
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pes does not have the necessary anisotropy to reorient J, and
the propensity to conserve M, is by no means universal. The
present experiments provide an excellent example ( H,, HD, D,
(B X v’=0, J'=1, M;=0) + He, Ne, Ar and H,(X) ) of a system
where the cross section for molecular reorientation is quite
large (10-30 A?), much larger than the cross sections for
either rotational or vibrational relaxation.!’!* 1In addition,
the size of the reorientation cross sections can be understood
in terms of a simple semi-classical model, using the known
anisotropy of the H,(B)-He ab initio pes.

Previous experiments used a variety of methods to
determine the cross sections for molecular reorientation,
including the polarization of resonance fluorescence £from
molecules excited with polarized light, the T, relaxation time
in NMR experiments, double resonance experiments using
polarized light sources, and other means as Qell. The present
experiments use a different method to measure the
reorientation of the angular momentum. Using a linearly
pclarized laser, tuned to an R(0) transition of ~the B « X
electronic transition, molecular hydrogen is excited into
v’=0,J0'=1. The linear polarization of the excitation laser
prepares the single M, = 0 level. By measuring the decrease
in the spatial anisotropy of the laser-induced fluorescence
intensity with increasing pressure of a collision partner, the
change in populations of the M; = 0 and M; = =+ 1 levels are

measured and the rate constant for reorientation determined.
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The method is simple, “since . it requires only a single
excitation source and two detectors.

The B 'I,* state and its interactions with He, Ne, Ar and
H, (X 'Z;"’ have been studied experimentally'’"?’ and theoret-
ically.?0-32 The H,(B)-He ab initio surface is strongly
repulsive for collinear approach, and attractive for He
approaching the H-H bond nearly perpendicularly. Since the
pes is highly anisotropic, there should be large coupling of
rotational and translational motions. In the case of H,(B)-
H,(X) collisions, experiment shows'® and theory confirms’? the
presence of an attractive interaction that dominates the
dynamics and gives rise to very large quenching cross
sections. One might then expect that rotationally inelastic
collisions and elastic reorienting collisions occur much less
frequently than the collisions that quench the electronic
energy of the excited hydrogen. This expectation is proven to
be correct by the present experiments.
3.2 Experimental

The hydrogen molecules are excited with a wvacuum
ultraviolet (vuv) laser and the total fluorescence is detected
with two solar blind photomultiplier tubes mounted
perpendicular to each other on a Pyrex gas cell. The two
tubes detect fluorescence emitted, roughly, perpendicular and
parallel to the - excitation laser’s polarization vector,
respectively.

A schematic diagram of the experimental apparatus is
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shown in Fig. 3-1. The laser excitation source!® is a pulsed
dye laser (Quantel TDL 50) which operates around 660 nm,
pumped by a Nd:YAG laser (Quantel YG581C). The dye laser
output is freguency doubled and the resulting ultraviolet
light at around 330 nm is focused with a 15 cm f£.1. quartz
lens into a cell containing several hundred torr of Kr gas
(Spectra Gases, 99.995% pure), generating light at = 110 nm
via third harmonic generation (THG). The linearly polarized
vuv light passes through a polished vuv-grade LiF window
(Harshaw) into a 30 cm long Pyrex gas cell. The gas cell is
attached to a diffusion-pumped Pyrex manifold for pump-out and
introduction of the gases. Two solar blind photomultipliers
(EMR 542G-09 and EMR 542J-09) are mounted 5 cm away from the
laser beam, 12 cm from the entrance window, behind LiF windows
attached to the <cell with black wax (Apiezon). The
photomultiplier photocathode windows are made of MgF,, so
scattered vuv excitation light is not detected. The volume
between the LiF windows and the photomultipliers’
photocathodes is flushed with Ar gas to prevent absorption of
the laser-induced fluorescence by air. The signals from the
photomultipliers are sent to SR250 boxcar integrators
(Stanford Research Systems), digitized (Metrabyte, Model Dash-
8, Analog to Digital Converter), and stored in a personal
computer.

An MKS Baratron (Model 390H) and a calibrated Validyne

variable reluctance pressure transducer are attached to the
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the 1 - 700 torr rang:, respectively.
About 1 torr of a dilute (1 mtorr/torr) mixture of H,, HD
or D, in He, Ne, Ar /only with HD and D,), or H, (only with D,)
is initially placed in the cell. The low pressures of
hydrogen used guarantee that less than 5% of the excitation
light is absorbed,\eliminating complications due to changes in
the absorbing wvolume brought about by pressure broadening.
The laser is then scanned over an R(0) trensition, and the
excitation spectrum is recorded from each photomultiplier. An
additional pressure of up to onz atmosphere of collision
partner is added, and the excitation spectrum is again
recorded. The cell is pumped out and the process is repeated.
The low pressure scans provide a means of normalizing the data
for any drift in the relative sensitivities of the two
photomultipliers or for data taken under different
experimental conditions (e.g. different photomultiplier
voltages). The relative sensitivities stayed fairly constant
throughout the course of a single experiment, changing by less
than 10%.
Both the H, (Linde ultra high purity) and He (Matheson
ultra high purity) used were 99.999% pure. The HD (MSD

Isotopes) and D, (Linde) were mainly contaminated with other

i

isotopes of molecular hydrogen ( 1%) with the other main
contaminant being ailr, at ppm levels. Both Ne and Ar
(Matheson Research Grade) used were greater than 99.999% pure,

but significant H, impurities were present to be detectable
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with LIF. All of the gases were used straight from the
cylinders, without any further purification.

The intensities used in the data analysis are the
integrated peak intensities. Since, the ratio of fluorescence
intensities measured with the two photomultipliers is the
experimental quantity needed to determine the rate constant
for reorientation, no normalization is needed to correct for
fluctuations in the laser power.

3.3 Spatial Anisotropy of the Fluorescence
The probability for emitting a photon into the direction

k(0,¢) with polarization A is given by:
I(6,4)dQ ; Kyl pi -z ly;)l2 a0 (3-1)

The angles 6 and ¢ are with respect to a space-fixed frame.
The frame chosen is the space-fixed frame with Z axis along
the polarization vector of the excitation laser. The vector
r is the transition moment, which lies along the molecular
axis for a B = X transition. The initial state, Wy,;, is a
spherical harmonic with J’=1, and the final state, VY, is a
spherical harmonic with either J" = 0 or J" = 2, corresponding
to the allowed R and P transitions. The total fluorescence
intensity is obtained by summing over all final states and
averaging over all initial states.

Following the treatment in Flugge®® but wusing the
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3% the total fluorescence

spherical harmonics given in Zare,
intensity into the direction k(0) from an ensemble of J’'= 1

molecules is given by:

I(0) o [3 + cos?®) [p., + p.;] + [2 + 2 sin?®] [p,]. (3-2)

The p; are the diagonal elements of the three-by-three density
matrix describing the J’=1 molecules. The off-diagonal terms
are zero due to the isotropic nature of the collisions in the
present experiment. Initially, p, is the only nonzero term in
the density matrix, and the fluorescence intensity at 6 = =®/2
should be twice the fluorescence intensity at 6 = 0,n. This
agrees with the results of Green and Zare®* for the laser-
induced fluorescence intensity of an R(0) transition in the
absence of any collisions. After many collisions, the three
diagonal density matrix elements should have equal magnitude,
an isotropic distribution of molecular axes, and the
fluorescence intensity given by Eg. (3-2) is the same in all
directions. By monitoring the intensity of fluorescence into
two directions, e.g. 6 = 0 and =®/2, the increase in the
population of the M;=+x1 levels with increasing pressure of
collision partner is determined. From this, the total cross
section for angular momentum reorientation is obtained.
3.4 Kinetics of Reorientation

The reorientation process is described using a two-level

model system. The two levels are the initially populated M,.
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level, |J/=1,M,.=0>, level 1, and the collisionally populated
M, levels, |J’=1,M,.=+1>, level 2. No distinction is made
between M,.=1 and M,.=-1, since they should be populated to
equal extent, and they are indistinguishable using the spatial
anisotropy of the fluorescence. The fraction of the molecules
in a particular level, i, 1is denoted by ({i}. The
reorientation caused by collision with molecules, M, 1is

described by the following equations:

{1} + M = {2} + M (3-3)

{2}y + M = {1} + M (3-4).
The rate constant for Eq. (3-3) is k, and that for Eg. (3-4)
is k,. At equilibrium, {2} = 2{1}. So, k; = 2k, = k. This

results in the following rate equations:

d{l}/dt

¥k [M] {2} - k([M]{1} (3-5)

d{2}/dt = k[M] {1} - %#k[M]{2}, (3-6)

where [M] is the pressure of the collision partner. These are
solved to give the time dependence of the fractions of the

molecules that are in the two levels:
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{1} (2/3)exp(-3k([M]t/2) + 1/3 (3-7)

{2} (2/3) - (2/3)exp(-3k[M]t/2). (3-8)

The fluorescence in a given direction is then obtained by
replacing the diagonal density matrix elements in Eg. (3-2)

with the populations given by Egs. (3-7) and (3-8).
I(0) o« [2 + 25in?0]{1} + [3 + cos?0]{2}, (3-9)
or
I(0) o I,(0) {1} + I,(0) {(2}. (3-10)

The number of molecules fluorescing decays exponentially with
a decay rate constant that is the sum of the quenching and
radiative rate constants. Upon integration over the time

between excitation and emission, Eg. (3-10) becomes

[21,(6) -21,(0)] (k4 M] +1)
[I,(0)+2I,(0)] (kQ’[M] +-§k’[M] +1)
2

I(0)all+ (3-11)

In the above expression, k,’ and k’ are the quenching rate
constant and the reorientation rate constant divided by the

radiative rate constant.3®
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In the experiments, the fluorescence emitted into a

finite solid angle is detected, so an integration over allowed

angles is required. Near 6 = =®/2, the integrated value of
cos?0 is defined as d(m/2), and near 0 = 0, the integrated
value of sin®® is similarly defined as &(0). Using these

definitions in Eg. (3-9) and Eqg. (3-11), the experimentally

measured fluorescence intensity ratio is given by

I(x/2) 1 + [1/5 - 38(m/2)/5] F([M])
= / (3-12)
I(0) 1 + [386(0)/5 - 2/5] F([M])
where
(ko' [M] + 1)
F([M]) = . (3-13)

(Ko’ [M] + 3k’[M]/2 + 1)

This gives the pressure dependence of the experimentally
measured fluorescernce anisotropy.
3.5 Results

Typical fluorescence excitation spectra are shown in Fig.
3-2. The change in the fluorescence anisotropy with
increasing pressure of the collision partner is clear. The
anisotropy, for any given pressure, is obtained by dividing
the integrated fluorescence intensity measured with the
photomultiplier perpendicular to the laser polarization axis

by the intensity measured with the photomultiplier collecting
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the fluorescence that 1is nominally coaxial with the
polarization axis. The data are normalized arbitrarily so
that the ratio of the two intensities is unity at low
pressure.

The reorientation data for HD(B) colliding with He and Ne
are shown in Figs. 3-3 and 3-4. The solid lines are the best
fit to the data using a weighted, non-linear least-squares
fitting routine employing the Marquardt algorithm.?’” The He

and Ne data were fit to a modified form of Eq. (3-12).

o gt
3 - ¢ > 51 (skglMl+c, (M]) (3-14)
1(0) ! I (1+kS[M]) '
[ 2 _] (1+k [M] +C, [M])

The three fitting parameters: C,, C, and C, are a
multiplicative factor, 36(0)/5 and 3k’/2, respectively. The
value of d(m/2) was assigned one fifth of the value of 8(0)
(the calculated ratio with the known experimental geometry),
but this assignment did not influence the size of the best-fit
value for k’ more than the uncertainty in the best-fit value
(the differences in the best-fit values of k’ were only about
5% for ratios of &(m/2)/8(0) from 1/6 to 1/1, while the
uncertainties in the best-fit values of k'’ were more than
15%) . The quenching rate constants used in fitting the He

data were the experimentally measured quenching rate
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constants.!® Quenching with Ne occurs with a much lower cross
section, *® and no decrease in the LIF intensity, correcting for
the fluorescence anisotropy, was seen 1in the present
experiments. Because of these reasons, a value of zero was
chosen for the quenching rate in fitting the Ne reorientation
data.

It was found that the best-fit values of 8(0) and 8(®/2)
were larger than the calculated values wusing the known
experimental geometry (8(0)cye = 0.07, 8(0)¢,. = 0.15), but the
same value of Y(0) from the best fit to the data was obtained,
+ 20%, for all of the He and Ne data. The discrepancy between
the two could be explained if the excitation laser was not
completely linearly polarized, although experiments putting a
polarizer before the cell did not seem to change the initial
intensity ratio. The photomultiplier tubes may also be
detecting some fluorescence that is reflected off of the Pyrex
walls of the gas cell.

The reorientation data of HD(B) colliding with Ar and
D,(B) colliding with H,(X)are shown in Fig. 3-5. The slow
decrease in the fluorescence anisotropy with increasing
pressure of collision partner shows that the gquenching rate
constants for Ar and H,(X) are larger than the aM; = £+ 1 rate
constants. The very large quenching cross section for H,(X)
has been observed experimentally,® but the Ar cross section
has not been measured before.

Estimates of the cross sections for guenching of HD(B)
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and D,(B) by Ar and D,(B) by H,(X) were made by using the
fluorescence intensity from one photomultiplier as a function
of qQuenching gas pressure, correcting for the decrease in
laser power with time (by fitting the low-pressure
fluorescence data with a linearly decreasing function of time)
and also correcting for the measured anisotropy. The decrease
in the fluorescence intensity with increasing quenching gas
pressure was used to determine the quenching rate.3® The
quenching cross sections obtained in this way are 69 + 8 A?
for D,(B) and 63 + 6 A? for HD(B) qguenched by Ar and 59 * 10
A? for D,(B) quenched by H,(X). The uncertainties given are +
2 standard deviation from the least squares fit to the data.
The values of the quenching rate constants were then used in
fitting the reorientation data. 1In fitting the data, the only
variable parameter used was the reorientation rate constant,
the other parameters were fixed at the averages of the values
obtained with He as a collision partner.

The values for k obtained from the all of the fits are
listed in Table 3-1. The thermal cross sections are obtained

using:
o = (k’ x k{)/[N(8kT/mu)*] (3-15),
where N is the number density of collision partners, k; is the

fluorescence rate constant and p is the reduced mass of the

two colliding species.
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3.6 Comparison with other experimental results

The measurement of cross sections for molecular angular
momentum reorientation in gases has been one approach taken to
determine the rotational anisotropy of the potential energy
surface between two molecules. Experiments have been done to
measure these cross sections both in the bulk and in molecular
beams.

The cross sections for angular momentum reorientation of
H,('Z* v'=0,J'=1,2) colliding with rare gases in the bulk have
been calculated using Distorted Wave and Coupled Channel
approximations for solution of the scattering equations.® The
calculations were done with different model potentials to fit
NMR relaxation data. The fitted cross sections were small,
=0.1-1 A?, for collisions with a relative velocity close to
the average relative velocity at room temperature. The small
value of the cross section is quite reasonable, given the
nearly spherical nature of the H,(X) - rare gas potentials.

Experiments measuring the pressure dependence of the
polarization of fluorescence from molecules electronically
excited by polarized light is another approach that gives
information about angular momentum reorientation in elastic as
well as inelastic collisions. Experiments performed on
I,"([L,") colliding with He, Ne, Ar, H,, O, and I, showed that
M, changed slowly in collisions, even when the magnitude of J
changed.!”? Kurzel and Steinfeld' measured the cross sections

for depolarization of the fluorescence of I,"(v’=43, J'=12,
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16). The total cross sections for depolarization, following
rotationally inelastic collisions were 5-20 A? for H,, He and
Ne. They did not report a value for the depolarization of the
resonance fluorescence but noted that it changed more slowly
than for the rotationally inelastic collisions. McCaffery et
al.® stuaied the polarized fluorescence of I,"(v’'=43,J'=12,16)
in elastic collisions with Ar, O, and I,. They found that the
polarization of the resonance fluorescence was unchanged for
pressures of collision-partner that corresponded to several
hundred elastic collisions. Other experiments showed that
there was no J’ dependence (v’'=16, J’'=2-21) on the
depolarization of the resonance fluorescence that could be
attributed to collisional processes.?*¢

Again, using the change in the polarization of the
resonance fluorescence, Fell, et al.!® measured the cross
sections for elastic reorientation of Li, (A 'Z*) (v', J') =
(18,6), (20,20) and (32,15) in collisions with Xe to be 0.42,
0.74 and 2.4 A?, respectively.

Experiments using the Hanle effect were used to study S,
(B 3%, v’=4, N'=40, J’'=41) colliding with various gases.® The
experiments revealed that 40 and 80% of the coherence produced
in the excitation remained after rotationally inelastic
collisions with Xe and He respectively, but there was no data
presented on the corresponding elastic processes.

Microwave double-resonance experiments on OCS (J=1, M;=0)

colliding with OCS, and O, also showed small cross sections
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for elastic reorientation (M,=0 — M,=+1).! There was no
evidence that M, changed in elastic collisions during the time
it took for the OCS to rotationally relax (= 10 A collision
diameter) .

Experiments in a molecular beam measured the cross
sections for reorientation of CsF (J’ =1, M, = 1) or (J’' =
3, M,, = 0) with a variety of collision partners.’ The cross
sections measured for elastic reorientation, (1,1) = (1,0) and
(3,0) = (3,1), were about 5A? with Ne, Ar and Kr as collision
partners.

Calculations of the rotationally elastic and inelastic
cross sections for HC1l colliding with He are also nearly
diagonal in M,.’ but calculated cross sections for N, colliding
with Ar give reorientation cross sections of 12-35 A?.1%°

Most recently, optical-optical double resonance
experiments have provided cross sections for M;, changing
collisions in open and closed shell diatomics. A polarized
laser prepares an aligned or oriented ensemble of molecules,
and a second polarized laser probes the change in population
of the M,;. levels with changing pressure of collision partner.
Silvers, et al. measured the cross sections for reorientation
of BaO(!X*,v’=1,J'=1,M,.=0) in collisions with Ar and CO,.'! The
cross sections with Ar were below their detection limit of
1A?, and with CO,, the cross sections were 8.4 + 1.4 A%
Bréchignac, et al. have measured cross sections of 20-40 A?

for reorientation of CO (J'=9-11) colliding with other CO
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molecules.? Experiments of Snow et al. measuring the
reorientation of NO(A?X*, v’=0, J’=4.5) in collisions with Xe
and N, gave small ( < 1A? ) cross sections, but gave cross
sections of 7 £ 3, 10 * 3, and 22 * 5 A? for NO(X), CO,, and
CHF,, respectively.!® Lastly, Norman, et al. measured the
cross sections for reorientation of CaF(ATL, J'=%, M;=%) in
collisions with Ar.!* The authors could not determine the
cross sections for elastic reorientation within a single A
component, due to experimental difficulties, but the cross
sections for transitions to the other J’=% A doublet levels
were 9.1 + 2.0 and 5.7 % 1.1 A? for M,= -% and M,.=+%,
respectively.

3.7 Conclusions

The large cross sections for molecular angular momentum
reorientation of electronically excited hydrogen in collisions
with He and Ne are a result of the highly rotationally
anisotropic interaction potential.

The lack of any 1large difference between the
reorientation cross sections for He and Ne indicates that the
interaction poﬁentials are similar for these two rare gas
atoms. The smaller cross sections for reorientation with Ar
and H,(X) as collision partners are most likely due to the
dynamics being dominated by the quenching of the hydrogen’s
electronic energy. In He quenching, the gquenching dynamics
are thought to be governed primarily by a barrier in the

entrance channel of the quenching reaction. There is no



71
barrier for hydrogen self-quenching, which is why the
quenching cross section is so large. The similarities between
the Ar quenching and reorientation cross sections with those
for H,(X) suggests that the dynamics of Ar - H,(B) and H,(X) -
H,(B) collisions are similar. Ar has an excited state only
slightly higher than the H,(B) levels excited, and this may be

affecting the Ar - H,(B) pes.
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Table 3-1. Angular momentum reorientation rate
constants and effective cross sections.

System k o (A%

(cm® molecule-! s-1)

x 1010
H, - He 6.41 29.7 + 7.4
HD - He 5.10 33.2 £ 5.0
D, - He 4.85 27.6 + 10.8
H, - Ne 4.95 26.8 + 7.0
HD - Ne 5.16 33.5 = 7.4
D, - Ne 4.23 31.0 + 9.2
HD - Ar 1.57 10.6 £ 2.0
D, - Ar 1.83 13.9 % 3.0
Dz(B)_Hz 1.65 7.6 + 3.4

2 All uncertainties are z 2 standard deviations from

the fit to the data.
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Figure 3-1. Schematic diagram of the experimental apparatus.
A mixture of hydrogen and one of the collision partners is
added to the cell with the photomultiplier tubes. A laser
excites the hydrogen to v’=0, J’=1 of the B!X* state. The two
photomultipliers detect the fluorescence emitted into solid
angles that are nominally perpendicular or parallel to the
electric vector of the excitation laser. The decrease in the
spatial anisntropy with increasing pressure of collision
partner is used to determine the rate constant for

reorientation.
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Figure 3-2. Raw experimental data. The three sets of traces
represent sequential measurements of the excitation spectra of
H, (v’=0) R(0) with different pressures of He and the same
pressure of H,: (a) 0.5 torr He, (b) 161 torr He and (c) 507
torr He. The traces on the left and right are the signals
from the photomultipliers perpendicular to and coaxial with
the electric vector of the excitation laser, respectively.
Both the change in the anisotropy due to recorientation and the
decrease in the fluorescence intensity due to guenching with

increasing He pressure are apparent.
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Figures 3-3 and 3-4. The reorientation data for HD with He
and Ne as collision partners are shown here. The solid line
is the best-fit to the data. The error bars represent the
larger of either the standard deviation of the mean of the
three measurements at a given pressure or the stanrndard
deviation of the mean expected using the standard deviation of

the more numerous low pressure measurements.
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Figures 3-5. The reorientation data for HD colliding with Ar
and D,(B) colliding with H,(X) are shown here. The upper plot
is the data for HD colliding with Ar, and the lower plot shows
the data for reorientation of D,(B) by H,(X). The solid lines

and error bars are as defined in Figs. 3-3 and 3-4.
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Chapter 4: Angular Momentum Reorientation - Calculations
4.1 Introduction

In the analysis of the experiment described in Chapter 3,
the assumption was made that all of the 1loss of the
fluorescence anisotropy could be explained by elastic
collisions that reoriented the excited hydrogen molecules,
changing the space-fixed projection of the molecule’s angular
momentum. This assumption was mad2 because the size of the
rate constants for the loss of the fluorescence anisotropy
seemed to preclude other explanations; they were larger than
calculated values for inelastic collisions that would cause
the same effect. To test this assumption, two sets of
calculations were carried out.

Both calculations require knowledge about the interaction
potential between the electronically excited H, molecule and
the collision partner; if the H, molecule is treated as a
rigid rotor and the collision partner is an atom, many points
on the two-dimensional potential energy surface need to be
known. The only case where enough high-quality ab initio data
on the interaction potential is known is the H,-He system, and
koth sets of calculations presented here are for this system.

The first sets of calculations presented are
semiclassical calculations that treat the collision between
the He atom and the H;(B) molecule as a time-dependent
perturbation on the H,(B) molecule’s Hamiltonian. The

calculations are carried out by numerically solving the
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resulting coupled differential equations, essentially doing
infinite-order perturbation theory. This type of calculation
was chosen because it reproduced quite well the results from
a close-coupled calculation for the analogous reorientation
process in H,(X)-He.! The calculations also provide intuitive
insight into the dynamics of the reorientation; individual
trajectories can be followed and the most important effects
can easily be seen. This same point has been made in recent
semiclassical calculations of fine-structure transitions in
atom-atom collisions.?

The semiclassical calculations were not without problems,
and to address these problems, close-coupled calculations were
also carried out. These calculations have the advantage of
treating the center-of-mass motion accurately using quantum
mechanics.

Both calculations make serious approximations, and they
are not intended to be state of the art, but the most
important aspects of the problem are addressed, and
quantitative agreement between experiment and theory 1is
obtained.

4.2 Semiclassical Calculations

A simple semiclassical calculation was carried out to
determine whether the large angular momentum reorientation
cross sections measured for H,(B)-He could be understood in
terms of the known anisotropy of the H,(B)-He ab initio

potential energy surface. The model treats the diatomic
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molecule as a quantum mechanical rigid rotor but treats the
translational motion classically. The atom and diatom are
assumed to scatter elastically, with an interaction potential
given by a central potential. The anisotropic part of the
potential serves as a time-dependent term in the Hamiltonian
to couple the different M; states of the rigid rotor. The
time-dependent Hamiltonian is used in the time-dependent
Schrédinger equation to get a set of coupled differential
equations that are solved numerically to obtain cross sections
for changing M;. The present calculations are similar to
early theoretical treatments of rotational and vibrational
energy transfer.3* These earlier <calculations wused
perturbation theory to obtain probabilities for inelastic
collisions, assuming a straight-line path for the collision.
The present calculations make neither of these approximations.

The derivation below is given for the general case of a
symmetric-top colliding with an atom, and the special case
where the symmetric top is a diatomic molecule is then
presented.

The time-dependent wave function of a symmetric-top
molecule, with no internal angular momentum, colliding with a
spherically symmetric partner (a !S atom) may be expressed as

a sum over the rotational states of the rigid symmetric-top:

P (t) =E aj (t) q’; e(-iEj(t)/h) (4_1)
]
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Where the y; are the symmetric-top wave functions, and the
subscripts j refer to different J,K,M states of the symmetric
top. The time dependence of the Hamiltonian appears as the
time dependence of the interaction potential between the
molecule and the atom. The time-dependent Hamiltonian may be

written as
H(t) =H, + V(R,6,, ¢, t) . (4-1)

Hy, is the symmetric top Hamiltonian; the angles, 0, and ¢,, are
with respect to some molecule-fixed frame, and R 1is the
distance from the atom to the molecule’s center of mass.
During the collision, 6,, ¢, and R change. When the time-
dependent wave function is substituted into the time-dependent
Schrédinger equation the result 1is a set of coupled

differential equations in the coefficients

da, ; |
JKM:”‘I%'I Y asuar<TKM|V(R, 0, §y;t) [T'KM)> e (FHAEE/D) (4-3)
/

where the term AE is the energy difference between different

levels.
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The interaction potential is next expanded in spherical

harmonics,

V(R,6,, ¢,) =fV_j Vin(R) Y1, (6 bp) (4-4)

and now the matrix elements coupling different rotational
levels may be derived. First, the interaction potential given
in molecule-fixed coordinates is changed to space-fixed

coordinates:®

V(R, 0, 0,) = ;vmm) [z;nml,m<e,¢,x)ym,<es,¢s> (4-5)

The D,.,!, the rotation matrix elements, relate the space-fixed
and molecule-fixed axes. The wave-functions of the symmetric

top may also be expressed as rotation matrices:®

1
| KM ) = (-1)MK [%31']— D3« (6,0, %) . (4-6)
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The matrix elements may be then written as

1 1
<I'RM/|V| TKM > = (-1)"“‘*“"“’[2“.”1]3 [ZJ/ﬂ z

8x2 8n2

X;Vm(R) ZYm(OB,d:B) (4-7)

/
xfdﬂ [D-‘L’-K’] * Dl:’m D_JM_K.

Using the identity for an integral over the product of three

rotation matrices,?

J J J,
[aq g, (R) D (R) D, (R)

o (35 (3. a-s)
= 8x;
M) My My M, M, M,

the matrix elements coupling different rotational states can

be written:

I'K'M | V]| KM = (1) ¥ K[ (20+1) {(207+1) ] 2
x%‘: Vm(R)E Y {05, &)

1 J g\(1J o
X
m’' M -M)\M K' -K

The terms in the parentheses are the three-j symbols and give

(4-9)

the selection rules for transfer between different levels.

In the present case, a diatomic molecule colliding with
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an atom, all of the K and all of the m indices are zero. The

equations simplify to

V(R, Bm) =; V.l (R) Ylo(eml ¢m) (4-10)
and
<T'M'|v|aMr=(-1)¥[(2J+1) (2J/+1) ];
V (R Y, ;
23 )2; ' (Og.: bc) (4-11)

1 J (1 J J )
X
m' M -M/\M 0 O

The classical trajectory is calculated wusing the
equations of motion for bodies subject to a central

potential.®

dR _ (2 (@ -1z (4-12)
It \ —p (E-V(R)) szz
a0 . VoD, _
T (4-13)

The mass U is the reduced mass of the two bodies. The orbital
angular momentum is 1; the total energy is E; v, is the
initial center-of-mass velocity, and V(R) is the central
potential. Fig. 4-1 shows the definitions of R, and b,.

Next, two simplifying approximations are made. The first
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involves truncating the expansion of the potential to include
only the first two terms. The second approximation is to
neglect completely any rotationally inelastic collisions. By
making these two approximations, the coupled-equations are
greatly simplified. These approximations are discussed below.

First, the interaction potential between H,(B) and He was
assumed to be adequately described as a sum of two terms, V,
and V,. This is not an unreasonable approximation. From
previous theoretical work,’” the two largest terms in the
Legendre expansion of the interaction potential between H,(B)
and He are the first two, V, and V,, and the ratio of V,/V, is
about 2 for energies accessible in a thermal distribution.
The V, term is about one half V, for the same energy range.
In the semiclassical calculations, two different potentials
were used. The first potential was obtained by fitting the
low-energy parts of V, and V, with exponentials.® The
resulting fit potential is shown with the ab initio values’ ®-1!
in Figs. 4-2 through 4-5. The Figures show the fit compared
with the ab initio data for several values of 0,, the angle
made by the vector R and _..ie molecular axis, this is the same
as Y in Chapter 2. The agreement is quite good for 6,= 0°,
but is quite bad for small R for 6,= 90°., However, for the
central potentials used in calculating the trajectory. most
of the poorly-fit region is in the classically inaccessible
region.* The second potential used is shown in Figs. 4-5

through 4-8. This potential is a good fit over the thermally
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accessible regions, and is a better fit to the classically
forbidden region than the first potential.?®® This second
potential was also used in the close-coupled calculations
presented in section 4.3. The first potential was used to
calculate the reorientation cross sections for all three
hydrogen isotopes studied, but the setond potential was used
for H, and D, only.

The second approximation is to neglect rotationally
inelastic collisions, collisions that change the magnitude of
the hydrogen’s rotational angular momentum. This is readily
justified for H, and D,. First, it is known that the
probabilities for changing a molecule’s angular momentum
decrease as the energy difference between the guantum states
increases, compared with the collision energy.* The J = 3
level is the first accessible level for H, and D, because of
the nuclear spin statistics of these molecules, the even J
levels are of different symmetry. For H,(B) and D,(B) the
energy differences between J = 1 and J = 3 are 200 cm? and 100
cm?, respectively. The energy difference is comparable to kT
( =200 cm? at 295K ), so it is expected that the excitation
cross sections are small. In fact, small excitation cross
sections (on the order of 1 A?) for inelastic collisions of
H, (B, J=0,2,4) colliding with He have been calculated by
Grimes and Lester,’ ' and small cross sections for rotational
excitation have been measured for HD(B,v’=3) in collisions

with He and Ne, and the cross section for excitation of J=1 to
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J=2 in collisions with He and Ne is about 2.5 A?.!> Both of
these cross sections are much less than the 30 A? experimental
cross sections for reorientation. This would seem to indicate
that neglecting the contribution of inelastic collisions to
the reorientation cross section is a reasonable approximation.

The three equations resulting from the coupled equations

may now be written explicitly.

da_, (t) i
e = --IJ_‘-l[a_l(t) (Vy- 810“ (3cos?0-1) V,)
+a,(t) (—— e cosb sinb V,)
407

+a,(t) (- 3 = e?¢ sin?@ v,)]

da,(t) i -3 .
— = "% [a_, (t) ( 43% e % cos sinb v,)
+a,(t) (V, + —2— (3cos?6-1) V,) (4-14)
0 0 m 2)
+a,(t) (~—>— ei® cosB sinb V,)]
40T
dal(t) S | _ 3 -2i¢ . 2
—agt £ [a_, (t)( — e sin? v,)
+a,(t) (~—— e cos® sinb V,)
v40mn

+a, (t) (v, - 1 (3cos?6-1) V,)1
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These equations give a recipe for calculating the
transition probabilities out of J=1,M,=0. A trajectory is
started with probability amplitude only in M;=0. R(t), ©6(t)
and ¢(t) are then calculated along the trajectory and the
coupled differential equations are solved. The values of the
a; when t — e give the probability amplitude for being in a
given state, i, after the collision.

The calculations are carried out by starting a trajectory
with some initial impact parameter, randomly oriented with
respect to the quantization axis, about 20 A away from the
scattering center. Initially a,(0) = 1.0 and the other two
coefficients are zero. Since the classical scattering is from
a central potential, only one trajectory needs to be
calculated for a given impact parameter. The space-fixed axes
have a common origin with the center-of-mass frame. The axes
are related by a direction cosine matrix.!® The random
orientation of the space-fixed axes with respect to the
scattering frame is obtained by picking three random Euler
angles that determine the direction cosine matrix. At each
point, the program first calculates a position in the
scattering frame using the egquations of motion. Next, the
direction cosine matrix is used to calculate the space-fixed
angles, and these angles are used in the coupled differential
equations for the coefficients in the time-dependent wave
function. The classical trajectory is calculated using a two-

step Runge-Kutta integration, and the coefficients are
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calculated using a four-step Runge-Kutta integration.!’” The
trajectory 1is stopped, after closest approach, when the
distance away from the scattering center is larger than the
initial distance. The probabilities for changing M; from zero
were calculated by summing the |a,,|?. Trajectories with many
different initial orientations of the scattering plane and
the cuantization axis, different direction cosine matrices,
were calculated, and the probabilities for changing M; were
averaged. The cross section for changing M, was then

calculated using

G =fdb 2nb P (b) (4-15)
0

where P(b) is the probability of changing M; with impact
parameter b. Typically, 100 or more different initial
orientations were chosen at 60 impact parameters, evenly
spaced between =0.1 A and =8 A. The resulting calculations
give an uncertainty in P(b) of about 1% for each impact
parameter, determined by the standard deviation of the mean
for the 100 trajectories calculated. The resulting
uncertainty in the total thermal cross section is roughly the
same.

Calculations were done as a function of center-of-mass

velocity for H,, D, and HD. Two different central potentials
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were used in the scattering calculations for each of the fits
to the ab initio data. One central potential used consisted
only of V,, while the other had some contribution due to V,,
equivalent to the potential at 6, = 45°. The potential for HD
was obtained by expanding the H,(B) potential about a shifted
center of mass. Tha coupled equations for HD are the same,
since the three-j symbols vanish for 1 = 1; even though HD has
odd terms in the expansion of its potential, these do not
appear 1in the coupled equations. However, inelastic
¢cnllisions J = 1 - J = 0 may now occur, and this could be a
serious problem since inelastic collisions are not treated in
the present model.

The results of one calculation are shown in Fig. 4-9, and
a sample program is given in appendix 2. Each point in Fig.
4-9 represents the results of 500 trajectories at 60 impact
parameters. The shape of the curve in Fig. 4-9 may be
understood as follows. At low energies, none of the
collisions have enough energy to get into a region where the
coupling between different M, levels is large. All of the
trajectories are pushed away at large distances, and the
resulting reorientation cross section is small. The first
maximum in the plot of the cross section vs veloc.ty 1is
understood by looking at the opacity £function, a plot of
2nbP(b) vs b, for this velocity. This is shown in Fig. 4-10.
There is a single maximum in the opacity function. If a

trajectory is followed at this impact parameter, the final
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angle that the trajectory makes in the center-of-mass frame is
@ = 55°., This is near the first zero of the function Y.
This is an angle at which the terms in the coupled eguations
that "couple" a state with itself due to the V, term go to
zero. The decrease following the first peak in the velocity
dependence is due to the 6 = 55° trajectories moving to
smaller impact parameters, resulting in a smaller contribution
to the cross section. The velocity dependence shows a second
maximum which occurs when there are two large peaks in the
opacity function, Fig. 4-11. The peak at larger impact
parameters is caused by scattering with a final angle
0 = 125°, the second zero of Y,,. All of the calculations
show the same shape as in Fig. 4-9; although, depending upon
the potential used the positions of the peaks change.

When a Boltzmann average of the calculated cross sections
is taken, values for the thermally averaged cross sections are
obtained which are in very good agreement with the
experimental values. These results are presented in
Table 4-1. One potential problem with these calculations
results from treating the translational motion of the
hydrogen-helium pair classically. This is clearly
problematical: the de Broglie wavelength for a thermal H,
molecule, 1 A, is roughly the same as the distance over which
the interaction takes place. To address this deficiency,
close-coupled calculations were carried out, and these results

are presented in the next section.



100

4.3 Close-Coupled Calculations

In addition to the semiclassical calculations described
above, close-coupled calculations have been carried out. The
close-coupled calculations are more accurate, and eliminate
some of the problems inherent in the semiclassical approach
that was used. The biggest difference between the two methods
is that the close-coupled formalism treats the translational
motion between the atom and ths diatom guantum mechanically.
Angular momentum is also conser’ed in the close-coupled
calculations; in the semiclassical calculations, the
projection of the total angular momentum on a space-fixed
axis, M;, 1is not conserved (in this section the molecule’s
angular momentum will be denoted by j and the space-fixed
projection of this angular momentum will be my). Lastly,
with the close-coupled calculations, there is no problem
choosing which central potential to use in calculating a
classical trajectory, as there was with the semiclassical
calculations. The complete potential is used everywhere.

This section will present an outline of the close-coupled
method, with the important equations. A discussion of the
various approximations made, as well as some justification for
the approximations, will be given. Lastly, a comparison of
the results from the close-coupled calculations with the
results from the experiment and the semiclassical calculations
will be made.

The scattering of a diatomic rotor with an atom has been
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treated extensively in the literature. A very good review of
the problem has been presented by Lester.!® The treatment
presented here will follow that given by Lester,!® Arthurs and
Dalgarno*® and Kinsey et al., et al.?*® The complete wave
function is first written as a product of a radial part, an

angular part and an internal part.

¥ =R Y ®(31IME;R) % ()Y (310M;6,, bg,6,,,)  (4-16)

where
Y(31aM) = ¥ (G10M|imylmg) Yy (6, ;) Yim, (BesBe)  (4-17)
1y M
and the expression in () is a Clebsch-Gordon coefficient.

The definitions of the abbreviations used are given below:

J = total angular momentum

j = diatom’s angular momentum
1l = orbital angular momentum
m; = projection of j on space-fixed axis
m, = projection of 1 on space-fixed axis
M = projection of total J on space-fixed axis
= internal coordinates
R = the distance between the
diatom’s center of mass
and the atom
U = the reduced mass of the atom-diatom pair
r = the bond length of the diatom

eRf ¢R
er' ¢r

angles defining R in the space-fixed frame

angles defining r in the space-fixed frame
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The radial part, @, is a function of the distance between

the molecule’s center of mass and the atom. The angular part,
Y, describes the orientation and angular momentum of the
diatom in a space-fixed frame and the orientation and orbital
angular momentum of the atom-diatom pair. Lastly, the
internal part, %(§), contains the electronic and vibrational
degrees of freedom. From now on, the internal degrees of
freedom will be omitted, with the understanding that they do
not change in the collisions that are dealt with here. If the
wavefunction is written in this form, and is placed in the
Schrédinger equation, the following coupled differential

’

equations result.

[(d?/dr?) -(1(1+1)/z?) +k?] ¢ (JLIM;R) =

Y U9(3131%R) & (31/0M;R) (4-18)
jll’

The U’ are the matrix elements coupling different wave states.
If the interaction potential between the diatom and the

atom is expanded in Legendre polyncmials, P,

V(R, 1) =Z: v, (R) P, (R°x) (4-19)
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the matrix elements, U’(313j’1’;R) simplify to

U;(3131%;R) = 2p/h? Z:V“ (R)£,(313'119) (4-20)

where the f;, are the Percival-Seaton coefficients,? given by

1
£,(313/13) = (-1)T[ (23 +1) (23/+1) (21+1) (217+1)] ?

NIER! (111’)(;’1:}) (4-21)
1 17300 o0j)\00 0

The terms in brackets are six-3j symbols.

At sufficiently large R, such that the interaction
potential between the atom and the diatom is essentially zero,
the radial wave function may be written as a sum of incoming

and outgoing spherical waves,I;(R) O,(R).

¢ (31IM;R) ~ I'T, (R) +0i1°0; (R) (4-22)

The two waves are related by the S-matrix
Oj?ig; Sle,j’lf Ija’i’ (4-23)
i’
Once the S-matrix is known, a T-matrix is found, T = 1 - S,
where 1 is the unit matrix. The cross sections for
transitions between different j, my; levels may be calculated

from the T-matrix elements:?°
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o (imy~imj) = (n/kf) ¥ Y (23,+1) (23,+1)
J10:K 11/

!
x (2K+1) (-1)L+1lemyemy

Jy *J,
X Tynnsy Ty

SRR R AS
X .
2] K 2j/K

i i K3’ 3’ K
X
my; -my 0 m{ —m{ 0

The problem now is to calculate the solutions of the
coupled equations to sufficiently large distances, decompose
the radial equations to sums of incoming and outgoing waves to
calculate the S-matrix elements, use these to calculate the T-
matrix elements, and use these to calculate the cross
sections.

To calculate the cross sections for reorientation,
several simplifying approximations were made. First, the
interaction potential was assumed to be adequately represented
as a sum of two terms in a Legendre expansion, just as the
potential used in the semiclassical calculations contained
only two terms in an expansion, and the same justification
used there may be used in the present instance. The only
molecular channel used in the calculation was the j=1 level.
Again, this approximation was used in the semiclassical
calculations, and it should be reasonably good here as well,
for the same reasons. When these approximations are made, the
coupled equations are quite simple. There are only three

equations for each J. Although these simplifications will
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surely effect the accuracy of the results, these calculations
are not meant to be the last word on calculations of the
reorientation; instead, they are meant to test whether the
gross features of the ab initio potential surface are enough
to account for the size of the experimentally measured cross
‘sections. In addition, they provide a framework to build
upon, using more accurate methods. More accurate calculations
are presently being done by Lester and Odutola.?

The calculation of the coupled equations and the
extraction of the T-matrix was done identically to the method
of Kinsey et al.? for H,(X) colliding with noble gases. There
are a few things to note about his calculation. First, the T-
matrix defined in his work is the negative of the T-matrix
normally used. This is not a problem, since the T-matrix
elements occur in pairs in the expression for the cross
section, and the negatives cancel. The computer program used
is shown in Appendix 3. The program was checked by using the
same interaction potential that was used by Kinsey et al.?° and
checking that the present results agreed with their results.
The potential used was the same as that shown in Figs. 4-5 -
4-7, being careful to multiply the anisotropic part of the
potential by the appropriate constant to change from an
expansion in spherical harmonics to Legendre polynomials.
Using this two-term Legendre polynomial fit to the ab initio
data, calculations were then done for H,(B)-He and D,(B)-He

colliding at many center of mass energies. The cross section
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for reorientation was obtained by taking the cross section
6(j=1,m=0 - j=1,m=1) and multiplying by two to obtain
0(j=1,m=0 = j=1,my=+1). The results are shown in Fig. 4-12
The structure in the velocity dependent cross sections 1is
identical to the structure seen in the semiclassical
calculations. This structure is not an artifact due to
inadequacies in the semiclassical approach. The origin of the
oscillatory behavior has already been discussed in the
previous section. Taking a Boltzmann average of the cross
sections gives the thermal cross sections, which are presented
in Table 4-1. These values agree with the experimental values
within the experimental uncertainties, and they agree well
with the semiclassical calculations using the same potential
with V, used as the central potential.

4.4 Conclusions

Now, some of the significant features of the calculated
cross sections will be discussed. First, it is seen that the
calculated cross section for D, is some 10% larger than for H,,
in both the semiclassical calculations and the close-coupled
calculations. This may be understood by realizing that with
a larger mass, the D, molecule will have a higher kinetic
einergy and will see more of the anisotropic part of the
potential for a given velocity, and that for a given energy,
the D, molecule will spend more time, classically, in the
region where the coupling between the different states 1is

largest.
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The experimental values for the cross sections with He do
not test this prediction because the large uncertainties in
the cross sections are larger than 10%.

Two important points need to be addressed now. The first
is the effect of neglecting quenching on the calculated values
for the reorientation cross sections for all of the isotopes,
and the second is the effect that rotational relaxation of HD
will have on the experimental reorientation cross section.

If quenching is properly taken into account in the
calculations, there would be an effective hole in the
reorientation cross section. Some fraction of the collisions
will result in quenching, which will cause our calculated
cross sections to be higher than the experimental ones. 1In
Chapter 2 the guenching cross sections for H,(B,v’=0) with He
were shown to be =2 A2, So the calculated cross sections
should be lowered by this amount. If this is done, the
agreement between the calculated <c¢ross sections and
experimental cross sections for H, and D, is still within the
experimental uncertainty, but with HD, the calculated cross
section no longer lies within two standard deviations.

This discrepancy brings up the second point. In HD,
which lacks the ortho/para symmetry of its homonuclear
cousiné, collisions may occur that cause transitions from
HD(B,j=1) to HD(B,j=0). When an HD(B,j=0) molecule
fluoresces, the spatial distribution of the fluorescence is

isotropic because the j=0 wavefunction is spherically
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symmetric, and the HD(R,j=0) fluorescence looks 1like the
fluorescence from a distribution of HD(B,j=1) with equal
populations of each m level. So the cross section for
rotational relaxation should be added to the calculated
reorientation cross seciion to compare with experiment. Prior
experiments measured cross sections for rotational relaxation
of HD(B, v=3, j=2 = j=1) of =2 A? in collisions with He and
Ne,!® but the cross section for the j=1 — j=0 transition of
HD(B,v=0) is unknown. If the cross section for the j=1 — j=0
transition is similar to the known cross section, adding a
=2 A? cross section to the calculated reorientation cross
section, brings the experimental and calculated reorientation
cross sections back into agreement.

In summary, the experimental reorientation cross sections
may be accounted for completely by elastic m; changing
collisions. The present knowledge of the interaction
potential from the ab initio data is sufficient to predict the
reorientation data. The semiclassical calculations and the
close-coupled calculations agree, within experimental
uncertainties, with the values derived from the fluorescence
anisotropy experiments.

A complete coupled-channel study using a multiple-term
expansion of the interaction potential between a rotating and
vibrating H;(B) molecule and a He atom is currently being
pursued by Lester and Odutola.? Their calculation includes

inelastic transfer to other j states as well. Preliminary
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results yield thermal reoriertation cross sections in
agreement with experiment, although the details of the
velocity-dependent cross sections do not exactly match the
results from the pvesent calculations. The calculations will
be extended to the other isotopes as well and a complete
comparison to these resunlts will be possible. The
calculations of Lester and Odutola should resolve the issue
about the contribution of HD relaxation to the loss of the
fluorescence anisotropy by providing cross sections for

relaxation and reorientation in collisions of HD with He.
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