
\
/ t

/IF_R--_52 1

• ,

INSTITUTEFOR
FUSIONSTUDIESor,

DE-FG05-80ET-53088-652 IFSR #652

A Relativigtic Solitary Wave in Electron-Positron Ion Plasma
V.I. BEREZHIANI

Institute of Physics
The Georgian Academy of Sciences

Ts_nar&shviliStreet 6, Tbilisi 380077
Republic of Georgia

and
S.M. MAHAJAN

InstituteforFusionStudies

The UniversityofTexasatAustin
, Austin,Texas 78712

and

InternationalCentreforTheoreticalPhysics
Trieste,Italy

March 1994

+_+_=°"+++ IVERSIY0 XAS_-_'- THEUN FTE_ +__=__'_

,,=_ -.=.=_

_, _ .;.__

-.+---:_ Ij_!,+_.....,_++_)

_>. . =

%lZ_ =_. -' -

_ _.__._

__+._+._ p_,
_ o :_ _. = E s _ _ DISTRIBUTION OF THIS DOCUMENT IS UNLtlVliTE_,



A Relativistic Solitary Wave In
Electron-Positron Ion Plasma

V.I. BEREZHIANI

Institute of Physics
The Georgian Academy of Sciences

Tamarashvili Street 6
Tbilisi 380077

Republic of Georgia
and

S. MAHAJAN

Institute for l_mion Studies

The University of Texas at Austin
Austin, Texas 78712

and

International Centre for Theoretical Physics
Trieste, Italy

Abstract

The nonlinear propagation of circularly polarized electromagnetic (CPEM) waves

witi_ relativistically strong amplitude in an unmagnetized cold electron-positron ion

plasma is investigated. The possibility of finding soliton solutions in such a plasma is

explored. In one- and two-dimensions it is shown that the presence of a small fraction

of massive ions in the plasma leads to stable localized solutions.



Recently, the nonlinear propagation of electromagnetic waves in electron-positron (e-

p) plasma has attracted considerable attcntion. 1 These plasmas, found (for example) near

the polar caps of pulsars, in the active galactic nuclei, in the early universe, will always

be created in system whose temperature exceeds twice the electron rest mass (_ 1.2 MeV)?

Propagation of intense short laser pulses in a plasma can also lead to pair production resulting

in a three-component electron-positron-ion (e-p-i) plasma. 3 In fact such three-component

plasmas have been seen in laboratory experiments 4, 5 intending to use positrons as probes

to study transport in tokamaks. In addition to several other applications [like the pulsar

magnetosphere modeling, 6 an investigation of the e-p/e-pi plasmas is likely to further our

understanding of the early universe, T-s in particular, of the MeV epoch in the evolution of the

universe; it may, indeed, be possible that a deeperinsight into the behavior of an interacting

plasma fluid in this era may provide valuable clues to its later evolution. A stable localized

solution with density excess may, coupled with gravity, create templates for confming matter

and creating inhomogeneities necessary to understand the observed structure of the visible

universe.

The importance of the three-component admixture plasma has led to several theoretical

investigations. Rizzato 9 studied the localization of weakly nonlinear circularly polarized

electromagnetic [CPEM] waves in a cold plasma made up of electrons, positrons, and ions. In

Ref. 10 the propagation of intense electromagnetic radiation in an admixture of unmagnetized

three-component plasma is investigated analytically, and it is found that such a plasma may

be localized with the generation of a humped ambipolar electrostatic potential, and that

this potential could be used to accelerate charged particles. It is also noted in, 1° that the

procedure of series expansion, is not valid for the case when a << 1, where a is the ratio of

the unperturbed ion to electron densities.

In this paper we abandon the small amplitude approximation, and study the nonlinear



propagation of ultrarelativistic intense electromagnetic (EM) waves in a plasma of unmag-

netized electrons, positrons, and massive ions, we aim to find localized stable structures

sustained by this plasma.

The equilibrium state of the three-component system is characterized by an overall charge

neutrality no = n + + No_, where no, n + and Noi are the unperturbed number densities of

the electrons, positrons, and ions, respectively. Due to their relatively large inertia, the

ions do not respond to the dynamics under consideration and just provide a neutralizing

background.

To describe the propagation of electromagnetic waves in such a plasma, we start with

Maxwell equations expressed in terms of the vector (A), and the scalar (¢) potentials:

a2A O (n (1 a)n+v +) 0 (i)at----_- AA+_'¢+ v - - =

and

A¢= (n--(1-c_)n +-a) . (2)

The systemisclosedby invokingthehydrodynamicequationsconsistingoftheequation

ofmotion

0P± t/2 aA
0--_ + V(1 + (p±)2) = q=--_ q=re, (3)

and the continuity equation:
an ±

+V(nv =o, (4)

for each of the mobile components. Equations (1)-(4), written in the gauge V. A = 0, are

dimensionless with the following normalizations: The time and space variables are measured

in units of the electron plasma frequency cv_(= (47rnoe2/m_)'/2), and the collisionless skin

depth (c/cv_), the vector and scalar potentials are normalized to m_c2/e, the relativistic

momentum P to m_c, and n- and n + to their respective equilibrium densities no and n +.

The coefficient a = /_/n o is the ratio of ion equilibrium density to electron equilibrium
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density. In terms of P, the dimensionless quiver velocity is given by:

p+
V:i=__

- (1 + (p_-)2),/2 " (5)

For the one-dimensional propagation (O/COz# 0, O/cOx= 0 = O/cOy) of a CPEM wave with

a mean frequency 4'o and a mean wavenumber ko along the z-axis, the vector potential can

be represented as:

1 (x + iy)A(z,t)exp (_koz- iwot} + c.c. (6)

arid can be readily shown [through Eq. (3)] to be proportional to the transverse momentum

P_ = _A. (7)

Notice that A(z,t) is a slowly varying function of z and t. The longitudinal motion of plasma

is determined by

OP_ 0 (1 + ]A[2 (p_)2)1/2 0¢ot + + =  :b-iz' (8)
the z-components of the equations of motion, and the continuity equations rewritten as:

+ _zz n_" = 0 (9)(1 + IAI2 + (pfi)2)i/2

where Eq. (7) has been used to eliminate P_.

It is now convenient to introduce new variables, _ = z-vgt, and r = t, where vg = ko/_o

is the group velocity of the electromagnetic wave packet, and v9 cO/0_ >> 0/0r. The wave

frequency _0 satisfies the dispersion relation: _ = ko2 + (2- a) implying vy _< 1 for a

transparent plasma for which Wo >> 1 (Wo >> we in the dimensional form). Equations (8)

and (9) are easily integrated to obtain P_ and n _: assuming that the vector potential tends

to zero at infinity. Substituting the obtained values of P_ and n 4" together with Eq. (6)

into Eqs. (1) and (2), and assuming that Wo>> (1 + IAI2) 1/2 [placing an upper limit on the

allowed wave amplitude], we obtain:

cOA(2-c_)O2A [ ¢ ][(_-(2-_)¢]=0 (10)2ia;o _ + _2° cO_2+ m (1 - ¢2)
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and

02¢ 1{ (1+ iAI 2) (1- c_)(1 + IAI 2) }O_"2--2 (1+¢)2 - (1-¢)2 -c_ . (11)

Equations (10)-(11) constitute a closed set describing the nonlinear propagation of pow-

erful CPEM waves of arbitrary [as long as IAI < Wo]amplitude in an unmagnetized, transpar-

ent cold electron-positron-ion plasma. It was shown in Ref. 11 that a pure electron-positron

plasma (a = 0) cannot sustain an electrostatic field ¢. As a result the CPEM waves cannot

be localized in a pure e-p plasma. An investigation of Eq. (11) 12 for a fixed IAI, however,

reveals that it is possible to create wakefields by a coherent, short electromagnetic wave

packet moving in unmagnetized three component plasmas.

In this paper, we seek a localized solution of the system of Eqs. (10) and (11). We

are interested in the case of small but nonzero a so that we can have a finite ¢. If the

characteristic length (L) of the wave satisfies the condition L >> (1 + tAI2) -1/2, then from

(11) it follows that

1 a [ 'A'2 ] (12)(I+IAI '

explicitly displaying that ¢ is proportional to a, i.e., ¢ << 1 for a <_:1.

Substituting (12) into (10) and neglecting terms of ¢3 and higher orders, we obtain:

OA (2 - o_) 02A _2 [ 1 ]2i_o_+ w°2 0_ 2 + m 1- (I+[:AI2) 2 =0' (13)

where t3 = .5a/(2 - a)l/2 << 1. For stationary solitons, the ans_itz (A is a constant corre-

sponding to a nonlinear frequency shift)

A = A(_) exp _ (14)

reduces Eq. (13) to

- (1+ A2)2 = 0, (15)

with 77= [Wo/3/(2 - a)l/2]_, and fl = )_//3. Invoking the boundary conditions appropriate to

a localized solution, i.e., A = 0 = dA/dT7 as 1771_ c_, Eq. (15) can be readily integrated and
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Mlows soliton-like solutions for fl2 < 1. There are several ways in which the exact implicit

solution of Eq. (15) can be displayed. The most revealing perhaps, is the form

cos-_[(1- f12)(1 + A2)] _/2 1 fl(1 + m2)1/2 + [1 -(1 - f12)(1 + A2)] _/2

r/I = (i- _2),/2 + _ en _(I + A2)'/2- [i -(i - _2)(I + A2)]'/2 " (16)

For all values of fl 2, Eq. (16) can be satisfied at It/I = 0 if (1 - _2)(1 + A(0) 2) = 1 leading

to A2(0) -= A_ " gt2/1 - fl2, where the amplitude Am is the maximum value A can attain.

Clearly Am _ 0 as fl _ 0 and A,_ becomes large as fl ---, 1. Remembering that A is

exactly equal to the particle momentum measured in m_c, a large A,_ corresponds to a

ifighly relativistic plasma, the principal regime of interest for this paper.

Let us begin the analysis of Eq. (_6) by determining the asymptotic behavior of A. As

long as fl is not extremely close to unity, it is only the second term which can provide the

balance as Ir/I --, oc. Thus for sufficiently large It/I, Eq. (16) leads to the exponentially

decaying soh:tion [for all fl]

AMy -- fl sech fllr/I . (17)

Having demonstrated that we have indeed found localized solutions for all fl, we shall now

derive approximate formulas to describe the main (not the asymptotic) part of the soliton.

Structure of Eq. (16) clearly suggests that in the two limiting cases of interest: fl _ 0

(nonrelativistic) and f_ ---, 1 (high relativistic), the right-hand side is dominated by the

second and the first-term respectively. Naturally in the nonrelativistic limit, the asymptotic

shape (17), "vhich is the usual soliton solution of the nonlinear SchrSdinger equation pertains

for all It/[.

The highly relativistic large amplitude wave (g_--, 1, A,_ >> 1), is new and considerably

more interesting. Barring the exponentially decaying tail, the main body of the soliton is

well approximated by

A= A_ cos (--_ '_ (18)
\Aim/



and will be termed a 'cosine' soliton. The general shape of the large amplitude soliton

(obtained numerically) is displayed in Fig. 1, and is barely distinguishable from (18) in the

nonasymptotic region. In Fig. 2, we plot the soliton width L,_ as a function of Am and find

that, for A,_ > 1, Lm is linearly proportional to Am as predicted by (18).

The total plasma density variation associated with the soliton,

6N = _n + + _n- _ A2 (19)

is large for A 2 >> 1; the solitons with ultrarelativistic amplitudes create large concentrations

of plasma density.

The stability of the soliton solution can be investigated using the well-known stability

criterion of Vakhitov and Kolokolov. lz According to this criterion the soliton is stable if

OI
> 0, (20)0f_2

where I represents the "number of photons":

I= f dr] A2 (21)

From a direct integration of the defining equations, one finds

I(I+A_) 3/2arccos I+A_I = m,_(1 + m_)'/2 + 2

and it is trivial to see that OI/Oft 2 = (OI/OA_)OA_/Of_ 2 = (1 - f_2)-20I/OA_ > 0, proving

the stability of the one-dimensional soliton for all ft.

We conclude that it is possible to obtain a large amplitude soliton solution in an unmag-

netized cold plasma consisting of electrons, positrons, and a small fraction of massive ions.

We assert the fact that the presence of even a very small fraction of massive ions is crucial

to the soliton formation; a pure electron-positron plasma cannot sustain this disturbance.

The electromagnetic wave pulse with arbitrary amplitude, under certain given conditions,
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will always be spread out in a pure electron-positron plasma. II The addition of a small frac-

tion of massive ions, stops the pulses from spreading out; the sol±tons will emerge from the

modulationaJ interactions of these pulses. We note in passing that such sol±ton potentials

propagating with v9 __c, could readily cause acceleration of resonant particles. 14

We now generalize our results by allowing a transverse variation of the fields. If we as-

sume that A depends weakly on the transverse coordinates [A = A(_, x, y, t)], i.e., (OA/O_) >>

V±A, Eq. (13) can be rewritten with an additional term AiA. Assuming A± A >> oao2(02A/0_2),

Eq. (13) modifies to

2i_ao_+A±A+132A 1- (l+]AI2) 2 =0 (23) '

which, with the substitution (14), yields

02AIOA [ 1 ]Or2 + fl2A+A 1- =0 (24)r 0r (1+ A )2

for the cylindrically symmetric configuration.

We will concentrate on the so-called "ground state solution" 13of Eq. (25), This solution

is positive, radially symmetric, is monotonically decreasing with increasing r, and satisfies

the boundary conditions (dA/dr)r = O, A(oo) = 0,. It is easy to see that such a solution

exists only if _t2 < 1.

We solve this nonlinear eigenvalue problem numelically. A typical result of numerical

calculations is displayed in Fig. 3, where A is plotted as a function of r. In this example the

eigenvalue f12 = 0.2881 (A(0) = A,_ _ 1). In Fig. 4 we present the dependence of f12 on A,_,

the amplitude of the localized solution. The relationship ft2 = _2(A,n) can be considered as

a type of "nonlinear" dispersion relation. We see that for the ultrarelativistically strong EM

waves (i.e. A,_ >> 1), f12 _..+1.

For the ultrarelativistic case, it is also possible to find a nearly analytic solution of

Eq. (24). Indeed, for the region where Am >_ A >> 1, the solution of Eq. (24) is simply the
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zeroth-order Bessel flmction:

A = A_. Jo(kr) (25)

where k = (1 - gt2)1/2. In the asymptotic region, the solution must decay, and Eq. (25) is

solved by the modified Bessel function

1

A _ Ko(flr) "_ (f_r)l/2 • exp(-flr) , (26)

revealing the characteristic exponential decay. The numerical solution of Eq. (25) (solid line)

along with the analytical expression (26) (dashed line) is displayed in Fig. 5. One can see

that the main part of the solution (which contains most of the EM wave energy) is well

described by the Bessel solution (26), the two-dimensional analog of the "cosine" soliton

[Eq. (18)]. Note that, as in the one-dimensional case, the soliton width (d _ k -l) is an

increasing function of the amplitude A,_ > 1.

The stability of two-dimensional solution can be determined by using the condition (20).

For the cylindrical symmetric case,

¢¢ A 2 (27)
I = dr r ,

which, for the large amplitude case (A,,, >> 1), will be dominated by contributions from the

region in which the Bessel function solution holds. Simple algebra leads us to

AL
I= C,-_ , (28)

/?C, = dx x J2o(x) > 0

where (72 is a constant of order unity. From (28), and from the condition OA,_/Ofl > 0

[see Fig. 4] we get that OI/Ofl 2 > 0. This proof is clearly not formal, but we believe that

it is quite adequate for the large amplitude solitons. Using detailed computer simulations,

we found that the stability criterion OI/Ofl 2 > 0 is satisfied for arbitrary amplitude soliton

solutions.

9



The stability of the localized structures in the electron-positron-ion plasmas distinguishes

them fundamentally from the inherently unstable solitonic solutions obtained for pure e-p

plasmas. Since unstable nonlinear solutions are, generally, not accessible, it would :.._m that

the stable e-p-i solitons are more likely to lead to observable physical consequences.

In conclusion, we have shown that in electron positron plasmas with a small fraction of

ions, it is possible to have localized stable structures with relativistically strong amplitudes

of EM radiation and with large density bunching. Astrophysical objects, like radio galaxies,

quasars or radio pulsars could radiate ultrarelativistic EM waves, which, in the ever present

e-p-i plasmas in their vicinity may lead to the formation of stable solitons. As emphasized

earlier, it is these stable solutions which should be preferentially used to explain, for example,

the "micropulsations" in pulsar radiation. 15

We also believe that these stable localized structures as sources of large density inho-

mogeneities may provide templates for structure formation in the early lmiverse. Detailed

applications of this theory to cosmological, as well as laboratory plasmas, is left for future

publications.
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Figure Captions

1. A typical large amplitude structure; A versus r/. Barring the exponentially decaying

tail (Ir/I > 10), the rest of the soliton is very well approximated by the 'Cosine' formula

of nq. (18).

2. The soliton width L,, as a function of the amplitude A,_. For A,_ > 1, the relationship

is linear as predicted by Eq. (18).

3. A moderate amplitude 2D soliton; A versus r, the radial coordinate.

4. The nonlinear dispersion relation; the effective eigenvalue f12 as a function of A_, the

amplitude. As Am goes to infinity, f12 approaches unity.

5. A comparison of the numerical 2D solution with the Bessel function approximation

[Eq. (25)]. Again there exists excellent agreement for the bulk of the structure.

13



0 1=.6 _J _ 8b
• • • 0 •

l ---- -- iii ii u n - • ' -- liB nil

I I I I I -- II I l I l ,

I

U'I

I
.,..

0

!

o .;....

1

l=rl

t_ l . I .... t I_, ,I _ . | _ l _ _ J l,
n

0



'0

g

d

Fig. _



• Fig. 3

o

. .





....... i m ii

t

Fig. 5






