&

AN

oy
S o
B. 9
=
y
e
S N

B
-

a"v -

)

APR 11 1994

INSTITUTE FOR
FUSION STUDIES

DE-FG05-80ET-53088-652

osTy

IFSR #652

Positron Ion Plasma

A Relativistic Solitary Wave in Electron-

V.I. BEREZHIANI
Institute of Physics
The Georgian Academy of Sciences
Tamarashvili Street 6, Tbilisi 380077

Republic of Georgia

and

S.M. MAHAJAN
Institute for Fusion Studies
The University of Texas at Austin

Austin, Texas 78712

and

International Centre for Theoretical Physics

Trieste, Italy

March 1994

i

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

AUSTIN

THE UNIVERSITY OF TEXAS

"Joasay; £>uase Aue 10 JUIWUIIA0Y $NEIS PINUN
3 JOo %0 19 10 ABIS A[UIESSIOOU J0U Op UIIOY possaidxd sioyine jo suowmdo pue
SMIIA SYL 'Jooroyy Aousfe Aue 1o JUSWWIAAOH $ARIG PANuU[) Y} Aq Sulloaej Io ‘uonepuIW
~WO03X ‘JUAWISIOPUDS S At JO IMINSUOO A[LIBSSIOU 10U SIOP ISLMISYIO 10 “ISINIBJNUBW
“Yrewoper; ‘Sweu pery £q 201A1s 10 ‘ssa001d “1onpoid [esswuIod diyvads Kue 0} U1y 002
-19)9y ‘siyBu paumo A[reaud sFuujul Jou pinom asn s jeY) SHUSsAados 10 ‘paso[osip ssaooid
Jo ‘ponposd ‘smesedde ‘voneuniojur Kue jo ssounyasn 0 ‘sSIUNSAWIOd ‘KoeINooE Iy J0f KIIq
-1suodsas o Ayqiqer] [eSs] Aue sawmsse Jo ‘pandun 1o ssaudxs “Ayueuem Aue soyew ‘soakojdwod
1197 Jo Aue Jou ‘JoaIdy) A>uaBe Aue JOU JUIUIUIIACH SIIBIS PINU[) Y} JOYNON JUSWUIIA0N
311§ P[] 3y jo KduaBe ue £q pasosuods yiom Jo Junosoe ue se pasedosd sem odas sigy

ATNIVIOSIA



A Relativistic Solitary Wave In
Electron-Positron Ion Plasma
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Institute of Physics
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Tamarashvili Street 6
Thbilisi 380077
Republic of Georgia
and
S. MAHAJAN
Institute for Fusion Studies
The University of Texas at Austin
Austin, Texas 78712
and
International Centre for Theoretical Physics
~ Trieste, Italy

Abstract

The nonlinear propagation of circularly polarized electromagnetic (CPEM) waves
with relativistically strong amplitude in an unmagnetized cold electron-positron ion
plasma is investigated. The possibility of finding soliton solutions in such a plasma is
explored. In one- and two-dimensions it is shown that the presence of a small fraction

of massive ions in the plasma leads to stable localized solutions.



Recently, the nonlinear propagation of electromagnetic waves in electron-positron (e-
p) plasma has attracted considerable attention.! These plasmas, found (for example) near
the polar caps of pulsars, in the active galactic nuclei, in the early universe, will always
be created in system whose temperature exceeds twice the electron rest mass (~ 1.2 MeV).2
Propagation of intense short laser pulses in a plasma can also lead to pair production resulting
in a three-component electron-positron-ion (e-p-i) plasma.® In fact such three-component
plasmas have been seen in laboratory experiments® ° intending to use positrons as probes
to study transport in tokamaks. In addition to several other applications [like the pulsar
magnetosphere modeling,® an investigation of the e-p/e-pi plasmas is likely to further our
understanding of the early universe,” ~® in particular, of the MeV epoch in the evolution of the
universe; it may, indeed, be possible that a deeperinsight into the behavior of an interacting
plasma fluid in this era may provide valuable clues to its later evolution. A stable localized
solution with density excess may, coupled with gravity, create templates for confining matter
and creating inhomdgeneifies necessary to understand the observed structure of the visiblé
universe. |

The importance of the three-component admixture plasma has led to several theoretical
investigations. Rizzato® studied the localization of weakly nonlinear circularly polarized
electromagnetic [CPEM] waves in a cold plasma made up of electrons, positrons, and ions. In
Ref. 10 the propagation of intense electromagnetic radiation in an admixture of unmagnetized
three-component plasma is investigated analytically, and it is found that such a plasma may
be localized with the generation of a humped ambipolar electrostatic potential, and that
this potential could be used to accelerate charged particles. It is also noted in,'® that the
procedure of series expansion, is not valid for the case when a « 1, where « is the ratio of
the unperturbed ion to electron densities.

In this paper we abandon the small amplitude approximation, and study the nonlinear



propagation of ultrarelativistic intense electromagnetic (EM) waves in a plasma of unmag-
netized electrons, positrons, and massive ions, we aim to find localized stable structures
sustained by this plasma.

The equilibrium state of the three-component system is characterized by an overall charge
neutrality n, = n} + N,;, where n;, n} and N,; are the unperturbed number densities of
the electrons, positrons, and ions, respectively. Due to their relatively large inertia, the
ions do not respond to the dynamics under consideration and just provide a neutralizing
background.

To describe the propagation of electromagnetic waves in such a plasma, we start with

Maxwell equations expressed in terms of the vector (A), and the scalar (¢) potentials:

79t—z,—AA+-(%—v¢+(nv ~(1-a) n*v*) =0 (1)
and
Ap=(n"-(1-a)n* —aq) . (2)
The system is closed by invoking the hydrodynamic equations consisting of the equation
of motion |
T + V(1 + (P¥)*%) —:F—é‘t-¥v¢, (3)
and the continuity equation:
on* -
- V(@ Vi) =0, (4)

for each of the mobile components. Equations (1)-(4), written in the gauge V - A = 0, are
dimensionless with the following normalizations: The time and space variables are measured
in units of the electron plasma frequency we (: (4mn;e?/m.)Y 2), and the collisionless skin
depth (c/we), the vector and scalar potentials are normalized to m.c?/e, the relativistic
momentum P to m.c, and n~ and n* to their respective equilibrium densities n; and n}.

The coefficient a = N, /n; is the ratio of ion equilibrium density to electron equilibrium



density. In terms of P, the dimensionless quiver velocity is given by:

P:E
T e )

For the one-dimensional propagation (8/0z # 0, 8/0x = 0 = 8/0y) of a CPEM wave with

a mean frequency w, and a mean wavenumber k, along the z-axis, the vector potential can
be represented as:

A= % (x + 1y)A(z,t) exp ( tkoz — twot} + c.c. (6)

and can be readily shown [through Eq. (3)] to be proportional to the transverse momentum
P,

Pt =FA. (7)
Notice that A(z,t) is a slowly varying fiunction of z and t. The longitudinal motion of plasma

is determined by

OPf 08 2 £\2\/2 _ _0¢
5 T a; (L+1AF+ (PE)) " =55, (®)

the z-components of the equations of motion, and the continuity equations rewritten as:
ot B [n* pr } B
0t Oz (1+|AP+ (Pg)2)"?

where Eq. (7) has been used to eliminate P,

(9)

It is now convenient to introduce new variables, { = z—v,t , and 7 = t , where v, = k,/w,
is the group velocity of the electromagnetic wave packet, and v, 8/0¢ > 8/8r. The wave
frequency wo satisfies the dispersion relation: w? —= k2 + (2 — @) implying v, < 1 for a
transparent plasma for which w, > 1 (w, > we in the dimensional form). Equations (8)
and (9) are easily integrated to obtain P* and n* assuming that the vector potential tends
to zero at infinity. Substituting the obtained values of P¥ and n* together with Eq. (6)
into Egs. (1) and (2), and assuming that w, > (1 + |A4|?)!/2 [placing an upper limit on the
allowed wave amplitude}, we obtain:

_ 2
2i, 04 (2= ) A

or w?  ogr

¢
(1-¢?)

+A[ ha-@~®ﬂ:0, (10)
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and

@_3{<1+|A12>_(1—a> (1+|A|2)_a}_ ay

0c 2| (1+¢)? (1-¢)?

Equations (10)-(11) constitute a closed set describing the nonlinear propagation of pow-
erful CPEM waves of arbitrary [as long as |A| < w,] amplitude in an unmagnetized, transpar-
ent cold electron-positron-ion plasma. It was shown in Ref. 11 that a pure electron-positron
plasma (a = 0) cannot sustain an electrostatic field ¢. As a result the CPEM waves cannot
be localized in a pure e-p plasma. An investigation of Eq. (11)!2 for a fixed |A|, however,
reveals that it is possible to create wakefields by a coherent, short electromagnetic wave
packet moving in unmagnetized three component plasmas.

In this paper, we seek a localized solution of the system of Egs. (10) and (11). We
are interested in the case of small but nonzero « so that we can have a finite ¢. If the
characteristic length (L) of the wave satisfies the condition L > (1 + |A|?)~!/2, then from
(11) it follows that

1 « |A|?
~ - . , 12
*=320-a) [(1+|A|2) | | (12)
explicitly displaying that ¢ is proportional to o, i.e., ¢ <€ 1 for a <« 1.

Substituting (12) into (10) and neglecting terms of ¢* and higher orders, we obtain:

0A (2-0) B4 L ).
2?..&)087_+ 2 —8?_*,'3 A[l-m]—o, (13)

[+

where 8 = .5a/(2 — a)'/? « 1. For stationary solitons, the ansétz () is a constant corre-

sponding to a nonlinear frequency shift)

iAST
A = A(§) exp{ o } (14)
reduces Eq. (13) to
d’A 9 1
W—Q A+A[1—-m]—0, (15)

with n = [w.B/(2 — a)V?¢, and Q = A/3. Invoking the boundary conditions appropriate to
a localized solution, i.e., A = 0 = dA/dn as |n| — oo, Eq. (15) can be readily integrated and
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allows soliton-like solutions for 22 < 1. There are several ways in which the exact implicit

solution of Eq. (15) can be displayed. The most revealing perhaps, is the form

_cosT (L= @A+ AN 1, QUL+ AN 41— (1 (1 + A3
Inl = (1— Q)i Tl T A E - (- )1+ A2

(16)

For all values of Q2, Eq. (16) can be satisfied at || = 0 if (1 — Q2)(1 + A(0)?) = 1 leading
to A%(0) = A2, = Q%/1 — Q2, where the amplitude A, is the maximum value A can attain.
Clearly A,, — 0 as 2 — 0 and A,, becomes large as  — 1. Remembering that A is
exactly equal to the particle momentum measured in m.c, a large A,, corresponds to a
highly relativistic plasma, the principal regime of interest for this paper.

Let us begin the analysis of Eq. (.0) by determining the asymptotic behavior of A. As
long as €2 is not extremely close to unity, it is only the second term which can provide the
balance as |n| — oo. Thus for sufficiently large |n|, Eq. (16) leads to the exponentially
decaying solution [for all Q)

Aasy ~ Qsech Qn| . (17)

Having demonstrated that we have indeed found localized solutions for all Q, we shall now
derive approximate formulas to describe the main (not the asymptotic) part of the soliton.
Structure of Eq. (16) clearly suggests that in the two limiting cases of interest: @ — 0
(nonrelativistic) and Q@ — 1 (high relativistic), the right-hand side is dominated by the
second and the first-term respectively. Naturally in the nonrelativistic limit, the asymptotic
shape (17), vhich is the usual soliton solution of the nonlinear Schrédinger equation pertains
for all |n|.

The highly relativistic large amplitude wave (2 — 1, A, > 1), is new and considerably
more interesting. Barring the exponentially decaying tail, the main body of the soliton is

well approximated by

A= A, cos (Aim) (18)



and will be termed a ‘cosine’ soliton. The general shape of the large amplitude soliton
(obtained numerically) is displayed in Fig. 1, and is barely distinguishable from (18) in the
nonasymptotic region. In Fig. 2, we plot the soliton width L,, as a function of A,, and find
that, for A, > 1, L, is linearly proportional to A,, as predicted by (18).

The total plasma density variation associated with the soliton,
6N = 6nt +6n~ ~ A® (19)

is large for A% > 1; the solitons with ultrarelativistic amplitudes create large concentrations
of plasma density.
The stability of the soliton solution can be investigated using the well-known stability

criterion of Vakhitov and Kolokolov.!® According to this criterion the soliton is stable if

oI

—8—9—2>0, (20)

where I represents the “number of photons”:

1:/(11; A (21)

From a direct integration of the defining equations, one finds

1 1— A2
= An(1+AD)Y2 + 5 (1+ AT)2 arCCOS<1+A?n) , (22)

and it is trivial to see that 01 /092 = (01/8A2%)0A2 /002 = (1—Q2)~201/8A2, > 0, proving
the stability of the one-dimensional soliton for all 2.

We conclude that it is possible to obtain a large amplitude soliton solution in an unmag-
netized cold plasma consisting of electrons, positrons, and a small fraction of massive ions.
We assert the fact that the presence of even a very small fraction of massive ions is crucial
to the soliton formation; a pure electron-positron plasma cannot sustain this disturbance.

The electromagnetic wave pulse with arbitrary amplitude, under certain given conditions,



will always be spread out in a pure electron-positron plasma.!! The addition of a small frac-
tion of massive ions, stops the pulses from spreading out; the solitons will emerge from the
modulational interactions of these pulses. We note in passing that such soliton potentials
propagating with vy =~ ¢, could readily cause acceleration of resonant particles.'*

We now generalize our results by allowing a transverse variation of the fields. If we as-
sume that A depends weakly on the transverse coordinates [A = A(€, z,y, t)], i.e., (0A/8E) >
V. A, Eq. (13) can be rewritten with an additional term A A. Assuming A} A > w;%(9%A/6€?),
Eq. (13) modifies to

21w, %é + A1 A+ [%A [1 - (_ll—llm] =0 (23)

which, with the substitution (14), yields

0?4 104 [1 1 }.—.0 (24)

ga,294 a2y -
o2 Ty AT Al -

for the cylindrically symmetric configuration.

We will concentrate on the so-calléd “ground state solution”!? of Eq. (25). r.I‘his solution
is positive, radially symmetric, is monotonically decreasing with increasing r, and satisfies
the boundary conditions (dA/dr), = 0, A(oo) = 0,. It is easy to see that such a solution
exists only if Q% < 1.

We solve this nonlinear eigenvalue problem numeiically. A typical result of numerical
calculations is displayed in Fig. 3, where A is plotted as a function of . In this example the
eigenvalue Q2 = 0.2881 (A(0) = A,, = 1). In Fig. 4 we present the dependence of Q2 on A,,,
the amplitude of the localized solution. The relationship 92 = Q2(A,,) can be considered as
a type of “nonlinear” dispersion relation. We see that for the ultrarelativistically strong EM
waves (i.e. A, > 1), 0% - 1.

For the ultrarelativistic case, it is also possible to find a nearly analytic solution of

Eq. (24). Indeed, for the region where A, > A > 1, the solution of Eq. (24) is simply the



zeroth-order Bessel function:

A= An - Jy(kr) (25)

where k = (1 — Q2)/2, In the asymptotic region, the solution must decay, and Eq. (25) is

solved by the modified Bessel function

A~ Ky(Qr) ~ -exp(—Qr) , (26)

1
revealing the characteristic exponential decay. The numerical solution of Eq. (25) (solid line)
along with the analytical expression (26) (dashed line) is displayed in Fig. 5. One can see
that the main part of the solution (which contains most of the EM wave energy) is well
described by the Bessel solution (26), the two-dimensional analog of the “cosine” soliton
[Eq. (18)]. Note that, as in the one-dimensional case, the soliton width (d ~ k~!) is an
increasing function of the amplitude A,, > 1.

The stability of two-dimensional solution can be determined by using the condition (20).

For the cylindrical symmetric case,
. , ,
1:/ drr A? (27)
0 _

which, for the large amplitude case (A, 3> 1), will be dominated by contributions from the

region in which the Bessel function solution holds. Simple algebra leads us to

AL
I=Cog, (28)

C:
a:A’axﬁm>o

where C; is a constant of order unity. From (28), and from the condition A,/ > 0
[see Fig. 4] we get that 8I/8Q% > 0. This proof is clearly not formal, but we believe that
it is quite adequate for the large amplitude solitons. Using detailed computer simulations,
we found that the stability criterion 81/0Q% > 0 is satisfied for arbitrary amplitude soliton

solutions.



The stability of the localized structures in the electron-positron-ion plasmas distinguishes
them fundamentally from the inherently unstable solitonic solutions obtained for pure e-p
plasmas. Since unstable nonlinear solutions are, generally, not accessible, it would . :em that
the stable e-p-i solitons are more likely to lead to observable physical consequences.

In conclusion, we have shown that in electron positron plasmas with a small fraction of
ions, it is possible to have localized stable structures with relativistically strong amplitudes
of EM radiation and with large density bunching. Astrophysical objects, like radio galaxies,
quasars or radio pulsars could radiate ultrarelativistic EM waves, which, in the ever present
e-p-i plasmas in their vicinity may lead to the formation of stable solitons. As emphasized
earlier, it is these stable solutions which should be preferentially used to explain, for example,
the “micropulsations” in pulsar radiation.!?

We also believe that these stable localized structures as sources of large density inho-
mogeneities may provide templates for structure formation in the early universe. Detailed
applications of this theory to cosmological, as well as laboratory plasmas, is left for future

publications.
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Figure Captions

1. A typical large amplitude structure; A versus n. Barring the exponentially decaying
tail (|n| > 10), the rest of the soliton is very well approximated by the ‘Cosine’ formula
of Eq. (18).

2. The soliton width L, as a function of the amplitude A,,. For A,, > 1, the relationship

is linear as predicted by Eq. (18).
3. A moderate amplitude 2D soliton; A versus r, the radial coordinate.

4. The nonlinear dispersion relation; the effective eigenvalue Q? as a function of A2, the

amplitude. As A,, goes to infinity, Q? approaches unity.

5. A comparison of the numerical 2D solution with the Bessel function approximation

[Eq. (25)]. Again there exists excellent agreement for the bulk of the structure.
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