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Abstract

The influence of a general static external magnetic perturbation on the stability

of resistive modes in a tokamak plasma is examined. There are tbree main parts

p to this investigation. Firstly, the vacuum perturbation is expanded as a set of well-

behaved toroidal ring functions and is, thereafter, specified by the coefficients of this

expansion. Secondly, a dispersion relation is derived for resistive plasma instabilities

in the presence of a general external perturbation and finally, this dispersion relation

is solved for the amplitudes of the tearing and twisting modes driven in the plasma

by a specific perturbation. It is found that the amplitudes of driven tearing and

twisting modes are negligible until a certain critical perturbation strength is exceeded.

Only tearing modes are driven in low-/_ plasmas with e_p << !. However, twisting

modes may also be driven if e/_p_> 1. For error-field perturbations made up of a large

number of different poloidal and toroidal harmonics the critical strength to drive locked

modes has a 'staircase' variation with edge-q, characterized by strong discontinuities as

coupled rational surfaces enter or leave the plasma. For single harmonic perturbations

_)Culham Laboratory, Abingdon, Oxon., OX14 3DB, UK

1



the variation with edge-q is far smoother. Both types of behaviour have been observed

experimentally. The critical perturbation strength is found to decrease strongly close to

an ideal external kink stability boundary. This is also in agreement with experimental

observations.



I Introduction

Recent experimental and theoretical results have lead to a greatly increased understanding

of the influence of a static external magnetic perturbation on resistive mode stability in a

tokamak plasma. 1-m It is found that plasma rotation inhibits externally driven magnetic re-

connection until a certain critical perturbation amplitude is exceeded. The critical amplitude

decreases strongly with increasing machine dimensions because of the relatively slow intrinsic

plasma rotation in large devices, 9 but can be artificially increased by spinning the plasma

with unbalanced neutral beam injection (NBI). S The critical amplitude is sufficiently small

in the largest present-day devices to allow field errors, due, for instance, to misalignment

of poloidal field coils, to drive magnetic reconnection in otherwise stable plasmas. 1'1° This

effect can significantly reduce the disruption-free operating space at low plasma densities,

and may, therefore, need to be taken into account in the ongoing International Tokamak

Experimental Reactor (ITER) Engineering Design Activity. 11

Existing theories describing the interaction of a static external magnetic perturbation

with a rotating tokamak plasma are limited to zero-_ in slab or cylindrical geometry. 2'6's'9

We aim to extend the theory of this interaction to both finite-_ and toroidal geometry.

There are, of course, a _number of complications. At zero-_ only tearing parity plasma

instabilities need to be taken into account, whereas at finite-_ twisting parity modes must

also be included in the analysis. 12Furthermore, in toroidal geometry magnetic perturbations

with different poloidal mode numbers are coupled together. As is described in Sec. II, the

dispersion relation for externally driven resistive modes in a plasma possessing N rational

surfaces takes the form of two coupled N × N matrix equations. 12 In Sec. III we use this

dispersion relation to investigate the response of intrinsically stable tearing and twisting

modes to a generalized external perturbation. In Secs. IV and V we classify and characterize



the external perturbations which are likely to occur in experimental situations, using results

from the recently developed T7 code. _3Our main conclusions are summarized in Sec. VI.

II The Dispersion Relation for Externally Driven Re-
sistive Instabilities

A. Asymptotic matching

The analysis of resistive instabilities in a high temperature tokamak is generally facilitated

by dividing the plasma into two regions. 14 In the 'outer' region, which comprises most of

the plasma, a general instability is governed by the equations of ideal magnetohydrodynazn-

ics (MHD), which are equivalent to the requirement of force balance in an incompressible,

perfectly conducting fluid. 1_ The 'inner' region is localized around so-called rational flux

surfaces, where the helical pitch of equilibrium magnetic field lines resonates with that of

the instability. The ideal MHD equations are, in fact, singular at the rational surfaces. The

physical solution is obtained by asymptotically matching the outer solution across a set of

thin layers centered on the rational surfaces. In these layers nonideal effects such as plasma

resistivity, inertia, viscosity, and compressibility are important.

B. The dispersion relation

Suppose that there are N rational surfaces in the plasma resonant with toroidal mode number

n. Let rl < ?'2 < "''rN be the minor radii of these surfaces, and rnl, m2, ...ran the

resonant poloidal mode r"mbers. There are, in general, 2N independent resistive modes.

It is convenient to resolve a general mode into components of N basis tearing modes and

N basis twisting modes. The jth basis tearing mode (1 <_ j <_ N) is defined to have unit

tearing amplitude and zero twisting amplitude at rational surface j, with zero tearing or

twisting amplitude at any other surface. Likewise, the jth basis twisting mode has unit

twisting amplitude and zero tearing amplitude at surface j, with zero tearing or twisting
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amplitude at any other surface. Here, the tearing amplitude at surface j is basically the

even (with respect to the rational surface) component of the perturbed normal resonant

magnetic field, whereas the twisting amplitude is the odd component (see the appendix for

more exact definitions).

The most general dispersion relation for coupled tearing and twisting modes in the pres-

ence of an external perturbation takes the form (see appendix) 12'18

{A+(_)_ E +} _+ _ H _- = C+ , (la)

(A-(_) -- E- } @- - H t @+ = C-, (lb)

where E* is an N x N real symmetric matrix, H is an N x N real matrix and Ht is its

transpose, A:e(w) is the N x N complex diagonal matrix of the A_:(w) values, @_" is the

1 x N complex vector of the _= values, and C =_are 1 x N complex vectors characterizing

the external perturbation. Here, A+(w) is the tearing parity stability index for the layer

at rational surface j, and A_(w) is the corresponding twisting parity stability index [see

Eq. ' (A.11) and Sec. II.F]. Also, _+ is the tearing amplitude at surface j, and _ the

corresponding twisting amplitude [see Eq. (A.10a)]. The tearing amplitude is sometimes

termed the 'reconnected flux.'

The E+ Matrix determines the intrinsic stability and mutual interaction of basis tearing

modes in the plasma. The E- Matrix governs the intrinsic stability of basis twisting modes,

and the H Matrix specifies the interaction of basis tearing and twisting modes. The evalua-

tion of these matrices in a large aspect ratio, low-/_, weakly shaped tokamak equilibrium is

discussed in Refs. 12 and 13. The appendix describes how the components of the C:e Vectors

are calculated for a given external perturbation and plasma equilibrium.



C. The E + matrix

Consider a plasma with a monotonic safety factor profile containing no rational surfaces

resonant with poloidal mode number m = 1. (The restriction to m > 1 modes is necessary

because the m = 1 mode generally requires special treatment in tokamak plasmas, lz) In such

a plasma the diagonal elements of the E+ Matrix take the form

E+= n°+ (2)

where A ° is the standard cylindrical tearing stability index for the m#/n mode (normalized

with respect to r#). The off-diagonal elements of the E+ Matrix are O(c). Coupling of

basis tearing modes with resonant poloidal mode numbers differing by unity is effected by

the Shafranov shift of flux surfaces, which is driven by toroidicity and the plasma pressure.

Coupling of modes with poloidal mode numbers differing by two or three is effected by flux

surface ellipticity or triangularity, respectively. 13 (The 'resonant' poloidal mode number of

the jth basis tearing or twisting mode is, of course, m#.)

D. The E- matrix

For a plasma with a monotonic safety factor profile the E- Matrix is diagonal (for the

ordering adopted in Refs. 12 and 13), indicating that there is no direct coupling of basis

twisting modes possessing different resonant poloidal mode numbers. The jth diagonal

element can be written 12

E5 = -A_ + ej mi(c_) 2 , (3)

where A; is a stabilizing term emanating from the layer at rational surface j, and

(2R°#°p'q2) (4)c_j= - B02 "J

is a measure of the local pressure gradient at surface j. Here, Ro is the major radius of the

plasma, B0 the vacuum magnetic field strength on the magnetic axis, r the minor radius



of flux surfaces, p(r) the equilibrium pressure profile, q(r) the safety factor profile, and '

denotes d/dr. In Eq. (3), e_ is an (9(1) parameter which can be evaluated using mj =h1/n

cylindrical basis functions. In Ref. 12 it is demonstrated that to a good approximation

Aj = 2.L04,_ /_.1/-_/3 (5)
\ '/4 'V rj

in a typical ohmically heated tokamak plasma, where compressibility, (anomalous) viscosity,

_,nd resistivity are the dominant nonideal effects. In the above, rH = (Ro/So)y/#op(r)/ns(r)

i_ the hydromagnetic timescale, rn(r) = ttor 2/r/ll(r) the resistive timescale, rv (r) = r2p(r)/#.t (r)

the viscous timescale, and 3j = %PoP(r3)/B 2 is a measure of the stabilizing effect of plasma

compressibility at surface j. Here, % is the standard ratio of specific heats, p(r) the plasma

mass density, r/ll(r) the parallel resistivity, #j_(r) the (anomalous) perpendicular viscosity,

and s(r) = rq'/q the magnetic shear.

E. The H matrix

For a plasma with a monotonic safety factor profile the H Matrix is tridiagonal, indicating

that basis tearing modes can couple to basis twisting modes with the same resonant poloidal

mode number and with mode numbers differing by unity, and vice versa. The jth diagonal

element is written 12

71"/_j _- O(f2 ) , (6)
Hz = - 2 sj

where

d d

is a measure of the local equilibrium current gradient at rational surface j. The element of

the H Matrix which couples the basis tearing mode associated with surface j to the basis

twisting mode associated with surface k takes the form .2

H3k = hjk m_ak , (8)
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provided mk = m_ ± 1. The O(1) parameter hjk can be evaluated using m_/n cylindrical

basis functions.

F. The layer responses

The responses of the resistive layers at the N rational surfaces in the plasma to tearing and

twisting parity perturbations from the outer region are specified by the diagonal matrices

A+ and A-. The jth diagonal element of A+ (i.e. A+) specifies the response of the jth

layer to a tearing parity perturbation, and the jth diagonal element of A- (i.e. /_-) specifies

the response to a twisting parity perturbation. It turns out that the responses of resistive

layers to external perturbations are resonant in nature. 2'1s That is, there is virtually rio

tearing or twisting amplitude driven in a layer unless the external tearing or twisting parity

perturbation rotates in a certain very narrow band of frequencies. The optimum frequency

for externally driven tearing amplitude at surface j is equal to the 'natural frequency' of

the jth basis tearing mode (i.e. the propagation frequency of the uncoupled, intrinsically

unstable jth basis tearing mode). Likewise, the optimum frequency for externally driven

twisting amplitude at surface j is equal to the natural frequency of the jth basis twisting

mode. In Ref. 12 it is shown that to a good approximation

A_:(w) = -i (w - w]:) Ti (9)

in a typical ohmically heated tokamak plasma. Here, w is the mode rotation frequency [all

layer quantities are assumed to vary like exp(-iwt)],

/ l/a .5/6)
/_'H 'R (10)

,,:  .,o4t ,,
is the reconnection timescale at surface j, w+ is the natural frequency for tearing parity

modes at this surface, and aJ_- is the corresponding natural frequency for twisting parity

modes. Both natural frequencies are determined by local equilibrium plasma flows. Typ-

ically, the natural frequencies of tearing and twisting modes differ by of order the local
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electron diamagnetic frequency. 12 In addition, sheared rotation and diamagnetic flows in the

plasma ensure that the natural frequencies of basis modes associated with different rational

surfaces are not the same.

Ca. The C ± vectors

The C* Vectors are functions of both the plasma equilibrium and the external perturbation.

Typical values are given in Secs. IV and V, but for the moment they are assumed to be

arbitrary.

III Externally Driven Resistive Instabilities

A. Introduction

In this section we aim to characterize the solutions of the dispersion relation (1), as fully as

possible, for the case of an arbitrary static external magnetic perturbation interacting with

an intrinsically stable plasma. Section III.B examines the simple case where there is only

one rational surface in the plasma. Section III.C describes the more complicated situation

where there are two rational surfaces, and Sec. III.D briefly examines the case of three (or

more) surfaces.

B. Stability of a plasma containing a single rational surface

1 Introduction

Consider the simplest possible situation where there is only a single rational surface in the

plasma, radius rl, resonant with poloidal mode number ml. In this case the dispersion

relation (1) reduces to

(A'{- En)C + + H, IC{

4 + = (A+ _ E+)(Ai " - E5)- (H,,) 2 '



( Z_ _l - E I_I) C _ -[" H11C1_ (11)
_- = (A + - E+)(A[ - - E[-_)- (H,,) 2 '

Now, [w+ -w[-[_-_ >> 1 in a typical high temperature tokamak plasma, _2,_8where w+ is the

natural frequency of tearing parity modes at the rational surface, _ is the natural frequency

of twisting parity modes, and rl is the reconnection timescale. It follows from Eqs. (9) that

A + and A_" are never small simultaneously, so Eqs. (11) reduce to

c,+
_+ ,,_ i_+_.l- E + '

_- _- i w_"_'l - E_-I ' (12)

assuming that the perturbation is static (i.e. w = 0). It is also assumed that the tearing and

twisting modes are both intrinsically stable, so that E + < 0 and E_] < 0. It is clear from

(12) that the C+ Vector drives tearing parity modes in the plasma, whereas the C- Vector

drives twisting parity modes.

2 Electromagnetic and viscous torques

The nonlinear toroidal electromagnetic torque acting at rational surface 1 is given by

2n_r2Ro
5T¢ EM(rl) = x

P_

(w+rt)2 + (_E+)_ IC+12 . (_-_.,)2 + (_E_])2 IC_'l2_ , (13)

where use has been made of Eqs. (9), (12), and (A.12). This torque modifies the bulk

toroidal rotation. 9'1_'19(It is assumed that any modifications to the bulk poloidal rotation

are prevented by strong poloidal flow damping.) The steady-state shift induced in the plasma

toroidal angular rotation velocity is9'_9

12¢(r) = 12¢(rl) " dr _ dr (14)

r#±(r) , r#j.(r) rl <_ r <_a,
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where a is the minor radius of the outermost plasma flux surface. Here, it is assumed that

the toroidal rotation is 'clamped' at the edge (r = a), so that f_¢(a) = 0. 5'9 The viscous

restoring torque which develops at the rational surface is given by9'19

dfl,]r, +6Tevs(r,) = 4r_R0 x (r_±P_)--_r ],,_

/ff dr (15)-- -@r2Ro × f_¢(rl)R_o x , r#.L(r) "

In a steady-state plasma the viscous and electromagnetic torques must balance, so

6T,EM(r_)+ 6T,vs(r_)= 0. (16)

Finally, the changes induced in the plasma toroidal angular velocity profile Doppler shift the

various natural frequencies, so that

where w_ now denote natural frequencies in the unperturbed plasma.

3 Torque balance

The balance of electromagnetic and viscous torques in the plasma yields

1 y+ (I - f) 1 y- f

(b+)2 + (1 - f)2 - _ (b-)2 + f2 -- f- fl , (18)

where

/= nn_(.r_)-_.,:-
w+ -w_" ' (19a)

w

-wt (19b)
/l = w+_ _i" '

= -Eft
iw+ _ wi..l,rt , (19c)
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y.= Ic lA2 , (19d)

h 2 - po R2o(co+ - co?)2r,//a dr- 2 n 2 , r#±(r) " (19e)

In the physically relevant asymptotic limit be << 1,12 Eq. (18) possesses bifurcated solu-

tions. Bifurcations occur in the y+-y- plane when the curve of lccus

y+ - 4(2f- fl)(1--f)2,

y- = 4(1- 2f + fl)f_ (20)

is crossed in the direction of increasing y+ and y-. This critical curve is plotted in Fig. 1.

The solution can either bifurcate to the tearing resonance at surface 1 (f = 1), or the

associated twisting resonance (.f = 0). Prior to bifurcation there is very little driven tearing

or twisting amplitude, whereas after bifurcation, or 'locking', to the tearing resonance there

is substantial driven tearing amplitude at surface 1,

_+ __ C+ (21)
(-E +)

and likewise after locking to the twisting resonance there is substantial driven twisting am-

plitude,

_i" _- Ci- (22)
(-E_i) "

Locking to either resonance is associated with a sudden change in the steady-state plasma

rotation such as to bring the Doppler shifted natural frequency of the tearing or twisting

mode at surface 1 (as appropriate) into coincidence with the applied frequency (which is, of

course, zero for a static external perturbation).

Suppose that IC+I 2 >> ICi-I 2 (i.e. the locking torque exerted at the rational surface due

to externally driven tearing amplitude is much greater than that due to driven twisting
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amplitude). As is described in Sec. V, this is likely to be the case in low-B tokamak plasmas.

In this limit, locking to the tearing resonance takes place when the Doppler shifted natural

frequency for tearing modes is reduced to one half of its original value [i.e. w+ - nfl¢(rl) =

! w+] This takes place when2

Ic,+l'>_A,,_- ,, d,-/r)" C 3)
4 Discussion

It is clear that the tearing and twisting amplitude driven in a stable tokamak plasma by

a static external magnetic perturbation is a highly nonlinear function of the perturbation

strength. In fact, there is virtually no driven amplitude until the perturbation strength

exceeds a critical value (i.e. IC+I, ICi-I "" A), at which point substantial tearing or twisting

amplitude is driven in the plasma. Externally driven tearing amplitude at surface 1 leads to

the formation of a stationary chain of magnetic islands whose width is proportional to the

square root of the amplitude. 2° Externally driven twisting amplitude leads to the formation

of a much narrower chain of 'skewed' magnetic islands whose width is directly proportional

to the amplitude. Thus, locking of the external perturbation to the twisting resonance at

surface 1 is likely to cause less degradation of the plasma confinement than locking to the

tearing resonance. A threshold effect for externally induced magnetic tearing in tokamaks

has been observed experimentally.l'_,m

C. Stability of a plasma containing two rational surfaces

1 Introduction 4

Suppose that there are two rational surfaces in the plasma (labelled 1 and 2, with r2 > rl). 4

It is assumed that the basis tearing and twisting modes associated with the two surfaces

are all intrinsically stable, so that E_ < 0 and E_ < 0. In the following, our investigation
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1
is limited to tearing parity modes, for the sake of simplicity. In fact, as is discussed in

Section V, the components of the C- Vector, which drive twisting parity modes in the

plasma, are proportional to the plasma pressure and can, therefore, be neglected in low-_

devices.

2 Electromagnetic and viscous torques

In the physically relevant limit, w+rl >> 1 (where j is 1 or 2), the tearing amplitudes driven

by a general static external perturbation are given by

_ ___-__?c_j, (24)
and the localized electromagnetic locking torques exerted at the rational surfaces are written

6TeEM(r1) -- 2nr2Ro IC+I2× J.---2-I .
_0 _?_j (25)

The steady-state shift induced in the plasma toroidal angular velocity profile by these torques

takes the form

_(r_) r < r_

tim(r) = fie(r2) + [fie(r1) - fie(r2)] r#±(r) , r#_(r) rl <_r < r2 (26)

_¢(r2) rtz±(r) , r#±(r) r_ < r < a,

which implies the following localized viscous torques acting inside the plasma:

_%vs(r,)=-4r2n0× [,,(r,)- ",(r2)]P_/_'_ dr (27a)
t r#±(r)'

/_a dr (27b)6T,w(_)=-_T,v_(_,)- 4_Ro× n,(_)R_ , _,±(_).
As before, the changes induced'in the plasma rotation Doppler shift the various natural

frequencies, so that

14



3 Torque balance

After some manipulation, torque balance at the two rational surfaces yields the following

pair of coupled quadratic equations:

z2- 1-_ x+_ =0, (29a)

y2_ 1 4t¢ Y +4 =0, (29b)

where the variables

_,+- _(r,) _+- _(_)
z = _+ , y= _+ (30)

are the Doppler shifted natural frequencies normalized with respect to their unperturbed

values. The components of the external magnetic perturbation are specified by the parame-

ters

a-lh_l, tt= ,

where

2 n 2 j r#±(r) "

Note that a = 1 corresponds to the critical external perturbation strength required for

locking to the tearing resonance at surface 4 in the absence of any torque exerted on surface

2, and vice versa. The two remaining parameters,

w+ (33a)
wl+ ,

)_= f" dr / _" dr (33b)2 r#±(r) , rt_±(r) '

depend on the nature of the unperturbed plasma equilibrium. Note that 0 < £ < 1, since

r2 > rl and #±(r) > 0.
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4 Locking at surface 1

According to Eqs. (29), locking to the tearing resonance at the innermost rational surface

(i.e. surface 1) occurs when a _>a_it, where

,¢ {1 (1 1!)1_(1 1_) 2 ( 1A)} (34)

The normalized Doppler shifted natural frequencies just prior to locking are given by Zerit =

1 and] O/crit

U_,t-_ 1 2 +_ I-_ -/_ 1- A . (35)

Locking to the tearing resonance at the outermost rational surface (i.e. surface 2) occurs

when/_ >/_erit, where

and

__ IwithYcr,t {B¢r_t.Finally,simultaneouslockingtothetearingresonancesatbothsurfaces

occurswhen a --ao and/3- _o,where

ao- (1-¼A) ' _- (1-4 !A) " (38)

The normalized Doppler shifted natural frequencies just before simultaneous locking are

•0= ½ andyo: ½

Note that if _ = 0 (i.e. if the external perturbation exerts no torque at surface 2) then

1
locking to the tearing resonance at surface I occurs when _ = 1 (i.e. [C'_'l[ : Ax) with z =

[i.e. _, - nf}_(rl) : ½aJl], which is equivalent to the simple cylindrical result of See. III.B

(neglecting twisting modes). However, if B > 0 then locking to the tearing resonance at

surface 1 occurs when a < 1 (i.e. the threshold locking torque at surface 1 is reduced) with
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L [i.e. a,'_- nf_(rl) < ½a;l]. Similarly, if a :p 0 then both the threshold torque required.r.<

to lock the tearing resonance at surface 2 and the critical Doppler shifted naturM frequency

just prior to locking are less than the cylindrical values.

Figures 2(a)-(e) show the locking thresholds for the tearing resonance calculated from

Eqs. (29) for five different values of the parameter _, which measures the ratio of the un-

perturbed natural frequencies for tearing parity modes at the two rational surfaces [see

Eq. (33a)]. The thresholds are plotted at constant A in a2-_32space. The locus of the point

of simultaneous locking of both surfaces is also plotted. The parameter A is strongly de-

pendent on the relative positions of the two rational surfaces: A ---, 1 as the two surfaces

approach one another, and A ---,0 as the outermost surface app:oaches the edge of the plasma

[see Eq. (33b)]. The variables a 2 and t32 are proportional to the locking torques exerted at

surfaces 1 and 2, respectively [see Eqs. (25) and (31)]. These torques are normalized with

respect to the threshold locking torques for each surface taken in isolation. For example,

a = 1 corresponds to the threshold torque required for locking to the tearing resonance at

surface 1 when no torque is exerted on surface 2. In Figs. 2, locking does not take place

in the region of parameter space bounded by the threshold curve and the lines a = 0 and

3 = 0. If the threshold curve is crossed (e.g. by increasing the amplitude of the external
• ,

perturbation) then locking of either surface 1 or 2 occurs. Surface 2 is locked if the threshold

curve is crossed on the low-a side of the simultaneous locking curve, whereas surface 1 is

locked if the threshold curve is crossed on the high-a side.

It can be seen from Figs. 2 that reducing the parameter _ favors the locking of surface

2. This is not surprising, since reducing _ corresponds to reducing the unperturbed natural

frequency of tearing modes at surface 2 with respect to that at surface 1. For _ < ½ and

A < 2_, surface 2 always locks before surface 1. Similarly, for _ > 2, surface 1 always locks
.,

before surface 2. Increasing A tends to decrease the threshold torques required to induce

locking. This is also not surprising, since if ,_ __ 0 (i.e. if surface 2 lies very close to the plasma

17



edge) a velocity change induced at surface 1 has little effect at surface 2 [see Eq. (26)1, so

the surface 2 locking criterion is virtually unaffected by the presence of surface 1. On the

other hand, a velocity change induced at surface 2 always has an effect at surface 1, so the

locking threshold for surface 1 is reduced somewhat by the presence of surface 2. This type

of mutual interaction between the two surfaces is strongest when they are very close together

(i.e. when ,k --, 1) so _be locking threshold is naturally smallest in this case.

5 Locking at surface 2

Suppose that the tearing resonance at the outermost surface (i.e. surface 2) is locked, so that

ntis(r2) = w+, but that the innermost surface (i.e. surface 1) remains unlocked. It is easily

demonstrated that in the physically relevant limit the tearing amplitude driven at surfa_ce 1

satisfies

_+
• + _ -i [_+ _ nfl_(rx)]vi ' (39)

where

C+ - C+ + (-E_) C+" (40)

The usual analysis reveals that locking to the tearing resonance at surface 1 occurs when

- i1-_1
IC+l_>_ h,. (4_)

If the tearing resonance at surface 1 is locked but surface 2 remains unlocked then the

tearing amplitude driven at surface 2 satisfies

c_+ (42)_+-_-i [_+_ nn_(_,)]_,'

where

E+ C + . (43)
_+ = C+ + (_E +)

18



It is easily demonstrated that in this case locking to the tearing resonance at surface 2 occurs

when

i +l > I1- (44)- eT:-X

6 Discussion

It is clear from the above analysis that the situation with two rational surfaces in the plasma

is far more complicated than that with only one surface, even when twisting resonances are

neglected. In general, locking to the tearing resonance at a given rational surface is facilitated

by the electromagnetic torque exerted at the other surface, so the locking threshold is reduced

somewhat below the single surface value. The critical Doppler shifted natural frequency just

before locking is also generally less than the single surface value.

D. Stability of a plasma containing three (or more) rational sur-
faces

Suppose that there are three rational surfaces in the plasma (labelled 1, 2, and 3, with

r3 > r2 > r_). It is assumed that all of the basis plasma modes are intrinsically Stable, and

the twisting resonances are again neglected.

Application of the previous analysis to this case, in the physically relevant limit .'+,r_ >> 1,

yields the following set of coupled quadratic equations which control locking to the tearing

resonances at the three rational surfaces:

x 2-- 1-_21y 4_st x+_ =0, (45a)

( 1A,,a' 1 ._) 1_,y_- 1 4n_l x 4_32 y+_ =0, (45b)

1 )_31a2 1 ,_32 z+_ =0. (45c)z 2- 1 4_zl x 4_32
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The additional variable z = [w+ - nfl_(ra)]/w + is the normalized Doppler shifted natural

frequency at rational surface 3. The parameter "_= [C+/A_[ spccifies the locking torque at

surface 3:7 = 1 corresponds to the torque needed for locking to the tearing resonance at

this surface when no torques are applied at surfaces 1 and 2. Finally, the parameters

'_'J = _V ' (46a)

fa dr /fr a dr (46b) IA_)= , r#j.(r) i r#z(r)

depend on the nature of the unperturbed plasma equilibrium.

Equations (45) can be solved in much the same manner as Eqs. (29) to give the locking

thresholds for the various rational surfaces. It is also fairly clear how to extend Eqs. (45) to

describe the situation where there are an arbitrary number of surfaces in the plasma.

E. Summary

The above analysis is clearly far more complicated than the zero-B, cylindrical analysis of

Refs. 9 and 19. There are two main reasons for this. Firstly, at fmite-fl there is a twist-

ing resonance, as well as a tearing resonance, at every rational surface in the plasma, to

which the external perturbation can lock (see Sec. III.B). Secondly, the coupling of different

poloidal harmonics in toroidal geometry ensures that even a single helicity external pertur-

bation exerts electromagnetic torques simultaneously at more than one rational surface in

the plasma (see Secs. III.C and III.D). In the above, these effects are investigated separately,

but the analysis can easily be extended to deal with both effects simultaneously.
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IV Calculation of the C + vector

A. Introduction

The aim of this section is to classify and characterize the C + Vectors which are likely to

occur in experimental situations. It is demonstrated in the appendix that the C+ Vector is

a function of both the plasma equilibrium and the external perturbation, so in Secs. IV.B

and IV.C we describe how these are specified in our investigation. Section IV.D describes

the C + Vector associated with a narrow spectrum external perturbation, whereas Sec. IV.E

deals with the C + Vector from a broad spectrum perturbation.

B. Specification of the plasma equilibrium

I

Consider an equilibrium in which the locus of the flux surfaces is given by

R = R0 - rcosw - A(r) + E(r) cos_ + T(r)cos2w + (9(e2a) ,

Z = rsinw + E(r) sinw + T(r) sin 2w + O(e2a) . (47)

Here, (R, ¢, Z) are standard cylindrical polar coordinates (with Z in the direction of the

toroidal symmetry axis), Ro is the plasma major radius, r is a radius-like flux surface label,

._, is the poloidal angle about the magnetic axis (r = 0), A(r) is the ShafTanov shift of

flux surfaces, E(r) is the flux surface ellipticity, and T(r) is the flux surface triangularity.

The outermost plasma flux surface lies at r = a, where a is the plasma minor radius. The

ordering assumptions are that e -: a/Ro << 1, and A(a), E(a), T(a) ,,_O(ea).

The safety factor profile q(r) is assumed to satisfy

(r/a) 2

q(r)=q. 1- [1- (_/a)_l_./_o- q°_ (r/a)2k[1- (r/a)2l, (4s)

where q0 is the central safety factor, q, is the edge safety factor, and k is a positive integer.

The O(e 2) edge shear parameter A is chosen so that the plasma current is zero at r = a. ta In
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the cylindrical limit, Eq. (48) corresponds to an equilibrium toroidal current profile of the

form j(r) = jo [1 - (r/a)2] g*/g°-l.

The plasma pressure profile is assumed to satisfy

p=po{l- (49)

Here, po is the central plasma pressure, which is conveniently parameterized by the (cylin-

drical) poloidal beta

4,o(
The adopted ordering scheme requires e_3pto be small compared with unity.

C. Specification of the external magnetic perturbation

A static external magnetic perturbation can be generated via helical windings or saddle

coils, but can also arise by accident if the poloidal and toroidal field coils which support the

plasma equilibrium are not properly aligned. An accidentally induced magnetic perturbation

is usually referred to as an 'error field.' A general external perturbation (with a given toroidal

mode number n) can be completely specified by a set of complex amplitudes, the In, which

are basically the expansion coefficients of the vacuum magnetic scalar potential interior to

the generating coils in the well behaved (as r --, 0) toroidal ring functions [see Eqs. (A.18),

(A.34), (A.39), and (A.40)]. The vacuum perturbation within the generating coils can be

shown to reduce to

"(1)"'-'(6B,)ml -_ i _ --if- exp[i (mS - n_b)] (51)rn#o

in the cylindrical limit [see Eqs. (A.4a), (A.19), (A.21), and (A.22)]. Here, 0 is s 'straight'

poloidal angle which is defined to be zero on the inboard mid-plane. Is

Table I shows the I,, for a typical n = 1 external perturbation generated by saddle coils.

This example field was employed during a series of controlled experiments performed on
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the COMPASS-D tokamak and was designed to have predominantly m/n = 2/1 helicity. 21

Hence, I2 is the dominant amplitude after I0 (m = 0 perturbations do not interact with

resistive modes w see Sec. IV.E).

m Irml °)
-I0.II 180
0 2.52 180
1 0.11 180
2 1.00 0
30.34 180
40.19 180
5 0.26 0

Table I Relative amplitudes and phases of the I,n for a typical n = 1 COMPASS-D RMP
field generated by external saddle coils, with 1 kA in the saddle bars, Ro = 0.56 m and
a --- 0.20 m. The absolute amplitude of/2 is 8.6 x 10-5 T m.

Table II shows the I_ for a typical error field. This example field was generated by

the Joint European Torus (JET) poloidal field coil set for a standard limiter discharge with

q_ __ 3.2. m It exhibits the broad spectrum which is characteristic of an error field. Note that

all of the even-m amplitudes are approximately 180" out of phase with the odd-m amplitudes,

indicating a dipole like error field source localized close to the outboard mid-plane (_ = r).

In fact, it is known that the dominant contribution to the JET error field in this discharge

comes from a pair of vertical field coils (usually referred to as P4) located just above and

below the outboard mid-plane, l°

In the following, we investigate the effect of two idealized n = 1 static magnetic per-

turbations (representative of those in Tables I and II) on the stability of the 2/1 tearing

mode. The first perturbation is supposed to be representative of the type generally used in

'resonant magnetic perturbation' (RMP) experiments, 3,_1and has

12 _ 0, I,,,#2 = 0. (52)

The second perturbation is supposed to represent an error field generated by a source located
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mI/,,I
o.39- 78.3

0 1.43 +5.0
1 1.29-179.1
2 1.00 0.0
30.65 +178.4
4 0.35 -4.4
50.14 +169.0

Table II Relative amplitudes and phases of the I,_ for the n = 1 error field generated
by the JET poloidal field coil set for a typical limiter discharge with qo "" 3.2. Here, the
plasma current and toroidal field are in the same direction, there are 39 turns in the P4 coils,
Ro = 2.96 m, and a = 1.0 m. The absolute amplitude of 12 is 2.6 × 10-4T m.

on the outboard mid-plane, and has

.... l_l = Io = -I, = 12 = -13 = 14 =-15... • (53)

Note that, since there is nothing special about the stability of the 2/1 tearing mode, the

results of our investigation are also relevant to tearing modes of other helicities. However,

they cannot be applied to m = 1 internal kink modes, which always require special treat-

ment in tokamaks, t7 Such modes are, therefore, specifically excluded from our investigation

(i.e. q0 > 1 in ,allof the examples considered) and will be dealt with in a separate publication.

D. Effect of an RMP field

The interaction of tearing modes with an external magnetic perturbation is governed by the

C + Vector [see Eqs. (1)], which is written

C + = _ l,,C"_+ (54)

[seeEq. (A.44)].IfthereareN rationalsurfacesintheplasmathentheC m+ are I x N

vectors with real components C'_j+ (for j = 1 to N). The component C_/+ drives tearing

amplitude on surface j [see Eqs. (12)], and also gives rise to a nonlinear electromagnetic

torque acting at this surface [see Eq. (13)].
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Consider the interaction of a static RMP field satisfying Eq. (52) with the 2/1 tearing

mode. The locking torque exerted at the q = 2 surface (labelled surface 1 in the following)

is parameterized by 112C_+]2 [see Eq. (13)]. It is demonstrated in Sec. A.V that C_ + is the

expansion coefficient (in the vacuum region r > a) of the free boundary basis tearing mode

associated with surface j in the ruth well behaved (as R --, c_) toroidal ring function. This

result, which is obtained from a consideration of toroidal angular momentum conservation,

is only valid in the absence of a conducting shell.

In the adopted ordering scheme C_+, which describes the interaction of a predominately

13 = 2 external perturbation with a tearing mode of the same dominant helicity, is expanded

C_ + = A(°) + A(l)e2 + A(2)e22_+ Aca)e2Bp+ )_(4)E_+ A(5)T2 + O(ea) , (55)

where )_(0)is the cylindrical limit, )_(l) is a toroidicity correction, A(2) is a pressure correc-

tion, )_(a) is a correction due to combined toroidal and pressure effects, )_(4)is an ellipticity

correction, and )_(s) is a triangularity correction. Here, E_ --- E(a) is the edge ellipticity

parameter, and T_, - T(a) is the edge triangularity parameter [see Eqs. (47)]'. In general, the

free boundary basis tearing modes can only be calculated by solving the full coupled ideal

MHD equations (A.6) in the outer region. This is achieved for the large aspect ratio, low-_,

weakly shaped equilibria described in Sec. IV.B using the T7 code. la

Figure 3 shows the expansion coefficients of C_+ evaluated from the T7 code as a function

of q_ in the range 2.5 to 5.2, for qo = 1.01 and k = 4. Figure 4 shows values of C'_l+ calculated

for an example equilibrium with _ = 0.15, E, = 0.15, 7", = 0.05, and _ = 0.0 or 1.0.

It can be seen from Fig. 3 that the cylindrical part of C'_+ decays slowly as q, is increased.

This is quite understandable, since as the edge-q is increased (at constant central-q) the q = 2

surface moves deeper inside the plasma, so the inter_tion with a fixed external perturbation

is likely to get progressively weaker due to range effects. The toroidal correction is found

to increase the locking torque exerted at q = 2 (i.e. increase C'_1+) for q, < 3, but changes
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discontinuously as the q = 3 surface enters the plasma so that the torque is decreased by

toroidicity for q_ > 3. The pressure and toroidal/pressure corrections strongly reinforce

the locking torque for q_ < 3, but become negligible for q_> 3. The ellipticity correction

increases the locking torque for q_ < 4, but changes discontinuously as the q = 4 surface

enters the plasma so that the torque is decreased by ellipticity for q_ > 4. Finally, the

triangularity correction increases the locking torque at small edge-q (i.e. q_ < 2.7), decreases

the torque at moderate and large edge-q, and behaves discontinuously as the q - 5 surface

enters the plasma.

The presence of an ideal mode rational surface (i.e. a surface on which there is no driven

tearing or twisting amplitude, due to rotation effects) situated between the q = 2 surface and

the plasma boundary has the effect of 'shielding' the 2/1 tearing mode from the applied KMP

field to some extent, so that there is a discontinuity in C_l+ each time such a surface enters

the plasma. It can be seen from Fig. 4 that at low-Bp this shielding effect is rather weak,

since the discontinuous changes of C_1+ at qo = 3, 4, and 5 are nearly invisible. However,

at high-_p the shielding of the 2/1 tearing mode by an ideal q = 3 surface becomes more

appreciable, yielding a significant drop in C_+ at qa = 3.

Note that a locked rational surface has no shieldingeffectwhatsoever. This can be demon-

strated by assuming that the q = 3 surface is locked (at the tearing resonance) whenever it

lies inside the plasma. According to the analysis of Sec. III.C.5, in this situation the locking

torque exerted at q = 2 is parameterized by I/2 _+12, where C-"_l+ = G'_l+ for q, < 3 and

E+ C-_2+ (56)

for qa > 3. Figure 5 shows C_+ evaluated as a function of q, for qo = 1.01, k = 4, e = 0.15,

E, = 0.15, and To = 0.05, with fly = 0.0 and 1.0. It can be seen by comparison with Fig. 4

that a locked q = 3 surface does not shield the 2/1 tearing mode from the applied RMP

field, since there is no discontinuous reduction in C-'_1+ as the surface enters the plasma.
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E. Effect of an error field

Consider the interaction of an error field satisfying Eq. (53) with the 2/1 tearing mode. The

locking torque exerted at the q = 2 surface is parameterized by JI2Cl'l"t+l2, where

c? = .... '. + - c:* + . - ++ cF - c[+... .

Note that the superscript 'out' refers to the outboard location of the coils generating the

error field. In the adopted ordering scheme _C_ 2+, which governs the interaction of a

tearing mode and an external perturbation with differen_ dominant poloidal mode numbers,

is expanded

C_ _2+ = A{l)_ + AC2)_&+ A(_)E_+ A(4)T_+ O(e2) • (58)

If the dominant poloidal mode numbers differ by unity, then only )_(1)and _c2) are nonzero.

If the mode numbers differ by two, or three, then only ,_(_),or ,k(4), are nonzero, respectively.

If they differ by more than three then 16_ 2+ is negligible.

Figure 6 shows the expansion coefficients of the IC_ 2+ calculated from the T7 code as

functions of qa for m in the range -1 to 5, with q0 = 1.01 and k = 4. The expansion coef-

ficients for C_l+ are found to be identically Zero (and are, therefore, not plotted), indicating

that an m = 0 external perturbation does not interact with tearing modes. The quantity

C_+ is found to have no pressure correction. This is due to the peculiar nature of the m = 1

harmonic in tokamak plasmas. The expansion coefficients of C_+ have large discontinuities

at q_ = 3, showing that the presence of an ideal q = 3 surface in the plasma shields the q = 2

surface from the influence of a predominantly m = 3 external perturbation. The expansion

coefficients of C 4+ and C_ have similar large discontinuities at qa = 4 and 5, respectively.

Figure 7 shows CI'1ut+ as a function of q_ for qo = 1.01, k = 4, e = 0.15, EG = 0.15, and

T_ = 0.05, with/_ = 0.0 and 0.2. Note the 'staircase' variation with edge-q, characterized

by relatively little change in 6-_1ut+ between integer qa values, with l_rge discontinuities at

q, = 3 and 4. The discontinuous reduction in C_l t+ at qa = 3 occurs because, _ soon
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as it enters the plasma, an ideal q = 3 surface shields the q = 2 surface from the m = 3

component of the error field. Likewise, the discontinuous reduction at q_ = 4 occurs because

an ideal q = 4 surface shields out the m ---:4 component of the error field. Note that for a

broad spectrum error field the discontinuities are C)(e), whereas the narrow spectrum RMP

field studied in Sec. IV.D only yields O(e 2) discontinuities. This accounts for the markedly

different variations of C_+ and C_lat+ with edge-q shown in Figs. 4 and 6, respectively. Note

that Fig. 7 would exhibit no discontinuities at q_ = 3 and 4 were the q = 3 and 4 surfaces

locked, since locked surfaces possess no shielding properties (see Sec. IV.D).

In experiments, the locking torque exerted at q = 2 by a fixed error field is conveniently

parameterized by the line-averaged density below which a static 2/1 island is induced in the

plasma. The larger the density, the larger the torque, and vice versa. 4 For narrow spectrum

RMP fields the minimum density is observed to decrease smoothly with increasing edge-q, (

implying a smoothly decreasing locking torque similar to that shown in Fig. 4. On the

other hand, for the broad spectrum JET error field (see Table II) the minimum density

hardly changes between integer qa values, but decreases discontinuously as the q = 3 and

q = 4 surfaces enter the plasma, t° This behaviour is consistent with the staircase variation

of the locking torque shown in Fig. 7, assuming that both the q = 3 and q = 4 surfaces

are unlocked. Note that discontinuous behaviour is only observed in limiter plasmas. For

separatrix plasmas, which lie beyond the scope of this paper, there is no observed stepwise

variation of minimum density as the ratio of plasma current to toroidal field is changed, m

The effect of ideal rational surfaces on the locking torque exerted at q = 2 is largely

dependent on the relative phases of the different poloidal harmonics of the error field. For

an error field source located on the outboard mid-plane the phases are such that the torque

increases as the q = 3 and q = 4 surfaces leave the plasma. Consider an error field produced

by a source localized on the inboard mid-plane (O = 0). For such a field the locking torque
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exerted at q = 2 is parameterized by 112Cln+I2, where

cl"+=... c_,++co,,++c_++c_++c_++ct++c_+... (59)

Figure 8 shows C_"+ as a function of q_ for qo = 1.01, k = 4, e = 0.15, Ea = 0.15, and

T_ = 0.05, with ,qp = 0.0 and 0.2. It can be seen that in this case the phases are such that

the locking torque decreases discontinuously as the q = 3 surface leaves the plasma, while

increasing at q_ = 4 and 5. Thus, in this situation the behaviour at qa = 3 is opposite to

that for the outboard error field source. Even more complicated behaviour is obtained if the

error field source is located significantly above or below the mid-plane.

Figure 9 shows C_ut+ as a function of q, for qo = 1.1, k = 4, e = 0.15, Ea = 0.15, and

T_ = 0.05, with ,3p= 0.0 and 0.2. The increased central-q value brings the plasma very close

to the 3/1 ideal external kink stability boundary at q, ~ 3. It can be seen that the torque

exerted at q = 2 increases very markedly as q, _ 3 from below. This effect is due to the

m = 3 component of the error field, as is demonstrated by its sudden disappearance as soon

as the q = 3 surface, which effectively shields out the rn = 3 error field, enters the plasma.

Figure 9 suggests that the locking torque exerted on the plasma by a fixed error field is likely

to become very large close to an ideal external kink stability boundary. This effect may offer

an explanation of recent DIII-D results which imply a substantial increase in the error field

locking torque exerted at q = 2 as the Troyon _-limit is approached. 5

V Calculation of the C- Vector

The interaction of twisting modes with an external perturbation is governed by the C- Vector

[see Eqs. (1)], which is written

c- =_ I,.,,c"- (60)

{see Eq. (A.44)]. If there are N rational surfaces in the plasma then the C '_- are 1 x N

vectors with real components C_- (for j = 1 to N). The component C_j- drives twisting
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amplitude on surface j [see Eqs. (12)], and also gives rise to a nonlinear electromagnetic

locking torque acting at this surface [see Eq. (13)].

It is demonstrated in Sec. A.V that C_- is the expansion coefficient (in the vacuum

region r > a) of the free boundary basis twisting mode associated with surface j in the ruth

well behaved (as R ---, c¢) toroidal ring function. As is described in Sec. A.IV of Ref. 12

the basis twisting modes can be built up out of solutions of the cylindrical tearing mode

equation. Let L_,,,al(r) be a solution of this equation (for poloidal mode number m1 4- 1) in

the interval 0 <_r < rj which satisfies the physical boundary conditions at r = 0, is zero at

the m s :t: l/n rational surface if it lies in the region 0 < r < rj, and is unity just inside the

mj/n rational surface at rj_. Likewise, let ¢_,:et(r) be a solution of the cylindrical tearing

mode equation in the interval r > rj which satisfies free boundary conditions for r > a, is

zero at the mj 4- l/n rational surface if it lies in the region r,_ < r < a, and is unity just

outside the m_/n rational surface at rj+. It is useful to define the quantities

= Lr ,,_ '

rn,:t:l- It- dr j,,+ ' (61)

According to Ref. 12, the jth basis twisting mode is built up out of O(e) of the m t 4- 1

poloidal harmonics,

r a_ (m_ 4- I) [ A_'_'I + (mj :i: 1)(1 + sj)
mi4.1 -- mi.t. 1

_L 4- (mi 4- 1)(1 + si) n ]._ mj.4-1

A_j=_t - ,_j4-t ¢,,,j=kt(r)j , (62)

with only O(e 2) of the other poloidal harmonics (including the central m_ harmonic). Here,

aj is the O(e) pressure gradient parameter at rational surface j [see F-x:l.(4)], and s_ =

(rq_/q)rj is the local magnetic shear. It follows from Sec. A.V that

(?rnj4-l-,.,_ = c_,_.t aj (63)
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where

___r _L_,,:_ :i: (ms + 1)(1 + st) n
c_,._, = sj An± l _ AL _,_,±l(a) , (64)m_4_l

since _,4.1(a) = 0 by definition [see Eqs. (A.27), (A.32), (A.46), and (A.48)]. Note that

the C_/_- are O(e 2) for m_ # mj 4- 1. Thus, the jth basis twisting mode (resonant with

poloidal mode number ms) is most strongly affected by external perturbations whose domi-

nant poloidal mode numbers are m s 4- 1.

Consider the interaction of a static RMP field satisfying Eq. (52) with the 2/1 twisting

mode. The locking torque exerted at the q = 2 surface is parameterized by I/2 C_-I 2 [see

Eq. (13)]. It is clear from the above that C-_l-~ O(e2), so this torque is O(e4). The locking

torque exerted at q = 2 due to interaction with the 2/1 tearing mode is parameterized by

112C_+]2 and is O(1) (see Sec. IV.D). We conclude that in this case the locking torque due

to interaction with the 2/1 twisting mode is negligible compared to that associated with the

2/1 tearing mode.

Consider the interaction of an error field satisfying Eq. (53) with the 2/1 twisting mode.

The locking torque exerted at the q = 2 surface is parameterized by I/2 C-_'l_-12,where

= - c, +

The quantities C_- and C_- can be evaluated using a cylindrical tearing mode code via

Eqs. (63) and (64). It is found that C_- is zero (i.e. the 2/1 twisting mode is not affected

by a predominantly 1/1 external perturbation). This result is due to the peculiar nature of

the m = 1 harmonic in tokamak plasmas and is not general. For instance, the 3/1 twisting

mode is affected by a predominantly 2/1 external perturbation. It is also found that C_-

drops discontinuously to zero as the q = 3 surface enters the plasma, because an ideal q = 3

surface completely shields the 2/1 twisting mode from the influence of a predominantly 3/1

external perturbation. So, in the adopted ordering scheme

C_l"t-= A,&, (66)
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qa_a._A
2.5 6.73J
2.6 7.!4J

2.7 7.46l
2.8 7.75J
2.9 8.271
2.999.611

, _J

'l_ab]'_III:ValuesofA [definedinEq.(66)]asa functionofqQ,forqo= 1.01.

whereA iszeroforq,> 3.ValuesofA forqaintherange2.5to3.0,and qo= 1.01,aregiven

inTableIll.Itisdearthatthelockingtorqueduetointeractionwiththe2/Itwistingmode

iszeroforqa > 3,and isO(_Bv)2 forqa < 3. Thisshouldbe comparedwiththelocking

torqueduetointeractionwiththe2/Itearingmode whichisO(1),withO(e)discontinuities

atintegeredge-q(seeSec.iV.E).Thus,if_ ¢: I thelockingtorqueassociatedwiththe

externallydriven2/I tearingmode againdominatesthatdue tothetwistingmode.

VI Summary

We have examined the influence of a general static external magnetic perturbation on the

stability of resistive modes in a tokamak plasma. There are three main parts to this inves-

tigation.

Firstly, the vacuum external perturbation must be expanded as a series of well behaved

(as r _ 0) toroidal ring functions (see Sec. IV.C). A perturbation with s given toroidal mode

number is fully specified by the complex coefficients of this expansion, which are denoted

by the/,I, where m is the number of poloidal nodes. Typical coefficients for s deliberately

applied RMP field and an accidentally occurring error field are given in Tables I sad If,

respectively. The RMP field considered is designed to have s narrow spectrum with one

particular resonant I_ dominant, whereas error fields tend to have broad spectra.

Secondly, the dispersion relation for resistive modes in the presence of a general external
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perturbation must be derived (see appendix). The unperturbed dispersion relation takes

the form of two coupled homogeneous N × N matrix equations, where N is the number

of rational surfaces in the plasma (resonant with a given toroidal mode number). In the

presence of an external perturbation these equations acquire right-hand sides, denoted by

the 1 x N vectors C ±. The C+ Vector characterizes the response of tearing parity modes

to the external perturbation, whereas the C- Vector characterizes the response of twisting

parity modes. The C _ Vectors are decomposed C _" = _m ImCm_" It is demonstrated in

the appendix that the components of the C m* vectors are obtainable from the asymptotic

behaviour (as R ---,_) of the free boundary basis tearing and twisting modes (in the absence

of the external perturbation). This result follows from a consideration of toroidal angular

momentum conservation, but is only valid in the absence of a conducting shell.

Lastly, the resistive dispersion relation must be solved to give the tearing and tw_ting

amplitudes driven in the plasma by the external perturbation (see Sec. III). The electromag-

netic locking torque exerted at rational surface j is proportional to 16'+12and IC_'I2, where

C_ are the jth components of the C4"Vectors. Considering the simplest ck_ where there is

only a single rational surface in the plasma and 16712>>Ic;i2,wefind that as soon as IC71

exceeds the critical value needed to half the natural frequency for tearing modes at surface j,

this frequency suddenly drops to a value very close to zero, and there is a dramatic increase

in the driven tearing amplitude. This process is termed 'locking.' Prior to locking there is

very little driven tearing amplitude at surface j.

The problem becomes more complicated if ]C_-i2 > IC+i 2, so that the torque due to driven

twisting amplitude at surface j is comparable to that due to driven tearing amplitude, but

this is unlikely to occur in low-_ plasmas (see Sec. V). When there is more than one rational

surface in the plasma, locking torques are exerted simultaneously at all surface, and a change

in rotation induced at a given surface can influence the other surfaces via the action of bulk

plasma viscosity. We have derived a set of coupled nonlinear equations which describe the
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response of each rational surface to a general external perturbation (seeSec. III.D). These

equations have been solved for an example case with two rational surfaces in the plasma

(see Sec. [[I.C). In general, we find that the critical electromagnetic torque required to lock

surface j is redlxced if torques are exerted at any other surfaces. Furthermore, locking occurs

when the natural frequency of tearing modes at surface j has been reduced to a critical value

which is now somewhat less than half of its unperturbed value.

The T7 toroidal tearing mode code 13 has been extended to evaluate the C ''+ vectors

(see Sec. IV). This allows us to construct the C + Vector, given the complex amplitudes,

I,,,, which characterize the external perturbation. We have considered two idealized external

perturbations. The first has I,,_ = I with I,,,,#,,_ = 0 (where I is a constant) and represents

a typical narrow spectrum RMP field produced by external saddle coils. The second has

I,, - (-l)ml and represents an error field produced by a localized source on the outbo&d

mid-plane.

Consider the locking torque exerted at a typical low mode number rational surface such as

q = 2. We find that ideal rational surfaces located between this surface and the plasma edge

tend to 'shield' it from the locally resonant component of the applied external perturbation.

For instance, an ideal 3/1 surface shields out the m = 3 component. This effect leads to

a di,continuous variation of the locking torque with edge-q. There is a sudden change in

tl,e torque as the q = 3 surface enters the plasma and shields the m = 3 component of

the applied perturbation. There is a similar sudden change as the q = 4 surface enters the

plasma. For a narrow spectrum RMP field the discontinuous changes in the locking torque at

rational edge-q are O(e 2) (where e is the inverse aspect ratio) and are not a dominant feature

of the variation with edge-q. However, for a broad spectrum error field the discontinuous

changes are O(e) and tend to be the dominant feature of the edge-q variation. For an error

field source located on the outboard mid-plane there is a 'staircase' variation, with relatively

little change between integer edge-q values, but strong reductions at q = 3 and 4 (as qa
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is increased). Such behaviour has been observed experimentally, l° An error field source

located on the inboard mid-plane, or significantly off the mid-plane, generally gives rise to

more complicated variation of the locking torque with edge-q (see Fig. 8). We find that locked

rational surfaces have no shielding effect, so that there is no sudden change in the torque as

a locked surface is brought into the plasma. We also find that the locking torque exerted

by a fixed error field becomes very large close to an ideal external kink stability boundary.

We speculate that this effect may account for the observed significant reduction in the error

field strength needed to induce locking at q = 2 close to the Tmyon B-limit in DIII-D. 5

The components of the C _- vector can be evaluated using solutions of the cylindrical

tearing mode equation (see Sec. V). We find that in low-B plasmas, where eflp << 1, the

locking torques due to externally driven twisting modes are generally negligible compared

to the torques associated with driven tearing modes. However, this is unlikely to remain the

case in high-3 plasmas, where el3v > O(1).
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A Physics of the Outer Region

A. The marginally stable ideal MHD equations

The coordinate system (r, 0, ¢), where ¢ is the toroidal angle, 0 is an angle-like variable in

the poloidal plane, and r is a flux surface label with dimensions of length, is chosen so that

the magnetic field lines appear straight. The Jacobian for these coordinates is given by22

rR 2

j = (Vr A V0. We)-' = --_, (A.I)

where R is the major radius, and Ro is the average major radius of the outermost plasma

flux surface. For an a.xisyrnmetric equilibrium the magnetic field B can be written

B =Bo_[/(r)V¢^ W +g(r)V¢], (A.2)

where B0 is the vacuum magnetic field strength at R = Ro. The safety factor, the slope of

the field lines in the 0-¢ plane, is then given by

q(r) = rg(r)
Rof(r) ' (A.3)

The perturbed magnetic field 6B is completely specified by two sets of flux surface func-

tions, _,._(r) and Z,.(r), where

R_ ¢,n(r) exp[i(m0- nO)I, (A.4a)6B.W=i_ Z: r

P_ [Z._(r)+ ,_,_¢,,(r)] exp[i(m0--n_b)] (A.4b)
Ro_B.V¢= n_ :_._ Ro(m- ha)

with

,_._ = Im_ - n (m - nq)---- L,_L _,o_ R_IX;rl2
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1

/(...) dO (A.5)/"')---

Here,' denotes differentiation with respect to r, and p(r) is the plasma pressure.

Throughout the bulk of the plasma the perturbed field is governed by the marginally

stable equations of ideal magnetohydrodynamics (MHD), which take the form:
f

(L_ +kZ_+_ + M_+k¢_+k)

d¢._ L_Z,_ + _ (m + k- nq) 'r d--_= (m-nq) k#o

d[Z._] P_¢._ (N_+_Z,,,+k+P_+_¢,_+_)
(rn - nq)r _rr [.j(m --"nq) = (rn- nq) + _ (m + k - nq) "

(A.6)
k#0

The coefficients L_ +*, M,_ +k, N_ +k and p_+k are evaluated for a general low-_, large aspect

ratio tokamak equilibrium in Ref. 13. The ordering adopted is such that the Shafranov shift

and departure from circularity of plasma flux surfaces are both O(e) with respect to the

average minor radius of the outermost plasma flux surface, a, where e = a/Ra ,$: 1 is

the inverse aspect ratio. This implies that L,_ ,,_ (9(1) + O(e 2) and _,,_t,"_+_ -_ O(e), with a

similar ordering for the other coefficients. Coupling of harmonics of the perturbed field whose

poloidal mode numbers differ by unity is effected by the Shafranov shift of flux surfaces, which

is driven by toroidicity and the plasma pressure. Coupling of harmonics whose mode numbers

(lifter by two or three is effected by flux surface ellipticity or triangularity, respectively. The

ordering adopted for the Shafranov shift and flux surface shaping implies that g = 1 + O(e 2)

and _op/B2o ~ O(e,2).

B. The outer solution in the vicinity of a rational surface

The marginally stable ideal MHD equations (A.6) become singular on flux surfaces where

the safety factor q takes the rational value m/n. Such surfaces are termed rational surfaces

resonant with poloidal mode number m. The most general expression for the resonant

37



harmonic of the perturbed poloidal flux in the vicinity of a rational surface, radius r,,, is

,[ ]+ _ B + + -_- B-sgn(x) [xl t-+' + 6'x +... , (A.7)

where x = r - r_, and

[ 2#°rPt (l - q2)] (A.8)b/ _ ' B2o82 rm

represents the effect of average field line curvature. 23Here, s = (rq_/q)r._ is the local magnetic

shear, and Aa', B e, and C are arbitrary constants.

The two ratios

B*

A+(w) = _-_ (A.9)

_tre completely determined by the solution of the even and odd parity Fourier transformed

layer equations in the inner region, and are in general functions of the mode rotation fre-

quency w [where all layer quantities are assumed to vary like exp(-iwt)].

C. Basis tearing and twisting modes

Suppose there are N rational surfaces in the plasma (radii rl < r_... < rN), resonant with

poloidal mode numbers mr, ma...mN (for a fixed toroidal mode number n). It is useful to

define the quantities t2

_ [(1- 2vi)l'/'
= ....... (A_:)_ , (A.10a)

J L_ j _j

A_ = [(1 - 2v_)] 1/'L_ (S*).+, (A.10b)r#

wherev#istheMercierindexforsurfacej [seeEq. (A.8)],_+ istermedthe'tearingampli-

tude'atsurfacej,and _" istheassociated'twistingamplitude.'The tearinganaplitudeis
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sometimes referred to as the 'reconnected flux.' It follows from (A.9) that

A_(w) = A_ (A.11)

where A+(w) is the tearing parity layer dispersion relation at surface j, and A 7 (w) is the

associated twisting parity dispersion relation. The toroidal electromagnetic torque acting in

the vicinity of surface j takes the form x2

6T¢Cri) = 2nTr'Ro x [ImCA )l?l+L,nCa;)lVTi . (A.12)#o

The system has 2N degrees of freedom (i.e. two degrees for each rational surface in the

plasma), so a general mode can be built up from a linear superposition of 2N independent

basis modes. It is convenient to define N basis tearing modes, denoted ¢+ (for j = 1 to N).

These are solutions of Eqs. (A.6) which satisfy the physical boundary conditions at r :-

and r = a and are subject to the additional constraints: 12

_; =0 ,

A@+= E_,

A@_"= Hik. (A.13)

Thus, the jth basis tearing mode has unit tearing amplitude and zero twisting amplitude at

surface j, with zero tearing or twisting amplitude at any other surface. It is also c_:mvenient

to define N basis twisting modes, denoted ¢_'. These are solutions of Eqs. (A.6) which

satisfy the physical boundary conditions and are subject to the constraints: 12

_+ =0 ,

_; = 6_,
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= g j,

_ - E_. (A.14)

Thus, the jth basis twisting mode has unit twisting amplitude and zero tearing amplitude

at surface j, with zero tearing or twisting amplitude at any other surface. Note that the

quantities E_ and Hkj must be real because the ideal MHD equations (A.6) contain no

complex coefficients.

A general mode is written

N

¢ = _(_P_¢+ + _P_'¢_'), (A.15)
k=l

yieldingtheresistivemode dispersionrelation_8

{_+ (w)- E+} q,+- H _- = 0 ,

{A-(w)- E-} @-" Ht_I' + =0. . (A.16)

In the above, E+ is the N x N real symmetric matrix of the _ values, H is the N x N

real matrix of the H,j values and Ht is its transpose, A_'(w) is the N × N complex diagonal

matrix of the A_:(w) values, and 'I__ is the 1 x N complex vector of the @_ values. It follows

from Eqs. (A.12) and (A.16) that

N

T_ = _ _T_(ri) = 0, (A.I7)
j=l

so there is zero net toroidal electromagnetic torque acting on an isolated plasma.

D. The vacuum region

In the vacuum region external to the plasma the perturbed magnetic field is written

_B =iVY, (A.18)
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where the scalar magnetic potential V can be expanded

V(r,O,¢) = _ V,_(r)exp[i(mO - n_)l. (A.19)
171

It follows from Eqs. (A.4) that for r > a

Zrn(r) = (m- nq)Vrn(r) , (A.20)

and
i

_O_(r) = _ [Vrl 2exp(ikO) r d-'_ (r)k

(R2 >- __, --_ irVr. VO exp(ik0) (m + k)V,n+k(r). (A.21)k

In vacuum the scalar magnetic potential satisfies Laplace's equation

V 2V = 0. (A.22)

It is easily demonstrated that if V _ and V b are two general solutions of Eq. (A.22) with the

same toroidal mode number then

d

d-__ [¢_(,)v:(,)- ¢_(,)v:(,)]=0, (A.23)k

where the functions¢_(r) are related to the functions V_(r) via Eq. (A.21).

It is convenient to define the general solution vector ¢, and the related vector V, where

the components ¢_(r) of ¢ are the harmonics of the perturbed poloidal flux, so that ¢(r,

0, 6) = _k ¢_(r)exp[i(k0- n¢)]. Likewise, the components Vh(r) of V are the harmonics

of the scalar potential, so that V(r, 0, ¢) = _k Vk(r)exp[i(kO - mib)]. The components of 0

and V are interrelated via Eq. (A.21). Let

[¢_,¢_1(,)=_[¢_(,)v:(,)-_.(,)v:(,)], (A.24)
k
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where ¢" and ¢b are two general solution vectors. It follows from Eq. (A.23) that [0", @b](r)

is independent of r in the vacuum region.

In the absence of plasma the vacuum region extends to the magnetic axis (r = 0). In the

region close to the axis
dV,_

¢,, __r d"-_ ' (A.25)

and Laplace's equation reduces to

l d ( dV,,,,_ m 2r dr r "-d'_'r] - "_ " Vm _- O ' (A.26)

with solutions Vm(r) cx r ±1"1for m :_ 0 and V0(r) o¢ lnr, r °. Let the vacuum basis solution

P" have components which satisfy (A.25) and (A.26), and reduce to

¢,,(r) = , Cz_,(r) = 0 (A.27)

in the limit r _ 0. For the special case m = 0, the components of the basis solution po

reduce to

Co(r) - I, Cz#oCr) - 0 (A.28)

at the magnetic axis. Likewise, let the vacuum basis solution Qrn have components which

satisfy (A.25) and (A.26), and reduce to

¢,,(r) = , C,_,_(r) =0 (A.29)

in the limit r --, 0. For the special case m = 0, the harmonics of the scalar potential derived

from the elements of QO [via Eq. (A.25)] reduce to

V0(r) = 1 , t_¢o(r) = 0 (A.30)

at the magnetic axis. Note that only the Q,n basis solutions are well behaved in the limit

r ---_ 0.
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It follows from Eqs. (A.23), (A.24), and (A.27) to (A.30), that

[P'_ ,P'](r) =0 , (A.31a)

[Q'_ , Qll(r ) =0, (A.31b)

[P'_ , QZ](r) = 6"_h,, (A.31c)

throughout the vacuum region, where

1 for m=O

h,, = 2 (A.32)

[-_ for [m[ > O.

The scalar magnetic potential associated with the vacuum basis solution P"_ takes the

form 13

- "-+¼)r( - --+
V(#, q, ¢) = (_ 1)2,_+12 2 (A.33)(Iml- l)!(-e)-l_l

x <cosh# - cos r/ P__½ (cosh#) exp[i(m_/-n¢)],

and the potential associated with the basis solution Q,n is written

21"l+½([m[- 1)! (A.34)
v(#,_,_,)= (-t)"V_Clml + n + ½)(__)l,,,,I

x <cosh# - cos 7/ q__] (cosh#) exp[d(mr/- n¢)].

Here, (#, 77,¢) are standard toroidal coordinates,

R = Ro sinh# , (A.35a)
cosh# - cos T/

Z = Ro sin 0 , (A.35b)
cosh# - cos rl
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while _ and Q_ are associated Legendre functions, and k! = 1 for k < 0. Note that only

the P"_ basis solutions are well behaved as R _ ec.

The most general solution of the ideal MHD equations in the vacuum region (r > a) is

written

¢ = >"_(a,,P" + b,,Q "+) , (A.36)

where a,+ and b,+ are arbitrary complex constants. A particular vacuum solution ¢ can be

resolved into components of the basis solutions P" and Q"_ via [see Eqs. (A.31)]

=h2[ , >a),

b,_ =-h_t[O, P"+](r > a). (A.37)

Finally, it can be demonstrated that the total toroidal electromagnetic torque acting on the

plasma satisfies ta

Z°//T_(r > a) = R2V¢ . 6J A _BjdrdOd¢ 2nTr2R°= x _ h,_Im (a_b,,+), (A.38)
#o ,_

where _iJ is the perturbed current.

E. The effect of an external helical magnetic field

Consider the effect of a nonrotating externally imposed helical magnetic field on the resistive

dispersion relation for a .free boundary plasma.

The most general solution in the absence of plasma is written

_:(r < rcoii)= _ l,n Qm(r) , (A.39)
rn

where the I,_ are arbitrary complex constants, and r¢oiiis the innermost radius of the external

conductors used to generate the applied field. The scalar magnetic potential of the imposed

44



field in the absence of plasma, V "xt, is easily calculated from the currents flowing in these

conductors. The corresponding values of the I,_ are given by [see Eq. (A.34)]

(-i)"v_r(Iml +,_+ ½)(__)l_l
I,, = 2[,,,+½(]m [ _ I)! q:_½ (cosh#)

rr v"_(u.,._)_xp[-_(m,-n_)ldvd_
x jpjp V'coshtt - cos 7/ 27r27r '

(A.40)

where the integration is carried out on a toroidal surface, # = constant [see Eqs. (A.35)],

l_ng inside the external conductors.

The most general solution in the presence of plasma is written

N

_,(r < rco_,)= E [_I'+el(r)+ _7 _'(r)] + E I.,X'(r) (A.41)
j=l m

The solution X "_ has the following properties:

• _ = 0, (A.42a)

A_ = G_k_ (a.42b)

for k= 1 toN, and

X_n(r¢o, > r > a)= _ h;la_Pk(r) + Qm(r). (A.43)
k

Here, the C_ ± and c_ are arbitrary real constants. Thus, X" spedfies the ideal response of

the plasma to the external field associated with the vacuum basis solution Q'.

It follows from (A.13), (A.14), (A.41), and (A.42) that the general externally driven

resistive dispersion relation takes the form

{a+(_)-E+}.+-..-:c+-E i_c_.,

{a-(w)- E-} g'- - Ht_ '+ = C- m E I.C'- , (A.44)
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where the C '_± are the 1 x N real vectors of the C_n* values.

Using Eqs. (A.12) and (A.44), the total toroidal electromagnetic torque acting on the

plasma is given by

N 2nr 2Ro
T_(r > a)= _ _T_(r/)= x

j---I

N

EE {Or• + (*;/'}] (A.45)
m jfl

Since the basis tearing and twisting solutions, ¢+ and ¢_', are well behaved for r > a, their

most general expansion in the vacuum region is [see Eq. (A.36)]

tYt

where the a_j are real constants. Equations (A.38), (A.41), (A.43), and (A.46) yield 8,

second expression for the total toroidal electromagnetic torque acting on the plasma:

2nr2Ro
T_(r > a)= x (A.47)

po

m /=l 1

"['heidentity of Eqs. (A.45) and (A.47) for arbitrary 9_: and I,n yields at,,, =aT and

_+ =h. _+.,,=[¢?,Q'I,

67'j - = h_ a_,.¢= [¢;, Q'I. (A.48)

F. Summary

A general external helical magnetic perturbation can be resolved into components of the well

behaved (as r _ 0) vacuum basis solutions Q" [see Eq. (A.39)], so that it is completely

specified by a set of complex amplitudes I,,. The I,n are calculated from the scalar magnetic

potential of the vacuum external perturbation using Eq. (A.40).
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The response of the plasma to an idealized perturbation made up of unit amount of

the vacuum basis solution Q_ is determined by the vectors C m+ [see Eqs. (A.44)]. The

components of these vectors can be obtained by resolving the free boundary basis tearing

and twisting modes in the vacuum region (r > a) into components of the well behaved (as

R _ cx_) basis vacuum solutions P_, according to Eqs. (A.48). Thus, the response of the

plasma to a general perturbation is determined by the vectors C _ [see Eq. (A.44)], whose

components are obtained from the coefficients of the expansion of the external perturbation

in the Q'_ (with no plasma), and the coefficients of the expansion of the basis plasma modes

in the P'_ (for r > a, with no external perturbation).
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Figure Captions

1. Bifurcation curves for locking of an external perturbation to the tearing and twisting

resonances at a general rational surface, y+ [defined in Eq. (19d)] is the normalized

locking torque due to the tearing resonance, and y- [also defined in Eq. (19d)] is the

normalized locking torque due to the twisting resonance. The solid curves correspond

to locking to the tearing resonance, whereas the dashed curves correspond to locking to

the twisting resonance. Curves are shown for various different values of the unperturbed

normalized frequency fl [defined in Eq. (19b)].

2. (a)-(e) Locking thresholds (for the tearing resonances) in a plasma containing two

rational surfaces. The variables a a and _2 are proportional to the locking torques

exerted at surfaces 1 and 2, respectively. These torques are normalized with respect to

the threshold torques for each surface taken in isolation. Curves are plotted for various

values of the parameter A, which depends on the relative positions of the two rational

surfaces. The parameter _ measures the ratio of the unperturbed natural frequencies

at the two surfaces. Figure 2(a) shows data for _ = 1/4; Fig. 2(b) shows data for

= 1/2; Fig. 2(c) shows data for _ = 1; Fig. 2(d) shows data for _ = 2; Fig. 2(e)

shows data for _ = 4.

3. The expansion coefficients of C_+ evaluated as a function of edge-q, for qo = 1.01

and k = 4. The various graphs show the cylindrical limit [A(°) in Eq. (55)], the

toroidalcorrection[A(1)inEq. (55)],thepressurecorrection[A(2)inEq. (55)],the

toroidal/pressurecorrection[A(3)inEq.(55)],theellipticitycorrection[A(4)inEq.(55)],

and thetriangularitycorrection[ACs)inEq. (55)].

4.The parameterC_+ evaluatedasa functionofedge-q,forqo= 1.01and k = 4,with

= 0.15,E_ = 0.15,and To = 0.05.Dataisshown for/_v= 0.0(O),and/_p= 1.0(O).
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5. The parameter C_+ evaluated as a function of edge-q, for qo = 1.01 and k = 4, with

= 0.15, Ea = 0.15, and To = 0.05. Data is shown for 2p = 0.0 ([2), and _v = 1.0 (O).

6. Expansion coefficients of the C_1#_+ evaluated as a function of edge-q, for qo = 1.01

and k = 4. The various graphs show the toroidal correction [A(l) in Eq. (58)], the

pressure correction [A(_)in Eq. (58)], the ellipticity correction [A(3) in Eq. (58)], and

the triangularity correction [_(4) in Eq. (58)]. Data is shown for Ci"l+ (O), C_+ (A),

C_+ (_,), C_+ (O), and C[ + (_).

7. The parameter C_'ut+ evaluated as a function of edge-q, for qo = 1.01 and k = 4, with

= 0.15, E_ = 0.15, and To = 0.05. Data is shown for Bp = 0.0 (O), and Bp = 0.2 (O).

8. The parameter C_"+ evaluated as a function of edge-q, for q0 = 1,01 and k = 4, with

e. = 0.15, E_ = 0.15, and To = 0.05. Data is shown for Bp = 0.0 (O), and _p = 0.2 (_).

9. The parameter C_'Iut+ evaluated as a function of edge-q, for qo = 1.1 and k = 4, with

e = 0.15, E_ = 0.15, and To = 0.05. Data is shown for Bp = 0.0 (O), _nd _ = 0.2 (C)).
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