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ABSTRACT

MAGMA is a FORTRAN computer code designed to simulate viscous flow in in situ
vitrification melt pools. It models three-dimensional, incompressible, viscous flow and heat
transfer. The momentum equation is coupled to the temperature field through the buoyancy force
terms arising from the Boussinesq approximation. All fluid properties, except density, are
assumed variable. Density is assumed constant except in the buoyancy force termns in the
momentum equation. A simple melting model based on the enthalpy method allows the study of
the melt front progression and latent heat effects. An indirect addressirg scheme used in the
numerical solution of the momentum equation avoids unnecessary calculations in cells devoid of
liquid. Two-dimensional calculations can be performed using either rectangular or cylindrical
coordinates, while three-dimensional calculations use rectangular coordinates. All derivatives are
approximated by finite differences. The incompressible Navier-Stokes equations are solved using
a new fully implicit iterative technique, while the energy equation is differenced explicitly in time.
Spatial derivatives are written in conservative form using a uniform, rectangular, staggered mesh
basced on the marker and cell placement of variables. Convective terms are differenced using a
weighted average of centered and donor cell differencing to ensure numerical stability. Complete
descriptions of MAGMA governing equations, numerics, code structure, and code verification are
provided.
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NOMENCLATURE

Artificial sound speed

Polynomial coefficient (user input)
Polynomial coefficient (user input)
Polynomial coefficient (user input)
Polynomial coefficient (user input)

Artificial bulk viscosity
Specific heat capacity
Specific energy

Unit vector in x-direction
Unit vector in y-direction

Unit vector in z-direction

Gravity vector

Convective heat transfer coefficient
Typical height

Cell index in the x-direction

Cell index in the y-direction
Cell index in the z-direction
Thermal conductivity
Latent heat of fusion
Typical length

Nusselt number

Pressure (divided by density)
Phase Change Material
Prandtl number

Heat generation term

Heat flux
Rayleigh number
Stefan number
Temperature
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Melting temperature,
Reference temperature

Velocity Vector

Velocity in x-direction
Volume of a computational cell
Velocity in y-direction
Velocity in z-direction

Thermal diffusivity (o = -E—)
pc

Coefficient of thermal expansion
Artificial or pseudo-time step
Spatial increment in x-direction
Spatial increment in y-direction

Spatial increment in z-direction
Kinematic viscosity

Density

Viscous stress tensor
Dimensionless time

Dimensionless damping coefficient of order unity

Cylindrical coordinates flag
Safety factor on the pseudo-time step
O<a<l)

Convergence tolerance on V-u

du dv ow
Convergence tolerance on 5~ —, and —

T JT ot

Bottom side of a computational cell
Derriere side of a computational cell
Front side of a computational cell
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L - Left side of a computational cell

R Right side of a computational cell
T Top side of a computational cell
1% Wall value
X Value in the x-direction
y Value in the y-direction
z Value in the z-direction
o0 Value of surroundings at infinity
Superscripts:
(k) - Iteration level
mg | Refers to a particular momentum cell
" denoted by g with ¢ equal either to u, v, or w
n - Time level
Operators:
\% Gradient operator
(A)T Transpose of A
max(A), Amax Search over all computational cells for
the maximum value of A
min(A), Amin Search over all computational cells for
the minimum value of A
<A>jjk Volume average of A over cell (i,/,k)
(A) Average value of A



A COMPUTATIONAL MODEL FOR VISCOUS
FLUID FLOW, HEAT TRANSFER, AND MELTING
IN IN SITU VITRIFICATION MELT POOLS

1. INTRODUCTION
MAGMA is a finite difference computer code developed to simulate the three dimensional
~ viscous fluid flow and heat transfer within in situ vitrification (ISV) melt pools. The starting point
for the development of MAGMA was an experimental, fully implicit, two-dimensional,
incompressible flow, computer code.2
The objective of this work was to devise, implement, and test the code modifications
" needed to permit three-dimensional simulations of melt flow in partially molten domains with

curved boundaries. The tasks completed in achieving this objective include;

+  The development of boundary condition logic for walls that pass diagonally through
cell faces in two dimensions.

*  Implementing and testing the two-dimensional diagohal boundary condition logic.

»  Converting from direct to indirect, addressing to facilitate limiting calculation of fluid
flow to the molten part of the domain,

«  The addition of three-dimensional capability.

* A code generalization to allow for variable properties.

+  Implementing the Boussinesq buoyancy force terms in the momentum equation, !
+  Implementing an explicit, finite difference solution of the energy equation.

* A code generalization to allow cell melting, freezing, and the simulation of latent heat
effects.

. Unpublished research results of J. D. Ramshaw and P.R. McHugh, entitled “Hybrid Iteration
Scheme for Implicit Calculations of Incompressible Flow.”
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The purpose of this report is to document the MAGMA code so that it can serve as a guide
for code use, and as a reference source if code modifications are required in the future. Therefore,
it includes descriptions of: the basic governing equations and numerics, the finite difference mesh,
boundary condition implementation, code structure, code input and output, and code options.

The report is organized into five main sections. The following section describes the basic
governing equations, the computational mesh, the basic differencing scheme, and boundary
condition implementation. Section 3 is concerned with code structure and organization, code input
and output, and code options. Section 4 describes code verification and testing. The final section
contains a summary, and recommendations for further code development.



2. GOVERNING EQUATIONS AND NUMERICS

This section describes MAGMA's basic governing partial differential equations and
summarizes the numerical techniques used to solve these equations. Included in this discussion
are: descriptions of the three-dimensional finite difference mesh, differencing schemes, and
boundafy condition implementation.

2.1 Governing Equations

The governing equations used by MAGMA are the conservation equations for
incompressible viscous flow and heat transfer in three spatial dimensions. The coupl'ng between
the momentum and energy equations occurs through the buoyancy force term in the momentum
equation, using the Boussinesq approximation. |
2.1.1  Incompressible Navier-Stokes Equations

Fluid flow is governed by the incompressible Navier-Stokes equations, namely
Viu =0 ‘ (1

%—'}+V'(uu)=-Vp-ﬁg(T-T0)+V-o (2)

where the viscous stress tensor, 0, is given by,

sz((Vu) + (Vu)T) (3)
where

g = gravity vector

p = pressure (divided by density)

T = temperature

T, = reference temperature



u = velocity vector

B = coefficient of thermal expansion .
\% = kinematic viscosity

\Y = vector gradient operator

(A)T = transpose of A.

MAGMA allows the use of two and three-dimensional rectangular coordinates, and two-
dimensional cylindrical coordinates. When the two-dimensional option is invoked, all terms
associated with the z-coordinate vanish. Two-dimensional cylindrical coordinates take the y-axis
as the axis of symmetry, and the x-coordinate as the radial coordinate. Equations (4) through (7)
below, are Equations (1) through (3) expressed in terms of coordinates and velocity components.
& = 1 corresponds to two-dimensional cylindrical coordinates, while & = 0 corresponds to

rectangular coordinates.
* Continuity equation:

d
5y 5 8= g

» Momentum equation in x-direction:

oV ou?  ouv
WL G W L DB (gen(T - To)

1. (6 ] (25"1), )
\ (5)
+x€ (X Ux) X2




T W

¢ Momentum equation in y-direction

2 0
WG G D e L B gey(T-To)

+L€ V-(xéoy)
X _

» Momentum equation in z-direction (not used when &= 1)

2
%3;)— + aauxw + Bgyw + 6542) =- g[;' - B (g-ex)(T - Tp) + V-(0z)

where
Ox =0ex =V (VM-F‘%)
0y=°'ey=v (Vv +%’j
Oz =0eg=V (VW+%)

where

ex = unit vector in x-direction
ey = unit vector in y-direction
ez = unit vector in z-direction
u = x-component of u
v = y-component of u
w = z-component of u.

(7

)

®)

(10)



Note that the vector gradient operator V in Equations (4) through (10), is defined as
d d d
V:ex;};+ey$+ez§£ (1)

with the understanding that the z-component vanishes in two-dimensions. This convention is used
even in the cylindrical case. Thus divergences in Equations (4) through (10) represent the
Euclidean divergence, not covariant divergence.

2.1.2 Energy Equation

The energy conservation equation, which governs heat transfer, is given by

p (%—‘;Jr V-(eu))=V-(kV'I‘)+q (12)
where

e = specific energy

k = thermal conductivity

q = heat generation

p = density.

Viscous dissipation due to viscosity has been neglected, as it is negligible in incompressible flow.

In terms of the spatial coordinates, Equation (12) becomes

ot ox dy 0z X S

p(—ﬁ due)  d(ve)  d(we) ¢ e_g) d ( gZ)

d dT 9 d: koT
“ay (Kay )+ 5 (Ko )+ S e 13

Terms associated with the z-coordinate vanish in two-dimensions,



2.1.3 State Relation and Melting Model

An equation of state is used to relate cell energies to cell temperatures. This state equation
accounts for latent heat effects, and allows user modification for use with different types of fluids.
The form of the state relation is illustrated in Figure 1. Note that the zero of energy has arbitrarily
been taken to be the energy of the solid phase at the melting point. For e <0 and e > L, the curve
is assumed to obey a quadratic relation of the form

al (T-Tm)+a2 (T -Tm)? , e<20
¢ = (14)
L+a3(T-Tm)+ad4 (T-Tm )2, e>1L

where the coefficients al, a2, a3, and a4 are user input numbers, and

L latent heat of fusion

il

Tm

i

melting temperature.

T |

T

S

R S

r~
]

Figure 1. Equation of state curve.

For 0 < e <L, the temperature remains constant and is equal to the melt temperature of the fluid,

1 .



If the curves are linear for e < 0 and e > L (i.e., a2 = a4 = 0), then al is the specific heat of
the solid phase (e < 0) and a3 is the specific heat of the liquid phase (¢ > L) of the material. IfL =
al =a2 = a4 =0 and a3 is the specific heat of the material, Equation (13) reduces to the
temperaiure equation in the absence of phase change.

A cell (i /,k) is assumed to be solid when e < 0. Partial melting occurs when 0 <e <L,
and complete melting when e > L. Presently, MAGMA does not allow for partially molten cells.
Thus, the condition e > L/2 was chosen as the criterion for cell melting. If the cell energy of a
solid cell rises above L/2, the cell melts. Conversely, if the cell energy of a molten cell falls below
L/2, it solidifies. ‘

MAGMA assumes that all fluid properties, except density, are variable (density is allowed
to vary only in the buoyancy force term in the momentum equation through the Boussinesq
approximation).! If fluid properties are allowed to vary, relations describing this behavior or
specific property data must be supplied by the user.



2.2 Temporal Differencing and Time Integration Procedure

This section describes the time integration techniques and the temporal differencing scheme
for the governing equations presented in Section 2.1. The solution procedures of the
incompressible Navier-Stokes equations and the energy equation are treated separately in the
sections that follow.

First-order forward differences are used to approximate all time derivatives. The time
differencing is performed with respect to a set of discrete time values " separated by a variable time
increment, At = AL UM The time level n is used as a superscript to denote the time level of a
quantity ¢. Thus, g™ is the finite difference approximatioh to the quantity g at time ¢",

In the following sections, the temporal differencing scheme is illustrated while spatial
differencing is suppressed for clarity. Note that all spatial derivatives should be replaced with their
finite difference approximations as described in Section 2.3.

2.2.1 Incompressible Navier-Stokes Equations

The code solves a fully implicit time discretization of the incompressible Navier-Stokes
equations, namely

vatl - g (15)
n+l _ .n «
s (V)™ =Vt gt To) 4V o™, 1o

The scheme of Equations (15) and (16) constitutes a nonlinear algebraic system of equations

N1 ynd un*, This system is solved by a new hybrid iteration

for the advanced-time quantities p
scheme® which is essentially a generalization of the damped artificial compressibility method for
steady-state incompressible flow3 to the fully implicit transient equations. This scheme may be

written in the form

a4, Unpublished research results of J. D. Ramshaw and P. R. McHugh entitled "Hybrid Iteration
Scheme for Implicit Calculations of Incompressible Flow."




k+1)_ ,(k
: (kt D). Q = g% V.u(k) : : (17
At ‘ :

WDy (e yn

= - (Vo (uun () . v (kD) g (K
Y py (V- (uu))®) - v(p bV -u'®))

BTty + v o) (18)
(k) < the o n+l o th . : e e ‘o
where q\"/ denotes the approximation to q after the k™ iteration, The parameter g is an
artificial sound speed, b is an artificial bulk viscosity, and At is the artificial or pseudo-time step.
These parameters are constrained by the stability restrictions

2vAT _41

<1 ~ 19)
4* 247 (

A o*ATH2b +2v) AT

A? Rk e
2
b+v+ ZAZ >0 | 2n
t
where
, -1 ‘
Sl w
Y z ‘

Here Ax, Ay, and Az are the spatial increments in the x-, y-, and z-directions respectively, with the
understanding that Az = e in two dimensions. Notice that b itself need not be positive. These
results were derived by a linear stability analysis of the differenced equations neglecting the
convection terms. The latter impose an additional material Courant restriction on At of the form

(23)

Ax Ay éi}
i T

AT < min{

where u, v, and w are respectively the x-, y-, and z-components of u, and the min operation

includes a search over all cells in the computing mesh. In the derivation of the stability restrictions,
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v was assumed constant in the continuous equations, resulting in considerable simplification of the
viscous terms, If vis assumed variable, then additional terms arise which make the stability
“conditions more restrictive by replacing v with 2v in Equations (20) and (21).

The proper selection of the parameters is somewhat more difficult than in the analogous
steady-state method,? because the character and behavior of the system now depend on the
additional parameter At. In particular, care must be taken to ensure that the hyperbolic character of
the system is not lost due to the additional damping introduced by the time derivative terms. This
consideration, together with an analysis of the net damping rate, leads to the expressions?

) (L 2
nAt Ly At
([ (T2v 1 7! *} 2
—5 - | AT}, At>A°/(4v
Ar=a<mm{ [Az ZAJ [4v) (25)
L At* . At < A¥4v)
2
b:»A——[Z 1 +—A-t— - 1]32&:«\/ - (26)
4At At
where
2 2,2 L
Ar*:%‘-—- L+ (14 8—‘3~f‘~25- 2 | | 27)
da At WA ,

L is a length typical of the overall dimensions of the flow region, ¢ is a safety factor on the
pseudo-time step (0 < o < 1), and @ is a dimensionless damping coefficient of order unity. For
Reynolds numbers near 0.1 the values a = 0.9 and = 0.124 appear to be nearly optimal, At
higher Reynolds numbers smaller values of & are needed to ensure compliance with the convective
stability limit of Equation (23).

b. Unpublished research results of J. D. Ramshaw and P. R. McHugh entitled “Hybrid Iteration
Scheme for Implicit Calculations of Incompressible Flow. "
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The scheme must also be supplemented by convergence criterla to determine when the
iteration has converged to satisfactory accuracy. At present these criteria are taken to be

max IV-ulk* D) < £ '%—“—5 (28)
. Jul2 |
Z:;_ max (1D K] LDy () (ke 1)y (o) < g |9_|_I%a_x , (29)

where the max opemnons include a search over all cells in the computing mesh We currently tuke
8] = 10 and 82 = 10

MAGMA also allows a linearly implicit option in the temporal differencing of the convection
terms. This option consists of linearizing the convective terms by replacing V~(uu)(k) in
Equation (18) with V~(u"u(k)), where # is the time level and £ is the iterate level. In addition, a
semi-implicit solution algorithm can be invoked by evaluating all t¢rms on the right hand side of
Equation (18) except pressure and temperature at the old time value, a.

2.2,2 Energy Equation

The code solves an explicit time discretization of the energy conservation equation,

€ - en‘ n n ‘
P (‘TM + Vo(ue) J= VAV D" 4+ g (30)

Cell energies are marched forward explicitly in time to the new time level using only
variables from the previous time level, The time step is therefore limited by the diffusive and
Courant stability restrictions,

2
/_\t<"24—— (31
o

o x Ay Az}
A’“”’”‘{ T T T

12



whore

a=t (thermal diffusivity) (33)
pc

and ¢ is the specific heat capacity. If necessary, the code resets Az after each time step in order to
satisfy the changing Courant stability restriction.

It would of course be preferable to use a fully implicit scheme for the energy equation as
well, thereby removing the stability restrictions of Equations (31) and (32). This scheme should
be replaced by a fully implicit scheme if the mode! is developed further.

13



2.3 Spatial Differencing

The governing equations are spatially differenced ﬁsing the control volume or finite volume
approach, whereby the temporally differenced conservation equations are averaged over the
volume of the appropriate computational cell.# The divergence theorem is used to convert the
volume averages of terms of divergence form to surface integrals over cell faces. This procedure
leads to conservative difference equations for mass, momentum, and energy.4 The spatial
differencing is conventional in all respects. All terms other than convection are approximateh by
centered differences, while convection terms are approximated by weighted averages of centered
and upwind (donor cell) differences (see Appendix B).

2.3.14 Finite Difference Mesh

MAGMA numerically sclves differenced forms of the coupled governing equations on &
two- or three-dimensional, staggered grid using two- or three-dimensional rectangular coordinates
or two-dimensional cylindrical coordinates. The computational mesh consists of rectangular cells
of width Ax, length Ay, and height Az, The mesh contains imax cells in the x-direction, jmax cells
in the y-direction, and kmax cells in the z-direction.

Variables in a computational cell are placed according to the MAC solution procedure.?
Velocity components are located on cell faces, while pressures, temperatures, energies, and fluid
properties are located at cell centers. Figure 2 is a schematic illustration of a computational cell.
Note the terminology used in this figure to refer to cell faces. For example, the velocity component
in the x-direction (1) is located on the right cell face, the y-direction velocity component (v) on the
front cell face, and the z-direction velocity component (w) on the top cell face. The cell faces
opposing these three sides are the left, derriere, and bottom cell faces, respectively. The mesh
contains both active cells containing fluid and inactive solid cells, as shown in Figure 3. Cells not
containing fluid (inactive cells) are represented by shaded cells. Boundary cells are used to impose
the velocity and temperature boundary conditions. Velocity boundary cells, which are marked with
the letters VBC in Figure 3, are always adjacent to cells that contain fluid. Temperature boundary
cells, which are marked with the letters TBC in Figure 3, are always located at the edges, or
perimeter, of the computational region, Three-dimensional rectangular coordinates is the code
default, Two-dimensional rectangular coordinates and two-dimensional cylindrical coordinates are
invoked by setting the spatial increment in the z-direction to a negative value (Az < 0). This option
forces all terms associated with the z-coordinate to vanish in the discretized form of the governing
equations (formally Az — o). Two-dimensional cylindrical coordinates assume that the

14
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li

y-coordinate axis is the axis of symmetry, x is the radial coordinate, and all terms associated with
the z-coordinate vanish. These cylindrical terms in the governing equations are included in the
formulation when the cylindrical coordinates flag, £ (CYL in the code), is set to one.

Cell spaciﬂg in all coordinate directions is assumed uniform. Simple averaging is used to
obtain quantities at points on the mesh where they are not explicitly defined. The averaging
procedure is described in Appendix A.

As shown in Figure 2, velocities are located on cell faces, i.e.,

e = WGAX( - )4y (k - HA2) (34)
vige = I - PAX A,k - 3)42)] (33)
Wik = Wl - AT - Ay kA7) (36)

All other quantities are located at cell centers. The location of the cell centered quantity Qyy, is
given by

Qi = QLG - PAX( - PAy,(k - 4] 37)

The volume, V, of a computational cell (ij,k) is simply,
V = AxAyAz. (38)

It is convenient to define three additional types of cells, called momentum cells, which are
centered about the locations of the velocity components. Figure 4 illustrates the momentum cell
corresponding to the u-velocity component. Analogous momentum cells exist for the v and w
velocity components. In the notation of subsequent sections, the momentum cells corresponding
to the u-, v-, and w-velocity components are referred to by superscripts my, my, and my

respectively.
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(iyk)

Shaded region is the momenum
cell for the u-velocity component

Figure 4. Schematic illustration of a momentum cell
corresponding to the u-velocity component.

2.3.2. Differencing Notation

Following the notation of Reference 4, volume averages are denoted by angle brackets.
The average of a quantity, Q, over a typical cell (iy k) is given by

<0sp=p-1 1] 0wy duya (39)

where the volume integral is taken over that cell. Similarly, the average of a quantity over each of
the three momentum cells is denoted by

<Q>,,k =V1—J J 1 0y dxdye: (40)
<05T == T ] 0wy dudyar @)
<5 =1 T ] 0wy.2) dxdyae @)
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where the volume integrals are taken over the indicated momentum cell. If the quantity Q is not of
divergence form, these averages are approximated by the values at cell centers; i.e.,

<0 >j= 0 - DAXG - DA,k - 2)42) 43)
my . 1 1

<0 >ijk = QUAx( - Ay.(k - DA2) 44
my 1 1

<0 >ijk = QUi - AxjAy,(k - A7) 45)
My o1 1 y

<@ >ijk =0 - 5)Ax,( - 5)Ay,kA2)) (46)

where the quantity Q(x,y,z) is evaluated at the point (x,y,z) using whatever averaging is necessary.
The averaging procedure used by MAGMA is described in Appendix A.

If the quantity Q is of divergence form, i.e., Q = V*W, where W is a vector or tensor
quantity, then the volume integrals in Equations (39) through (42) are converted to surface

integrals using the divergence theorem,

<V'W >y = ‘vl—'§dA new 47)

where n is the outward unit normal to the surface and §dA is the surface integral over that surface.

Equation (47) can be approximated by

1 ,
< VoW > =5 > (AA n)gr W | (48)
o
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where the subscript a refers to the fgccs of the cell (i,k). Equation (48) can be expanded as

| < Vew $;jk = -‘—,1* [ (AA n)geWpg + (AA n)p*Wp

+ (AA n)prWg + (4A n)p oW,

+(MA MR WR + (AMAmyrewr | - “9)

where the subscripts B, D, F, L, R, and T refer to the bottom, derriere, front, left, right, and top
sides, respectively, of the computational cell (iy,k). The quantities in parentheses in Equation
(49) are defined as follows:

(AA n)p = -, AxAy ‘ | (50)
(AA n)p = -ey AxAz ' (351
(AA n)g = ey AxAz (52)
(AA n), = -e, AyAz (53)
(AA n)R = e, AyAz (54)
(AA n)T = e, AxAy : (55)

where ey, ey, and e, are unit vectors in the x, y, and z coordinate directions, respectively. Similar
expressions hold for the volume averaged quantities integrated over the three momentum cells. In
summation form these expressions are given by

. 1
<V'W >y = v Z(AA n)%-waq (56)

where the subscript g (o = B, D, F, L, R, or T) refers to the faces of the momentum cell denoted
by mg, with ¢ equal to u, v, or w.
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A special case arises when Q represents convective terms in either the momentum equation
or the cnergy equation (i.e., @ = Ve[uu] or Q = V+[uT]). As an example, let Q = Ve[uS] where S
is the quantity being convected by the velocity, u. The volume averaged expression for Q is given
by '

' 1 |
< VeluS] >yt = 7 2(AA m)geSa. (57)
o

Note that if § = T, the summation is performed over the regular cell (iy/,k); however, if S = u, v,
or w, the summation is performed over the corresponding momentum cell mg with ¢ = u, v, or w.
A differencing technique based on a weighted average of centered and donor cell differencing is
used in conjunction with the convection terms to ensure numerical stability. The value of -

(AA n'u)aq is computed as a centered average on side o, while the quantity being convected, S,
is computed as a weighted average of its centered and its "upwinded" values as described in
Appendix B.

2.3.3 Incompressible Navier-Stokes Equations

The spatial differencing for Equations (17) and (18) is given below, using the expanded
forms of the equations in the x-, y-, and z-coordinate directions. The additional terms required for
two-dimensional cylindrical coordinates are explicitly included in this discussion. Recall that
terms associated with the z-coordinate direction vanish in two dimensions.

¢ Continuity equation

(k1) (k) N <u® 5
Poijke " Pije = a2[<Vou(k’> g+ E——— (58)
AT / (i-1/2)Ax :
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« Momentum equation in x-direction

m

(k+1) (k) (k+1) ,, n 2 u
Wwh - W wei - Uy , my <ut>
ik - ik L ik ijk <V°‘luu](k)> e &;”—“‘“_ ijk

AT At [Ax
<V elex(p™ - b<Veut Uk)]> ijk

mu <V ~((x)£ox) > ,:f

- Blgen) <T™ - To> j + (iAx)>
nlu
2vé<u® > A
- e - (59)
(iAx)
« Momentum equation in y-direction
m
plken) ) (k+1)_ v
Yok = Vijk - Viijk vuk - < Ve[uv] (k)\ My é_iL_L > ijk
At At kT 1/2)Ax

<V [ey(p® - b <Teu®s )]

k n+l o - My
" ﬁ (g'ey) <T - ra> ijk
my
<V ' ((x 56.) > .
(Wy) > 4 (60)

((i - 1/2)4%)"
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« Momentum equation in z-direction

(k+1) (k) (k+1)
Wohiik "~ Wik Wi - W

——
=W

AT At

n

Uk . < Vojuw|® >

my
ijk
, K ’nw
-’<V'[ez(p(k) - b <Veul )> ijk)] > ik

m
i

My

Blge) <T™ - To> ) +<Veo,> (61)

where k is the iteration index, and the gradient operator, V, is expressed in rectangular

coorainates,

Recall from Section 2.2 that if the linearly implicit option is specified, the convection terms,

0 Mg Wy My - .
< Volug)® > iji» are replaced by < Velu"g™] > ik (@ =uv,orw), where 7 is the time level.
2.3.4 Energy Equation

Equation (30) is the temporally differenced energy equation, The spatial differencing for
this equation is given in Equation (62) below.

n+l o n n
o [Suk” i ik ¢ < Ve(ue) >+ S (e > ) o
At / (i - 1/2)Ax
<Ve(k VD)'>.. + ~——-§—k—~—~ < Ve(eyTMH>.., + ¢ (62
DT ) ax (ex ikt dijk 62)

where the gradient operator, V, is expressed in rectangular coordinates (Equation (11)).
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2.4 Boundary Conditions

‘ Mesh cells containing fluid are surrounded by solid or fictitious boundary cells that impose
the problem boundary conditions. Boundaries may be positioned along cell faces or they may pass
diagonally through the centers of cell faces. The following sections describe how MAGMA sets
velocities and temperatures in boundary cells in order to impose the physical boundary conditions.

2.4.1 Velocity Boundary Conditions

Boundary conditions associdted with velocity are set in inactive cells adjacent to at least one
active cell. Cell position and orientation determine how boundary velocities are set. There are two
possible orientations with regard to setting velocity boundary conditions, The first orientation is
when a wall or boundary lies along a cell face, and the second orientation is when a wall cuts
diagonally through cell faces. These orientations are discussed separately in the sections that

follow.

2.4.1.1 Walis Along Cell Faces. Consider Figure 5 as an example. Note that the
positive z-direction is out of the paper. An analogous situation exists if y and v are replaced by z

and w, respectively, and the positive y direction is into the paper.

1k V2ik  Vijk
¥ SRR,
J . ﬁ-»- —t— . =
Ak N2k |43 .
X
i=1 2 3

Figure 5. Wall boundary orientated along a cell face,
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Physically, there can be no flow across a wall, Therefore, the normal velocity compohent on i
wall is identically set to zero regardless of the wall type (free slip, no slip, etc...) L.e.,

Physical characteristics of a free slip wall, a no-slip wall, or a wall with a known velocity
determine how tangential velocity components are set in a velocity boundary cell. At a free slip
‘wall, there is a zero shear stress, so the normal derivative of the tangential velocity must vunish.
Thus, the tangential velocity component in the boundary cell is set equal to the tangential velocity
component in the adjacent active cell, In Figure S this condition is satisfied by

Vijk= V2k. ’ (64)

No-slip boundary conditions require that tangential velocity components vanish at the wall,
The tangential velocity in the boundary cell is set in order to satisfy this condition and in order to
guarantee the finite difference approximation to the second normal derivative at the wall is
consistent with a second order Taylor series approximation, For example, at cell (2,/,k) in
Figure 5 the code approximates the second derivative of v in the x-direction as,

O Uk Y2kt VIR (65)
_()xz Fode Ax?2

‘The Taylor series approximation to this quantity is found by expanding v, ik and the velocity at the

wall about the point (2,,k)

v Aoy

V3jk Vo et A get Ty ot (66)
Axdy  Ax% 92y v
Viall = 0 = VZJ.k 3 Ox + g 5;; + o (()7)

Neglecting higher order terms and solving for the second derivative gives

((),,v) _4 Ok 3o (68)
k()x2 TFaylor scrics 3 |
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Equating Equations (65) and (68) and solving for vy jx glves,
1 (
VIgk= 330k 2 V24k (69)

“This expression satisfies the condition of zero tangential velocity at the wall as well as guaranting u
consistent second order approximation to the second normal derivative. Analogous expressions
arise for boundaries located on the other cell faces,

Specified velocity boundary conditions are casily imposed if the velocity components are
located on the boundary. However, when this is not the case the boundary velocity component is

once again set in 4 consistent, second order manner, For example, if the tangential velocity on the
boundary in Figure 51s v, , the tangential velocity component in the boundary cell is calculated

from,

| 8
V/J,k = 3‘ V.?J.k' 2 VZ.j.k + § Vi ‘ (7())

Analogous expressions exlist for other specified velocity boundary conditions of this type.

2.4.1.2 Walls Cutting Diagonally Through Cell Faces. No-slip walls passing
diagonally through cell faces allow the simulation of non-rectangular geometries, Diagonal
boundaries can cut through two or three cell fuces. Boundary cell velocities located on the wall are
identically set to zero, Diagonal boundaries passing through only two cell faces require setting a
tangential velocity component not located on the wall. This situation is illustrated in Figure 6, in
which the tangential velocity «t point (1) (out of the paper) must be set in order to satisfy the no-
slip requirement on the boundiry. Note that the horizontal and vertical velocity components in cell
(i4,k) are identically set to zero because they are directly located on the boundary, The third
velocily component at point (1) comring out of the paper is set in the following manner:

1. The veloeity in this direction is computed at point (2) by averaging the
corresponding velocity components in cells (i/j+7,k) and (i+1,k).
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t
j+1 \ \\ .....»3/’ Interpolate along this y

' \ /* line
J 1o D

K:\ Average along this line
N

Figure 6. Diagonal wall boundary,

2, A second order polynomial is fitted through points (2) and (3), and the point

indicated on the boundary in Figure 2,5.2. The velocity on the boundary is zero for

this interpolation,

3. The velocity at point (1) is calculated from this second order polynomial equation,

T!.is procedure results in the following expression for the tangential velocity component, w, in cell

(id.k)
ir= b
Wijk = 3 Wisljel k™ Wisljk~ Wijrik
Analogous expressions arise when other diagonal boundary orientations are encountered,
2.4.2 Temperature Boundary Conditions
Temperature boundary conditions are imposed on the perimeter of the computational
region, Four types of temperature boundary conditions are allowed: convective boundary

conditions, constant heat flux, constant temperature, and adiabatic (zero heat flux) bounduary
conditions.>
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For convective/mixed type boundary conditions, the boundary temperature is determined
from an energy balance at the wall, where the heat transfer by convectlon equals the heat transfer
by conduction at the wall. On the front boundary this condition is expressed as,

"= h(Ty-To) = -k (g% )w oy (T¢ jmax & A:i.lmm-l.k) | (12)
where,

h = convective heat transfer coefficient

k = thermal conductivity

q'"' = heat flux

subscripts;

W = wall value

oo = value of surroundings.

Ty is upproximated by
_—_— .
lw=7 (Tijmax.k + Ti jmax-1.k) (73)

and the value of the thermal conductivity on the wall is taken to be the value at the center of the cell
adjacent to the wall. The convective-mixed type boundary condition on the front wall is then
satistied by

2hdy hdy
o kl;;afjk Fo ( - }um[l%fkjr ijmax-1k
T jmax g = S by (74)
/-

2+
ki, Jmax-1.k

Expressions satisfying convective/mixed boundary conditions on the bottom, derriere, left, right,
and top sides, respectively, are completely analogous to Equation (74).
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For a constant heat flux type boundary condition, thi: tonndary temperature is once again

determined from an energy balance at the wall, As an example, consider the case where a constant
" " . . : r
heat flux, g, , exists across the left boundary of the computational region.5 The energy balance at

the wall requires

v (4L ek 20k T10R ;
or
Ile
Trjk=T2jk w2 (76)

k2.j.k

Analogous expressions can be derived for constant heat flux conditions along the bottom, derriere,
front, right, and top walls, respectively. The adiabatic boundary condition is imposed by simply
setting the heat flux acrogs that wall to zero,

Constant temperature boundary conditions are easily imposed if the temperature is located
on the boundary, However, when the boundary coincides with a cell face, the boundary
temperature is set in a consistent second order manner similar to the method described for specificd
velocity boundary conditions. A constant temperature (Tp) along the bottom wall requires the
boundary cell temperature be calculated from the expression given in Equation (77). Expressions
for the constant temperature boundary conditions along the remaining walls are completely
analogous to Equation (77).

1, - 8,
Tijai=3Tij3-2Ti52+378 ‘ (77)

2.4.3 Boundary Conditions Summary
Velocity boundary conditions are imposed after each iteration in the numerical solution to
the momentum equation. Velocity boundaries are not restricted to the perimeter of the

computational region. Velocity boundaries can lie along or pass diagonally through cell faces.
Code logic identifies the type of boundary orientation and sets the boundary velocities accordingly.
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Types of allowable velocity boundary conditions include:

. No-slip
. Free slip
. Specified velocity.

Temperature boundary conditions are imposed after each time step on the perimeter of the
computational region. Types of allowable temperature boundary conditions include:

«  Constant temperature
o Constant heat flux

. Symmetric

. Convective/mixed.
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3. CODE DESCRIPTION

MAGMA is a FORTRAN computer code. Important aspeéts of the MAGMA code are
discussed below including:

Indirect addressing scheme

. General logic flow

. Subroutines and variables used by the code
. Code input and options

. Code output,

A variatle dictionary is given in Appendix C, and a listing of a sample input data file is given in
Appendix D. )

3.1 Indirect Addressing Scheme

The indirect addressing scheme used by MAGMA is designed to avoid costly and
unnecessary computation over inactive cells in the computational domain. By defining indirect
addressing arrays the solution algorithm can sweep only over active cells in the mesh. This
scheme is used in conjunction with the solution of the incompressible Navier-Stokes equations, but
not the solution of the energy equation. Thus, heat flow is computed throughout the entire region,
while fluid flow is computed only in molten cells.

IMAP is a four dimensional integer array. Itis used to specify whether computational cells
are active or inactive. And in the case of velocity boundary cells, the type of velocity boundary
condition to be used. The first three indices of IMAP correspond to the indices of the
computational grid. If the fourth index is 1, the information stored in that array element determines
whether cell (£/,k) is active or inactive. For example, if cell (iy,k) is an active cell then
IMAP(I.J K,1) = 1. Conversely, if cell (iJ,k) is an inactive cell then IMAP(1,J,K,1) = 0. If the
fourth index is 2, then the information stored in that array element determines the type of velocity
boundary condition to be used in cell (iy/k). For example, if IMAP(I,J,K ,2) = 0, then the no-slip
boundary condition is enforced in cell (i/ k). Similarly, IMAP(I,J,K ,2) = 1 indicates that the free
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slip boundary condition is applied in cell (ij,k), while IMAP(1,J K 2) = 2 indicates that the
specified type velocity boundary condition is applied in cell (iy,k). The use of IMAP in the
boundary condition logic requires: / to range between 0 and IMAX + 1, J to range between 0 and
JMAX +1, and K to range“between 0 and KMAX + 1.

A two-dimensional integer array (/D) is used to keep track of all the active cells in the
region. The active cells are numbered consecutively using the IMAP array, sweeping through the
mesh from left to right, front to derriere, and bottom to top, respectively. The i, j, and k indices of
each active cell are stored along with its cell number in order to keep track of cell position and
relation to neighboring cells. The number of rows in this array is three, while the number of
columns is the number of active cells (NCELLS). The column number is also the number of an
active cell. Therefore, for each active cell (each column) the first row contains the i coordinate
index, the second row the j coordinate index, and the third row the k coordinate index.

A third integer array (/DBC) is used to keep track of the velocity boundary cells and to set
the velocity boundary conditions. The format of this array is the same as that described above.
The column number corresponds to the number of the velocity boundary cell (NBC columns). The
three rows contain the i, j, and k coordinate indices corresponding to that velocity boundary cell.

3.2 Overall Program Flow Chart

The general logic flow of the MAGMA code is shown in Figure 7. Initially the code reads
input data {rom either an input file or a binary restart file. The restart file is used to restart a
previous calculation from the point of the last binary data dump. Program variables and constants
are initialized following input.

Following initialization, the code tests an input flag to determine if the energy equation is to
be solved. If this energy flag tests true, the physical time step and iteration parameters are reset
based on energy equation stability restrictions. Cell energies are updated to the new time level and
cell temperatures are computed using the equation of state, Temperature boundary conditions are
set and temperature dependent fluid properties such as thermal conductivity, viscosity, and specific
heat capacity are specified.
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Figure 7. Top level flow chart for the MAGMA code.
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Next, the code computes initial guess velocities and proceeds to the iterative solution of the
incompressible Navier-Stokes equations. Velocity boundary conditions are imposed following
each iteration. The iteration continues until velocities and pressures have converged to the solution
at the new time level. Data is written to data files and the code compares the new time level with
the user specified ending time to determine whether to continue or terminate the run. |

3.3 Subroutine Organization and Description
The following list defines the subroutines used in the MAGMA code. Primary functions of
the subroutines are briefly described. Figure 8 presents a Hierarchical Table of Contents (HTOC),
which demonstrates relationships existing between subroutines and the main code.

1. ADDRSS (ADDReSS)

This subroutine defines the indirect addressing arrays which relate the cell
numbering scheme to the physical coordinates of the interior and boundary cells of
the computational region. It is called by MAIN.

2. ADVNCE (ADVaNCE)

This subroutine updates all time dependent variables to the new time level once
convergence has been obtained. It is called by MAIN.

3. BNDRY (BounDaRY)
This subroutine sets the velocity boundary conditions. It is called by MAIN.
4. CONVRG (CONVeRGe)

This subroutine checks if the iteration scheme solution has satisfied the convergence
criteria. It is called by MAIN.

5. DUMP (DUMP)

Performs a binary dump of program variables to a restart file. It is called by
PRNT.
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Figure 8. Subroutine hierarchical table of contents (HTOC
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9.

10.

11,

12.

ENERGY (ENERGY)

This subroutine solves the energy equation. The governing partial differential
equation is solved explicitly in time as described in the main fext.

FLUX (FLUX)

This subroutine computes the velocity changes due to the convective and viscous
terms in the momentum equation. It is called by MAIN,

GUESS (GUESS)

This subroutine computes the initial guess for the velocity field required for the
iteration scheme. It is called by MAIN,

INITLZ (INITial.iZe)

This subroutine initializes constant terms which are used throughout the rest of the
program. It also calls STATE to set the initial energy field from the initial
temperature and to compute the initial temperature dependent properties. It is called
by MAIN.

INPUT (INPUT)

This subroutine reads in the necessary input data. Itis called by MAIN,

MELT (MELT)

This subroutine tests cell energy values against the material latent heat of fusion
value to determine if cell melting or freezing should occur.

PRNT (PRINT)

This subroutine outputs the results of the calculations. [t is called by MAIN,
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14.

15.

16.

17.

RSTART (Re START)

Reads program variables from a binary restart file. It is called by INPUT.

STATE (STATE).

This subroutine uses an equation of state to relate the temperature to the energy or
vice versa. It also calculates temperature dependent properties and calls TBNDRY
to reset the temperature boundary conditions, It is called by MAIN and by INITLZ,

TBNDRY (Temperature BouNDaRY)

This subroutine sets the temperature boundary conditions. It is called by MAIN
and by STATE.

TIMER (TIMER)

This subroutine keeps track of program times. It is called by MAIN and PRNT.
UPDATE (UPDATE)

This subroutine updates the pressure and velocity fields to the new iterate level
according to the fully/linearly implicit artificial compressibility iteration scheme with

damping. It is called by MAIN,

3.4 Code Options and Input

A sample input file for the MAGMA code is located in Appendix D. Most of the variables
in Appendix D are self-explanatory. Those requiring additional information are described below.

Note that additional variable definitions can be found in the variable dictionary in Appendix C.

The first input variable (JRSTRT) determines if a previous calculation is to be restarted
(IRSTRT=1) or if a new calculation is to be performed (/RSTRT=0). If IRSTRT=1, the program
reads all variables from a binary file called RINPUT. The remaining variables in the input file are

read after the binary read from RINPUT. This allows additional program control and flexibility,
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however the user must be certain that input variables are consistent with the variables of the
previous calculation, If IRSTRT=0, the program starts a new calculation.

ALPHA is a weighting parameter used in the differencing of the convective terms of the
Navier-Stokes equations, It represents the percentage of upwinded or donor cell differencing,
ALPHA = 1 represents pure donor cell differencing, while ALPHA = () represents pure centered
differencing:

CYL is the two-dimensional cylindrical coordinate system flag, CYL = 1 indicates that
two-dimensional cylindrical coordinates are to be used. Setting CYL to one also requires that
DELZ be set to a negative number. A negative DELZ is interpreted by the code logic as an input
signal for a purely two-dimensional calculation, The y-axis becomes the axis of symmetry for
two-dimensional calculations and the x-coordinate becomes the radial coordinate. CYL =0
indicates that either a two or three dimensional simulation is to be performed using rectangular
coordinates, Three dimensional calculations are performed if DELZ is greater than zero, and two-
dimensional calculations are performed if DELZ is less than zero. Note that the x-y plane is the
default for two-dimensional calculations,

ECOEFI1, ECOEF2, ECOEF2, and ECOEF 3 are temperature coefficients in the quadratic
equation of state (Equation (14)) where ECOEF 1 = al, ECOEF2 = a2, ECOEF3 = a3, and
ECOEF4 = ad.

EPSI is the tolerance value for the velocity divergence condition given by Equation (28),
i.e., EPSI =¢€,. TOL is the tolerance value for the convergence condition given by Equation (29),
ie., TOL =g,

TOB, TOD, TQF, TQL, TQR, TQT are temperature boundary condition parameters
agsociated with the bottom, derriere, front, left, right, and top boundaries, respectively, The
interpretation of these parameters depends upon the temperature boundary condition flags /TMPB,
ITMPD,ITMPF, ITMPL, ITMPR, and ITMPT. The letters B, D, F, I, R, and T refer to the
bottom, derriere, front, left, right, and top boundaries of the computational region. Table 1
indicates the interpretation of TQn as a a function of /TMPn, where n represents B, D, F, L, R, or
T. Asindicated in Table 1, TQH is the convective heat transfer coefficient when the convective
wall boundary condition (ITMPn = 3) is selected.
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Table 1. Interpretation of temperature boundary condition parameters

{IMPn Interpretation of T0n
1 Wall temperature

(constant temperature boundary condlition)

2 Wall heat flux
(constant heat flux boundary condition)

Temperature of surroundings
3 TQH is the heat transfer coeflicient
(convective boundary condition)

TWFIN and IFREQ are program control variables, TWFIN sets the ending time for the
calculations and IFREQ deterines the frequency of data outputs, Data is written to a restart file
and several output data files (i.e., mltdat, outdat, prsdat, tmpdat, and veldat, and pltdat) every
IFREQ time cycles,

[IENERGY, IFIMP, IGUESS, IMELT, and IVISC are program option flags. IENERGY
= | indicates that the energy equation i to be solved, whcrcus; IENERGY = () turns off the energy
solution subroutine. IMELT controls the code melting and freezing options, IMELT = 1 allows
cell melting and freezing, while /MELT = 0 turns off this option. IVISC controls the variable
viscosity option in the MAGMA code. /VISC = | indicates that the variable viscosity formulation
is to be used, while IVISC = () indicates that the constant viscosity formulation is to be used.
Tables 2 and 3 indicate the various options associated with the IFIMP and IGUESS flags.

Additional input options may be directly hard wired into the Magma code. For example,
expressions relating the fluid properties to temperature must be directly hard wired into the STATE
subroutine. Initial non-uniform temperature or velocity distributions may be coded directly into the
INPUT subroutine. The initial distribution of active cells in the computational region may also be
coded directly into the INPUT subroutine, This task is accomplished by simply setting the
necessary elements of the IMAP array to 1. Special boundary conditions not included in the
MAGMA code can also be hard wired into the code. The BNDR'Y subroutine contains velocity
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Table 2. Interpretation of the IFIMP variable flag

[FIMP. Interpretation

0 Indicates the fully implicit solution algorithm 1s to be used In conjunction
with the momentum equation.

| Indlcates the linearly implicit solution algorithm is to be used in conjunction
~ with the momentum equation

Indicutes the semi-implicit solution algorithm is to be used in conjunciion
with the momentum equation

o

Table 3. Interpretation of the IGUESS variable flag

IGUESS Interpretation
0 Initial velocity guess is to be computed from an explicit approximation to the

momentum equation,
\

1 Initial velocity guess is the velocity solution from the previous time step.

Initial velocity guess is to be computed from an extrapolation from the two
2 previous time step velocity solution,
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boundary condition logic und the TBNDRY subroutine contalns the temperature boundary
condltion logle, MAGMA allows no-slip and {ree slip wall veloelty boundary conditions; and
constant temperature, constant heat flux, and convective temperature boundary conditions.

Array dimenslons and common blocks can be changed in n single INCLUDE file named
‘comd.h', which is included in the mainline und all subroutines, All important PARAMETER
statements, DIMENSION statements, and COMMON blocks, are also locuted in this file,

3.5 Code Output

Data is output to four ASCI data files and one binary datu file afler every IFREQ thine
cycles, The binary datu file is a restart file named ROUTPT, This file contalns a binary dump of
all varlables necessary for a successful restart of @ previous caleulation, In order to restart a
suleulation, the flag IRSTRT s set to one and ROUTPT Is renamed RINPUT before the program
Is executed.

The four ASCI data files are output in a similar fashion, After IFREQ time cycles the
velocity, temperature, pressure are written to the files named: 'veldat', 'tmpdat’, and 'prsdat’,
respectively, Other variable arrays such as energy and temperature dependent properties ure
written to the file named 'outdat', I cell melting is allowed, the melt front profile is written to the
file named ‘mltdat'. The form of 4 program output s similar for each of these files. At each
output, header Information is written to the data file before uny data, This header information
includes a brief description of the type of data (i.e., VELOCITY DATA), the output time, the
number of ¢ycles, the mesh spacing, etc.., In the veldat data file, following the header information
the x, y, and z coordinates are written with the corresponding w, v, and w velocity components on
the same output card (i.e., X, ¥, z, 4, v, w). Other data files write the x, y, and z coordinates with
the corresponding variable value on the snme output card (i.e., x, y, 2, p).

After IFREQ time cycles, the time, the cycle count, and the iteration count are written Lo the
standard output device so that the user can monitor the progress of the code calculations, Note that
this output should be tailored to meet the user's own monitoring requirements. If the code is
executed in batch mode, this output should be redirected to a data file or suppressed.

A post-processing routine may be necessary o convert MAGMA data into the correct {form
for use with an external plotting package. The MAGMA code does not have any internal plotting
capability.
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4. CODE TESTING AND VERIFICATION

MAGMA has been assessed against numerous numerical and analytical test problems found
in the literature, Table 4 presents a summary of these test problems, They have been divided into
five main categories: 1) Two-dimensional advectlon, 2) Two-dimensional conduction, 3) T'wo-
dimensional natural convection, 4) Three-dimensional natural convection, and 5) Melting,

During two-dimensional tests, cach of the three two-ditmensional planes were tested (e,
x-y, 8-z, and y-2z). The results obtained were identical, verifying that symmetry existed in each of
the three coordinate directions, Although tests were performed on each of the two-dimensional
planes, two dimensional culculations are presently restricted to the x-y plane,

Quantitative dati comparisons were possible in assessing MAGMA against tests 1, 2u, 2b,
3b, and 3¢. MAGMA results compared well with analytical solutions for tests 1, 2a, and 2b,67.8.9
Giood agreement was obtained with numerical solutions for tests 3b and 3¢.12 Qualitative
corparisons were made with numerical solutions to tests 3a, 4u, 4b, and 5, MAGMA results also
compared favorably with these numerical solutions, especially considering differences in the
numerical techniques and computational meshes, 10:13,14

The results from MAGMA simulations of tests 3b, 44, and 5 are presented below in order
to demonstrate the copabillties and versatility of the code, These simulations were chosen because
they involve two and three dimensional natural convection, rectangular and cylindrical coordinates,
and heat transfer and fluid flow during melting,

Test 3b is a benchmark numerical solution for steady state, two-dimensional, natural
conveetion, 2 The problem geometry and thermal boundary condition are illustrated in Figure 9,
All boundaries are rigid, no-slip walls, The left wall is maintained at the hot temperature, Ty, The
right wall is maintained at the cold temperature, 7,.. Both the front and detriere boundaries are
adiabatic walls,

MAGMA calculated the steady state solution by marching the transient solution out to a
steady state, while Reference 12 used a steady state solution algorithm to avoid computing the
transient solution, In addition, full donor cell differencing of the convective terms limited the the
MACGMA solution to first order accuracy, while the numerical solution of Reference 12 was second
order accurate.
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Table 4. Summary of MAGMA test problems

—Test Category.

1,

2,

Advection (2-D)

Conduction (2-D)

3. Natural

Convection (2-D)

Test  Number and _ Deseription
. Nuame Drelven Cavity
Coord, System: 2-D Reclangular
Cirid: 40X40
Boundarles; Left - No-slip
Right - No-sllp
Front - Specified
Derriere - No-sllp
Initial Conditlons:  Zoro internal velocity
Parameotors: Re = 400
Comparison; Qualitative & quantitative with
numerical results
2a, Name! Transient Conductlon-Rectangular
Coord, System: 2-D Reclangular
Crid: 20X40 (rect, plate)
Boundarics! Zero surface temp,
Initial Conditions:  T(x,y1=0) = xy
Parametors; k=c=r=l
Comparison; Quantitatlve with analytical solution
2b. Name: Transient Conduction-Cylindrical
Coord, System: 2-D Cylindrical
Grid: 10X 10 (finite cylinder)
Boundarics: Zero surface temp,
Inldal Conditions:  T(x,y=0) = 1
Parameters: Thermal diffusivity = 0.1
Cormparison; Qualitative with analytical solution
3a. Name: Heated Fluid Layer

Coord. System:
Grld:
Boundrics:

Initial Conditions:

Paramcters;
Comparison:

2-D Rectangular
40X20 (rect, plate, g =-g ey)
No Slip walls

Front --Isothermal
Derricere --Isothermal (T'p > 1)
Left, Right  --Adlabatic

Zero, velocity

Uniform Temp. gradicnt

Initial sinusoidal temp, perturbation
Ra = 30,000, Pr= 1.0

Qualitative with steady state
numerical solution
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Table 4. (continued)

Test Caleg

4, Natural

Convection (3-D)

Test . Number _und _Description Reference
3b, Name: Renchmurk Natural Convection
Coord, System; 2-D Rectangular
Grld; 10X10, 20X20, 40X40 (g = -4 ey)
Boundarles: No-slip walls
Left --Isothermal
Right --Isothermal (T, » T'g)
Front - Adlabatle
~ Derrlere ~Adlabatic 12
Initial Condltions: — Uniform temporature
Paramclers! Ra = 10,000, Pr = 0,71
Comparison: Qualltative & quantitative with
' steady stale numerical solution
3¢, Name Benchmark Natural Conveetion
Coord, System: 2-D Reetangular
Ciricks 10X10, 20X20, 40X40 (g = -g ¢y)
Boundarics: No-slip walls
Left -Isothermal
Right --Isothermal (17, > 1'x) 12
From --Adlabatic
Derriere --Adiabatic
Initial Conditions:  Uniform temperature
Parameters: Ra = 100,000, Pr =071
Comparison: Qualitative & quantitative with
steady state numerical solution
4, Name: 3-D Natural Conveetion
Coord. System: 3-D Reclangular
Girid: 9X9X9 (g = -g ¢y)
Boundarics: No-slip walls
Lelt --Isothermal, 1Yy, =T
Right < Isothermal, Ty =T
Front «-lsothermal, T =T ]
Top --Isothermal, 1y =T 13
Bottlom --Isothermal, Tg =T

Initial Conditions:

Paramelters:
Comparison;

Derricre --Isothermal--1'p > '
Uniforru temperature

Ka= 10,000, Pr =072

Qualitative with steady state
numerical solution
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Table 4. (continued)

Test Category

5. Melting (2-D)

Test  Number and  Description Reference
4b, Name: 3-D Natural Convection
Coord. System: 3-D Rectangular
Grid: 9X9X9 (g = -g ey)
Boundarics: No-slip walls
Left --Adiabatic
Right --Adiabatic
Front --Isothermal, T
Top --Adiabatic 13
Bottom  --Adiabatic
Derricre - -- Isothermal -- Tp > TF
Initial Conditions:  Uniform temperature Temp.
periurbation
Paramcters: Ra = 10,000, Pr =072
Comparison: Qualitative with stcady state
numerical solution
5. Name: Melting about a Vertical Cylinder
Coord. System: 2-D Cylindrical
Grid: 40X20 (cylindrical disk, g = -g ey)
Boundarics: No-slip walls
Left -Isothermal, Tr (Trp > Ty )
Right --Adiabatic
Front —Adiabatic
Derricre  --Adiabatic 14

Initial Conditions:

Parameclers:

Comparison:

Phasc (*hange Material

(PCM) at melt temp.=Ty

Ra =3.160100, Pr = 56.2,

Ste = 0.094

Qualitative with transicnt numerical
solution
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Figure 9. Geometry and thermal boundary conditions for test 3b.

Quantitative compuarisons of data values from Reference 12 and the MAGMA solution are
shown in Table 5. The Reference 12 benchmark solution in tie last column was calculated by
extrapolating the solutions from the two finest meshes (Ax = Ay = 0.05 and Ax = 4y = 0.025) to
approximate the exact solution (Ax = Ay = 0). Reference 12 maximum velocity values were

obtained from interpolation, while the MAGMA values represent the maximum cell centered mesh
values. Note that velocities have been scaled by 7 and lengths by L, where ¢t is the thermal

C
diffusivity. Generally good agreement was obtained, considering the differences in the numerical

techniques. Table ¢ indicates that the MAGMA solution is converging to the benchmark solution

as the grid size is reduced.

Figures 10 and 11 present the steady state velocity vectors and temperature isotherms,
respectively, for MAGMA calculations on a 40X40 (Ax = Ay = 0.025) mesh. Comparison of
Figure 11 against the steady state temperature isotherms from Reference 12 (Figure 12)

demonstrates good agreement,
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Table 5. Data comparison with test number number 3b

Umax
Yy

Vmax
X

Nu

Nu
x=0)

Ax =4y = 0.1
Reference 13

15.047 16.243
0.85 0.808
16.733 18.055
0.15 0.139
2.190 2171
2.042 2.170
2.383 2.307

Ax = Ay =0.025

Ax = A4y =0,05
MAGMA Reference 13 MAGMA
15.723 16.189 15.955
0.825 0.820 0.8125
18.757 19.197 19.263
0.125 0.125 0.1125
2.206 2.212 2.230
2.164 2.213 2.218
2.271 2.255 2.254

Reference 13

16.182
0.823

19.509
0.120

2.234

2.235

2,242

Ax = 0
Ay = 0

Reference 13
Bench-mark.

16,178
0.823

19.617
0.119
2.243

2.243

2.238
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Figure 10. MAGMA steady state velocity vectors for test 3b (maximum dimensionless velocity
vector = 19.25),
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Figure 11. MAGMA steady statc temperature isotherms for test 3b (contours
at 0(0.10) 1),
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Figure 12. Reference 12 steady state temperature isotherms for test 3b (contours
at 0 (0.10) 1).
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Test 4a is a three dimensional natural convection simulation. The geometry and thermal
boundary conditions for this test are illustrated in Figure 13,13 All boundaries are rigid, no-slip,
isothermal, walls. The temperatures on the left, right, bottom, top and front walls are equal 1o the
cold temperature, T¢. The derriere wall is set to the hot temperature, Ty The initial temperature is
set to the average of T, and Ty, These and other parameter specifications are listed in Table 4.

[ H .|
| Dl el | -
H ' |
{
e
]
}
y i
' H
i T
t
x 13
Te : 1,
T(
¢t
s 1 j’
. JUSP— e |
‘v/"
Y
¢ﬂ‘/

Figure 13. Geometry and thermal boundary conditions for test 4a.

Cooling on the side walls immediately initiates a downward flow of liquid. This liquid is
heated as it passes along the derriere wall causing it to rise up through the center of the cube. The
steady state natural circulation pattern is thus characterized by liquid falling along the side walls and
subsequently rising through the center of the cube. MAGMA-calculated temperature and vertical
velocity (v) profiles at mid-height (y/# = 0.5) for each of the x-y planes are shown in Figures 14
and 15, respectively. Calculated results from Reference 13 are shown in Figures 16 and 17 for

comparison purposes. Qualitatively the plots are similar, but quantitative agreement is marginal.
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Figure 14, MAGMA temperature profiles at mid-height for fest 4a,
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Figure 15. MAGMA vertical velocity profiles at mid-height for test 4a,
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Figure 17. Reference 13 steady state vertical velocity profiles at mid-height for test 4a.



An explanation for the quantltative differences between the two numerical results has not yet been
determined, MAGMA-caloulated steady stute temperature contours and veloclty vectors for the
plune z/H = 0.5 are shown in Figures 18 and 19, rcspectivcly. Corresponding plots from
Reference 13 are shown in Flgures 20 and 21, The two numerical solutions qualitatively predict
similar steady state behavior.

“Test § investlgates natural convection during melting about a heated finite cylinder, 14 The
geomelry and thermal boundary conditions for this test are lllustrated in Figure 22, All boundaries
arg rigid, and have no-slip walls, The left wall coincides with the surfuce of the cylinder and is
maintained at the temperature 7', which is higher than the melt temperature, Ty, of the Phase
Change Material (PCM). All other boundaries are insulated, adiabatic walls. The transient results
of this simulation are identified by a dimensionless time defined by Reference 14 as

ate(To - Tm)
HIL |

-

(78)

where o is the thermal diffusivity, ¢ is the physical time, ¢ is the specific heat capacity, L is the
latent heat of fusion, and H is the height of the cylinder.

The initial temperature of the PCM was set to the PCM melt temperature, Ty, MAGMA
assumed all cells were initially in the solid phase (no melting). Heat is transferred from the lefl
wall (i.e., the cylinder) to the PCM, due to the initial temperature difference. Initially, this energy
transfer is used to supply the latent heat necessary to initiate cell melting in the layer of cells
immediately adjacent to the cylinder. The entire first layer of cells melt when 7= 000147, Cell
melting is followed by cell temperature increases, which in turn initiates heat transfer to the second
layer of cells, Natural convection begins when the first two layers of cells have completely melted.
The buoyancy driven natural convection flow transfers more heat to the cells near the front
boundary, causing these cells to melt before the other cells in the layer. MAGMA calculated mell
front profiles resulting from this melting process are shown in Figure 23, Qualitatively, the
MAGMA melt front profiles agree reasonably well with the results from Reference 14, presented in
Figure 24. Note that both numerical solutions predict the melt front extending farther across the
front boundary, MAGMA velocity vector and temperature contour plots at 7= 0.0983 (Figures 25
and 26, respectively) demonstrate the heat transfer and fluid flow behavior in the melt region.
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Figure 18. MAGMA steady state temperature contours at 2/LT = 0.5 for test 4a
(contours at 0 (0,10) 1),
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Figure 20. Reference 13 steady stite temperature contours at 7/t = 0.5 for test 4a
(contours at 0 (0.10) 1).
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Figu're 21. Reference 13 steady state velocity vectors at z/H = 0.5 for test 4a
(maximum dimensionless velocity = b43).
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Figure 22. Geomeltry and thermal boundary conditions for test 5.
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Table 6 compares the calculated dimensionless molten volume of the melt region obtained
from MAGMA and from Reference 14. The dimensionless molten volume is defined by Reference
14 as

2 rl L2
Vol =;HT i gy - 1 (79)
o JO

where H is the height of the cylinder, x 2 is the radial coordinate of the cylinder surface, and x,% is

the radial coordinate of the melt front. Generally good agreement is obtained.

Figure 27 presents the transient response of the average Nusselt number, The large
oscillations in this figure result from the nature of the MAGMA melting model. When a cell or
group of cells melt, the average Nusselt number is significantly affected by the subsequent rise in
cell temperatures, This effect is especially apparent during the early stages of the transient, when
entire layers of cells melt simultaneously. Oscillations were not encountered in the Reference 14
simulation because the melt front was allowed to expand continuously. Figure 28 shows the
results of the average Nusselt number calculated from Reference 14. However, MAGMA and
Reference 14 calculations predicted similar transient behavior of the average Nusselt number.

Table 6. Comparison of the transient dimensionless molten volume for test number 5

Dimensionless Time MAGMA Reference 14
0.0196 2.06 2.0
0.059 6.89 6.0
0.09&3 11.09 10.0

Itis anticipated that improved accuracy and agreement with Reference 14 could have been
obtained through mesh refinement, Reference 14 used a variable transformation from the physical

coordinates to the computational coordinates to obtain a mesh with considerably higher resolution
than the MAGMA mesh.
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Figure 27. MAGMA calculated transient response of the average Nussclt
number,
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5. SUMMARY AND RECOMMENDATIONS FOR
FURTHER CODE DEVELOPMENT

MAGMA is a three-dimensional finite difference computer code designed to simulate fluid
flow and heat transfer in ISV melt pools, The equations governing fluid flow are the
incompressible Navier-Stokes equations, Heat transfer is governed by the energy equation,

Energy is related to temperature through an equation of state that includes melting, The momentum

cquation is coupled to the temperature field through the Boussinesq model upproxir’nzuions.l The
coupled governing equations can be solved simultaneously, or the incompressible Navier-Stokes
equations can be solved separately in the absence of heat transfer. All fluid properties in MAGMA
are assumed variable except density. Fluid density is allowed to vary only in the buoyancy terms
of the momentum equation, '

MAGMA has been tested against the results of many numerical and analytical test
problems. MAGMA has demonstrated the capability to simulate two dimensional advection,
two dimensional conduction, two and three dimensional natural convection, and natural
convection during melting.

Recommendations for further investigation and development of the MAGMA code include:

+ Conversion of the explicit temporal differencing of the energy equation to a fully implicit
differencing scheme, ‘

+ Addition of a Joule heating model.
¢ Optimization of the iteration parameters.

+ Investigation and determination of optimum convergence criteria for the iterative

solution.

+ Modification of the variable viscosity formulation to eliminate artificial time step

restrictions arising when this option is selected.

«  Assessment of MAGMA against ISV test data.
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It is anticipated that the above recommendations could be readily implemented, and have the
potential to significantly enhance code performance.
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APPENDIX A
AVERAGING TECHNIQUES

This appendix describes the averaging procedure used in the MAGMA code, MAGMA
uses a stuggered grid in which some varlables are located at cell centers and others are located at the
centers of cell faces, Frequently, values of certain variables are needed at locations where they are
not explicitly defined. Since MAGMA ussumes a uniform mesh, simple averaging can be used to
obtain these values, |

Values of cell centered quantities are often needed on cell faces or on cell edges, The value
of the quantity at these locations is obtained by averaging the quantity values located at the centers
of the active cells immediately adjacent to that cell face or edge. Consider Figure A.1 as an
example, which shows four active cells in the x-y plane (the z-dlrection is out of the paper). In this
fi gure, the quantity, ¢, is a cell centered quantity, The value of ¢ on the right (subscript R) face of
cell (if,k) is computed by averaging the value of ¢ in cell (iy,k) and cell (i+1,,k), ie.,

| v
dr =75 (qijk+ qivl b (A-1)
J+ 1 qij+1.k ivlyj+lk 3
.
J ik Gisl .k . x
i P+

Figure A-1. Four active cells in the x-y plane.
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Similarly, the value of q on the right-front (subscript RF) edge of cell (i,j,k) is given by
1 ‘ :
qrr =7 (Qijk+ Qitl jk + Qi+l j+1k+ qij+1.6 (A-2)

Velocity components, which live on cell faces, are often needed on cell edges, cell centers,

and on other cell faces where they are not explicitly defined. Consider Figure A-2 as an example,

which is a schematic of two active cells in the x-y plane. Only the u-velocity

Uilj+lk | Wijelk
-

ik Uijk
Lo

Figure A-2. Two active cells in the x-y plane.

components are shown in this figure for simplicity. The value of u at the center (subscript C) of

cell (iy,k) is calculated by

1
e =7 (Ujjk+ Ui-1k) (A-3)
The value of « on the right-front (subscript RF) edge is comnputed from
1 .
upr =5 (Uijk+ Wi j+1k) (A-4)



The value of « on the front (subscript F) cell face is obtained from
1. .
Up=g (Uigf+ Wijel k+ Wil j+1k+ Ui-1jk)

The other two velocity components are averaged in a similar fashion.
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APPENDIX B

WEIGHTED AVERAGING OF CENTERED
AND UPWINDED VALUES

This appendix describes, by example, how a quantity, g, is computed from a weighted
average of its centered, qc, and its "upwinded" value, gy, at a given location. Figure B.11s a
schematic of two computational cells in the x-y plane. The quaritity, q, is being convected by the
velocity, u, and is to be computed on the interface

o =t o

qL qaRr

Figure B-1. Two computational cells in the x-y plane.

between the two cells. gy, is the value of g at the center of the left cell, while gg is the value of q at
the center of the right cell. Note that the necessary variables may have to be calculated at the
required locations using the averaging techniques described in Appendix A.

The "upwinded" value of ¢ in Figure A-1 is g;. Note, that if the direction of u is reversed,
the "upwinded" value of g is qg. g, is thus given by

qr. , u > 0
gr . U < 0 (B-1)

qu =

The centered value of g on the interface is simply the average of gz and gg,

1
de =5 (qL+qr) (B-2)



bl

i

The weighted average of the centered value of ¢ und the upwinded value of q on the
interface between the cells is computed from

g=oqyu+(1-0a)qc ‘ (B-3)
x ! \ | I//‘, .

whe:re o represents dw Jmc{ion of upwinding, and (1 - &) represents the fraction of centering. For

IulAr viAT wlAT
stability of the iteration :,ché:me ' must exceed the greatcr of — T and 2 . For
y z
IuIAt vlAt IwIAt
stability of the energy equation, o must exceed the greater of ——, ——, and - —
Ax’ Ay Az
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~ APPENDIX C |
VARIABLE AND SUBROUTINE DICTIONARY

oo £ I e o ST I S S N M SR T IR S SR S s I m m S ry an e SIS Imam ST S M AT S s SN A s R o s e e s w2

VARIABLES

et e e oot St s e S b et Sk A o o et e e s St ke S et iy ot o008 Bt e et T S 1 7 vrad S o) S it it smtd it o 0edd o o St Lot bt Sty st SR Ty e s S fauns o et 2
oo acmoret oo fiof oo freeherarh rviiereg e s froern e lisepanipiss fansncy e frout pemtpese § R b d o pree g ornh ettt e pe b g fam e b P S LS el )

SAMPLE ENTRY

VARIABLE RS DESCRIPTION

R - REAL

[ - INTEGER
S - SINGLE VARIABLE
A - VARIABLE ARRAY

et e et v etk 2ot o oo 4} A et o 8 e et S e St ot ot e Sty et TR S et S S50ne ot S T e ot S iy i S b Pt S Smamd e Ring o S S A P e e St U8 e 2 S g et St i mn et S e
T N N N NN N N T S N T N N NI O o S mOmmn s o

ALPHA RS UPWIND/CENTER-DIFFERENCING WEIGHTING FUNCTION
= (0 MEANS CENTERED DIFFERENCING
= 1 MEANS UPWIND DIFFERENCING

ALPHID RS INTERPOLATED DONOR CELL DIFFERENCING WEIGHTING
PARAMETER (FRACTION DONOR CELL DIFF.)

ASQR RS WAVE PARAMETER, SQUARE OF WAVE SPEED

BETA RS MULTIPLIER, D*BETA/OMG IS DELP. IT INCLUDES OMG.

BETAID RS INTERPOLATED DONOR CELL DIFF, PARAMETER
(FRACTION INTERPOLATED DONOR CELL DIFFE.)

BCTE RS BETA, COEFF. OF THERMAL EXPANSION

BFX RS BUOYANCY FORCE IN THE X-DIRECTION

BIFY RS BUOYANCY FORCE IN THE Y-DIRECTION

BEZ RS BUOYANCY FORCE IN THE Z-DIRECTION

C Cl FIRST CHARACTER FROM A LINE OF INPUT DATA

CREU RS CELL REYNOLDS NUMBER BASED ON U-VELOCITY

CREV RS CELL REYNOLDS NUMBER BASED ON V-VELOCITY

CREW RS CELL REYNOLDS NUMBER BASED ON W-VELOCITY

CRXI¥ RS MULTIPLIER USED IN RZ GEOMETRY MOMENTUM EQUATION

CRXTHE RS MULTIPLIER USED IN RZ GEOMETRY MOMENTUM EQUATION

CF RA  SPECIFIC HEAT CAPACITY ARRAY

CVREF RS REFERENCE SPECIFIC HEAT CAPACITY

C-3
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CVMAX

CWPRT

CWPRT

CYCLE
CYL

D

DALPH
DELP
DELT
DELTUB

DELX
DELY
DIFFMX
DIFFX
DIFFY
DIFFZ
DPO
DP1
DP1P2
DP1PS
DP2
DP8
DTDXL
DTDXR
DTDYF
DIDYD
DTDZB
DTDZT
DTU
DUR

RS

IS
RS

RS

RS

RS

RS

RS
RS
RS
RS
RS
RS
RS
RS
RS
RS
RS
RS
RS
RS
RS
RS

RS
RS
RS

[l T T T P . P T

MAXIMUM SPECIFIC HEAT VALUE IN REGION

- THE INCREMENT OF CUMULATIVE TIME BETWEEN PLOT- IlMli

WRITES

THE INCREMENT OF CUMULATIVE TIME BETWEEN DETAILED

EDITS

THE NUMBER OF TIME STEPS TAKEN THUS FAR

CYLINDRICAL/RECTANGULAR COORD SYSTEM SWITCH

= DP0  MEANS RETANGULAR

= DP1  MEANS CYLINDRICAL

THE DISCRETE DIVERGENCE OF THE VELOCITY FIELD AS

MEASURED AT THE CENTER OF THE CURRENT CELL

THERMAL DIFFUSIVITY |

THE PRESSURE UPDATE FOR THE CURRENT CELL

TIME STEP

UPPER LIMIT FOR THE TIME STEP BASED ON VELMX

= MIN (IDX/Ul, IDY/V!, (DX*DY)**2/(2¥*NU*DX**2+DY**2)) )

X-DIRECTION MESH-SPACING '

Y-DIRECTION MESH-SPACING

MAXIMUM VALUE OF THE THERMAL DIFFUSIVITY

TEMPERATURE DIFFUSION TERM (X-DIRECTION)

TEMPERATURE DIFFUSION TERM (Y-DIRECTION)

TEMPERATURE DIFFUSION TERM (Z-DIRECTION)

VARIABLE HOLDING REAL ZERO (DBL PREC)

VARIABLE HOLDING REAL ONE (DBL. PREC)

VARIABLE HOLDING REAL ONE POINT TWO (DBL PREC)

VARIABLE HOLDING REAL ONE POINT FIVE (DBL PREC)

VARIABLE HOLDING REAL TWO (DBL PREC)

VARIABLE HOLDING REAL EIGHT (DBL PREC)

DERIVATIVE OF T WRT X ON THE LEFT CELL FACE

DERIVATIVE OF T WRT X ON THE RIGHT CELL FACE

DERIVATIVE OF T WRT X ON THE FRONT CELL FACE

DERIVATIVE OF T WRT X ON THE DERRIERE CELL FACE

DERIVATIVE OF T WRT X ON THE BOTTOM CELL FACE

DERIVATIVE OF T WRT X ON THE TOP CELL FACE

ARTIFICIAL TIME STEP

DIFFERENCE BETWEEN U(1,J,K) AND ITS BOTTOM NEIGHBOR
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DUD
DUDXR

DUDXL

DUDYLF

DUDYRF -

DUDYRD

DUDZLT
DUDZRT
DUDYRB
 DUEDX

DUF
DUL
DUR
puT
DVB
DVD
DVDXDR

DVDXEFR
DVDXFL
DVDYD

DVDYF

DVDZDT
DVDZFB

DVDZFT

DVF
DVL
DVR
DVT
DwB

RS

RS
RS

RS
RS
RS

RS
RS
RS
RS

RS
RS
RS
RS

RS
RS

RS
RS
RS

RS

TS
TS
TS
RS
RS
RS
RS
RS

DIFFERENCE BETWEEN U(1,J,K) AND IT8 DERRIERE NEIGHBOR
DERIVATIVE OF U WRT X ON THE RIGHT FACE OF THE
X-MOMENTUM CELL ‘ ‘

DERIVATIVE OF U WRT X ON THE LEFT FACE OF THE
X-MOMENTUM CELL | ’

DERIVATIVE OF U WRTY ON THE LEFT-FRONT CELL EDGE
DERIVATIVE OF U WRT Y ON THE RIGHT-FRONT CELL EDGE
DERIVATIVE OF U WRT Y ON THE RIGHT-DERRIERE CELL
EDGE |

DERIVATIVE OF U WRT Z ON THE LEFT-TOP CELL EDGE
DERIVATIVE OF U WRT Z ON THE RIGHT-TOP CELL EDGE
DERIVATIVE OF U WRT Z ON THE RIGHT-BOTTOM CELL EDGE
CONVECTIVE TERM IN ENERGY EQ.

DERIVATIVE OF (UE) WRT X

DIFFERENCE BETWEEN U(1,J,K) AND ITS FRONT NEIGHBOR
DIFFERENCE BETWEEN U(I,J,K) AND ITS LEFT NEIGHBOR
DIFFERENCE BETWEEN U(1,J,K) AND ITS RIGHT NEIGHBOR
DIFFERENCE BETWEEN U(1,J,K) AND ITS TOP NEIGHBOR
DIFFERENCE BETWEEN V(1,J,K) AND ITS BOTTOM NEIGHBOR
DIFFERENCE BETWEEN V(LJ,K) AND ITS DERRIERE NEIGHBOR
DERIVATIVE OF V WRT X ON THE DERRIERE-RIGHT CELL

DERIVATIVE OF V WRT X ON THE FRONT-RIGHT CELL EDGE
DERIVATIVE OF V WRT X ON THE FRONT-LEFT CELL EDGE
DERIVATIVE OF V WRT Y ON THE DERRIERE FACE OF THE
Y-MOMENTUM CELL
DERIVATIVE OF V WRT Y ON THE FRONT FACE OF THE
Y-MOMENTUM CELL
DERIVATIVE OF V WRT Z ON THE DERRIERE-TOP CELL EDGE
DERIVATIVE OF V WRT Z ON THE FRONT-BOTTOM CELL EDGL
DERIVATIVE OF V WRT Z ON THE FRONT-TOP CELL EDGE
DIFFERENCE BETWEEN V(I,J,K) AND ITS FRONT NEIGHBOR
DIFFERENCE BETWEEN V(1,J,K) AND ITS LEFT NEIGHBOR
DIFFERENCE BETWEEN V(I,J,K) AND ITS RIGHT NEIGHBOR
DIFFERENCE BETWEEN V(I,J,K) AND ITS TOP NEIGHBOR
DIFFERENCE BETWEEN W(I,J,K) AND ITS BOTTOM NEIGHBOR
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DWD

DWDXBR
DWDXBF
DWDXTR
DWDYBF
DWDYTD
DWDYTF
DWDZB

DWDZT
DVEDX
DWEDX

DWF
DWL.
DWR
DWT
DZEPS

DZRO

E
ECOEFF1
ECOEFF2

ENLOOP
ENTIME
EPSI

FK

FKB
FKD
FKF
FKL
FKMAX

RS

RS
RS
RS
TS
TS
TS
RS

RS
RS
RS
RS
RS
RS
RS
RS

RS

R&
RS

RS
RS

~ DIFFERENCE BETWEEN W(1,J,K) AND ITS DERRIERE |

NEIGHBOR | |
DERIVATIVE OF W WRT X ON THE BOTTOM-RIGHT CELL EDCit:
DERIVATIVE OF W WRT X ON THE BOTTOM-FRONT CELL EDG:

DERIVATIVE OF W WRT X ON THE TOP-RIGHT CELL EDGE

DERIVATIVE OF W WRT Y ON THE BOTTOM-FRONT CELL, EDGl:
DERIVATIVE OF W WRT Y ON THE TOP-DERRIERE CELL EDGE
DERIVATIVE OF W WRT Y ON THE TOP-FRONT CELL EDGE
DERIVATIVE OF W WRT Z ON THE BOTTOM FACE OF THE
Y-MOMENTUM CELL |
DERIVATIVE OF W WRT Z ON THE TOP FACE OF THE
Y-MOMENTUM CELL
CONVECTIVE TERM IN ENERGY EQ,
DERIVATIVE OF (VE) WRT X
CONVECTIVE TERM IN ENERGY EQ,
DERIVATIVE OF (WE) WRT X
DIFFERENCE BETWEEN W(1,J,K) AND ITS FRONT NEIGHBOR
DIFFERENCE BETWEEN W(1,J,K) AND ITS LEFT NEIGHBOR
DIFFERENCE BETWEEN W(I,J,K) AND ITS RIGHT NEIGHBOR
DIFFERENCE BETWEEN W(LJ,K) AND ITS TOP NEIGHBOR
DZRO*EPSI, THE LARGEST TOLERABLE VALUE OF D IN ANY
CELL
BENCHMARK VALUE OF D
ENERGY ARRAY
LINEAR COEFF. IN EQ, OF STATE RELATING TEMP, TO ENERGY
QUADRATIC COEFF. IN EQ. OF STATE RELATING TEMP., TO
ENERGY
TIME ON THE INTERNAL CLOCK AT THE END OF LOOP
TIME ON INTERNAL CLOCK AT END OF RUN
CONVERGNCE TOLERANCE FOR THE SOR ITERATION
THERMAL CONDUCTIVITY ARRAY
THERMAL CONDUCTIVITY ON THE BOTTOM CELL FACE
THERMAL CONDUCTIVITY ON THE DERRIERE CELL FACE
THERMAL CONDUCTIVITY ON THE FRONT CELL FACE
THERMAL CONDUCTIVITY ON THE LEFT CELL FACE
MAXIMUM VALUE OF THE THERMAL CONDUCTIVITY
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FKR
FKREF
FKT

FL
FLCHAR
FLG
FUC
FUX

FUY

FUZ

FVX

FVY

RS
RS

RS

RS

RS

RS

RS

RS

RS

THERMAL CONDUCTIVITY ON THE RIGHT CELL FACE
REFERENCE THERMAL CONDUCTIVITY

THERMAL CONDUCTIVITY ON THE BOTTOM CELL FACE
LATENT HEAT OF FUSION |
CHARACTERISTIC LENGTH

CONVERGNCE CONDITION ATTAINMENT FLAG:

FL.G = DP1 MEANS CONVERGENCE CONDITION VIOLATED
IN SOME

FLG = DP0 MEANS CONVERGENCE CONDITION

'ATTAINED.

WEIGHTED AVERAGE OF CENTERED AND UPWIND
DIFFERENCING IN THE RZ SUMMAND OF THE CONVECTIVE
TERM OF THE U-DIRECTION MOMENTUM EQUATION |
WEIGHTED AVERAGE OF CENTERED UPWIND DIFFERENCING
IN THE D(U**2)/DX SUMMAND OF THE CONVECTIVE TERM OF
THE U-DIRECTION MOMENTUM EQUATION

WEIGHTED AVERAGE OF AND UPWIND DIFFERENCING

IN THE D(UV)YDX SUMMAND OF THE CONVECTIVE TERM OF
THE U-MOMENTUM EQUATION

WEIGHTED AVERAGE OF CENTERED AND UPWIND
DIFFERENCING IN THE D(UW)/DZ SUMMAND OF THE
CONVECTIVE TERM OF THE U-DI MOMENTUM EQUATION
WEIGHTED AVERAGE OF CENTERED AND UPWIND

~ DIFFERENCING IN THE RZ SUMMAND OF THE CONVECTIVE

TERM OF THE V-DIRECTIO MOMENTUM EQUATION
WEIGHTED AVERAGE OF CENTERED AND UPWIND
DIFFERENCING IN THE D(UV)DX SUMMAND OF THE
CONVECTIVE TERM OF THE V-DIRECTION MOMENTUM
EQUATION

WEIGHTED AVERAGE OF CENTERED AND UPWIND
DIFFERENCING IN THE D(V*¥2)/DX SUMMAND OF THE
CONVECTIVE TERM OF THE V-DIRECTION MOMENTUM
EQUATION



FVZ

FWC

FWX

GX
GY
GZ
IBAR

D

IDBC

[ENERGY

RS

RS

RS

RS

‘RS

RS
RS
RS
IS
IS

1A

IA

IS

WEIGHTED AVERAGE OF CENTERED AND UPWIND
DIFFERENCING IN THE D(VW)/DZ SUMMAND OF THE
CONVECTIVE TERM OF THE V-DIRECTION MOMENTUM
EQUATION

WEIGHTED AVERAGE OF CENTERED AND UPWIND
DIFFERENCING IN THE RZ SUMMAND OF THE CONVECTIVE
TERM OF THE W-DIRECTION MOMEMTUM EQUATION
WEIGHTED AVERAGE OF CENTERED AND UPWIND
DIFFERENCING IN THE D(UW)/DX SUMMAND OF THE
CONVECTIVE TERM OF THE W-DIRECTION MOMENTUM
EQUATION ‘
WEIGHTED AVERAGE OF CENTERED AND UPWIND
DIFFERENCING IN THE D(VW)DY SUMMAND OF THE
CONVECTIVE TERM OF THE W-DIRECTION MOMENTUM
EQUATION

WEIGHTED AVERAGE OF CENTERED AND UPWIND
DIFFERENCING IN THE D(W**2)/DZ SUMMAND OF THE
CONVECTIVE TERM OF THE W-DIRECTION MOMENTUM
EQUATION | | |

X-DIRECTION COMPONENT OF GRAVITATIONAL FORCE
Y-DIRECTION COMPONENT OF GRAVITATIONAL FORCE
7-DIRECTION COMPONENT OF GRAVITATIONAL FORCE
DO-LOOP INDEX IBAR

NUMBER OF MESH CELLS IN THE X-DIRECTION IN THE
REGION

INDIRECT ADDRESSING ARRAY FOR ALL INTERIOR CELLS
ID(1,N) ==> I INDEX FOR Nth CELL

ID(2,N) ==> J INDEX FOR Nth CELL

ID(3,N) ==> K INDEX FOR Nth CELL

INDIRECT ADDRESSING ARRAY FOR ALL BOUNDARY CELLS
IDBC(1,N) ==> 1 INDEX FOR Nth CELL

IDBC(2,N) ==> J INDEX FOR Nth CELL

IDBC(3,N) ==> K INDEX FOR Nth CELL

ENERGY SOLVER FLAG, =1 SOLVE ENERGY EQ, =0 NO
ENERGY EQ.
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IFIMP

IGUESS

IM1
IM2
IMAP

IMAX

IMELT

MLT

INDEX

IOIN
I00UT
IOPLT
IPRS
IRIN
IROUT
ISTART
ISTOP
ISTRM1
ITER

IS

IS

IS

IS

IS

IS
IS
IS
IS
IS
IS
IS
IS
IS
IS

FLAG DETERMINING FULLY/LINEARLY IMPLICIT OPTION
=1 ==> LINEARLY IMPLICIT
=0 ==> FULLY IMPLICIT
FLAG DETERMINING INITIAL GUESS FOR FLOW VELOCITY
=0 ==> EXPLICIT APPROX. TO MOM. E.Q
=1 ==> EXTRAPOLATION FROM PREV. 2 TIME LEVELS
=2 ==> PREVIOUS TIME VELOCITY
IMAX-1
IMAX-2
INDIRECT ADDRESSING ARRAY (4 DIMENSIONAL)
IMAP(I,J.K,1) =0 ==> CELL (1,J,K) IS INACTIVE
IMAP(I,J,K,1) =1 ==> CELL (I,),K) IS ACTIVE
IMAP(I,J,K,2) =0 ==> BOUNDARY CELL (I,J,K) IS A
NO-SLIP WALL
IMAP(IJ,K,2) = 1 ==> BOUNDARY CELL (1,J,K) IS A
FREE-SLIP WALL
IMAP(IJ,K,2) = 2 ==> BOUNDARY CELL (1,J K) IS A
WALL WITH SPECIFIED VELOCITIES
NUMBER OF CELLS IN TF 4 X-DIRECTION OF THE AUGMENTED
REGION INCLUDES THE BOUNDARY CELLS.
MELTING FLAG - IMELT=0, NO MELTING - IMELT=1, MELTING
IS ALLOWED
LOGICAL UNIT NUMBER FOR THE MEL\' FRONT DATA FILE
"mitdat"
USED TO COMBINE THE CONTINUATIVE AND PERIODIC B. C,
LOOPS
LOGICAL UNIT NUMBER FOR THE INPUT DEVICE
LOGICAL UNIT NUMBER FOR OUTPUT FILE "outdat"
LOGICAL UNIT NUMBER FOR OUTPUT FILE "plidat"
LOGICAL UNIT NUMBER FOR PRESSURE DATA FILE "prsdat"
LOGICAL UNIT NUMBER FOR THE RESTART INPUT DEVICE
LOGICAL UNIT NUMBER FOR THE RESTART QUTPUT DEVICE
STARTING VALUE FOR DO-LOOP WITH INDEX 1
STOPPING VALUE FOR DO-LOOP WITH INDEX I
ISTART - 1
NUMBER OF SOR ITERATIONS TAKEN ON A TIME STEP
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ITMP

ITMPB

ITMPD

ITMPF

ITMPL

ITMPR

ITMI'T

ITSUM
IVEL

IVISC

JBAR

IM1
IM2

IS

IS

IS

IS

IS

IS

IS

IS

IS
IS

IS
IS

LOGICAL UNIT NUMBER FOR TEMPERATURE DATA FILE
"tmpdat"
BOTTOM TEMP. BOUNDARY COND. FLAG
=1 CONSTANT TEMP.
=2 CONSTANT HEAT FLUX/SYMETRIC/ADIABATIC
=3 CONVECTIVE/MIXED B.C.
DERRIERE TEMP. BOUNDARY COND. FLAG
=1 CONSTANT TEMP.
=2 CONSTANT HEAT FLUX/SYMETRIC/ADIABATIC
=3 CONVECTIVE/MIXED B.C.
FRONT TEMP. BOUNDARY COND. FLAG
=1 CONSTANT TEMP.
=2 CONSTANT HEAT FLUX/SYMETRIC/ADIABATIC
=3 CONVECTIVE/MIXED B.C.
LEFT TEMP. BOUNDARY COND. FLAG
=1 CONSTANT TEMP.
=2 CONSTANT HEAT FLUX/SYMETRIC/ADIABATIC
=3 CONVECTIVE/MIXED B.C.
RIGHT TEMP. BOUNDARY COND. FLAG
=1 CONSTANT TEMP.
=2 CONSTANT HEAT FLUX/SYMETRIC/ADIABATIC
-3 CONVECTIVE/MIXED B.C.
TOP TEMP. BOUNDARY COND. FLAG
=1 CONSTANT TEMP.
=2 CONSTANT HEAT FLUX/SYMETRIC/ADIABATIC
=1 CONVECTIVE/MIXED B.C.
THE TOTAL NUMBER OF ITERATIONS TAKEN ON ALL CYCLES
LOGICAL UNIT NUMBER FOR THE VELOCITY DATA FILE
"veldat"
VARIABLE VISCOSITY FLAG, =1 VARIABLE VISCOSITY
FORMULATION, =0 CONSTANT VISCOSITY FORMULATION
DO-LOOP INDEX
NUMBER OF MESH CELLS IN THE X-DIRECTION IN THE
REGION
IMAX-1
IMAX-2



- IMAX

JSTART
JSTOP
JSTRM1
K
KBAR

KMI
KM2
KMAX

NAME

NBC
NCELLS
NU
NXD
NYD
NZD
OMG
OMGl
OMG2
P
QDOT
RC

RR

RDX
RDX4
RDXSQ
RDY
RDY4
RDYSQ
RDZ

IS

IS
IS
IS

IS

IS

IS
IS
IS

IS

RS
IS
IS
IS
RS
RS

SO

RS
RS
RS
RS
RS
RS
RS

NUMBER OF CELLS IN THE Y-DIRECTION OF THE AUGMENTED
REGION INCLUDES THE BOUNDARY CELLS.

STARTING VALUE FOR DO-LOOP WITH INDEX J

STOPPING YALUE FOR DO-LOOP WITH INDEX J

JSTART - 1

DO-LOOP INDEX

NUMBER OF MESH CELLS IN THE Z-DIRECTION IN THE
REGION |

KMAX-1C

KMAX-2

NUMBER OF CELLS IN THE Z-DIRECTION OF THE AUGMENTED
REGION INCLUDES THE BOUNDARY CELLS.

HOLDS CHARACTER DATA WITH TITLE OF PROBLEM BEING
RUN.

NUMBER OF BOUNDARY CELLS |
NUMBER OF ACTIVE CELLS IN COMPUTATIONAL REGION
VISCOSITY

ABSOLUTE MAXIMUM X DIMENSION

ABSOLUTE MAXIMUM Y DIMENSION

ABSOLUTE MAXIMUM Z DIMENSION

OMEGA, SAFETY FACTOR

OMEGAL1, SAFETY FACTOR FOR PHYSICAL TIME STEP
OMEGA2, SAFETY FACTOR FOR ARTIFICIAL TIME STEP
PRESSURE FIELD; DOUBLY INDEXED ARRAY

ENERGY GENERATION ARRAY

ARRAY CONTAINING X-VALUES AT CELL CENTERS FOR USE
IN THE 2-D CYLINDRICAL COORDINATES FORMULATION
ARRAY CONTAINING X-VALUES AT CELL RIGHT FACES FOR
USE IN THE 2-D CYLINDRICAL COORDINATES FORMULATION
1/DX. USED 10 AVOID FLOATING POINT DIVISION IN LOOPS
1/(4*DX)

1/(DX*DX)

1/DY. IBID.

1/(4*DY)

1/(DY*DY)

1/DZ. 1BID.



RDZA
RDZSQ
RHO
RNUDT
RNUFB
RNUFT
RNULF
RNULT
RNURB
RNURD
RNURF
RNURT
RXIDX2
RXIHDX
RXISQ
SIGMA
STARTM

STLOOP

SUR
SUF
SUD
SULF

SUL
SUT
SUB
SVR
SVF
SVB
SVDR
SVDT
SVL
SVT
SVB

RS
RS
RS
RS
RS
RS
RS
RS
RS

RS
RS

RS
RS
RS
RS
RA
RS

" RS

RS
RS
RS
RS

RS
RS
RS
RS
RS
RS
RS
RS
RS
RS
RS

1/(4*DZ)
1/(DY*DZ)
FLUID DENSITY |
VISCOSITY OF THE DERRIERE-TOP CELL EDGE
VISCOSITY OF THE FRONT-BOTTOM CELL EDGE
VISCOSITY OF THE FRONT-TOP CELL EDGE
VISCOSITY OF THE LEFT-FRONT CELL EDGE
VISCOSITY OF THE LEFT-TOP CELL EDGE
VISCOSITY OF THE RIGHT-BOTTOM CELL EDGE
VISCOSITY OF THE RIGHT-TOP CELL EDGE
VISCOSITY OF THE RIGHT-FRONT CELL EDGE
VISCOSITY OF THE RIGHT-TOP CELL EDGE
MULTIPLIER IN RZ GEOMETRY MOMENTUM EQUATION
MULTIPLIER IN RZ GEOMETRY MOMENTUM EQUATION
MULTIPLIER IN RZ GEOMETRY MOMENTUM EQUATION
ELECTRICAL CONDUCTIVITY ARRAY
TIME ON THE INTERNAL CLOCK WHEN THE RUN WAS
STARTED
TIME ON THE INTERNAL CLOCK WHEN THE LOOP WAS
STARTED
SUM OF U(1,J,K) AND ITS RIGHT NEIGHBOR
SUM OF U(1,J,K) AND ITS FRONT NEIGHBOR
SUM OF U(1,},K) AND ITS DERRIERE NEIGHBOR
SUM OF U(I-1,J,K) AND ITS FRONT NEIGHBOR SULT RS SUM
OF U(I-1,J,K) AND ITS TOP NEIGHBOR
SUM OF U(1,J,K) AND ITS LEFT NEIGHBOR
SUM OF U(1,J,K) AND ITS TOP NEIGHBOR
SUM OF U(L,J,K) AND ITS BOTTOM NEIGHBOR
SUM OF V(I,J,K) AND ITS RIGHT NEIGHBOR
SUM OF V(1,J,K) AND ITS FRONT NEIGHBOR
SUM OF V(1,J,K) AND ITS DERRIERE NEIGHBOR
SUM OF V(1,J-1,K) AND ITS RIGHT NEIGHBOR
SUM OF V(1,J-1,K) AND ITS TOP NEIGHBOR
SUM OF V(I,J,K) AND ITS LEFT NEIGHBOR
SUM OF V(I,J,K) AND ITS TOP NEIGHBOR
SUM OF V(I,J,K) AND ITS BOTTOM NEIGHBOR
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SWR
SWF
SWB
SWBF
SWBR
SWL
SWT
SWB
SXXR

SXXL

SXYLF
SXYRD
SXYRF
SXZLT
SXZRB
SXZRT
SYYD

SYYF

SYZDT
SYZFB
SYZFT
SZ7ZB

SZZT

T

TAVE
TCRNTU
TCRNTV
TCRNTW
T™P
TNU

RS
RS
RS
RS

RS

RS
RS
RS
RS

RS

RS
RS
RS
RS
RS
RS
RS

RS

RS
RS
RS
RS

RS

RS
RS
RS
RS

$Z5

SUM OF W(I,J,K) AND ITS RIGHT NEIGHBOR
SUM OF W(1,J,K) AND ITS FRONT NEIGHBOR
SUM OF W(1,J,K) AND ITS DERRIERE NEIGHBOR
SUM OF W(I,J,K-1) AND ITS FRONT NEIGHBOR
SUM OF W(1,J,K-1) AND ITS RIGHT NEIGHBOR
SUM OF W(I,J,K) AND ITS LEFT NEIGHBOR
SUM OF W(1,J,K) AND ITS TOP NEIGHBOR
SUM OF W(1,J,K) AND ITS BOTTOM NEIGHBOR
VISCOUS STRESS TERM LOCATED ON THE RIGHT
FACE OF THE X-MOMENTUM CELL
VISCOUS STRESS TERM LOCATED ON THE LEFT
FACE OF THE X-MOMENTUM CELL
VISCOUS STRESS TERM ON THE LEFT-FRONT CELL EDGE
VISCOUS STRESS TERM ON THE RIGHT-DERRIERE CELL EDGE
VISCOUS STRESS TERM ON THE RIGHT-FRONT CELL EDGE
VISCOUS STRESS TERM ON THE LEFT-TOP CELL EDGE
VISCOUS STRESS TERM ON THE RIGHT-BOTTOM CELL EDGE
VISCOUS STRESS TERM ON THE RIGHT-TOP CELL EDGE
VISCOUS STRESS TERM LOCATED ON THE DERRIERE
FACE OF THE X-MOMENTUM CELL
VISCOUS STRESS TERM LOCATED ON THE FRONT
FACE OF THE X-MOMENTUM CELL
VISCOUS STRESS TERM ON THE DERRIERE-TOP CELL EDGE
ISCOUS STRESS TERM ON THE FRONT-BOTTOM CELL EDGE
VISCOUS STRESS TERM ON THE FRONT-TOP CELL EDGE
VISCOUS STRESS TERM LOCATED ON THE BOTTOM
FACE OF THE X-MOMENTUM CELL
VISCOUS STRESS TERM LOCATED ON THE TOP
FACE OF THE X-MOMENTUM CELL
CUMULATIVE TIME
AVERAGE TEMP. IN COMPUTATIONAL REGION
COURANT TIME STEP LIMIT BASED ON U-VELOCITY
COURANT TIME STEP LIMIT BASED ON V-VELOCITY
COURANT TIME STEP LIMIT BASED ON W-VELOCITY
TEMPERATURE ARRAY
TEMPERATURE DEPENDENT VISCOSITY ARRAY

C-13



TQB
TQD
TQF
TQL

" TREF

 TWFIN
TWPLT
TWPRT

UI
UMAX
UN

UsS
UTLDA

VELMX
VELMX1
VI

VISX

VISY
VISZ
VMAX
VN

VS
VTLDA

2EER83887%

RS
RS
RS
RS
RS
RS
RS

g

RS
RS
RS
RS

~
w

S

TEMP. B.C. PARAMETER FOR BOTTOM OF REGION

. TEMP. B.C. PARAMETER FOR DERRIERE OF REGION

TEMP. B.C. PARAMETER FOR FRONT OF REGION

TEMP. B.C. PARAMETER FOR LEFT OF REGION

TEMP. B.C. PARAMETER FOR RIGHT OF REGION

TEMP. B.C. PARAMETER FOR BOTTOM OF REGION
REFERENCE TEMPERATURE

FINISH TIME. STOP CALCULATION WHEN T = TWFIN,
PLOTTING TIME. WRITE A PLOT WHENEVER T = TWPLT. -
EDITTING TIME. WRITE OUTPUT EDIT WHENEVER T = TWPRT.
X-DIRECTION VELOCITY ITERATE VECTOR FOR SOR.
UNIFORM INITIAL U-VELOCITY

MAXIMUM VALUE OF THE U-VELOCITY IN THE REGION
X-DIRECTION VELOCITY FIELD A TIME-STEP N.

X-DIRECTION SPECIFIED VELOCITY FIELD

X-COMPONENT OF VELOCITY CONSISTING OF THE VELOCITY
OF THE PREV. TIME STEP PLUS THE CONVECTIVE AND
VISCOUS FLUXES ASSOCIATED WITH THE CURRENT ITERATE
FOR THE VELOCITY.

Y-DIRECTION VELOCITY ITERATE VECTOR FOR SOR.
MAXIMUM EXPECTED VELOCITY AT ANY POINT AND TIME
THE MAXIMUM MESH-SPACING DIVIDED BY VELMX
UNIFORM INITIAL V-VELOCITY |
VISCOUS DIFFUSION TERM IN THE X-DIRECTION MOMENTUM
EQUATION

VISCOUS DIFFUSIOM 7 .RM IN THE Y-DIRECTION MOMENTUM
EQUATION

VISCOUS DIFFUSION TERM IN THE Z-DIRECTION MOMENTUM
EQUATION

MAXIMUM VALUE OF THE V-VELOCITY IN THE REGION

' Y-DIRECTION VELOCITY FIELD A TIME-STEP N.

Y-DIRECTION SPECIFIED VELOCITY FIELD

Y-COMPONENT OF VELOCITY CONSISTING OF THE VELOCITY
OF THE PREV. TIME STEP PLUS THE CONVECTIVE AND
VISCOUS FLUXES ASSOCIATED WITH THE CURRENT ITERATE

‘OF THE VELOCITY.
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W RA  Z-DIRECTION VELOCITY ITERATE VECTOR FOR SOR.

WI RS  UNIFORM INIT{AL W-VELOCITY
WMAX RS = MAXIMUM VALUE OF THE W-VELOCITY IN THE REGION
WN RA  W-DIRECTION VELOCITY FIELD A TIME-STEP N.
RA  Z-COMPONENT OF VELOCITY CONSISTING OF THE VELOCITY

WTLDA
' OF THE PREV. TIME STEP PLUS THE CONVECTIVE AND
VISCOUS FLUXES ASSOCIATED WITH THE CURRENT ITERATE
OF THE VELOCITY. |

i

I I N N N N N I N N N N N N N T N R N S T N N N S SRS R s TR =s

ADDRESS ==> DEFINES THE INDIRECT ADDRESSING SCHEME

ADVANCE  ==> UPDATES VARIABLES TO THE NEW TIME LEVEL

BNDRY ==> SETS THE BOUNDARY CONDITIONS |

CONVERG ~ ==> CHECKS FOR CONVERGENCE OF THE ITERATION SCHEME

DENCHK = ==> COMPUTES THE DEVIATION FROM INCOMPRESSIBILITY

DUMP ==> PERFORMS BINARY DUMP OF DATA FOR RESTART

ENERGY ==> SOLVES DISCRETIZED FORM OF ENERGY EQUATION
(EXPLICIT)

FLUX ==> 'COMPUTES THE VELOCITY CONTRIBUTIONS DUE TO THE
- CONVECTIVE, VISCOUS, AND BODY FORCE 1 ERMS IN
THE MOMEMTUM EQUATION
GUESS ==> SETS THE INITIAL VELOCITY GUESS FOR THE ITZRATION
SCHEME --> 1.) EXPLICIT APPROX. TO MOM. EQ.
2.) OLD TIME VELOCITIES
3.) EXTRAPOLATION FROM 2 PREV. TIME
ILEVELS
INITIALIZES PROGRAM VARIABLES
INPUTS THE NECESSARY VARIABLES

INITLZ
INPUT

i
L]
vV Vv

MELT ==> ALLOWS CELL MELTING AND FREEZING
PRNT. ==> PRINTS INFORMATION FOR OUTPUT AND PLOTTING
RSTART ==> READS BINARY DATA FILE FOR PROGRAM RESTART
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STATE

il
i
\'

USES EQ. OF STATE TO COMPUTE TEMP. OR ENERGY
ALSO COMPUTES TEMP. DEPENDENT FLUID PROPERTIES

TBNDRY ==> SETS TEMPERATURE BOUNDARY CONDITIONS
TIMER ==> TIMES PROGRAM
UPDATE ==> UPDATES PRESSURES AND VELOCITIES ACCORDING TO

FULLY/LINEARLY IMPLICIT ARTIFICIAL COMPRESSIBILITY
ITERATION SCHEME WITH DAMPING



APPENDIX D

SAMPLE INPUT FILE



-2



APPENDIX D

SAMPLE INPUT FILE

MAGMA TESTPROBLEM - 3B
C..4..7.10..3..6..20

0
1.000

1.0E+00
1.00D+00
0.D0
1.0E+00
2.500000E-02
2.500000E-02
-2.50E-02
1.DO

1.00D+00
0.0D-00
1.00D+00
0.0D-00
1.0E-05
1.00000E-00
- 0.0D+00
1.0D0

0.D0
9.81D0
0.D0
0.71000D-00
1.47500
0.80D00
0.80D00
1.0D00
1.0E-03
661.88D+00

IRSTRT
ALPHA

BCTE
CVREF
CYL
DELT
DELX
DELY
DELZ
DZRO

ECOEF]
ECOEF2
ECOEF3
ECOEF4
EPSI
FKREF
FL
FLCHAR
GX

GY

Gz

NU
OMG
OMGl
OMG2

TOL
TMPI

RESTART PARAMETER =0,INPUT FILE;=1,RESTART FILE
WEIGHTING FACTOR FOR AVE. UPWIND AND CENTER
DIFF.

BETA--COEFFICIENT OF THERMAL EXPANSION
REFERENCE SPECIFIC HEAT CAPACITY |
CYLINDRICAL/RECTANGULAR COORDINATES INDICATOR
TIME STEP

X-DIRECTION MESH SPACING

Y-DIRECTION MESH SPACING

Y-DIRECTION MESH SPACING (<0 for 2-D)
BENCHMARK. VALUE FOR DIVERGENCE OF VELOCITY
FIELD

COEFF. IN ENERGY EQ. OF STATE (LINEAR TERM)
COEFF. IN ENERGY EQ. OF STATE (QUADRATIC TERM)
COEFF, IN ENERGY EQ. OF STATE (LINEAR TERM)
COEFF. IN ENERGY EQ. OF STATE (QUADRATIC TERM)
CONVERGENCE CONDITION

REFERENCE THERMAL CONDUCTIVITY

SPECIFIC LATENT HEAT OF FUSION
CHARACTERISTIC LENGTH

BODY ACCELERATION IN X DIRECTION

BODY ACCELERATION IN Y DIRECTION

BODY ACCELERATION IN Z DIRECTION

VISCOSITY

EFFECTIVE DAMPING COEFFICIENT

SAFETY FACTOR FOR PHYSICAL TIME STEP

SAFETY FACTOR FOR ARTIFICIAL TIME STEP
REFERENCE DENSITY

TOLERANCE OF DU/DTAU & DV/DTAU

INITIAL TEMPERATURE



0.0E+00 TQB | TEMP/HEAT FLUX FOR BOTTOM BOUNDARY COND.

0.0D+00 TQD TEMP./HEAT FLUX FOR DERRIERE BOUNDARY COND,
0.0E+00 TQF TEMP/HEAT FLUX FOR FRONT BOUNDARY COND,
0.0E+00 TQH HEAT TRANSFER COEFF. FOR MIXED TYPE B.C,
1.0238E+03 TQL TEMP./HEAT FLUX FOR LEFT BOUNDARY COND.
3.0E+02 TQR TEMP./HEAT FLUX FOR RIGHT BOUNDARY COND.
0.0E+00 TQT TEMP./HEAT FLUX FOR TOP BOUNDARY COND.

661.880.00 TREF REFERENCE TEMPERATURE
1.00000D-00 TWFIN STOPPING TIME

0.0D0 Ul INITIAL U-VELOCITY
2.,5D+01 VELMX  MAXIMUM EXPECTED VELOCITY
0.0D0 VI INITIAL Y-VELOCITY
0.0D0  WI INITIAL Z-VELOCITY
C A
C INTEGER SCALARS
C
100 IFREQ PLOT EVERY IFREQ CYCLES
40 IBAR 'MAX. NO. OF INTERIOR CELLS IN X-DIRECTION
40 BAR MAX. NO. OF INTERIOR CELLS IN Y-DIRECTION

KBAR MAX. NO. OF INTERIOR CELLS IN Z-DIRECTION
[ENRGY =0 NO ENERGY CALCULATIONS, =i ENERGY CALC.S

—_— O =

IFIMP =0 FULLY IMPLCT =1 LINEARL( IMPLCT =2 SEMI:IMPLCT
IGUESS =0 NORMAL GUESS, =1 OLD VEL., =2 EXTRAPOLATED
VEL.

0 IMELT =0 NO MELTING, =1 MELTING ALLOWED

2 ITMPB =1 CONST T, =2 CONST Q, =3 CONVECTIVE B.C.

2  ITMPD =1 CONST T, =2 CONST Q, =3 CONVECTIVE B.C.

2 ITMPF =1 CONST T, =2 CONST Q, =3 CONVECTIVE B.C.

1 ITMPL =1 CONST T, =2 CONST Q, =3 CONVECTIVE B.C,

1 ITMPR =1 CONST T, =2 CONST Q, =3 CONVECTIVE B.C. .

2 ITMPT =1 CONST T, =2 CONST Q, =3 CONVECTIVE B.C.

0 IVISC =0 TURNS OFF VARIABLE VISCOSITY FORMULATION
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