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ABSTRACT

, MAGMA, is a FORTRAN computer code designed to simulate viscous flow in in situ
, ,

vitriftcation melt pools, lt models three-dimensional, incompressible, viscous flow and heat

transfer. The momentum equation is coupled to the temperature field through the buoyancy force

terms arising from the Boussinesq approximation. All fluid properties, except density, are

assumed variable. Density is assumed constant except in the buoyancy force terms in the

momentum equation. A simple melting model based on the enthalpy method allows the study of

the melt front progression and latent heat effects. Ataindirect addressir,,gscheme used in the

nunterical solution of the momentum equation avoids unnecessary calculations in cells devoid of

liquid. Two-dimensional calculations can be performed using either rectangular or cylindrical

cool"dinates, while three-dimensional calculations use rectangular coordinates. All derivatives are

app_'oximated by finite differences. The incompressible Navier-Stokes equations are solved using

a new fully implicit iterative technique, while the energy equation is differenced explicitly in time.

Spatial derivatives are written in conservative form using a uniform, rectangular, staggered mesh

based on the marker and cell placement of variables. Convective temas are differenced using a

weighted average of centered and donor cell differencing to ensure numerical stability. Complete

descriptions of MAGMA governitag equations, numerics, code structure, and code verification are

provided.
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NOMENCLATURE

a Artificialsoundspeed

a 1 Polynomial coefficient (user input)

a 2 Polynomial coefficient (user input)

a 3 Polynomial coefficient (user input)

a 4 Polynomial coefficient (user input)

b Artifici',d bulk vi_osity

c Specific heat capacity

e Specific energy

ex Unit vector in x-direction

ey Unit vector in y-direction

ez Unit vector in z-direction

g Gravity vector

h Convective heat transfer coefficient

H Typical height

i Cell index in the x-direction

j Cell index in the y-direction

k Cell index in the z-direction

k Then'nal conductivity

L Latent heat of fusion

Lc Typical length

Nu Nusselt number

p Pressure (divided by density)

PCM Phase Change Material

Pr" Prandtl number

q Heat generation term

q" Heat flux

Ra Rayleigh number

Ste Stefan number

T Temperature

viii



Tm Melting temperature,

To Reference temperature

u Velocity Vector

u Velocity in x-direction

. V Volume of a computational cell

v Velocity in y-direction

w Velocity in z-direction

Greek SyInbols:

a Thermal diffusivity (c_= k) (38)
pe

13 Coefficient of thermal expansion

A_: Artificial or pseudo-time step

Ax Spatial increment in x-direction

Ay Spatial increment in y-direction

_z Spatial increment in z-direction

v Kinematic viscosity

p Density

c Viscous stress tensor

7: Dimensionless time

co Dimensionless damping coefficient of order unity

Cylindrical coordinates flag

a Safety factor on the pseudo-time step

(0 <o_< 1)

eI Convergence tolerance on V.u

3u 3v and 3w
" e2 Convergence tolerance on 3"t;'3"c' 3_

Subscripts:

B Bottom side of a computational cell

D Derriere side of a computational cell

F Front side of a computational cell

_x



L Left side of a computational cell

R Right side of a computational cell

T Top side of a computational cell

w Wall value

x Value in the x-direction

y Value in the y-direction
z Value in the z-direction

,,o Value of surroundings at infinity

Superscripts'

(k) Iteration level

mq Refers to a particular momentum cell

denoted by q with q equal either to u, v, or w

n Time level

Operators:

V Gradient operator

(A) T Transpose of A

max(A), Amax Search over ali computation'ii cells for

the maximum value of A

min(A), Amin Search over ali computational cells for

the minimum value of A
,.

<A>ijk Volume average of A over cell (ld,k)

(A) Average value of A



A COMPUTATIONAL MODEL FOR VISCOUS
FLUID FLOW, HEAT TRANSFER, AND MELTING

IN IN SITU VITRIFICATION MELT POOLS

1. INTRODUCTION

MAGMA is a finite difference computer code developed to simulate the three dimensional

viscous fluid flow and heat transfer within in situ vitrification (ISV) melt pooI_., The starting point

for the development of MAGMA was an experimental, fully implicit, two-dimensional,

incompressible flow, computer code. a

The objective of this work was to devise, implement, and test the code modifications

needed to permit three-dimensional simulations of melt flow in partially molten domains with

curved boundaries. The tasks completed in achieving this objective include:

° The development of boundary condition logic for walls that pass diagon_ly through

cell faces in two dimensions.
J

• Implementing and testing the two.dimensional diagonal boundary condition logic.

• Converting from direct to indirect, addressing to facilitate limiting calculation of fluid

flow to the molten part of the domain.

• "l]_eaddition of three-dimensionai capability.

• A code generalization to allow for variable properties.

• Implementing the Boussinesq buoyancy force terms in the momentum equation.1

• Implementing an explicit, finite difference solution of the energy equation.

o A code generalization to allow cell melting, freezing, and the simulation of latent heat
effects.

;l. Unpublished research results of J. D. Ramshaw and P.R. McHugh, entitled "Hybrid Iteration
Scheme for Implicit Calculations of Incompressible Flow."
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The purpose of this repo_ is to document the MAGMA code so that it can serve as a guide

for code use, and as a reference source if code modifications are required in file future. Therefore,

it includes descriptions of: the basic governing equations and numerics, the finite difference mesh,

boundary condition implementation, code structure, code input and output, and code options.

The report is organized into five main sections. The following section describes the basic

governing equations, the computational mesh, the basic differencing scheme, and boundary

condition implementation. Section 3 is concerned with code structure and organization, code input o

and output, and code options. Section 4 describescode verification and testing. The final section

contains a summary, and recommendations for further code development.



2. GOVERNING EQUATIONS AND NUMERICS

This section describes MAGMA's basic goveming partial differential equations and

summarizes the numerical techniques used to solve these equations. Included in this discussion

are: descriptions of the three-dimensional finite difference mesh, differencing schemes, and

boundary condition implementation.

2.1 Governing Equations

The governing equations used by MAGMA are the conservation equations for

incompressible viscous flow and heat transfer in three spatial dimensions. The coup,_'ng between

the momentum and energy equations occurs through the buoyancy force term in the momentum
r

equation, using the Boussinesq approximation. 1

2.1.1 Incompressible Navier-Stokes Equations

Fluid flow is governed by the incompressible Navier-Stokes equations, namely

7.u =0 (1)

_)tl

3--7+ V.(uu)=-rp-fi g(T-To)+ V. c (2)

where the viscous stress tensor, c_,is given by,

_-v({Vu) + (Vu)V) (3)

where

g = gravity vector

p = pressure (divided by density)

T = temperature

To = reference temperature



u = velocity vector

/3 = coefficient of thermal expansion

v = kinematic viscosity

V = vector gradient operator

(A)T = transpose of A.

MAGMA allows the use of two and three'dimensional rectangular coordinates, and two-

dimensional cylindrical coordinates. When the two-dimensional option is invoked, ali terms

associated with the z-coordinate vanish. Two-dimensional cylindrical coordinates take the y-axis

as the axis of symmetry, and the x-coordinate as the radial coordinate. Equations (4) through (7)

below, are Equations (1) through (3)expressed in terms of coordinates and velocity components.

---:1 corresponds to two-dimensional cylindrical coordinates, while _ = 0 corresponds to

rectangular coordinates.

• Continuity equation:

3u 3v 3w u 0 (4)3x+37+-37+ -=

° Momentum equation in x-direction:

Ov Ou2 _uv _uw u2 _12
0Y + _ + -_- + -0T + _ x - _x /3 (g.ex)(T - To)

1 (x _ ) (2_Vl))+x-_V., Ox - _. x2 (5)



, Momentum equation in y-direction

Ov buv Ova Ovw uv Op
_ + _ + _- + 0--z- + _ x - Oy "/3 (g.ey)(T - To)

1

• Momentum equation in z-direction (not used ,when _ = 1)

_---_-+ + +-0-_--= - -/3 (g.ez)(T - To) + V.(az) (7)

where

( o.)ax=a,ex=v 7u +0-U (8)

( °"1ay = a.ey = v V v + _)--)- (9)

( 0.)az = a.ez = v V w + _-?--. (10)

where

ex = unit vector in x-direction

ey = unit vector in y-direction

ez = unit vector in z-direction

u = x-component of u

- v .- y-component of u
z

z

w = z-component of u,_

5



Note that the vector gradient operator V in Equations (4) through (10), is defined as

0 0 0
V = ex _ + ey _ + ez _ (11)

with the understanding that the z-component vanishes in two-dimensions. This convention is used

even in the cylindrical case. Thus divergences in Equations (4) through (10) represent the

Euclidean divergence, not covariant divergence.
i

2.i.2 Energy Equation

The energy conservation equation, which governs heat transfer, is given by

p (-_+ V.(eu))=V.(kVT)+q (12)

where

e = specific energy

k = thennal conductivity

q = heat generation

p = density.

Viscous dissipation due to viscosity has been neglected, as it is negligible in incompressible flow.

In terms of the spatial coordinates, Equation (12) becomes

(_tt O(ue) O(ve) O(we) eu) _,__.x(,kOT)n + -Ox-+ -_ + -ftu + _ x- = t,'Ux)

Terms associated with the z-coordinate vanish in two-dimensions.



2.1.3 State Relation and Melting Model

An equation of state is used to relate cell energies to cell temperatures. This state equation

accounts for latent heat effects, and allows user modification for use with different types of fluids.

" The form of the state relation is illustrated in Figure 1. Note that the zero of energy has arbitrarily

been taken to be the energy of the solid phase at the melting point. For e < 0 and e > L, the curve

is assumed to obey a quadratic relation of the foma

al (T-Tm)+a2 (T-Tru) , e < 0 ]
e = (14)

L + a3 ( T- Tm ) + a4 ( T -Tm )2, e > L

where the coefficients al, a2, a3, and a4 are user input numbers, and
,,

L = latent heat of fusion

Tm = melting temperature.

.1

L e

Figure 1. Equation of state cuxve.

For 0 < e < L, the temperature remains constant and is equal to the melt ten_perature of the fluid,

__ 7"m .

7
1



If the curves are linear for e < 0 and e > L (i.e,, a2 = a4 = 0), then al is the specific heat of

the solid phase (e < O) and a3 is the specific heat of the liquid phase (e > L) of the material, If L =

al = a2 = a4 = 0 and a3 is the specific heat of the material, Equation (13) reduces to the

tempera'lure equation in the absence of phase change.

A cell (ij,k) is assumed to be solid when e < 0. Partial melting occurs when 0 < e < L,

and complete melting when e > L. Presently, MAGMA does not allow for partially molten cells.

Thus, the condition e > L/2 was chosen as the criterion for cell melting, If the cell energy of a

solid cell rises above L/2, the cell melts. Conversely, if the cell energy of a molten cell falls below

L/2, it solidifies.

MAGMA assumes that ali fluid properties, except density, are variable (density is allowed

to vary only in the buoyancy force term in the momentum equation through the Boussinesq

approximation). 1 If fluid properties are allowed to vary, relations describing this behavior ox"

specific property data must be supplied by the user.



2.2 Temporal Differencing and Time Integration Procedure

'Iqaissection descTibesthe time integration techniques and the temporal differencing scheme

for the governing equations presented in Section 2.1. The solution procedures of the

incompressible Navier-Stokes equations and the energy equation are treated separately in the
sections that follow.

First-order forward differences are used to approximate ali time derivatives. The time

differencing is performez]with respect to a set of discrete time values tn separated by a variable time

increment, At = tn+ 1 . tn, The time level n _,sused as a superscript to denote the time level of a

quantity q. Thus, qn is the finite difference approximation to the quantity q at time tn,

In the following sections, the temporal differencing scheme is illustrated while spatial

differencing is suppressed for claril,y. Note that ali spatial derivatives should be replaced with their

finite difference approximations as described in Section 2,3.

2.2.1 Incompressible Navier-Stokes Equations

The code solves a fully implicit time discretization of the incompressible Navier-Stokes

equations, namely

v,un+l = 0 (15)

u n+l _ un
+ (V'(uu)) n+l =- gp n+l - flg(T n+l - To) + V. ffn+l. (16)

At

The scheme of F_,quations(15) and (16) constitutes a nonlinear algebraic system of equations

for the advanced-time quantities pn+l and u n+l. This system is solved by a new hybrid iteration

schemea which is essentially a generalization of the damped artificial compressibility method for

steady.-state incompressible flow3 to the fully implicit transient equations. This scheme may be
written in the form

a, Unpublished research results of J, D. Ramshaw and P, R. McHugh entitled "ttybrid Iteration
Scheme for Implicit Calculations of Incompressible Flow."

1
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p(k+ 1)..(k)P.. =- a2 V,u (k) (17)
At

u(k+l).u(k) , u(k+l).un
+ =- (g,(uu))(k) - V(p(k+l) .bV,u(k))At At

-/3g(T n+l To) + V, a (k) (18)

where q(k) denotes the approximation to qn+l after the kth iteration. The parameter a is an

artificial sound speed, b is an artificial bulk viscosity, and Aa;is the artificial or pseudo-time step,

These parameters are constrained by the stability restrictions

2vA't: A"r
- < 1 (19)

A2 2Av

Av(oc2Av+2b +2v) Av
---- < 1 (20)

A2 2At

A2
b+ v+---- > 0 (21)

4At

where

1 1 1_} 1',52= _ + _y-_ + az 2 , (22)

Here Ax, Ay, and Az are the spatial increments in the x-, y-, and z-directions respectively, with the

understanding that Az = ,,,, in two dimensions. Notice that b itself need not be positive. These

results were derived by a linear stability analysis of tile differenced equations neglecting the

convection terms. The latter impose an additional material Courant restriction on Av of the form

Ax Ay Az } (23)A'r< rain -_-' Ivl 'lwl

where u, v, and w are respectively the x-, y-, and z-components of u, and the min operation

includes a search over all cells in the computing mesh. In the derivation of t!_estability restrictions,

10



v was assumed constant in the continuous equations, resulting in considerable simplification of the

viscous terms, if v is assumed variable, then additional terms arise which tnake the Stability

conditions more resta'ictive by replacing v with 2v in Equations (20) and (2!),

The proper selection of the par_maetersis somewhat more difficult than in the analogous

" steady-state method,4 because the character and behavior of the system now depend on the

additional parameter kt. In particular, care must be taken to ensure that the hyperbolic character of

the system is not lost due to the addition',ddamping intrtxluced by the time derivative terms. This

consideration, together with an analysis of the net damping rate, leads to the expressions b

_n2At2 -7$- + _ (24)Lc zit

min 2v 1 -1- A'r* At > A2/(4V)
Ar = ct ' ' (25)

zl "r* , At < A2/(4v)

--- 2 1 + - 1 -a2N_,-v (26)
b=4A t

where

kv* c°k2 l + 1 + 2 (27)
- da2At toa2 .

Lc:is a length typical of the overall dimensions of the flow region, ct is a safety factor on the

pseudo-time step (0 < ot < 1), and cois a dimensionless damping coefficient of order unity. For

Reynolds numbers nem"0.1 the values o_= 0.9 and to= 0.124 appear to be nearly optimal, At

higher Reynolds numbers smaller values of ct are needed to ensure compliance with the convective

stability limit of Fxluation (23).

b. Unpublished research results of J. D. Ramshaw and P. R. McHugh entitled "Hybrid Iteration
Scheme for hnplicit Calculations of Incompressible Flow.

11



The scheme must also be supplemented by convergence criteria to determine when the

iteration has converged to satis[actory accuracy. At present these criteria are taken to be

lulmax
max IV.u(k+l)l < _1 Lc (28)

1

AZ--max {lu(k+l)-u(k)l, Iv(k+l)-v(k)l, Iw(k+l)-w(k)l} <c 2 lul2maxLc (29)

where the max operations include a search over ali cells in the computing mesh. We currently take

e1=10 -5 and e2=10 -3.

MAGMA also allows a linearly implicit option in the temporal differencing of the convection

terms. This option consists of linearizing the convective terms by replacing V.(uu) (k) in

Equation (18) with V,(unu(k)), where n is the time level and k is the iterate level. In addition, a

semi-implicit mlution algorithm can be invoked by evaluating ali tcmas on the right hand side of

Eqt_ation(18) except pressure and temperature at the old time value, n.

2.2,2 Energy Equation

The code solve,; an explicit time discretization of the energy conservation equation,

l 1• +V.(ue) n =V.(kVT) n +q (3())
P At

Cell energies are marched forward explicitly in time to the new time level using only

wlriables from the previous time level. The time step is therefore limited by the diffusive and

Courant stability restrictions,

A2
At <--- (31) .

2o_

Ax By Az }At<min lul ' Ivl 'lwi (32)

12



where

k
a = -- (thermal diffusivity) (33)

pc

. and c is the specific heat capacity, If necessary, the code resets At after each time step in order to

satisfy the changing Courant stability restriction,

lt would of course be preferable to use a fully implicit scheme for the energy equation as

weil, thereby removing the stability restrictions of Equations (31) and (32), This scheme should

be replaced by a fully implicit scheme if the model is developed fttrther.

13



2.3 Spatial Differencing

The governing equations are spati_dlydifferenced using the control volume or finite volume

approach, whereby the temporally differenced conservation equations are averaged over the

volume of the appropriate computational cell,4 The divergence theorem is used to convert the

volume averages of terms of divergence form to sttrface integrals over cell faces. This procedure

leads to conservative difference equations for mass, momentum, and energy,4 The spatial

differencing is conventional in ali respects, Ali terms other than convection are approximated by

centered differences, while convection terms are approximated by weighted averages of centered

and upwind (donor cell) differences (see Appendix B).

2.3.1 Finite Difference Mesh

MAGMA numerically solves differenced forms of the coupled governing equations on a

two.. or ttu'ee-dimensional, staggered grid using two- or three-dimensional rectangular coordinates

or two-dimension',d cylindrical coordinates. The computational mesh consists of recttmgular cells

of width zlx, length Ay, and height Az. The mesh contains imax cells in the x-direction,jmax cells

in the y-direction, and kmax cells in the z-direction.

Variables in a computational cell are placed according to the MAC solution procedure. 2

Velocity components are located on cell faces, while pressures, temperatures, energies, and flt_id

properties are located at cell cel_ters. Figure 2 is a schematic illustration of a computational cell.

Note the terminology used in t_is figure to refer to cell faces. For example, the velocity component

in the x-direction (u) is located on the righi cell face, the ),-direction velocity component (v) on the

front cell face, and the z-direction velocity component (w) on the top cell face, The cell faces

opposing these three sides are the left, derriere, and bottom cell faces, respectively. The mesh

contains both active cells containing fluid and inactive solid cells, as shown in Figure 3. Ceils not

containing fluid (inactive cells) are represented by shaded cells. Boundary cells are used to impose

the velocity and temperature boundary conditions. Velocity boundary cells, which are marked with

the letters VBC in Figure 3, are always adjacent to cells that contain fluid. Temperature boundary

cells, which are marked with the letters TBC in Figure 3, are always located at the edges, or

perimeter, of the computational region. Three-dimensional rectangular coordinates is the code

default. Two-dimension',d rectangular coordinates and two-dimensional cylindrical coordinates are

invoked by setting the spatial increment in the z-direction to a negative value (Az < 0). This option

forces "aliterms associated with the z-coordinate to vanish in the discretized foma of the governing

equations (formally Az _ _, ). Two-dimensional cylindrical coordinates assume that the
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y-coordinate axis is the axis of symmetry, x is the radial coordinate, and ali terms associated with

the z-coordinate vanish. These cylindrical terms in the governing equations are included in the
formulation when the cylindrical coordinates flag, _ (CYL in the code), is set to one.

' Cell spacing in ali coordinate directions is assumed uniform. Simple averaging is used to

obtain quantities at points on the mesh where they are not explicitly defined. The averaging

procedure is described in Appendix A.

As shown in Figure 2, velocities are located on cell faces, i.e,,

uijk=u(im,O'-g)ay,(k- )__az) (34)

vijk = v[(i- 1)AxdAy,(k - 1)Az)] (35)

Wijk" w[(i -1)Ax,(J'-1)Ay,kAz)] (36)

All other quantities are located at cell centers. The location of the cell centered quantity Qijk,is

given by

Qijk" Q[(i -1)Ax,Q' -1)By,(k - l)Az)] (37)

The volume, V, of a computational cell (ij,k) is simply,

V = AxAyAz. (38)

It is convenient to define three additional types of cells, called momentum cells, which m'e

centered about the locations of the velocity components. Figure 4 illustrates the momentum cell

corresponding to the u-velocity component. Analogous momentum cells exist for the v and w

velocity componet_ts. In the notation of subsequent sections, the momentum cells corresponding

to the u-, v-, and w-velocity components are referred to by superscripts mtr, rnv, and mw

respectively.



Y

x
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Shaded region is the momenum
.. cell for theu-velocity component

Figure 4. Schematic illustration of a momentum cell
corresponding to the u-velocity component.

2.3.2 Differencing Notation

Following the notation of Reference 4, volume averages are denoted by angle brackets.

The average of a quantity, Q, over a typical cell (ij,k) is given by

1 ISSQ(x,y,z)dxdydz (39)<Q >ijk=V --

where the volume integral is taken over that cell. Similarly, the average of a quantity over each of

the three momentum cells is denoted by

mu 1 I [. I Q(x,y,z)dxdydz (40)<Q>ijk =_-

mv 1 f _.f Q(x,y,z)dxdydz (41)<Q>iik =V-

< Q > iikmW= V--15 I S Q(x,y,z) dxdydz (42)

17



where the volume integrals are taken over the indicated momentunl cell, If the quantity Q is not of

divergence form, these averages are approximated by the values at cell centers; i,e.,

< Q >ijk= Q((i-½)Ax,(j-1)Ay,(k-1)Az) (43)

m

mu 1 2< a > ijk = a(iAx,(]- -_)Ay,(k - )Az) (44)

mv< Q >ijk = Q((i- kxjA.y,(k- )Az)) (45)

mw 1 1< Q > ijk = Q((i- )Ax,(l'- _)Ay,kAz)) (46)

where the quantity Q(x,y,z) is evaluated at the point (x,y,z) using whatever averaging is necessary.

The averaging procedure used by MAGMA is described in Appendix A.

If the quantity Q is of divergence foml, i.e., Q = V.w, where w is a vector or tensor

quantity, then the volume integrals in Equations (39) through (42) are converted to surface

integrals wring the divergence theorem,

< V'w >Uk= V-- dA n.W (47)

where n is the outward unit normal to the surface and dA is the surface integral over that sm'face.

Equation (47) can be approximated by

1 _.,(AA n)a.Wa (48)< V.W >ijk= V-

18
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where the subscript a refers to the faces of the cell (ii,k), ,Equation (48) can be expanded as

1
< V.w >ijk = V-- [ (AA n)B'WB + (AA n)D'WD

+ (AA n)FOWF + (AA n)LOWL
t

+ (AA n)R'WR + (AA n)TOWT ] (49)
_,.

where the subscripts B, D, F, L, R, and T refer to the bottom, derriere, front, left, right, and top

sides, respectively, of the computational cell (ii,k), The quantities in parentheses in Equation

(49) are defined as follows:

(AA n)B=-ez AxAy (50)

(AA n)D =-ey AxAz (51)

(AA n)F = ey AxAz (52)

(AA n)L =-ex AyAz (53)

(AA n)R = ex AyAz (54)

(_L4 n)T = ez AxAy (55)

where ex, ey, and ez are unit vectors in the x, y, and z coordinate directions, respectively. Similar

expressions hold for the volume averaged quantities integrated over the three momentum cells. In

summation ft)nn these expressions are given by

mqijk _1 _._(AA (56)< V'w > = n)aqOWaq
fZq

where the subscript cN (o<t- B, D, F, L, R, or T) refers to the faces of the momentum cell denoted

by mq, with q equal to u, v, or w.
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A special case arises when Q represents convective temas in either the momentum equation

or the energy equation (i,e., Q = V.[uu] or Q = V'l uT]). As an example, let Q = V.[uS] where S

is the quantity being convected by the velocity, u, q'he volume averaged expression for Q is given

by

, 1 Z(AA n)aqoSa, (57) '< V.l uSl >ijk= V--
%

,.

Note that if S = T, the summation is performed over the regular cell (ij,k); however, if S = u, v,

or w, the summation is performed over the corresponding momentum cell mq with q = u, v, or w.

A differencing technique based on a weighted average of centered and donor cell differencing is

used in conjunction with fileconvection terms to ensure numerical stability, The value of

(AA n.u)% is computed as a centered average on sMe or,while the quantity being convected, So_,

is colnputed as a weighted average of its centered and its "upwinded" values as described in

Appendix B.

2.3.3 Incompressible Navier-Stokes Equations
i

The spatial differencing for Fxluations (17) aad (18) is given below, using the expanded

forms of the equations in the x-, y-, and z-coordinate directions. The additional terms required for

two-dimensional cylindrical coordinates are explicitly included in this discussion. Recall that
terms associated with the z-coordinate direction vanish in two dimensions.

• Continuity equation

-_-JX-"/_Az=- a2 <V°u(k)> ijk + { (i 1/2)aXJ

'2O



. Momentum equation in x-directi0n

mu
< u2 > ilk_,,(k+l) it(k) ,,(k+l) ,,n mR

A'c At iAx

° m u

mu <V.((x) > __
- fl (g.ex) <T n41 . To> ijk + (iAx)_-

mta

2 v_< u 2 > ii& (59)
(lAx)2

• Momentuna equation in y-direction

rtl V
¢_(k+l) v(k) ,,(k+l) ,,n mv . < uv > "k

_,a" '_ =." ,_,_-_k <V.[uvl<k)>,;_. ¢(-,£a2axr/-)_-kr At

mv

-<v.[o,O,(_)-_<v.u(_'>,01>,_,

mv

,-13(g.ey) <T n+l . To> ijk

(x)_c_ mv<v.( ,)> Ck__ (6{))+

((i-1/2)kx) ¢
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o Momentum equation in z-direction

w(k+l) ,,,(k) ,.,,(k+l) ,,, n mw
--'L.,_--_'.,'_<V.l,,wl(k)>ijk___750_ =_

ijkdv At

m W

, .k)]>,,
t't,lw Ytlw

-/3 (g.ez) <7"n_l - To> ijk 4-<7 °O'z> ijk (61)

where k is the iteration index, and tile gradient operator, V, is expressed in rectangular

coordinates.

Recall from Section 2.2 that if the linearly implicit option is specified, the convection terms,
mq mq

< V'luq] (k)> ijk, m'e replaced by < V,lunq (k)]> ijk (q = U, V, or w), where n is the time level.

2.3.4 Energy Equation

Equation (30) is tile temporally differenced energy equation. The spatial differencing for

this equation is given in Equation (62) below.

. ,n+l _ n 1
f__+ < V'( ue)n >ijk + _< (eu)n >u_ =

• P _ At (i - 1/2)Ax

,,> _k
<V.(k VT) ijk + (i - 1/2)Ax < V.(ex T n)>ijk 4" qijk (62)

where the gradient operator, V, is expressed in rectangular coordinates (Equation (11)).
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2.4 Boundary Conditions

Mesh cells containing fluid are surrounded by solid or fictitious boundary cells that impose

the problem boundary conditions, Boundaries may be positioned along cell faces or they may pass

diagonally through the centers of cell faces, The following sections describe how MAGMA sets

, velocities and temperatures in boundary cells in order to impose the physical boundary conditions,

. 2.4.1 Velocity Boundary Conditions

Boundary conditions associated with velocity are _t in inactive cells adjacent to at least one

active cell, Cell position and orientation determine how boundary velocities are set. There are two

possible orientations with regard to setting velocity boundary conditions. The first orientation is

when a wall or boundary lies along a cell face, and the second orientation is when a wall cuts

diagonally through cell faces. These orientations are discussed separately in the sections that

follow.

2.4.1.1 Walls Along Cell Faces. Consider Figure 5 as an example, Note ttaat the

positive z-direction is out of the patyer, An analogous situation exists ify and v are replaced by z

and w, respectively, and the positive y direction is into the paper.

v1,j,k v2j,k v3j, k

x
i = 1 2 3

Figure 5. Wall boundary orientated along a cell face.
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Physically, there can be no flow across a wall, Therefore, the normal velocity component on a

wall is identically set to zero regardless of the wall type(free slip, no slip, etc,,,) i,e,,

Uld,k= 0 (63)

Physical characteristics of a free slip wall, a no-slip wall, or a wall with a known velocity

determine how tmagential velocity components are set in a velocity boundary cell, At a free ,;lip

wall, there is a zero shear stress, so the nonnal derNative of the tangential velocity must vanish,

Thus, the tangential velocity comlxment in the boundary cell is set equal to the tangential velocity

component in the adjacent active cell, Iri Figure 5 this condition is satisfied by

vi,j,k= vzj,k ' (64)

No-slip boundm'y conditions require that ttmgential velocity components vanish at the wall,

The tangential velocity in the txmndary cell is set in order to satisfy this condition and in order to

guarantee the finite difference approximation to the second normal derivative at the wall is

consistent with a second order Taylor series approximation, For example, at cell (24',k) in

Figure 5 the code approximates the second derivative of v in the x-direction as,

02£'1 = --(_-_-d¢-22v---Z2dJ_-+--v-l-'J'k--_) (65)
Ox2 .)code a4.x2

The Taylor series approximation to lhis quantity is tbund by expanding vC,/,k aad the velocity at the

wall about the point (24',k)

Oy ax 2 02v

v3,j,k :-"v2,j,k + zb¢_-_+ 2 Ox2 +.... (66)

ax Ov A_'2 32v

Vw.tt= 0 = v2j,k--T 3-x -_.....U i_x7.+ ,,. (_7)

Neglecting higher order terms and solving for the second derivative gives
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Equating Equations (65) and (68) and solving for Vl,j,kgives,

1
VI j,k = 3- V3'd',k" 2 v2d,k (69)

This expression satisfies the condition of zero tangential velcmity at the wall as well as guara.nting tt

consistent second order approximation to the second nonnal derivative, Analogous expressions
tu'ise for boundaries lcuzatedon the other cell faces,

Specified velocity boundary conditions are easily trot.rasedii' the velocity components are

located on the boundary, However, when this is not the case the boundary velocity component is

once agaln set in a consistent, second order manner, For example, if the tangential velocity on the

boundary in Figure 5 ts vL, the tangential velocity component in the bound,'u'y cell ts c_dculated

['I'OIYI,

1 8
Vld,k = "_v3d,k- 2 v2,j,k + -_vL (70)

, ,

Analogous expressions exist for other specified velocity boundary conditions of this type,

2.4.1.2 Walls Cutting Diagonally Through Cell Faces. No-slip walls passing

diagonally through wellfaces allow the sirrmlation of non-rectangular geometries, Diagonal

boundaries can cut through two or three cell Ew.es, Boundary wellvelocities located on the wall are

identically set to zero, Diagonal boundaries passing through only two cell faces require setting zt

tangential velocity comtx-ment not l_.'ycatedon the wall. This situation is illustrated in Figure 6, in

which the tangential velocity _,,tpoint (1) (out of the palx:r) must be set in order to satisfy the no-

slip requirement on the bound,try, Note that the horizontal and vertical velocity components in cell

(ii,k) are identically set to zer,_because they are directly located on the l'x)undary, The third

velocity component at point (1) coming oul of the paper is set in the following rnanner:

' I, The velocity in this direction is computed at point (2) by averaging the

corresponding velocity components in cells (ij+ 1,k) and (i+ 14',k).
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Figure 6. Diagonal wall boundary,

2, A second order polyt_omhd is fitted through points (2) and (3), and the Ix)int

indicated oil the boundary in Figure 2,5,2. The velocity on the lx_undary is zero for

this interpolation,

3, The veltx_ityat point (1) is calculated from this second order polynomial equation,

'I".,isprocedure results in the following expr_:sslonfor the tangential velocity cornponent, w, in cell

(ij,k)

1
wij,k = -_Wi+lj+l,k- Wl+lj,k- Wi,j+l,k (71)

Analogous expressions arise when other diagonal ILx_undaryorientations are encountered,

2.4.2 Temperature Boundary Conditions

Temperature boundary conditions are imposed on the perimeter of the computatiorml

region, Four types of temperature boundary conditions are allowed: convective tmundary

conditions, constant heat flux, constant temperature, and adiabatic (zero heat flux) boundary

conditions, 5
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For t_onvective/mixed type boundary conditions, the boundm'y temperature is determined

ft'ore an energy balance at the wall, where the heat mmsfer by convection equals the heat transfer

by conduction at the wall, On the fi'ont boundary this condition is expressed as,5

, where

h = convective heat transfer coefficient

k = themaal conductivity

q" = heat flux

subscripts:

tl

w = wall wdtle

oo = value of surroundings,

Tw is approximated by

Tw = 1 (Ti,jmax,k + Ti,jmax.l,k) (73)

and the value of the themaal conductivity on the wall is taken to t_ the value at the center of the cell

,'_djacentto tlm wall, 'I'he convective-mixed type t_undary condition on the front wall is then

satisfied by

2hAy . / hA), '_
k" ....... 7"° + 2 - -k................. Yi,jmax-l,k

t_nax..1,k _ i_d'max-!k> (74)
2

Expressions satisfying convective/mixed tx3undary conditions on the bottom, derriere, left, right,

and top sides, respectively, are completely analogous to Equation (7<l),
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For a constant heat flux type boundary condition, th.:'t:,,,Indary temperature is once again

determined from an energy balance at the wall, As tin example, consider the case where a constant
II

heat flux, qL, exists across the left boundary of the cornputational region, 5 The energy balance at

the wall requires

,, (dT)_--k2 _" - _ _ (75) tL=-k -0 r-'-z ' .

or

tl

-q-_ (76)
T/j,k = T2j,k +-k2j,k

Analogousexpressionscanbe derived for constantheatflux conditionsalong the bottom,derriere,

front, right, and top walls, respectively. Theadiabaticboundarycondition is imposedby simply

setting the heat flux across that wall to zero,

Constant temperature boundary conditions ,areeasily imposext if the temperature is located

on the boundary, However, when the boundary coincides with a cell face, the boundary

temperature is set in a consistent second order manner similar to the method described for specified

velocity boundary condition/;, A constant temperature (TB) along the t._ttom wall requires the

boundary cell temperature be calculated from the expression given in Equation (77). Expressions

for the constant temperature boundary conditions along the remaining walls are completely

analogous to Equation (77).

1 8
Tid,! = ;_Tij,3 . 2 Tidy + -_TB (77)

2.4.3 Boundary Conditions Summary

Velocity boundary conditions are imposexl after each iteration in the numerical solution to

the momentum equation, Velocity boundaries are not restricted to the perimeter of the

conlputational region, Velocity boundaries can lie along ox'pass diagonally througlacell faces.

Ct×tc logic identifies the type of boundary orientation and sets the boundary velocities accordingly,
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Types of allowable velocity boundary conditions include:

• No-slip

. Free slip

• Specified velocity,

, Temperature boundary conditions are imposed after each time step on the perimeter of tile

computation_d region. Types of allowable temperature boundary conditions include:

• Constant temperature

• Constant heat flux

li

• Symmetric

• Convective/mixed.
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3. CODE DESCRIPTION

MAGMA is a FORTRAN computer code. hnportant aspects of the MAGMA code are

discussed below including:

• Indirect addressing scheme

• General logic flow

• Subroutines and variables used by the code

° Code input and options

• Code output,

A variable dictionm'y is given in Appendix C, and a listing of a sample input data file is given in
,,

Appendix D.

3.1 Indirect Addressing Scheme

The indirect addressing scheme used by MAGMA is designed to avoid costly and

unnecessary computation over inactive cells in the computational domain. By defining indirect

addressing arrays the solution algorithm can sweep only over active cells in the mesh. This

scheme is used in conjunction with the solution of the incompressible Navier-Stokes equations, but

not the solution of the energy equation. Thus, heat flow is computed throughout the entire region,

while fluid flow is computed only in molten cells.

IMAP is a four dimensional integer array, lt is used to specify whether computational cells

are active or inactive. And in the case of velocity boundary cells, the type of velocity boundary

condition to be used. The first three indices of IMAP correspond to the indices of the

computational grid. If the fourth index is 1, the information stored in that array element determines

whether cell (ii,k) is active or inactive. For example, if cell (ii,k) is an active cell then

IMAP(I,I,K,1) = 1. Conversely, if cell (ii,k) is an inactive cell then IMAP(I,J,K,I) = 0. If the

fourth index is 2, then the infomaation stored in that array element determines the type of velocity

boundary condition to be used in cell (i,j,k). For example, if IMAP(I,I,K,2) = O, then the no-slip

boundary condition is enforced in cell (ii,k). Similarly, IMAP(I,I,K,2) = 1 indicates that the free
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slip boundary condition is applied in cell (ij,k), while IMAP(I,J,K,2) = 2 indicates that the

specified type velocity boundary condition is applied in cell (ij,k). The use of IMAP in the

boundary condition logic requires: I to range between 0 and IMAX + 1, J to range between 0 and

JMAX +1, and K to range between 0 and KMAX + 1.
,,

" A two-dimensional integer array (ID) is used to keep track of ali the active cells in the

region. The active cells are numbered consecutively using the IMAP array, sweeping through the

mesh from left to right, front to derriere, and bottom to top, respectively. The i, j, and k indices of

each active cell are stored along with its cell number in order to keep track of cell position and

relation to neighboring cells. The number of rows in this array is three, while the number of

columns is the number of active cells (NCELI.S). The column number is also the number of an

active cell. Therefore, for each active cell (each column) the first row contains the i coordinate

index, the second row the j coordinate index, and the third row the k coordinate index.

A third integer array (IDBC) is used to keep track of the velocity boundary cells and to set

the velocity boundary conditions. The format of this array is the same as that described above.

The column number corresponds to the number of the velocity boundary cell (NBC columns). The

three rows contain the i, j, and k coordinate indices corresponding to that velocity boundary cell.

3.2 Overall Program Flow Chart

The general logic flow of the MAGMA code is shown in Figure 7. Initially the code read:;

input data k'romeither an input file or a binary restart file. The restart file is used to restart a

previous calculation from the point of the last binary data dump. Program variables and constants

are initialized following input.

Following initialization, the code tests an input flag to determine if the energy equation is to

be solved. If this energy flag tests true, the physical time step and iteration parameters are reset

based on energy equation stability restrictions. Cell energies are updated to the new time level and

cell temperatures are computed using the equation of state. Temperature boundary conditions are

set and temperature dependent fluid properties such as thermal conductivity, viscosity, and specific

heat capacity are specified.
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Figure 7. Top level flow chart for the MAGMA code.
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Next, the code computes initial guess velocities and proceeds to the iterative solution of the

incompressible Navier-Stokes equations. Velocity boundary conditions are imposed following

each iteration. The iteration continues until velocities and pressures have converged to the solution

at the new time level. Data is written to data files and the code compares the new time level with

the user specified ending time to detemaine whether to continue or terminate the run.

3.3 Subroutine Organization and Description

The following list defines the subroutines used in the MAGMA code. Primary functions of

the subroutines are briefly described. Figure 8 presents a Hierarchical Table of Contents (HTOC),

which demonstrates relationships existing between subroutines and the main code,

1. ADDRSS (ADDRESS)

This subroutine defines the indirect addressing arrays which relate the cell

-- numbering scheme to the physical coordinates of the interior and boundary cells of

the computational region. It is c,,dled by MAIN.
tl

2. ADVNCE (ADVANCE)

This subroutine updates ali time dependent variables to the new time level once

convergence has been obt,ained, lt is called by MAIN.

3. BNDRY (BounDaRY)

This subroutine sets the velocity boundary conditions, lt is called by MAIN.

4. CONVRG (CONVeRGe)

This subroutine checks if the iteration scheme solution has satiafied the convergence

criteria, lt is called by MAIN.

5. DUMP (DUMP)

Perfomas a binary dump of program v_u'iables to a restart file. lt is called by

_- PRNT.
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Figure 8. Subroutine hierarchical table of contents (HTO(2),
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,i

6. ENERGY (ENERGY)

This subroutine solves the energy equation, The governing partial differential

equation is solved explicitly in time as described in the main !ext.

" 7, FLUX (FLUX)

. This subroutine computes the velocity changes due to the convective and viscous

tem'_sin the momentum equation, lt is called by MAIN,

8, GUESS (GUESS)

This subroutine computes the initial guess for the velocity field required for the

iteration scheme, lt is called by MAIN.

9, INITLZ (INITiaLiZe)

This subroutine initi,'dizes constant terms which are used throughout the rest of the

program, lt also calls STATE to set the initial energy field from the initial

temperature and to compute the initial temperature dependent properties, lt is called

by MAIN.

1O, INPUT (INPUT)

z

This subroutine reads in the necessary input data. lt is called by MAIN.

11. MELT (MELT)

This subroutine tests cell energy values against the material latent heat of fusion

" value to determine if cell melting or freezing should occur.

12. PRNT (PRINT)

This subroutine outputs the results of the calculations, lt is called by MAIN.



13, RSTART (Re START)

Reads prograrn variables from a binary restart file, lt is called by INPUT.

14, STATE (STATE)

This subroutine uses an equation of state to relate tile temperature to the energy or

vice versa, lt also calculates temperature dependent properties and calls TBNDRY

to reset the temperature tx'_undaryconditions, lt is called by MAIN and by INITLZ,

15. TBNDRY (Temperature BouNDaRY)

This subroutine sets the temperature boundary conditions, lt is called by MAIN

and by STATE.

16, TIMER (TIMER)

ni'hissubroutine keeps track of program times, lt is called by MAIN and PRNT.

17. UPDATE (UPDATE)

This subroutine updates the pressure and velocity fields to the new iterate level

according to the fully/linearly implicit artificial compressibility iteration scheme with

damping, lt is called by MAIN.

3.4 Code Options and Input

A sample input file for the MAGMA code is located in Appendix D, Most of the variables

in Appendix D are self-,explanatory, Those requiring additional information are described below,

Note that additional variable definitions can be found in the variable dictionary in Appendix C,

The first input variable (IRS'IRT) determines if a previous calculation is to be restarted

(IRSTRT=I) or if a new calculation is to be perfomaed (IRSTRT=O). If IRSTRT=I, the program

reads all variables from a binary file called RINPUT. The remaining variables in the input file are

read after tt_ebinary read from RINPUT. ni'hisallows additional prograrn control and flexibility,

36

i



however the user must be certain that input variables are consistent with the wtriables of the

previous calculation, If IRSTRT=O, the prograna starts a new calculation,
,

ALPHA is a weighting parameter used in the differencing of the convective terms of the

Navier-Stokes equations, It represents the percentage of upwinded or donor cell differencing.

ALPHA = 1 represents pure donor cell differencing, while ALPHA = 0 represents pure centered

differencing_

CYL is the two-dimensional cylindrical coordinate system flag, CYL = 1 indicates that

two-dimensional cylindrical coordinates are to be used, Setting CYL to one also requires that

DELZ be set to a negative number, A negative DEI_Z is interpreted by the code logic as an input

signal for a purely two-dimensional calculation, The y-axis becomes the axis of symmetry for
two-dimensional calculations and the x-coordinate becomes the radial coordinate, CYL = 0

indicates that either a two or three dimensional simulation is to be performed using rectangular

coordinates, Three dimensional calculations are performed if DELZ is greater than zero, and two-

dimensional calculations are tx:rformed if DELZ is less than zero, Note that the x-y plane is the
clefault for two-dimensional calculations,

ECOEFI, ECOEF2, ECOEF2, and ECOEF3 are temperature coefficients irt the quadratic

equation of state (Equation (14)) where ECOEFI = al, ECOEF2 = a2, ECOEF3 = a3, and
ECOEF4 = a4,

EPSI is the tolerance value for the velocity divergence condition given by Equation (28),

i,e,, EPS! = el, 7'OL is the tolerance value for the convergence condition given by Equation (29),

i.e,, TOL = e2,

TQB, TQD, TQF, TQL, TQR, TQT are temperature boundary condition parameters

associated with the Ix_ttom,derriere, front, left, right, and top txmndaries, respectively, The

interpretation of these p_u'arnetersdepends upon the temperature tx)undary condition flags 17'MPB,

ITMPD, ITMPF, ITMPL, ITMPR, and ITMPT. The letters B, D, F, L, R, and T refer to the

bottom, derriere, front, left, right, and top boundaries of the computational region. Table 1

indicates the inteq_retation of TQn as a a function of ITMPn, where n represents B, D, F, L, R, or

T. As indicatext in Table 1, TQH is the convective heat transfer coefficient when the convec,tive

wall boundary condition (ITMPn = 3) is selected,
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Table 1. Interpretation of temperature txmndary condition parameters

IT,MPn lnteror'etatlorl o .... I._0 n

t Wall ternl_rature
(constant tmnperature [x+undarycor_dttk)n) +

2 Wall lteat flux
(constant heat flux bour_darycondition)

Temperttture of surroundings
3 '1'QHis the heat transfer ccmfficient

(convective boundm'y condition)

TWFIN and IFREQ are program control wtrtables, 7"WFINsets tile ending time for tile

calculations and IFREQ determines the frequency of data outputs, Data is written to a restart file

and sewmtl output data flies (¿,e. mltdat, outdat, prsdat, tmpdat, atm veldat, amt pltdat) every

IFREQ time cycles,

IE_4ERGY,"' IFIMP, IGUES,S,""' IMEI.,7',and IVISC are program option flags, IFNERGY

-- 1 indicates that tile energy equation is to be solved, whereas IENERGY = 0 turns off tile energy

solutiort subroutitae. IMELT controls the code melting and freezing options, IMELT = 1 allows

cell melting and fi'eezing, while/MELT = 0 turns off this option. IVISC cor_trolsthe variable

viscosity option irt tile MAGMA code, IVISC = 1 indicates that the variable viscosity fomaulatiotl

is to be used, while IVISC = () indicates that the constant viscosity formulation is to be used,

Tables 2 and 3 indicate the various options associated with the IFIMP and IGUESS flags,

Additional input options may be directly hard wired into the Magma cc_e, For example,

expressions relating the fluid properties to temperature must be directly hm'd wired into the STATE

subroutine. Initial nort.-uniform ten_perature or velocit:} distributlonl; may be coded directly into the

INPUT subroutine. The initial distribution of active cells in the cornputational regkm may also be

cc_ed directly into the INPUT subroutine, This task is accomplished by simply setting tile

necessary elements of the IMAP array to 1, Special boundary conditions not included in the
MAGMA comtecan also be hard wired into the code. The BNDRY subroutine contains velocity
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Table 2. Interpretation of the IFIMP variable flag

LE2M/2 I.n to__:pAL.C_tJ..O_.O.__.

" 0 Indicates the fully implicit solution algorithm is to Luaused In t:onltmctlon
with the momentum equation,

1 Indicates the linearly h'npllctt solution algorithm is to be,used in con junctiot_
with the mota_er_turnequation

Indicates the semi-itnplicit solution algorithm is to t_ used in conjunction
2 with the momentum equation

Table 3. Inte,rpretatton of the IC;UESS varitlble fl_g

!_,(__S _l._n1¢ r p r e t a t i o n

0 Ir_itialvelocity guess is to be computed from an explicit approximation to the
rnornet_turnequtttion,

1 Initial velocity guess is the velocity solution frona the previous time step,

Initial velocity guess is to be computed fl'orn an e_tral×)latton from the two
2 previous time step veh-)citysolution,
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boundm'y condition loglu and tile TBNDRY subroutine contains tile temperature t×_undary

condition logic, MAGMA allows no-slip and free slip wall velt_.:ttyt.×'_und(u'yconditions; atld

const(mt tetnperature, constant hetttflux, and convective tertlperttturet_undttry conditions,

Array dhnenslons and cotlltl'lorlblocks cim be clumged in ttsingle INCLUi)E file n0,med

'comd,h', which is included in the ,utti_altnelind till subroutines, Ali imt×-)rtttntF'ARAMtT,TER

statements, DIMENSION statements, at'tdCOMMON blocks, are also lc)ctttedin this tqle,
(

3,5 Code Output

Data is output to ff')urASCI data flies trodone binary data file after every IFREQ time

cycles, The bimiry dlmt file is a rest_trtfile named ROUTPT, This file contains a binary dump of

tdl variables necessary for a suc¢_essfttlresttu't of tt previous calcuhttioll, In order to restiu'ta

calculation, the flag IRSTRT is set to one and P,OUTPT is renartaed RINPUT betore the program
is executed,

The four ASCI d_lt_tfiles t_t'eoutput in a similar fitshion, After IFREQ thne cycles the

velocity, temperature, pressure are written to the files named: 'veldat', 'tmpdat', and 'prsdat',

reslx:ctivcly. Other wtriable ttrrays such as energy and temperature dependent properties are

written to the file named 'outdat'. If cell melting is allowtxt, the melt front profile is written to the

file rmmed 'mltdat', The form of a program output is similar for each of these files. At each

output, header lnlbmmtion is written to the data file before any data, This header infonnatton

includes a brief description of the type of data (i,e., VELOCITY DATA), the output time, the

number of cycles, the mesh spacing, etc,,, In the veldat data tile, following the header informatioI_

the x, y, trod z coordinates are written with the corresponding u, v, and w velocity components ota

the same output card (i,e,, x, y, z, u, v, w). Other data files write the x, y, and z coordinates with

the corresponding variable value on the same output card (i,e., x, y, z, p).

After IFREQ time cycles, the time, the cycle count, tuld the itr>rationcount _u'ewritten to the

standard output device so thai the user can monitor the progress of the ct×le calcuhttions. Note that

this outpttt should be tailored to meet the user's own monitoring requirements. If the c¢×:leis

executed in batch mode, this output should be redirected to adata file or suppressed,

A post-l:)rocessing routine may be nccesstu'y to convert MAGMA data into the correct tbrna

for use with an external plotting package. The MAGMA ccxled{)es not have any internal plottit_g

capability.
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4. CODE TESTING AND VERIFICATION

MAGMA has [×.',enassessed against _umerous mm_ericaland analytical test problems l'otimt

tn the literature, Table 4 presents =_surnm_lryof these test problems, They have tx_endivided [hto

live main categories: 1)'I'wo-dimet_siotlal advection, 2) q"wo-dtmellslolutl conduction, 3) Two'

dimensional natural convection, 4) Three-dimensiorutl natural convection, and 5) Melting,

. During two.,d[metaslontd tests, eact_of the three two-dtrnensional planes were tested (i,e,,
'

x-y,x-z,andy-z),The resultsobtainedwereidentical,verlfylngtluttsymmetryexistedinettclaof

thethreecoorclita_tedirections,Althoughtestswereperformedoneachofthetwo..dimenslotud

phttaes, two dimetl_,;ionalcalculations are presently restricted to the x,-yplane,

Quantitative data comparisons were possible in assessing MAGMA against tests 1,2a, 2b,

3b, and 3c, MAGMA results compared well with analytical solutions for tests 1, 2a, and 2b,6,7,8,9

(3c_:_dagreement wits obtained with numerical solutions for tests 3b and 3c, 12 Qualitative

cornparisons were made with ntimerical solutions to tests 3a, 4a, 4b, and 5, MAGMA results also

cc,mpared favorably with these numerical solutions, especially considering differences in the

_lumerical technitltles and comp utational meshes, 10,13,14

The results from MA(IMA sinlulations of tests 3b, 4a, and 5 are presented below in order

to demol_strate the c_pabillties and versatility of the code, These simulations were chosen because

they involve two arid three dimeJ_sioflalnatur'al convection, rectangular and cylindrical coordinates,

ttt_dhtltr transfer and fluid flow dttrirlg rlaelting,

Test 3b is a benchmark numerical solution for steady state, two-dimensional, natural

cor_vcctiotl,12 'I't_eprt)blem geomcta'yand thermal boundary condition are illustrated in Figure 9,

Ali bourldarics tkrerigid, rio-slip walls, The left wall is naaintained at the hot temtx_rature,7)j, 'l'hc

right wall is maintained at the cold tenlperaturc, 7',:.,Both the froIlt atld derriere boundaries a_'e

adiabatic walls,

MAGMA calculated the s;teadystate solution by marching the transient solution out to a

. steady state, while Reference 12 used a steady state solution algorithm to avoid computing the

trat_sientsolutiorl, In addition, full donor cell differencing of the convectiVEterms limited the the

MAGMA solutiori to tqrst order accur_cy, while the numerical solution of Reference 12 was second
_rdcr accurate,
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Table 4. Sumtnary of MAGMA test problems

1, Advection (2-D) I, Nmnc,: Driven Cavity
Coord, Systenr, 2-D Ret'lmlgulnr
Orid: 40X40
Bou1_larles', Left - No-slip

Right - No-slip
Front +Sl_:tfled 6, 7
Derrtore - No-sltp

Initial (2ondttlons', Zerotnl-rnal vd(_'lty
Ptmmmters: Re = 400
Comlmrison: Qtmlltative & qutmtltatl re, wilh

numerical results

2, Cot_duction (2-D) 2a, Name: TranstentConductlon-Rectangular
Coord, System: 2-D Rectangular
Grid: 20X40 (re.ct,plate)
Boundaries: Zt,ro surface temp, 8
Initial Condllions: 7'(x,y,t=0) = xy
Pararueters: k = c = r = 1

Comparison: Quantitative with analytlcttl solution

2b. Nanm: Transient Conduction-Cylindrical
C(x_r(l, System: 2-D Cylindrical
Grid: 1OX10(finite cylinder)
Boundaries: Zero surflme temp, 9
Initial Conditions: 7'(x,y,t=O) = 1
Parameters: Thermal diffusivity = 0,1
Comparison: Qualitative with analytical solution

3, Natural 3a, Name: Heated FMd l_a_yer
Convection (2-D) Ct×ml, System: 2-D Rectangulm'

Grkl: 40X20 (rect, plate, g = -g ey)
Bounth'ies: No Slip walls

Front --I_)thennal

I)erriere --Isothermal (7'1) > 7'#') 10, I1
l,eft, Right --Adiabatic

Initial C.onditions: Zero, velocity
Unil'orm Temp, gradient
Initial sinusoidal letup, perturbation

Parameters: Ra = 30,(XX),Pr = 1,0
Comparison: Qualitative with stc,ady state

numerical solution
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Table 4. (continued)

_.._3L__ C,itegory ...... Llnl1. _'[LCL__n d DescrtlJt_tL_., _',L¢.!_

.,

3b, Name: l_e,nchvnttrkNatund Convec,tkm
Coord, " 'S ystom: 2-D R.eclavlgtlhu'
Orkt: 10Xl0, 20X20, 40X40 (g = -g ey)
Boulld_.u'lc,s: No-slip walls

l..,c,l't --l,_)the,nmd
Right --Isothermal ('1i_,> 7'/¢)
Frout --Adhd)atlc
I)crriere --Adiabatic 12

Initial Conditions: Unll't)rmlc,mt_rature
Panmteters: Ra = 10,(X)O,Pr = 0,71
ComparisoI_: Qualitative & cttmntltattve with

stc_tly sla_tenumerical sohttlon

3c, Name: Benchmark Natural Convection
Ct_rd, System: 2-I) Rectangular
Grid: 10XI0, 2()X20, 40X40 (g = ..gey)
B<mnth.u-ies: No-slip walls

Left -..l_themml
Right --Isothermal (TL > 7)¢) 12
Front --Adiabatic
bN;rriere --Adiabatic

Initial Conditions: Uniform temlx_mture
Parameters: Ra = 100,(XX),Pr = 0,71

t )Ct mpm'tson: QtmlilJtttve & quantitative with
steady state numcrk:al solution

4, Natural 4a, Name: 3-D Natural Convection

Convc,ctiotl (3-D) Ccx_rd, System: 3-D Rectangular
Grid: 9xgx9 (g = -g ey)
Boundaries: No-slip walls

Left --Isothermal, 7'/, ='1'
Right -.lsothcrnlal, 7'1¢='1'
Front --isothermal, 7'F =7'
Top -- Isothc,rmal, '1'7'=7' 13
Bottcm_ --Isothermal, 7'/3=.7'
Derriere _-Isothermal--7'D > T

Initial Conditions: Uniforru temperature
' Paran_ctcrs: Ra = 10,(Xi0,Pr = 0,72

Colnl)arison: Quali ta tivc wlth st_(ly statc
numerical solution

z
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Table 4. (continued)

'Test Category Test Number and Description Reference

4b. Name: 3-D Natural Convection
Coord. System' 3-D Rectangular
Grid: 9X9X9 (g = -g ey)
Boundm'ies: No-slip walls

Left --Adiabatic

Right --Adia'batic
Front --Isothermal, TF

Top --Adiabatic 13
Bottom --Adiabatic
Derriere -- Isothermal -- TD > TF

Initial Conditions: Uniform ternpemture Temp.
perturbation

_ Parameters: Ra = 10,000, Pr = 0.72
Comparison: Qualitative with steady state

: numerical solution

5. Melting (2-D) 5. Name: Melting about a Vertical Cylindcr
Coord. System' 2-D Cylindrical
Grid: 40X20 (cylindrical disk, g = -g ey)

: Boundarics: No-slip walls
• Left --Isothermal, TF (TF > 'I'm )

Right --Adiabatic
Front -Adiabatic

Dcrrierc --Adiabatic 14
1 Initial Conditions: Pha_ (,hangc Material

(PCM) at melt temp.=7' m

Parameters: Ra = 3.160106, Pr = 56.2,
Sre = 0.094

Comparison: Qualitative with transient numerical
solution
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Figure 9. Geonletry and ttmrmal boundary conditions for test 3b.

Quantitative comparisons of data values from Reference 12 and the MAGMA solution are

shown in Table 5. The Reference 12 benchmark solution in _i_ !ast column was calculated by

extrapolating the solutions from the two finest meshes (Ax = ky = 0.05 and Ax = ky = 0.025) to

approximate the exact solution (Ax = ky = 0). Reference 12 m&ximum velocity values were

obtained ft'ore interpolation, while the MAGMA values represent the maximum cell centered mesh
(%

values. Note that velcvities have been scaled by _cI and lengths by Lc, where o_is the thermal

diffusivity. Generally good agreement was obtained, considering the differences in the numerical

techniques. Table 5 indicates that the MAGMA solution is converging to the benchmark solution

as the grid size is reduced.

Figures 10 and 11 present the steady state velocity vectors trod temperature isotherms,

° respectively, for MAGMA calculations on a 40X40 (,6x = ky = 0.025) mesh. Comp_u'ison of

• Figure 11 against the steady state temperature isotherms from Reference 12 (Figure 12)

demonstrates good agreement.
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Table 5. Data comparison with test number numtmr 3b

. _,_ = zay = 0,1 _ . zaa:= zly-- 0,05 _ ,fix = Ay =_0,02.2.5.__ /32 _-_ )Q_

Reference 13

_tl_l.Value MAGMA Refere_ace!3 MA_.!A_Q_M__AA.K_crence13 N_A_G.N_AP,eference,13 Bench-nlar_k_

Umax 15,047 16,243 15,723 16,189 15,955 16,182 16,1'78
y 0,85 0,808 0,825 0,820 0,8125 0,823 0,823

Vmax 16,733 18,055 18,757 19,197 19,263 19,509 19,617
x 0,15 0.139 0,125 0.125 0, I 125 0,120 0,119

/gi_ 2,190 2,171 2,206 2,212 2,230 2,234 2,243

Nu

1 2,(/42 2,170 2,164 2,213 2,218 2,235 2,243
(x= _)

Nu 2,383 2,307 2,271 2,255 2,254 2,242 2,238
(x= o)
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, Figure 10. MAGMA steady state velocity vectors for test 3b 0naximu_n dimeJ_si(mlcssvelocity
vector = 19.25).
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Figure 11. ,MAGMA steady stato tcmperature isotherms for test 3b (contours
at ()(0.10) 1).
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Figure 12. Reference 12 steady statc tcnlpcraturc isotherms for test 31) (contours
,. at ()(0.10) 1).
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Test 4a is a three dimensional natural convection simulation, The geometry and themaal

boundary conditions for this test arc illustrated in Figure 13, i3 Ali [xmndaries are rigid, no-slip,

isothermal, walls. The temperatures on the left, right, bottom, top and front walls are equal to the

cold temperature, Tc:. The derriere wall is set to the hot temlmrature, Th. The initial temper_turc is

set to the average of Tc and T h, Tl_ese and other p_u'!maeter specifications are listed in Table 4.
,i

Ft!
I _.,,., ,. ,, ,, .... • _...S

' H ..... -]-"

Y Tc H

'l'cTc_._,
lm--- , 12 r

_._.-,_

Figure 13. Geometry and thermal boundary conditions for test 4a.

Cooling on the side walls immediately initiates a downward flow of liquid. This liquid is

: heated as it passes along the derriere wall causing it to rise up through the center of the cube, 'l'he

steady state natural circulation pattern is thus characterized by liquid falling along the side walls nmt

subscxtuently rising through the center of the cube. MAGMA-calculated temperature and vertical

velocity (v) profiles at mid-height 0,/tl = 0.5) for each of the x-y planes are shown in Figures 14

and 15, respectively, Calculated results from Reference 13 are shown in Figures 16 and 17 for

comparison purposes. Qualitatively the plots are similar, but quantitative agreement is marginal.
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Figure 14, MAGMA tCml)cratureprofiles at mid-height for lost 4a,
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Figure 15. MAGMA vertical velocity profiles at nlid-.heightfor test 4a,
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Figure 16. Reference 13 steady state temperature profiles at mid-height for test 4a,

xlH

Figure17. Reference13steadystatew:,rticalvelocityprofilesatrnid-.he,igi_tfortest4a,
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An exphmaflon for the quantitative differences between the two numerical results has not yet been

detennined, MAGMA-calculated steady state temperature contours and velocity vectors for the

plane z/H = 0,5 are shown in Figures 18 and 19, respectively, Co1Tespondlng plots from

l_,eference 13 Itt'eshown in Figures 20 Imd21, The two numerical solutions qualitatLvely predict

s{mlhtrsteady state behavior,
¢

Test 5 investigates natural convection during melltng atx3uta heated finite cylinder, 14 The

geometry and thermal boundary conditions for this test are illustrated in Figure 22, Ali N:_tmdaries

m'erigid, and have no-slip walls, T'he left wall coincides with the surface of the cylinder and is

maintained at the temperature 7o, which is higher than the melt temperature, 7)n, of the Phase

Change Material (PCM), Ali other boundaries are insulated, adiabatic walls, The transient results

of this simulation are identified by a dimensionless time defined by Reference 14 us

ezte(To - Tta) (78)
"c = H2L

where ezis the thermal diffusivity, t is the physical time, e is the spectt'ic heat capacity, L is the

latent heat of fusion, and H is the height of the cylinder,

The initial temperature of the PCM was set to the I_M melt ten_perature, 7m, MAGMA

assumed ali cells were initially in the solid pt_ase(no melting), Heat is transferred from lt]e !eft

wall (i.e., the cylinder) to the F'CM,due to the initial temperature difference. Initially, this energy

transfer is used to supply the latent heat neces,,',aryto initiate cell melting in the layer of cells

immediately adjacen t to the cylinder. The enth'e first layer of cells naelt when z'= 0,00147, Cell

melting is followed by cell temperature increases, which iraturn initiates heat ta'ansfer to the second

layer of cells, Natural convection begins when the first two layers of cells have cmnpletely melted,

"I'hebuoyancy driven natural convection flow transfers more heat to the cells near tlmfront

boundary, causing these cells to melt before the other cells in the layer, MAGMA calculated melt

fi'ont profiles resulting from this melting process are shown in Figure 23, Qualitatively, the

MAGMA melt fi'ont profiles agree reasonably well with the results from Reference 14, presented in

Figure 24. Note that Ix)th numeric,d solutions predict the melt front extending farther across the

front boundtu'y, MAGMA velocity vector and temperature contour plots at z"= 0,(D83 (Figures 25

and 26, respectively) demonstrate the heat transfer and fluid flow behavior in the melt region.
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Figure 20. l(ct'crcx_uu'13 stu.[Iclyst;Ltetcllll)crattlrc contour,s at z/li = 0,5 for tc,st4a
(contours at () (0,10) 1),
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- Figure 21. Ilc[crcm:.c 13 stc_dy stmc velocity vectors at z]l.l =-0,5 for lost 4a
(lnaximum dimensionless velocity = b43),
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Figure 22. Geometry and thertual boundary conditions for test 5.

58

!

i



1.o , ]

0,8 _ ,_
c _'

.... II

0.6 tct-
LLI

Y _
_z_

'._1
0.4 '-" >- - '

___ Q.) _

0.2 _--

r

0,0 . , ..... , ,I IIII - . iiii 1 -

0.0 ),4 0,8 1.2 1',6 2,0 2.4 2.8

,1l

Figure 23. MAGMA _a_clt front l)lofiles versus nondimcnsional tinge.
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Table 6 conlpares the calculated dimensionless molten volume of the melt region obtained

from MAGMA and from Reference 14. The dimensionless molten volume is defined by Reference

14 as

Vol - x 2o dy - 1 (79)

where H is the height of the cylinder, .r2ois the radial ctx_rdinate of the cylinder surface, and x 2 is

the radial coordinate of the melt front. Generally gtxxt agreement is obtaine,d.

Figure 27 presents the transient response of the average Nusselt number, The large

oscillations in this figure result from the nature of the MAGMA melting model. When a cell or

group of cells melt, the average Nusselt number is significantly affected by the subsequent rise in

cell temperatures, This effect is especially apparent during the early stages of the transient, when

entire layers of cells melt simultaneously. Oscillations were not encountered in the Reference 14

simulation because the melt front was allowed to expand continuously. Figure 28 shows the

results of the average Nusselt number calculated from Reference 14. However, MAGMA and

Reference 14 calculations predicted similar transient behavior of the average Nusselt numN_r.

" Table 6. Comparison of the transient dimensionless molten volume for test number 5

Dimensionless Time MAGMA Refermj._e 1___44

0.0196 2.06 2.0

0,059 6.89 6.0

: 0,(.)983 11.09 I0.0

lt is anticipated that improved accuracy and agreement with Reference 14 could have been

obtained through mesh refinement, Reference 14 used a variable transformation from the physical

cc_)rclinates to the computational coordinates to obtain a mesh with considerably higher resolution

tt_an the MAGMA mesh.
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5. SUMMARY AND RECOMMENDATIONS FOR
FURTHER CODE DEVELOPMENT

MAGMA is a three-dimensional [inite difference computer code designed to simulate fluid

flow and heat transfer in ISV melt pools, The equations governing fluid flow are the

incompressible Navier-Stokes equations, l-teat transfer is governed by the energy equation,

Energy is related to tetnperature through an equation of state ttmt includes melting, The momentum

equation is coupled to the temperature field ttlrough the Boussinesq mtxtel approximations, 1 'l'hc

coupled governing equations can be solved simultaneously, or the incompressible Navier-Stokes

equations can be solved separately in the absence of heat transfer. Ali fluid properties in MAGMA

are assumed variable except density, Fluid density is allowed to vary only in the buoyancy terms

of the momentum equation,

MAGMA has been tested against the results of many numerical and analytical test

problems, MAGMA has demonstrated the capability to simulate two dimensional advection,

two dimensional conduction, two and three dimensional natural convection, and natural

convection d'.:ring inel ting,

Recommendations for further investigation and development of the MAGMA code include'

• Conversion of the explicit temporal differencing of the energy equation to a fully imt)licit

differencing scheme.

. Addition of a Joule heating model,

. Optimization of the iteration parameters.

• Investigation and determination of optmmm convergence criteria tbr the iterative

solution.
.i

. Modification of the variable viscosity formulation to eliminate artificial time step

restrictions arising when this option is selected,

. Assessment of MAGMA against ISV test data.
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II is anticipated thai the above recornmetldations could be readily implementtxt, and have the.;

potential to significantly enhance cede performance.
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, APPENDIX A

AVERAGING TECHNIQUES

This appendix describes tile averaging procedure used in the MAGMA code, MAGMA

uses a staggered grid in which some variables are located at cell centers and others are located at the

' centers of cell fitces, Frequently, values of certain variables £_reneeded at locations where they m'c

not explicitly defined, Since MAGMA assmnes a unitbrm mesh, simple averaging can be used tc_
. obtain these wthaes,

V_dues of cell center'_t quantitie s m'eoften needed on cell faces or otacell -'edges,The value

c)t'the quantity at these locations is obtained by averaging the quantity values locatexlat the centers

of"the active cells immediately adjacent to that cell fitce or edge, Consider Figure A, 1 as ,m

example,, which shows four active cells in the x-y plane (the z..dlrection is out of the paper), In this

figure, the quantity, q, is a cell centered quantity, The value of q on the right (subscript R) face of
' _ i

cell (id',k) is computed by averaging the value of q tn cell Od,k) and cell(i+ ld, k), tc,,

1
q/_= _ ( qid,k + qi+l j,k) (A-.l)

j + ! qij+ 1,k qi+1j+ l,k 2/

I
f

j qij,k qi+lj,k , x

i i + I

#

- Figure A.1. l:our active cells in the x-y plane,
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Similarly, the value of q on the right-front (subscript RF) edge of cell (ij,k)is given by

1
qRF='_ ( qij,k + qi+l j,k + qi+l j+ l,k + qij+l,k) (A-2)

Velocity components; which live on cell faces, are often needed on cell edges, cell centers,
L

and on other cell faces where they ,arenot explicitly defined. Consider Figure A-2 as an example,

which is a schematic of two active cells in the x-y plane. Only the u-velocity

Ui'l j + l,k _ ._uij +l ,kj+l -_"

Ui.l,j,k ui,j,k
j -_D.. - D,,.. x

Figure A-2. Two active cells in the x-y plane.

components are shown in this figure for simplicity. The value of u at the center (subscript C) of

cell (i,[,k) is calculated by

1
uc = _ ( Uid,k+ Ui-l j,k) (A-3)

The _*tdueof u on the right-front (subscript RF) edge is computed from

1
URF=-_ ( Ui,j,k + uij+l,k) (A-4)



The value of u on the front (subscript F) cell face is obtained from

aF = _ ( uij,k + ui,j+l,k + Ui.l j+l,k + ui.1 d',k) (A-5)L _

. The other two velocity components are averaged in a similar fashion,
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APPENDIX B

WEIGHTED AVERAGING OF CENTERED
AND UPWlNDED VALUES

This appendix describes, by example, howa quantity, q, is computed from a weighted

" average of its centered, qc, and its "upwinded" value, qu, at a given location. Figure B,1 is a

schematic of two computational cells in the x-y plane, The quantity, q, is being convected by the

' velocity, u, and is to be computed on the interface

X

Figure B-I. Two computational cells in the x-y plane.

between the two cells, qL is the value of q at the center of the left cell, while qR is the value of q at

the center' of the right cell. Note that the necessary variables may have to be calculated at the

required locations using the averaging techniques described in Appendix A.

i The "upwinded" value of q in Figure A-1 is qz,. Note, that if the direction of u is reversed,

the "upwinded" value of q is qR. qu is thus given by

.if qL , u > 01Lctu = (B-I)I. qR , u < 0 J
=

The centered value of q on the interface is simply the average of qLand qR,

1
qc = 5 ( qz_+ qR ) (g-2)
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The weighted average of the centered value of q and the upwinded value of q on the

interface between the cells is computed from

q = c_qu + (1 - o0 qc (B-3)
i

, < ,/, ,
-,L, .'+,. .rwhere o_represents t!_c,.fi,act],onof upwinding, and (1 - o_)represents the fraction of centering. For
i _ t,, ,1

' _ ,' '. /

iteratioh' sch/e , , --,stability of the me,"'o_irlustexceed the greater of lulAv IvlA_" and IwlAl: Fox"
Ax Ay Az

Ivl_4t, IwlAtstability of the energy equation, o_must exceed the greater of lulAt, . and ..... .
Ax .43, ziz

t

(
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APPENDIX C

VARIABLE AND SUBROUTINE DICTIONARY

" VARIABLES

i

- s__A, .E  hIZEZ

VARIABLE , RS DESCRII_I'ION

R, REAL
I - INTEGER

, S - SINGLE VARIABLE
A - VARIABLE ARRAY

ALPItA RS UPWIND/CEN'FER-DIFFERENCING WEIGttTING FUNCTION

= 0 MEANS CENTERED DIFFERENCING

= 1 MEANS UPWIND DIFFERENCING

AI.,PI-IID RS INTERPOLATED DONOR CELL DIFb.-]ERENCING WEIGHTING

PARAMETER (FRACU'ION DONOR CELL DIFF.)

ASQR RS WAVE PARAMETER, SQUARE OF WAVE SPEED

13E'I"A RS MULTIPLIER, D*BE'I'A/OMG 1S DELP, IT INCLUDES OMG,

BETAID RS INTERPOLA'FED I)ONOR CELL DIFF. PARAMETER

(FRACTI'ION INTERPOLATED DONOR CELL DIFF.)

BCTE RS BETA, COEFF, OF THERMAL EXPANSION

I3FX RS BUOYANCY FORCE IN THE X-DIRECTION

[_FY RS BUOYANCY FORCE IN THE Y-DIRE_FION

BFZ RS BUOYANCY FORCE IN THE Z-DIRECTION

(12 C1 FIRST CHARACTER FROM A LINE OF INPUT DATA

CRLU RS CELL REYNOLDS NUMBER BASED ON U-VELOCI I Y

CREV RS CEH_. REYNOLDS NUMBER BASEl) ON V-VEI.OCITY

, , CREW RS CELl_, REYNOLDS NUMBER BASED ON W-VELOCITY

CRX I8 RS MULTIPLIER USED IN RZ GEOMETRY MOMENTUM EQUATION

C.RXIII8 RS MULTIPLIER USED IN RZ GEOMETRY MOMENTUM EQUNI'ION

CI: RA SPECIFIC I{EAT CAPACITY ARRAY

('VREF RS REFERENCE SPECIFIC HEAT CAPACITY
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CVMAX RS MAXIMUM SPECIFIC HEAT VALUE IN REGION

CWPR'F RS THE INCREMENT OF CUMULATIVE TIME BETWEEN PLOT-TIME

WRITES

13 t I 'CWPRT RS THE INCREMENT OF CUMULATIVE TIME BETWEEN El AILEI)

EDITS

' " SCYCLE IS THE NUMBER OF TIME STEP,. TAKEN THUS FAR

CYL RS CYIjNDRICAIJRECTANGULAR COORD SYSTEM SWITCH

= DPO MEANS RETANGULAR

= DP1 MEANS CYLINDRICAl.,

D RS THE DISCRETE DIVERGENCE OF THE VELOCITY FIELD AS

MEASURED AT THE CENTER OF Tt-IE CURRENT CELL

DALPH RS THERMAl., DIFFUSIVITY

DELP RS THE PRESSURE UPDATE FOR THE CURRENT CELL

DELT RS TIME STEP

DELTUB RS UPPER LIMIT FOR 'mE TIME STEP BASED ON VELMX

= MIN ( !DX/U!, IDY/VI, (DX*DY)**2/(2*NU*(DX**2+DY**2)))

DELX RS X-DIRECTION MESH-SPACING'

, DFLY RS Y-DIRECTION MESH-SPACING

DIFFMX RS MAXIMUM VALUE OF THE THERMAL DIFFUSIVITY

DIFFX RS TEMPERATURE DIFFUSION TERM (X-DIRECFION)

DIFFY RS 'I'EMPERATURE DIFFUSION TERM (Y-DIRECTION)

4 NDIFPZ RS TEMPERATURE DIFFUSION TERM (Z-DIREC'. FIO )

l)P() RS VARIABLE HOLDING REAL ZERO (DBL PREC)
ii

DP1 RS VARIABL,E ttOLDING REAL ONE (DBL .PREC)

DP1P2 RS VARIABLE HOLDING REAL ONE IR31NT TWO (DBL PREC)

DP1P5 RS VARIABLE ttOLDING REAL ONE POINT FIVE (DBL PREC)

DP2 RS VARIABLE HOLDING REAL TWO (DBL PREC)

DP8 RS VARIABLE HOLDING REAL EIGttT (DBL PREC)

DTDXL RS I)ERIVATIVE OF T WRT X ON THE LEFT CELL FACE

DTDXR RS DERIVATIVE OF T WRT X ON THE RIGHT CELL, FACE

I)TDYF RS DERIVATIVE OF T WRT X ON THE FRONT CELL FACE

D'I1)YD RS DERIVATIVE OF T WRT X ON THE DERRIERE CELl_, FACE

DTI)ZB RS I)ERIVATIVE OF T WRT X ON THE BOTI'OM CEM., FACE

I)'II)ZI _ RS DERIVATIVE OF T WRT X ON THE TOP CELL FACE

DTU RS ARTIFICIAL TIME STEP

DUB RS DIFFERENCE BETWEEN U(I,J,K) AND ITS BOTFOM NEIGt-.II3OI_,
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DUD RS DIFFERENCE BETWEEN U(I,J,K) AND ITS DERRIERE NEIGIIBORJ

I)UDXR RS DERIVATIVE OF U WRT X ON THE.RIGHT FACEOF THE

X-MOMENTUM CELL

I)UDXL RS DERIVATIVEOFU WRT X ON THE LEIrr FACE OF THE
i

X-MOMENTUM CELl.,

" DUDYLF RS DERIVATIVEOFWWRTY ON Tt-_ LElaT-FRONT CELL EDGE

I)UDYRF RS DERIVATIV OF U WRTY ON THE RIGHT-FRONT CEI.L EDGb
RIOH F-DERRIERE CELl-,DUDYRD RS DERIVATIVE OF.U WRT Y ON THE " " ' _ '

EDGE

DUDZLT RS DERIVATIVE OF U WRT Z ON THE LEtrI'-TOP CELL EDGE

I)UDZRT RS DERIVATIVE OF U WRT Z ON TIlE RIGHT-TOP CELL EDGE

I)UDYRB RS DERIVATIVE OF W WRT Z ON THE RIGHT-BOTTOM CELb EI)GE

DUEDX RS CONVECTIVE TERM IN ENERGY EQ,

DERIVATIVE OF (UE) WR'I X

DUF RS DIFFERENCE BETWEEN U(I,J,K) AND ITS FRONT NEIGHBOR

I)UL RS DIFFERENCE BETWEEN U(I,J,K) AND ITS LEFT NEIGHBOR '

I)UR RS DIFFERENCE BETWEEN U(I,J,K) AND ITS RIGttT NEIGHBOR

DUT RS DIFFERENCE BETWEEN U(I,J,K) AND ITS TOP NEIGHBOR

DVB RS DIFFERENCE BETWEEN V(I,J,K) AND rts BOTTOM NEIGItBOR

DVD RS DIF_;ERENCE BETWEEN V(I,J,K) AND ITS DERRIERE NEIGHBOR

DVDXDR RS I)ERIVATIVE OF V WRT X ON THE DERRIERE-RIGHT CELL

EDGE

. DVDXFR RS DERIVATIVE OF V WRT X ON THE FRONT-RIGHT CELL EDCiE

DVDXFL RS DERIVATIVE OF V WRT X ON THE FRONT-I.EFT CEI.,L EDGE
' I .7

DVDYD RS DERIVATIVE OF V WRT Y ON THE DERRIERE FACE OF F--II:,

Y-MOMENTUM CELl.,

[)VDYF RS DERIVATIVE OF V WRT Y ON THE FRONT FACE OF THE

, Y-MOMENTUM CELL
'E

DVDZDT TS DERIVATIVE OF V WRT Z ON THE DERRIERE-TOP CELL El3(.,

I)VDZFB q'S DERIVATIVE OF V WIlT Z ON "FttE I_RONT-BOTTOM CELl-, EDGII!

DVDZIVF TS DERIVATIVE OF V WRT Z ON THE FRONT-TOP CELt, EDGE

' DVF RS DIFFERENCE BETWEEN V(I,J,K) AND rts FRONT NEIGHBOR

I)Vl_., RS DIFFERENCE BETWEEN V(I,J,K) AND ITS LEFT NEIGHBOR

, DVR RS DIFFERENCE BETWEEN V(I,J,K) AND ITS RIGHT NEIGI-tBO1 _,

DVT RS DIFFERENCE BEINVEEN V(I,J,K) AND ITS TOP NEIGHBOR

DWB RS DIFFERENCE BETWEEN W(I,J,K) AND rl'S BO'.VFOM NEIGItBOI,_
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DWD RS DIFFERENCE BETWEEN W(I,J,K) AND ITS DERRIERE

NEIGHBOR

DWDXBR RS DERIVATIVE OF. W WRT X ON THE BOTFOM-RIGHq' CELL EDGII!

DWDXBF RS DERIVATIVE OF W WRT X ON THE BOq'I,OM-FRONT CELL EDGIi

DWI)XTR RS DERIVATIVE OF W WRT X ON THE TOP..RIGHT CELL EDGE

DWDYBF TS DERIV ATIVE OF W WRTY ON THE BOTI'OM-FRONT CELl., EI)GI:,,

DWDYTD TS DERIVATIVE OF W WRTY ON THE TOP-DERRIERE CELL" EDGE

DWDYq'F TS DERIVATIVE OF W WRT Y ON THE TOP-FRONT CELl, EDGE

DWDZB RS DERI_¢ATIVE OF W WRT Z ON THE BO'FI'OM FACE OF THE

Y-MOMENTUMCELL

DWDXI' RS DERIVATIVE OF W WRT Z ON qq-lE TOP FACE OF THE

Y-MOMENTUM CELL,

DVEDX RS CONVEC'I'IVE TERM IN ENERGY EQ,

DERIVATIVE OF WE) WRT X

DWEDX RS CONVEC, I'IVE TERM IN ENERGY EQ,

DERIVATIVE OF (WE) WRT X

[)WF RS DIFFERENCE BETWEEN W(I,J,K) AND ITS FRONT NEIGHBOR

DWL RS DIFFERENCE BETWEEN W(I,J,K) AND 1TS LEFT NEIGHBOR

DWR RS DIFFERENCE BETWEEN W(I,J,K) AND ITS RIGHT NEIGHBOR

DWT RS DIFFERENCE BETWEEN W(I,J,K) AND 1TS TOP NEIGHBOR

DZEPS RS DZRO*EPSI, THE LARGEST TOLERABLE VALUE OF D IN ANY

CEI,L

DZRO RS BENCHMARK VALUE OF D

E RA ENERGY ARRAY

._ r'_ N lr _ECOEFF1 RS LINEAR COEFF. IN EQ. OF STATE RELAII G IEMt, TO ENEI:_GY

ECOEFF2 RS QUADRATIC COEFF. IN EQ. OF STATE RELATING TEMP. TO

ENERGY

ENLOOP RS TIME ON THE INTERNAL CLOCK AT THE END OF LOOP

ENTIME RS TIME ON INTERNAL CLCK2K AT END OF RUN

EPSI RS CONVERGNCE TOLERANCE FOR THE SOR ITERATION

FK RA THERMAL CONDUC-q'IVITY ARRAY

• "1 I "_FKB RS THERMAL CONDUCI IV TY ONTHE BOTFOM Cb,LL FACE

FKD RS THERMAL CONDUCFIVITY ON TIlE DERRIERE CELL FACE

FKF RS THERMAL CONDUCTIVITY ON THE FRONT CELL FACE

FKL RS q]IERMAL CONDUCI,IVITY ON THE LEiVF CELL FACE

FKMAX RS MAXIMUM VALUE OF q] IE q_tERMAL CONDUCTIVITY
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FKR RS TI-IERMAI, CONDUUI'IVITY ON TI-IE RIGHT CEL,L FACE

FKREF RS REFERENCE THERMAL CONDUC-q'IVrFY

FKT RS THERMAL CONDUCTIVITY ON THE BOTI'OM CELL FACE

FL RS LATENT HEAT OF FUSION

" 7 TFLCHAR RS CItARAC'IERIS lC LENGTH

FLG RS CONVERGNCE CONDITION ATFAINMENT FLAG:

FLG _ DPl MEANS C-_)NVERGENCE CONDITION VIOLA El)

IN SOME

FLG ==DPO MEANS CONVERGENCE CONDITION

ATI'AINED,

FUC RS WEIGH2_D AVERAGE OF CENTERED AND UPWIND

, DIFFERENCING IN THE RZ SUMMAND OF THE CONVEC*I'IVE

TERM OF THE U-DIRECTION MOMENTUM EQUATION

FLIX RS WEIGHTED AVERAGE OF CENTERED UPWIND DIFFERENCING

IN Tt-IE D(U**2)/DX SUMMAND OF THE CONVECrFIVETERM OF

'I_tE U-DIRECTION MOMENTUM EQUATION

FUY RS WEIGHTED AVERAGE OF AND UPWIND DIFFERENCING

IN THE D(UV)/DX SUMMAND OF THE CONVEUPIVE TERM OF

TI-.IEU-MOMENTUM EQUATION

FUZ RS WEIGHTED AVERAGE OF CENTERED AND UPWIND

DIFFERENCING IN THE D(UW)/DZ SUMMAND OF THE

CONVECTIVETERM OF THE U-DI MOMENIVM EQUATION

I-_VC, RS WEIGHTED AVERAGE OF CENII_RED AND UPWIND

DIFFERENCING IN THE RZ SUMMAND OF THE CONVECTIVE

" TERM OF THE V-DIRECTIO MOMENTUM EQUATION

FVX RS WEIGI-.rIED AVERAGE OF CENTERED AND UPWIND

DIFFERENCING IN THE 13(UV)/DX SUMMAND OF TIlE

CONVECTIVE TERM OF "I}tE V-DIRECTION MOMENTUM

EQUATION

FVY RS WEIGH'IED AVERAGE OF CENTERED AND UPWIND

DIFFERENCING IN THE D(V**2)/DX SUMMAND OF THE

, CONVECFIVE TERM oF THE V-DIRECTION MOMENTUM

EQUATION

2
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FNZ RS WEIGHTED AVERAGE OF CENTERED AND UPWIND

DIFFERENCING IN THE D(VW)/DZ SUMMAND OF THE

CONVECTIVE TERM OF THE V-DIRECTION MOMENTUM

EQUATION

FWC RS WEIGH'lED AVERAGE OF CENTERED AND UPWIND

DIFFERENCING IN THE RZ SUMMAND OF THE CONVECFIVE

TERM OF THE W-DIRECTION MOMEP"TUM EQUA'IqON

FWX RS WEIGHTED AVERAGE OF CEN'IT.RED AND UPWIND

DIFFERENCING IN THE D(UW)/DX SUMMAND OF THE

CONVECTIVE TERM OF THE W-DIRECTION MOMENTUM

' EQUATION

FWY RS WEIGHTED AVERAGE OF CENTERED AND UPWIND

DIFFERENCING IN ]'HE D(VW)/DY SUMMAND OF THE

CONVECTIVE TERM OFTHE W-DIRECTION MOMENTUM '

EQUATION

FWZ RS WEIGHTED AVERAGE OF CEN;FERED AND UPWIND

DIFFERENCING IN 'Iq-IE D(W**2)/DZ SUMMAND OF THE

CONVECTIVE TERM OF THE W.DIREC'qqON MOMENTUM

EQUATION

GX RS X-DIRECTION COMPONENT OF GRAVITATIONAL FORCE

GY RS Y-DIRECq'ION COMPONENT OF GRAVITATIONAL FORCE

GZ RS Z-DIRECTION COMPONENT OF GRAVITATIONAL FORCE

I IS DO-LOOP INDEX IBAR

IBAR IS NUMBER OF MESH CELLS IN TttE X-DIRECTION IN THE

REGION

II) IA INDIRECq" ADDRESSING ARRAY FOR ALL INTERIOR CELLS

ID(I,N) =--> I INDEX FOR Nth CELL

, ID(2,N) =:=> J INDEX FOR Nth CELl.

ID(3,N) =_> K INDEX FOR Nth CELL

IDBC IA INDIRECq" ADDRESSING ARRAY FOR ALL BOUNDARY CELLS

IDBC(1,N) ==> I INDEX FOR Nth CELL

IDBC(2,N) ==> J INDEX FOR Nth CELl_,

IDBC(3,N) ==> K INDEX FOR Nth CELL

IENERGY IS ENERGY SOLVER FLAG, = 1 SOLVE ENERGY EQ, =0 NO

ENERGY EQ,
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IFIMP IS FLAG DETERMINING FULLY]LINEARLY IMPLICIT OPTION

=1 ==> LINEARLY IMPLICIT

=0 ==> FULLY IMPLICIT

IGUESS IS FLAG DETERMINING INITIAL GUESS FOR FLOW VELOCITY

=0 ==> EXPLICIT APPROX. TO MOM. E.Q

=1 ==> EX"INAPOLATION FROM PREV. 2 TIME LEVELS

=2 ==> PREVIOUS TIME VELOCITY

IM 1 IS IMAX- 1

IM2 IS IMAX-2

IMAP IA INDIRE;"CT ADDRESSING ARRAY (4 DIMENSIONAL)

IMAP(I,J,K,1) = 0 ==> CELL (I,J,K) IS INACTIVE

IMAP(I,J,K,1) = 1 ==> CELL (I,J,K) IS ACTIVE

IMAP(I,J,K,2) = 0 ==> BOUNDARY CELL (I,J,K) IS A

NO-SLIP WALL

IMAP(I,J,K,2) = 1 ==> BOUNDARY CELl., (I,J,K) IS A

FREE-SLIP WALL

IMAP(I,J,K,2) = 2 ==> BOUNDARY CELL (I,J,K) IS A

WALL WITH SPECIFIED VELOCITIES

tMAX IS NUMBER OF CELLS IN TF ,-_X-DIRECTION OF THE AUGMENTED

REGION INCLUDES THE BOUNDARY CELLS.

IMELT IS MELTING FLAG- IMELT=0, NO MELTING- IMELT=I, MELTING

IS ALLOWED

iMLT IS LOGICAL UNIT NUMBER FOR THE MEI.T FRONT DATA FILE
!

"rnltdat"

INDEX IS USED TO COMBINE "FILECONTINUATIVE AND PERIODIC B. C.

• LOOPS

-J lOIN IS LOGICAL UNIT NUMBER FOR THE INPUT DEVICE
:

IOOUT IS LOGICAL UNIT NUMBER FOR OUTPUT FILE "outdat"

IOPLT IS LOGICAL UNIT NUMBER FOR OUTPUT FILE "pltdat"

IPRS IS LOGICAL UNIT NUMBER FOR PRESSURE DATA FILE "prsdat"

IR1N IS LOGICAL UNIT NUMBER FOR THE RESTART INPUT DEVICE

' IROUT IS LOGICAL UNIT NUMBER FOR THE RESTART OUTPUT DEVICE

ISTART IS STARTING VALUE FOR DO-LOOP WITH INDEX 1

ISTOP IS STOPPING VALUE FOR DO-I,OOP WrFH INDEX I

ISTRM1 IS ISTART - 1

ITER IS NUMBER OF SOR ITERAqlONS TAKEN ON A TIME STEP
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ITMP IS LOGICAL UNYF NUMBER FOR TEMPERATURE DATA FILE

"tmpdat"

ITMPB IS BOTFOM TEMP. BOUNDARY COND. FLAG

= 1 CONSTANT TEMP.

=2 CONSTANT HEAT FLUX/SYMETRIC/ADIABATIC

=3 CONVECTIVFdMIXED B.C.

ITMPD IS DERRIERE TEMP. BOUNDARY COND. FLAG

= 1 CONSTANT TEMP.

=2 CONSTANT HEAT FLUX/SYMETRIC/ADLABATIC

=3 CONVECTIVE/MIXED B.C.

ITMPF IS FRONT TEMP. BOUNDARY COND. FLAG

--1 CONSTANT TEMP.

=2 CONSTANT HEAT FLUX/SYMETRIC/ADIABATIC

=3 CONVECTIVE/MIXED B.C.

ITMPL IS t.EFr TEMP. BOUNDARY COND. FLAG

=1 CONSTANT TEMP.

=2 CONSTANT HEAT FLUX/SYMETRIC/ADIABATIC

=3 CONVECTIVE/MIXED B.C.

ITMPR IS RIGHT TEMPI BOUNDARY COND. FLAG

-1 CONSTANT TEMP.

-2 CONSTANT HEAT FLUX/SYMETRIC/ADIABATIC

=3 CONVECTIVE/MIXED B.C.

ITMPT IS TOP TEMP. BOUNDARY COND. FLAG

=1 CONSTANT TEMP.

=2 CONSTANT HEAT FLUX/SYMETRIC/ADIABATIC

-'_ CONVECTIVE/MIXED B.C.D ,

ITSUM IS "FILETOTAL NUMBER OF ITF,RATIONS TAKEN ON ALL CYCLES

IVEL IS LEg31CAL UNIT NUMBER FOR THE VELOCITY DATA FILE

"veldat"

IVISC IS VARIABLE VISCOSITY FLAG, =1 VARIABLE VISCOSITY

FORMULATION, =0 CONSTANT VISCOSITY FORMULATION

J IS DO-LOOP INDEX t

JBAR IS NUMBER OF MESH CELLS IN THE X..DIRECTION IN TIlE

REGION

JM 1 IS .IMAX- 1

JM2 IS JMAX-2
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' JMAX IS NUMBER OF CELLS IN THE Y-DIRECTION OF THEAUGMENTED

REGION INCLUDES THE BOUNDARY CELLS.

JSTART IS STARTING VALUE FOR DO-LOOP WITH INDEX J

JSTOP IS STOPPING VALUE FOR DO-LOOP WITH INDEX J

JSTRM1 IS JSTART- 1

K IS DO-LOOP INDEX

KBAR IS NUMBER OF MESH CELLS IN THE Z-DIRECTION IN THE

REGION

KM 1 IS KMAX- 1 C

KM2 IS KMAX-2

KMAX IS NUMBER OF CELLS IN THE Z-DIRECTION OF THE AUGMENTED

REGION INCLUDES THE BOUNDARY CEI,LS.

NAME IA HOLDS CHARACTER DATA WITH TITLE OF PROBLEM BEING

RUN,

NBC IS NUMBEROF BOUNDARY CELLS

NCELLS IS NUMBER OF AL'TIVE CELLS IN COMPUTATIONAL REGION

N U RS VISCOSITY

NXD IS ABSOLUTE MAXIMUM X DIMENSION

NYD IS ABSOLUTE MAXIMUM Y DIMENSION

NZD IS ABSOLUTE MAXIMUM Z DIMENSION

OMG RS OMEGA, SAFETY FACTOR

OMG 1 RS OMEGA 1, SAFETY FACTOR FOR PHYSICAL TIME STEP

OMG2 RS OMEGA2, SAFETY FACTOR FOR ARTIFICIAL TIME STEP

P RA PRESSURE FIELD; DOUBLY INDEXED ARRAY

QDOT RA ENERGY GENERATION ARRAY

RC RA ARRAY CONTAINING X-VALUES AT CELL CENTERS FOR USE

IN THE 2-D CYLINDRICAL COORDINATES FORMULATION

RR RA ARRAY CONTAINING X-VALUES AT CELL RIGHT FACES FOR

USE IN THE 2-D CYLINDRICAL COORDINATES FORMULATION

RDX RS 1/DX. USED "iO AVOID FLOATING POINT DIVISION IN LOOPS ,

RDX4 RS 1/(4*DX)

- RDXSQ RS 1/(DX*DX)

. RDY RS 1/DY. IBID.

RDY4 RS 1/(4*DY)

RDYSQ RS 1/(DY*DY)

RDZ RS I/DZ. IBID.
_
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RDZ4 RS 1/(4*DZ)

RDZSQ RS 1/(DY*DZ)

RHO RS FLUID DENSITY

RNUDT RS VISCOSITY OF THE DERRIERE-TOP CELL EDGE

RNUFB RS VISCOSITY OF "FILEFRONT-BOTTOM CELL EDGE

RNUFT RS VISCOSITY OF THE FRONT-TOP CELL EDGE

RNULF RS VISCOSITY OF 'IHE LEFT-FRONT CELL EDGE

RNULT RS VISCOSITY OF THE LEFT-TOP CELL EDGE

RNURB RS VISCOSITY OF THE RIGHT-BOTTOM CELL EDGE

RNURD RS VISCOSITY OF THE RIGHT-TOP CELL EDGE

RNURF RS VISCOSITY OF THE RIGHT-FRONT CELL EDGE

RNURT RS VISCOSITY OF THE RIGHT-TOP CELL EDGE

RX1DX2 RS MULTIPLIER IN RZ GEOMETRY MOMENTUM EQUATION

RXIHDX RS MULTIPLIER 1N RZ GEOMETRY MOMENTUM EQUATION

RXISQ RS MULTIPLIER IN RZ GEOMETRY MOMENTUM EQUATION

SIGMA RA ELECTRICAL CONDUCI'IVITY ARRAY

STARTM RS TIME ON THE INTERNAL CLOCK WHEN THE RUN WAS

STARTED

STLOOP RS TIME ON THE INTERNAL CLOCK WHEN THE LOOP WAS

STARTED

SUR RS SUM OF U(I,J,K) AND ITS RIGHT NEIGHBOR

SUF RS SUM OF U(I,J,K) AND 1TS FRONT NEIGHBOR

SUD RS SUM OF U(I,J,K) AND ITS DERRIERE NEIGHBOR

SULF RS SUM OF U(I-1,J,K) AND ITS FRONT NEIGHBOR SULT RS SUM

OF U(I-1,J,K) AND ITS TOP NEIGHBOR
i

SUL RS SUM OF U(I,J,K) AND ITS LEFT NEIGHBOR

SUT RS SUM OF U(I,J,K) AND ITS TOP NEIGHBOR

SUB RS SUM OF U(I,J,K) AND ITS BOTTOM NEIGHBOR

SVR RS SUM OF V(I,J,K) AND ITS RIGHT NEIGHBOR

SVF RS SUM OF V(I,J,K) AND ITS FRONT NEIGHBOR

SVB RS SUM OF V(I,J,K) AND ITS DERRIERE NEIGHBOR

,._VDR RS SUM OF V(I,J-1 K) AND ITS RIGHT NEIGHBOR

SVDT RS SUM OF V(I,J-1,K) AND ITS TOP NEIGHBOR

SVL RS SUM OF V(I,J,K) AND ITS LEFT NEIGHBOR

SVT RS SUM OF V(I,J,K) AND ITS TOP NEIGHBOR

SVB RS SUM OF V(I,J,K) AND ITS BOTTOM NEIGHBOR
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SWR RS SUM OF W(I,J,K) AND ITS RIGHT NEIGHBOR

SWF RS SUM OF W(I,J,K) AND ITS FRONT NEIGHBOR

SWB RS SUMOF W(I,J,K) AND ITS DERRIERE NEIGHBOR

SWBF RS SUM OF W(I,J,K-1) AND ITS FRONT NEIGHBOR

SWBR RS ' SUM OF W(I,J,K-I) AND ITS RIGHT NEIGHBOR

SWL RS SUM OF W(I,J,K) AND ITS LEFT NEIGHBOR

SWT RS SUM OF W(I,J,K) AND ITS TOP NEIGHBOR

SWB RS SUM OF W(I,J,K) AND ITS BOTTOM NEIGHBOR

SXXR RS VISCOUS STRESS TERM LOCATED ON THE RIGHT

FACE OF THE X-MOMENTUM CELL

SXXL RS VISCOUS STRESS TERM LOCATED ONTHE LEPT

FACE OF THE X-MOMENTUM CELL

SXYLF RS VISCOUS STRESS TERM ON THE LEFT-FRONT CELL EDGE

SXYRD RS VISCOUS STRESS TERM ON THE RIGHT-DERRIERE CELL EDGE

SXYRF RS VISCOUS STRESS TERM ON TIlE RIGHT-FRONT CELL EDGE

SXZLT RS VISCOUS STRESS TERM ON THE LEFT-TOP CELL EDGE

SXZRB RS VISCOUS STRESS TERM ON THE RIGHT-BOTI?OM CELL EDGE

SXZRT RS VISCOUS STRESS TERM ON THE RIGHT-TOP CELL EDGE

SYYD RS VISCOUS STRESS TERM LOCATED ON THE DERRIERE

FACE OF THE X-MOMENTUM CELL

SYYF RS VISCOUS STRESS TERM LOCATED ON THE FRONT

FACE OF THE X-MOMENTUM CELL

SYZDT RS VISCOUS STRESS TERM ON THE DERRIERE-TOP CELL EDGE

SYZFB RS ISCOUS STRESS TERM ON THE FRONT-BOTI'OM CELL EDGE

SYZFT RS VISCOUS STRESS TERM ON THE FRONT-TOP CEI,L EDGE

SZZB RS VISCOUS STRESS TERM LOCATED ON THE BOT]'OM

FACE OF THE X-MOMENTUM CELL

SZZT RS VISCOUS STRESS TERM LOCATED ON THE TOP

FACE OF THE X-MOMENTUM CELL

T RS CUMULATIVE TIME

TAVE RS AVERAGE TEMp. IN COMPUTATIONAL REGION

" TCRNTU RS COURANT TIME STEP LIMIT BASED ON U-VEI,OCITY

TCRNTV RS COURANT TIME STEP LIMIT BASED ON V-VELOCITY

TCRNTW RS COURANT TIME STEP LIMIT BA_ED ON W-VELOCITY
J

TMP RA TEMPERAq_IJRE ARRAY

TNU RA TEMPERATURE DEPENDENT VISCOSITY ARRAY
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TQB RS TEMP. B.C. PARAMETER FOR BOTI'OM OF REGION

TQD RS TEMP. B.C, PARAMETER FOR DERRIERE OF REGION

TQF RS TEMP. B.C. PARAMETER FOR FRONT OF REGION

TQL RS TEMP. B.C. PARAMETER FOR LEFT OF REGION

TQR RS TEMP, B.C. PARAMETER FOR RIGHT OF REGION

RS TEMP. B.C. PARAMETER FOR BOTI'OM OF REGION

TREF RS REFERENCE TEMPERATURE

TWFIN RS FINISH TIME. STOP CALCULATION WHEN T = TWFIN.

TWPLT RS PLOTI'ING TIME. WRITE A PLOT WHENEVER T = TWPLT.

TWPRT RS EDITFING TIME. WRITE OUTPUT EDIT WHENEVER T = TWPRT.

U RA X-DIRECTION VELOCITY ITERATE VECTOR FOR SOR.

UI RS UNIFORM INITIAL U-VELOCITY

UMAX RS MAXIMUM VALUE OF THE Lr-VELOCITY IN THE REGION

UN RA X-DIRECTION VELOCITY FIELD A TIME-STEP N.

U S RA X-DIRECTION SPECIFIED VELOCITY FIELD

UTLDA RA X-COMPONENT OF VELOCITY CONSISTING OF THE VELOCI'I'Y

OF THE PREV, TIME STEP PLUS THE CONVECTIVE AND

VISCOUS FLUXES ASSOCIATED WITH THE CURRENT ITERATE

FOR THE VELOCITY.

V RA Y-DIREcTION VELOCITY ITERATE VECTOR FOR SOR.

VELMX RS MAXIMUM EXPECTED VELOCITY AT ANY POINT AND TIME

VELMX 1 'Rs THE MAXIMUM MESH-SPACING DIVIDED BY VELMX

VI RS UNIFORM INFFIAL V-VELOCITY

VISX RS VISCOUS DIFFUSION TERM IN THE X-DIRECTION MOMENTUM

EQUATION

VISY RS VISCOUS DIFFUSIO_ " ,_:RM IN THE, Y-DIRECTION MOMENTUM i

EQUA'IION

VISZ RS VISCOUS DIFFUSION TERM IN THE Z-DIRECTION MOMENTt1M

EQUATION

VMAX RS MAXIMUM VALUE OF THE V-VELOCITY IN THE REGION

VN RA Y-DIRECTION VELOCFI'Y FIELD A TIME-STEP N.

VS RA Y-DIRECTION SPECIFIED VELOCITY FIELD -

V'H.DA RA Y-COMtK)NENT OF VELOCITY CONSISTING OF THE VELOCITY

OF THE PREV. TIME STEP PLUS THF, CONVECTIVE AND

VISCOUS FLUXES ASSOCIA'IED WITH THE CURRENT ITERATE

OF THE VELOCITY.
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W RA Z-DIRECTION VELOCITY ITERATE VECTOR FOR SOR.

Wl P,S UNIFORM INITIAL W-VELOCITY

WMAX RS MAXIMUM VALUE OF THE W-VELOCITY IN THE REGION

WN RA W-DIRECTION VELOCITY HELD A TIME-STEP N.

WTLDA RA Z-COMF_NENT OF VELOCITY CONSISTING OF THE VELOCITY

OF THE PREV. TIME STEP PLUS THE CONVECTIVE AND

VISCOUS FLUXES ASSOCIATED WITH THF, CURRENT ITERATE

" OF THE VELOCITY.

SUBROUTINES

ADDRESS ==> DEFINES THE INDIRECT ADDRESSING SCHEME

ADVANCE ==> UPDATES VARIABLES TO THE NEW TIME LEVEL

BNDRY ==> SETS THE BOUNDARY CONDITIONS

CONVERG ==> CHECKS FOR CONVERGENCE OF "FIIE ITERATION SCHEME

DENCHK ==> COMPUTES THE DEVIATION FROM INCOMPRESSIBILITY

DUMP ==> PERFORMS BINAR Y DUMP OF DATA FOR RESTART

ENERGY ==> SOLVES DISCRETI;ZJED FORM OF ENERGY EQUATION

(EXPLICIT),

FLUX ==> COMPUTES THE VELOCITY CONTRIBUTIONS DUE TO THE

CONVECTIVE, VISCOUS, AND BODY FORCE "JERMS IN

THE MOMEMTUM EQUATION

GUESS ==> SETS THE INITIAL VELOCITY GUESS FOR THE ITERATION

SCHEME--> 1.) EXPLICIT APPROX. TO MOM. EQ.

2.) OLD TIME VELOCITIES

3.) EXTRAPOLATION FROM 2 PREV. TIME

IJEVEI.,S

INITLZ ==> INITIALIZES PROGRAM VARIABLES

INPUT ==> INPUTS THE NECESSARY VARIABLES

'_ MELT ==> ALLOWS CEI,L MELTING AND FREEZING

PRNT ==> PRINTS INFORMATION FOR OUTPUT AND PLO'ITING
r

RSTART ==> READS BINARY DATA FILE FOR PROGRAM RESTART
/
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STATE ==> USES EQ. OF STATE TO COMPUTE TEMP. OR ENERGY

ALSO COMPUTES TEMP. DEPENDENT FLUID PROPERTIES

TBNDRY ==> SETS TEMPERATURE BOUNDARY CONDITIONS

TIMER ==> TIMES PROGRAM

UPDATE ==> UPDATES PRESSURES AND VELOCITIES ACCORDING TO

FULLY/LINEARLY IMPLICIT ARTIFICIAL COMPRESSIBILITY

ITERATION SCHEME WITH DAMPING

,,
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APPENDIX D

SAMPLE INPUT FILE

MAGMA TEST PROBLEM - 3B

. C,,4.,7,10,,3..6,,20

0 IRSTRT RESTART PARAMETER =0,1NPUT FILE;= 1,RESTART FILE

1.000 ALPHA WEIGHTING FACTOR FOR AVE, UPWIND AND CENTER

DIFF,

1,0E+00 BCTE BETA--COEFFICIENT OF THERMAL EXPANSION

1,00D+00 CVREF REFERENCE SPECIFIC HEAT CAPACITY

0,D0 CYL CYLINDRICALA1ECTANGULAR COORDINATES INDICATOR

1,0E+00 DELT TIME STEP

2,500000E-02 DELX X-DIRECTION MESH SPACING

2,500000E-02 DELY Y-DIRECTION I_LESH SPACING

-2,50E'02 DELZ Y-DIRECTION MESH SPACING (<0 for 2-D)

1,D0 DZRO BENCHMARK VALUE FOR DIVERGENCE OF VELOCITY

FIELD

1.00D+(X) ECOEF1 COEFF, IN ENERGY EQ. OI: STATE (LINEAR TERM)

0.0D-00 ECOEF2 COEFF. IN ENERGY EQ. OF STATE (QUADRATIC TERM)

1,00D+00 ECOEF3 COEFF, IN ENERGY EQ. OF STATE (LINEAR TERM)

_. 0.0D-00 ECOEF4 COEFF, IN ENERGY EQ. OF STATE (QUADRATIC TERM)

1,0E-05 EPSI CONVERGENCE CONDITION

1,00000E'00 FKREF REFERENCE TttERMAL CONDUCTIVITY

0.0D+00 FL SPECIFIC LATENT HEATOF FUSION

1.0D0 FLCHAR CHARACTERISTIC LENGTH

0,D0 GX BODY ACCELERATION IN X DIRECTION

9.8 lD0 GY BODY ACCELERATION IN Y DIRECTION

0,D0 GZ BODY ACCELERATION IN Z DIRECTION

• 0.71000D-00 NU VISCOSITY

1.47500 OMG EFFECTIVE DAMPING COEFFICIENT

, 0.80D00 OMG1 SAFETY FACTOR FOR PHYSICAL TIME STEP

0,80D00 OMG2 SAFETY FACTOR FOR ARTIFICIAl_, TIME STEP

1.0DO0 RHO REFERENCE DENSITY

1.0E-03 TOL TOLERANCE OF DU/DTAU & DV/DTAU

661,88D+00 TMPI INITIAL TEMPERATURE
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0,0E+00 TQB TEMP,/HEAT FLUX FoR BOTTOM BOUNDARY COND,

0,0D+00 "II_)D TEMP,/HEAT FLUX FOR DERRIERE BOUNDARY COND.

0.0E+00 TQF TEMP,/HEAT FLUX FOR FRONT BOUNDARY COND,

0.0E+00 'I_H HEAT TRANSFER COEFF, FOR MIXED TYPE B,C,

1,0238E+03 'IRL TEMP./HEAT FLUX FOR LEFT BOUNDARY COND,

3,0E+02 TQR TEMP,/HEAT FLUX FOR RIGHT BOUNDARY COND,

0,0E+00 TQT TEMP,/HEAT FLUX FOR TOP BOUNDARY COND,

661.880.00 TREF REFERENCE TEMPERATURE

1,00000D-00 TWFIN sToPPING TIME

0,0D0 UI INFI'IAI.,U-VELOCITY

2,5D+01 VELMX MAXIMUM EXPECTED VELOCITY

0.0D0 VI INITIAL Y-VELOCITY

0.0D0 WI INFI'IAL Z-VELOCITY

C

C INTEGER SCALARS

C

100 IFREQ PLOT EVERY IFREQ CYCLES

40 IBAR MAX, NO. OF INTERIOR CELLS IN X-DIRECTION

40 BAR MAX. NO. OF INTERIOR CELLS IN Y-DIRECTION

1 KBAR MAX, NO, OF INTERIOR CELLS IN Z-DIRECTION

1 IENRGY =0 NO ENERGY CALCULATIONS, =I ENERGY CALC.S

0 IFIMP =0 FULLY IMPLCT =1 LINEARU'( IMPLCT =2 SEMIdMPLCT

1 IGUESS =0 NORMAL GUESS, =1 OLD VEL., =2 EXTRAPOLATED

VEL.

0 IMELT ----0NO MELTING, =1 MELTING ALLOWED

2 FFMPB =1 CONST T, =2 CONST Q, =3 CONVECTIVE B,C.

2 ITMPI3 =1 CONST T, =2 CONST Q, =3 CONVECTIVE B.C.

2 ITMPF =1 CONST T, =2 CONST Q, =3 CONVECTIVE B,C.

1 ITMPL =1 CONST T, =2 CONST Q, =3 CONVECTIVE B.C.

1 ITMPR =1 CONST T, =2 CONST Q, =3 CONVECTIVE B.C. _

2 ITMPT =1 CONST T, =2 CONST Q, =3 CONVECTIVE B.C,

0 IVISC =0 TURNS OFF VARIABLE VISCOSITY FORMULATION i
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